1 /* linux/drivers/mtd/nand/s3c2410.c
3 * Copyright © 2004-2008 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #define pr_fmt(fmt) "nand-s3c2410: " fmt
26 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/kernel.h>
33 #include <linux/string.h>
35 #include <linux/ioport.h>
36 #include <linux/platform_device.h>
37 #include <linux/delay.h>
38 #include <linux/err.h>
39 #include <linux/slab.h>
40 #include <linux/clk.h>
41 #include <linux/cpufreq.h>
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/nand.h>
45 #include <linux/mtd/nand_ecc.h>
46 #include <linux/mtd/partitions.h>
48 #include <linux/platform_data/mtd-nand-s3c2410.h>
50 #define S3C2410_NFREG(x) (x)
52 #define S3C2410_NFCONF S3C2410_NFREG(0x00)
53 #define S3C2410_NFCMD S3C2410_NFREG(0x04)
54 #define S3C2410_NFADDR S3C2410_NFREG(0x08)
55 #define S3C2410_NFDATA S3C2410_NFREG(0x0C)
56 #define S3C2410_NFSTAT S3C2410_NFREG(0x10)
57 #define S3C2410_NFECC S3C2410_NFREG(0x14)
58 #define S3C2440_NFCONT S3C2410_NFREG(0x04)
59 #define S3C2440_NFCMD S3C2410_NFREG(0x08)
60 #define S3C2440_NFADDR S3C2410_NFREG(0x0C)
61 #define S3C2440_NFDATA S3C2410_NFREG(0x10)
62 #define S3C2440_NFSTAT S3C2410_NFREG(0x20)
63 #define S3C2440_NFMECC0 S3C2410_NFREG(0x2C)
64 #define S3C2412_NFSTAT S3C2410_NFREG(0x28)
65 #define S3C2412_NFMECC0 S3C2410_NFREG(0x34)
66 #define S3C2410_NFCONF_EN (1<<15)
67 #define S3C2410_NFCONF_INITECC (1<<12)
68 #define S3C2410_NFCONF_nFCE (1<<11)
69 #define S3C2410_NFCONF_TACLS(x) ((x)<<8)
70 #define S3C2410_NFCONF_TWRPH0(x) ((x)<<4)
71 #define S3C2410_NFCONF_TWRPH1(x) ((x)<<0)
72 #define S3C2410_NFSTAT_BUSY (1<<0)
73 #define S3C2440_NFCONF_TACLS(x) ((x)<<12)
74 #define S3C2440_NFCONF_TWRPH0(x) ((x)<<8)
75 #define S3C2440_NFCONF_TWRPH1(x) ((x)<<4)
76 #define S3C2440_NFCONT_INITECC (1<<4)
77 #define S3C2440_NFCONT_nFCE (1<<1)
78 #define S3C2440_NFCONT_ENABLE (1<<0)
79 #define S3C2440_NFSTAT_READY (1<<0)
80 #define S3C2412_NFCONF_NANDBOOT (1<<31)
81 #define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5)
82 #define S3C2412_NFCONT_nFCE0 (1<<1)
83 #define S3C2412_NFSTAT_READY (1<<0)
85 /* new oob placement block for use with hardware ecc generation
88 static struct nand_ecclayout nand_hw_eccoob
= {
94 /* controller and mtd information */
96 struct s3c2410_nand_info
;
99 * struct s3c2410_nand_mtd - driver MTD structure
100 * @mtd: The MTD instance to pass to the MTD layer.
101 * @chip: The NAND chip information.
102 * @set: The platform information supplied for this set of NAND chips.
103 * @info: Link back to the hardware information.
104 * @scan_res: The result from calling nand_scan_ident().
106 struct s3c2410_nand_mtd
{
108 struct nand_chip chip
;
109 struct s3c2410_nand_set
*set
;
110 struct s3c2410_nand_info
*info
;
120 enum s3c_nand_clk_state
{
126 /* overview of the s3c2410 nand state */
129 * struct s3c2410_nand_info - NAND controller state.
130 * @mtds: An array of MTD instances on this controoler.
131 * @platform: The platform data for this board.
132 * @device: The platform device we bound to.
133 * @clk: The clock resource for this controller.
134 * @regs: The area mapped for the hardware registers.
135 * @sel_reg: Pointer to the register controlling the NAND selection.
136 * @sel_bit: The bit in @sel_reg to select the NAND chip.
137 * @mtd_count: The number of MTDs created from this controller.
138 * @save_sel: The contents of @sel_reg to be saved over suspend.
139 * @clk_rate: The clock rate from @clk.
140 * @clk_state: The current clock state.
141 * @cpu_type: The exact type of this controller.
143 struct s3c2410_nand_info
{
145 struct nand_hw_control controller
;
146 struct s3c2410_nand_mtd
*mtds
;
147 struct s3c2410_platform_nand
*platform
;
150 struct device
*device
;
153 void __iomem
*sel_reg
;
156 unsigned long save_sel
;
157 unsigned long clk_rate
;
158 enum s3c_nand_clk_state clk_state
;
160 enum s3c_cpu_type cpu_type
;
162 #ifdef CONFIG_CPU_FREQ
163 struct notifier_block freq_transition
;
167 /* conversion functions */
169 static struct s3c2410_nand_mtd
*s3c2410_nand_mtd_toours(struct mtd_info
*mtd
)
171 return container_of(mtd
, struct s3c2410_nand_mtd
, mtd
);
174 static struct s3c2410_nand_info
*s3c2410_nand_mtd_toinfo(struct mtd_info
*mtd
)
176 return s3c2410_nand_mtd_toours(mtd
)->info
;
179 static struct s3c2410_nand_info
*to_nand_info(struct platform_device
*dev
)
181 return platform_get_drvdata(dev
);
184 static struct s3c2410_platform_nand
*to_nand_plat(struct platform_device
*dev
)
186 return dev_get_platdata(&dev
->dev
);
189 static inline int allow_clk_suspend(struct s3c2410_nand_info
*info
)
191 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
199 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
200 * @info: The controller instance.
201 * @new_state: State to which clock should be set.
203 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info
*info
,
204 enum s3c_nand_clk_state new_state
)
206 if (!allow_clk_suspend(info
) && new_state
== CLOCK_SUSPEND
)
209 if (info
->clk_state
== CLOCK_ENABLE
) {
210 if (new_state
!= CLOCK_ENABLE
)
211 clk_disable_unprepare(info
->clk
);
213 if (new_state
== CLOCK_ENABLE
)
214 clk_prepare_enable(info
->clk
);
217 info
->clk_state
= new_state
;
220 /* timing calculations */
222 #define NS_IN_KHZ 1000000
225 * s3c_nand_calc_rate - calculate timing data.
226 * @wanted: The cycle time in nanoseconds.
227 * @clk: The clock rate in kHz.
228 * @max: The maximum divider value.
230 * Calculate the timing value from the given parameters.
232 static int s3c_nand_calc_rate(int wanted
, unsigned long clk
, int max
)
236 result
= DIV_ROUND_UP((wanted
* clk
), NS_IN_KHZ
);
238 pr_debug("result %d from %ld, %d\n", result
, clk
, wanted
);
241 pr_err("%d ns is too big for current clock rate %ld\n",
252 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
254 /* controller setup */
257 * s3c2410_nand_setrate - setup controller timing information.
258 * @info: The controller instance.
260 * Given the information supplied by the platform, calculate and set
261 * the necessary timing registers in the hardware to generate the
262 * necessary timing cycles to the hardware.
264 static int s3c2410_nand_setrate(struct s3c2410_nand_info
*info
)
266 struct s3c2410_platform_nand
*plat
= info
->platform
;
267 int tacls_max
= (info
->cpu_type
== TYPE_S3C2412
) ? 8 : 4;
268 int tacls
, twrph0
, twrph1
;
269 unsigned long clkrate
= clk_get_rate(info
->clk
);
270 unsigned long uninitialized_var(set
), cfg
, uninitialized_var(mask
);
273 /* calculate the timing information for the controller */
275 info
->clk_rate
= clkrate
;
276 clkrate
/= 1000; /* turn clock into kHz for ease of use */
279 tacls
= s3c_nand_calc_rate(plat
->tacls
, clkrate
, tacls_max
);
280 twrph0
= s3c_nand_calc_rate(plat
->twrph0
, clkrate
, 8);
281 twrph1
= s3c_nand_calc_rate(plat
->twrph1
, clkrate
, 8);
283 /* default timings */
289 if (tacls
< 0 || twrph0
< 0 || twrph1
< 0) {
290 dev_err(info
->device
, "cannot get suitable timings\n");
294 dev_info(info
->device
, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
295 tacls
, to_ns(tacls
, clkrate
), twrph0
, to_ns(twrph0
, clkrate
),
296 twrph1
, to_ns(twrph1
, clkrate
));
298 switch (info
->cpu_type
) {
300 mask
= (S3C2410_NFCONF_TACLS(3) |
301 S3C2410_NFCONF_TWRPH0(7) |
302 S3C2410_NFCONF_TWRPH1(7));
303 set
= S3C2410_NFCONF_EN
;
304 set
|= S3C2410_NFCONF_TACLS(tacls
- 1);
305 set
|= S3C2410_NFCONF_TWRPH0(twrph0
- 1);
306 set
|= S3C2410_NFCONF_TWRPH1(twrph1
- 1);
311 mask
= (S3C2440_NFCONF_TACLS(tacls_max
- 1) |
312 S3C2440_NFCONF_TWRPH0(7) |
313 S3C2440_NFCONF_TWRPH1(7));
315 set
= S3C2440_NFCONF_TACLS(tacls
- 1);
316 set
|= S3C2440_NFCONF_TWRPH0(twrph0
- 1);
317 set
|= S3C2440_NFCONF_TWRPH1(twrph1
- 1);
324 local_irq_save(flags
);
326 cfg
= readl(info
->regs
+ S3C2410_NFCONF
);
329 writel(cfg
, info
->regs
+ S3C2410_NFCONF
);
331 local_irq_restore(flags
);
333 dev_dbg(info
->device
, "NF_CONF is 0x%lx\n", cfg
);
339 * s3c2410_nand_inithw - basic hardware initialisation
340 * @info: The hardware state.
342 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
343 * to setup the hardware access speeds and set the controller to be enabled.
345 static int s3c2410_nand_inithw(struct s3c2410_nand_info
*info
)
349 ret
= s3c2410_nand_setrate(info
);
353 switch (info
->cpu_type
) {
360 /* enable the controller and de-assert nFCE */
362 writel(S3C2440_NFCONT_ENABLE
, info
->regs
+ S3C2440_NFCONT
);
369 * s3c2410_nand_select_chip - select the given nand chip
370 * @mtd: The MTD instance for this chip.
371 * @chip: The chip number.
373 * This is called by the MTD layer to either select a given chip for the
374 * @mtd instance, or to indicate that the access has finished and the
375 * chip can be de-selected.
377 * The routine ensures that the nFCE line is correctly setup, and any
378 * platform specific selection code is called to route nFCE to the specific
381 static void s3c2410_nand_select_chip(struct mtd_info
*mtd
, int chip
)
383 struct s3c2410_nand_info
*info
;
384 struct s3c2410_nand_mtd
*nmtd
;
385 struct nand_chip
*this = mtd
->priv
;
392 s3c2410_nand_clk_set_state(info
, CLOCK_ENABLE
);
394 cur
= readl(info
->sel_reg
);
397 cur
|= info
->sel_bit
;
399 if (nmtd
->set
!= NULL
&& chip
> nmtd
->set
->nr_chips
) {
400 dev_err(info
->device
, "invalid chip %d\n", chip
);
404 if (info
->platform
!= NULL
) {
405 if (info
->platform
->select_chip
!= NULL
)
406 (info
->platform
->select_chip
) (nmtd
->set
, chip
);
409 cur
&= ~info
->sel_bit
;
412 writel(cur
, info
->sel_reg
);
415 s3c2410_nand_clk_set_state(info
, CLOCK_SUSPEND
);
418 /* s3c2410_nand_hwcontrol
420 * Issue command and address cycles to the chip
423 static void s3c2410_nand_hwcontrol(struct mtd_info
*mtd
, int cmd
,
426 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
428 if (cmd
== NAND_CMD_NONE
)
432 writeb(cmd
, info
->regs
+ S3C2410_NFCMD
);
434 writeb(cmd
, info
->regs
+ S3C2410_NFADDR
);
437 /* command and control functions */
439 static void s3c2440_nand_hwcontrol(struct mtd_info
*mtd
, int cmd
,
442 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
444 if (cmd
== NAND_CMD_NONE
)
448 writeb(cmd
, info
->regs
+ S3C2440_NFCMD
);
450 writeb(cmd
, info
->regs
+ S3C2440_NFADDR
);
453 /* s3c2410_nand_devready()
455 * returns 0 if the nand is busy, 1 if it is ready
458 static int s3c2410_nand_devready(struct mtd_info
*mtd
)
460 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
461 return readb(info
->regs
+ S3C2410_NFSTAT
) & S3C2410_NFSTAT_BUSY
;
464 static int s3c2440_nand_devready(struct mtd_info
*mtd
)
466 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
467 return readb(info
->regs
+ S3C2440_NFSTAT
) & S3C2440_NFSTAT_READY
;
470 static int s3c2412_nand_devready(struct mtd_info
*mtd
)
472 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
473 return readb(info
->regs
+ S3C2412_NFSTAT
) & S3C2412_NFSTAT_READY
;
476 /* ECC handling functions */
478 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
479 static int s3c2410_nand_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
480 u_char
*read_ecc
, u_char
*calc_ecc
)
482 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
483 unsigned int diff0
, diff1
, diff2
;
484 unsigned int bit
, byte
;
486 pr_debug("%s(%p,%p,%p,%p)\n", __func__
, mtd
, dat
, read_ecc
, calc_ecc
);
488 diff0
= read_ecc
[0] ^ calc_ecc
[0];
489 diff1
= read_ecc
[1] ^ calc_ecc
[1];
490 diff2
= read_ecc
[2] ^ calc_ecc
[2];
492 pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
493 __func__
, 3, read_ecc
, 3, calc_ecc
,
494 diff0
, diff1
, diff2
);
496 if (diff0
== 0 && diff1
== 0 && diff2
== 0)
497 return 0; /* ECC is ok */
499 /* sometimes people do not think about using the ECC, so check
500 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
501 * the error, on the assumption that this is an un-eccd page.
503 if (read_ecc
[0] == 0xff && read_ecc
[1] == 0xff && read_ecc
[2] == 0xff
504 && info
->platform
->ignore_unset_ecc
)
507 /* Can we correct this ECC (ie, one row and column change).
508 * Note, this is similar to the 256 error code on smartmedia */
510 if (((diff0
^ (diff0
>> 1)) & 0x55) == 0x55 &&
511 ((diff1
^ (diff1
>> 1)) & 0x55) == 0x55 &&
512 ((diff2
^ (diff2
>> 1)) & 0x55) == 0x55) {
513 /* calculate the bit position of the error */
515 bit
= ((diff2
>> 3) & 1) |
519 /* calculate the byte position of the error */
521 byte
= ((diff2
<< 7) & 0x100) |
522 ((diff1
<< 0) & 0x80) |
523 ((diff1
<< 1) & 0x40) |
524 ((diff1
<< 2) & 0x20) |
525 ((diff1
<< 3) & 0x10) |
526 ((diff0
>> 4) & 0x08) |
527 ((diff0
>> 3) & 0x04) |
528 ((diff0
>> 2) & 0x02) |
529 ((diff0
>> 1) & 0x01);
531 dev_dbg(info
->device
, "correcting error bit %d, byte %d\n",
534 dat
[byte
] ^= (1 << bit
);
538 /* if there is only one bit difference in the ECC, then
539 * one of only a row or column parity has changed, which
540 * means the error is most probably in the ECC itself */
542 diff0
|= (diff1
<< 8);
543 diff0
|= (diff2
<< 16);
545 if ((diff0
& ~(1<<fls(diff0
))) == 0)
553 * These allow the s3c2410 and s3c2440 to use the controller's ECC
554 * generator block to ECC the data as it passes through]
557 static void s3c2410_nand_enable_hwecc(struct mtd_info
*mtd
, int mode
)
559 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
562 ctrl
= readl(info
->regs
+ S3C2410_NFCONF
);
563 ctrl
|= S3C2410_NFCONF_INITECC
;
564 writel(ctrl
, info
->regs
+ S3C2410_NFCONF
);
567 static void s3c2412_nand_enable_hwecc(struct mtd_info
*mtd
, int mode
)
569 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
572 ctrl
= readl(info
->regs
+ S3C2440_NFCONT
);
573 writel(ctrl
| S3C2412_NFCONT_INIT_MAIN_ECC
,
574 info
->regs
+ S3C2440_NFCONT
);
577 static void s3c2440_nand_enable_hwecc(struct mtd_info
*mtd
, int mode
)
579 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
582 ctrl
= readl(info
->regs
+ S3C2440_NFCONT
);
583 writel(ctrl
| S3C2440_NFCONT_INITECC
, info
->regs
+ S3C2440_NFCONT
);
586 static int s3c2410_nand_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
,
589 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
591 ecc_code
[0] = readb(info
->regs
+ S3C2410_NFECC
+ 0);
592 ecc_code
[1] = readb(info
->regs
+ S3C2410_NFECC
+ 1);
593 ecc_code
[2] = readb(info
->regs
+ S3C2410_NFECC
+ 2);
595 pr_debug("%s: returning ecc %*phN\n", __func__
, 3, ecc_code
);
600 static int s3c2412_nand_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
,
603 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
604 unsigned long ecc
= readl(info
->regs
+ S3C2412_NFMECC0
);
607 ecc_code
[1] = ecc
>> 8;
608 ecc_code
[2] = ecc
>> 16;
610 pr_debug("%s: returning ecc %*phN\n", __func__
, 3, ecc_code
);
615 static int s3c2440_nand_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
,
618 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
619 unsigned long ecc
= readl(info
->regs
+ S3C2440_NFMECC0
);
622 ecc_code
[1] = ecc
>> 8;
623 ecc_code
[2] = ecc
>> 16;
625 pr_debug("%s: returning ecc %06lx\n", __func__
, ecc
& 0xffffff);
631 /* over-ride the standard functions for a little more speed. We can
632 * use read/write block to move the data buffers to/from the controller
635 static void s3c2410_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
637 struct nand_chip
*this = mtd
->priv
;
638 readsb(this->IO_ADDR_R
, buf
, len
);
641 static void s3c2440_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
643 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
645 readsl(info
->regs
+ S3C2440_NFDATA
, buf
, len
>> 2);
647 /* cleanup if we've got less than a word to do */
651 for (; len
& 3; len
--)
652 *buf
++ = readb(info
->regs
+ S3C2440_NFDATA
);
656 static void s3c2410_nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
,
659 struct nand_chip
*this = mtd
->priv
;
660 writesb(this->IO_ADDR_W
, buf
, len
);
663 static void s3c2440_nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
,
666 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
668 writesl(info
->regs
+ S3C2440_NFDATA
, buf
, len
>> 2);
670 /* cleanup any fractional write */
674 for (; len
& 3; len
--, buf
++)
675 writeb(*buf
, info
->regs
+ S3C2440_NFDATA
);
679 /* cpufreq driver support */
681 #ifdef CONFIG_CPU_FREQ
683 static int s3c2410_nand_cpufreq_transition(struct notifier_block
*nb
,
684 unsigned long val
, void *data
)
686 struct s3c2410_nand_info
*info
;
687 unsigned long newclk
;
689 info
= container_of(nb
, struct s3c2410_nand_info
, freq_transition
);
690 newclk
= clk_get_rate(info
->clk
);
692 if ((val
== CPUFREQ_POSTCHANGE
&& newclk
< info
->clk_rate
) ||
693 (val
== CPUFREQ_PRECHANGE
&& newclk
> info
->clk_rate
)) {
694 s3c2410_nand_setrate(info
);
700 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info
*info
)
702 info
->freq_transition
.notifier_call
= s3c2410_nand_cpufreq_transition
;
704 return cpufreq_register_notifier(&info
->freq_transition
,
705 CPUFREQ_TRANSITION_NOTIFIER
);
709 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info
*info
)
711 cpufreq_unregister_notifier(&info
->freq_transition
,
712 CPUFREQ_TRANSITION_NOTIFIER
);
716 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info
*info
)
722 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info
*info
)
727 /* device management functions */
729 static int s3c24xx_nand_remove(struct platform_device
*pdev
)
731 struct s3c2410_nand_info
*info
= to_nand_info(pdev
);
736 s3c2410_nand_cpufreq_deregister(info
);
738 /* Release all our mtds and their partitions, then go through
739 * freeing the resources used
742 if (info
->mtds
!= NULL
) {
743 struct s3c2410_nand_mtd
*ptr
= info
->mtds
;
746 for (mtdno
= 0; mtdno
< info
->mtd_count
; mtdno
++, ptr
++) {
747 pr_debug("releasing mtd %d (%p)\n", mtdno
, ptr
);
748 nand_release(&ptr
->mtd
);
752 /* free the common resources */
754 if (!IS_ERR(info
->clk
))
755 s3c2410_nand_clk_set_state(info
, CLOCK_DISABLE
);
760 static int s3c2410_nand_add_partition(struct s3c2410_nand_info
*info
,
761 struct s3c2410_nand_mtd
*mtd
,
762 struct s3c2410_nand_set
*set
)
765 mtd
->mtd
.name
= set
->name
;
767 return mtd_device_parse_register(&mtd
->mtd
, NULL
, NULL
,
768 set
->partitions
, set
->nr_partitions
);
775 * s3c2410_nand_init_chip - initialise a single instance of an chip
776 * @info: The base NAND controller the chip is on.
777 * @nmtd: The new controller MTD instance to fill in.
778 * @set: The information passed from the board specific platform data.
780 * Initialise the given @nmtd from the information in @info and @set. This
781 * readies the structure for use with the MTD layer functions by ensuring
782 * all pointers are setup and the necessary control routines selected.
784 static void s3c2410_nand_init_chip(struct s3c2410_nand_info
*info
,
785 struct s3c2410_nand_mtd
*nmtd
,
786 struct s3c2410_nand_set
*set
)
788 struct nand_chip
*chip
= &nmtd
->chip
;
789 void __iomem
*regs
= info
->regs
;
791 chip
->write_buf
= s3c2410_nand_write_buf
;
792 chip
->read_buf
= s3c2410_nand_read_buf
;
793 chip
->select_chip
= s3c2410_nand_select_chip
;
794 chip
->chip_delay
= 50;
796 chip
->options
= set
->options
;
797 chip
->controller
= &info
->controller
;
799 switch (info
->cpu_type
) {
801 chip
->IO_ADDR_W
= regs
+ S3C2410_NFDATA
;
802 info
->sel_reg
= regs
+ S3C2410_NFCONF
;
803 info
->sel_bit
= S3C2410_NFCONF_nFCE
;
804 chip
->cmd_ctrl
= s3c2410_nand_hwcontrol
;
805 chip
->dev_ready
= s3c2410_nand_devready
;
809 chip
->IO_ADDR_W
= regs
+ S3C2440_NFDATA
;
810 info
->sel_reg
= regs
+ S3C2440_NFCONT
;
811 info
->sel_bit
= S3C2440_NFCONT_nFCE
;
812 chip
->cmd_ctrl
= s3c2440_nand_hwcontrol
;
813 chip
->dev_ready
= s3c2440_nand_devready
;
814 chip
->read_buf
= s3c2440_nand_read_buf
;
815 chip
->write_buf
= s3c2440_nand_write_buf
;
819 chip
->IO_ADDR_W
= regs
+ S3C2440_NFDATA
;
820 info
->sel_reg
= regs
+ S3C2440_NFCONT
;
821 info
->sel_bit
= S3C2412_NFCONT_nFCE0
;
822 chip
->cmd_ctrl
= s3c2440_nand_hwcontrol
;
823 chip
->dev_ready
= s3c2412_nand_devready
;
825 if (readl(regs
+ S3C2410_NFCONF
) & S3C2412_NFCONF_NANDBOOT
)
826 dev_info(info
->device
, "System booted from NAND\n");
831 chip
->IO_ADDR_R
= chip
->IO_ADDR_W
;
834 nmtd
->mtd
.priv
= chip
;
835 nmtd
->mtd
.owner
= THIS_MODULE
;
838 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
839 chip
->ecc
.calculate
= s3c2410_nand_calculate_ecc
;
840 chip
->ecc
.correct
= s3c2410_nand_correct_data
;
841 chip
->ecc
.mode
= NAND_ECC_HW
;
842 chip
->ecc
.strength
= 1;
844 switch (info
->cpu_type
) {
846 chip
->ecc
.hwctl
= s3c2410_nand_enable_hwecc
;
847 chip
->ecc
.calculate
= s3c2410_nand_calculate_ecc
;
851 chip
->ecc
.hwctl
= s3c2412_nand_enable_hwecc
;
852 chip
->ecc
.calculate
= s3c2412_nand_calculate_ecc
;
856 chip
->ecc
.hwctl
= s3c2440_nand_enable_hwecc
;
857 chip
->ecc
.calculate
= s3c2440_nand_calculate_ecc
;
861 chip
->ecc
.mode
= NAND_ECC_SOFT
;
864 if (set
->ecc_layout
!= NULL
)
865 chip
->ecc
.layout
= set
->ecc_layout
;
867 if (set
->disable_ecc
)
868 chip
->ecc
.mode
= NAND_ECC_NONE
;
870 switch (chip
->ecc
.mode
) {
872 dev_info(info
->device
, "NAND ECC disabled\n");
875 dev_info(info
->device
, "NAND soft ECC\n");
878 dev_info(info
->device
, "NAND hardware ECC\n");
881 dev_info(info
->device
, "NAND ECC UNKNOWN\n");
885 /* If you use u-boot BBT creation code, specifying this flag will
886 * let the kernel fish out the BBT from the NAND, and also skip the
887 * full NAND scan that can take 1/2s or so. Little things... */
888 if (set
->flash_bbt
) {
889 chip
->bbt_options
|= NAND_BBT_USE_FLASH
;
890 chip
->options
|= NAND_SKIP_BBTSCAN
;
895 * s3c2410_nand_update_chip - post probe update
896 * @info: The controller instance.
897 * @nmtd: The driver version of the MTD instance.
899 * This routine is called after the chip probe has successfully completed
900 * and the relevant per-chip information updated. This call ensure that
901 * we update the internal state accordingly.
903 * The internal state is currently limited to the ECC state information.
905 static void s3c2410_nand_update_chip(struct s3c2410_nand_info
*info
,
906 struct s3c2410_nand_mtd
*nmtd
)
908 struct nand_chip
*chip
= &nmtd
->chip
;
910 dev_dbg(info
->device
, "chip %p => page shift %d\n",
911 chip
, chip
->page_shift
);
913 if (chip
->ecc
.mode
!= NAND_ECC_HW
)
916 /* change the behaviour depending on whether we are using
917 * the large or small page nand device */
919 if (chip
->page_shift
> 10) {
920 chip
->ecc
.size
= 256;
923 chip
->ecc
.size
= 512;
925 chip
->ecc
.layout
= &nand_hw_eccoob
;
929 /* s3c24xx_nand_probe
931 * called by device layer when it finds a device matching
932 * one our driver can handled. This code checks to see if
933 * it can allocate all necessary resources then calls the
934 * nand layer to look for devices
936 static int s3c24xx_nand_probe(struct platform_device
*pdev
)
938 struct s3c2410_platform_nand
*plat
= to_nand_plat(pdev
);
939 enum s3c_cpu_type cpu_type
;
940 struct s3c2410_nand_info
*info
;
941 struct s3c2410_nand_mtd
*nmtd
;
942 struct s3c2410_nand_set
*sets
;
943 struct resource
*res
;
949 cpu_type
= platform_get_device_id(pdev
)->driver_data
;
951 info
= devm_kzalloc(&pdev
->dev
, sizeof(*info
), GFP_KERNEL
);
957 platform_set_drvdata(pdev
, info
);
959 spin_lock_init(&info
->controller
.lock
);
960 init_waitqueue_head(&info
->controller
.wq
);
962 /* get the clock source and enable it */
964 info
->clk
= devm_clk_get(&pdev
->dev
, "nand");
965 if (IS_ERR(info
->clk
)) {
966 dev_err(&pdev
->dev
, "failed to get clock\n");
971 s3c2410_nand_clk_set_state(info
, CLOCK_ENABLE
);
973 /* allocate and map the resource */
975 /* currently we assume we have the one resource */
976 res
= pdev
->resource
;
977 size
= resource_size(res
);
979 info
->device
= &pdev
->dev
;
980 info
->platform
= plat
;
981 info
->cpu_type
= cpu_type
;
983 info
->regs
= devm_ioremap_resource(&pdev
->dev
, res
);
984 if (IS_ERR(info
->regs
)) {
985 err
= PTR_ERR(info
->regs
);
989 dev_dbg(&pdev
->dev
, "mapped registers at %p\n", info
->regs
);
991 /* initialise the hardware */
993 err
= s3c2410_nand_inithw(info
);
997 sets
= (plat
!= NULL
) ? plat
->sets
: NULL
;
998 nr_sets
= (plat
!= NULL
) ? plat
->nr_sets
: 1;
1000 info
->mtd_count
= nr_sets
;
1002 /* allocate our information */
1004 size
= nr_sets
* sizeof(*info
->mtds
);
1005 info
->mtds
= devm_kzalloc(&pdev
->dev
, size
, GFP_KERNEL
);
1006 if (info
->mtds
== NULL
) {
1011 /* initialise all possible chips */
1015 for (setno
= 0; setno
< nr_sets
; setno
++, nmtd
++) {
1016 pr_debug("initialising set %d (%p, info %p)\n",
1019 s3c2410_nand_init_chip(info
, nmtd
, sets
);
1021 nmtd
->scan_res
= nand_scan_ident(&nmtd
->mtd
,
1022 (sets
) ? sets
->nr_chips
: 1,
1025 if (nmtd
->scan_res
== 0) {
1026 s3c2410_nand_update_chip(info
, nmtd
);
1027 nand_scan_tail(&nmtd
->mtd
);
1028 s3c2410_nand_add_partition(info
, nmtd
, sets
);
1035 err
= s3c2410_nand_cpufreq_register(info
);
1037 dev_err(&pdev
->dev
, "failed to init cpufreq support\n");
1041 if (allow_clk_suspend(info
)) {
1042 dev_info(&pdev
->dev
, "clock idle support enabled\n");
1043 s3c2410_nand_clk_set_state(info
, CLOCK_SUSPEND
);
1049 s3c24xx_nand_remove(pdev
);
1059 static int s3c24xx_nand_suspend(struct platform_device
*dev
, pm_message_t pm
)
1061 struct s3c2410_nand_info
*info
= platform_get_drvdata(dev
);
1064 info
->save_sel
= readl(info
->sel_reg
);
1066 /* For the moment, we must ensure nFCE is high during
1067 * the time we are suspended. This really should be
1068 * handled by suspending the MTDs we are using, but
1069 * that is currently not the case. */
1071 writel(info
->save_sel
| info
->sel_bit
, info
->sel_reg
);
1073 s3c2410_nand_clk_set_state(info
, CLOCK_DISABLE
);
1079 static int s3c24xx_nand_resume(struct platform_device
*dev
)
1081 struct s3c2410_nand_info
*info
= platform_get_drvdata(dev
);
1085 s3c2410_nand_clk_set_state(info
, CLOCK_ENABLE
);
1086 s3c2410_nand_inithw(info
);
1088 /* Restore the state of the nFCE line. */
1090 sel
= readl(info
->sel_reg
);
1091 sel
&= ~info
->sel_bit
;
1092 sel
|= info
->save_sel
& info
->sel_bit
;
1093 writel(sel
, info
->sel_reg
);
1095 s3c2410_nand_clk_set_state(info
, CLOCK_SUSPEND
);
1102 #define s3c24xx_nand_suspend NULL
1103 #define s3c24xx_nand_resume NULL
1106 /* driver device registration */
1108 static const struct platform_device_id s3c24xx_driver_ids
[] = {
1110 .name
= "s3c2410-nand",
1111 .driver_data
= TYPE_S3C2410
,
1113 .name
= "s3c2440-nand",
1114 .driver_data
= TYPE_S3C2440
,
1116 .name
= "s3c2412-nand",
1117 .driver_data
= TYPE_S3C2412
,
1119 .name
= "s3c6400-nand",
1120 .driver_data
= TYPE_S3C2412
, /* compatible with 2412 */
1125 MODULE_DEVICE_TABLE(platform
, s3c24xx_driver_ids
);
1127 static struct platform_driver s3c24xx_nand_driver
= {
1128 .probe
= s3c24xx_nand_probe
,
1129 .remove
= s3c24xx_nand_remove
,
1130 .suspend
= s3c24xx_nand_suspend
,
1131 .resume
= s3c24xx_nand_resume
,
1132 .id_table
= s3c24xx_driver_ids
,
1134 .name
= "s3c24xx-nand",
1138 module_platform_driver(s3c24xx_nand_driver
);
1140 MODULE_LICENSE("GPL");
1141 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1142 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");