sched: Fix wake_affine() vs RT tasks
[linux/fpc-iii.git] / kernel / time / tick-sched.c
blobb63cfebc680b384b69a0263b3afd4c65dcd20f1e
1 /*
2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 #include <linux/module.h>
25 #include <asm/irq_regs.h>
27 #include "tick-internal.h"
30 * Per cpu nohz control structure
32 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
35 * The time, when the last jiffy update happened. Protected by xtime_lock.
37 static ktime_t last_jiffies_update;
39 struct tick_sched *tick_get_tick_sched(int cpu)
41 return &per_cpu(tick_cpu_sched, cpu);
45 * Must be called with interrupts disabled !
47 static void tick_do_update_jiffies64(ktime_t now)
49 unsigned long ticks = 0;
50 ktime_t delta;
53 * Do a quick check without holding xtime_lock:
55 delta = ktime_sub(now, last_jiffies_update);
56 if (delta.tv64 < tick_period.tv64)
57 return;
59 /* Reevalute with xtime_lock held */
60 write_seqlock(&xtime_lock);
62 delta = ktime_sub(now, last_jiffies_update);
63 if (delta.tv64 >= tick_period.tv64) {
65 delta = ktime_sub(delta, tick_period);
66 last_jiffies_update = ktime_add(last_jiffies_update,
67 tick_period);
69 /* Slow path for long timeouts */
70 if (unlikely(delta.tv64 >= tick_period.tv64)) {
71 s64 incr = ktime_to_ns(tick_period);
73 ticks = ktime_divns(delta, incr);
75 last_jiffies_update = ktime_add_ns(last_jiffies_update,
76 incr * ticks);
78 do_timer(++ticks);
80 /* Keep the tick_next_period variable up to date */
81 tick_next_period = ktime_add(last_jiffies_update, tick_period);
83 write_sequnlock(&xtime_lock);
87 * Initialize and return retrieve the jiffies update.
89 static ktime_t tick_init_jiffy_update(void)
91 ktime_t period;
93 write_seqlock(&xtime_lock);
94 /* Did we start the jiffies update yet ? */
95 if (last_jiffies_update.tv64 == 0)
96 last_jiffies_update = tick_next_period;
97 period = last_jiffies_update;
98 write_sequnlock(&xtime_lock);
99 return period;
103 * NOHZ - aka dynamic tick functionality
105 #ifdef CONFIG_NO_HZ
107 * NO HZ enabled ?
109 static int tick_nohz_enabled __read_mostly = 1;
112 * Enable / Disable tickless mode
114 static int __init setup_tick_nohz(char *str)
116 if (!strcmp(str, "off"))
117 tick_nohz_enabled = 0;
118 else if (!strcmp(str, "on"))
119 tick_nohz_enabled = 1;
120 else
121 return 0;
122 return 1;
125 __setup("nohz=", setup_tick_nohz);
128 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
130 * Called from interrupt entry when the CPU was idle
132 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
133 * must be updated. Otherwise an interrupt handler could use a stale jiffy
134 * value. We do this unconditionally on any cpu, as we don't know whether the
135 * cpu, which has the update task assigned is in a long sleep.
137 static void tick_nohz_update_jiffies(ktime_t now)
139 int cpu = smp_processor_id();
140 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
141 unsigned long flags;
143 cpumask_clear_cpu(cpu, nohz_cpu_mask);
144 ts->idle_waketime = now;
146 local_irq_save(flags);
147 tick_do_update_jiffies64(now);
148 local_irq_restore(flags);
150 touch_softlockup_watchdog();
153 static void tick_nohz_stop_idle(int cpu, ktime_t now)
155 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
156 ktime_t delta;
158 delta = ktime_sub(now, ts->idle_entrytime);
159 ts->idle_lastupdate = now;
160 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
161 ts->idle_active = 0;
163 sched_clock_idle_wakeup_event(0);
166 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
168 ktime_t now, delta;
170 now = ktime_get();
171 if (ts->idle_active) {
172 delta = ktime_sub(now, ts->idle_entrytime);
173 ts->idle_lastupdate = now;
174 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
176 ts->idle_entrytime = now;
177 ts->idle_active = 1;
178 sched_clock_idle_sleep_event();
179 return now;
182 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
184 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
186 if (!tick_nohz_enabled)
187 return -1;
189 if (ts->idle_active)
190 *last_update_time = ktime_to_us(ts->idle_lastupdate);
191 else
192 *last_update_time = ktime_to_us(ktime_get());
194 return ktime_to_us(ts->idle_sleeptime);
196 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
199 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
201 * When the next event is more than a tick into the future, stop the idle tick
202 * Called either from the idle loop or from irq_exit() when an idle period was
203 * just interrupted by an interrupt which did not cause a reschedule.
205 void tick_nohz_stop_sched_tick(int inidle)
207 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
208 struct tick_sched *ts;
209 ktime_t last_update, expires, now;
210 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
211 u64 time_delta;
212 int cpu;
214 local_irq_save(flags);
216 cpu = smp_processor_id();
217 ts = &per_cpu(tick_cpu_sched, cpu);
220 * Call to tick_nohz_start_idle stops the last_update_time from being
221 * updated. Thus, it must not be called in the event we are called from
222 * irq_exit() with the prior state different than idle.
224 if (!inidle && !ts->inidle)
225 goto end;
228 * Set ts->inidle unconditionally. Even if the system did not
229 * switch to NOHZ mode the cpu frequency governers rely on the
230 * update of the idle time accounting in tick_nohz_start_idle().
232 ts->inidle = 1;
234 now = tick_nohz_start_idle(ts);
237 * If this cpu is offline and it is the one which updates
238 * jiffies, then give up the assignment and let it be taken by
239 * the cpu which runs the tick timer next. If we don't drop
240 * this here the jiffies might be stale and do_timer() never
241 * invoked.
243 if (unlikely(!cpu_online(cpu))) {
244 if (cpu == tick_do_timer_cpu)
245 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
248 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
249 goto end;
251 if (need_resched())
252 goto end;
254 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
255 static int ratelimit;
257 if (ratelimit < 10) {
258 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
259 local_softirq_pending());
260 ratelimit++;
262 goto end;
265 ts->idle_calls++;
266 /* Read jiffies and the time when jiffies were updated last */
267 do {
268 seq = read_seqbegin(&xtime_lock);
269 last_update = last_jiffies_update;
270 last_jiffies = jiffies;
273 * On SMP we really should only care for the CPU which
274 * has the do_timer duty assigned. All other CPUs can
275 * sleep as long as they want.
277 if (cpu == tick_do_timer_cpu ||
278 tick_do_timer_cpu == TICK_DO_TIMER_NONE)
279 time_delta = timekeeping_max_deferment();
280 else
281 time_delta = KTIME_MAX;
282 } while (read_seqretry(&xtime_lock, seq));
284 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
285 arch_needs_cpu(cpu)) {
286 next_jiffies = last_jiffies + 1;
287 delta_jiffies = 1;
288 } else {
289 /* Get the next timer wheel timer */
290 next_jiffies = get_next_timer_interrupt(last_jiffies);
291 delta_jiffies = next_jiffies - last_jiffies;
294 * Do not stop the tick, if we are only one off
295 * or if the cpu is required for rcu
297 if (!ts->tick_stopped && delta_jiffies == 1)
298 goto out;
300 /* Schedule the tick, if we are at least one jiffie off */
301 if ((long)delta_jiffies >= 1) {
304 * calculate the expiry time for the next timer wheel
305 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
306 * that there is no timer pending or at least extremely
307 * far into the future (12 days for HZ=1000). In this
308 * case we set the expiry to the end of time.
310 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
312 * Calculate the time delta for the next timer event.
313 * If the time delta exceeds the maximum time delta
314 * permitted by the current clocksource then adjust
315 * the time delta accordingly to ensure the
316 * clocksource does not wrap.
318 time_delta = min_t(u64, time_delta,
319 tick_period.tv64 * delta_jiffies);
320 expires = ktime_add_ns(last_update, time_delta);
321 } else {
322 expires.tv64 = KTIME_MAX;
326 * If this cpu is the one which updates jiffies, then
327 * give up the assignment and let it be taken by the
328 * cpu which runs the tick timer next, which might be
329 * this cpu as well. If we don't drop this here the
330 * jiffies might be stale and do_timer() never
331 * invoked.
333 if (cpu == tick_do_timer_cpu)
334 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
336 if (delta_jiffies > 1)
337 cpumask_set_cpu(cpu, nohz_cpu_mask);
339 /* Skip reprogram of event if its not changed */
340 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
341 goto out;
344 * nohz_stop_sched_tick can be called several times before
345 * the nohz_restart_sched_tick is called. This happens when
346 * interrupts arrive which do not cause a reschedule. In the
347 * first call we save the current tick time, so we can restart
348 * the scheduler tick in nohz_restart_sched_tick.
350 if (!ts->tick_stopped) {
351 if (select_nohz_load_balancer(1)) {
353 * sched tick not stopped!
355 cpumask_clear_cpu(cpu, nohz_cpu_mask);
356 goto out;
359 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
360 ts->tick_stopped = 1;
361 ts->idle_jiffies = last_jiffies;
362 rcu_enter_nohz();
365 ts->idle_sleeps++;
367 /* Mark expires */
368 ts->idle_expires = expires;
371 * If the expiration time == KTIME_MAX, then
372 * in this case we simply stop the tick timer.
374 if (unlikely(expires.tv64 == KTIME_MAX)) {
375 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
376 hrtimer_cancel(&ts->sched_timer);
377 goto out;
380 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
381 hrtimer_start(&ts->sched_timer, expires,
382 HRTIMER_MODE_ABS_PINNED);
383 /* Check, if the timer was already in the past */
384 if (hrtimer_active(&ts->sched_timer))
385 goto out;
386 } else if (!tick_program_event(expires, 0))
387 goto out;
389 * We are past the event already. So we crossed a
390 * jiffie boundary. Update jiffies and raise the
391 * softirq.
393 tick_do_update_jiffies64(ktime_get());
394 cpumask_clear_cpu(cpu, nohz_cpu_mask);
396 raise_softirq_irqoff(TIMER_SOFTIRQ);
397 out:
398 ts->next_jiffies = next_jiffies;
399 ts->last_jiffies = last_jiffies;
400 ts->sleep_length = ktime_sub(dev->next_event, now);
401 end:
402 local_irq_restore(flags);
406 * tick_nohz_get_sleep_length - return the length of the current sleep
408 * Called from power state control code with interrupts disabled
410 ktime_t tick_nohz_get_sleep_length(void)
412 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
414 return ts->sleep_length;
417 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
419 hrtimer_cancel(&ts->sched_timer);
420 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
422 while (1) {
423 /* Forward the time to expire in the future */
424 hrtimer_forward(&ts->sched_timer, now, tick_period);
426 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
427 hrtimer_start_expires(&ts->sched_timer,
428 HRTIMER_MODE_ABS_PINNED);
429 /* Check, if the timer was already in the past */
430 if (hrtimer_active(&ts->sched_timer))
431 break;
432 } else {
433 if (!tick_program_event(
434 hrtimer_get_expires(&ts->sched_timer), 0))
435 break;
437 /* Update jiffies and reread time */
438 tick_do_update_jiffies64(now);
439 now = ktime_get();
444 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
446 * Restart the idle tick when the CPU is woken up from idle
448 void tick_nohz_restart_sched_tick(void)
450 int cpu = smp_processor_id();
451 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
452 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
453 unsigned long ticks;
454 #endif
455 ktime_t now;
457 local_irq_disable();
458 if (ts->idle_active || (ts->inidle && ts->tick_stopped))
459 now = ktime_get();
461 if (ts->idle_active)
462 tick_nohz_stop_idle(cpu, now);
464 if (!ts->inidle || !ts->tick_stopped) {
465 ts->inidle = 0;
466 local_irq_enable();
467 return;
470 ts->inidle = 0;
472 rcu_exit_nohz();
474 /* Update jiffies first */
475 select_nohz_load_balancer(0);
476 tick_do_update_jiffies64(now);
477 cpumask_clear_cpu(cpu, nohz_cpu_mask);
479 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
481 * We stopped the tick in idle. Update process times would miss the
482 * time we slept as update_process_times does only a 1 tick
483 * accounting. Enforce that this is accounted to idle !
485 ticks = jiffies - ts->idle_jiffies;
487 * We might be one off. Do not randomly account a huge number of ticks!
489 if (ticks && ticks < LONG_MAX)
490 account_idle_ticks(ticks);
491 #endif
493 touch_softlockup_watchdog();
495 * Cancel the scheduled timer and restore the tick
497 ts->tick_stopped = 0;
498 ts->idle_exittime = now;
500 tick_nohz_restart(ts, now);
502 local_irq_enable();
505 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
507 hrtimer_forward(&ts->sched_timer, now, tick_period);
508 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
512 * The nohz low res interrupt handler
514 static void tick_nohz_handler(struct clock_event_device *dev)
516 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
517 struct pt_regs *regs = get_irq_regs();
518 int cpu = smp_processor_id();
519 ktime_t now = ktime_get();
521 dev->next_event.tv64 = KTIME_MAX;
524 * Check if the do_timer duty was dropped. We don't care about
525 * concurrency: This happens only when the cpu in charge went
526 * into a long sleep. If two cpus happen to assign themself to
527 * this duty, then the jiffies update is still serialized by
528 * xtime_lock.
530 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
531 tick_do_timer_cpu = cpu;
533 /* Check, if the jiffies need an update */
534 if (tick_do_timer_cpu == cpu)
535 tick_do_update_jiffies64(now);
538 * When we are idle and the tick is stopped, we have to touch
539 * the watchdog as we might not schedule for a really long
540 * time. This happens on complete idle SMP systems while
541 * waiting on the login prompt. We also increment the "start
542 * of idle" jiffy stamp so the idle accounting adjustment we
543 * do when we go busy again does not account too much ticks.
545 if (ts->tick_stopped) {
546 touch_softlockup_watchdog();
547 ts->idle_jiffies++;
550 update_process_times(user_mode(regs));
551 profile_tick(CPU_PROFILING);
553 while (tick_nohz_reprogram(ts, now)) {
554 now = ktime_get();
555 tick_do_update_jiffies64(now);
560 * tick_nohz_switch_to_nohz - switch to nohz mode
562 static void tick_nohz_switch_to_nohz(void)
564 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
565 ktime_t next;
567 if (!tick_nohz_enabled)
568 return;
570 local_irq_disable();
571 if (tick_switch_to_oneshot(tick_nohz_handler)) {
572 local_irq_enable();
573 return;
576 ts->nohz_mode = NOHZ_MODE_LOWRES;
579 * Recycle the hrtimer in ts, so we can share the
580 * hrtimer_forward with the highres code.
582 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
583 /* Get the next period */
584 next = tick_init_jiffy_update();
586 for (;;) {
587 hrtimer_set_expires(&ts->sched_timer, next);
588 if (!tick_program_event(next, 0))
589 break;
590 next = ktime_add(next, tick_period);
592 local_irq_enable();
594 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
595 smp_processor_id());
599 * When NOHZ is enabled and the tick is stopped, we need to kick the
600 * tick timer from irq_enter() so that the jiffies update is kept
601 * alive during long running softirqs. That's ugly as hell, but
602 * correctness is key even if we need to fix the offending softirq in
603 * the first place.
605 * Note, this is different to tick_nohz_restart. We just kick the
606 * timer and do not touch the other magic bits which need to be done
607 * when idle is left.
609 static void tick_nohz_kick_tick(int cpu, ktime_t now)
611 #if 0
612 /* Switch back to 2.6.27 behaviour */
614 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
615 ktime_t delta;
618 * Do not touch the tick device, when the next expiry is either
619 * already reached or less/equal than the tick period.
621 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
622 if (delta.tv64 <= tick_period.tv64)
623 return;
625 tick_nohz_restart(ts, now);
626 #endif
629 static inline void tick_check_nohz(int cpu)
631 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
632 ktime_t now;
634 if (!ts->idle_active && !ts->tick_stopped)
635 return;
636 now = ktime_get();
637 if (ts->idle_active)
638 tick_nohz_stop_idle(cpu, now);
639 if (ts->tick_stopped) {
640 tick_nohz_update_jiffies(now);
641 tick_nohz_kick_tick(cpu, now);
645 #else
647 static inline void tick_nohz_switch_to_nohz(void) { }
648 static inline void tick_check_nohz(int cpu) { }
650 #endif /* NO_HZ */
653 * Called from irq_enter to notify about the possible interruption of idle()
655 void tick_check_idle(int cpu)
657 tick_check_oneshot_broadcast(cpu);
658 tick_check_nohz(cpu);
662 * High resolution timer specific code
664 #ifdef CONFIG_HIGH_RES_TIMERS
666 * We rearm the timer until we get disabled by the idle code.
667 * Called with interrupts disabled and timer->base->cpu_base->lock held.
669 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
671 struct tick_sched *ts =
672 container_of(timer, struct tick_sched, sched_timer);
673 struct pt_regs *regs = get_irq_regs();
674 ktime_t now = ktime_get();
675 int cpu = smp_processor_id();
677 #ifdef CONFIG_NO_HZ
679 * Check if the do_timer duty was dropped. We don't care about
680 * concurrency: This happens only when the cpu in charge went
681 * into a long sleep. If two cpus happen to assign themself to
682 * this duty, then the jiffies update is still serialized by
683 * xtime_lock.
685 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
686 tick_do_timer_cpu = cpu;
687 #endif
689 /* Check, if the jiffies need an update */
690 if (tick_do_timer_cpu == cpu)
691 tick_do_update_jiffies64(now);
694 * Do not call, when we are not in irq context and have
695 * no valid regs pointer
697 if (regs) {
699 * When we are idle and the tick is stopped, we have to touch
700 * the watchdog as we might not schedule for a really long
701 * time. This happens on complete idle SMP systems while
702 * waiting on the login prompt. We also increment the "start of
703 * idle" jiffy stamp so the idle accounting adjustment we do
704 * when we go busy again does not account too much ticks.
706 if (ts->tick_stopped) {
707 touch_softlockup_watchdog();
708 ts->idle_jiffies++;
710 update_process_times(user_mode(regs));
711 profile_tick(CPU_PROFILING);
714 hrtimer_forward(timer, now, tick_period);
716 return HRTIMER_RESTART;
720 * tick_setup_sched_timer - setup the tick emulation timer
722 void tick_setup_sched_timer(void)
724 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
725 ktime_t now = ktime_get();
726 u64 offset;
729 * Emulate tick processing via per-CPU hrtimers:
731 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
732 ts->sched_timer.function = tick_sched_timer;
734 /* Get the next period (per cpu) */
735 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
736 offset = ktime_to_ns(tick_period) >> 1;
737 do_div(offset, num_possible_cpus());
738 offset *= smp_processor_id();
739 hrtimer_add_expires_ns(&ts->sched_timer, offset);
741 for (;;) {
742 hrtimer_forward(&ts->sched_timer, now, tick_period);
743 hrtimer_start_expires(&ts->sched_timer,
744 HRTIMER_MODE_ABS_PINNED);
745 /* Check, if the timer was already in the past */
746 if (hrtimer_active(&ts->sched_timer))
747 break;
748 now = ktime_get();
751 #ifdef CONFIG_NO_HZ
752 if (tick_nohz_enabled)
753 ts->nohz_mode = NOHZ_MODE_HIGHRES;
754 #endif
756 #endif /* HIGH_RES_TIMERS */
758 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
759 void tick_cancel_sched_timer(int cpu)
761 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
763 # ifdef CONFIG_HIGH_RES_TIMERS
764 if (ts->sched_timer.base)
765 hrtimer_cancel(&ts->sched_timer);
766 # endif
768 ts->nohz_mode = NOHZ_MODE_INACTIVE;
770 #endif
773 * Async notification about clocksource changes
775 void tick_clock_notify(void)
777 int cpu;
779 for_each_possible_cpu(cpu)
780 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
784 * Async notification about clock event changes
786 void tick_oneshot_notify(void)
788 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
790 set_bit(0, &ts->check_clocks);
794 * Check, if a change happened, which makes oneshot possible.
796 * Called cyclic from the hrtimer softirq (driven by the timer
797 * softirq) allow_nohz signals, that we can switch into low-res nohz
798 * mode, because high resolution timers are disabled (either compile
799 * or runtime).
801 int tick_check_oneshot_change(int allow_nohz)
803 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
805 if (!test_and_clear_bit(0, &ts->check_clocks))
806 return 0;
808 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
809 return 0;
811 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
812 return 0;
814 if (!allow_nohz)
815 return 1;
817 tick_nohz_switch_to_nohz();
818 return 0;