ARM: dts: imx27: Add core voltages
[linux/fpc-iii.git] / include / rdma / ib_verbs.h
blob645c3cedce9ca7abb69c13769a05aff02d4b5dd4
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
52 #include <linux/atomic.h>
53 #include <asm/uaccess.h>
55 extern struct workqueue_struct *ib_wq;
57 union ib_gid {
58 u8 raw[16];
59 struct {
60 __be64 subnet_prefix;
61 __be64 interface_id;
62 } global;
65 enum rdma_node_type {
66 /* IB values map to NodeInfo:NodeType. */
67 RDMA_NODE_IB_CA = 1,
68 RDMA_NODE_IB_SWITCH,
69 RDMA_NODE_IB_ROUTER,
70 RDMA_NODE_RNIC
73 enum rdma_transport_type {
74 RDMA_TRANSPORT_IB,
75 RDMA_TRANSPORT_IWARP
78 enum rdma_transport_type
79 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
81 enum rdma_link_layer {
82 IB_LINK_LAYER_UNSPECIFIED,
83 IB_LINK_LAYER_INFINIBAND,
84 IB_LINK_LAYER_ETHERNET,
87 enum ib_device_cap_flags {
88 IB_DEVICE_RESIZE_MAX_WR = 1,
89 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
90 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
91 IB_DEVICE_RAW_MULTI = (1<<3),
92 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
93 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
94 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
95 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
96 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
97 IB_DEVICE_INIT_TYPE = (1<<9),
98 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
99 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
100 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
101 IB_DEVICE_SRQ_RESIZE = (1<<13),
102 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
103 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
104 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
105 IB_DEVICE_MEM_WINDOW = (1<<17),
107 * Devices should set IB_DEVICE_UD_IP_SUM if they support
108 * insertion of UDP and TCP checksum on outgoing UD IPoIB
109 * messages and can verify the validity of checksum for
110 * incoming messages. Setting this flag implies that the
111 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
113 IB_DEVICE_UD_IP_CSUM = (1<<18),
114 IB_DEVICE_UD_TSO = (1<<19),
115 IB_DEVICE_XRC = (1<<20),
116 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
117 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
118 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
119 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24)
122 enum ib_atomic_cap {
123 IB_ATOMIC_NONE,
124 IB_ATOMIC_HCA,
125 IB_ATOMIC_GLOB
128 struct ib_device_attr {
129 u64 fw_ver;
130 __be64 sys_image_guid;
131 u64 max_mr_size;
132 u64 page_size_cap;
133 u32 vendor_id;
134 u32 vendor_part_id;
135 u32 hw_ver;
136 int max_qp;
137 int max_qp_wr;
138 int device_cap_flags;
139 int max_sge;
140 int max_sge_rd;
141 int max_cq;
142 int max_cqe;
143 int max_mr;
144 int max_pd;
145 int max_qp_rd_atom;
146 int max_ee_rd_atom;
147 int max_res_rd_atom;
148 int max_qp_init_rd_atom;
149 int max_ee_init_rd_atom;
150 enum ib_atomic_cap atomic_cap;
151 enum ib_atomic_cap masked_atomic_cap;
152 int max_ee;
153 int max_rdd;
154 int max_mw;
155 int max_raw_ipv6_qp;
156 int max_raw_ethy_qp;
157 int max_mcast_grp;
158 int max_mcast_qp_attach;
159 int max_total_mcast_qp_attach;
160 int max_ah;
161 int max_fmr;
162 int max_map_per_fmr;
163 int max_srq;
164 int max_srq_wr;
165 int max_srq_sge;
166 unsigned int max_fast_reg_page_list_len;
167 u16 max_pkeys;
168 u8 local_ca_ack_delay;
171 enum ib_mtu {
172 IB_MTU_256 = 1,
173 IB_MTU_512 = 2,
174 IB_MTU_1024 = 3,
175 IB_MTU_2048 = 4,
176 IB_MTU_4096 = 5
179 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
181 switch (mtu) {
182 case IB_MTU_256: return 256;
183 case IB_MTU_512: return 512;
184 case IB_MTU_1024: return 1024;
185 case IB_MTU_2048: return 2048;
186 case IB_MTU_4096: return 4096;
187 default: return -1;
191 enum ib_port_state {
192 IB_PORT_NOP = 0,
193 IB_PORT_DOWN = 1,
194 IB_PORT_INIT = 2,
195 IB_PORT_ARMED = 3,
196 IB_PORT_ACTIVE = 4,
197 IB_PORT_ACTIVE_DEFER = 5
200 enum ib_port_cap_flags {
201 IB_PORT_SM = 1 << 1,
202 IB_PORT_NOTICE_SUP = 1 << 2,
203 IB_PORT_TRAP_SUP = 1 << 3,
204 IB_PORT_OPT_IPD_SUP = 1 << 4,
205 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
206 IB_PORT_SL_MAP_SUP = 1 << 6,
207 IB_PORT_MKEY_NVRAM = 1 << 7,
208 IB_PORT_PKEY_NVRAM = 1 << 8,
209 IB_PORT_LED_INFO_SUP = 1 << 9,
210 IB_PORT_SM_DISABLED = 1 << 10,
211 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
212 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
213 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
214 IB_PORT_CM_SUP = 1 << 16,
215 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
216 IB_PORT_REINIT_SUP = 1 << 18,
217 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
218 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
219 IB_PORT_DR_NOTICE_SUP = 1 << 21,
220 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
221 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
222 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
223 IB_PORT_CLIENT_REG_SUP = 1 << 25
226 enum ib_port_width {
227 IB_WIDTH_1X = 1,
228 IB_WIDTH_4X = 2,
229 IB_WIDTH_8X = 4,
230 IB_WIDTH_12X = 8
233 static inline int ib_width_enum_to_int(enum ib_port_width width)
235 switch (width) {
236 case IB_WIDTH_1X: return 1;
237 case IB_WIDTH_4X: return 4;
238 case IB_WIDTH_8X: return 8;
239 case IB_WIDTH_12X: return 12;
240 default: return -1;
244 enum ib_port_speed {
245 IB_SPEED_SDR = 1,
246 IB_SPEED_DDR = 2,
247 IB_SPEED_QDR = 4,
248 IB_SPEED_FDR10 = 8,
249 IB_SPEED_FDR = 16,
250 IB_SPEED_EDR = 32
253 struct ib_protocol_stats {
254 /* TBD... */
257 struct iw_protocol_stats {
258 u64 ipInReceives;
259 u64 ipInHdrErrors;
260 u64 ipInTooBigErrors;
261 u64 ipInNoRoutes;
262 u64 ipInAddrErrors;
263 u64 ipInUnknownProtos;
264 u64 ipInTruncatedPkts;
265 u64 ipInDiscards;
266 u64 ipInDelivers;
267 u64 ipOutForwDatagrams;
268 u64 ipOutRequests;
269 u64 ipOutDiscards;
270 u64 ipOutNoRoutes;
271 u64 ipReasmTimeout;
272 u64 ipReasmReqds;
273 u64 ipReasmOKs;
274 u64 ipReasmFails;
275 u64 ipFragOKs;
276 u64 ipFragFails;
277 u64 ipFragCreates;
278 u64 ipInMcastPkts;
279 u64 ipOutMcastPkts;
280 u64 ipInBcastPkts;
281 u64 ipOutBcastPkts;
283 u64 tcpRtoAlgorithm;
284 u64 tcpRtoMin;
285 u64 tcpRtoMax;
286 u64 tcpMaxConn;
287 u64 tcpActiveOpens;
288 u64 tcpPassiveOpens;
289 u64 tcpAttemptFails;
290 u64 tcpEstabResets;
291 u64 tcpCurrEstab;
292 u64 tcpInSegs;
293 u64 tcpOutSegs;
294 u64 tcpRetransSegs;
295 u64 tcpInErrs;
296 u64 tcpOutRsts;
299 union rdma_protocol_stats {
300 struct ib_protocol_stats ib;
301 struct iw_protocol_stats iw;
304 struct ib_port_attr {
305 enum ib_port_state state;
306 enum ib_mtu max_mtu;
307 enum ib_mtu active_mtu;
308 int gid_tbl_len;
309 u32 port_cap_flags;
310 u32 max_msg_sz;
311 u32 bad_pkey_cntr;
312 u32 qkey_viol_cntr;
313 u16 pkey_tbl_len;
314 u16 lid;
315 u16 sm_lid;
316 u8 lmc;
317 u8 max_vl_num;
318 u8 sm_sl;
319 u8 subnet_timeout;
320 u8 init_type_reply;
321 u8 active_width;
322 u8 active_speed;
323 u8 phys_state;
326 enum ib_device_modify_flags {
327 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
328 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
331 struct ib_device_modify {
332 u64 sys_image_guid;
333 char node_desc[64];
336 enum ib_port_modify_flags {
337 IB_PORT_SHUTDOWN = 1,
338 IB_PORT_INIT_TYPE = (1<<2),
339 IB_PORT_RESET_QKEY_CNTR = (1<<3)
342 struct ib_port_modify {
343 u32 set_port_cap_mask;
344 u32 clr_port_cap_mask;
345 u8 init_type;
348 enum ib_event_type {
349 IB_EVENT_CQ_ERR,
350 IB_EVENT_QP_FATAL,
351 IB_EVENT_QP_REQ_ERR,
352 IB_EVENT_QP_ACCESS_ERR,
353 IB_EVENT_COMM_EST,
354 IB_EVENT_SQ_DRAINED,
355 IB_EVENT_PATH_MIG,
356 IB_EVENT_PATH_MIG_ERR,
357 IB_EVENT_DEVICE_FATAL,
358 IB_EVENT_PORT_ACTIVE,
359 IB_EVENT_PORT_ERR,
360 IB_EVENT_LID_CHANGE,
361 IB_EVENT_PKEY_CHANGE,
362 IB_EVENT_SM_CHANGE,
363 IB_EVENT_SRQ_ERR,
364 IB_EVENT_SRQ_LIMIT_REACHED,
365 IB_EVENT_QP_LAST_WQE_REACHED,
366 IB_EVENT_CLIENT_REREGISTER,
367 IB_EVENT_GID_CHANGE,
370 struct ib_event {
371 struct ib_device *device;
372 union {
373 struct ib_cq *cq;
374 struct ib_qp *qp;
375 struct ib_srq *srq;
376 u8 port_num;
377 } element;
378 enum ib_event_type event;
381 struct ib_event_handler {
382 struct ib_device *device;
383 void (*handler)(struct ib_event_handler *, struct ib_event *);
384 struct list_head list;
387 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
388 do { \
389 (_ptr)->device = _device; \
390 (_ptr)->handler = _handler; \
391 INIT_LIST_HEAD(&(_ptr)->list); \
392 } while (0)
394 struct ib_global_route {
395 union ib_gid dgid;
396 u32 flow_label;
397 u8 sgid_index;
398 u8 hop_limit;
399 u8 traffic_class;
402 struct ib_grh {
403 __be32 version_tclass_flow;
404 __be16 paylen;
405 u8 next_hdr;
406 u8 hop_limit;
407 union ib_gid sgid;
408 union ib_gid dgid;
411 enum {
412 IB_MULTICAST_QPN = 0xffffff
415 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
417 enum ib_ah_flags {
418 IB_AH_GRH = 1
421 enum ib_rate {
422 IB_RATE_PORT_CURRENT = 0,
423 IB_RATE_2_5_GBPS = 2,
424 IB_RATE_5_GBPS = 5,
425 IB_RATE_10_GBPS = 3,
426 IB_RATE_20_GBPS = 6,
427 IB_RATE_30_GBPS = 4,
428 IB_RATE_40_GBPS = 7,
429 IB_RATE_60_GBPS = 8,
430 IB_RATE_80_GBPS = 9,
431 IB_RATE_120_GBPS = 10,
432 IB_RATE_14_GBPS = 11,
433 IB_RATE_56_GBPS = 12,
434 IB_RATE_112_GBPS = 13,
435 IB_RATE_168_GBPS = 14,
436 IB_RATE_25_GBPS = 15,
437 IB_RATE_100_GBPS = 16,
438 IB_RATE_200_GBPS = 17,
439 IB_RATE_300_GBPS = 18
443 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
444 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
445 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
446 * @rate: rate to convert.
448 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
451 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
452 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
453 * @rate: rate to convert.
455 int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__;
458 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
459 * enum.
460 * @mult: multiple to convert.
462 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
464 struct ib_ah_attr {
465 struct ib_global_route grh;
466 u16 dlid;
467 u8 sl;
468 u8 src_path_bits;
469 u8 static_rate;
470 u8 ah_flags;
471 u8 port_num;
474 enum ib_wc_status {
475 IB_WC_SUCCESS,
476 IB_WC_LOC_LEN_ERR,
477 IB_WC_LOC_QP_OP_ERR,
478 IB_WC_LOC_EEC_OP_ERR,
479 IB_WC_LOC_PROT_ERR,
480 IB_WC_WR_FLUSH_ERR,
481 IB_WC_MW_BIND_ERR,
482 IB_WC_BAD_RESP_ERR,
483 IB_WC_LOC_ACCESS_ERR,
484 IB_WC_REM_INV_REQ_ERR,
485 IB_WC_REM_ACCESS_ERR,
486 IB_WC_REM_OP_ERR,
487 IB_WC_RETRY_EXC_ERR,
488 IB_WC_RNR_RETRY_EXC_ERR,
489 IB_WC_LOC_RDD_VIOL_ERR,
490 IB_WC_REM_INV_RD_REQ_ERR,
491 IB_WC_REM_ABORT_ERR,
492 IB_WC_INV_EECN_ERR,
493 IB_WC_INV_EEC_STATE_ERR,
494 IB_WC_FATAL_ERR,
495 IB_WC_RESP_TIMEOUT_ERR,
496 IB_WC_GENERAL_ERR
499 enum ib_wc_opcode {
500 IB_WC_SEND,
501 IB_WC_RDMA_WRITE,
502 IB_WC_RDMA_READ,
503 IB_WC_COMP_SWAP,
504 IB_WC_FETCH_ADD,
505 IB_WC_BIND_MW,
506 IB_WC_LSO,
507 IB_WC_LOCAL_INV,
508 IB_WC_FAST_REG_MR,
509 IB_WC_MASKED_COMP_SWAP,
510 IB_WC_MASKED_FETCH_ADD,
512 * Set value of IB_WC_RECV so consumers can test if a completion is a
513 * receive by testing (opcode & IB_WC_RECV).
515 IB_WC_RECV = 1 << 7,
516 IB_WC_RECV_RDMA_WITH_IMM
519 enum ib_wc_flags {
520 IB_WC_GRH = 1,
521 IB_WC_WITH_IMM = (1<<1),
522 IB_WC_WITH_INVALIDATE = (1<<2),
523 IB_WC_IP_CSUM_OK = (1<<3),
526 struct ib_wc {
527 u64 wr_id;
528 enum ib_wc_status status;
529 enum ib_wc_opcode opcode;
530 u32 vendor_err;
531 u32 byte_len;
532 struct ib_qp *qp;
533 union {
534 __be32 imm_data;
535 u32 invalidate_rkey;
536 } ex;
537 u32 src_qp;
538 int wc_flags;
539 u16 pkey_index;
540 u16 slid;
541 u8 sl;
542 u8 dlid_path_bits;
543 u8 port_num; /* valid only for DR SMPs on switches */
546 enum ib_cq_notify_flags {
547 IB_CQ_SOLICITED = 1 << 0,
548 IB_CQ_NEXT_COMP = 1 << 1,
549 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
550 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
553 enum ib_srq_type {
554 IB_SRQT_BASIC,
555 IB_SRQT_XRC
558 enum ib_srq_attr_mask {
559 IB_SRQ_MAX_WR = 1 << 0,
560 IB_SRQ_LIMIT = 1 << 1,
563 struct ib_srq_attr {
564 u32 max_wr;
565 u32 max_sge;
566 u32 srq_limit;
569 struct ib_srq_init_attr {
570 void (*event_handler)(struct ib_event *, void *);
571 void *srq_context;
572 struct ib_srq_attr attr;
573 enum ib_srq_type srq_type;
575 union {
576 struct {
577 struct ib_xrcd *xrcd;
578 struct ib_cq *cq;
579 } xrc;
580 } ext;
583 struct ib_qp_cap {
584 u32 max_send_wr;
585 u32 max_recv_wr;
586 u32 max_send_sge;
587 u32 max_recv_sge;
588 u32 max_inline_data;
591 enum ib_sig_type {
592 IB_SIGNAL_ALL_WR,
593 IB_SIGNAL_REQ_WR
596 enum ib_qp_type {
598 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
599 * here (and in that order) since the MAD layer uses them as
600 * indices into a 2-entry table.
602 IB_QPT_SMI,
603 IB_QPT_GSI,
605 IB_QPT_RC,
606 IB_QPT_UC,
607 IB_QPT_UD,
608 IB_QPT_RAW_IPV6,
609 IB_QPT_RAW_ETHERTYPE,
610 IB_QPT_RAW_PACKET = 8,
611 IB_QPT_XRC_INI = 9,
612 IB_QPT_XRC_TGT,
613 IB_QPT_MAX,
614 /* Reserve a range for qp types internal to the low level driver.
615 * These qp types will not be visible at the IB core layer, so the
616 * IB_QPT_MAX usages should not be affected in the core layer
618 IB_QPT_RESERVED1 = 0x1000,
619 IB_QPT_RESERVED2,
620 IB_QPT_RESERVED3,
621 IB_QPT_RESERVED4,
622 IB_QPT_RESERVED5,
623 IB_QPT_RESERVED6,
624 IB_QPT_RESERVED7,
625 IB_QPT_RESERVED8,
626 IB_QPT_RESERVED9,
627 IB_QPT_RESERVED10,
630 enum ib_qp_create_flags {
631 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
632 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
633 /* reserve bits 26-31 for low level drivers' internal use */
634 IB_QP_CREATE_RESERVED_START = 1 << 26,
635 IB_QP_CREATE_RESERVED_END = 1 << 31,
638 struct ib_qp_init_attr {
639 void (*event_handler)(struct ib_event *, void *);
640 void *qp_context;
641 struct ib_cq *send_cq;
642 struct ib_cq *recv_cq;
643 struct ib_srq *srq;
644 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
645 struct ib_qp_cap cap;
646 enum ib_sig_type sq_sig_type;
647 enum ib_qp_type qp_type;
648 enum ib_qp_create_flags create_flags;
649 u8 port_num; /* special QP types only */
652 struct ib_qp_open_attr {
653 void (*event_handler)(struct ib_event *, void *);
654 void *qp_context;
655 u32 qp_num;
656 enum ib_qp_type qp_type;
659 enum ib_rnr_timeout {
660 IB_RNR_TIMER_655_36 = 0,
661 IB_RNR_TIMER_000_01 = 1,
662 IB_RNR_TIMER_000_02 = 2,
663 IB_RNR_TIMER_000_03 = 3,
664 IB_RNR_TIMER_000_04 = 4,
665 IB_RNR_TIMER_000_06 = 5,
666 IB_RNR_TIMER_000_08 = 6,
667 IB_RNR_TIMER_000_12 = 7,
668 IB_RNR_TIMER_000_16 = 8,
669 IB_RNR_TIMER_000_24 = 9,
670 IB_RNR_TIMER_000_32 = 10,
671 IB_RNR_TIMER_000_48 = 11,
672 IB_RNR_TIMER_000_64 = 12,
673 IB_RNR_TIMER_000_96 = 13,
674 IB_RNR_TIMER_001_28 = 14,
675 IB_RNR_TIMER_001_92 = 15,
676 IB_RNR_TIMER_002_56 = 16,
677 IB_RNR_TIMER_003_84 = 17,
678 IB_RNR_TIMER_005_12 = 18,
679 IB_RNR_TIMER_007_68 = 19,
680 IB_RNR_TIMER_010_24 = 20,
681 IB_RNR_TIMER_015_36 = 21,
682 IB_RNR_TIMER_020_48 = 22,
683 IB_RNR_TIMER_030_72 = 23,
684 IB_RNR_TIMER_040_96 = 24,
685 IB_RNR_TIMER_061_44 = 25,
686 IB_RNR_TIMER_081_92 = 26,
687 IB_RNR_TIMER_122_88 = 27,
688 IB_RNR_TIMER_163_84 = 28,
689 IB_RNR_TIMER_245_76 = 29,
690 IB_RNR_TIMER_327_68 = 30,
691 IB_RNR_TIMER_491_52 = 31
694 enum ib_qp_attr_mask {
695 IB_QP_STATE = 1,
696 IB_QP_CUR_STATE = (1<<1),
697 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
698 IB_QP_ACCESS_FLAGS = (1<<3),
699 IB_QP_PKEY_INDEX = (1<<4),
700 IB_QP_PORT = (1<<5),
701 IB_QP_QKEY = (1<<6),
702 IB_QP_AV = (1<<7),
703 IB_QP_PATH_MTU = (1<<8),
704 IB_QP_TIMEOUT = (1<<9),
705 IB_QP_RETRY_CNT = (1<<10),
706 IB_QP_RNR_RETRY = (1<<11),
707 IB_QP_RQ_PSN = (1<<12),
708 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
709 IB_QP_ALT_PATH = (1<<14),
710 IB_QP_MIN_RNR_TIMER = (1<<15),
711 IB_QP_SQ_PSN = (1<<16),
712 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
713 IB_QP_PATH_MIG_STATE = (1<<18),
714 IB_QP_CAP = (1<<19),
715 IB_QP_DEST_QPN = (1<<20)
718 enum ib_qp_state {
719 IB_QPS_RESET,
720 IB_QPS_INIT,
721 IB_QPS_RTR,
722 IB_QPS_RTS,
723 IB_QPS_SQD,
724 IB_QPS_SQE,
725 IB_QPS_ERR
728 enum ib_mig_state {
729 IB_MIG_MIGRATED,
730 IB_MIG_REARM,
731 IB_MIG_ARMED
734 enum ib_mw_type {
735 IB_MW_TYPE_1 = 1,
736 IB_MW_TYPE_2 = 2
739 struct ib_qp_attr {
740 enum ib_qp_state qp_state;
741 enum ib_qp_state cur_qp_state;
742 enum ib_mtu path_mtu;
743 enum ib_mig_state path_mig_state;
744 u32 qkey;
745 u32 rq_psn;
746 u32 sq_psn;
747 u32 dest_qp_num;
748 int qp_access_flags;
749 struct ib_qp_cap cap;
750 struct ib_ah_attr ah_attr;
751 struct ib_ah_attr alt_ah_attr;
752 u16 pkey_index;
753 u16 alt_pkey_index;
754 u8 en_sqd_async_notify;
755 u8 sq_draining;
756 u8 max_rd_atomic;
757 u8 max_dest_rd_atomic;
758 u8 min_rnr_timer;
759 u8 port_num;
760 u8 timeout;
761 u8 retry_cnt;
762 u8 rnr_retry;
763 u8 alt_port_num;
764 u8 alt_timeout;
767 enum ib_wr_opcode {
768 IB_WR_RDMA_WRITE,
769 IB_WR_RDMA_WRITE_WITH_IMM,
770 IB_WR_SEND,
771 IB_WR_SEND_WITH_IMM,
772 IB_WR_RDMA_READ,
773 IB_WR_ATOMIC_CMP_AND_SWP,
774 IB_WR_ATOMIC_FETCH_AND_ADD,
775 IB_WR_LSO,
776 IB_WR_SEND_WITH_INV,
777 IB_WR_RDMA_READ_WITH_INV,
778 IB_WR_LOCAL_INV,
779 IB_WR_FAST_REG_MR,
780 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
781 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
782 IB_WR_BIND_MW,
783 /* reserve values for low level drivers' internal use.
784 * These values will not be used at all in the ib core layer.
786 IB_WR_RESERVED1 = 0xf0,
787 IB_WR_RESERVED2,
788 IB_WR_RESERVED3,
789 IB_WR_RESERVED4,
790 IB_WR_RESERVED5,
791 IB_WR_RESERVED6,
792 IB_WR_RESERVED7,
793 IB_WR_RESERVED8,
794 IB_WR_RESERVED9,
795 IB_WR_RESERVED10,
798 enum ib_send_flags {
799 IB_SEND_FENCE = 1,
800 IB_SEND_SIGNALED = (1<<1),
801 IB_SEND_SOLICITED = (1<<2),
802 IB_SEND_INLINE = (1<<3),
803 IB_SEND_IP_CSUM = (1<<4),
805 /* reserve bits 26-31 for low level drivers' internal use */
806 IB_SEND_RESERVED_START = (1 << 26),
807 IB_SEND_RESERVED_END = (1 << 31),
810 struct ib_sge {
811 u64 addr;
812 u32 length;
813 u32 lkey;
816 struct ib_fast_reg_page_list {
817 struct ib_device *device;
818 u64 *page_list;
819 unsigned int max_page_list_len;
823 * struct ib_mw_bind_info - Parameters for a memory window bind operation.
824 * @mr: A memory region to bind the memory window to.
825 * @addr: The address where the memory window should begin.
826 * @length: The length of the memory window, in bytes.
827 * @mw_access_flags: Access flags from enum ib_access_flags for the window.
829 * This struct contains the shared parameters for type 1 and type 2
830 * memory window bind operations.
832 struct ib_mw_bind_info {
833 struct ib_mr *mr;
834 u64 addr;
835 u64 length;
836 int mw_access_flags;
839 struct ib_send_wr {
840 struct ib_send_wr *next;
841 u64 wr_id;
842 struct ib_sge *sg_list;
843 int num_sge;
844 enum ib_wr_opcode opcode;
845 int send_flags;
846 union {
847 __be32 imm_data;
848 u32 invalidate_rkey;
849 } ex;
850 union {
851 struct {
852 u64 remote_addr;
853 u32 rkey;
854 } rdma;
855 struct {
856 u64 remote_addr;
857 u64 compare_add;
858 u64 swap;
859 u64 compare_add_mask;
860 u64 swap_mask;
861 u32 rkey;
862 } atomic;
863 struct {
864 struct ib_ah *ah;
865 void *header;
866 int hlen;
867 int mss;
868 u32 remote_qpn;
869 u32 remote_qkey;
870 u16 pkey_index; /* valid for GSI only */
871 u8 port_num; /* valid for DR SMPs on switch only */
872 } ud;
873 struct {
874 u64 iova_start;
875 struct ib_fast_reg_page_list *page_list;
876 unsigned int page_shift;
877 unsigned int page_list_len;
878 u32 length;
879 int access_flags;
880 u32 rkey;
881 } fast_reg;
882 struct {
883 struct ib_mw *mw;
884 /* The new rkey for the memory window. */
885 u32 rkey;
886 struct ib_mw_bind_info bind_info;
887 } bind_mw;
888 } wr;
889 u32 xrc_remote_srq_num; /* XRC TGT QPs only */
892 struct ib_recv_wr {
893 struct ib_recv_wr *next;
894 u64 wr_id;
895 struct ib_sge *sg_list;
896 int num_sge;
899 enum ib_access_flags {
900 IB_ACCESS_LOCAL_WRITE = 1,
901 IB_ACCESS_REMOTE_WRITE = (1<<1),
902 IB_ACCESS_REMOTE_READ = (1<<2),
903 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
904 IB_ACCESS_MW_BIND = (1<<4),
905 IB_ZERO_BASED = (1<<5)
908 struct ib_phys_buf {
909 u64 addr;
910 u64 size;
913 struct ib_mr_attr {
914 struct ib_pd *pd;
915 u64 device_virt_addr;
916 u64 size;
917 int mr_access_flags;
918 u32 lkey;
919 u32 rkey;
922 enum ib_mr_rereg_flags {
923 IB_MR_REREG_TRANS = 1,
924 IB_MR_REREG_PD = (1<<1),
925 IB_MR_REREG_ACCESS = (1<<2)
929 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
930 * @wr_id: Work request id.
931 * @send_flags: Flags from ib_send_flags enum.
932 * @bind_info: More parameters of the bind operation.
934 struct ib_mw_bind {
935 u64 wr_id;
936 int send_flags;
937 struct ib_mw_bind_info bind_info;
940 struct ib_fmr_attr {
941 int max_pages;
942 int max_maps;
943 u8 page_shift;
946 struct ib_ucontext {
947 struct ib_device *device;
948 struct list_head pd_list;
949 struct list_head mr_list;
950 struct list_head mw_list;
951 struct list_head cq_list;
952 struct list_head qp_list;
953 struct list_head srq_list;
954 struct list_head ah_list;
955 struct list_head xrcd_list;
956 int closing;
959 struct ib_uobject {
960 u64 user_handle; /* handle given to us by userspace */
961 struct ib_ucontext *context; /* associated user context */
962 void *object; /* containing object */
963 struct list_head list; /* link to context's list */
964 int id; /* index into kernel idr */
965 struct kref ref;
966 struct rw_semaphore mutex; /* protects .live */
967 int live;
970 struct ib_udata {
971 void __user *inbuf;
972 void __user *outbuf;
973 size_t inlen;
974 size_t outlen;
977 struct ib_pd {
978 struct ib_device *device;
979 struct ib_uobject *uobject;
980 atomic_t usecnt; /* count all resources */
983 struct ib_xrcd {
984 struct ib_device *device;
985 atomic_t usecnt; /* count all exposed resources */
986 struct inode *inode;
988 struct mutex tgt_qp_mutex;
989 struct list_head tgt_qp_list;
992 struct ib_ah {
993 struct ib_device *device;
994 struct ib_pd *pd;
995 struct ib_uobject *uobject;
998 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1000 struct ib_cq {
1001 struct ib_device *device;
1002 struct ib_uobject *uobject;
1003 ib_comp_handler comp_handler;
1004 void (*event_handler)(struct ib_event *, void *);
1005 void *cq_context;
1006 int cqe;
1007 atomic_t usecnt; /* count number of work queues */
1010 struct ib_srq {
1011 struct ib_device *device;
1012 struct ib_pd *pd;
1013 struct ib_uobject *uobject;
1014 void (*event_handler)(struct ib_event *, void *);
1015 void *srq_context;
1016 enum ib_srq_type srq_type;
1017 atomic_t usecnt;
1019 union {
1020 struct {
1021 struct ib_xrcd *xrcd;
1022 struct ib_cq *cq;
1023 u32 srq_num;
1024 } xrc;
1025 } ext;
1028 struct ib_qp {
1029 struct ib_device *device;
1030 struct ib_pd *pd;
1031 struct ib_cq *send_cq;
1032 struct ib_cq *recv_cq;
1033 struct ib_srq *srq;
1034 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1035 struct list_head xrcd_list;
1036 atomic_t usecnt; /* count times opened, mcast attaches */
1037 struct list_head open_list;
1038 struct ib_qp *real_qp;
1039 struct ib_uobject *uobject;
1040 void (*event_handler)(struct ib_event *, void *);
1041 void *qp_context;
1042 u32 qp_num;
1043 enum ib_qp_type qp_type;
1046 struct ib_mr {
1047 struct ib_device *device;
1048 struct ib_pd *pd;
1049 struct ib_uobject *uobject;
1050 u32 lkey;
1051 u32 rkey;
1052 atomic_t usecnt; /* count number of MWs */
1055 struct ib_mw {
1056 struct ib_device *device;
1057 struct ib_pd *pd;
1058 struct ib_uobject *uobject;
1059 u32 rkey;
1060 enum ib_mw_type type;
1063 struct ib_fmr {
1064 struct ib_device *device;
1065 struct ib_pd *pd;
1066 struct list_head list;
1067 u32 lkey;
1068 u32 rkey;
1071 struct ib_mad;
1072 struct ib_grh;
1074 enum ib_process_mad_flags {
1075 IB_MAD_IGNORE_MKEY = 1,
1076 IB_MAD_IGNORE_BKEY = 2,
1077 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1080 enum ib_mad_result {
1081 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1082 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1083 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1084 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1087 #define IB_DEVICE_NAME_MAX 64
1089 struct ib_cache {
1090 rwlock_t lock;
1091 struct ib_event_handler event_handler;
1092 struct ib_pkey_cache **pkey_cache;
1093 struct ib_gid_cache **gid_cache;
1094 u8 *lmc_cache;
1097 struct ib_dma_mapping_ops {
1098 int (*mapping_error)(struct ib_device *dev,
1099 u64 dma_addr);
1100 u64 (*map_single)(struct ib_device *dev,
1101 void *ptr, size_t size,
1102 enum dma_data_direction direction);
1103 void (*unmap_single)(struct ib_device *dev,
1104 u64 addr, size_t size,
1105 enum dma_data_direction direction);
1106 u64 (*map_page)(struct ib_device *dev,
1107 struct page *page, unsigned long offset,
1108 size_t size,
1109 enum dma_data_direction direction);
1110 void (*unmap_page)(struct ib_device *dev,
1111 u64 addr, size_t size,
1112 enum dma_data_direction direction);
1113 int (*map_sg)(struct ib_device *dev,
1114 struct scatterlist *sg, int nents,
1115 enum dma_data_direction direction);
1116 void (*unmap_sg)(struct ib_device *dev,
1117 struct scatterlist *sg, int nents,
1118 enum dma_data_direction direction);
1119 u64 (*dma_address)(struct ib_device *dev,
1120 struct scatterlist *sg);
1121 unsigned int (*dma_len)(struct ib_device *dev,
1122 struct scatterlist *sg);
1123 void (*sync_single_for_cpu)(struct ib_device *dev,
1124 u64 dma_handle,
1125 size_t size,
1126 enum dma_data_direction dir);
1127 void (*sync_single_for_device)(struct ib_device *dev,
1128 u64 dma_handle,
1129 size_t size,
1130 enum dma_data_direction dir);
1131 void *(*alloc_coherent)(struct ib_device *dev,
1132 size_t size,
1133 u64 *dma_handle,
1134 gfp_t flag);
1135 void (*free_coherent)(struct ib_device *dev,
1136 size_t size, void *cpu_addr,
1137 u64 dma_handle);
1140 struct iw_cm_verbs;
1142 struct ib_device {
1143 struct device *dma_device;
1145 char name[IB_DEVICE_NAME_MAX];
1147 struct list_head event_handler_list;
1148 spinlock_t event_handler_lock;
1150 spinlock_t client_data_lock;
1151 struct list_head core_list;
1152 struct list_head client_data_list;
1154 struct ib_cache cache;
1155 int *pkey_tbl_len;
1156 int *gid_tbl_len;
1158 int num_comp_vectors;
1160 struct iw_cm_verbs *iwcm;
1162 int (*get_protocol_stats)(struct ib_device *device,
1163 union rdma_protocol_stats *stats);
1164 int (*query_device)(struct ib_device *device,
1165 struct ib_device_attr *device_attr);
1166 int (*query_port)(struct ib_device *device,
1167 u8 port_num,
1168 struct ib_port_attr *port_attr);
1169 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1170 u8 port_num);
1171 int (*query_gid)(struct ib_device *device,
1172 u8 port_num, int index,
1173 union ib_gid *gid);
1174 int (*query_pkey)(struct ib_device *device,
1175 u8 port_num, u16 index, u16 *pkey);
1176 int (*modify_device)(struct ib_device *device,
1177 int device_modify_mask,
1178 struct ib_device_modify *device_modify);
1179 int (*modify_port)(struct ib_device *device,
1180 u8 port_num, int port_modify_mask,
1181 struct ib_port_modify *port_modify);
1182 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1183 struct ib_udata *udata);
1184 int (*dealloc_ucontext)(struct ib_ucontext *context);
1185 int (*mmap)(struct ib_ucontext *context,
1186 struct vm_area_struct *vma);
1187 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1188 struct ib_ucontext *context,
1189 struct ib_udata *udata);
1190 int (*dealloc_pd)(struct ib_pd *pd);
1191 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1192 struct ib_ah_attr *ah_attr);
1193 int (*modify_ah)(struct ib_ah *ah,
1194 struct ib_ah_attr *ah_attr);
1195 int (*query_ah)(struct ib_ah *ah,
1196 struct ib_ah_attr *ah_attr);
1197 int (*destroy_ah)(struct ib_ah *ah);
1198 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1199 struct ib_srq_init_attr *srq_init_attr,
1200 struct ib_udata *udata);
1201 int (*modify_srq)(struct ib_srq *srq,
1202 struct ib_srq_attr *srq_attr,
1203 enum ib_srq_attr_mask srq_attr_mask,
1204 struct ib_udata *udata);
1205 int (*query_srq)(struct ib_srq *srq,
1206 struct ib_srq_attr *srq_attr);
1207 int (*destroy_srq)(struct ib_srq *srq);
1208 int (*post_srq_recv)(struct ib_srq *srq,
1209 struct ib_recv_wr *recv_wr,
1210 struct ib_recv_wr **bad_recv_wr);
1211 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1212 struct ib_qp_init_attr *qp_init_attr,
1213 struct ib_udata *udata);
1214 int (*modify_qp)(struct ib_qp *qp,
1215 struct ib_qp_attr *qp_attr,
1216 int qp_attr_mask,
1217 struct ib_udata *udata);
1218 int (*query_qp)(struct ib_qp *qp,
1219 struct ib_qp_attr *qp_attr,
1220 int qp_attr_mask,
1221 struct ib_qp_init_attr *qp_init_attr);
1222 int (*destroy_qp)(struct ib_qp *qp);
1223 int (*post_send)(struct ib_qp *qp,
1224 struct ib_send_wr *send_wr,
1225 struct ib_send_wr **bad_send_wr);
1226 int (*post_recv)(struct ib_qp *qp,
1227 struct ib_recv_wr *recv_wr,
1228 struct ib_recv_wr **bad_recv_wr);
1229 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe,
1230 int comp_vector,
1231 struct ib_ucontext *context,
1232 struct ib_udata *udata);
1233 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1234 u16 cq_period);
1235 int (*destroy_cq)(struct ib_cq *cq);
1236 int (*resize_cq)(struct ib_cq *cq, int cqe,
1237 struct ib_udata *udata);
1238 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1239 struct ib_wc *wc);
1240 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1241 int (*req_notify_cq)(struct ib_cq *cq,
1242 enum ib_cq_notify_flags flags);
1243 int (*req_ncomp_notif)(struct ib_cq *cq,
1244 int wc_cnt);
1245 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1246 int mr_access_flags);
1247 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1248 struct ib_phys_buf *phys_buf_array,
1249 int num_phys_buf,
1250 int mr_access_flags,
1251 u64 *iova_start);
1252 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1253 u64 start, u64 length,
1254 u64 virt_addr,
1255 int mr_access_flags,
1256 struct ib_udata *udata);
1257 int (*query_mr)(struct ib_mr *mr,
1258 struct ib_mr_attr *mr_attr);
1259 int (*dereg_mr)(struct ib_mr *mr);
1260 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd,
1261 int max_page_list_len);
1262 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1263 int page_list_len);
1264 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1265 int (*rereg_phys_mr)(struct ib_mr *mr,
1266 int mr_rereg_mask,
1267 struct ib_pd *pd,
1268 struct ib_phys_buf *phys_buf_array,
1269 int num_phys_buf,
1270 int mr_access_flags,
1271 u64 *iova_start);
1272 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1273 enum ib_mw_type type);
1274 int (*bind_mw)(struct ib_qp *qp,
1275 struct ib_mw *mw,
1276 struct ib_mw_bind *mw_bind);
1277 int (*dealloc_mw)(struct ib_mw *mw);
1278 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1279 int mr_access_flags,
1280 struct ib_fmr_attr *fmr_attr);
1281 int (*map_phys_fmr)(struct ib_fmr *fmr,
1282 u64 *page_list, int list_len,
1283 u64 iova);
1284 int (*unmap_fmr)(struct list_head *fmr_list);
1285 int (*dealloc_fmr)(struct ib_fmr *fmr);
1286 int (*attach_mcast)(struct ib_qp *qp,
1287 union ib_gid *gid,
1288 u16 lid);
1289 int (*detach_mcast)(struct ib_qp *qp,
1290 union ib_gid *gid,
1291 u16 lid);
1292 int (*process_mad)(struct ib_device *device,
1293 int process_mad_flags,
1294 u8 port_num,
1295 struct ib_wc *in_wc,
1296 struct ib_grh *in_grh,
1297 struct ib_mad *in_mad,
1298 struct ib_mad *out_mad);
1299 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1300 struct ib_ucontext *ucontext,
1301 struct ib_udata *udata);
1302 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1304 struct ib_dma_mapping_ops *dma_ops;
1306 struct module *owner;
1307 struct device dev;
1308 struct kobject *ports_parent;
1309 struct list_head port_list;
1311 enum {
1312 IB_DEV_UNINITIALIZED,
1313 IB_DEV_REGISTERED,
1314 IB_DEV_UNREGISTERED
1315 } reg_state;
1317 int uverbs_abi_ver;
1318 u64 uverbs_cmd_mask;
1320 char node_desc[64];
1321 __be64 node_guid;
1322 u32 local_dma_lkey;
1323 u8 node_type;
1324 u8 phys_port_cnt;
1327 struct ib_client {
1328 char *name;
1329 void (*add) (struct ib_device *);
1330 void (*remove)(struct ib_device *);
1332 struct list_head list;
1335 struct ib_device *ib_alloc_device(size_t size);
1336 void ib_dealloc_device(struct ib_device *device);
1338 int ib_register_device(struct ib_device *device,
1339 int (*port_callback)(struct ib_device *,
1340 u8, struct kobject *));
1341 void ib_unregister_device(struct ib_device *device);
1343 int ib_register_client (struct ib_client *client);
1344 void ib_unregister_client(struct ib_client *client);
1346 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1347 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1348 void *data);
1350 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1352 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1355 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1357 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1361 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1362 * contains all required attributes and no attributes not allowed for
1363 * the given QP state transition.
1364 * @cur_state: Current QP state
1365 * @next_state: Next QP state
1366 * @type: QP type
1367 * @mask: Mask of supplied QP attributes
1369 * This function is a helper function that a low-level driver's
1370 * modify_qp method can use to validate the consumer's input. It
1371 * checks that cur_state and next_state are valid QP states, that a
1372 * transition from cur_state to next_state is allowed by the IB spec,
1373 * and that the attribute mask supplied is allowed for the transition.
1375 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1376 enum ib_qp_type type, enum ib_qp_attr_mask mask);
1378 int ib_register_event_handler (struct ib_event_handler *event_handler);
1379 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1380 void ib_dispatch_event(struct ib_event *event);
1382 int ib_query_device(struct ib_device *device,
1383 struct ib_device_attr *device_attr);
1385 int ib_query_port(struct ib_device *device,
1386 u8 port_num, struct ib_port_attr *port_attr);
1388 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1389 u8 port_num);
1391 int ib_query_gid(struct ib_device *device,
1392 u8 port_num, int index, union ib_gid *gid);
1394 int ib_query_pkey(struct ib_device *device,
1395 u8 port_num, u16 index, u16 *pkey);
1397 int ib_modify_device(struct ib_device *device,
1398 int device_modify_mask,
1399 struct ib_device_modify *device_modify);
1401 int ib_modify_port(struct ib_device *device,
1402 u8 port_num, int port_modify_mask,
1403 struct ib_port_modify *port_modify);
1405 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1406 u8 *port_num, u16 *index);
1408 int ib_find_pkey(struct ib_device *device,
1409 u8 port_num, u16 pkey, u16 *index);
1412 * ib_alloc_pd - Allocates an unused protection domain.
1413 * @device: The device on which to allocate the protection domain.
1415 * A protection domain object provides an association between QPs, shared
1416 * receive queues, address handles, memory regions, and memory windows.
1418 struct ib_pd *ib_alloc_pd(struct ib_device *device);
1421 * ib_dealloc_pd - Deallocates a protection domain.
1422 * @pd: The protection domain to deallocate.
1424 int ib_dealloc_pd(struct ib_pd *pd);
1427 * ib_create_ah - Creates an address handle for the given address vector.
1428 * @pd: The protection domain associated with the address handle.
1429 * @ah_attr: The attributes of the address vector.
1431 * The address handle is used to reference a local or global destination
1432 * in all UD QP post sends.
1434 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1437 * ib_init_ah_from_wc - Initializes address handle attributes from a
1438 * work completion.
1439 * @device: Device on which the received message arrived.
1440 * @port_num: Port on which the received message arrived.
1441 * @wc: Work completion associated with the received message.
1442 * @grh: References the received global route header. This parameter is
1443 * ignored unless the work completion indicates that the GRH is valid.
1444 * @ah_attr: Returned attributes that can be used when creating an address
1445 * handle for replying to the message.
1447 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1448 struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1451 * ib_create_ah_from_wc - Creates an address handle associated with the
1452 * sender of the specified work completion.
1453 * @pd: The protection domain associated with the address handle.
1454 * @wc: Work completion information associated with a received message.
1455 * @grh: References the received global route header. This parameter is
1456 * ignored unless the work completion indicates that the GRH is valid.
1457 * @port_num: The outbound port number to associate with the address.
1459 * The address handle is used to reference a local or global destination
1460 * in all UD QP post sends.
1462 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1463 struct ib_grh *grh, u8 port_num);
1466 * ib_modify_ah - Modifies the address vector associated with an address
1467 * handle.
1468 * @ah: The address handle to modify.
1469 * @ah_attr: The new address vector attributes to associate with the
1470 * address handle.
1472 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1475 * ib_query_ah - Queries the address vector associated with an address
1476 * handle.
1477 * @ah: The address handle to query.
1478 * @ah_attr: The address vector attributes associated with the address
1479 * handle.
1481 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1484 * ib_destroy_ah - Destroys an address handle.
1485 * @ah: The address handle to destroy.
1487 int ib_destroy_ah(struct ib_ah *ah);
1490 * ib_create_srq - Creates a SRQ associated with the specified protection
1491 * domain.
1492 * @pd: The protection domain associated with the SRQ.
1493 * @srq_init_attr: A list of initial attributes required to create the
1494 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1495 * the actual capabilities of the created SRQ.
1497 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1498 * requested size of the SRQ, and set to the actual values allocated
1499 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1500 * will always be at least as large as the requested values.
1502 struct ib_srq *ib_create_srq(struct ib_pd *pd,
1503 struct ib_srq_init_attr *srq_init_attr);
1506 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1507 * @srq: The SRQ to modify.
1508 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
1509 * the current values of selected SRQ attributes are returned.
1510 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1511 * are being modified.
1513 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1514 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1515 * the number of receives queued drops below the limit.
1517 int ib_modify_srq(struct ib_srq *srq,
1518 struct ib_srq_attr *srq_attr,
1519 enum ib_srq_attr_mask srq_attr_mask);
1522 * ib_query_srq - Returns the attribute list and current values for the
1523 * specified SRQ.
1524 * @srq: The SRQ to query.
1525 * @srq_attr: The attributes of the specified SRQ.
1527 int ib_query_srq(struct ib_srq *srq,
1528 struct ib_srq_attr *srq_attr);
1531 * ib_destroy_srq - Destroys the specified SRQ.
1532 * @srq: The SRQ to destroy.
1534 int ib_destroy_srq(struct ib_srq *srq);
1537 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1538 * @srq: The SRQ to post the work request on.
1539 * @recv_wr: A list of work requests to post on the receive queue.
1540 * @bad_recv_wr: On an immediate failure, this parameter will reference
1541 * the work request that failed to be posted on the QP.
1543 static inline int ib_post_srq_recv(struct ib_srq *srq,
1544 struct ib_recv_wr *recv_wr,
1545 struct ib_recv_wr **bad_recv_wr)
1547 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1551 * ib_create_qp - Creates a QP associated with the specified protection
1552 * domain.
1553 * @pd: The protection domain associated with the QP.
1554 * @qp_init_attr: A list of initial attributes required to create the
1555 * QP. If QP creation succeeds, then the attributes are updated to
1556 * the actual capabilities of the created QP.
1558 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1559 struct ib_qp_init_attr *qp_init_attr);
1562 * ib_modify_qp - Modifies the attributes for the specified QP and then
1563 * transitions the QP to the given state.
1564 * @qp: The QP to modify.
1565 * @qp_attr: On input, specifies the QP attributes to modify. On output,
1566 * the current values of selected QP attributes are returned.
1567 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1568 * are being modified.
1570 int ib_modify_qp(struct ib_qp *qp,
1571 struct ib_qp_attr *qp_attr,
1572 int qp_attr_mask);
1575 * ib_query_qp - Returns the attribute list and current values for the
1576 * specified QP.
1577 * @qp: The QP to query.
1578 * @qp_attr: The attributes of the specified QP.
1579 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1580 * @qp_init_attr: Additional attributes of the selected QP.
1582 * The qp_attr_mask may be used to limit the query to gathering only the
1583 * selected attributes.
1585 int ib_query_qp(struct ib_qp *qp,
1586 struct ib_qp_attr *qp_attr,
1587 int qp_attr_mask,
1588 struct ib_qp_init_attr *qp_init_attr);
1591 * ib_destroy_qp - Destroys the specified QP.
1592 * @qp: The QP to destroy.
1594 int ib_destroy_qp(struct ib_qp *qp);
1597 * ib_open_qp - Obtain a reference to an existing sharable QP.
1598 * @xrcd - XRC domain
1599 * @qp_open_attr: Attributes identifying the QP to open.
1601 * Returns a reference to a sharable QP.
1603 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1604 struct ib_qp_open_attr *qp_open_attr);
1607 * ib_close_qp - Release an external reference to a QP.
1608 * @qp: The QP handle to release
1610 * The opened QP handle is released by the caller. The underlying
1611 * shared QP is not destroyed until all internal references are released.
1613 int ib_close_qp(struct ib_qp *qp);
1616 * ib_post_send - Posts a list of work requests to the send queue of
1617 * the specified QP.
1618 * @qp: The QP to post the work request on.
1619 * @send_wr: A list of work requests to post on the send queue.
1620 * @bad_send_wr: On an immediate failure, this parameter will reference
1621 * the work request that failed to be posted on the QP.
1623 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1624 * error is returned, the QP state shall not be affected,
1625 * ib_post_send() will return an immediate error after queueing any
1626 * earlier work requests in the list.
1628 static inline int ib_post_send(struct ib_qp *qp,
1629 struct ib_send_wr *send_wr,
1630 struct ib_send_wr **bad_send_wr)
1632 return qp->device->post_send(qp, send_wr, bad_send_wr);
1636 * ib_post_recv - Posts a list of work requests to the receive queue of
1637 * the specified QP.
1638 * @qp: The QP to post the work request on.
1639 * @recv_wr: A list of work requests to post on the receive queue.
1640 * @bad_recv_wr: On an immediate failure, this parameter will reference
1641 * the work request that failed to be posted on the QP.
1643 static inline int ib_post_recv(struct ib_qp *qp,
1644 struct ib_recv_wr *recv_wr,
1645 struct ib_recv_wr **bad_recv_wr)
1647 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1651 * ib_create_cq - Creates a CQ on the specified device.
1652 * @device: The device on which to create the CQ.
1653 * @comp_handler: A user-specified callback that is invoked when a
1654 * completion event occurs on the CQ.
1655 * @event_handler: A user-specified callback that is invoked when an
1656 * asynchronous event not associated with a completion occurs on the CQ.
1657 * @cq_context: Context associated with the CQ returned to the user via
1658 * the associated completion and event handlers.
1659 * @cqe: The minimum size of the CQ.
1660 * @comp_vector - Completion vector used to signal completion events.
1661 * Must be >= 0 and < context->num_comp_vectors.
1663 * Users can examine the cq structure to determine the actual CQ size.
1665 struct ib_cq *ib_create_cq(struct ib_device *device,
1666 ib_comp_handler comp_handler,
1667 void (*event_handler)(struct ib_event *, void *),
1668 void *cq_context, int cqe, int comp_vector);
1671 * ib_resize_cq - Modifies the capacity of the CQ.
1672 * @cq: The CQ to resize.
1673 * @cqe: The minimum size of the CQ.
1675 * Users can examine the cq structure to determine the actual CQ size.
1677 int ib_resize_cq(struct ib_cq *cq, int cqe);
1680 * ib_modify_cq - Modifies moderation params of the CQ
1681 * @cq: The CQ to modify.
1682 * @cq_count: number of CQEs that will trigger an event
1683 * @cq_period: max period of time in usec before triggering an event
1686 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1689 * ib_destroy_cq - Destroys the specified CQ.
1690 * @cq: The CQ to destroy.
1692 int ib_destroy_cq(struct ib_cq *cq);
1695 * ib_poll_cq - poll a CQ for completion(s)
1696 * @cq:the CQ being polled
1697 * @num_entries:maximum number of completions to return
1698 * @wc:array of at least @num_entries &struct ib_wc where completions
1699 * will be returned
1701 * Poll a CQ for (possibly multiple) completions. If the return value
1702 * is < 0, an error occurred. If the return value is >= 0, it is the
1703 * number of completions returned. If the return value is
1704 * non-negative and < num_entries, then the CQ was emptied.
1706 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1707 struct ib_wc *wc)
1709 return cq->device->poll_cq(cq, num_entries, wc);
1713 * ib_peek_cq - Returns the number of unreaped completions currently
1714 * on the specified CQ.
1715 * @cq: The CQ to peek.
1716 * @wc_cnt: A minimum number of unreaped completions to check for.
1718 * If the number of unreaped completions is greater than or equal to wc_cnt,
1719 * this function returns wc_cnt, otherwise, it returns the actual number of
1720 * unreaped completions.
1722 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1725 * ib_req_notify_cq - Request completion notification on a CQ.
1726 * @cq: The CQ to generate an event for.
1727 * @flags:
1728 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1729 * to request an event on the next solicited event or next work
1730 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1731 * may also be |ed in to request a hint about missed events, as
1732 * described below.
1734 * Return Value:
1735 * < 0 means an error occurred while requesting notification
1736 * == 0 means notification was requested successfully, and if
1737 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1738 * were missed and it is safe to wait for another event. In
1739 * this case is it guaranteed that any work completions added
1740 * to the CQ since the last CQ poll will trigger a completion
1741 * notification event.
1742 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1743 * in. It means that the consumer must poll the CQ again to
1744 * make sure it is empty to avoid missing an event because of a
1745 * race between requesting notification and an entry being
1746 * added to the CQ. This return value means it is possible
1747 * (but not guaranteed) that a work completion has been added
1748 * to the CQ since the last poll without triggering a
1749 * completion notification event.
1751 static inline int ib_req_notify_cq(struct ib_cq *cq,
1752 enum ib_cq_notify_flags flags)
1754 return cq->device->req_notify_cq(cq, flags);
1758 * ib_req_ncomp_notif - Request completion notification when there are
1759 * at least the specified number of unreaped completions on the CQ.
1760 * @cq: The CQ to generate an event for.
1761 * @wc_cnt: The number of unreaped completions that should be on the
1762 * CQ before an event is generated.
1764 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1766 return cq->device->req_ncomp_notif ?
1767 cq->device->req_ncomp_notif(cq, wc_cnt) :
1768 -ENOSYS;
1772 * ib_get_dma_mr - Returns a memory region for system memory that is
1773 * usable for DMA.
1774 * @pd: The protection domain associated with the memory region.
1775 * @mr_access_flags: Specifies the memory access rights.
1777 * Note that the ib_dma_*() functions defined below must be used
1778 * to create/destroy addresses used with the Lkey or Rkey returned
1779 * by ib_get_dma_mr().
1781 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1784 * ib_dma_mapping_error - check a DMA addr for error
1785 * @dev: The device for which the dma_addr was created
1786 * @dma_addr: The DMA address to check
1788 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1790 if (dev->dma_ops)
1791 return dev->dma_ops->mapping_error(dev, dma_addr);
1792 return dma_mapping_error(dev->dma_device, dma_addr);
1796 * ib_dma_map_single - Map a kernel virtual address to DMA address
1797 * @dev: The device for which the dma_addr is to be created
1798 * @cpu_addr: The kernel virtual address
1799 * @size: The size of the region in bytes
1800 * @direction: The direction of the DMA
1802 static inline u64 ib_dma_map_single(struct ib_device *dev,
1803 void *cpu_addr, size_t size,
1804 enum dma_data_direction direction)
1806 if (dev->dma_ops)
1807 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1808 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1812 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1813 * @dev: The device for which the DMA address was created
1814 * @addr: The DMA address
1815 * @size: The size of the region in bytes
1816 * @direction: The direction of the DMA
1818 static inline void ib_dma_unmap_single(struct ib_device *dev,
1819 u64 addr, size_t size,
1820 enum dma_data_direction direction)
1822 if (dev->dma_ops)
1823 dev->dma_ops->unmap_single(dev, addr, size, direction);
1824 else
1825 dma_unmap_single(dev->dma_device, addr, size, direction);
1828 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1829 void *cpu_addr, size_t size,
1830 enum dma_data_direction direction,
1831 struct dma_attrs *attrs)
1833 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1834 direction, attrs);
1837 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1838 u64 addr, size_t size,
1839 enum dma_data_direction direction,
1840 struct dma_attrs *attrs)
1842 return dma_unmap_single_attrs(dev->dma_device, addr, size,
1843 direction, attrs);
1847 * ib_dma_map_page - Map a physical page to DMA address
1848 * @dev: The device for which the dma_addr is to be created
1849 * @page: The page to be mapped
1850 * @offset: The offset within the page
1851 * @size: The size of the region in bytes
1852 * @direction: The direction of the DMA
1854 static inline u64 ib_dma_map_page(struct ib_device *dev,
1855 struct page *page,
1856 unsigned long offset,
1857 size_t size,
1858 enum dma_data_direction direction)
1860 if (dev->dma_ops)
1861 return dev->dma_ops->map_page(dev, page, offset, size, direction);
1862 return dma_map_page(dev->dma_device, page, offset, size, direction);
1866 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1867 * @dev: The device for which the DMA address was created
1868 * @addr: The DMA address
1869 * @size: The size of the region in bytes
1870 * @direction: The direction of the DMA
1872 static inline void ib_dma_unmap_page(struct ib_device *dev,
1873 u64 addr, size_t size,
1874 enum dma_data_direction direction)
1876 if (dev->dma_ops)
1877 dev->dma_ops->unmap_page(dev, addr, size, direction);
1878 else
1879 dma_unmap_page(dev->dma_device, addr, size, direction);
1883 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
1884 * @dev: The device for which the DMA addresses are to be created
1885 * @sg: The array of scatter/gather entries
1886 * @nents: The number of scatter/gather entries
1887 * @direction: The direction of the DMA
1889 static inline int ib_dma_map_sg(struct ib_device *dev,
1890 struct scatterlist *sg, int nents,
1891 enum dma_data_direction direction)
1893 if (dev->dma_ops)
1894 return dev->dma_ops->map_sg(dev, sg, nents, direction);
1895 return dma_map_sg(dev->dma_device, sg, nents, direction);
1899 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
1900 * @dev: The device for which the DMA addresses were created
1901 * @sg: The array of scatter/gather entries
1902 * @nents: The number of scatter/gather entries
1903 * @direction: The direction of the DMA
1905 static inline void ib_dma_unmap_sg(struct ib_device *dev,
1906 struct scatterlist *sg, int nents,
1907 enum dma_data_direction direction)
1909 if (dev->dma_ops)
1910 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
1911 else
1912 dma_unmap_sg(dev->dma_device, sg, nents, direction);
1915 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
1916 struct scatterlist *sg, int nents,
1917 enum dma_data_direction direction,
1918 struct dma_attrs *attrs)
1920 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1923 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
1924 struct scatterlist *sg, int nents,
1925 enum dma_data_direction direction,
1926 struct dma_attrs *attrs)
1928 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1931 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
1932 * @dev: The device for which the DMA addresses were created
1933 * @sg: The scatter/gather entry
1935 static inline u64 ib_sg_dma_address(struct ib_device *dev,
1936 struct scatterlist *sg)
1938 if (dev->dma_ops)
1939 return dev->dma_ops->dma_address(dev, sg);
1940 return sg_dma_address(sg);
1944 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
1945 * @dev: The device for which the DMA addresses were created
1946 * @sg: The scatter/gather entry
1948 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
1949 struct scatterlist *sg)
1951 if (dev->dma_ops)
1952 return dev->dma_ops->dma_len(dev, sg);
1953 return sg_dma_len(sg);
1957 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
1958 * @dev: The device for which the DMA address was created
1959 * @addr: The DMA address
1960 * @size: The size of the region in bytes
1961 * @dir: The direction of the DMA
1963 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
1964 u64 addr,
1965 size_t size,
1966 enum dma_data_direction dir)
1968 if (dev->dma_ops)
1969 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
1970 else
1971 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
1975 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
1976 * @dev: The device for which the DMA address was created
1977 * @addr: The DMA address
1978 * @size: The size of the region in bytes
1979 * @dir: The direction of the DMA
1981 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
1982 u64 addr,
1983 size_t size,
1984 enum dma_data_direction dir)
1986 if (dev->dma_ops)
1987 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
1988 else
1989 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
1993 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
1994 * @dev: The device for which the DMA address is requested
1995 * @size: The size of the region to allocate in bytes
1996 * @dma_handle: A pointer for returning the DMA address of the region
1997 * @flag: memory allocator flags
1999 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2000 size_t size,
2001 u64 *dma_handle,
2002 gfp_t flag)
2004 if (dev->dma_ops)
2005 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2006 else {
2007 dma_addr_t handle;
2008 void *ret;
2010 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2011 *dma_handle = handle;
2012 return ret;
2017 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2018 * @dev: The device for which the DMA addresses were allocated
2019 * @size: The size of the region
2020 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2021 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2023 static inline void ib_dma_free_coherent(struct ib_device *dev,
2024 size_t size, void *cpu_addr,
2025 u64 dma_handle)
2027 if (dev->dma_ops)
2028 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2029 else
2030 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2034 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
2035 * by an HCA.
2036 * @pd: The protection domain associated assigned to the registered region.
2037 * @phys_buf_array: Specifies a list of physical buffers to use in the
2038 * memory region.
2039 * @num_phys_buf: Specifies the size of the phys_buf_array.
2040 * @mr_access_flags: Specifies the memory access rights.
2041 * @iova_start: The offset of the region's starting I/O virtual address.
2043 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
2044 struct ib_phys_buf *phys_buf_array,
2045 int num_phys_buf,
2046 int mr_access_flags,
2047 u64 *iova_start);
2050 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
2051 * Conceptually, this call performs the functions deregister memory region
2052 * followed by register physical memory region. Where possible,
2053 * resources are reused instead of deallocated and reallocated.
2054 * @mr: The memory region to modify.
2055 * @mr_rereg_mask: A bit-mask used to indicate which of the following
2056 * properties of the memory region are being modified.
2057 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
2058 * the new protection domain to associated with the memory region,
2059 * otherwise, this parameter is ignored.
2060 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2061 * field specifies a list of physical buffers to use in the new
2062 * translation, otherwise, this parameter is ignored.
2063 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2064 * field specifies the size of the phys_buf_array, otherwise, this
2065 * parameter is ignored.
2066 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
2067 * field specifies the new memory access rights, otherwise, this
2068 * parameter is ignored.
2069 * @iova_start: The offset of the region's starting I/O virtual address.
2071 int ib_rereg_phys_mr(struct ib_mr *mr,
2072 int mr_rereg_mask,
2073 struct ib_pd *pd,
2074 struct ib_phys_buf *phys_buf_array,
2075 int num_phys_buf,
2076 int mr_access_flags,
2077 u64 *iova_start);
2080 * ib_query_mr - Retrieves information about a specific memory region.
2081 * @mr: The memory region to retrieve information about.
2082 * @mr_attr: The attributes of the specified memory region.
2084 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2087 * ib_dereg_mr - Deregisters a memory region and removes it from the
2088 * HCA translation table.
2089 * @mr: The memory region to deregister.
2091 * This function can fail, if the memory region has memory windows bound to it.
2093 int ib_dereg_mr(struct ib_mr *mr);
2096 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
2097 * IB_WR_FAST_REG_MR send work request.
2098 * @pd: The protection domain associated with the region.
2099 * @max_page_list_len: requested max physical buffer list length to be
2100 * used with fast register work requests for this MR.
2102 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
2105 * ib_alloc_fast_reg_page_list - Allocates a page list array
2106 * @device - ib device pointer.
2107 * @page_list_len - size of the page list array to be allocated.
2109 * This allocates and returns a struct ib_fast_reg_page_list * and a
2110 * page_list array that is at least page_list_len in size. The actual
2111 * size is returned in max_page_list_len. The caller is responsible
2112 * for initializing the contents of the page_list array before posting
2113 * a send work request with the IB_WC_FAST_REG_MR opcode.
2115 * The page_list array entries must be translated using one of the
2116 * ib_dma_*() functions just like the addresses passed to
2117 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
2118 * ib_fast_reg_page_list must not be modified by the caller until the
2119 * IB_WC_FAST_REG_MR work request completes.
2121 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2122 struct ib_device *device, int page_list_len);
2125 * ib_free_fast_reg_page_list - Deallocates a previously allocated
2126 * page list array.
2127 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2129 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2132 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2133 * R_Key and L_Key.
2134 * @mr - struct ib_mr pointer to be updated.
2135 * @newkey - new key to be used.
2137 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2139 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2140 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2144 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2145 * for calculating a new rkey for type 2 memory windows.
2146 * @rkey - the rkey to increment.
2148 static inline u32 ib_inc_rkey(u32 rkey)
2150 const u32 mask = 0x000000ff;
2151 return ((rkey + 1) & mask) | (rkey & ~mask);
2155 * ib_alloc_mw - Allocates a memory window.
2156 * @pd: The protection domain associated with the memory window.
2157 * @type: The type of the memory window (1 or 2).
2159 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
2162 * ib_bind_mw - Posts a work request to the send queue of the specified
2163 * QP, which binds the memory window to the given address range and
2164 * remote access attributes.
2165 * @qp: QP to post the bind work request on.
2166 * @mw: The memory window to bind.
2167 * @mw_bind: Specifies information about the memory window, including
2168 * its address range, remote access rights, and associated memory region.
2170 * If there is no immediate error, the function will update the rkey member
2171 * of the mw parameter to its new value. The bind operation can still fail
2172 * asynchronously.
2174 static inline int ib_bind_mw(struct ib_qp *qp,
2175 struct ib_mw *mw,
2176 struct ib_mw_bind *mw_bind)
2178 /* XXX reference counting in corresponding MR? */
2179 return mw->device->bind_mw ?
2180 mw->device->bind_mw(qp, mw, mw_bind) :
2181 -ENOSYS;
2185 * ib_dealloc_mw - Deallocates a memory window.
2186 * @mw: The memory window to deallocate.
2188 int ib_dealloc_mw(struct ib_mw *mw);
2191 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2192 * @pd: The protection domain associated with the unmapped region.
2193 * @mr_access_flags: Specifies the memory access rights.
2194 * @fmr_attr: Attributes of the unmapped region.
2196 * A fast memory region must be mapped before it can be used as part of
2197 * a work request.
2199 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2200 int mr_access_flags,
2201 struct ib_fmr_attr *fmr_attr);
2204 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2205 * @fmr: The fast memory region to associate with the pages.
2206 * @page_list: An array of physical pages to map to the fast memory region.
2207 * @list_len: The number of pages in page_list.
2208 * @iova: The I/O virtual address to use with the mapped region.
2210 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2211 u64 *page_list, int list_len,
2212 u64 iova)
2214 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2218 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2219 * @fmr_list: A linked list of fast memory regions to unmap.
2221 int ib_unmap_fmr(struct list_head *fmr_list);
2224 * ib_dealloc_fmr - Deallocates a fast memory region.
2225 * @fmr: The fast memory region to deallocate.
2227 int ib_dealloc_fmr(struct ib_fmr *fmr);
2230 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2231 * @qp: QP to attach to the multicast group. The QP must be type
2232 * IB_QPT_UD.
2233 * @gid: Multicast group GID.
2234 * @lid: Multicast group LID in host byte order.
2236 * In order to send and receive multicast packets, subnet
2237 * administration must have created the multicast group and configured
2238 * the fabric appropriately. The port associated with the specified
2239 * QP must also be a member of the multicast group.
2241 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2244 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2245 * @qp: QP to detach from the multicast group.
2246 * @gid: Multicast group GID.
2247 * @lid: Multicast group LID in host byte order.
2249 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2252 * ib_alloc_xrcd - Allocates an XRC domain.
2253 * @device: The device on which to allocate the XRC domain.
2255 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2258 * ib_dealloc_xrcd - Deallocates an XRC domain.
2259 * @xrcd: The XRC domain to deallocate.
2261 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2263 #endif /* IB_VERBS_H */