ARM: dts: imx27: Add core voltages
[linux/fpc-iii.git] / include / net / sock.h
blob95a5a2c6925ab0745b563f7f04663721465460e7
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
40 #ifndef _SOCK_H
41 #define _SOCK_H
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
71 struct cgroup;
72 struct cgroup_subsys;
73 #ifdef CONFIG_NET
74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
76 #else
77 static inline
78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
80 return 0;
82 static inline
83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
86 #endif
88 * This structure really needs to be cleaned up.
89 * Most of it is for TCP, and not used by any of
90 * the other protocols.
93 /* Define this to get the SOCK_DBG debugging facility. */
94 #define SOCK_DEBUGGING
95 #ifdef SOCK_DEBUGGING
96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
97 printk(KERN_DEBUG msg); } while (0)
98 #else
99 /* Validate arguments and do nothing */
100 static inline __printf(2, 3)
101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
104 #endif
106 /* This is the per-socket lock. The spinlock provides a synchronization
107 * between user contexts and software interrupt processing, whereas the
108 * mini-semaphore synchronizes multiple users amongst themselves.
110 typedef struct {
111 spinlock_t slock;
112 int owned;
113 wait_queue_head_t wq;
115 * We express the mutex-alike socket_lock semantics
116 * to the lock validator by explicitly managing
117 * the slock as a lock variant (in addition to
118 * the slock itself):
120 #ifdef CONFIG_DEBUG_LOCK_ALLOC
121 struct lockdep_map dep_map;
122 #endif
123 } socket_lock_t;
125 struct sock;
126 struct proto;
127 struct net;
129 typedef __u32 __bitwise __portpair;
130 typedef __u64 __bitwise __addrpair;
133 * struct sock_common - minimal network layer representation of sockets
134 * @skc_daddr: Foreign IPv4 addr
135 * @skc_rcv_saddr: Bound local IPv4 addr
136 * @skc_hash: hash value used with various protocol lookup tables
137 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
138 * @skc_dport: placeholder for inet_dport/tw_dport
139 * @skc_num: placeholder for inet_num/tw_num
140 * @skc_family: network address family
141 * @skc_state: Connection state
142 * @skc_reuse: %SO_REUSEADDR setting
143 * @skc_reuseport: %SO_REUSEPORT setting
144 * @skc_bound_dev_if: bound device index if != 0
145 * @skc_bind_node: bind hash linkage for various protocol lookup tables
146 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
147 * @skc_prot: protocol handlers inside a network family
148 * @skc_net: reference to the network namespace of this socket
149 * @skc_node: main hash linkage for various protocol lookup tables
150 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
151 * @skc_tx_queue_mapping: tx queue number for this connection
152 * @skc_refcnt: reference count
154 * This is the minimal network layer representation of sockets, the header
155 * for struct sock and struct inet_timewait_sock.
157 struct sock_common {
158 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
159 * address on 64bit arches : cf INET_MATCH() and INET_TW_MATCH()
161 union {
162 __addrpair skc_addrpair;
163 struct {
164 __be32 skc_daddr;
165 __be32 skc_rcv_saddr;
168 union {
169 unsigned int skc_hash;
170 __u16 skc_u16hashes[2];
172 /* skc_dport && skc_num must be grouped as well */
173 union {
174 __portpair skc_portpair;
175 struct {
176 __be16 skc_dport;
177 __u16 skc_num;
181 unsigned short skc_family;
182 volatile unsigned char skc_state;
183 unsigned char skc_reuse:4;
184 unsigned char skc_reuseport:4;
185 int skc_bound_dev_if;
186 union {
187 struct hlist_node skc_bind_node;
188 struct hlist_nulls_node skc_portaddr_node;
190 struct proto *skc_prot;
191 #ifdef CONFIG_NET_NS
192 struct net *skc_net;
193 #endif
195 * fields between dontcopy_begin/dontcopy_end
196 * are not copied in sock_copy()
198 /* private: */
199 int skc_dontcopy_begin[0];
200 /* public: */
201 union {
202 struct hlist_node skc_node;
203 struct hlist_nulls_node skc_nulls_node;
205 int skc_tx_queue_mapping;
206 atomic_t skc_refcnt;
207 /* private: */
208 int skc_dontcopy_end[0];
209 /* public: */
212 struct cg_proto;
214 * struct sock - network layer representation of sockets
215 * @__sk_common: shared layout with inet_timewait_sock
216 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
217 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
218 * @sk_lock: synchronizer
219 * @sk_rcvbuf: size of receive buffer in bytes
220 * @sk_wq: sock wait queue and async head
221 * @sk_rx_dst: receive input route used by early tcp demux
222 * @sk_dst_cache: destination cache
223 * @sk_dst_lock: destination cache lock
224 * @sk_policy: flow policy
225 * @sk_receive_queue: incoming packets
226 * @sk_wmem_alloc: transmit queue bytes committed
227 * @sk_write_queue: Packet sending queue
228 * @sk_async_wait_queue: DMA copied packets
229 * @sk_omem_alloc: "o" is "option" or "other"
230 * @sk_wmem_queued: persistent queue size
231 * @sk_forward_alloc: space allocated forward
232 * @sk_napi_id: id of the last napi context to receive data for sk
233 * @sk_ll_usec: usecs to busypoll when there is no data
234 * @sk_allocation: allocation mode
235 * @sk_sndbuf: size of send buffer in bytes
236 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
237 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
238 * @sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets
239 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
240 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
241 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
242 * @sk_gso_max_size: Maximum GSO segment size to build
243 * @sk_gso_max_segs: Maximum number of GSO segments
244 * @sk_lingertime: %SO_LINGER l_linger setting
245 * @sk_backlog: always used with the per-socket spinlock held
246 * @sk_callback_lock: used with the callbacks in the end of this struct
247 * @sk_error_queue: rarely used
248 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
249 * IPV6_ADDRFORM for instance)
250 * @sk_err: last error
251 * @sk_err_soft: errors that don't cause failure but are the cause of a
252 * persistent failure not just 'timed out'
253 * @sk_drops: raw/udp drops counter
254 * @sk_ack_backlog: current listen backlog
255 * @sk_max_ack_backlog: listen backlog set in listen()
256 * @sk_priority: %SO_PRIORITY setting
257 * @sk_cgrp_prioidx: socket group's priority map index
258 * @sk_type: socket type (%SOCK_STREAM, etc)
259 * @sk_protocol: which protocol this socket belongs in this network family
260 * @sk_peer_pid: &struct pid for this socket's peer
261 * @sk_peer_cred: %SO_PEERCRED setting
262 * @sk_rcvlowat: %SO_RCVLOWAT setting
263 * @sk_rcvtimeo: %SO_RCVTIMEO setting
264 * @sk_sndtimeo: %SO_SNDTIMEO setting
265 * @sk_rxhash: flow hash received from netif layer
266 * @sk_filter: socket filtering instructions
267 * @sk_protinfo: private area, net family specific, when not using slab
268 * @sk_timer: sock cleanup timer
269 * @sk_stamp: time stamp of last packet received
270 * @sk_socket: Identd and reporting IO signals
271 * @sk_user_data: RPC layer private data
272 * @sk_frag: cached page frag
273 * @sk_peek_off: current peek_offset value
274 * @sk_send_head: front of stuff to transmit
275 * @sk_security: used by security modules
276 * @sk_mark: generic packet mark
277 * @sk_classid: this socket's cgroup classid
278 * @sk_cgrp: this socket's cgroup-specific proto data
279 * @sk_write_pending: a write to stream socket waits to start
280 * @sk_state_change: callback to indicate change in the state of the sock
281 * @sk_data_ready: callback to indicate there is data to be processed
282 * @sk_write_space: callback to indicate there is bf sending space available
283 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
284 * @sk_backlog_rcv: callback to process the backlog
285 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
287 struct sock {
289 * Now struct inet_timewait_sock also uses sock_common, so please just
290 * don't add nothing before this first member (__sk_common) --acme
292 struct sock_common __sk_common;
293 #define sk_node __sk_common.skc_node
294 #define sk_nulls_node __sk_common.skc_nulls_node
295 #define sk_refcnt __sk_common.skc_refcnt
296 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
298 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
299 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
300 #define sk_hash __sk_common.skc_hash
301 #define sk_family __sk_common.skc_family
302 #define sk_state __sk_common.skc_state
303 #define sk_reuse __sk_common.skc_reuse
304 #define sk_reuseport __sk_common.skc_reuseport
305 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
306 #define sk_bind_node __sk_common.skc_bind_node
307 #define sk_prot __sk_common.skc_prot
308 #define sk_net __sk_common.skc_net
309 socket_lock_t sk_lock;
310 struct sk_buff_head sk_receive_queue;
312 * The backlog queue is special, it is always used with
313 * the per-socket spinlock held and requires low latency
314 * access. Therefore we special case it's implementation.
315 * Note : rmem_alloc is in this structure to fill a hole
316 * on 64bit arches, not because its logically part of
317 * backlog.
319 struct {
320 atomic_t rmem_alloc;
321 int len;
322 struct sk_buff *head;
323 struct sk_buff *tail;
324 } sk_backlog;
325 #define sk_rmem_alloc sk_backlog.rmem_alloc
326 int sk_forward_alloc;
327 #ifdef CONFIG_RPS
328 __u32 sk_rxhash;
329 #endif
330 #ifdef CONFIG_NET_LL_RX_POLL
331 unsigned int sk_napi_id;
332 unsigned int sk_ll_usec;
333 #endif
334 atomic_t sk_drops;
335 int sk_rcvbuf;
337 struct sk_filter __rcu *sk_filter;
338 struct socket_wq __rcu *sk_wq;
340 #ifdef CONFIG_NET_DMA
341 struct sk_buff_head sk_async_wait_queue;
342 #endif
344 #ifdef CONFIG_XFRM
345 struct xfrm_policy *sk_policy[2];
346 #endif
347 unsigned long sk_flags;
348 struct dst_entry *sk_rx_dst;
349 struct dst_entry __rcu *sk_dst_cache;
350 spinlock_t sk_dst_lock;
351 atomic_t sk_wmem_alloc;
352 atomic_t sk_omem_alloc;
353 int sk_sndbuf;
354 struct sk_buff_head sk_write_queue;
355 kmemcheck_bitfield_begin(flags);
356 unsigned int sk_shutdown : 2,
357 sk_no_check : 2,
358 sk_userlocks : 4,
359 sk_protocol : 8,
360 sk_type : 16;
361 kmemcheck_bitfield_end(flags);
362 int sk_wmem_queued;
363 gfp_t sk_allocation;
364 netdev_features_t sk_route_caps;
365 netdev_features_t sk_route_nocaps;
366 int sk_gso_type;
367 unsigned int sk_gso_max_size;
368 u16 sk_gso_max_segs;
369 int sk_rcvlowat;
370 unsigned long sk_lingertime;
371 struct sk_buff_head sk_error_queue;
372 struct proto *sk_prot_creator;
373 rwlock_t sk_callback_lock;
374 int sk_err,
375 sk_err_soft;
376 unsigned short sk_ack_backlog;
377 unsigned short sk_max_ack_backlog;
378 __u32 sk_priority;
379 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
380 __u32 sk_cgrp_prioidx;
381 #endif
382 struct pid *sk_peer_pid;
383 const struct cred *sk_peer_cred;
384 long sk_rcvtimeo;
385 long sk_sndtimeo;
386 void *sk_protinfo;
387 struct timer_list sk_timer;
388 ktime_t sk_stamp;
389 struct socket *sk_socket;
390 void *sk_user_data;
391 struct page_frag sk_frag;
392 struct sk_buff *sk_send_head;
393 __s32 sk_peek_off;
394 int sk_write_pending;
395 #ifdef CONFIG_SECURITY
396 void *sk_security;
397 #endif
398 __u32 sk_mark;
399 u32 sk_classid;
400 struct cg_proto *sk_cgrp;
401 void (*sk_state_change)(struct sock *sk);
402 void (*sk_data_ready)(struct sock *sk, int bytes);
403 void (*sk_write_space)(struct sock *sk);
404 void (*sk_error_report)(struct sock *sk);
405 int (*sk_backlog_rcv)(struct sock *sk,
406 struct sk_buff *skb);
407 void (*sk_destruct)(struct sock *sk);
411 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
412 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
413 * on a socket means that the socket will reuse everybody else's port
414 * without looking at the other's sk_reuse value.
417 #define SK_NO_REUSE 0
418 #define SK_CAN_REUSE 1
419 #define SK_FORCE_REUSE 2
421 static inline int sk_peek_offset(struct sock *sk, int flags)
423 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
424 return sk->sk_peek_off;
425 else
426 return 0;
429 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
431 if (sk->sk_peek_off >= 0) {
432 if (sk->sk_peek_off >= val)
433 sk->sk_peek_off -= val;
434 else
435 sk->sk_peek_off = 0;
439 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
441 if (sk->sk_peek_off >= 0)
442 sk->sk_peek_off += val;
446 * Hashed lists helper routines
448 static inline struct sock *sk_entry(const struct hlist_node *node)
450 return hlist_entry(node, struct sock, sk_node);
453 static inline struct sock *__sk_head(const struct hlist_head *head)
455 return hlist_entry(head->first, struct sock, sk_node);
458 static inline struct sock *sk_head(const struct hlist_head *head)
460 return hlist_empty(head) ? NULL : __sk_head(head);
463 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
465 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
468 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
470 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
473 static inline struct sock *sk_next(const struct sock *sk)
475 return sk->sk_node.next ?
476 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
479 static inline struct sock *sk_nulls_next(const struct sock *sk)
481 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
482 hlist_nulls_entry(sk->sk_nulls_node.next,
483 struct sock, sk_nulls_node) :
484 NULL;
487 static inline bool sk_unhashed(const struct sock *sk)
489 return hlist_unhashed(&sk->sk_node);
492 static inline bool sk_hashed(const struct sock *sk)
494 return !sk_unhashed(sk);
497 static inline void sk_node_init(struct hlist_node *node)
499 node->pprev = NULL;
502 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
504 node->pprev = NULL;
507 static inline void __sk_del_node(struct sock *sk)
509 __hlist_del(&sk->sk_node);
512 /* NB: equivalent to hlist_del_init_rcu */
513 static inline bool __sk_del_node_init(struct sock *sk)
515 if (sk_hashed(sk)) {
516 __sk_del_node(sk);
517 sk_node_init(&sk->sk_node);
518 return true;
520 return false;
523 /* Grab socket reference count. This operation is valid only
524 when sk is ALREADY grabbed f.e. it is found in hash table
525 or a list and the lookup is made under lock preventing hash table
526 modifications.
529 static inline void sock_hold(struct sock *sk)
531 atomic_inc(&sk->sk_refcnt);
534 /* Ungrab socket in the context, which assumes that socket refcnt
535 cannot hit zero, f.e. it is true in context of any socketcall.
537 static inline void __sock_put(struct sock *sk)
539 atomic_dec(&sk->sk_refcnt);
542 static inline bool sk_del_node_init(struct sock *sk)
544 bool rc = __sk_del_node_init(sk);
546 if (rc) {
547 /* paranoid for a while -acme */
548 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
549 __sock_put(sk);
551 return rc;
553 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
555 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
557 if (sk_hashed(sk)) {
558 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
559 return true;
561 return false;
564 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
566 bool rc = __sk_nulls_del_node_init_rcu(sk);
568 if (rc) {
569 /* paranoid for a while -acme */
570 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
571 __sock_put(sk);
573 return rc;
576 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
578 hlist_add_head(&sk->sk_node, list);
581 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
583 sock_hold(sk);
584 __sk_add_node(sk, list);
587 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
589 sock_hold(sk);
590 hlist_add_head_rcu(&sk->sk_node, list);
593 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
595 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
598 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
600 sock_hold(sk);
601 __sk_nulls_add_node_rcu(sk, list);
604 static inline void __sk_del_bind_node(struct sock *sk)
606 __hlist_del(&sk->sk_bind_node);
609 static inline void sk_add_bind_node(struct sock *sk,
610 struct hlist_head *list)
612 hlist_add_head(&sk->sk_bind_node, list);
615 #define sk_for_each(__sk, list) \
616 hlist_for_each_entry(__sk, list, sk_node)
617 #define sk_for_each_rcu(__sk, list) \
618 hlist_for_each_entry_rcu(__sk, list, sk_node)
619 #define sk_nulls_for_each(__sk, node, list) \
620 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
621 #define sk_nulls_for_each_rcu(__sk, node, list) \
622 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
623 #define sk_for_each_from(__sk) \
624 hlist_for_each_entry_from(__sk, sk_node)
625 #define sk_nulls_for_each_from(__sk, node) \
626 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
627 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
628 #define sk_for_each_safe(__sk, tmp, list) \
629 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
630 #define sk_for_each_bound(__sk, list) \
631 hlist_for_each_entry(__sk, list, sk_bind_node)
633 static inline struct user_namespace *sk_user_ns(struct sock *sk)
635 /* Careful only use this in a context where these parameters
636 * can not change and must all be valid, such as recvmsg from
637 * userspace.
639 return sk->sk_socket->file->f_cred->user_ns;
642 /* Sock flags */
643 enum sock_flags {
644 SOCK_DEAD,
645 SOCK_DONE,
646 SOCK_URGINLINE,
647 SOCK_KEEPOPEN,
648 SOCK_LINGER,
649 SOCK_DESTROY,
650 SOCK_BROADCAST,
651 SOCK_TIMESTAMP,
652 SOCK_ZAPPED,
653 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
654 SOCK_DBG, /* %SO_DEBUG setting */
655 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
656 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
657 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
658 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
659 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
660 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
661 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
662 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
663 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
664 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
665 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
666 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
667 SOCK_FASYNC, /* fasync() active */
668 SOCK_RXQ_OVFL,
669 SOCK_ZEROCOPY, /* buffers from userspace */
670 SOCK_WIFI_STATUS, /* push wifi status to userspace */
671 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
672 * Will use last 4 bytes of packet sent from
673 * user-space instead.
675 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
676 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
679 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
681 nsk->sk_flags = osk->sk_flags;
684 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
686 __set_bit(flag, &sk->sk_flags);
689 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
691 __clear_bit(flag, &sk->sk_flags);
694 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
696 return test_bit(flag, &sk->sk_flags);
699 #ifdef CONFIG_NET
700 extern struct static_key memalloc_socks;
701 static inline int sk_memalloc_socks(void)
703 return static_key_false(&memalloc_socks);
705 #else
707 static inline int sk_memalloc_socks(void)
709 return 0;
712 #endif
714 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
716 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
719 static inline void sk_acceptq_removed(struct sock *sk)
721 sk->sk_ack_backlog--;
724 static inline void sk_acceptq_added(struct sock *sk)
726 sk->sk_ack_backlog++;
729 static inline bool sk_acceptq_is_full(const struct sock *sk)
731 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
735 * Compute minimal free write space needed to queue new packets.
737 static inline int sk_stream_min_wspace(const struct sock *sk)
739 return sk->sk_wmem_queued >> 1;
742 static inline int sk_stream_wspace(const struct sock *sk)
744 return sk->sk_sndbuf - sk->sk_wmem_queued;
747 extern void sk_stream_write_space(struct sock *sk);
749 static inline bool sk_stream_memory_free(const struct sock *sk)
751 return sk->sk_wmem_queued < sk->sk_sndbuf;
754 /* OOB backlog add */
755 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
757 /* dont let skb dst not refcounted, we are going to leave rcu lock */
758 skb_dst_force(skb);
760 if (!sk->sk_backlog.tail)
761 sk->sk_backlog.head = skb;
762 else
763 sk->sk_backlog.tail->next = skb;
765 sk->sk_backlog.tail = skb;
766 skb->next = NULL;
770 * Take into account size of receive queue and backlog queue
771 * Do not take into account this skb truesize,
772 * to allow even a single big packet to come.
774 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
775 unsigned int limit)
777 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
779 return qsize > limit;
782 /* The per-socket spinlock must be held here. */
783 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
784 unsigned int limit)
786 if (sk_rcvqueues_full(sk, skb, limit))
787 return -ENOBUFS;
789 __sk_add_backlog(sk, skb);
790 sk->sk_backlog.len += skb->truesize;
791 return 0;
794 extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
796 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
798 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
799 return __sk_backlog_rcv(sk, skb);
801 return sk->sk_backlog_rcv(sk, skb);
804 static inline void sock_rps_record_flow(const struct sock *sk)
806 #ifdef CONFIG_RPS
807 struct rps_sock_flow_table *sock_flow_table;
809 rcu_read_lock();
810 sock_flow_table = rcu_dereference(rps_sock_flow_table);
811 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
812 rcu_read_unlock();
813 #endif
816 static inline void sock_rps_reset_flow(const struct sock *sk)
818 #ifdef CONFIG_RPS
819 struct rps_sock_flow_table *sock_flow_table;
821 rcu_read_lock();
822 sock_flow_table = rcu_dereference(rps_sock_flow_table);
823 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
824 rcu_read_unlock();
825 #endif
828 static inline void sock_rps_save_rxhash(struct sock *sk,
829 const struct sk_buff *skb)
831 #ifdef CONFIG_RPS
832 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
833 sock_rps_reset_flow(sk);
834 sk->sk_rxhash = skb->rxhash;
836 #endif
839 static inline void sock_rps_reset_rxhash(struct sock *sk)
841 #ifdef CONFIG_RPS
842 sock_rps_reset_flow(sk);
843 sk->sk_rxhash = 0;
844 #endif
847 #define sk_wait_event(__sk, __timeo, __condition) \
848 ({ int __rc; \
849 release_sock(__sk); \
850 __rc = __condition; \
851 if (!__rc) { \
852 *(__timeo) = schedule_timeout(*(__timeo)); \
854 lock_sock(__sk); \
855 __rc = __condition; \
856 __rc; \
859 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
860 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
861 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
862 extern int sk_stream_error(struct sock *sk, int flags, int err);
863 extern void sk_stream_kill_queues(struct sock *sk);
864 extern void sk_set_memalloc(struct sock *sk);
865 extern void sk_clear_memalloc(struct sock *sk);
867 extern int sk_wait_data(struct sock *sk, long *timeo);
869 struct request_sock_ops;
870 struct timewait_sock_ops;
871 struct inet_hashinfo;
872 struct raw_hashinfo;
873 struct module;
876 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
877 * un-modified. Special care is taken when initializing object to zero.
879 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
881 if (offsetof(struct sock, sk_node.next) != 0)
882 memset(sk, 0, offsetof(struct sock, sk_node.next));
883 memset(&sk->sk_node.pprev, 0,
884 size - offsetof(struct sock, sk_node.pprev));
887 /* Networking protocol blocks we attach to sockets.
888 * socket layer -> transport layer interface
889 * transport -> network interface is defined by struct inet_proto
891 struct proto {
892 void (*close)(struct sock *sk,
893 long timeout);
894 int (*connect)(struct sock *sk,
895 struct sockaddr *uaddr,
896 int addr_len);
897 int (*disconnect)(struct sock *sk, int flags);
899 struct sock * (*accept)(struct sock *sk, int flags, int *err);
901 int (*ioctl)(struct sock *sk, int cmd,
902 unsigned long arg);
903 int (*init)(struct sock *sk);
904 void (*destroy)(struct sock *sk);
905 void (*shutdown)(struct sock *sk, int how);
906 int (*setsockopt)(struct sock *sk, int level,
907 int optname, char __user *optval,
908 unsigned int optlen);
909 int (*getsockopt)(struct sock *sk, int level,
910 int optname, char __user *optval,
911 int __user *option);
912 #ifdef CONFIG_COMPAT
913 int (*compat_setsockopt)(struct sock *sk,
914 int level,
915 int optname, char __user *optval,
916 unsigned int optlen);
917 int (*compat_getsockopt)(struct sock *sk,
918 int level,
919 int optname, char __user *optval,
920 int __user *option);
921 int (*compat_ioctl)(struct sock *sk,
922 unsigned int cmd, unsigned long arg);
923 #endif
924 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
925 struct msghdr *msg, size_t len);
926 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
927 struct msghdr *msg,
928 size_t len, int noblock, int flags,
929 int *addr_len);
930 int (*sendpage)(struct sock *sk, struct page *page,
931 int offset, size_t size, int flags);
932 int (*bind)(struct sock *sk,
933 struct sockaddr *uaddr, int addr_len);
935 int (*backlog_rcv) (struct sock *sk,
936 struct sk_buff *skb);
938 void (*release_cb)(struct sock *sk);
939 void (*mtu_reduced)(struct sock *sk);
941 /* Keeping track of sk's, looking them up, and port selection methods. */
942 void (*hash)(struct sock *sk);
943 void (*unhash)(struct sock *sk);
944 void (*rehash)(struct sock *sk);
945 int (*get_port)(struct sock *sk, unsigned short snum);
946 void (*clear_sk)(struct sock *sk, int size);
948 /* Keeping track of sockets in use */
949 #ifdef CONFIG_PROC_FS
950 unsigned int inuse_idx;
951 #endif
953 /* Memory pressure */
954 void (*enter_memory_pressure)(struct sock *sk);
955 atomic_long_t *memory_allocated; /* Current allocated memory. */
956 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
958 * Pressure flag: try to collapse.
959 * Technical note: it is used by multiple contexts non atomically.
960 * All the __sk_mem_schedule() is of this nature: accounting
961 * is strict, actions are advisory and have some latency.
963 int *memory_pressure;
964 long *sysctl_mem;
965 int *sysctl_wmem;
966 int *sysctl_rmem;
967 int max_header;
968 bool no_autobind;
970 struct kmem_cache *slab;
971 unsigned int obj_size;
972 int slab_flags;
974 struct percpu_counter *orphan_count;
976 struct request_sock_ops *rsk_prot;
977 struct timewait_sock_ops *twsk_prot;
979 union {
980 struct inet_hashinfo *hashinfo;
981 struct udp_table *udp_table;
982 struct raw_hashinfo *raw_hash;
983 } h;
985 struct module *owner;
987 char name[32];
989 struct list_head node;
990 #ifdef SOCK_REFCNT_DEBUG
991 atomic_t socks;
992 #endif
993 #ifdef CONFIG_MEMCG_KMEM
995 * cgroup specific init/deinit functions. Called once for all
996 * protocols that implement it, from cgroups populate function.
997 * This function has to setup any files the protocol want to
998 * appear in the kmem cgroup filesystem.
1000 int (*init_cgroup)(struct mem_cgroup *memcg,
1001 struct cgroup_subsys *ss);
1002 void (*destroy_cgroup)(struct mem_cgroup *memcg);
1003 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1004 #endif
1008 * Bits in struct cg_proto.flags
1010 enum cg_proto_flags {
1011 /* Currently active and new sockets should be assigned to cgroups */
1012 MEMCG_SOCK_ACTIVE,
1013 /* It was ever activated; we must disarm static keys on destruction */
1014 MEMCG_SOCK_ACTIVATED,
1017 struct cg_proto {
1018 void (*enter_memory_pressure)(struct sock *sk);
1019 struct res_counter *memory_allocated; /* Current allocated memory. */
1020 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1021 int *memory_pressure;
1022 long *sysctl_mem;
1023 unsigned long flags;
1025 * memcg field is used to find which memcg we belong directly
1026 * Each memcg struct can hold more than one cg_proto, so container_of
1027 * won't really cut.
1029 * The elegant solution would be having an inverse function to
1030 * proto_cgroup in struct proto, but that means polluting the structure
1031 * for everybody, instead of just for memcg users.
1033 struct mem_cgroup *memcg;
1036 extern int proto_register(struct proto *prot, int alloc_slab);
1037 extern void proto_unregister(struct proto *prot);
1039 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1041 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1044 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1046 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1049 #ifdef SOCK_REFCNT_DEBUG
1050 static inline void sk_refcnt_debug_inc(struct sock *sk)
1052 atomic_inc(&sk->sk_prot->socks);
1055 static inline void sk_refcnt_debug_dec(struct sock *sk)
1057 atomic_dec(&sk->sk_prot->socks);
1058 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1059 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1062 static inline void sk_refcnt_debug_release(const struct sock *sk)
1064 if (atomic_read(&sk->sk_refcnt) != 1)
1065 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1066 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1068 #else /* SOCK_REFCNT_DEBUG */
1069 #define sk_refcnt_debug_inc(sk) do { } while (0)
1070 #define sk_refcnt_debug_dec(sk) do { } while (0)
1071 #define sk_refcnt_debug_release(sk) do { } while (0)
1072 #endif /* SOCK_REFCNT_DEBUG */
1074 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1075 extern struct static_key memcg_socket_limit_enabled;
1076 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1077 struct cg_proto *cg_proto)
1079 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1081 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1082 #else
1083 #define mem_cgroup_sockets_enabled 0
1084 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1085 struct cg_proto *cg_proto)
1087 return NULL;
1089 #endif
1092 static inline bool sk_has_memory_pressure(const struct sock *sk)
1094 return sk->sk_prot->memory_pressure != NULL;
1097 static inline bool sk_under_memory_pressure(const struct sock *sk)
1099 if (!sk->sk_prot->memory_pressure)
1100 return false;
1102 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1103 return !!*sk->sk_cgrp->memory_pressure;
1105 return !!*sk->sk_prot->memory_pressure;
1108 static inline void sk_leave_memory_pressure(struct sock *sk)
1110 int *memory_pressure = sk->sk_prot->memory_pressure;
1112 if (!memory_pressure)
1113 return;
1115 if (*memory_pressure)
1116 *memory_pressure = 0;
1118 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1119 struct cg_proto *cg_proto = sk->sk_cgrp;
1120 struct proto *prot = sk->sk_prot;
1122 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1123 if (*cg_proto->memory_pressure)
1124 *cg_proto->memory_pressure = 0;
1129 static inline void sk_enter_memory_pressure(struct sock *sk)
1131 if (!sk->sk_prot->enter_memory_pressure)
1132 return;
1134 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1135 struct cg_proto *cg_proto = sk->sk_cgrp;
1136 struct proto *prot = sk->sk_prot;
1138 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1139 cg_proto->enter_memory_pressure(sk);
1142 sk->sk_prot->enter_memory_pressure(sk);
1145 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1147 long *prot = sk->sk_prot->sysctl_mem;
1148 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1149 prot = sk->sk_cgrp->sysctl_mem;
1150 return prot[index];
1153 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1154 unsigned long amt,
1155 int *parent_status)
1157 struct res_counter *fail;
1158 int ret;
1160 ret = res_counter_charge_nofail(prot->memory_allocated,
1161 amt << PAGE_SHIFT, &fail);
1162 if (ret < 0)
1163 *parent_status = OVER_LIMIT;
1166 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1167 unsigned long amt)
1169 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1172 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1174 u64 ret;
1175 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1176 return ret >> PAGE_SHIFT;
1179 static inline long
1180 sk_memory_allocated(const struct sock *sk)
1182 struct proto *prot = sk->sk_prot;
1183 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1184 return memcg_memory_allocated_read(sk->sk_cgrp);
1186 return atomic_long_read(prot->memory_allocated);
1189 static inline long
1190 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1192 struct proto *prot = sk->sk_prot;
1194 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1195 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1196 /* update the root cgroup regardless */
1197 atomic_long_add_return(amt, prot->memory_allocated);
1198 return memcg_memory_allocated_read(sk->sk_cgrp);
1201 return atomic_long_add_return(amt, prot->memory_allocated);
1204 static inline void
1205 sk_memory_allocated_sub(struct sock *sk, int amt)
1207 struct proto *prot = sk->sk_prot;
1209 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1210 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1212 atomic_long_sub(amt, prot->memory_allocated);
1215 static inline void sk_sockets_allocated_dec(struct sock *sk)
1217 struct proto *prot = sk->sk_prot;
1219 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1220 struct cg_proto *cg_proto = sk->sk_cgrp;
1222 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1223 percpu_counter_dec(cg_proto->sockets_allocated);
1226 percpu_counter_dec(prot->sockets_allocated);
1229 static inline void sk_sockets_allocated_inc(struct sock *sk)
1231 struct proto *prot = sk->sk_prot;
1233 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1234 struct cg_proto *cg_proto = sk->sk_cgrp;
1236 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1237 percpu_counter_inc(cg_proto->sockets_allocated);
1240 percpu_counter_inc(prot->sockets_allocated);
1243 static inline int
1244 sk_sockets_allocated_read_positive(struct sock *sk)
1246 struct proto *prot = sk->sk_prot;
1248 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1249 return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1251 return percpu_counter_read_positive(prot->sockets_allocated);
1254 static inline int
1255 proto_sockets_allocated_sum_positive(struct proto *prot)
1257 return percpu_counter_sum_positive(prot->sockets_allocated);
1260 static inline long
1261 proto_memory_allocated(struct proto *prot)
1263 return atomic_long_read(prot->memory_allocated);
1266 static inline bool
1267 proto_memory_pressure(struct proto *prot)
1269 if (!prot->memory_pressure)
1270 return false;
1271 return !!*prot->memory_pressure;
1275 #ifdef CONFIG_PROC_FS
1276 /* Called with local bh disabled */
1277 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1278 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1279 #else
1280 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1281 int inc)
1284 #endif
1287 /* With per-bucket locks this operation is not-atomic, so that
1288 * this version is not worse.
1290 static inline void __sk_prot_rehash(struct sock *sk)
1292 sk->sk_prot->unhash(sk);
1293 sk->sk_prot->hash(sk);
1296 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1298 /* About 10 seconds */
1299 #define SOCK_DESTROY_TIME (10*HZ)
1301 /* Sockets 0-1023 can't be bound to unless you are superuser */
1302 #define PROT_SOCK 1024
1304 #define SHUTDOWN_MASK 3
1305 #define RCV_SHUTDOWN 1
1306 #define SEND_SHUTDOWN 2
1308 #define SOCK_SNDBUF_LOCK 1
1309 #define SOCK_RCVBUF_LOCK 2
1310 #define SOCK_BINDADDR_LOCK 4
1311 #define SOCK_BINDPORT_LOCK 8
1313 /* sock_iocb: used to kick off async processing of socket ios */
1314 struct sock_iocb {
1315 struct list_head list;
1317 int flags;
1318 int size;
1319 struct socket *sock;
1320 struct sock *sk;
1321 struct scm_cookie *scm;
1322 struct msghdr *msg, async_msg;
1323 struct kiocb *kiocb;
1326 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1328 return (struct sock_iocb *)iocb->private;
1331 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1333 return si->kiocb;
1336 struct socket_alloc {
1337 struct socket socket;
1338 struct inode vfs_inode;
1341 static inline struct socket *SOCKET_I(struct inode *inode)
1343 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1346 static inline struct inode *SOCK_INODE(struct socket *socket)
1348 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1352 * Functions for memory accounting
1354 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1355 extern void __sk_mem_reclaim(struct sock *sk);
1357 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1358 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1359 #define SK_MEM_SEND 0
1360 #define SK_MEM_RECV 1
1362 static inline int sk_mem_pages(int amt)
1364 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1367 static inline bool sk_has_account(struct sock *sk)
1369 /* return true if protocol supports memory accounting */
1370 return !!sk->sk_prot->memory_allocated;
1373 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1375 if (!sk_has_account(sk))
1376 return true;
1377 return size <= sk->sk_forward_alloc ||
1378 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1381 static inline bool
1382 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1384 if (!sk_has_account(sk))
1385 return true;
1386 return size<= sk->sk_forward_alloc ||
1387 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1388 skb_pfmemalloc(skb);
1391 static inline void sk_mem_reclaim(struct sock *sk)
1393 if (!sk_has_account(sk))
1394 return;
1395 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1396 __sk_mem_reclaim(sk);
1399 static inline void sk_mem_reclaim_partial(struct sock *sk)
1401 if (!sk_has_account(sk))
1402 return;
1403 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1404 __sk_mem_reclaim(sk);
1407 static inline void sk_mem_charge(struct sock *sk, int size)
1409 if (!sk_has_account(sk))
1410 return;
1411 sk->sk_forward_alloc -= size;
1414 static inline void sk_mem_uncharge(struct sock *sk, int size)
1416 if (!sk_has_account(sk))
1417 return;
1418 sk->sk_forward_alloc += size;
1421 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1423 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1424 sk->sk_wmem_queued -= skb->truesize;
1425 sk_mem_uncharge(sk, skb->truesize);
1426 __kfree_skb(skb);
1429 /* Used by processes to "lock" a socket state, so that
1430 * interrupts and bottom half handlers won't change it
1431 * from under us. It essentially blocks any incoming
1432 * packets, so that we won't get any new data or any
1433 * packets that change the state of the socket.
1435 * While locked, BH processing will add new packets to
1436 * the backlog queue. This queue is processed by the
1437 * owner of the socket lock right before it is released.
1439 * Since ~2.3.5 it is also exclusive sleep lock serializing
1440 * accesses from user process context.
1442 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1445 * Macro so as to not evaluate some arguments when
1446 * lockdep is not enabled.
1448 * Mark both the sk_lock and the sk_lock.slock as a
1449 * per-address-family lock class.
1451 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1452 do { \
1453 sk->sk_lock.owned = 0; \
1454 init_waitqueue_head(&sk->sk_lock.wq); \
1455 spin_lock_init(&(sk)->sk_lock.slock); \
1456 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1457 sizeof((sk)->sk_lock)); \
1458 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1459 (skey), (sname)); \
1460 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1461 } while (0)
1463 extern void lock_sock_nested(struct sock *sk, int subclass);
1465 static inline void lock_sock(struct sock *sk)
1467 lock_sock_nested(sk, 0);
1470 extern void release_sock(struct sock *sk);
1472 /* BH context may only use the following locking interface. */
1473 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1474 #define bh_lock_sock_nested(__sk) \
1475 spin_lock_nested(&((__sk)->sk_lock.slock), \
1476 SINGLE_DEPTH_NESTING)
1477 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1479 extern bool lock_sock_fast(struct sock *sk);
1481 * unlock_sock_fast - complement of lock_sock_fast
1482 * @sk: socket
1483 * @slow: slow mode
1485 * fast unlock socket for user context.
1486 * If slow mode is on, we call regular release_sock()
1488 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1490 if (slow)
1491 release_sock(sk);
1492 else
1493 spin_unlock_bh(&sk->sk_lock.slock);
1497 extern struct sock *sk_alloc(struct net *net, int family,
1498 gfp_t priority,
1499 struct proto *prot);
1500 extern void sk_free(struct sock *sk);
1501 extern void sk_release_kernel(struct sock *sk);
1502 extern struct sock *sk_clone_lock(const struct sock *sk,
1503 const gfp_t priority);
1505 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1506 unsigned long size, int force,
1507 gfp_t priority);
1508 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1509 unsigned long size, int force,
1510 gfp_t priority);
1511 extern void sock_wfree(struct sk_buff *skb);
1512 extern void sock_rfree(struct sk_buff *skb);
1513 extern void sock_edemux(struct sk_buff *skb);
1515 extern int sock_setsockopt(struct socket *sock, int level,
1516 int op, char __user *optval,
1517 unsigned int optlen);
1519 extern int sock_getsockopt(struct socket *sock, int level,
1520 int op, char __user *optval,
1521 int __user *optlen);
1522 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1523 unsigned long size,
1524 int noblock,
1525 int *errcode);
1526 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1527 unsigned long header_len,
1528 unsigned long data_len,
1529 int noblock,
1530 int *errcode);
1531 extern void *sock_kmalloc(struct sock *sk, int size,
1532 gfp_t priority);
1533 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1534 extern void sk_send_sigurg(struct sock *sk);
1537 * Functions to fill in entries in struct proto_ops when a protocol
1538 * does not implement a particular function.
1540 extern int sock_no_bind(struct socket *,
1541 struct sockaddr *, int);
1542 extern int sock_no_connect(struct socket *,
1543 struct sockaddr *, int, int);
1544 extern int sock_no_socketpair(struct socket *,
1545 struct socket *);
1546 extern int sock_no_accept(struct socket *,
1547 struct socket *, int);
1548 extern int sock_no_getname(struct socket *,
1549 struct sockaddr *, int *, int);
1550 extern unsigned int sock_no_poll(struct file *, struct socket *,
1551 struct poll_table_struct *);
1552 extern int sock_no_ioctl(struct socket *, unsigned int,
1553 unsigned long);
1554 extern int sock_no_listen(struct socket *, int);
1555 extern int sock_no_shutdown(struct socket *, int);
1556 extern int sock_no_getsockopt(struct socket *, int , int,
1557 char __user *, int __user *);
1558 extern int sock_no_setsockopt(struct socket *, int, int,
1559 char __user *, unsigned int);
1560 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1561 struct msghdr *, size_t);
1562 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1563 struct msghdr *, size_t, int);
1564 extern int sock_no_mmap(struct file *file,
1565 struct socket *sock,
1566 struct vm_area_struct *vma);
1567 extern ssize_t sock_no_sendpage(struct socket *sock,
1568 struct page *page,
1569 int offset, size_t size,
1570 int flags);
1573 * Functions to fill in entries in struct proto_ops when a protocol
1574 * uses the inet style.
1576 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1577 char __user *optval, int __user *optlen);
1578 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1579 struct msghdr *msg, size_t size, int flags);
1580 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1581 char __user *optval, unsigned int optlen);
1582 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1583 int optname, char __user *optval, int __user *optlen);
1584 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1585 int optname, char __user *optval, unsigned int optlen);
1587 extern void sk_common_release(struct sock *sk);
1590 * Default socket callbacks and setup code
1593 /* Initialise core socket variables */
1594 extern void sock_init_data(struct socket *sock, struct sock *sk);
1596 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1599 * sk_filter_release - release a socket filter
1600 * @fp: filter to remove
1602 * Remove a filter from a socket and release its resources.
1605 static inline void sk_filter_release(struct sk_filter *fp)
1607 if (atomic_dec_and_test(&fp->refcnt))
1608 call_rcu(&fp->rcu, sk_filter_release_rcu);
1611 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1613 unsigned int size = sk_filter_len(fp);
1615 atomic_sub(size, &sk->sk_omem_alloc);
1616 sk_filter_release(fp);
1619 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1621 atomic_inc(&fp->refcnt);
1622 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1626 * Socket reference counting postulates.
1628 * * Each user of socket SHOULD hold a reference count.
1629 * * Each access point to socket (an hash table bucket, reference from a list,
1630 * running timer, skb in flight MUST hold a reference count.
1631 * * When reference count hits 0, it means it will never increase back.
1632 * * When reference count hits 0, it means that no references from
1633 * outside exist to this socket and current process on current CPU
1634 * is last user and may/should destroy this socket.
1635 * * sk_free is called from any context: process, BH, IRQ. When
1636 * it is called, socket has no references from outside -> sk_free
1637 * may release descendant resources allocated by the socket, but
1638 * to the time when it is called, socket is NOT referenced by any
1639 * hash tables, lists etc.
1640 * * Packets, delivered from outside (from network or from another process)
1641 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1642 * when they sit in queue. Otherwise, packets will leak to hole, when
1643 * socket is looked up by one cpu and unhasing is made by another CPU.
1644 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1645 * (leak to backlog). Packet socket does all the processing inside
1646 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1647 * use separate SMP lock, so that they are prone too.
1650 /* Ungrab socket and destroy it, if it was the last reference. */
1651 static inline void sock_put(struct sock *sk)
1653 if (atomic_dec_and_test(&sk->sk_refcnt))
1654 sk_free(sk);
1657 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1658 const int nested);
1660 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1662 sk->sk_tx_queue_mapping = tx_queue;
1665 static inline void sk_tx_queue_clear(struct sock *sk)
1667 sk->sk_tx_queue_mapping = -1;
1670 static inline int sk_tx_queue_get(const struct sock *sk)
1672 return sk ? sk->sk_tx_queue_mapping : -1;
1675 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1677 sk_tx_queue_clear(sk);
1678 sk->sk_socket = sock;
1681 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1683 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1684 return &rcu_dereference_raw(sk->sk_wq)->wait;
1686 /* Detach socket from process context.
1687 * Announce socket dead, detach it from wait queue and inode.
1688 * Note that parent inode held reference count on this struct sock,
1689 * we do not release it in this function, because protocol
1690 * probably wants some additional cleanups or even continuing
1691 * to work with this socket (TCP).
1693 static inline void sock_orphan(struct sock *sk)
1695 write_lock_bh(&sk->sk_callback_lock);
1696 sock_set_flag(sk, SOCK_DEAD);
1697 sk_set_socket(sk, NULL);
1698 sk->sk_wq = NULL;
1699 write_unlock_bh(&sk->sk_callback_lock);
1702 static inline void sock_graft(struct sock *sk, struct socket *parent)
1704 write_lock_bh(&sk->sk_callback_lock);
1705 sk->sk_wq = parent->wq;
1706 parent->sk = sk;
1707 sk_set_socket(sk, parent);
1708 security_sock_graft(sk, parent);
1709 write_unlock_bh(&sk->sk_callback_lock);
1712 extern kuid_t sock_i_uid(struct sock *sk);
1713 extern unsigned long sock_i_ino(struct sock *sk);
1715 static inline struct dst_entry *
1716 __sk_dst_get(struct sock *sk)
1718 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1719 lockdep_is_held(&sk->sk_lock.slock));
1722 static inline struct dst_entry *
1723 sk_dst_get(struct sock *sk)
1725 struct dst_entry *dst;
1727 rcu_read_lock();
1728 dst = rcu_dereference(sk->sk_dst_cache);
1729 if (dst)
1730 dst_hold(dst);
1731 rcu_read_unlock();
1732 return dst;
1735 extern void sk_reset_txq(struct sock *sk);
1737 static inline void dst_negative_advice(struct sock *sk)
1739 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1741 if (dst && dst->ops->negative_advice) {
1742 ndst = dst->ops->negative_advice(dst);
1744 if (ndst != dst) {
1745 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1746 sk_reset_txq(sk);
1751 static inline void
1752 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1754 struct dst_entry *old_dst;
1756 sk_tx_queue_clear(sk);
1758 * This can be called while sk is owned by the caller only,
1759 * with no state that can be checked in a rcu_dereference_check() cond
1761 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1762 rcu_assign_pointer(sk->sk_dst_cache, dst);
1763 dst_release(old_dst);
1766 static inline void
1767 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1769 spin_lock(&sk->sk_dst_lock);
1770 __sk_dst_set(sk, dst);
1771 spin_unlock(&sk->sk_dst_lock);
1774 static inline void
1775 __sk_dst_reset(struct sock *sk)
1777 __sk_dst_set(sk, NULL);
1780 static inline void
1781 sk_dst_reset(struct sock *sk)
1783 spin_lock(&sk->sk_dst_lock);
1784 __sk_dst_reset(sk);
1785 spin_unlock(&sk->sk_dst_lock);
1788 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1790 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1792 static inline bool sk_can_gso(const struct sock *sk)
1794 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1797 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1799 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1801 sk->sk_route_nocaps |= flags;
1802 sk->sk_route_caps &= ~flags;
1805 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1806 char __user *from, char *to,
1807 int copy, int offset)
1809 if (skb->ip_summed == CHECKSUM_NONE) {
1810 int err = 0;
1811 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1812 if (err)
1813 return err;
1814 skb->csum = csum_block_add(skb->csum, csum, offset);
1815 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1816 if (!access_ok(VERIFY_READ, from, copy) ||
1817 __copy_from_user_nocache(to, from, copy))
1818 return -EFAULT;
1819 } else if (copy_from_user(to, from, copy))
1820 return -EFAULT;
1822 return 0;
1825 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1826 char __user *from, int copy)
1828 int err, offset = skb->len;
1830 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1831 copy, offset);
1832 if (err)
1833 __skb_trim(skb, offset);
1835 return err;
1838 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1839 struct sk_buff *skb,
1840 struct page *page,
1841 int off, int copy)
1843 int err;
1845 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1846 copy, skb->len);
1847 if (err)
1848 return err;
1850 skb->len += copy;
1851 skb->data_len += copy;
1852 skb->truesize += copy;
1853 sk->sk_wmem_queued += copy;
1854 sk_mem_charge(sk, copy);
1855 return 0;
1858 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1859 struct sk_buff *skb, struct page *page,
1860 int off, int copy)
1862 if (skb->ip_summed == CHECKSUM_NONE) {
1863 int err = 0;
1864 __wsum csum = csum_and_copy_from_user(from,
1865 page_address(page) + off,
1866 copy, 0, &err);
1867 if (err)
1868 return err;
1869 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1870 } else if (copy_from_user(page_address(page) + off, from, copy))
1871 return -EFAULT;
1873 skb->len += copy;
1874 skb->data_len += copy;
1875 skb->truesize += copy;
1876 sk->sk_wmem_queued += copy;
1877 sk_mem_charge(sk, copy);
1878 return 0;
1882 * sk_wmem_alloc_get - returns write allocations
1883 * @sk: socket
1885 * Returns sk_wmem_alloc minus initial offset of one
1887 static inline int sk_wmem_alloc_get(const struct sock *sk)
1889 return atomic_read(&sk->sk_wmem_alloc) - 1;
1893 * sk_rmem_alloc_get - returns read allocations
1894 * @sk: socket
1896 * Returns sk_rmem_alloc
1898 static inline int sk_rmem_alloc_get(const struct sock *sk)
1900 return atomic_read(&sk->sk_rmem_alloc);
1904 * sk_has_allocations - check if allocations are outstanding
1905 * @sk: socket
1907 * Returns true if socket has write or read allocations
1909 static inline bool sk_has_allocations(const struct sock *sk)
1911 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1915 * wq_has_sleeper - check if there are any waiting processes
1916 * @wq: struct socket_wq
1918 * Returns true if socket_wq has waiting processes
1920 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1921 * barrier call. They were added due to the race found within the tcp code.
1923 * Consider following tcp code paths:
1925 * CPU1 CPU2
1927 * sys_select receive packet
1928 * ... ...
1929 * __add_wait_queue update tp->rcv_nxt
1930 * ... ...
1931 * tp->rcv_nxt check sock_def_readable
1932 * ... {
1933 * schedule rcu_read_lock();
1934 * wq = rcu_dereference(sk->sk_wq);
1935 * if (wq && waitqueue_active(&wq->wait))
1936 * wake_up_interruptible(&wq->wait)
1937 * ...
1940 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1941 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1942 * could then endup calling schedule and sleep forever if there are no more
1943 * data on the socket.
1946 static inline bool wq_has_sleeper(struct socket_wq *wq)
1948 /* We need to be sure we are in sync with the
1949 * add_wait_queue modifications to the wait queue.
1951 * This memory barrier is paired in the sock_poll_wait.
1953 smp_mb();
1954 return wq && waitqueue_active(&wq->wait);
1958 * sock_poll_wait - place memory barrier behind the poll_wait call.
1959 * @filp: file
1960 * @wait_address: socket wait queue
1961 * @p: poll_table
1963 * See the comments in the wq_has_sleeper function.
1965 static inline void sock_poll_wait(struct file *filp,
1966 wait_queue_head_t *wait_address, poll_table *p)
1968 if (!poll_does_not_wait(p) && wait_address) {
1969 poll_wait(filp, wait_address, p);
1970 /* We need to be sure we are in sync with the
1971 * socket flags modification.
1973 * This memory barrier is paired in the wq_has_sleeper.
1975 smp_mb();
1980 * Queue a received datagram if it will fit. Stream and sequenced
1981 * protocols can't normally use this as they need to fit buffers in
1982 * and play with them.
1984 * Inlined as it's very short and called for pretty much every
1985 * packet ever received.
1988 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1990 skb_orphan(skb);
1991 skb->sk = sk;
1992 skb->destructor = sock_wfree;
1994 * We used to take a refcount on sk, but following operation
1995 * is enough to guarantee sk_free() wont free this sock until
1996 * all in-flight packets are completed
1998 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
2001 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2003 skb_orphan(skb);
2004 skb->sk = sk;
2005 skb->destructor = sock_rfree;
2006 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2007 sk_mem_charge(sk, skb->truesize);
2010 extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2011 unsigned long expires);
2013 extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2015 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2017 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2020 * Recover an error report and clear atomically
2023 static inline int sock_error(struct sock *sk)
2025 int err;
2026 if (likely(!sk->sk_err))
2027 return 0;
2028 err = xchg(&sk->sk_err, 0);
2029 return -err;
2032 static inline unsigned long sock_wspace(struct sock *sk)
2034 int amt = 0;
2036 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2037 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2038 if (amt < 0)
2039 amt = 0;
2041 return amt;
2044 static inline void sk_wake_async(struct sock *sk, int how, int band)
2046 if (sock_flag(sk, SOCK_FASYNC))
2047 sock_wake_async(sk->sk_socket, how, band);
2050 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2051 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2052 * Note: for send buffers, TCP works better if we can build two skbs at
2053 * minimum.
2055 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2057 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2058 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2060 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2062 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2063 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2064 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2068 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2071 * sk_page_frag - return an appropriate page_frag
2072 * @sk: socket
2074 * If socket allocation mode allows current thread to sleep, it means its
2075 * safe to use the per task page_frag instead of the per socket one.
2077 static inline struct page_frag *sk_page_frag(struct sock *sk)
2079 if (sk->sk_allocation & __GFP_WAIT)
2080 return &current->task_frag;
2082 return &sk->sk_frag;
2085 extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2088 * Default write policy as shown to user space via poll/select/SIGIO
2090 static inline bool sock_writeable(const struct sock *sk)
2092 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2095 static inline gfp_t gfp_any(void)
2097 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2100 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2102 return noblock ? 0 : sk->sk_rcvtimeo;
2105 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2107 return noblock ? 0 : sk->sk_sndtimeo;
2110 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2112 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2115 /* Alas, with timeout socket operations are not restartable.
2116 * Compare this to poll().
2118 static inline int sock_intr_errno(long timeo)
2120 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2123 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2124 struct sk_buff *skb);
2125 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2126 struct sk_buff *skb);
2128 static inline void
2129 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2131 ktime_t kt = skb->tstamp;
2132 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2135 * generate control messages if
2136 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2137 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
2138 * - software time stamp available and wanted
2139 * (SOCK_TIMESTAMPING_SOFTWARE)
2140 * - hardware time stamps available and wanted
2141 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
2142 * SOCK_TIMESTAMPING_RAW_HARDWARE)
2144 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2145 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2146 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2147 (hwtstamps->hwtstamp.tv64 &&
2148 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2149 (hwtstamps->syststamp.tv64 &&
2150 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2151 __sock_recv_timestamp(msg, sk, skb);
2152 else
2153 sk->sk_stamp = kt;
2155 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2156 __sock_recv_wifi_status(msg, sk, skb);
2159 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2160 struct sk_buff *skb);
2162 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2163 struct sk_buff *skb)
2165 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2166 (1UL << SOCK_RCVTSTAMP) | \
2167 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
2168 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
2169 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
2170 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2172 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2173 __sock_recv_ts_and_drops(msg, sk, skb);
2174 else
2175 sk->sk_stamp = skb->tstamp;
2179 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2180 * @sk: socket sending this packet
2181 * @tx_flags: filled with instructions for time stamping
2183 * Currently only depends on SOCK_TIMESTAMPING* flags.
2185 extern void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2188 * sk_eat_skb - Release a skb if it is no longer needed
2189 * @sk: socket to eat this skb from
2190 * @skb: socket buffer to eat
2191 * @copied_early: flag indicating whether DMA operations copied this data early
2193 * This routine must be called with interrupts disabled or with the socket
2194 * locked so that the sk_buff queue operation is ok.
2196 #ifdef CONFIG_NET_DMA
2197 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2199 __skb_unlink(skb, &sk->sk_receive_queue);
2200 if (!copied_early)
2201 __kfree_skb(skb);
2202 else
2203 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2205 #else
2206 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2208 __skb_unlink(skb, &sk->sk_receive_queue);
2209 __kfree_skb(skb);
2211 #endif
2213 static inline
2214 struct net *sock_net(const struct sock *sk)
2216 return read_pnet(&sk->sk_net);
2219 static inline
2220 void sock_net_set(struct sock *sk, struct net *net)
2222 write_pnet(&sk->sk_net, net);
2226 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2227 * They should not hold a reference to a namespace in order to allow
2228 * to stop it.
2229 * Sockets after sk_change_net should be released using sk_release_kernel
2231 static inline void sk_change_net(struct sock *sk, struct net *net)
2233 put_net(sock_net(sk));
2234 sock_net_set(sk, hold_net(net));
2237 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2239 if (skb->sk) {
2240 struct sock *sk = skb->sk;
2242 skb->destructor = NULL;
2243 skb->sk = NULL;
2244 return sk;
2246 return NULL;
2249 extern void sock_enable_timestamp(struct sock *sk, int flag);
2250 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2251 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2254 * Enable debug/info messages
2256 extern int net_msg_warn;
2257 #define NETDEBUG(fmt, args...) \
2258 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2260 #define LIMIT_NETDEBUG(fmt, args...) \
2261 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2263 extern __u32 sysctl_wmem_max;
2264 extern __u32 sysctl_rmem_max;
2266 extern int sysctl_optmem_max;
2268 extern __u32 sysctl_wmem_default;
2269 extern __u32 sysctl_rmem_default;
2271 #endif /* _SOCK_H */