dmaengine: imx-sdma: Let the core do the device node validation
[linux/fpc-iii.git] / drivers / scsi / lpfc / lpfc_sli.c
blob2acda188b0dcfcf33c84fc9f0af4283a0ee7d42b
1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channel Host Bus Adapters. *
4 * Copyright (C) 2017-2019 Broadcom. All Rights Reserved. The term *
5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. *
6 * Copyright (C) 2004-2016 Emulex. All rights reserved. *
7 * EMULEX and SLI are trademarks of Emulex. *
8 * www.broadcom.com *
9 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
10 * *
11 * This program is free software; you can redistribute it and/or *
12 * modify it under the terms of version 2 of the GNU General *
13 * Public License as published by the Free Software Foundation. *
14 * This program is distributed in the hope that it will be useful. *
15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19 * TO BE LEGALLY INVALID. See the GNU General Public License for *
20 * more details, a copy of which can be found in the file COPYING *
21 * included with this package. *
22 *******************************************************************/
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/aer.h>
38 #ifdef CONFIG_X86
39 #include <asm/set_memory.h>
40 #endif
42 #include <linux/nvme-fc-driver.h>
44 #include "lpfc_hw4.h"
45 #include "lpfc_hw.h"
46 #include "lpfc_sli.h"
47 #include "lpfc_sli4.h"
48 #include "lpfc_nl.h"
49 #include "lpfc_disc.h"
50 #include "lpfc.h"
51 #include "lpfc_scsi.h"
52 #include "lpfc_nvme.h"
53 #include "lpfc_nvmet.h"
54 #include "lpfc_crtn.h"
55 #include "lpfc_logmsg.h"
56 #include "lpfc_compat.h"
57 #include "lpfc_debugfs.h"
58 #include "lpfc_vport.h"
59 #include "lpfc_version.h"
61 /* There are only four IOCB completion types. */
62 typedef enum _lpfc_iocb_type {
63 LPFC_UNKNOWN_IOCB,
64 LPFC_UNSOL_IOCB,
65 LPFC_SOL_IOCB,
66 LPFC_ABORT_IOCB
67 } lpfc_iocb_type;
70 /* Provide function prototypes local to this module. */
71 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
72 uint32_t);
73 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
74 uint8_t *, uint32_t *);
75 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
76 struct lpfc_iocbq *);
77 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
78 struct hbq_dmabuf *);
79 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
80 struct hbq_dmabuf *dmabuf);
81 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
82 struct lpfc_queue *cq, struct lpfc_cqe *cqe);
83 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
84 int);
85 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
86 struct lpfc_queue *eq,
87 struct lpfc_eqe *eqe);
88 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
89 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
91 static IOCB_t *
92 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
94 return &iocbq->iocb;
97 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
98 /**
99 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
100 * @srcp: Source memory pointer.
101 * @destp: Destination memory pointer.
102 * @cnt: Number of words required to be copied.
103 * Must be a multiple of sizeof(uint64_t)
105 * This function is used for copying data between driver memory
106 * and the SLI WQ. This function also changes the endianness
107 * of each word if native endianness is different from SLI
108 * endianness. This function can be called with or without
109 * lock.
111 void
112 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
114 uint64_t *src = srcp;
115 uint64_t *dest = destp;
116 int i;
118 for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
119 *dest++ = *src++;
121 #else
122 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
123 #endif
126 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
127 * @q: The Work Queue to operate on.
128 * @wqe: The work Queue Entry to put on the Work queue.
130 * This routine will copy the contents of @wqe to the next available entry on
131 * the @q. This function will then ring the Work Queue Doorbell to signal the
132 * HBA to start processing the Work Queue Entry. This function returns 0 if
133 * successful. If no entries are available on @q then this function will return
134 * -ENOMEM.
135 * The caller is expected to hold the hbalock when calling this routine.
137 static int
138 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
140 union lpfc_wqe *temp_wqe;
141 struct lpfc_register doorbell;
142 uint32_t host_index;
143 uint32_t idx;
144 uint32_t i = 0;
145 uint8_t *tmp;
146 u32 if_type;
148 /* sanity check on queue memory */
149 if (unlikely(!q))
150 return -ENOMEM;
151 temp_wqe = lpfc_sli4_qe(q, q->host_index);
153 /* If the host has not yet processed the next entry then we are done */
154 idx = ((q->host_index + 1) % q->entry_count);
155 if (idx == q->hba_index) {
156 q->WQ_overflow++;
157 return -EBUSY;
159 q->WQ_posted++;
160 /* set consumption flag every once in a while */
161 if (!((q->host_index + 1) % q->notify_interval))
162 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
163 else
164 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
165 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
166 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
167 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
168 if (q->dpp_enable && q->phba->cfg_enable_dpp) {
169 /* write to DPP aperture taking advatage of Combined Writes */
170 tmp = (uint8_t *)temp_wqe;
171 #ifdef __raw_writeq
172 for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
173 __raw_writeq(*((uint64_t *)(tmp + i)),
174 q->dpp_regaddr + i);
175 #else
176 for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
177 __raw_writel(*((uint32_t *)(tmp + i)),
178 q->dpp_regaddr + i);
179 #endif
181 /* ensure WQE bcopy and DPP flushed before doorbell write */
182 wmb();
184 /* Update the host index before invoking device */
185 host_index = q->host_index;
187 q->host_index = idx;
189 /* Ring Doorbell */
190 doorbell.word0 = 0;
191 if (q->db_format == LPFC_DB_LIST_FORMAT) {
192 if (q->dpp_enable && q->phba->cfg_enable_dpp) {
193 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
194 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
195 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
196 q->dpp_id);
197 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
198 q->queue_id);
199 } else {
200 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
201 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
203 /* Leave bits <23:16> clear for if_type 6 dpp */
204 if_type = bf_get(lpfc_sli_intf_if_type,
205 &q->phba->sli4_hba.sli_intf);
206 if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
207 bf_set(lpfc_wq_db_list_fm_index, &doorbell,
208 host_index);
210 } else if (q->db_format == LPFC_DB_RING_FORMAT) {
211 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
212 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
213 } else {
214 return -EINVAL;
216 writel(doorbell.word0, q->db_regaddr);
218 return 0;
222 * lpfc_sli4_wq_release - Updates internal hba index for WQ
223 * @q: The Work Queue to operate on.
224 * @index: The index to advance the hba index to.
226 * This routine will update the HBA index of a queue to reflect consumption of
227 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
228 * an entry the host calls this function to update the queue's internal
229 * pointers. This routine returns the number of entries that were consumed by
230 * the HBA.
232 static uint32_t
233 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
235 uint32_t released = 0;
237 /* sanity check on queue memory */
238 if (unlikely(!q))
239 return 0;
241 if (q->hba_index == index)
242 return 0;
243 do {
244 q->hba_index = ((q->hba_index + 1) % q->entry_count);
245 released++;
246 } while (q->hba_index != index);
247 return released;
251 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
252 * @q: The Mailbox Queue to operate on.
253 * @wqe: The Mailbox Queue Entry to put on the Work queue.
255 * This routine will copy the contents of @mqe to the next available entry on
256 * the @q. This function will then ring the Work Queue Doorbell to signal the
257 * HBA to start processing the Work Queue Entry. This function returns 0 if
258 * successful. If no entries are available on @q then this function will return
259 * -ENOMEM.
260 * The caller is expected to hold the hbalock when calling this routine.
262 static uint32_t
263 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
265 struct lpfc_mqe *temp_mqe;
266 struct lpfc_register doorbell;
268 /* sanity check on queue memory */
269 if (unlikely(!q))
270 return -ENOMEM;
271 temp_mqe = lpfc_sli4_qe(q, q->host_index);
273 /* If the host has not yet processed the next entry then we are done */
274 if (((q->host_index + 1) % q->entry_count) == q->hba_index)
275 return -ENOMEM;
276 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
277 /* Save off the mailbox pointer for completion */
278 q->phba->mbox = (MAILBOX_t *)temp_mqe;
280 /* Update the host index before invoking device */
281 q->host_index = ((q->host_index + 1) % q->entry_count);
283 /* Ring Doorbell */
284 doorbell.word0 = 0;
285 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
286 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
287 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
288 return 0;
292 * lpfc_sli4_mq_release - Updates internal hba index for MQ
293 * @q: The Mailbox Queue to operate on.
295 * This routine will update the HBA index of a queue to reflect consumption of
296 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
297 * an entry the host calls this function to update the queue's internal
298 * pointers. This routine returns the number of entries that were consumed by
299 * the HBA.
301 static uint32_t
302 lpfc_sli4_mq_release(struct lpfc_queue *q)
304 /* sanity check on queue memory */
305 if (unlikely(!q))
306 return 0;
308 /* Clear the mailbox pointer for completion */
309 q->phba->mbox = NULL;
310 q->hba_index = ((q->hba_index + 1) % q->entry_count);
311 return 1;
315 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
316 * @q: The Event Queue to get the first valid EQE from
318 * This routine will get the first valid Event Queue Entry from @q, update
319 * the queue's internal hba index, and return the EQE. If no valid EQEs are in
320 * the Queue (no more work to do), or the Queue is full of EQEs that have been
321 * processed, but not popped back to the HBA then this routine will return NULL.
323 static struct lpfc_eqe *
324 lpfc_sli4_eq_get(struct lpfc_queue *q)
326 struct lpfc_eqe *eqe;
328 /* sanity check on queue memory */
329 if (unlikely(!q))
330 return NULL;
331 eqe = lpfc_sli4_qe(q, q->host_index);
333 /* If the next EQE is not valid then we are done */
334 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
335 return NULL;
338 * insert barrier for instruction interlock : data from the hardware
339 * must have the valid bit checked before it can be copied and acted
340 * upon. Speculative instructions were allowing a bcopy at the start
341 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
342 * after our return, to copy data before the valid bit check above
343 * was done. As such, some of the copied data was stale. The barrier
344 * ensures the check is before any data is copied.
346 mb();
347 return eqe;
351 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
352 * @q: The Event Queue to disable interrupts
355 void
356 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
358 struct lpfc_register doorbell;
360 doorbell.word0 = 0;
361 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
362 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
363 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
364 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
365 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
366 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
370 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
371 * @q: The Event Queue to disable interrupts
374 void
375 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
377 struct lpfc_register doorbell;
379 doorbell.word0 = 0;
380 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
381 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
385 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
386 * @phba: adapter with EQ
387 * @q: The Event Queue that the host has completed processing for.
388 * @count: Number of elements that have been consumed
389 * @arm: Indicates whether the host wants to arms this CQ.
391 * This routine will notify the HBA, by ringing the doorbell, that count
392 * number of EQEs have been processed. The @arm parameter indicates whether
393 * the queue should be rearmed when ringing the doorbell.
395 void
396 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
397 uint32_t count, bool arm)
399 struct lpfc_register doorbell;
401 /* sanity check on queue memory */
402 if (unlikely(!q || (count == 0 && !arm)))
403 return;
405 /* ring doorbell for number popped */
406 doorbell.word0 = 0;
407 if (arm) {
408 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
409 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
411 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
412 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
413 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
414 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
415 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
416 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
417 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
418 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
419 readl(q->phba->sli4_hba.EQDBregaddr);
423 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
424 * @phba: adapter with EQ
425 * @q: The Event Queue that the host has completed processing for.
426 * @count: Number of elements that have been consumed
427 * @arm: Indicates whether the host wants to arms this CQ.
429 * This routine will notify the HBA, by ringing the doorbell, that count
430 * number of EQEs have been processed. The @arm parameter indicates whether
431 * the queue should be rearmed when ringing the doorbell.
433 void
434 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
435 uint32_t count, bool arm)
437 struct lpfc_register doorbell;
439 /* sanity check on queue memory */
440 if (unlikely(!q || (count == 0 && !arm)))
441 return;
443 /* ring doorbell for number popped */
444 doorbell.word0 = 0;
445 if (arm)
446 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
447 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
448 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
449 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
450 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
451 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
452 readl(q->phba->sli4_hba.EQDBregaddr);
455 static void
456 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
457 struct lpfc_eqe *eqe)
459 if (!phba->sli4_hba.pc_sli4_params.eqav)
460 bf_set_le32(lpfc_eqe_valid, eqe, 0);
462 eq->host_index = ((eq->host_index + 1) % eq->entry_count);
464 /* if the index wrapped around, toggle the valid bit */
465 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
466 eq->qe_valid = (eq->qe_valid) ? 0 : 1;
469 static void
470 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
472 struct lpfc_eqe *eqe;
473 uint32_t count = 0;
475 /* walk all the EQ entries and drop on the floor */
476 eqe = lpfc_sli4_eq_get(eq);
477 while (eqe) {
478 __lpfc_sli4_consume_eqe(phba, eq, eqe);
479 count++;
480 eqe = lpfc_sli4_eq_get(eq);
483 /* Clear and re-arm the EQ */
484 phba->sli4_hba.sli4_write_eq_db(phba, eq, count, LPFC_QUEUE_REARM);
487 static int
488 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq)
490 struct lpfc_eqe *eqe;
491 int count = 0, consumed = 0;
493 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
494 goto rearm_and_exit;
496 eqe = lpfc_sli4_eq_get(eq);
497 while (eqe) {
498 lpfc_sli4_hba_handle_eqe(phba, eq, eqe);
499 __lpfc_sli4_consume_eqe(phba, eq, eqe);
501 consumed++;
502 if (!(++count % eq->max_proc_limit))
503 break;
505 if (!(count % eq->notify_interval)) {
506 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
507 LPFC_QUEUE_NOARM);
508 consumed = 0;
511 eqe = lpfc_sli4_eq_get(eq);
513 eq->EQ_processed += count;
515 /* Track the max number of EQEs processed in 1 intr */
516 if (count > eq->EQ_max_eqe)
517 eq->EQ_max_eqe = count;
519 eq->queue_claimed = 0;
521 rearm_and_exit:
522 /* Always clear and re-arm the EQ */
523 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, LPFC_QUEUE_REARM);
525 return count;
529 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
530 * @q: The Completion Queue to get the first valid CQE from
532 * This routine will get the first valid Completion Queue Entry from @q, update
533 * the queue's internal hba index, and return the CQE. If no valid CQEs are in
534 * the Queue (no more work to do), or the Queue is full of CQEs that have been
535 * processed, but not popped back to the HBA then this routine will return NULL.
537 static struct lpfc_cqe *
538 lpfc_sli4_cq_get(struct lpfc_queue *q)
540 struct lpfc_cqe *cqe;
542 /* sanity check on queue memory */
543 if (unlikely(!q))
544 return NULL;
545 cqe = lpfc_sli4_qe(q, q->host_index);
547 /* If the next CQE is not valid then we are done */
548 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
549 return NULL;
552 * insert barrier for instruction interlock : data from the hardware
553 * must have the valid bit checked before it can be copied and acted
554 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
555 * instructions allowing action on content before valid bit checked,
556 * add barrier here as well. May not be needed as "content" is a
557 * single 32-bit entity here (vs multi word structure for cq's).
559 mb();
560 return cqe;
563 static void
564 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
565 struct lpfc_cqe *cqe)
567 if (!phba->sli4_hba.pc_sli4_params.cqav)
568 bf_set_le32(lpfc_cqe_valid, cqe, 0);
570 cq->host_index = ((cq->host_index + 1) % cq->entry_count);
572 /* if the index wrapped around, toggle the valid bit */
573 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
574 cq->qe_valid = (cq->qe_valid) ? 0 : 1;
578 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
579 * @phba: the adapter with the CQ
580 * @q: The Completion Queue that the host has completed processing for.
581 * @count: the number of elements that were consumed
582 * @arm: Indicates whether the host wants to arms this CQ.
584 * This routine will notify the HBA, by ringing the doorbell, that the
585 * CQEs have been processed. The @arm parameter specifies whether the
586 * queue should be rearmed when ringing the doorbell.
588 void
589 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
590 uint32_t count, bool arm)
592 struct lpfc_register doorbell;
594 /* sanity check on queue memory */
595 if (unlikely(!q || (count == 0 && !arm)))
596 return;
598 /* ring doorbell for number popped */
599 doorbell.word0 = 0;
600 if (arm)
601 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
602 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
603 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
604 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
605 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
606 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
607 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
611 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
612 * @phba: the adapter with the CQ
613 * @q: The Completion Queue that the host has completed processing for.
614 * @count: the number of elements that were consumed
615 * @arm: Indicates whether the host wants to arms this CQ.
617 * This routine will notify the HBA, by ringing the doorbell, that the
618 * CQEs have been processed. The @arm parameter specifies whether the
619 * queue should be rearmed when ringing the doorbell.
621 void
622 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
623 uint32_t count, bool arm)
625 struct lpfc_register doorbell;
627 /* sanity check on queue memory */
628 if (unlikely(!q || (count == 0 && !arm)))
629 return;
631 /* ring doorbell for number popped */
632 doorbell.word0 = 0;
633 if (arm)
634 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
635 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
636 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
637 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
641 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
642 * @q: The Header Receive Queue to operate on.
643 * @wqe: The Receive Queue Entry to put on the Receive queue.
645 * This routine will copy the contents of @wqe to the next available entry on
646 * the @q. This function will then ring the Receive Queue Doorbell to signal the
647 * HBA to start processing the Receive Queue Entry. This function returns the
648 * index that the rqe was copied to if successful. If no entries are available
649 * on @q then this function will return -ENOMEM.
650 * The caller is expected to hold the hbalock when calling this routine.
653 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
654 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
656 struct lpfc_rqe *temp_hrqe;
657 struct lpfc_rqe *temp_drqe;
658 struct lpfc_register doorbell;
659 int hq_put_index;
660 int dq_put_index;
662 /* sanity check on queue memory */
663 if (unlikely(!hq) || unlikely(!dq))
664 return -ENOMEM;
665 hq_put_index = hq->host_index;
666 dq_put_index = dq->host_index;
667 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
668 temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
670 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
671 return -EINVAL;
672 if (hq_put_index != dq_put_index)
673 return -EINVAL;
674 /* If the host has not yet processed the next entry then we are done */
675 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
676 return -EBUSY;
677 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
678 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
680 /* Update the host index to point to the next slot */
681 hq->host_index = ((hq_put_index + 1) % hq->entry_count);
682 dq->host_index = ((dq_put_index + 1) % dq->entry_count);
683 hq->RQ_buf_posted++;
685 /* Ring The Header Receive Queue Doorbell */
686 if (!(hq->host_index % hq->notify_interval)) {
687 doorbell.word0 = 0;
688 if (hq->db_format == LPFC_DB_RING_FORMAT) {
689 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
690 hq->notify_interval);
691 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
692 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
693 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
694 hq->notify_interval);
695 bf_set(lpfc_rq_db_list_fm_index, &doorbell,
696 hq->host_index);
697 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
698 } else {
699 return -EINVAL;
701 writel(doorbell.word0, hq->db_regaddr);
703 return hq_put_index;
707 * lpfc_sli4_rq_release - Updates internal hba index for RQ
708 * @q: The Header Receive Queue to operate on.
710 * This routine will update the HBA index of a queue to reflect consumption of
711 * one Receive Queue Entry by the HBA. When the HBA indicates that it has
712 * consumed an entry the host calls this function to update the queue's
713 * internal pointers. This routine returns the number of entries that were
714 * consumed by the HBA.
716 static uint32_t
717 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
719 /* sanity check on queue memory */
720 if (unlikely(!hq) || unlikely(!dq))
721 return 0;
723 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
724 return 0;
725 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
726 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
727 return 1;
731 * lpfc_cmd_iocb - Get next command iocb entry in the ring
732 * @phba: Pointer to HBA context object.
733 * @pring: Pointer to driver SLI ring object.
735 * This function returns pointer to next command iocb entry
736 * in the command ring. The caller must hold hbalock to prevent
737 * other threads consume the next command iocb.
738 * SLI-2/SLI-3 provide different sized iocbs.
740 static inline IOCB_t *
741 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
743 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
744 pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
748 * lpfc_resp_iocb - Get next response iocb entry in the ring
749 * @phba: Pointer to HBA context object.
750 * @pring: Pointer to driver SLI ring object.
752 * This function returns pointer to next response iocb entry
753 * in the response ring. The caller must hold hbalock to make sure
754 * that no other thread consume the next response iocb.
755 * SLI-2/SLI-3 provide different sized iocbs.
757 static inline IOCB_t *
758 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
760 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
761 pring->sli.sli3.rspidx * phba->iocb_rsp_size);
765 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
766 * @phba: Pointer to HBA context object.
768 * This function is called with hbalock held. This function
769 * allocates a new driver iocb object from the iocb pool. If the
770 * allocation is successful, it returns pointer to the newly
771 * allocated iocb object else it returns NULL.
773 struct lpfc_iocbq *
774 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
776 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
777 struct lpfc_iocbq * iocbq = NULL;
779 lockdep_assert_held(&phba->hbalock);
781 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
782 if (iocbq)
783 phba->iocb_cnt++;
784 if (phba->iocb_cnt > phba->iocb_max)
785 phba->iocb_max = phba->iocb_cnt;
786 return iocbq;
790 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
791 * @phba: Pointer to HBA context object.
792 * @xritag: XRI value.
794 * This function clears the sglq pointer from the array of acive
795 * sglq's. The xritag that is passed in is used to index into the
796 * array. Before the xritag can be used it needs to be adjusted
797 * by subtracting the xribase.
799 * Returns sglq ponter = success, NULL = Failure.
801 struct lpfc_sglq *
802 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
804 struct lpfc_sglq *sglq;
806 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
807 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
808 return sglq;
812 * __lpfc_get_active_sglq - Get the active sglq for this XRI.
813 * @phba: Pointer to HBA context object.
814 * @xritag: XRI value.
816 * This function returns the sglq pointer from the array of acive
817 * sglq's. The xritag that is passed in is used to index into the
818 * array. Before the xritag can be used it needs to be adjusted
819 * by subtracting the xribase.
821 * Returns sglq ponter = success, NULL = Failure.
823 struct lpfc_sglq *
824 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
826 struct lpfc_sglq *sglq;
828 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
829 return sglq;
833 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
834 * @phba: Pointer to HBA context object.
835 * @xritag: xri used in this exchange.
836 * @rrq: The RRQ to be cleared.
839 void
840 lpfc_clr_rrq_active(struct lpfc_hba *phba,
841 uint16_t xritag,
842 struct lpfc_node_rrq *rrq)
844 struct lpfc_nodelist *ndlp = NULL;
846 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp))
847 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
849 /* The target DID could have been swapped (cable swap)
850 * we should use the ndlp from the findnode if it is
851 * available.
853 if ((!ndlp) && rrq->ndlp)
854 ndlp = rrq->ndlp;
856 if (!ndlp)
857 goto out;
859 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
860 rrq->send_rrq = 0;
861 rrq->xritag = 0;
862 rrq->rrq_stop_time = 0;
864 out:
865 mempool_free(rrq, phba->rrq_pool);
869 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
870 * @phba: Pointer to HBA context object.
872 * This function is called with hbalock held. This function
873 * Checks if stop_time (ratov from setting rrq active) has
874 * been reached, if it has and the send_rrq flag is set then
875 * it will call lpfc_send_rrq. If the send_rrq flag is not set
876 * then it will just call the routine to clear the rrq and
877 * free the rrq resource.
878 * The timer is set to the next rrq that is going to expire before
879 * leaving the routine.
882 void
883 lpfc_handle_rrq_active(struct lpfc_hba *phba)
885 struct lpfc_node_rrq *rrq;
886 struct lpfc_node_rrq *nextrrq;
887 unsigned long next_time;
888 unsigned long iflags;
889 LIST_HEAD(send_rrq);
891 spin_lock_irqsave(&phba->hbalock, iflags);
892 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
893 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
894 list_for_each_entry_safe(rrq, nextrrq,
895 &phba->active_rrq_list, list) {
896 if (time_after(jiffies, rrq->rrq_stop_time))
897 list_move(&rrq->list, &send_rrq);
898 else if (time_before(rrq->rrq_stop_time, next_time))
899 next_time = rrq->rrq_stop_time;
901 spin_unlock_irqrestore(&phba->hbalock, iflags);
902 if ((!list_empty(&phba->active_rrq_list)) &&
903 (!(phba->pport->load_flag & FC_UNLOADING)))
904 mod_timer(&phba->rrq_tmr, next_time);
905 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
906 list_del(&rrq->list);
907 if (!rrq->send_rrq) {
908 /* this call will free the rrq */
909 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
910 } else if (lpfc_send_rrq(phba, rrq)) {
911 /* if we send the rrq then the completion handler
912 * will clear the bit in the xribitmap.
914 lpfc_clr_rrq_active(phba, rrq->xritag,
915 rrq);
921 * lpfc_get_active_rrq - Get the active RRQ for this exchange.
922 * @vport: Pointer to vport context object.
923 * @xri: The xri used in the exchange.
924 * @did: The targets DID for this exchange.
926 * returns NULL = rrq not found in the phba->active_rrq_list.
927 * rrq = rrq for this xri and target.
929 struct lpfc_node_rrq *
930 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
932 struct lpfc_hba *phba = vport->phba;
933 struct lpfc_node_rrq *rrq;
934 struct lpfc_node_rrq *nextrrq;
935 unsigned long iflags;
937 if (phba->sli_rev != LPFC_SLI_REV4)
938 return NULL;
939 spin_lock_irqsave(&phba->hbalock, iflags);
940 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
941 if (rrq->vport == vport && rrq->xritag == xri &&
942 rrq->nlp_DID == did){
943 list_del(&rrq->list);
944 spin_unlock_irqrestore(&phba->hbalock, iflags);
945 return rrq;
948 spin_unlock_irqrestore(&phba->hbalock, iflags);
949 return NULL;
953 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
954 * @vport: Pointer to vport context object.
955 * @ndlp: Pointer to the lpfc_node_list structure.
956 * If ndlp is NULL Remove all active RRQs for this vport from the
957 * phba->active_rrq_list and clear the rrq.
958 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
960 void
961 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
964 struct lpfc_hba *phba = vport->phba;
965 struct lpfc_node_rrq *rrq;
966 struct lpfc_node_rrq *nextrrq;
967 unsigned long iflags;
968 LIST_HEAD(rrq_list);
970 if (phba->sli_rev != LPFC_SLI_REV4)
971 return;
972 if (!ndlp) {
973 lpfc_sli4_vport_delete_els_xri_aborted(vport);
974 lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
976 spin_lock_irqsave(&phba->hbalock, iflags);
977 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
978 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp))
979 list_move(&rrq->list, &rrq_list);
980 spin_unlock_irqrestore(&phba->hbalock, iflags);
982 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
983 list_del(&rrq->list);
984 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
989 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
990 * @phba: Pointer to HBA context object.
991 * @ndlp: Targets nodelist pointer for this exchange.
992 * @xritag the xri in the bitmap to test.
994 * This function is called with hbalock held. This function
995 * returns 0 = rrq not active for this xri
996 * 1 = rrq is valid for this xri.
999 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1000 uint16_t xritag)
1002 lockdep_assert_held(&phba->hbalock);
1003 if (!ndlp)
1004 return 0;
1005 if (!ndlp->active_rrqs_xri_bitmap)
1006 return 0;
1007 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1008 return 1;
1009 else
1010 return 0;
1014 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1015 * @phba: Pointer to HBA context object.
1016 * @ndlp: nodelist pointer for this target.
1017 * @xritag: xri used in this exchange.
1018 * @rxid: Remote Exchange ID.
1019 * @send_rrq: Flag used to determine if we should send rrq els cmd.
1021 * This function takes the hbalock.
1022 * The active bit is always set in the active rrq xri_bitmap even
1023 * if there is no slot avaiable for the other rrq information.
1025 * returns 0 rrq actived for this xri
1026 * < 0 No memory or invalid ndlp.
1029 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1030 uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1032 unsigned long iflags;
1033 struct lpfc_node_rrq *rrq;
1034 int empty;
1036 if (!ndlp)
1037 return -EINVAL;
1039 if (!phba->cfg_enable_rrq)
1040 return -EINVAL;
1042 spin_lock_irqsave(&phba->hbalock, iflags);
1043 if (phba->pport->load_flag & FC_UNLOADING) {
1044 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1045 goto out;
1049 * set the active bit even if there is no mem available.
1051 if (NLP_CHK_FREE_REQ(ndlp))
1052 goto out;
1054 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1055 goto out;
1057 if (!ndlp->active_rrqs_xri_bitmap)
1058 goto out;
1060 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1061 goto out;
1063 spin_unlock_irqrestore(&phba->hbalock, iflags);
1064 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL);
1065 if (!rrq) {
1066 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1067 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1068 " DID:0x%x Send:%d\n",
1069 xritag, rxid, ndlp->nlp_DID, send_rrq);
1070 return -EINVAL;
1072 if (phba->cfg_enable_rrq == 1)
1073 rrq->send_rrq = send_rrq;
1074 else
1075 rrq->send_rrq = 0;
1076 rrq->xritag = xritag;
1077 rrq->rrq_stop_time = jiffies +
1078 msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1079 rrq->ndlp = ndlp;
1080 rrq->nlp_DID = ndlp->nlp_DID;
1081 rrq->vport = ndlp->vport;
1082 rrq->rxid = rxid;
1083 spin_lock_irqsave(&phba->hbalock, iflags);
1084 empty = list_empty(&phba->active_rrq_list);
1085 list_add_tail(&rrq->list, &phba->active_rrq_list);
1086 phba->hba_flag |= HBA_RRQ_ACTIVE;
1087 if (empty)
1088 lpfc_worker_wake_up(phba);
1089 spin_unlock_irqrestore(&phba->hbalock, iflags);
1090 return 0;
1091 out:
1092 spin_unlock_irqrestore(&phba->hbalock, iflags);
1093 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1094 "2921 Can't set rrq active xri:0x%x rxid:0x%x"
1095 " DID:0x%x Send:%d\n",
1096 xritag, rxid, ndlp->nlp_DID, send_rrq);
1097 return -EINVAL;
1101 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1102 * @phba: Pointer to HBA context object.
1103 * @piocb: Pointer to the iocbq.
1105 * This function is called with the ring lock held. This function
1106 * gets a new driver sglq object from the sglq list. If the
1107 * list is not empty then it is successful, it returns pointer to the newly
1108 * allocated sglq object else it returns NULL.
1110 static struct lpfc_sglq *
1111 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1113 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1114 struct lpfc_sglq *sglq = NULL;
1115 struct lpfc_sglq *start_sglq = NULL;
1116 struct lpfc_io_buf *lpfc_cmd;
1117 struct lpfc_nodelist *ndlp;
1118 int found = 0;
1120 lockdep_assert_held(&phba->hbalock);
1122 if (piocbq->iocb_flag & LPFC_IO_FCP) {
1123 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1;
1124 ndlp = lpfc_cmd->rdata->pnode;
1125 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
1126 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
1127 ndlp = piocbq->context_un.ndlp;
1128 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
1129 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
1130 ndlp = NULL;
1131 else
1132 ndlp = piocbq->context_un.ndlp;
1133 } else {
1134 ndlp = piocbq->context1;
1137 spin_lock(&phba->sli4_hba.sgl_list_lock);
1138 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1139 start_sglq = sglq;
1140 while (!found) {
1141 if (!sglq)
1142 break;
1143 if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1144 test_bit(sglq->sli4_lxritag,
1145 ndlp->active_rrqs_xri_bitmap)) {
1146 /* This xri has an rrq outstanding for this DID.
1147 * put it back in the list and get another xri.
1149 list_add_tail(&sglq->list, lpfc_els_sgl_list);
1150 sglq = NULL;
1151 list_remove_head(lpfc_els_sgl_list, sglq,
1152 struct lpfc_sglq, list);
1153 if (sglq == start_sglq) {
1154 list_add_tail(&sglq->list, lpfc_els_sgl_list);
1155 sglq = NULL;
1156 break;
1157 } else
1158 continue;
1160 sglq->ndlp = ndlp;
1161 found = 1;
1162 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1163 sglq->state = SGL_ALLOCATED;
1165 spin_unlock(&phba->sli4_hba.sgl_list_lock);
1166 return sglq;
1170 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1171 * @phba: Pointer to HBA context object.
1172 * @piocb: Pointer to the iocbq.
1174 * This function is called with the sgl_list lock held. This function
1175 * gets a new driver sglq object from the sglq list. If the
1176 * list is not empty then it is successful, it returns pointer to the newly
1177 * allocated sglq object else it returns NULL.
1179 struct lpfc_sglq *
1180 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1182 struct list_head *lpfc_nvmet_sgl_list;
1183 struct lpfc_sglq *sglq = NULL;
1185 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1187 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1189 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1190 if (!sglq)
1191 return NULL;
1192 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1193 sglq->state = SGL_ALLOCATED;
1194 return sglq;
1198 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1199 * @phba: Pointer to HBA context object.
1201 * This function is called with no lock held. This function
1202 * allocates a new driver iocb object from the iocb pool. If the
1203 * allocation is successful, it returns pointer to the newly
1204 * allocated iocb object else it returns NULL.
1206 struct lpfc_iocbq *
1207 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1209 struct lpfc_iocbq * iocbq = NULL;
1210 unsigned long iflags;
1212 spin_lock_irqsave(&phba->hbalock, iflags);
1213 iocbq = __lpfc_sli_get_iocbq(phba);
1214 spin_unlock_irqrestore(&phba->hbalock, iflags);
1215 return iocbq;
1219 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1220 * @phba: Pointer to HBA context object.
1221 * @iocbq: Pointer to driver iocb object.
1223 * This function is called with hbalock held to release driver
1224 * iocb object to the iocb pool. The iotag in the iocb object
1225 * does not change for each use of the iocb object. This function
1226 * clears all other fields of the iocb object when it is freed.
1227 * The sqlq structure that holds the xritag and phys and virtual
1228 * mappings for the scatter gather list is retrieved from the
1229 * active array of sglq. The get of the sglq pointer also clears
1230 * the entry in the array. If the status of the IO indiactes that
1231 * this IO was aborted then the sglq entry it put on the
1232 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1233 * IO has good status or fails for any other reason then the sglq
1234 * entry is added to the free list (lpfc_els_sgl_list).
1236 static void
1237 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1239 struct lpfc_sglq *sglq;
1240 size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1241 unsigned long iflag = 0;
1242 struct lpfc_sli_ring *pring;
1244 lockdep_assert_held(&phba->hbalock);
1246 if (iocbq->sli4_xritag == NO_XRI)
1247 sglq = NULL;
1248 else
1249 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1252 if (sglq) {
1253 if (iocbq->iocb_flag & LPFC_IO_NVMET) {
1254 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1255 iflag);
1256 sglq->state = SGL_FREED;
1257 sglq->ndlp = NULL;
1258 list_add_tail(&sglq->list,
1259 &phba->sli4_hba.lpfc_nvmet_sgl_list);
1260 spin_unlock_irqrestore(
1261 &phba->sli4_hba.sgl_list_lock, iflag);
1262 goto out;
1265 pring = phba->sli4_hba.els_wq->pring;
1266 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1267 (sglq->state != SGL_XRI_ABORTED)) {
1268 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1269 iflag);
1270 list_add(&sglq->list,
1271 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1272 spin_unlock_irqrestore(
1273 &phba->sli4_hba.sgl_list_lock, iflag);
1274 } else {
1275 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1276 iflag);
1277 sglq->state = SGL_FREED;
1278 sglq->ndlp = NULL;
1279 list_add_tail(&sglq->list,
1280 &phba->sli4_hba.lpfc_els_sgl_list);
1281 spin_unlock_irqrestore(
1282 &phba->sli4_hba.sgl_list_lock, iflag);
1284 /* Check if TXQ queue needs to be serviced */
1285 if (!list_empty(&pring->txq))
1286 lpfc_worker_wake_up(phba);
1290 out:
1292 * Clean all volatile data fields, preserve iotag and node struct.
1294 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1295 iocbq->sli4_lxritag = NO_XRI;
1296 iocbq->sli4_xritag = NO_XRI;
1297 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET |
1298 LPFC_IO_NVME_LS);
1299 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1304 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1305 * @phba: Pointer to HBA context object.
1306 * @iocbq: Pointer to driver iocb object.
1308 * This function is called with hbalock held to release driver
1309 * iocb object to the iocb pool. The iotag in the iocb object
1310 * does not change for each use of the iocb object. This function
1311 * clears all other fields of the iocb object when it is freed.
1313 static void
1314 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1316 size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1318 lockdep_assert_held(&phba->hbalock);
1321 * Clean all volatile data fields, preserve iotag and node struct.
1323 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1324 iocbq->sli4_xritag = NO_XRI;
1325 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1329 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1330 * @phba: Pointer to HBA context object.
1331 * @iocbq: Pointer to driver iocb object.
1333 * This function is called with hbalock held to release driver
1334 * iocb object to the iocb pool. The iotag in the iocb object
1335 * does not change for each use of the iocb object. This function
1336 * clears all other fields of the iocb object when it is freed.
1338 static void
1339 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1341 lockdep_assert_held(&phba->hbalock);
1343 phba->__lpfc_sli_release_iocbq(phba, iocbq);
1344 phba->iocb_cnt--;
1348 * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1349 * @phba: Pointer to HBA context object.
1350 * @iocbq: Pointer to driver iocb object.
1352 * This function is called with no lock held to release the iocb to
1353 * iocb pool.
1355 void
1356 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1358 unsigned long iflags;
1361 * Clean all volatile data fields, preserve iotag and node struct.
1363 spin_lock_irqsave(&phba->hbalock, iflags);
1364 __lpfc_sli_release_iocbq(phba, iocbq);
1365 spin_unlock_irqrestore(&phba->hbalock, iflags);
1369 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1370 * @phba: Pointer to HBA context object.
1371 * @iocblist: List of IOCBs.
1372 * @ulpstatus: ULP status in IOCB command field.
1373 * @ulpWord4: ULP word-4 in IOCB command field.
1375 * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1376 * on the list by invoking the complete callback function associated with the
1377 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1378 * fields.
1380 void
1381 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1382 uint32_t ulpstatus, uint32_t ulpWord4)
1384 struct lpfc_iocbq *piocb;
1386 while (!list_empty(iocblist)) {
1387 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1388 if (!piocb->iocb_cmpl)
1389 lpfc_sli_release_iocbq(phba, piocb);
1390 else {
1391 piocb->iocb.ulpStatus = ulpstatus;
1392 piocb->iocb.un.ulpWord[4] = ulpWord4;
1393 (piocb->iocb_cmpl) (phba, piocb, piocb);
1396 return;
1400 * lpfc_sli_iocb_cmd_type - Get the iocb type
1401 * @iocb_cmnd: iocb command code.
1403 * This function is called by ring event handler function to get the iocb type.
1404 * This function translates the iocb command to an iocb command type used to
1405 * decide the final disposition of each completed IOCB.
1406 * The function returns
1407 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1408 * LPFC_SOL_IOCB if it is a solicited iocb completion
1409 * LPFC_ABORT_IOCB if it is an abort iocb
1410 * LPFC_UNSOL_IOCB if it is an unsolicited iocb
1412 * The caller is not required to hold any lock.
1414 static lpfc_iocb_type
1415 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1417 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1419 if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1420 return 0;
1422 switch (iocb_cmnd) {
1423 case CMD_XMIT_SEQUENCE_CR:
1424 case CMD_XMIT_SEQUENCE_CX:
1425 case CMD_XMIT_BCAST_CN:
1426 case CMD_XMIT_BCAST_CX:
1427 case CMD_ELS_REQUEST_CR:
1428 case CMD_ELS_REQUEST_CX:
1429 case CMD_CREATE_XRI_CR:
1430 case CMD_CREATE_XRI_CX:
1431 case CMD_GET_RPI_CN:
1432 case CMD_XMIT_ELS_RSP_CX:
1433 case CMD_GET_RPI_CR:
1434 case CMD_FCP_IWRITE_CR:
1435 case CMD_FCP_IWRITE_CX:
1436 case CMD_FCP_IREAD_CR:
1437 case CMD_FCP_IREAD_CX:
1438 case CMD_FCP_ICMND_CR:
1439 case CMD_FCP_ICMND_CX:
1440 case CMD_FCP_TSEND_CX:
1441 case CMD_FCP_TRSP_CX:
1442 case CMD_FCP_TRECEIVE_CX:
1443 case CMD_FCP_AUTO_TRSP_CX:
1444 case CMD_ADAPTER_MSG:
1445 case CMD_ADAPTER_DUMP:
1446 case CMD_XMIT_SEQUENCE64_CR:
1447 case CMD_XMIT_SEQUENCE64_CX:
1448 case CMD_XMIT_BCAST64_CN:
1449 case CMD_XMIT_BCAST64_CX:
1450 case CMD_ELS_REQUEST64_CR:
1451 case CMD_ELS_REQUEST64_CX:
1452 case CMD_FCP_IWRITE64_CR:
1453 case CMD_FCP_IWRITE64_CX:
1454 case CMD_FCP_IREAD64_CR:
1455 case CMD_FCP_IREAD64_CX:
1456 case CMD_FCP_ICMND64_CR:
1457 case CMD_FCP_ICMND64_CX:
1458 case CMD_FCP_TSEND64_CX:
1459 case CMD_FCP_TRSP64_CX:
1460 case CMD_FCP_TRECEIVE64_CX:
1461 case CMD_GEN_REQUEST64_CR:
1462 case CMD_GEN_REQUEST64_CX:
1463 case CMD_XMIT_ELS_RSP64_CX:
1464 case DSSCMD_IWRITE64_CR:
1465 case DSSCMD_IWRITE64_CX:
1466 case DSSCMD_IREAD64_CR:
1467 case DSSCMD_IREAD64_CX:
1468 type = LPFC_SOL_IOCB;
1469 break;
1470 case CMD_ABORT_XRI_CN:
1471 case CMD_ABORT_XRI_CX:
1472 case CMD_CLOSE_XRI_CN:
1473 case CMD_CLOSE_XRI_CX:
1474 case CMD_XRI_ABORTED_CX:
1475 case CMD_ABORT_MXRI64_CN:
1476 case CMD_XMIT_BLS_RSP64_CX:
1477 type = LPFC_ABORT_IOCB;
1478 break;
1479 case CMD_RCV_SEQUENCE_CX:
1480 case CMD_RCV_ELS_REQ_CX:
1481 case CMD_RCV_SEQUENCE64_CX:
1482 case CMD_RCV_ELS_REQ64_CX:
1483 case CMD_ASYNC_STATUS:
1484 case CMD_IOCB_RCV_SEQ64_CX:
1485 case CMD_IOCB_RCV_ELS64_CX:
1486 case CMD_IOCB_RCV_CONT64_CX:
1487 case CMD_IOCB_RET_XRI64_CX:
1488 type = LPFC_UNSOL_IOCB;
1489 break;
1490 case CMD_IOCB_XMIT_MSEQ64_CR:
1491 case CMD_IOCB_XMIT_MSEQ64_CX:
1492 case CMD_IOCB_RCV_SEQ_LIST64_CX:
1493 case CMD_IOCB_RCV_ELS_LIST64_CX:
1494 case CMD_IOCB_CLOSE_EXTENDED_CN:
1495 case CMD_IOCB_ABORT_EXTENDED_CN:
1496 case CMD_IOCB_RET_HBQE64_CN:
1497 case CMD_IOCB_FCP_IBIDIR64_CR:
1498 case CMD_IOCB_FCP_IBIDIR64_CX:
1499 case CMD_IOCB_FCP_ITASKMGT64_CX:
1500 case CMD_IOCB_LOGENTRY_CN:
1501 case CMD_IOCB_LOGENTRY_ASYNC_CN:
1502 printk("%s - Unhandled SLI-3 Command x%x\n",
1503 __func__, iocb_cmnd);
1504 type = LPFC_UNKNOWN_IOCB;
1505 break;
1506 default:
1507 type = LPFC_UNKNOWN_IOCB;
1508 break;
1511 return type;
1515 * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1516 * @phba: Pointer to HBA context object.
1518 * This function is called from SLI initialization code
1519 * to configure every ring of the HBA's SLI interface. The
1520 * caller is not required to hold any lock. This function issues
1521 * a config_ring mailbox command for each ring.
1522 * This function returns zero if successful else returns a negative
1523 * error code.
1525 static int
1526 lpfc_sli_ring_map(struct lpfc_hba *phba)
1528 struct lpfc_sli *psli = &phba->sli;
1529 LPFC_MBOXQ_t *pmb;
1530 MAILBOX_t *pmbox;
1531 int i, rc, ret = 0;
1533 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1534 if (!pmb)
1535 return -ENOMEM;
1536 pmbox = &pmb->u.mb;
1537 phba->link_state = LPFC_INIT_MBX_CMDS;
1538 for (i = 0; i < psli->num_rings; i++) {
1539 lpfc_config_ring(phba, i, pmb);
1540 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1541 if (rc != MBX_SUCCESS) {
1542 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1543 "0446 Adapter failed to init (%d), "
1544 "mbxCmd x%x CFG_RING, mbxStatus x%x, "
1545 "ring %d\n",
1546 rc, pmbox->mbxCommand,
1547 pmbox->mbxStatus, i);
1548 phba->link_state = LPFC_HBA_ERROR;
1549 ret = -ENXIO;
1550 break;
1553 mempool_free(pmb, phba->mbox_mem_pool);
1554 return ret;
1558 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1559 * @phba: Pointer to HBA context object.
1560 * @pring: Pointer to driver SLI ring object.
1561 * @piocb: Pointer to the driver iocb object.
1563 * This function is called with hbalock held. The function adds the
1564 * new iocb to txcmplq of the given ring. This function always returns
1565 * 0. If this function is called for ELS ring, this function checks if
1566 * there is a vport associated with the ELS command. This function also
1567 * starts els_tmofunc timer if this is an ELS command.
1569 static int
1570 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1571 struct lpfc_iocbq *piocb)
1573 lockdep_assert_held(&phba->hbalock);
1575 BUG_ON(!piocb);
1577 list_add_tail(&piocb->list, &pring->txcmplq);
1578 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1579 pring->txcmplq_cnt++;
1581 if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1582 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1583 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1584 BUG_ON(!piocb->vport);
1585 if (!(piocb->vport->load_flag & FC_UNLOADING))
1586 mod_timer(&piocb->vport->els_tmofunc,
1587 jiffies +
1588 msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1591 return 0;
1595 * lpfc_sli_ringtx_get - Get first element of the txq
1596 * @phba: Pointer to HBA context object.
1597 * @pring: Pointer to driver SLI ring object.
1599 * This function is called with hbalock held to get next
1600 * iocb in txq of the given ring. If there is any iocb in
1601 * the txq, the function returns first iocb in the list after
1602 * removing the iocb from the list, else it returns NULL.
1604 struct lpfc_iocbq *
1605 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1607 struct lpfc_iocbq *cmd_iocb;
1609 lockdep_assert_held(&phba->hbalock);
1611 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1612 return cmd_iocb;
1616 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1617 * @phba: Pointer to HBA context object.
1618 * @pring: Pointer to driver SLI ring object.
1620 * This function is called with hbalock held and the caller must post the
1621 * iocb without releasing the lock. If the caller releases the lock,
1622 * iocb slot returned by the function is not guaranteed to be available.
1623 * The function returns pointer to the next available iocb slot if there
1624 * is available slot in the ring, else it returns NULL.
1625 * If the get index of the ring is ahead of the put index, the function
1626 * will post an error attention event to the worker thread to take the
1627 * HBA to offline state.
1629 static IOCB_t *
1630 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1632 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1633 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb;
1635 lockdep_assert_held(&phba->hbalock);
1637 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1638 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1639 pring->sli.sli3.next_cmdidx = 0;
1641 if (unlikely(pring->sli.sli3.local_getidx ==
1642 pring->sli.sli3.next_cmdidx)) {
1644 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1646 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1647 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1648 "0315 Ring %d issue: portCmdGet %d "
1649 "is bigger than cmd ring %d\n",
1650 pring->ringno,
1651 pring->sli.sli3.local_getidx,
1652 max_cmd_idx);
1654 phba->link_state = LPFC_HBA_ERROR;
1656 * All error attention handlers are posted to
1657 * worker thread
1659 phba->work_ha |= HA_ERATT;
1660 phba->work_hs = HS_FFER3;
1662 lpfc_worker_wake_up(phba);
1664 return NULL;
1667 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1668 return NULL;
1671 return lpfc_cmd_iocb(phba, pring);
1675 * lpfc_sli_next_iotag - Get an iotag for the iocb
1676 * @phba: Pointer to HBA context object.
1677 * @iocbq: Pointer to driver iocb object.
1679 * This function gets an iotag for the iocb. If there is no unused iotag and
1680 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1681 * array and assigns a new iotag.
1682 * The function returns the allocated iotag if successful, else returns zero.
1683 * Zero is not a valid iotag.
1684 * The caller is not required to hold any lock.
1686 uint16_t
1687 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1689 struct lpfc_iocbq **new_arr;
1690 struct lpfc_iocbq **old_arr;
1691 size_t new_len;
1692 struct lpfc_sli *psli = &phba->sli;
1693 uint16_t iotag;
1695 spin_lock_irq(&phba->hbalock);
1696 iotag = psli->last_iotag;
1697 if(++iotag < psli->iocbq_lookup_len) {
1698 psli->last_iotag = iotag;
1699 psli->iocbq_lookup[iotag] = iocbq;
1700 spin_unlock_irq(&phba->hbalock);
1701 iocbq->iotag = iotag;
1702 return iotag;
1703 } else if (psli->iocbq_lookup_len < (0xffff
1704 - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1705 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1706 spin_unlock_irq(&phba->hbalock);
1707 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
1708 GFP_KERNEL);
1709 if (new_arr) {
1710 spin_lock_irq(&phba->hbalock);
1711 old_arr = psli->iocbq_lookup;
1712 if (new_len <= psli->iocbq_lookup_len) {
1713 /* highly unprobable case */
1714 kfree(new_arr);
1715 iotag = psli->last_iotag;
1716 if(++iotag < psli->iocbq_lookup_len) {
1717 psli->last_iotag = iotag;
1718 psli->iocbq_lookup[iotag] = iocbq;
1719 spin_unlock_irq(&phba->hbalock);
1720 iocbq->iotag = iotag;
1721 return iotag;
1723 spin_unlock_irq(&phba->hbalock);
1724 return 0;
1726 if (psli->iocbq_lookup)
1727 memcpy(new_arr, old_arr,
1728 ((psli->last_iotag + 1) *
1729 sizeof (struct lpfc_iocbq *)));
1730 psli->iocbq_lookup = new_arr;
1731 psli->iocbq_lookup_len = new_len;
1732 psli->last_iotag = iotag;
1733 psli->iocbq_lookup[iotag] = iocbq;
1734 spin_unlock_irq(&phba->hbalock);
1735 iocbq->iotag = iotag;
1736 kfree(old_arr);
1737 return iotag;
1739 } else
1740 spin_unlock_irq(&phba->hbalock);
1742 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1743 "0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1744 psli->last_iotag);
1746 return 0;
1750 * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1751 * @phba: Pointer to HBA context object.
1752 * @pring: Pointer to driver SLI ring object.
1753 * @iocb: Pointer to iocb slot in the ring.
1754 * @nextiocb: Pointer to driver iocb object which need to be
1755 * posted to firmware.
1757 * This function is called with hbalock held to post a new iocb to
1758 * the firmware. This function copies the new iocb to ring iocb slot and
1759 * updates the ring pointers. It adds the new iocb to txcmplq if there is
1760 * a completion call back for this iocb else the function will free the
1761 * iocb object.
1763 static void
1764 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1765 IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1767 lockdep_assert_held(&phba->hbalock);
1769 * Set up an iotag
1771 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1774 if (pring->ringno == LPFC_ELS_RING) {
1775 lpfc_debugfs_slow_ring_trc(phba,
1776 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x",
1777 *(((uint32_t *) &nextiocb->iocb) + 4),
1778 *(((uint32_t *) &nextiocb->iocb) + 6),
1779 *(((uint32_t *) &nextiocb->iocb) + 7));
1783 * Issue iocb command to adapter
1785 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1786 wmb();
1787 pring->stats.iocb_cmd++;
1790 * If there is no completion routine to call, we can release the
1791 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1792 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1794 if (nextiocb->iocb_cmpl)
1795 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1796 else
1797 __lpfc_sli_release_iocbq(phba, nextiocb);
1800 * Let the HBA know what IOCB slot will be the next one the
1801 * driver will put a command into.
1803 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1804 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1808 * lpfc_sli_update_full_ring - Update the chip attention register
1809 * @phba: Pointer to HBA context object.
1810 * @pring: Pointer to driver SLI ring object.
1812 * The caller is not required to hold any lock for calling this function.
1813 * This function updates the chip attention bits for the ring to inform firmware
1814 * that there are pending work to be done for this ring and requests an
1815 * interrupt when there is space available in the ring. This function is
1816 * called when the driver is unable to post more iocbs to the ring due
1817 * to unavailability of space in the ring.
1819 static void
1820 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1822 int ringno = pring->ringno;
1824 pring->flag |= LPFC_CALL_RING_AVAILABLE;
1826 wmb();
1829 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1830 * The HBA will tell us when an IOCB entry is available.
1832 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1833 readl(phba->CAregaddr); /* flush */
1835 pring->stats.iocb_cmd_full++;
1839 * lpfc_sli_update_ring - Update chip attention register
1840 * @phba: Pointer to HBA context object.
1841 * @pring: Pointer to driver SLI ring object.
1843 * This function updates the chip attention register bit for the
1844 * given ring to inform HBA that there is more work to be done
1845 * in this ring. The caller is not required to hold any lock.
1847 static void
1848 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1850 int ringno = pring->ringno;
1853 * Tell the HBA that there is work to do in this ring.
1855 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
1856 wmb();
1857 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
1858 readl(phba->CAregaddr); /* flush */
1863 * lpfc_sli_resume_iocb - Process iocbs in the txq
1864 * @phba: Pointer to HBA context object.
1865 * @pring: Pointer to driver SLI ring object.
1867 * This function is called with hbalock held to post pending iocbs
1868 * in the txq to the firmware. This function is called when driver
1869 * detects space available in the ring.
1871 static void
1872 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1874 IOCB_t *iocb;
1875 struct lpfc_iocbq *nextiocb;
1877 lockdep_assert_held(&phba->hbalock);
1880 * Check to see if:
1881 * (a) there is anything on the txq to send
1882 * (b) link is up
1883 * (c) link attention events can be processed (fcp ring only)
1884 * (d) IOCB processing is not blocked by the outstanding mbox command.
1887 if (lpfc_is_link_up(phba) &&
1888 (!list_empty(&pring->txq)) &&
1889 (pring->ringno != LPFC_FCP_RING ||
1890 phba->sli.sli_flag & LPFC_PROCESS_LA)) {
1892 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
1893 (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
1894 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
1896 if (iocb)
1897 lpfc_sli_update_ring(phba, pring);
1898 else
1899 lpfc_sli_update_full_ring(phba, pring);
1902 return;
1906 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
1907 * @phba: Pointer to HBA context object.
1908 * @hbqno: HBQ number.
1910 * This function is called with hbalock held to get the next
1911 * available slot for the given HBQ. If there is free slot
1912 * available for the HBQ it will return pointer to the next available
1913 * HBQ entry else it will return NULL.
1915 static struct lpfc_hbq_entry *
1916 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
1918 struct hbq_s *hbqp = &phba->hbqs[hbqno];
1920 lockdep_assert_held(&phba->hbalock);
1922 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
1923 ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
1924 hbqp->next_hbqPutIdx = 0;
1926 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
1927 uint32_t raw_index = phba->hbq_get[hbqno];
1928 uint32_t getidx = le32_to_cpu(raw_index);
1930 hbqp->local_hbqGetIdx = getidx;
1932 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
1933 lpfc_printf_log(phba, KERN_ERR,
1934 LOG_SLI | LOG_VPORT,
1935 "1802 HBQ %d: local_hbqGetIdx "
1936 "%u is > than hbqp->entry_count %u\n",
1937 hbqno, hbqp->local_hbqGetIdx,
1938 hbqp->entry_count);
1940 phba->link_state = LPFC_HBA_ERROR;
1941 return NULL;
1944 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
1945 return NULL;
1948 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
1949 hbqp->hbqPutIdx;
1953 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
1954 * @phba: Pointer to HBA context object.
1956 * This function is called with no lock held to free all the
1957 * hbq buffers while uninitializing the SLI interface. It also
1958 * frees the HBQ buffers returned by the firmware but not yet
1959 * processed by the upper layers.
1961 void
1962 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
1964 struct lpfc_dmabuf *dmabuf, *next_dmabuf;
1965 struct hbq_dmabuf *hbq_buf;
1966 unsigned long flags;
1967 int i, hbq_count;
1969 hbq_count = lpfc_sli_hbq_count();
1970 /* Return all memory used by all HBQs */
1971 spin_lock_irqsave(&phba->hbalock, flags);
1972 for (i = 0; i < hbq_count; ++i) {
1973 list_for_each_entry_safe(dmabuf, next_dmabuf,
1974 &phba->hbqs[i].hbq_buffer_list, list) {
1975 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
1976 list_del(&hbq_buf->dbuf.list);
1977 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
1979 phba->hbqs[i].buffer_count = 0;
1982 /* Mark the HBQs not in use */
1983 phba->hbq_in_use = 0;
1984 spin_unlock_irqrestore(&phba->hbalock, flags);
1988 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
1989 * @phba: Pointer to HBA context object.
1990 * @hbqno: HBQ number.
1991 * @hbq_buf: Pointer to HBQ buffer.
1993 * This function is called with the hbalock held to post a
1994 * hbq buffer to the firmware. If the function finds an empty
1995 * slot in the HBQ, it will post the buffer. The function will return
1996 * pointer to the hbq entry if it successfully post the buffer
1997 * else it will return NULL.
1999 static int
2000 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2001 struct hbq_dmabuf *hbq_buf)
2003 lockdep_assert_held(&phba->hbalock);
2004 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2008 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2009 * @phba: Pointer to HBA context object.
2010 * @hbqno: HBQ number.
2011 * @hbq_buf: Pointer to HBQ buffer.
2013 * This function is called with the hbalock held to post a hbq buffer to the
2014 * firmware. If the function finds an empty slot in the HBQ, it will post the
2015 * buffer and place it on the hbq_buffer_list. The function will return zero if
2016 * it successfully post the buffer else it will return an error.
2018 static int
2019 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2020 struct hbq_dmabuf *hbq_buf)
2022 struct lpfc_hbq_entry *hbqe;
2023 dma_addr_t physaddr = hbq_buf->dbuf.phys;
2025 lockdep_assert_held(&phba->hbalock);
2026 /* Get next HBQ entry slot to use */
2027 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2028 if (hbqe) {
2029 struct hbq_s *hbqp = &phba->hbqs[hbqno];
2031 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2032 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr));
2033 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2034 hbqe->bde.tus.f.bdeFlags = 0;
2035 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2036 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2037 /* Sync SLIM */
2038 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2039 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2040 /* flush */
2041 readl(phba->hbq_put + hbqno);
2042 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2043 return 0;
2044 } else
2045 return -ENOMEM;
2049 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2050 * @phba: Pointer to HBA context object.
2051 * @hbqno: HBQ number.
2052 * @hbq_buf: Pointer to HBQ buffer.
2054 * This function is called with the hbalock held to post an RQE to the SLI4
2055 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2056 * the hbq_buffer_list and return zero, otherwise it will return an error.
2058 static int
2059 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2060 struct hbq_dmabuf *hbq_buf)
2062 int rc;
2063 struct lpfc_rqe hrqe;
2064 struct lpfc_rqe drqe;
2065 struct lpfc_queue *hrq;
2066 struct lpfc_queue *drq;
2068 if (hbqno != LPFC_ELS_HBQ)
2069 return 1;
2070 hrq = phba->sli4_hba.hdr_rq;
2071 drq = phba->sli4_hba.dat_rq;
2073 lockdep_assert_held(&phba->hbalock);
2074 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2075 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2076 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2077 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2078 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2079 if (rc < 0)
2080 return rc;
2081 hbq_buf->tag = (rc | (hbqno << 16));
2082 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2083 return 0;
2086 /* HBQ for ELS and CT traffic. */
2087 static struct lpfc_hbq_init lpfc_els_hbq = {
2088 .rn = 1,
2089 .entry_count = 256,
2090 .mask_count = 0,
2091 .profile = 0,
2092 .ring_mask = (1 << LPFC_ELS_RING),
2093 .buffer_count = 0,
2094 .init_count = 40,
2095 .add_count = 40,
2098 /* Array of HBQs */
2099 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2100 &lpfc_els_hbq,
2104 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2105 * @phba: Pointer to HBA context object.
2106 * @hbqno: HBQ number.
2107 * @count: Number of HBQ buffers to be posted.
2109 * This function is called with no lock held to post more hbq buffers to the
2110 * given HBQ. The function returns the number of HBQ buffers successfully
2111 * posted.
2113 static int
2114 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2116 uint32_t i, posted = 0;
2117 unsigned long flags;
2118 struct hbq_dmabuf *hbq_buffer;
2119 LIST_HEAD(hbq_buf_list);
2120 if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2121 return 0;
2123 if ((phba->hbqs[hbqno].buffer_count + count) >
2124 lpfc_hbq_defs[hbqno]->entry_count)
2125 count = lpfc_hbq_defs[hbqno]->entry_count -
2126 phba->hbqs[hbqno].buffer_count;
2127 if (!count)
2128 return 0;
2129 /* Allocate HBQ entries */
2130 for (i = 0; i < count; i++) {
2131 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2132 if (!hbq_buffer)
2133 break;
2134 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2136 /* Check whether HBQ is still in use */
2137 spin_lock_irqsave(&phba->hbalock, flags);
2138 if (!phba->hbq_in_use)
2139 goto err;
2140 while (!list_empty(&hbq_buf_list)) {
2141 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2142 dbuf.list);
2143 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2144 (hbqno << 16));
2145 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2146 phba->hbqs[hbqno].buffer_count++;
2147 posted++;
2148 } else
2149 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2151 spin_unlock_irqrestore(&phba->hbalock, flags);
2152 return posted;
2153 err:
2154 spin_unlock_irqrestore(&phba->hbalock, flags);
2155 while (!list_empty(&hbq_buf_list)) {
2156 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2157 dbuf.list);
2158 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2160 return 0;
2164 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2165 * @phba: Pointer to HBA context object.
2166 * @qno: HBQ number.
2168 * This function posts more buffers to the HBQ. This function
2169 * is called with no lock held. The function returns the number of HBQ entries
2170 * successfully allocated.
2173 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2175 if (phba->sli_rev == LPFC_SLI_REV4)
2176 return 0;
2177 else
2178 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2179 lpfc_hbq_defs[qno]->add_count);
2183 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2184 * @phba: Pointer to HBA context object.
2185 * @qno: HBQ queue number.
2187 * This function is called from SLI initialization code path with
2188 * no lock held to post initial HBQ buffers to firmware. The
2189 * function returns the number of HBQ entries successfully allocated.
2191 static int
2192 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2194 if (phba->sli_rev == LPFC_SLI_REV4)
2195 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2196 lpfc_hbq_defs[qno]->entry_count);
2197 else
2198 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2199 lpfc_hbq_defs[qno]->init_count);
2203 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2204 * @phba: Pointer to HBA context object.
2205 * @hbqno: HBQ number.
2207 * This function removes the first hbq buffer on an hbq list and returns a
2208 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2210 static struct hbq_dmabuf *
2211 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2213 struct lpfc_dmabuf *d_buf;
2215 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2216 if (!d_buf)
2217 return NULL;
2218 return container_of(d_buf, struct hbq_dmabuf, dbuf);
2222 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2223 * @phba: Pointer to HBA context object.
2224 * @hbqno: HBQ number.
2226 * This function removes the first RQ buffer on an RQ buffer list and returns a
2227 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2229 static struct rqb_dmabuf *
2230 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2232 struct lpfc_dmabuf *h_buf;
2233 struct lpfc_rqb *rqbp;
2235 rqbp = hrq->rqbp;
2236 list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2237 struct lpfc_dmabuf, list);
2238 if (!h_buf)
2239 return NULL;
2240 rqbp->buffer_count--;
2241 return container_of(h_buf, struct rqb_dmabuf, hbuf);
2245 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2246 * @phba: Pointer to HBA context object.
2247 * @tag: Tag of the hbq buffer.
2249 * This function searches for the hbq buffer associated with the given tag in
2250 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2251 * otherwise it returns NULL.
2253 static struct hbq_dmabuf *
2254 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2256 struct lpfc_dmabuf *d_buf;
2257 struct hbq_dmabuf *hbq_buf;
2258 uint32_t hbqno;
2260 hbqno = tag >> 16;
2261 if (hbqno >= LPFC_MAX_HBQS)
2262 return NULL;
2264 spin_lock_irq(&phba->hbalock);
2265 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2266 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2267 if (hbq_buf->tag == tag) {
2268 spin_unlock_irq(&phba->hbalock);
2269 return hbq_buf;
2272 spin_unlock_irq(&phba->hbalock);
2273 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT,
2274 "1803 Bad hbq tag. Data: x%x x%x\n",
2275 tag, phba->hbqs[tag >> 16].buffer_count);
2276 return NULL;
2280 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2281 * @phba: Pointer to HBA context object.
2282 * @hbq_buffer: Pointer to HBQ buffer.
2284 * This function is called with hbalock. This function gives back
2285 * the hbq buffer to firmware. If the HBQ does not have space to
2286 * post the buffer, it will free the buffer.
2288 void
2289 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2291 uint32_t hbqno;
2293 if (hbq_buffer) {
2294 hbqno = hbq_buffer->tag >> 16;
2295 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2296 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2301 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2302 * @mbxCommand: mailbox command code.
2304 * This function is called by the mailbox event handler function to verify
2305 * that the completed mailbox command is a legitimate mailbox command. If the
2306 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2307 * and the mailbox event handler will take the HBA offline.
2309 static int
2310 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2312 uint8_t ret;
2314 switch (mbxCommand) {
2315 case MBX_LOAD_SM:
2316 case MBX_READ_NV:
2317 case MBX_WRITE_NV:
2318 case MBX_WRITE_VPARMS:
2319 case MBX_RUN_BIU_DIAG:
2320 case MBX_INIT_LINK:
2321 case MBX_DOWN_LINK:
2322 case MBX_CONFIG_LINK:
2323 case MBX_CONFIG_RING:
2324 case MBX_RESET_RING:
2325 case MBX_READ_CONFIG:
2326 case MBX_READ_RCONFIG:
2327 case MBX_READ_SPARM:
2328 case MBX_READ_STATUS:
2329 case MBX_READ_RPI:
2330 case MBX_READ_XRI:
2331 case MBX_READ_REV:
2332 case MBX_READ_LNK_STAT:
2333 case MBX_REG_LOGIN:
2334 case MBX_UNREG_LOGIN:
2335 case MBX_CLEAR_LA:
2336 case MBX_DUMP_MEMORY:
2337 case MBX_DUMP_CONTEXT:
2338 case MBX_RUN_DIAGS:
2339 case MBX_RESTART:
2340 case MBX_UPDATE_CFG:
2341 case MBX_DOWN_LOAD:
2342 case MBX_DEL_LD_ENTRY:
2343 case MBX_RUN_PROGRAM:
2344 case MBX_SET_MASK:
2345 case MBX_SET_VARIABLE:
2346 case MBX_UNREG_D_ID:
2347 case MBX_KILL_BOARD:
2348 case MBX_CONFIG_FARP:
2349 case MBX_BEACON:
2350 case MBX_LOAD_AREA:
2351 case MBX_RUN_BIU_DIAG64:
2352 case MBX_CONFIG_PORT:
2353 case MBX_READ_SPARM64:
2354 case MBX_READ_RPI64:
2355 case MBX_REG_LOGIN64:
2356 case MBX_READ_TOPOLOGY:
2357 case MBX_WRITE_WWN:
2358 case MBX_SET_DEBUG:
2359 case MBX_LOAD_EXP_ROM:
2360 case MBX_ASYNCEVT_ENABLE:
2361 case MBX_REG_VPI:
2362 case MBX_UNREG_VPI:
2363 case MBX_HEARTBEAT:
2364 case MBX_PORT_CAPABILITIES:
2365 case MBX_PORT_IOV_CONTROL:
2366 case MBX_SLI4_CONFIG:
2367 case MBX_SLI4_REQ_FTRS:
2368 case MBX_REG_FCFI:
2369 case MBX_UNREG_FCFI:
2370 case MBX_REG_VFI:
2371 case MBX_UNREG_VFI:
2372 case MBX_INIT_VPI:
2373 case MBX_INIT_VFI:
2374 case MBX_RESUME_RPI:
2375 case MBX_READ_EVENT_LOG_STATUS:
2376 case MBX_READ_EVENT_LOG:
2377 case MBX_SECURITY_MGMT:
2378 case MBX_AUTH_PORT:
2379 case MBX_ACCESS_VDATA:
2380 ret = mbxCommand;
2381 break;
2382 default:
2383 ret = MBX_SHUTDOWN;
2384 break;
2386 return ret;
2390 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2391 * @phba: Pointer to HBA context object.
2392 * @pmboxq: Pointer to mailbox command.
2394 * This is completion handler function for mailbox commands issued from
2395 * lpfc_sli_issue_mbox_wait function. This function is called by the
2396 * mailbox event handler function with no lock held. This function
2397 * will wake up thread waiting on the wait queue pointed by context1
2398 * of the mailbox.
2400 void
2401 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2403 unsigned long drvr_flag;
2404 struct completion *pmbox_done;
2407 * If pmbox_done is empty, the driver thread gave up waiting and
2408 * continued running.
2410 pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2411 spin_lock_irqsave(&phba->hbalock, drvr_flag);
2412 pmbox_done = (struct completion *)pmboxq->context3;
2413 if (pmbox_done)
2414 complete(pmbox_done);
2415 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2416 return;
2421 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2422 * @phba: Pointer to HBA context object.
2423 * @pmb: Pointer to mailbox object.
2425 * This function is the default mailbox completion handler. It
2426 * frees the memory resources associated with the completed mailbox
2427 * command. If the completed command is a REG_LOGIN mailbox command,
2428 * this function will issue a UREG_LOGIN to re-claim the RPI.
2430 void
2431 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2433 struct lpfc_vport *vport = pmb->vport;
2434 struct lpfc_dmabuf *mp;
2435 struct lpfc_nodelist *ndlp;
2436 struct Scsi_Host *shost;
2437 uint16_t rpi, vpi;
2438 int rc;
2440 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
2442 if (mp) {
2443 lpfc_mbuf_free(phba, mp->virt, mp->phys);
2444 kfree(mp);
2448 * If a REG_LOGIN succeeded after node is destroyed or node
2449 * is in re-discovery driver need to cleanup the RPI.
2451 if (!(phba->pport->load_flag & FC_UNLOADING) &&
2452 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2453 !pmb->u.mb.mbxStatus) {
2454 rpi = pmb->u.mb.un.varWords[0];
2455 vpi = pmb->u.mb.un.varRegLogin.vpi;
2456 lpfc_unreg_login(phba, vpi, rpi, pmb);
2457 pmb->vport = vport;
2458 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2459 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2460 if (rc != MBX_NOT_FINISHED)
2461 return;
2464 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2465 !(phba->pport->load_flag & FC_UNLOADING) &&
2466 !pmb->u.mb.mbxStatus) {
2467 shost = lpfc_shost_from_vport(vport);
2468 spin_lock_irq(shost->host_lock);
2469 vport->vpi_state |= LPFC_VPI_REGISTERED;
2470 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2471 spin_unlock_irq(shost->host_lock);
2474 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2475 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2476 lpfc_nlp_put(ndlp);
2477 pmb->ctx_buf = NULL;
2478 pmb->ctx_ndlp = NULL;
2481 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2482 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2484 /* Check to see if there are any deferred events to process */
2485 if (ndlp) {
2486 lpfc_printf_vlog(
2487 vport,
2488 KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2489 "1438 UNREG cmpl deferred mbox x%x "
2490 "on NPort x%x Data: x%x x%x %p\n",
2491 ndlp->nlp_rpi, ndlp->nlp_DID,
2492 ndlp->nlp_flag, ndlp->nlp_defer_did, ndlp);
2494 if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2495 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) {
2496 ndlp->nlp_flag &= ~NLP_UNREG_INP;
2497 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2498 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2499 } else {
2500 ndlp->nlp_flag &= ~NLP_UNREG_INP;
2502 pmb->ctx_ndlp = NULL;
2506 /* Check security permission status on INIT_LINK mailbox command */
2507 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2508 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2509 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2510 "2860 SLI authentication is required "
2511 "for INIT_LINK but has not done yet\n");
2513 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2514 lpfc_sli4_mbox_cmd_free(phba, pmb);
2515 else
2516 mempool_free(pmb, phba->mbox_mem_pool);
2519 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2520 * @phba: Pointer to HBA context object.
2521 * @pmb: Pointer to mailbox object.
2523 * This function is the unreg rpi mailbox completion handler. It
2524 * frees the memory resources associated with the completed mailbox
2525 * command. An additional refrenece is put on the ndlp to prevent
2526 * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2527 * the unreg mailbox command completes, this routine puts the
2528 * reference back.
2531 void
2532 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2534 struct lpfc_vport *vport = pmb->vport;
2535 struct lpfc_nodelist *ndlp;
2537 ndlp = pmb->ctx_ndlp;
2538 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2539 if (phba->sli_rev == LPFC_SLI_REV4 &&
2540 (bf_get(lpfc_sli_intf_if_type,
2541 &phba->sli4_hba.sli_intf) >=
2542 LPFC_SLI_INTF_IF_TYPE_2)) {
2543 if (ndlp) {
2544 lpfc_printf_vlog(
2545 vport, KERN_INFO, LOG_MBOX | LOG_SLI,
2546 "0010 UNREG_LOGIN vpi:%x "
2547 "rpi:%x DID:%x defer x%x flg x%x "
2548 "map:%x %p\n",
2549 vport->vpi, ndlp->nlp_rpi,
2550 ndlp->nlp_DID, ndlp->nlp_defer_did,
2551 ndlp->nlp_flag,
2552 ndlp->nlp_usg_map, ndlp);
2553 ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2554 lpfc_nlp_put(ndlp);
2556 /* Check to see if there are any deferred
2557 * events to process
2559 if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2560 (ndlp->nlp_defer_did !=
2561 NLP_EVT_NOTHING_PENDING)) {
2562 lpfc_printf_vlog(
2563 vport, KERN_INFO, LOG_DISCOVERY,
2564 "4111 UNREG cmpl deferred "
2565 "clr x%x on "
2566 "NPort x%x Data: x%x %p\n",
2567 ndlp->nlp_rpi, ndlp->nlp_DID,
2568 ndlp->nlp_defer_did, ndlp);
2569 ndlp->nlp_flag &= ~NLP_UNREG_INP;
2570 ndlp->nlp_defer_did =
2571 NLP_EVT_NOTHING_PENDING;
2572 lpfc_issue_els_plogi(
2573 vport, ndlp->nlp_DID, 0);
2574 } else {
2575 ndlp->nlp_flag &= ~NLP_UNREG_INP;
2581 mempool_free(pmb, phba->mbox_mem_pool);
2585 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2586 * @phba: Pointer to HBA context object.
2588 * This function is called with no lock held. This function processes all
2589 * the completed mailbox commands and gives it to upper layers. The interrupt
2590 * service routine processes mailbox completion interrupt and adds completed
2591 * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2592 * Worker thread call lpfc_sli_handle_mb_event, which will return the
2593 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2594 * function returns the mailbox commands to the upper layer by calling the
2595 * completion handler function of each mailbox.
2598 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2600 MAILBOX_t *pmbox;
2601 LPFC_MBOXQ_t *pmb;
2602 int rc;
2603 LIST_HEAD(cmplq);
2605 phba->sli.slistat.mbox_event++;
2607 /* Get all completed mailboxe buffers into the cmplq */
2608 spin_lock_irq(&phba->hbalock);
2609 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2610 spin_unlock_irq(&phba->hbalock);
2612 /* Get a Mailbox buffer to setup mailbox commands for callback */
2613 do {
2614 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2615 if (pmb == NULL)
2616 break;
2618 pmbox = &pmb->u.mb;
2620 if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2621 if (pmb->vport) {
2622 lpfc_debugfs_disc_trc(pmb->vport,
2623 LPFC_DISC_TRC_MBOX_VPORT,
2624 "MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2625 (uint32_t)pmbox->mbxCommand,
2626 pmbox->un.varWords[0],
2627 pmbox->un.varWords[1]);
2629 else {
2630 lpfc_debugfs_disc_trc(phba->pport,
2631 LPFC_DISC_TRC_MBOX,
2632 "MBOX cmpl: cmd:x%x mb:x%x x%x",
2633 (uint32_t)pmbox->mbxCommand,
2634 pmbox->un.varWords[0],
2635 pmbox->un.varWords[1]);
2640 * It is a fatal error if unknown mbox command completion.
2642 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2643 MBX_SHUTDOWN) {
2644 /* Unknown mailbox command compl */
2645 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2646 "(%d):0323 Unknown Mailbox command "
2647 "x%x (x%x/x%x) Cmpl\n",
2648 pmb->vport ? pmb->vport->vpi : 0,
2649 pmbox->mbxCommand,
2650 lpfc_sli_config_mbox_subsys_get(phba,
2651 pmb),
2652 lpfc_sli_config_mbox_opcode_get(phba,
2653 pmb));
2654 phba->link_state = LPFC_HBA_ERROR;
2655 phba->work_hs = HS_FFER3;
2656 lpfc_handle_eratt(phba);
2657 continue;
2660 if (pmbox->mbxStatus) {
2661 phba->sli.slistat.mbox_stat_err++;
2662 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2663 /* Mbox cmd cmpl error - RETRYing */
2664 lpfc_printf_log(phba, KERN_INFO,
2665 LOG_MBOX | LOG_SLI,
2666 "(%d):0305 Mbox cmd cmpl "
2667 "error - RETRYing Data: x%x "
2668 "(x%x/x%x) x%x x%x x%x\n",
2669 pmb->vport ? pmb->vport->vpi : 0,
2670 pmbox->mbxCommand,
2671 lpfc_sli_config_mbox_subsys_get(phba,
2672 pmb),
2673 lpfc_sli_config_mbox_opcode_get(phba,
2674 pmb),
2675 pmbox->mbxStatus,
2676 pmbox->un.varWords[0],
2677 pmb->vport->port_state);
2678 pmbox->mbxStatus = 0;
2679 pmbox->mbxOwner = OWN_HOST;
2680 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2681 if (rc != MBX_NOT_FINISHED)
2682 continue;
2686 /* Mailbox cmd <cmd> Cmpl <cmpl> */
2687 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2688 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p "
2689 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2690 "x%x x%x x%x\n",
2691 pmb->vport ? pmb->vport->vpi : 0,
2692 pmbox->mbxCommand,
2693 lpfc_sli_config_mbox_subsys_get(phba, pmb),
2694 lpfc_sli_config_mbox_opcode_get(phba, pmb),
2695 pmb->mbox_cmpl,
2696 *((uint32_t *) pmbox),
2697 pmbox->un.varWords[0],
2698 pmbox->un.varWords[1],
2699 pmbox->un.varWords[2],
2700 pmbox->un.varWords[3],
2701 pmbox->un.varWords[4],
2702 pmbox->un.varWords[5],
2703 pmbox->un.varWords[6],
2704 pmbox->un.varWords[7],
2705 pmbox->un.varWords[8],
2706 pmbox->un.varWords[9],
2707 pmbox->un.varWords[10]);
2709 if (pmb->mbox_cmpl)
2710 pmb->mbox_cmpl(phba,pmb);
2711 } while (1);
2712 return 0;
2716 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2717 * @phba: Pointer to HBA context object.
2718 * @pring: Pointer to driver SLI ring object.
2719 * @tag: buffer tag.
2721 * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2722 * is set in the tag the buffer is posted for a particular exchange,
2723 * the function will return the buffer without replacing the buffer.
2724 * If the buffer is for unsolicited ELS or CT traffic, this function
2725 * returns the buffer and also posts another buffer to the firmware.
2727 static struct lpfc_dmabuf *
2728 lpfc_sli_get_buff(struct lpfc_hba *phba,
2729 struct lpfc_sli_ring *pring,
2730 uint32_t tag)
2732 struct hbq_dmabuf *hbq_entry;
2734 if (tag & QUE_BUFTAG_BIT)
2735 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2736 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2737 if (!hbq_entry)
2738 return NULL;
2739 return &hbq_entry->dbuf;
2743 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
2744 * @phba: Pointer to HBA context object.
2745 * @pring: Pointer to driver SLI ring object.
2746 * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
2747 * @fch_r_ctl: the r_ctl for the first frame of the sequence.
2748 * @fch_type: the type for the first frame of the sequence.
2750 * This function is called with no lock held. This function uses the r_ctl and
2751 * type of the received sequence to find the correct callback function to call
2752 * to process the sequence.
2754 static int
2755 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2756 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
2757 uint32_t fch_type)
2759 int i;
2761 switch (fch_type) {
2762 case FC_TYPE_NVME:
2763 lpfc_nvmet_unsol_ls_event(phba, pring, saveq);
2764 return 1;
2765 default:
2766 break;
2769 /* unSolicited Responses */
2770 if (pring->prt[0].profile) {
2771 if (pring->prt[0].lpfc_sli_rcv_unsol_event)
2772 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
2773 saveq);
2774 return 1;
2776 /* We must search, based on rctl / type
2777 for the right routine */
2778 for (i = 0; i < pring->num_mask; i++) {
2779 if ((pring->prt[i].rctl == fch_r_ctl) &&
2780 (pring->prt[i].type == fch_type)) {
2781 if (pring->prt[i].lpfc_sli_rcv_unsol_event)
2782 (pring->prt[i].lpfc_sli_rcv_unsol_event)
2783 (phba, pring, saveq);
2784 return 1;
2787 return 0;
2791 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
2792 * @phba: Pointer to HBA context object.
2793 * @pring: Pointer to driver SLI ring object.
2794 * @saveq: Pointer to the unsolicited iocb.
2796 * This function is called with no lock held by the ring event handler
2797 * when there is an unsolicited iocb posted to the response ring by the
2798 * firmware. This function gets the buffer associated with the iocbs
2799 * and calls the event handler for the ring. This function handles both
2800 * qring buffers and hbq buffers.
2801 * When the function returns 1 the caller can free the iocb object otherwise
2802 * upper layer functions will free the iocb objects.
2804 static int
2805 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2806 struct lpfc_iocbq *saveq)
2808 IOCB_t * irsp;
2809 WORD5 * w5p;
2810 uint32_t Rctl, Type;
2811 struct lpfc_iocbq *iocbq;
2812 struct lpfc_dmabuf *dmzbuf;
2814 irsp = &(saveq->iocb);
2816 if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
2817 if (pring->lpfc_sli_rcv_async_status)
2818 pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
2819 else
2820 lpfc_printf_log(phba,
2821 KERN_WARNING,
2822 LOG_SLI,
2823 "0316 Ring %d handler: unexpected "
2824 "ASYNC_STATUS iocb received evt_code "
2825 "0x%x\n",
2826 pring->ringno,
2827 irsp->un.asyncstat.evt_code);
2828 return 1;
2831 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
2832 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
2833 if (irsp->ulpBdeCount > 0) {
2834 dmzbuf = lpfc_sli_get_buff(phba, pring,
2835 irsp->un.ulpWord[3]);
2836 lpfc_in_buf_free(phba, dmzbuf);
2839 if (irsp->ulpBdeCount > 1) {
2840 dmzbuf = lpfc_sli_get_buff(phba, pring,
2841 irsp->unsli3.sli3Words[3]);
2842 lpfc_in_buf_free(phba, dmzbuf);
2845 if (irsp->ulpBdeCount > 2) {
2846 dmzbuf = lpfc_sli_get_buff(phba, pring,
2847 irsp->unsli3.sli3Words[7]);
2848 lpfc_in_buf_free(phba, dmzbuf);
2851 return 1;
2854 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
2855 if (irsp->ulpBdeCount != 0) {
2856 saveq->context2 = lpfc_sli_get_buff(phba, pring,
2857 irsp->un.ulpWord[3]);
2858 if (!saveq->context2)
2859 lpfc_printf_log(phba,
2860 KERN_ERR,
2861 LOG_SLI,
2862 "0341 Ring %d Cannot find buffer for "
2863 "an unsolicited iocb. tag 0x%x\n",
2864 pring->ringno,
2865 irsp->un.ulpWord[3]);
2867 if (irsp->ulpBdeCount == 2) {
2868 saveq->context3 = lpfc_sli_get_buff(phba, pring,
2869 irsp->unsli3.sli3Words[7]);
2870 if (!saveq->context3)
2871 lpfc_printf_log(phba,
2872 KERN_ERR,
2873 LOG_SLI,
2874 "0342 Ring %d Cannot find buffer for an"
2875 " unsolicited iocb. tag 0x%x\n",
2876 pring->ringno,
2877 irsp->unsli3.sli3Words[7]);
2879 list_for_each_entry(iocbq, &saveq->list, list) {
2880 irsp = &(iocbq->iocb);
2881 if (irsp->ulpBdeCount != 0) {
2882 iocbq->context2 = lpfc_sli_get_buff(phba, pring,
2883 irsp->un.ulpWord[3]);
2884 if (!iocbq->context2)
2885 lpfc_printf_log(phba,
2886 KERN_ERR,
2887 LOG_SLI,
2888 "0343 Ring %d Cannot find "
2889 "buffer for an unsolicited iocb"
2890 ". tag 0x%x\n", pring->ringno,
2891 irsp->un.ulpWord[3]);
2893 if (irsp->ulpBdeCount == 2) {
2894 iocbq->context3 = lpfc_sli_get_buff(phba, pring,
2895 irsp->unsli3.sli3Words[7]);
2896 if (!iocbq->context3)
2897 lpfc_printf_log(phba,
2898 KERN_ERR,
2899 LOG_SLI,
2900 "0344 Ring %d Cannot find "
2901 "buffer for an unsolicited "
2902 "iocb. tag 0x%x\n",
2903 pring->ringno,
2904 irsp->unsli3.sli3Words[7]);
2908 if (irsp->ulpBdeCount != 0 &&
2909 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
2910 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
2911 int found = 0;
2913 /* search continue save q for same XRI */
2914 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
2915 if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
2916 saveq->iocb.unsli3.rcvsli3.ox_id) {
2917 list_add_tail(&saveq->list, &iocbq->list);
2918 found = 1;
2919 break;
2922 if (!found)
2923 list_add_tail(&saveq->clist,
2924 &pring->iocb_continue_saveq);
2925 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
2926 list_del_init(&iocbq->clist);
2927 saveq = iocbq;
2928 irsp = &(saveq->iocb);
2929 } else
2930 return 0;
2932 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
2933 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
2934 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
2935 Rctl = FC_RCTL_ELS_REQ;
2936 Type = FC_TYPE_ELS;
2937 } else {
2938 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
2939 Rctl = w5p->hcsw.Rctl;
2940 Type = w5p->hcsw.Type;
2942 /* Firmware Workaround */
2943 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
2944 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
2945 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
2946 Rctl = FC_RCTL_ELS_REQ;
2947 Type = FC_TYPE_ELS;
2948 w5p->hcsw.Rctl = Rctl;
2949 w5p->hcsw.Type = Type;
2953 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
2954 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2955 "0313 Ring %d handler: unexpected Rctl x%x "
2956 "Type x%x received\n",
2957 pring->ringno, Rctl, Type);
2959 return 1;
2963 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
2964 * @phba: Pointer to HBA context object.
2965 * @pring: Pointer to driver SLI ring object.
2966 * @prspiocb: Pointer to response iocb object.
2968 * This function looks up the iocb_lookup table to get the command iocb
2969 * corresponding to the given response iocb using the iotag of the
2970 * response iocb. This function is called with the hbalock held
2971 * for sli3 devices or the ring_lock for sli4 devices.
2972 * This function returns the command iocb object if it finds the command
2973 * iocb else returns NULL.
2975 static struct lpfc_iocbq *
2976 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
2977 struct lpfc_sli_ring *pring,
2978 struct lpfc_iocbq *prspiocb)
2980 struct lpfc_iocbq *cmd_iocb = NULL;
2981 uint16_t iotag;
2982 lockdep_assert_held(&phba->hbalock);
2984 iotag = prspiocb->iocb.ulpIoTag;
2986 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
2987 cmd_iocb = phba->sli.iocbq_lookup[iotag];
2988 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
2989 /* remove from txcmpl queue list */
2990 list_del_init(&cmd_iocb->list);
2991 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
2992 pring->txcmplq_cnt--;
2993 return cmd_iocb;
2997 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2998 "0317 iotag x%x is out of "
2999 "range: max iotag x%x wd0 x%x\n",
3000 iotag, phba->sli.last_iotag,
3001 *(((uint32_t *) &prspiocb->iocb) + 7));
3002 return NULL;
3006 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3007 * @phba: Pointer to HBA context object.
3008 * @pring: Pointer to driver SLI ring object.
3009 * @iotag: IOCB tag.
3011 * This function looks up the iocb_lookup table to get the command iocb
3012 * corresponding to the given iotag. This function is called with the
3013 * hbalock held.
3014 * This function returns the command iocb object if it finds the command
3015 * iocb else returns NULL.
3017 static struct lpfc_iocbq *
3018 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3019 struct lpfc_sli_ring *pring, uint16_t iotag)
3021 struct lpfc_iocbq *cmd_iocb = NULL;
3023 lockdep_assert_held(&phba->hbalock);
3024 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3025 cmd_iocb = phba->sli.iocbq_lookup[iotag];
3026 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3027 /* remove from txcmpl queue list */
3028 list_del_init(&cmd_iocb->list);
3029 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3030 pring->txcmplq_cnt--;
3031 return cmd_iocb;
3035 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3036 "0372 iotag x%x lookup error: max iotag (x%x) "
3037 "iocb_flag x%x\n",
3038 iotag, phba->sli.last_iotag,
3039 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
3040 return NULL;
3044 * lpfc_sli_process_sol_iocb - process solicited iocb completion
3045 * @phba: Pointer to HBA context object.
3046 * @pring: Pointer to driver SLI ring object.
3047 * @saveq: Pointer to the response iocb to be processed.
3049 * This function is called by the ring event handler for non-fcp
3050 * rings when there is a new response iocb in the response ring.
3051 * The caller is not required to hold any locks. This function
3052 * gets the command iocb associated with the response iocb and
3053 * calls the completion handler for the command iocb. If there
3054 * is no completion handler, the function will free the resources
3055 * associated with command iocb. If the response iocb is for
3056 * an already aborted command iocb, the status of the completion
3057 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3058 * This function always returns 1.
3060 static int
3061 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3062 struct lpfc_iocbq *saveq)
3064 struct lpfc_iocbq *cmdiocbp;
3065 int rc = 1;
3066 unsigned long iflag;
3068 /* Based on the iotag field, get the cmd IOCB from the txcmplq */
3069 if (phba->sli_rev == LPFC_SLI_REV4)
3070 spin_lock_irqsave(&pring->ring_lock, iflag);
3071 else
3072 spin_lock_irqsave(&phba->hbalock, iflag);
3073 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3074 if (phba->sli_rev == LPFC_SLI_REV4)
3075 spin_unlock_irqrestore(&pring->ring_lock, iflag);
3076 else
3077 spin_unlock_irqrestore(&phba->hbalock, iflag);
3079 if (cmdiocbp) {
3080 if (cmdiocbp->iocb_cmpl) {
3082 * If an ELS command failed send an event to mgmt
3083 * application.
3085 if (saveq->iocb.ulpStatus &&
3086 (pring->ringno == LPFC_ELS_RING) &&
3087 (cmdiocbp->iocb.ulpCommand ==
3088 CMD_ELS_REQUEST64_CR))
3089 lpfc_send_els_failure_event(phba,
3090 cmdiocbp, saveq);
3093 * Post all ELS completions to the worker thread.
3094 * All other are passed to the completion callback.
3096 if (pring->ringno == LPFC_ELS_RING) {
3097 if ((phba->sli_rev < LPFC_SLI_REV4) &&
3098 (cmdiocbp->iocb_flag &
3099 LPFC_DRIVER_ABORTED)) {
3100 spin_lock_irqsave(&phba->hbalock,
3101 iflag);
3102 cmdiocbp->iocb_flag &=
3103 ~LPFC_DRIVER_ABORTED;
3104 spin_unlock_irqrestore(&phba->hbalock,
3105 iflag);
3106 saveq->iocb.ulpStatus =
3107 IOSTAT_LOCAL_REJECT;
3108 saveq->iocb.un.ulpWord[4] =
3109 IOERR_SLI_ABORTED;
3111 /* Firmware could still be in progress
3112 * of DMAing payload, so don't free data
3113 * buffer till after a hbeat.
3115 spin_lock_irqsave(&phba->hbalock,
3116 iflag);
3117 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
3118 spin_unlock_irqrestore(&phba->hbalock,
3119 iflag);
3121 if (phba->sli_rev == LPFC_SLI_REV4) {
3122 if (saveq->iocb_flag &
3123 LPFC_EXCHANGE_BUSY) {
3124 /* Set cmdiocb flag for the
3125 * exchange busy so sgl (xri)
3126 * will not be released until
3127 * the abort xri is received
3128 * from hba.
3130 spin_lock_irqsave(
3131 &phba->hbalock, iflag);
3132 cmdiocbp->iocb_flag |=
3133 LPFC_EXCHANGE_BUSY;
3134 spin_unlock_irqrestore(
3135 &phba->hbalock, iflag);
3137 if (cmdiocbp->iocb_flag &
3138 LPFC_DRIVER_ABORTED) {
3140 * Clear LPFC_DRIVER_ABORTED
3141 * bit in case it was driver
3142 * initiated abort.
3144 spin_lock_irqsave(
3145 &phba->hbalock, iflag);
3146 cmdiocbp->iocb_flag &=
3147 ~LPFC_DRIVER_ABORTED;
3148 spin_unlock_irqrestore(
3149 &phba->hbalock, iflag);
3150 cmdiocbp->iocb.ulpStatus =
3151 IOSTAT_LOCAL_REJECT;
3152 cmdiocbp->iocb.un.ulpWord[4] =
3153 IOERR_ABORT_REQUESTED;
3155 * For SLI4, irsiocb contains
3156 * NO_XRI in sli_xritag, it
3157 * shall not affect releasing
3158 * sgl (xri) process.
3160 saveq->iocb.ulpStatus =
3161 IOSTAT_LOCAL_REJECT;
3162 saveq->iocb.un.ulpWord[4] =
3163 IOERR_SLI_ABORTED;
3164 spin_lock_irqsave(
3165 &phba->hbalock, iflag);
3166 saveq->iocb_flag |=
3167 LPFC_DELAY_MEM_FREE;
3168 spin_unlock_irqrestore(
3169 &phba->hbalock, iflag);
3173 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
3174 } else
3175 lpfc_sli_release_iocbq(phba, cmdiocbp);
3176 } else {
3178 * Unknown initiating command based on the response iotag.
3179 * This could be the case on the ELS ring because of
3180 * lpfc_els_abort().
3182 if (pring->ringno != LPFC_ELS_RING) {
3184 * Ring <ringno> handler: unexpected completion IoTag
3185 * <IoTag>
3187 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3188 "0322 Ring %d handler: "
3189 "unexpected completion IoTag x%x "
3190 "Data: x%x x%x x%x x%x\n",
3191 pring->ringno,
3192 saveq->iocb.ulpIoTag,
3193 saveq->iocb.ulpStatus,
3194 saveq->iocb.un.ulpWord[4],
3195 saveq->iocb.ulpCommand,
3196 saveq->iocb.ulpContext);
3200 return rc;
3204 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3205 * @phba: Pointer to HBA context object.
3206 * @pring: Pointer to driver SLI ring object.
3208 * This function is called from the iocb ring event handlers when
3209 * put pointer is ahead of the get pointer for a ring. This function signal
3210 * an error attention condition to the worker thread and the worker
3211 * thread will transition the HBA to offline state.
3213 static void
3214 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3216 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3218 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3219 * rsp ring <portRspMax>
3221 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3222 "0312 Ring %d handler: portRspPut %d "
3223 "is bigger than rsp ring %d\n",
3224 pring->ringno, le32_to_cpu(pgp->rspPutInx),
3225 pring->sli.sli3.numRiocb);
3227 phba->link_state = LPFC_HBA_ERROR;
3230 * All error attention handlers are posted to
3231 * worker thread
3233 phba->work_ha |= HA_ERATT;
3234 phba->work_hs = HS_FFER3;
3236 lpfc_worker_wake_up(phba);
3238 return;
3242 * lpfc_poll_eratt - Error attention polling timer timeout handler
3243 * @ptr: Pointer to address of HBA context object.
3245 * This function is invoked by the Error Attention polling timer when the
3246 * timer times out. It will check the SLI Error Attention register for
3247 * possible attention events. If so, it will post an Error Attention event
3248 * and wake up worker thread to process it. Otherwise, it will set up the
3249 * Error Attention polling timer for the next poll.
3251 void lpfc_poll_eratt(struct timer_list *t)
3253 struct lpfc_hba *phba;
3254 uint32_t eratt = 0;
3255 uint64_t sli_intr, cnt;
3257 phba = from_timer(phba, t, eratt_poll);
3259 /* Here we will also keep track of interrupts per sec of the hba */
3260 sli_intr = phba->sli.slistat.sli_intr;
3262 if (phba->sli.slistat.sli_prev_intr > sli_intr)
3263 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3264 sli_intr);
3265 else
3266 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3268 /* 64-bit integer division not supported on 32-bit x86 - use do_div */
3269 do_div(cnt, phba->eratt_poll_interval);
3270 phba->sli.slistat.sli_ips = cnt;
3272 phba->sli.slistat.sli_prev_intr = sli_intr;
3274 /* Check chip HA register for error event */
3275 eratt = lpfc_sli_check_eratt(phba);
3277 if (eratt)
3278 /* Tell the worker thread there is work to do */
3279 lpfc_worker_wake_up(phba);
3280 else
3281 /* Restart the timer for next eratt poll */
3282 mod_timer(&phba->eratt_poll,
3283 jiffies +
3284 msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3285 return;
3290 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3291 * @phba: Pointer to HBA context object.
3292 * @pring: Pointer to driver SLI ring object.
3293 * @mask: Host attention register mask for this ring.
3295 * This function is called from the interrupt context when there is a ring
3296 * event for the fcp ring. The caller does not hold any lock.
3297 * The function processes each response iocb in the response ring until it
3298 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3299 * LE bit set. The function will call the completion handler of the command iocb
3300 * if the response iocb indicates a completion for a command iocb or it is
3301 * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3302 * function if this is an unsolicited iocb.
3303 * This routine presumes LPFC_FCP_RING handling and doesn't bother
3304 * to check it explicitly.
3307 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3308 struct lpfc_sli_ring *pring, uint32_t mask)
3310 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3311 IOCB_t *irsp = NULL;
3312 IOCB_t *entry = NULL;
3313 struct lpfc_iocbq *cmdiocbq = NULL;
3314 struct lpfc_iocbq rspiocbq;
3315 uint32_t status;
3316 uint32_t portRspPut, portRspMax;
3317 int rc = 1;
3318 lpfc_iocb_type type;
3319 unsigned long iflag;
3320 uint32_t rsp_cmpl = 0;
3322 spin_lock_irqsave(&phba->hbalock, iflag);
3323 pring->stats.iocb_event++;
3326 * The next available response entry should never exceed the maximum
3327 * entries. If it does, treat it as an adapter hardware error.
3329 portRspMax = pring->sli.sli3.numRiocb;
3330 portRspPut = le32_to_cpu(pgp->rspPutInx);
3331 if (unlikely(portRspPut >= portRspMax)) {
3332 lpfc_sli_rsp_pointers_error(phba, pring);
3333 spin_unlock_irqrestore(&phba->hbalock, iflag);
3334 return 1;
3336 if (phba->fcp_ring_in_use) {
3337 spin_unlock_irqrestore(&phba->hbalock, iflag);
3338 return 1;
3339 } else
3340 phba->fcp_ring_in_use = 1;
3342 rmb();
3343 while (pring->sli.sli3.rspidx != portRspPut) {
3345 * Fetch an entry off the ring and copy it into a local data
3346 * structure. The copy involves a byte-swap since the
3347 * network byte order and pci byte orders are different.
3349 entry = lpfc_resp_iocb(phba, pring);
3350 phba->last_completion_time = jiffies;
3352 if (++pring->sli.sli3.rspidx >= portRspMax)
3353 pring->sli.sli3.rspidx = 0;
3355 lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3356 (uint32_t *) &rspiocbq.iocb,
3357 phba->iocb_rsp_size);
3358 INIT_LIST_HEAD(&(rspiocbq.list));
3359 irsp = &rspiocbq.iocb;
3361 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3362 pring->stats.iocb_rsp++;
3363 rsp_cmpl++;
3365 if (unlikely(irsp->ulpStatus)) {
3367 * If resource errors reported from HBA, reduce
3368 * queuedepths of the SCSI device.
3370 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3371 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3372 IOERR_NO_RESOURCES)) {
3373 spin_unlock_irqrestore(&phba->hbalock, iflag);
3374 phba->lpfc_rampdown_queue_depth(phba);
3375 spin_lock_irqsave(&phba->hbalock, iflag);
3378 /* Rsp ring <ringno> error: IOCB */
3379 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3380 "0336 Rsp Ring %d error: IOCB Data: "
3381 "x%x x%x x%x x%x x%x x%x x%x x%x\n",
3382 pring->ringno,
3383 irsp->un.ulpWord[0],
3384 irsp->un.ulpWord[1],
3385 irsp->un.ulpWord[2],
3386 irsp->un.ulpWord[3],
3387 irsp->un.ulpWord[4],
3388 irsp->un.ulpWord[5],
3389 *(uint32_t *)&irsp->un1,
3390 *((uint32_t *)&irsp->un1 + 1));
3393 switch (type) {
3394 case LPFC_ABORT_IOCB:
3395 case LPFC_SOL_IOCB:
3397 * Idle exchange closed via ABTS from port. No iocb
3398 * resources need to be recovered.
3400 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3401 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3402 "0333 IOCB cmd 0x%x"
3403 " processed. Skipping"
3404 " completion\n",
3405 irsp->ulpCommand);
3406 break;
3409 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3410 &rspiocbq);
3411 if (unlikely(!cmdiocbq))
3412 break;
3413 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3414 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3415 if (cmdiocbq->iocb_cmpl) {
3416 spin_unlock_irqrestore(&phba->hbalock, iflag);
3417 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3418 &rspiocbq);
3419 spin_lock_irqsave(&phba->hbalock, iflag);
3421 break;
3422 case LPFC_UNSOL_IOCB:
3423 spin_unlock_irqrestore(&phba->hbalock, iflag);
3424 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3425 spin_lock_irqsave(&phba->hbalock, iflag);
3426 break;
3427 default:
3428 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3429 char adaptermsg[LPFC_MAX_ADPTMSG];
3430 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3431 memcpy(&adaptermsg[0], (uint8_t *) irsp,
3432 MAX_MSG_DATA);
3433 dev_warn(&((phba->pcidev)->dev),
3434 "lpfc%d: %s\n",
3435 phba->brd_no, adaptermsg);
3436 } else {
3437 /* Unknown IOCB command */
3438 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3439 "0334 Unknown IOCB command "
3440 "Data: x%x, x%x x%x x%x x%x\n",
3441 type, irsp->ulpCommand,
3442 irsp->ulpStatus,
3443 irsp->ulpIoTag,
3444 irsp->ulpContext);
3446 break;
3450 * The response IOCB has been processed. Update the ring
3451 * pointer in SLIM. If the port response put pointer has not
3452 * been updated, sync the pgp->rspPutInx and fetch the new port
3453 * response put pointer.
3455 writel(pring->sli.sli3.rspidx,
3456 &phba->host_gp[pring->ringno].rspGetInx);
3458 if (pring->sli.sli3.rspidx == portRspPut)
3459 portRspPut = le32_to_cpu(pgp->rspPutInx);
3462 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3463 pring->stats.iocb_rsp_full++;
3464 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3465 writel(status, phba->CAregaddr);
3466 readl(phba->CAregaddr);
3468 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3469 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3470 pring->stats.iocb_cmd_empty++;
3472 /* Force update of the local copy of cmdGetInx */
3473 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3474 lpfc_sli_resume_iocb(phba, pring);
3476 if ((pring->lpfc_sli_cmd_available))
3477 (pring->lpfc_sli_cmd_available) (phba, pring);
3481 phba->fcp_ring_in_use = 0;
3482 spin_unlock_irqrestore(&phba->hbalock, iflag);
3483 return rc;
3487 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3488 * @phba: Pointer to HBA context object.
3489 * @pring: Pointer to driver SLI ring object.
3490 * @rspiocbp: Pointer to driver response IOCB object.
3492 * This function is called from the worker thread when there is a slow-path
3493 * response IOCB to process. This function chains all the response iocbs until
3494 * seeing the iocb with the LE bit set. The function will call
3495 * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3496 * completion of a command iocb. The function will call the
3497 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3498 * The function frees the resources or calls the completion handler if this
3499 * iocb is an abort completion. The function returns NULL when the response
3500 * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3501 * this function shall chain the iocb on to the iocb_continueq and return the
3502 * response iocb passed in.
3504 static struct lpfc_iocbq *
3505 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3506 struct lpfc_iocbq *rspiocbp)
3508 struct lpfc_iocbq *saveq;
3509 struct lpfc_iocbq *cmdiocbp;
3510 struct lpfc_iocbq *next_iocb;
3511 IOCB_t *irsp = NULL;
3512 uint32_t free_saveq;
3513 uint8_t iocb_cmd_type;
3514 lpfc_iocb_type type;
3515 unsigned long iflag;
3516 int rc;
3518 spin_lock_irqsave(&phba->hbalock, iflag);
3519 /* First add the response iocb to the countinueq list */
3520 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3521 pring->iocb_continueq_cnt++;
3523 /* Now, determine whether the list is completed for processing */
3524 irsp = &rspiocbp->iocb;
3525 if (irsp->ulpLe) {
3527 * By default, the driver expects to free all resources
3528 * associated with this iocb completion.
3530 free_saveq = 1;
3531 saveq = list_get_first(&pring->iocb_continueq,
3532 struct lpfc_iocbq, list);
3533 irsp = &(saveq->iocb);
3534 list_del_init(&pring->iocb_continueq);
3535 pring->iocb_continueq_cnt = 0;
3537 pring->stats.iocb_rsp++;
3540 * If resource errors reported from HBA, reduce
3541 * queuedepths of the SCSI device.
3543 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3544 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3545 IOERR_NO_RESOURCES)) {
3546 spin_unlock_irqrestore(&phba->hbalock, iflag);
3547 phba->lpfc_rampdown_queue_depth(phba);
3548 spin_lock_irqsave(&phba->hbalock, iflag);
3551 if (irsp->ulpStatus) {
3552 /* Rsp ring <ringno> error: IOCB */
3553 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3554 "0328 Rsp Ring %d error: "
3555 "IOCB Data: "
3556 "x%x x%x x%x x%x "
3557 "x%x x%x x%x x%x "
3558 "x%x x%x x%x x%x "
3559 "x%x x%x x%x x%x\n",
3560 pring->ringno,
3561 irsp->un.ulpWord[0],
3562 irsp->un.ulpWord[1],
3563 irsp->un.ulpWord[2],
3564 irsp->un.ulpWord[3],
3565 irsp->un.ulpWord[4],
3566 irsp->un.ulpWord[5],
3567 *(((uint32_t *) irsp) + 6),
3568 *(((uint32_t *) irsp) + 7),
3569 *(((uint32_t *) irsp) + 8),
3570 *(((uint32_t *) irsp) + 9),
3571 *(((uint32_t *) irsp) + 10),
3572 *(((uint32_t *) irsp) + 11),
3573 *(((uint32_t *) irsp) + 12),
3574 *(((uint32_t *) irsp) + 13),
3575 *(((uint32_t *) irsp) + 14),
3576 *(((uint32_t *) irsp) + 15));
3580 * Fetch the IOCB command type and call the correct completion
3581 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3582 * get freed back to the lpfc_iocb_list by the discovery
3583 * kernel thread.
3585 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3586 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3587 switch (type) {
3588 case LPFC_SOL_IOCB:
3589 spin_unlock_irqrestore(&phba->hbalock, iflag);
3590 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3591 spin_lock_irqsave(&phba->hbalock, iflag);
3592 break;
3594 case LPFC_UNSOL_IOCB:
3595 spin_unlock_irqrestore(&phba->hbalock, iflag);
3596 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3597 spin_lock_irqsave(&phba->hbalock, iflag);
3598 if (!rc)
3599 free_saveq = 0;
3600 break;
3602 case LPFC_ABORT_IOCB:
3603 cmdiocbp = NULL;
3604 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX)
3605 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3606 saveq);
3607 if (cmdiocbp) {
3608 /* Call the specified completion routine */
3609 if (cmdiocbp->iocb_cmpl) {
3610 spin_unlock_irqrestore(&phba->hbalock,
3611 iflag);
3612 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3613 saveq);
3614 spin_lock_irqsave(&phba->hbalock,
3615 iflag);
3616 } else
3617 __lpfc_sli_release_iocbq(phba,
3618 cmdiocbp);
3620 break;
3622 case LPFC_UNKNOWN_IOCB:
3623 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3624 char adaptermsg[LPFC_MAX_ADPTMSG];
3625 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3626 memcpy(&adaptermsg[0], (uint8_t *)irsp,
3627 MAX_MSG_DATA);
3628 dev_warn(&((phba->pcidev)->dev),
3629 "lpfc%d: %s\n",
3630 phba->brd_no, adaptermsg);
3631 } else {
3632 /* Unknown IOCB command */
3633 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3634 "0335 Unknown IOCB "
3635 "command Data: x%x "
3636 "x%x x%x x%x\n",
3637 irsp->ulpCommand,
3638 irsp->ulpStatus,
3639 irsp->ulpIoTag,
3640 irsp->ulpContext);
3642 break;
3645 if (free_saveq) {
3646 list_for_each_entry_safe(rspiocbp, next_iocb,
3647 &saveq->list, list) {
3648 list_del_init(&rspiocbp->list);
3649 __lpfc_sli_release_iocbq(phba, rspiocbp);
3651 __lpfc_sli_release_iocbq(phba, saveq);
3653 rspiocbp = NULL;
3655 spin_unlock_irqrestore(&phba->hbalock, iflag);
3656 return rspiocbp;
3660 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3661 * @phba: Pointer to HBA context object.
3662 * @pring: Pointer to driver SLI ring object.
3663 * @mask: Host attention register mask for this ring.
3665 * This routine wraps the actual slow_ring event process routine from the
3666 * API jump table function pointer from the lpfc_hba struct.
3668 void
3669 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3670 struct lpfc_sli_ring *pring, uint32_t mask)
3672 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3676 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3677 * @phba: Pointer to HBA context object.
3678 * @pring: Pointer to driver SLI ring object.
3679 * @mask: Host attention register mask for this ring.
3681 * This function is called from the worker thread when there is a ring event
3682 * for non-fcp rings. The caller does not hold any lock. The function will
3683 * remove each response iocb in the response ring and calls the handle
3684 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3686 static void
3687 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3688 struct lpfc_sli_ring *pring, uint32_t mask)
3690 struct lpfc_pgp *pgp;
3691 IOCB_t *entry;
3692 IOCB_t *irsp = NULL;
3693 struct lpfc_iocbq *rspiocbp = NULL;
3694 uint32_t portRspPut, portRspMax;
3695 unsigned long iflag;
3696 uint32_t status;
3698 pgp = &phba->port_gp[pring->ringno];
3699 spin_lock_irqsave(&phba->hbalock, iflag);
3700 pring->stats.iocb_event++;
3703 * The next available response entry should never exceed the maximum
3704 * entries. If it does, treat it as an adapter hardware error.
3706 portRspMax = pring->sli.sli3.numRiocb;
3707 portRspPut = le32_to_cpu(pgp->rspPutInx);
3708 if (portRspPut >= portRspMax) {
3710 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3711 * rsp ring <portRspMax>
3713 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3714 "0303 Ring %d handler: portRspPut %d "
3715 "is bigger than rsp ring %d\n",
3716 pring->ringno, portRspPut, portRspMax);
3718 phba->link_state = LPFC_HBA_ERROR;
3719 spin_unlock_irqrestore(&phba->hbalock, iflag);
3721 phba->work_hs = HS_FFER3;
3722 lpfc_handle_eratt(phba);
3724 return;
3727 rmb();
3728 while (pring->sli.sli3.rspidx != portRspPut) {
3730 * Build a completion list and call the appropriate handler.
3731 * The process is to get the next available response iocb, get
3732 * a free iocb from the list, copy the response data into the
3733 * free iocb, insert to the continuation list, and update the
3734 * next response index to slim. This process makes response
3735 * iocb's in the ring available to DMA as fast as possible but
3736 * pays a penalty for a copy operation. Since the iocb is
3737 * only 32 bytes, this penalty is considered small relative to
3738 * the PCI reads for register values and a slim write. When
3739 * the ulpLe field is set, the entire Command has been
3740 * received.
3742 entry = lpfc_resp_iocb(phba, pring);
3744 phba->last_completion_time = jiffies;
3745 rspiocbp = __lpfc_sli_get_iocbq(phba);
3746 if (rspiocbp == NULL) {
3747 printk(KERN_ERR "%s: out of buffers! Failing "
3748 "completion.\n", __func__);
3749 break;
3752 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
3753 phba->iocb_rsp_size);
3754 irsp = &rspiocbp->iocb;
3756 if (++pring->sli.sli3.rspidx >= portRspMax)
3757 pring->sli.sli3.rspidx = 0;
3759 if (pring->ringno == LPFC_ELS_RING) {
3760 lpfc_debugfs_slow_ring_trc(phba,
3761 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x",
3762 *(((uint32_t *) irsp) + 4),
3763 *(((uint32_t *) irsp) + 6),
3764 *(((uint32_t *) irsp) + 7));
3767 writel(pring->sli.sli3.rspidx,
3768 &phba->host_gp[pring->ringno].rspGetInx);
3770 spin_unlock_irqrestore(&phba->hbalock, iflag);
3771 /* Handle the response IOCB */
3772 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
3773 spin_lock_irqsave(&phba->hbalock, iflag);
3776 * If the port response put pointer has not been updated, sync
3777 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
3778 * response put pointer.
3780 if (pring->sli.sli3.rspidx == portRspPut) {
3781 portRspPut = le32_to_cpu(pgp->rspPutInx);
3783 } /* while (pring->sli.sli3.rspidx != portRspPut) */
3785 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
3786 /* At least one response entry has been freed */
3787 pring->stats.iocb_rsp_full++;
3788 /* SET RxRE_RSP in Chip Att register */
3789 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3790 writel(status, phba->CAregaddr);
3791 readl(phba->CAregaddr); /* flush */
3793 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3794 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3795 pring->stats.iocb_cmd_empty++;
3797 /* Force update of the local copy of cmdGetInx */
3798 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3799 lpfc_sli_resume_iocb(phba, pring);
3801 if ((pring->lpfc_sli_cmd_available))
3802 (pring->lpfc_sli_cmd_available) (phba, pring);
3806 spin_unlock_irqrestore(&phba->hbalock, iflag);
3807 return;
3811 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
3812 * @phba: Pointer to HBA context object.
3813 * @pring: Pointer to driver SLI ring object.
3814 * @mask: Host attention register mask for this ring.
3816 * This function is called from the worker thread when there is a pending
3817 * ELS response iocb on the driver internal slow-path response iocb worker
3818 * queue. The caller does not hold any lock. The function will remove each
3819 * response iocb from the response worker queue and calls the handle
3820 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3822 static void
3823 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
3824 struct lpfc_sli_ring *pring, uint32_t mask)
3826 struct lpfc_iocbq *irspiocbq;
3827 struct hbq_dmabuf *dmabuf;
3828 struct lpfc_cq_event *cq_event;
3829 unsigned long iflag;
3830 int count = 0;
3832 spin_lock_irqsave(&phba->hbalock, iflag);
3833 phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
3834 spin_unlock_irqrestore(&phba->hbalock, iflag);
3835 while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
3836 /* Get the response iocb from the head of work queue */
3837 spin_lock_irqsave(&phba->hbalock, iflag);
3838 list_remove_head(&phba->sli4_hba.sp_queue_event,
3839 cq_event, struct lpfc_cq_event, list);
3840 spin_unlock_irqrestore(&phba->hbalock, iflag);
3842 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
3843 case CQE_CODE_COMPL_WQE:
3844 irspiocbq = container_of(cq_event, struct lpfc_iocbq,
3845 cq_event);
3846 /* Translate ELS WCQE to response IOCBQ */
3847 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
3848 irspiocbq);
3849 if (irspiocbq)
3850 lpfc_sli_sp_handle_rspiocb(phba, pring,
3851 irspiocbq);
3852 count++;
3853 break;
3854 case CQE_CODE_RECEIVE:
3855 case CQE_CODE_RECEIVE_V1:
3856 dmabuf = container_of(cq_event, struct hbq_dmabuf,
3857 cq_event);
3858 lpfc_sli4_handle_received_buffer(phba, dmabuf);
3859 count++;
3860 break;
3861 default:
3862 break;
3865 /* Limit the number of events to 64 to avoid soft lockups */
3866 if (count == 64)
3867 break;
3872 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
3873 * @phba: Pointer to HBA context object.
3874 * @pring: Pointer to driver SLI ring object.
3876 * This function aborts all iocbs in the given ring and frees all the iocb
3877 * objects in txq. This function issues an abort iocb for all the iocb commands
3878 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3879 * the return of this function. The caller is not required to hold any locks.
3881 void
3882 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3884 LIST_HEAD(completions);
3885 struct lpfc_iocbq *iocb, *next_iocb;
3887 if (pring->ringno == LPFC_ELS_RING) {
3888 lpfc_fabric_abort_hba(phba);
3891 /* Error everything on txq and txcmplq
3892 * First do the txq.
3894 if (phba->sli_rev >= LPFC_SLI_REV4) {
3895 spin_lock_irq(&pring->ring_lock);
3896 list_splice_init(&pring->txq, &completions);
3897 pring->txq_cnt = 0;
3898 spin_unlock_irq(&pring->ring_lock);
3900 spin_lock_irq(&phba->hbalock);
3901 /* Next issue ABTS for everything on the txcmplq */
3902 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3903 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3904 spin_unlock_irq(&phba->hbalock);
3905 } else {
3906 spin_lock_irq(&phba->hbalock);
3907 list_splice_init(&pring->txq, &completions);
3908 pring->txq_cnt = 0;
3910 /* Next issue ABTS for everything on the txcmplq */
3911 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3912 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3913 spin_unlock_irq(&phba->hbalock);
3916 /* Cancel all the IOCBs from the completions list */
3917 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
3918 IOERR_SLI_ABORTED);
3922 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
3923 * @phba: Pointer to HBA context object.
3924 * @pring: Pointer to driver SLI ring object.
3926 * This function aborts all iocbs in FCP rings and frees all the iocb
3927 * objects in txq. This function issues an abort iocb for all the iocb commands
3928 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3929 * the return of this function. The caller is not required to hold any locks.
3931 void
3932 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
3934 struct lpfc_sli *psli = &phba->sli;
3935 struct lpfc_sli_ring *pring;
3936 uint32_t i;
3938 /* Look on all the FCP Rings for the iotag */
3939 if (phba->sli_rev >= LPFC_SLI_REV4) {
3940 for (i = 0; i < phba->cfg_hdw_queue; i++) {
3941 pring = phba->sli4_hba.hdwq[i].fcp_wq->pring;
3942 lpfc_sli_abort_iocb_ring(phba, pring);
3944 } else {
3945 pring = &psli->sli3_ring[LPFC_FCP_RING];
3946 lpfc_sli_abort_iocb_ring(phba, pring);
3951 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring
3952 * @phba: Pointer to HBA context object.
3954 * This function flushes all iocbs in the fcp ring and frees all the iocb
3955 * objects in txq and txcmplq. This function will not issue abort iocbs
3956 * for all the iocb commands in txcmplq, they will just be returned with
3957 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
3958 * slot has been permanently disabled.
3960 void
3961 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba)
3963 LIST_HEAD(txq);
3964 LIST_HEAD(txcmplq);
3965 struct lpfc_sli *psli = &phba->sli;
3966 struct lpfc_sli_ring *pring;
3967 uint32_t i;
3968 struct lpfc_iocbq *piocb, *next_iocb;
3970 spin_lock_irq(&phba->hbalock);
3971 /* Indicate the I/O queues are flushed */
3972 phba->hba_flag |= HBA_FCP_IOQ_FLUSH;
3973 spin_unlock_irq(&phba->hbalock);
3975 /* Look on all the FCP Rings for the iotag */
3976 if (phba->sli_rev >= LPFC_SLI_REV4) {
3977 for (i = 0; i < phba->cfg_hdw_queue; i++) {
3978 pring = phba->sli4_hba.hdwq[i].fcp_wq->pring;
3980 spin_lock_irq(&pring->ring_lock);
3981 /* Retrieve everything on txq */
3982 list_splice_init(&pring->txq, &txq);
3983 list_for_each_entry_safe(piocb, next_iocb,
3984 &pring->txcmplq, list)
3985 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3986 /* Retrieve everything on the txcmplq */
3987 list_splice_init(&pring->txcmplq, &txcmplq);
3988 pring->txq_cnt = 0;
3989 pring->txcmplq_cnt = 0;
3990 spin_unlock_irq(&pring->ring_lock);
3992 /* Flush the txq */
3993 lpfc_sli_cancel_iocbs(phba, &txq,
3994 IOSTAT_LOCAL_REJECT,
3995 IOERR_SLI_DOWN);
3996 /* Flush the txcmpq */
3997 lpfc_sli_cancel_iocbs(phba, &txcmplq,
3998 IOSTAT_LOCAL_REJECT,
3999 IOERR_SLI_DOWN);
4001 } else {
4002 pring = &psli->sli3_ring[LPFC_FCP_RING];
4004 spin_lock_irq(&phba->hbalock);
4005 /* Retrieve everything on txq */
4006 list_splice_init(&pring->txq, &txq);
4007 list_for_each_entry_safe(piocb, next_iocb,
4008 &pring->txcmplq, list)
4009 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4010 /* Retrieve everything on the txcmplq */
4011 list_splice_init(&pring->txcmplq, &txcmplq);
4012 pring->txq_cnt = 0;
4013 pring->txcmplq_cnt = 0;
4014 spin_unlock_irq(&phba->hbalock);
4016 /* Flush the txq */
4017 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4018 IOERR_SLI_DOWN);
4019 /* Flush the txcmpq */
4020 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4021 IOERR_SLI_DOWN);
4026 * lpfc_sli_flush_nvme_rings - flush all wqes in the nvme rings
4027 * @phba: Pointer to HBA context object.
4029 * This function flushes all wqes in the nvme rings and frees all resources
4030 * in the txcmplq. This function does not issue abort wqes for the IO
4031 * commands in txcmplq, they will just be returned with
4032 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4033 * slot has been permanently disabled.
4035 void
4036 lpfc_sli_flush_nvme_rings(struct lpfc_hba *phba)
4038 LIST_HEAD(txcmplq);
4039 struct lpfc_sli_ring *pring;
4040 uint32_t i;
4041 struct lpfc_iocbq *piocb, *next_iocb;
4043 if ((phba->sli_rev < LPFC_SLI_REV4) ||
4044 !(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME))
4045 return;
4047 /* Hint to other driver operations that a flush is in progress. */
4048 spin_lock_irq(&phba->hbalock);
4049 phba->hba_flag |= HBA_NVME_IOQ_FLUSH;
4050 spin_unlock_irq(&phba->hbalock);
4052 /* Cycle through all NVME rings and complete each IO with
4053 * a local driver reason code. This is a flush so no
4054 * abort exchange to FW.
4056 for (i = 0; i < phba->cfg_hdw_queue; i++) {
4057 pring = phba->sli4_hba.hdwq[i].nvme_wq->pring;
4059 spin_lock_irq(&pring->ring_lock);
4060 list_for_each_entry_safe(piocb, next_iocb,
4061 &pring->txcmplq, list)
4062 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4063 /* Retrieve everything on the txcmplq */
4064 list_splice_init(&pring->txcmplq, &txcmplq);
4065 pring->txcmplq_cnt = 0;
4066 spin_unlock_irq(&pring->ring_lock);
4068 /* Flush the txcmpq &&&PAE */
4069 lpfc_sli_cancel_iocbs(phba, &txcmplq,
4070 IOSTAT_LOCAL_REJECT,
4071 IOERR_SLI_DOWN);
4076 * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4077 * @phba: Pointer to HBA context object.
4078 * @mask: Bit mask to be checked.
4080 * This function reads the host status register and compares
4081 * with the provided bit mask to check if HBA completed
4082 * the restart. This function will wait in a loop for the
4083 * HBA to complete restart. If the HBA does not restart within
4084 * 15 iterations, the function will reset the HBA again. The
4085 * function returns 1 when HBA fail to restart otherwise returns
4086 * zero.
4088 static int
4089 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4091 uint32_t status;
4092 int i = 0;
4093 int retval = 0;
4095 /* Read the HBA Host Status Register */
4096 if (lpfc_readl(phba->HSregaddr, &status))
4097 return 1;
4100 * Check status register every 100ms for 5 retries, then every
4101 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4102 * every 2.5 sec for 4.
4103 * Break our of the loop if errors occurred during init.
4105 while (((status & mask) != mask) &&
4106 !(status & HS_FFERM) &&
4107 i++ < 20) {
4109 if (i <= 5)
4110 msleep(10);
4111 else if (i <= 10)
4112 msleep(500);
4113 else
4114 msleep(2500);
4116 if (i == 15) {
4117 /* Do post */
4118 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4119 lpfc_sli_brdrestart(phba);
4121 /* Read the HBA Host Status Register */
4122 if (lpfc_readl(phba->HSregaddr, &status)) {
4123 retval = 1;
4124 break;
4128 /* Check to see if any errors occurred during init */
4129 if ((status & HS_FFERM) || (i >= 20)) {
4130 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4131 "2751 Adapter failed to restart, "
4132 "status reg x%x, FW Data: A8 x%x AC x%x\n",
4133 status,
4134 readl(phba->MBslimaddr + 0xa8),
4135 readl(phba->MBslimaddr + 0xac));
4136 phba->link_state = LPFC_HBA_ERROR;
4137 retval = 1;
4140 return retval;
4144 * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4145 * @phba: Pointer to HBA context object.
4146 * @mask: Bit mask to be checked.
4148 * This function checks the host status register to check if HBA is
4149 * ready. This function will wait in a loop for the HBA to be ready
4150 * If the HBA is not ready , the function will will reset the HBA PCI
4151 * function again. The function returns 1 when HBA fail to be ready
4152 * otherwise returns zero.
4154 static int
4155 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4157 uint32_t status;
4158 int retval = 0;
4160 /* Read the HBA Host Status Register */
4161 status = lpfc_sli4_post_status_check(phba);
4163 if (status) {
4164 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4165 lpfc_sli_brdrestart(phba);
4166 status = lpfc_sli4_post_status_check(phba);
4169 /* Check to see if any errors occurred during init */
4170 if (status) {
4171 phba->link_state = LPFC_HBA_ERROR;
4172 retval = 1;
4173 } else
4174 phba->sli4_hba.intr_enable = 0;
4176 return retval;
4180 * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4181 * @phba: Pointer to HBA context object.
4182 * @mask: Bit mask to be checked.
4184 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4185 * from the API jump table function pointer from the lpfc_hba struct.
4188 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4190 return phba->lpfc_sli_brdready(phba, mask);
4193 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4196 * lpfc_reset_barrier - Make HBA ready for HBA reset
4197 * @phba: Pointer to HBA context object.
4199 * This function is called before resetting an HBA. This function is called
4200 * with hbalock held and requests HBA to quiesce DMAs before a reset.
4202 void lpfc_reset_barrier(struct lpfc_hba *phba)
4204 uint32_t __iomem *resp_buf;
4205 uint32_t __iomem *mbox_buf;
4206 volatile uint32_t mbox;
4207 uint32_t hc_copy, ha_copy, resp_data;
4208 int i;
4209 uint8_t hdrtype;
4211 lockdep_assert_held(&phba->hbalock);
4213 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4214 if (hdrtype != 0x80 ||
4215 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4216 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4217 return;
4220 * Tell the other part of the chip to suspend temporarily all
4221 * its DMA activity.
4223 resp_buf = phba->MBslimaddr;
4225 /* Disable the error attention */
4226 if (lpfc_readl(phba->HCregaddr, &hc_copy))
4227 return;
4228 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4229 readl(phba->HCregaddr); /* flush */
4230 phba->link_flag |= LS_IGNORE_ERATT;
4232 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4233 return;
4234 if (ha_copy & HA_ERATT) {
4235 /* Clear Chip error bit */
4236 writel(HA_ERATT, phba->HAregaddr);
4237 phba->pport->stopped = 1;
4240 mbox = 0;
4241 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
4242 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
4244 writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4245 mbox_buf = phba->MBslimaddr;
4246 writel(mbox, mbox_buf);
4248 for (i = 0; i < 50; i++) {
4249 if (lpfc_readl((resp_buf + 1), &resp_data))
4250 return;
4251 if (resp_data != ~(BARRIER_TEST_PATTERN))
4252 mdelay(1);
4253 else
4254 break;
4256 resp_data = 0;
4257 if (lpfc_readl((resp_buf + 1), &resp_data))
4258 return;
4259 if (resp_data != ~(BARRIER_TEST_PATTERN)) {
4260 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4261 phba->pport->stopped)
4262 goto restore_hc;
4263 else
4264 goto clear_errat;
4267 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
4268 resp_data = 0;
4269 for (i = 0; i < 500; i++) {
4270 if (lpfc_readl(resp_buf, &resp_data))
4271 return;
4272 if (resp_data != mbox)
4273 mdelay(1);
4274 else
4275 break;
4278 clear_errat:
4280 while (++i < 500) {
4281 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4282 return;
4283 if (!(ha_copy & HA_ERATT))
4284 mdelay(1);
4285 else
4286 break;
4289 if (readl(phba->HAregaddr) & HA_ERATT) {
4290 writel(HA_ERATT, phba->HAregaddr);
4291 phba->pport->stopped = 1;
4294 restore_hc:
4295 phba->link_flag &= ~LS_IGNORE_ERATT;
4296 writel(hc_copy, phba->HCregaddr);
4297 readl(phba->HCregaddr); /* flush */
4301 * lpfc_sli_brdkill - Issue a kill_board mailbox command
4302 * @phba: Pointer to HBA context object.
4304 * This function issues a kill_board mailbox command and waits for
4305 * the error attention interrupt. This function is called for stopping
4306 * the firmware processing. The caller is not required to hold any
4307 * locks. This function calls lpfc_hba_down_post function to free
4308 * any pending commands after the kill. The function will return 1 when it
4309 * fails to kill the board else will return 0.
4312 lpfc_sli_brdkill(struct lpfc_hba *phba)
4314 struct lpfc_sli *psli;
4315 LPFC_MBOXQ_t *pmb;
4316 uint32_t status;
4317 uint32_t ha_copy;
4318 int retval;
4319 int i = 0;
4321 psli = &phba->sli;
4323 /* Kill HBA */
4324 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4325 "0329 Kill HBA Data: x%x x%x\n",
4326 phba->pport->port_state, psli->sli_flag);
4328 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4329 if (!pmb)
4330 return 1;
4332 /* Disable the error attention */
4333 spin_lock_irq(&phba->hbalock);
4334 if (lpfc_readl(phba->HCregaddr, &status)) {
4335 spin_unlock_irq(&phba->hbalock);
4336 mempool_free(pmb, phba->mbox_mem_pool);
4337 return 1;
4339 status &= ~HC_ERINT_ENA;
4340 writel(status, phba->HCregaddr);
4341 readl(phba->HCregaddr); /* flush */
4342 phba->link_flag |= LS_IGNORE_ERATT;
4343 spin_unlock_irq(&phba->hbalock);
4345 lpfc_kill_board(phba, pmb);
4346 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4347 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4349 if (retval != MBX_SUCCESS) {
4350 if (retval != MBX_BUSY)
4351 mempool_free(pmb, phba->mbox_mem_pool);
4352 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4353 "2752 KILL_BOARD command failed retval %d\n",
4354 retval);
4355 spin_lock_irq(&phba->hbalock);
4356 phba->link_flag &= ~LS_IGNORE_ERATT;
4357 spin_unlock_irq(&phba->hbalock);
4358 return 1;
4361 spin_lock_irq(&phba->hbalock);
4362 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4363 spin_unlock_irq(&phba->hbalock);
4365 mempool_free(pmb, phba->mbox_mem_pool);
4367 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4368 * attention every 100ms for 3 seconds. If we don't get ERATT after
4369 * 3 seconds we still set HBA_ERROR state because the status of the
4370 * board is now undefined.
4372 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4373 return 1;
4374 while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4375 mdelay(100);
4376 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4377 return 1;
4380 del_timer_sync(&psli->mbox_tmo);
4381 if (ha_copy & HA_ERATT) {
4382 writel(HA_ERATT, phba->HAregaddr);
4383 phba->pport->stopped = 1;
4385 spin_lock_irq(&phba->hbalock);
4386 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4387 psli->mbox_active = NULL;
4388 phba->link_flag &= ~LS_IGNORE_ERATT;
4389 spin_unlock_irq(&phba->hbalock);
4391 lpfc_hba_down_post(phba);
4392 phba->link_state = LPFC_HBA_ERROR;
4394 return ha_copy & HA_ERATT ? 0 : 1;
4398 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4399 * @phba: Pointer to HBA context object.
4401 * This function resets the HBA by writing HC_INITFF to the control
4402 * register. After the HBA resets, this function resets all the iocb ring
4403 * indices. This function disables PCI layer parity checking during
4404 * the reset.
4405 * This function returns 0 always.
4406 * The caller is not required to hold any locks.
4409 lpfc_sli_brdreset(struct lpfc_hba *phba)
4411 struct lpfc_sli *psli;
4412 struct lpfc_sli_ring *pring;
4413 uint16_t cfg_value;
4414 int i;
4416 psli = &phba->sli;
4418 /* Reset HBA */
4419 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4420 "0325 Reset HBA Data: x%x x%x\n",
4421 (phba->pport) ? phba->pport->port_state : 0,
4422 psli->sli_flag);
4424 /* perform board reset */
4425 phba->fc_eventTag = 0;
4426 phba->link_events = 0;
4427 if (phba->pport) {
4428 phba->pport->fc_myDID = 0;
4429 phba->pport->fc_prevDID = 0;
4432 /* Turn off parity checking and serr during the physical reset */
4433 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
4434 return -EIO;
4436 pci_write_config_word(phba->pcidev, PCI_COMMAND,
4437 (cfg_value &
4438 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4440 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4442 /* Now toggle INITFF bit in the Host Control Register */
4443 writel(HC_INITFF, phba->HCregaddr);
4444 mdelay(1);
4445 readl(phba->HCregaddr); /* flush */
4446 writel(0, phba->HCregaddr);
4447 readl(phba->HCregaddr); /* flush */
4449 /* Restore PCI cmd register */
4450 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4452 /* Initialize relevant SLI info */
4453 for (i = 0; i < psli->num_rings; i++) {
4454 pring = &psli->sli3_ring[i];
4455 pring->flag = 0;
4456 pring->sli.sli3.rspidx = 0;
4457 pring->sli.sli3.next_cmdidx = 0;
4458 pring->sli.sli3.local_getidx = 0;
4459 pring->sli.sli3.cmdidx = 0;
4460 pring->missbufcnt = 0;
4463 phba->link_state = LPFC_WARM_START;
4464 return 0;
4468 * lpfc_sli4_brdreset - Reset a sli-4 HBA
4469 * @phba: Pointer to HBA context object.
4471 * This function resets a SLI4 HBA. This function disables PCI layer parity
4472 * checking during resets the device. The caller is not required to hold
4473 * any locks.
4475 * This function returns 0 always.
4478 lpfc_sli4_brdreset(struct lpfc_hba *phba)
4480 struct lpfc_sli *psli = &phba->sli;
4481 uint16_t cfg_value;
4482 int rc = 0;
4484 /* Reset HBA */
4485 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4486 "0295 Reset HBA Data: x%x x%x x%x\n",
4487 phba->pport->port_state, psli->sli_flag,
4488 phba->hba_flag);
4490 /* perform board reset */
4491 phba->fc_eventTag = 0;
4492 phba->link_events = 0;
4493 phba->pport->fc_myDID = 0;
4494 phba->pport->fc_prevDID = 0;
4496 spin_lock_irq(&phba->hbalock);
4497 psli->sli_flag &= ~(LPFC_PROCESS_LA);
4498 phba->fcf.fcf_flag = 0;
4499 spin_unlock_irq(&phba->hbalock);
4501 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
4502 if (phba->hba_flag & HBA_FW_DUMP_OP) {
4503 phba->hba_flag &= ~HBA_FW_DUMP_OP;
4504 return rc;
4507 /* Now physically reset the device */
4508 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4509 "0389 Performing PCI function reset!\n");
4511 /* Turn off parity checking and serr during the physical reset */
4512 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
4513 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4514 "3205 PCI read Config failed\n");
4515 return -EIO;
4518 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4519 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4521 /* Perform FCoE PCI function reset before freeing queue memory */
4522 rc = lpfc_pci_function_reset(phba);
4524 /* Restore PCI cmd register */
4525 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4527 return rc;
4531 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4532 * @phba: Pointer to HBA context object.
4534 * This function is called in the SLI initialization code path to
4535 * restart the HBA. The caller is not required to hold any lock.
4536 * This function writes MBX_RESTART mailbox command to the SLIM and
4537 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4538 * function to free any pending commands. The function enables
4539 * POST only during the first initialization. The function returns zero.
4540 * The function does not guarantee completion of MBX_RESTART mailbox
4541 * command before the return of this function.
4543 static int
4544 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4546 MAILBOX_t *mb;
4547 struct lpfc_sli *psli;
4548 volatile uint32_t word0;
4549 void __iomem *to_slim;
4550 uint32_t hba_aer_enabled;
4552 spin_lock_irq(&phba->hbalock);
4554 /* Take PCIe device Advanced Error Reporting (AER) state */
4555 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4557 psli = &phba->sli;
4559 /* Restart HBA */
4560 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4561 "0337 Restart HBA Data: x%x x%x\n",
4562 (phba->pport) ? phba->pport->port_state : 0,
4563 psli->sli_flag);
4565 word0 = 0;
4566 mb = (MAILBOX_t *) &word0;
4567 mb->mbxCommand = MBX_RESTART;
4568 mb->mbxHc = 1;
4570 lpfc_reset_barrier(phba);
4572 to_slim = phba->MBslimaddr;
4573 writel(*(uint32_t *) mb, to_slim);
4574 readl(to_slim); /* flush */
4576 /* Only skip post after fc_ffinit is completed */
4577 if (phba->pport && phba->pport->port_state)
4578 word0 = 1; /* This is really setting up word1 */
4579 else
4580 word0 = 0; /* This is really setting up word1 */
4581 to_slim = phba->MBslimaddr + sizeof (uint32_t);
4582 writel(*(uint32_t *) mb, to_slim);
4583 readl(to_slim); /* flush */
4585 lpfc_sli_brdreset(phba);
4586 if (phba->pport)
4587 phba->pport->stopped = 0;
4588 phba->link_state = LPFC_INIT_START;
4589 phba->hba_flag = 0;
4590 spin_unlock_irq(&phba->hbalock);
4592 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4593 psli->stats_start = ktime_get_seconds();
4595 /* Give the INITFF and Post time to settle. */
4596 mdelay(100);
4598 /* Reset HBA AER if it was enabled, note hba_flag was reset above */
4599 if (hba_aer_enabled)
4600 pci_disable_pcie_error_reporting(phba->pcidev);
4602 lpfc_hba_down_post(phba);
4604 return 0;
4608 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4609 * @phba: Pointer to HBA context object.
4611 * This function is called in the SLI initialization code path to restart
4612 * a SLI4 HBA. The caller is not required to hold any lock.
4613 * At the end of the function, it calls lpfc_hba_down_post function to
4614 * free any pending commands.
4616 static int
4617 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4619 struct lpfc_sli *psli = &phba->sli;
4620 uint32_t hba_aer_enabled;
4621 int rc;
4623 /* Restart HBA */
4624 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4625 "0296 Restart HBA Data: x%x x%x\n",
4626 phba->pport->port_state, psli->sli_flag);
4628 /* Take PCIe device Advanced Error Reporting (AER) state */
4629 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4631 rc = lpfc_sli4_brdreset(phba);
4632 if (rc)
4633 return rc;
4635 spin_lock_irq(&phba->hbalock);
4636 phba->pport->stopped = 0;
4637 phba->link_state = LPFC_INIT_START;
4638 phba->hba_flag = 0;
4639 spin_unlock_irq(&phba->hbalock);
4641 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4642 psli->stats_start = ktime_get_seconds();
4644 /* Reset HBA AER if it was enabled, note hba_flag was reset above */
4645 if (hba_aer_enabled)
4646 pci_disable_pcie_error_reporting(phba->pcidev);
4648 lpfc_hba_down_post(phba);
4649 lpfc_sli4_queue_destroy(phba);
4651 return rc;
4655 * lpfc_sli_brdrestart - Wrapper func for restarting hba
4656 * @phba: Pointer to HBA context object.
4658 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4659 * API jump table function pointer from the lpfc_hba struct.
4662 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4664 return phba->lpfc_sli_brdrestart(phba);
4668 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4669 * @phba: Pointer to HBA context object.
4671 * This function is called after a HBA restart to wait for successful
4672 * restart of the HBA. Successful restart of the HBA is indicated by
4673 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4674 * iteration, the function will restart the HBA again. The function returns
4675 * zero if HBA successfully restarted else returns negative error code.
4678 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4680 uint32_t status, i = 0;
4682 /* Read the HBA Host Status Register */
4683 if (lpfc_readl(phba->HSregaddr, &status))
4684 return -EIO;
4686 /* Check status register to see what current state is */
4687 i = 0;
4688 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4690 /* Check every 10ms for 10 retries, then every 100ms for 90
4691 * retries, then every 1 sec for 50 retires for a total of
4692 * ~60 seconds before reset the board again and check every
4693 * 1 sec for 50 retries. The up to 60 seconds before the
4694 * board ready is required by the Falcon FIPS zeroization
4695 * complete, and any reset the board in between shall cause
4696 * restart of zeroization, further delay the board ready.
4698 if (i++ >= 200) {
4699 /* Adapter failed to init, timeout, status reg
4700 <status> */
4701 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4702 "0436 Adapter failed to init, "
4703 "timeout, status reg x%x, "
4704 "FW Data: A8 x%x AC x%x\n", status,
4705 readl(phba->MBslimaddr + 0xa8),
4706 readl(phba->MBslimaddr + 0xac));
4707 phba->link_state = LPFC_HBA_ERROR;
4708 return -ETIMEDOUT;
4711 /* Check to see if any errors occurred during init */
4712 if (status & HS_FFERM) {
4713 /* ERROR: During chipset initialization */
4714 /* Adapter failed to init, chipset, status reg
4715 <status> */
4716 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4717 "0437 Adapter failed to init, "
4718 "chipset, status reg x%x, "
4719 "FW Data: A8 x%x AC x%x\n", status,
4720 readl(phba->MBslimaddr + 0xa8),
4721 readl(phba->MBslimaddr + 0xac));
4722 phba->link_state = LPFC_HBA_ERROR;
4723 return -EIO;
4726 if (i <= 10)
4727 msleep(10);
4728 else if (i <= 100)
4729 msleep(100);
4730 else
4731 msleep(1000);
4733 if (i == 150) {
4734 /* Do post */
4735 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4736 lpfc_sli_brdrestart(phba);
4738 /* Read the HBA Host Status Register */
4739 if (lpfc_readl(phba->HSregaddr, &status))
4740 return -EIO;
4743 /* Check to see if any errors occurred during init */
4744 if (status & HS_FFERM) {
4745 /* ERROR: During chipset initialization */
4746 /* Adapter failed to init, chipset, status reg <status> */
4747 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4748 "0438 Adapter failed to init, chipset, "
4749 "status reg x%x, "
4750 "FW Data: A8 x%x AC x%x\n", status,
4751 readl(phba->MBslimaddr + 0xa8),
4752 readl(phba->MBslimaddr + 0xac));
4753 phba->link_state = LPFC_HBA_ERROR;
4754 return -EIO;
4757 /* Clear all interrupt enable conditions */
4758 writel(0, phba->HCregaddr);
4759 readl(phba->HCregaddr); /* flush */
4761 /* setup host attn register */
4762 writel(0xffffffff, phba->HAregaddr);
4763 readl(phba->HAregaddr); /* flush */
4764 return 0;
4768 * lpfc_sli_hbq_count - Get the number of HBQs to be configured
4770 * This function calculates and returns the number of HBQs required to be
4771 * configured.
4774 lpfc_sli_hbq_count(void)
4776 return ARRAY_SIZE(lpfc_hbq_defs);
4780 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
4782 * This function adds the number of hbq entries in every HBQ to get
4783 * the total number of hbq entries required for the HBA and returns
4784 * the total count.
4786 static int
4787 lpfc_sli_hbq_entry_count(void)
4789 int hbq_count = lpfc_sli_hbq_count();
4790 int count = 0;
4791 int i;
4793 for (i = 0; i < hbq_count; ++i)
4794 count += lpfc_hbq_defs[i]->entry_count;
4795 return count;
4799 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
4801 * This function calculates amount of memory required for all hbq entries
4802 * to be configured and returns the total memory required.
4805 lpfc_sli_hbq_size(void)
4807 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
4811 * lpfc_sli_hbq_setup - configure and initialize HBQs
4812 * @phba: Pointer to HBA context object.
4814 * This function is called during the SLI initialization to configure
4815 * all the HBQs and post buffers to the HBQ. The caller is not
4816 * required to hold any locks. This function will return zero if successful
4817 * else it will return negative error code.
4819 static int
4820 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
4822 int hbq_count = lpfc_sli_hbq_count();
4823 LPFC_MBOXQ_t *pmb;
4824 MAILBOX_t *pmbox;
4825 uint32_t hbqno;
4826 uint32_t hbq_entry_index;
4828 /* Get a Mailbox buffer to setup mailbox
4829 * commands for HBA initialization
4831 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4833 if (!pmb)
4834 return -ENOMEM;
4836 pmbox = &pmb->u.mb;
4838 /* Initialize the struct lpfc_sli_hbq structure for each hbq */
4839 phba->link_state = LPFC_INIT_MBX_CMDS;
4840 phba->hbq_in_use = 1;
4842 hbq_entry_index = 0;
4843 for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
4844 phba->hbqs[hbqno].next_hbqPutIdx = 0;
4845 phba->hbqs[hbqno].hbqPutIdx = 0;
4846 phba->hbqs[hbqno].local_hbqGetIdx = 0;
4847 phba->hbqs[hbqno].entry_count =
4848 lpfc_hbq_defs[hbqno]->entry_count;
4849 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
4850 hbq_entry_index, pmb);
4851 hbq_entry_index += phba->hbqs[hbqno].entry_count;
4853 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
4854 /* Adapter failed to init, mbxCmd <cmd> CFG_RING,
4855 mbxStatus <status>, ring <num> */
4857 lpfc_printf_log(phba, KERN_ERR,
4858 LOG_SLI | LOG_VPORT,
4859 "1805 Adapter failed to init. "
4860 "Data: x%x x%x x%x\n",
4861 pmbox->mbxCommand,
4862 pmbox->mbxStatus, hbqno);
4864 phba->link_state = LPFC_HBA_ERROR;
4865 mempool_free(pmb, phba->mbox_mem_pool);
4866 return -ENXIO;
4869 phba->hbq_count = hbq_count;
4871 mempool_free(pmb, phba->mbox_mem_pool);
4873 /* Initially populate or replenish the HBQs */
4874 for (hbqno = 0; hbqno < hbq_count; ++hbqno)
4875 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
4876 return 0;
4880 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
4881 * @phba: Pointer to HBA context object.
4883 * This function is called during the SLI initialization to configure
4884 * all the HBQs and post buffers to the HBQ. The caller is not
4885 * required to hold any locks. This function will return zero if successful
4886 * else it will return negative error code.
4888 static int
4889 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
4891 phba->hbq_in_use = 1;
4892 phba->hbqs[LPFC_ELS_HBQ].entry_count =
4893 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
4894 phba->hbq_count = 1;
4895 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
4896 /* Initially populate or replenish the HBQs */
4897 return 0;
4901 * lpfc_sli_config_port - Issue config port mailbox command
4902 * @phba: Pointer to HBA context object.
4903 * @sli_mode: sli mode - 2/3
4905 * This function is called by the sli initialization code path
4906 * to issue config_port mailbox command. This function restarts the
4907 * HBA firmware and issues a config_port mailbox command to configure
4908 * the SLI interface in the sli mode specified by sli_mode
4909 * variable. The caller is not required to hold any locks.
4910 * The function returns 0 if successful, else returns negative error
4911 * code.
4914 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
4916 LPFC_MBOXQ_t *pmb;
4917 uint32_t resetcount = 0, rc = 0, done = 0;
4919 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4920 if (!pmb) {
4921 phba->link_state = LPFC_HBA_ERROR;
4922 return -ENOMEM;
4925 phba->sli_rev = sli_mode;
4926 while (resetcount < 2 && !done) {
4927 spin_lock_irq(&phba->hbalock);
4928 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
4929 spin_unlock_irq(&phba->hbalock);
4930 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4931 lpfc_sli_brdrestart(phba);
4932 rc = lpfc_sli_chipset_init(phba);
4933 if (rc)
4934 break;
4936 spin_lock_irq(&phba->hbalock);
4937 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4938 spin_unlock_irq(&phba->hbalock);
4939 resetcount++;
4941 /* Call pre CONFIG_PORT mailbox command initialization. A
4942 * value of 0 means the call was successful. Any other
4943 * nonzero value is a failure, but if ERESTART is returned,
4944 * the driver may reset the HBA and try again.
4946 rc = lpfc_config_port_prep(phba);
4947 if (rc == -ERESTART) {
4948 phba->link_state = LPFC_LINK_UNKNOWN;
4949 continue;
4950 } else if (rc)
4951 break;
4953 phba->link_state = LPFC_INIT_MBX_CMDS;
4954 lpfc_config_port(phba, pmb);
4955 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
4956 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
4957 LPFC_SLI3_HBQ_ENABLED |
4958 LPFC_SLI3_CRP_ENABLED |
4959 LPFC_SLI3_DSS_ENABLED);
4960 if (rc != MBX_SUCCESS) {
4961 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4962 "0442 Adapter failed to init, mbxCmd x%x "
4963 "CONFIG_PORT, mbxStatus x%x Data: x%x\n",
4964 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
4965 spin_lock_irq(&phba->hbalock);
4966 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
4967 spin_unlock_irq(&phba->hbalock);
4968 rc = -ENXIO;
4969 } else {
4970 /* Allow asynchronous mailbox command to go through */
4971 spin_lock_irq(&phba->hbalock);
4972 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
4973 spin_unlock_irq(&phba->hbalock);
4974 done = 1;
4976 if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
4977 (pmb->u.mb.un.varCfgPort.gasabt == 0))
4978 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
4979 "3110 Port did not grant ASABT\n");
4982 if (!done) {
4983 rc = -EINVAL;
4984 goto do_prep_failed;
4986 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
4987 if (!pmb->u.mb.un.varCfgPort.cMA) {
4988 rc = -ENXIO;
4989 goto do_prep_failed;
4991 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
4992 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
4993 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
4994 phba->max_vports = (phba->max_vpi > phba->max_vports) ?
4995 phba->max_vpi : phba->max_vports;
4997 } else
4998 phba->max_vpi = 0;
4999 phba->fips_level = 0;
5000 phba->fips_spec_rev = 0;
5001 if (pmb->u.mb.un.varCfgPort.gdss) {
5002 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED;
5003 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level;
5004 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev;
5005 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5006 "2850 Security Crypto Active. FIPS x%d "
5007 "(Spec Rev: x%d)",
5008 phba->fips_level, phba->fips_spec_rev);
5010 if (pmb->u.mb.un.varCfgPort.sec_err) {
5011 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5012 "2856 Config Port Security Crypto "
5013 "Error: x%x ",
5014 pmb->u.mb.un.varCfgPort.sec_err);
5016 if (pmb->u.mb.un.varCfgPort.gerbm)
5017 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5018 if (pmb->u.mb.un.varCfgPort.gcrp)
5019 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5021 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5022 phba->port_gp = phba->mbox->us.s3_pgp.port;
5024 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5025 if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5026 phba->cfg_enable_bg = 0;
5027 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5028 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5029 "0443 Adapter did not grant "
5030 "BlockGuard\n");
5033 } else {
5034 phba->hbq_get = NULL;
5035 phba->port_gp = phba->mbox->us.s2.port;
5036 phba->max_vpi = 0;
5038 do_prep_failed:
5039 mempool_free(pmb, phba->mbox_mem_pool);
5040 return rc;
5045 * lpfc_sli_hba_setup - SLI initialization function
5046 * @phba: Pointer to HBA context object.
5048 * This function is the main SLI initialization function. This function
5049 * is called by the HBA initialization code, HBA reset code and HBA
5050 * error attention handler code. Caller is not required to hold any
5051 * locks. This function issues config_port mailbox command to configure
5052 * the SLI, setup iocb rings and HBQ rings. In the end the function
5053 * calls the config_port_post function to issue init_link mailbox
5054 * command and to start the discovery. The function will return zero
5055 * if successful, else it will return negative error code.
5058 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5060 uint32_t rc;
5061 int mode = 3, i;
5062 int longs;
5064 switch (phba->cfg_sli_mode) {
5065 case 2:
5066 if (phba->cfg_enable_npiv) {
5067 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5068 "1824 NPIV enabled: Override sli_mode "
5069 "parameter (%d) to auto (0).\n",
5070 phba->cfg_sli_mode);
5071 break;
5073 mode = 2;
5074 break;
5075 case 0:
5076 case 3:
5077 break;
5078 default:
5079 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5080 "1819 Unrecognized sli_mode parameter: %d.\n",
5081 phba->cfg_sli_mode);
5083 break;
5085 phba->fcp_embed_io = 0; /* SLI4 FC support only */
5087 rc = lpfc_sli_config_port(phba, mode);
5089 if (rc && phba->cfg_sli_mode == 3)
5090 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5091 "1820 Unable to select SLI-3. "
5092 "Not supported by adapter.\n");
5093 if (rc && mode != 2)
5094 rc = lpfc_sli_config_port(phba, 2);
5095 else if (rc && mode == 2)
5096 rc = lpfc_sli_config_port(phba, 3);
5097 if (rc)
5098 goto lpfc_sli_hba_setup_error;
5100 /* Enable PCIe device Advanced Error Reporting (AER) if configured */
5101 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
5102 rc = pci_enable_pcie_error_reporting(phba->pcidev);
5103 if (!rc) {
5104 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5105 "2709 This device supports "
5106 "Advanced Error Reporting (AER)\n");
5107 spin_lock_irq(&phba->hbalock);
5108 phba->hba_flag |= HBA_AER_ENABLED;
5109 spin_unlock_irq(&phba->hbalock);
5110 } else {
5111 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5112 "2708 This device does not support "
5113 "Advanced Error Reporting (AER): %d\n",
5114 rc);
5115 phba->cfg_aer_support = 0;
5119 if (phba->sli_rev == 3) {
5120 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5121 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5122 } else {
5123 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5124 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5125 phba->sli3_options = 0;
5128 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5129 "0444 Firmware in SLI %x mode. Max_vpi %d\n",
5130 phba->sli_rev, phba->max_vpi);
5131 rc = lpfc_sli_ring_map(phba);
5133 if (rc)
5134 goto lpfc_sli_hba_setup_error;
5136 /* Initialize VPIs. */
5137 if (phba->sli_rev == LPFC_SLI_REV3) {
5139 * The VPI bitmask and physical ID array are allocated
5140 * and initialized once only - at driver load. A port
5141 * reset doesn't need to reinitialize this memory.
5143 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5144 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5145 phba->vpi_bmask = kcalloc(longs,
5146 sizeof(unsigned long),
5147 GFP_KERNEL);
5148 if (!phba->vpi_bmask) {
5149 rc = -ENOMEM;
5150 goto lpfc_sli_hba_setup_error;
5153 phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5154 sizeof(uint16_t),
5155 GFP_KERNEL);
5156 if (!phba->vpi_ids) {
5157 kfree(phba->vpi_bmask);
5158 rc = -ENOMEM;
5159 goto lpfc_sli_hba_setup_error;
5161 for (i = 0; i < phba->max_vpi; i++)
5162 phba->vpi_ids[i] = i;
5166 /* Init HBQs */
5167 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5168 rc = lpfc_sli_hbq_setup(phba);
5169 if (rc)
5170 goto lpfc_sli_hba_setup_error;
5172 spin_lock_irq(&phba->hbalock);
5173 phba->sli.sli_flag |= LPFC_PROCESS_LA;
5174 spin_unlock_irq(&phba->hbalock);
5176 rc = lpfc_config_port_post(phba);
5177 if (rc)
5178 goto lpfc_sli_hba_setup_error;
5180 return rc;
5182 lpfc_sli_hba_setup_error:
5183 phba->link_state = LPFC_HBA_ERROR;
5184 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5185 "0445 Firmware initialization failed\n");
5186 return rc;
5190 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5191 * @phba: Pointer to HBA context object.
5192 * @mboxq: mailbox pointer.
5193 * This function issue a dump mailbox command to read config region
5194 * 23 and parse the records in the region and populate driver
5195 * data structure.
5197 static int
5198 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5200 LPFC_MBOXQ_t *mboxq;
5201 struct lpfc_dmabuf *mp;
5202 struct lpfc_mqe *mqe;
5203 uint32_t data_length;
5204 int rc;
5206 /* Program the default value of vlan_id and fc_map */
5207 phba->valid_vlan = 0;
5208 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5209 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5210 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5212 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5213 if (!mboxq)
5214 return -ENOMEM;
5216 mqe = &mboxq->u.mqe;
5217 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5218 rc = -ENOMEM;
5219 goto out_free_mboxq;
5222 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
5223 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5225 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5226 "(%d):2571 Mailbox cmd x%x Status x%x "
5227 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5228 "x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5229 "CQ: x%x x%x x%x x%x\n",
5230 mboxq->vport ? mboxq->vport->vpi : 0,
5231 bf_get(lpfc_mqe_command, mqe),
5232 bf_get(lpfc_mqe_status, mqe),
5233 mqe->un.mb_words[0], mqe->un.mb_words[1],
5234 mqe->un.mb_words[2], mqe->un.mb_words[3],
5235 mqe->un.mb_words[4], mqe->un.mb_words[5],
5236 mqe->un.mb_words[6], mqe->un.mb_words[7],
5237 mqe->un.mb_words[8], mqe->un.mb_words[9],
5238 mqe->un.mb_words[10], mqe->un.mb_words[11],
5239 mqe->un.mb_words[12], mqe->un.mb_words[13],
5240 mqe->un.mb_words[14], mqe->un.mb_words[15],
5241 mqe->un.mb_words[16], mqe->un.mb_words[50],
5242 mboxq->mcqe.word0,
5243 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
5244 mboxq->mcqe.trailer);
5246 if (rc) {
5247 lpfc_mbuf_free(phba, mp->virt, mp->phys);
5248 kfree(mp);
5249 rc = -EIO;
5250 goto out_free_mboxq;
5252 data_length = mqe->un.mb_words[5];
5253 if (data_length > DMP_RGN23_SIZE) {
5254 lpfc_mbuf_free(phba, mp->virt, mp->phys);
5255 kfree(mp);
5256 rc = -EIO;
5257 goto out_free_mboxq;
5260 lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5261 lpfc_mbuf_free(phba, mp->virt, mp->phys);
5262 kfree(mp);
5263 rc = 0;
5265 out_free_mboxq:
5266 mempool_free(mboxq, phba->mbox_mem_pool);
5267 return rc;
5271 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5272 * @phba: pointer to lpfc hba data structure.
5273 * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5274 * @vpd: pointer to the memory to hold resulting port vpd data.
5275 * @vpd_size: On input, the number of bytes allocated to @vpd.
5276 * On output, the number of data bytes in @vpd.
5278 * This routine executes a READ_REV SLI4 mailbox command. In
5279 * addition, this routine gets the port vpd data.
5281 * Return codes
5282 * 0 - successful
5283 * -ENOMEM - could not allocated memory.
5285 static int
5286 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5287 uint8_t *vpd, uint32_t *vpd_size)
5289 int rc = 0;
5290 uint32_t dma_size;
5291 struct lpfc_dmabuf *dmabuf;
5292 struct lpfc_mqe *mqe;
5294 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5295 if (!dmabuf)
5296 return -ENOMEM;
5299 * Get a DMA buffer for the vpd data resulting from the READ_REV
5300 * mailbox command.
5302 dma_size = *vpd_size;
5303 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5304 &dmabuf->phys, GFP_KERNEL);
5305 if (!dmabuf->virt) {
5306 kfree(dmabuf);
5307 return -ENOMEM;
5311 * The SLI4 implementation of READ_REV conflicts at word1,
5312 * bits 31:16 and SLI4 adds vpd functionality not present
5313 * in SLI3. This code corrects the conflicts.
5315 lpfc_read_rev(phba, mboxq);
5316 mqe = &mboxq->u.mqe;
5317 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5318 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5319 mqe->un.read_rev.word1 &= 0x0000FFFF;
5320 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5321 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5323 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5324 if (rc) {
5325 dma_free_coherent(&phba->pcidev->dev, dma_size,
5326 dmabuf->virt, dmabuf->phys);
5327 kfree(dmabuf);
5328 return -EIO;
5332 * The available vpd length cannot be bigger than the
5333 * DMA buffer passed to the port. Catch the less than
5334 * case and update the caller's size.
5336 if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5337 *vpd_size = mqe->un.read_rev.avail_vpd_len;
5339 memcpy(vpd, dmabuf->virt, *vpd_size);
5341 dma_free_coherent(&phba->pcidev->dev, dma_size,
5342 dmabuf->virt, dmabuf->phys);
5343 kfree(dmabuf);
5344 return 0;
5348 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
5349 * @phba: pointer to lpfc hba data structure.
5351 * This routine retrieves SLI4 device physical port name this PCI function
5352 * is attached to.
5354 * Return codes
5355 * 0 - successful
5356 * otherwise - failed to retrieve controller attributes
5358 static int
5359 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
5361 LPFC_MBOXQ_t *mboxq;
5362 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5363 struct lpfc_controller_attribute *cntl_attr;
5364 void *virtaddr = NULL;
5365 uint32_t alloclen, reqlen;
5366 uint32_t shdr_status, shdr_add_status;
5367 union lpfc_sli4_cfg_shdr *shdr;
5368 int rc;
5370 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5371 if (!mboxq)
5372 return -ENOMEM;
5374 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
5375 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5376 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5377 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5378 LPFC_SLI4_MBX_NEMBED);
5380 if (alloclen < reqlen) {
5381 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5382 "3084 Allocated DMA memory size (%d) is "
5383 "less than the requested DMA memory size "
5384 "(%d)\n", alloclen, reqlen);
5385 rc = -ENOMEM;
5386 goto out_free_mboxq;
5388 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5389 virtaddr = mboxq->sge_array->addr[0];
5390 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5391 shdr = &mbx_cntl_attr->cfg_shdr;
5392 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5393 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5394 if (shdr_status || shdr_add_status || rc) {
5395 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5396 "3085 Mailbox x%x (x%x/x%x) failed, "
5397 "rc:x%x, status:x%x, add_status:x%x\n",
5398 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5399 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5400 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5401 rc, shdr_status, shdr_add_status);
5402 rc = -ENXIO;
5403 goto out_free_mboxq;
5406 cntl_attr = &mbx_cntl_attr->cntl_attr;
5407 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5408 phba->sli4_hba.lnk_info.lnk_tp =
5409 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5410 phba->sli4_hba.lnk_info.lnk_no =
5411 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5413 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion));
5414 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str,
5415 sizeof(phba->BIOSVersion));
5417 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5418 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n",
5419 phba->sli4_hba.lnk_info.lnk_tp,
5420 phba->sli4_hba.lnk_info.lnk_no,
5421 phba->BIOSVersion);
5422 out_free_mboxq:
5423 if (rc != MBX_TIMEOUT) {
5424 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5425 lpfc_sli4_mbox_cmd_free(phba, mboxq);
5426 else
5427 mempool_free(mboxq, phba->mbox_mem_pool);
5429 return rc;
5433 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
5434 * @phba: pointer to lpfc hba data structure.
5436 * This routine retrieves SLI4 device physical port name this PCI function
5437 * is attached to.
5439 * Return codes
5440 * 0 - successful
5441 * otherwise - failed to retrieve physical port name
5443 static int
5444 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
5446 LPFC_MBOXQ_t *mboxq;
5447 struct lpfc_mbx_get_port_name *get_port_name;
5448 uint32_t shdr_status, shdr_add_status;
5449 union lpfc_sli4_cfg_shdr *shdr;
5450 char cport_name = 0;
5451 int rc;
5453 /* We assume nothing at this point */
5454 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5455 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
5457 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5458 if (!mboxq)
5459 return -ENOMEM;
5460 /* obtain link type and link number via READ_CONFIG */
5461 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5462 lpfc_sli4_read_config(phba);
5463 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
5464 goto retrieve_ppname;
5466 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
5467 rc = lpfc_sli4_get_ctl_attr(phba);
5468 if (rc)
5469 goto out_free_mboxq;
5471 retrieve_ppname:
5472 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5473 LPFC_MBOX_OPCODE_GET_PORT_NAME,
5474 sizeof(struct lpfc_mbx_get_port_name) -
5475 sizeof(struct lpfc_sli4_cfg_mhdr),
5476 LPFC_SLI4_MBX_EMBED);
5477 get_port_name = &mboxq->u.mqe.un.get_port_name;
5478 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5479 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5480 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5481 phba->sli4_hba.lnk_info.lnk_tp);
5482 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5483 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5484 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5485 if (shdr_status || shdr_add_status || rc) {
5486 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5487 "3087 Mailbox x%x (x%x/x%x) failed: "
5488 "rc:x%x, status:x%x, add_status:x%x\n",
5489 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5490 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5491 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5492 rc, shdr_status, shdr_add_status);
5493 rc = -ENXIO;
5494 goto out_free_mboxq;
5496 switch (phba->sli4_hba.lnk_info.lnk_no) {
5497 case LPFC_LINK_NUMBER_0:
5498 cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5499 &get_port_name->u.response);
5500 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5501 break;
5502 case LPFC_LINK_NUMBER_1:
5503 cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5504 &get_port_name->u.response);
5505 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5506 break;
5507 case LPFC_LINK_NUMBER_2:
5508 cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5509 &get_port_name->u.response);
5510 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5511 break;
5512 case LPFC_LINK_NUMBER_3:
5513 cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5514 &get_port_name->u.response);
5515 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5516 break;
5517 default:
5518 break;
5521 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5522 phba->Port[0] = cport_name;
5523 phba->Port[1] = '\0';
5524 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5525 "3091 SLI get port name: %s\n", phba->Port);
5528 out_free_mboxq:
5529 if (rc != MBX_TIMEOUT) {
5530 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5531 lpfc_sli4_mbox_cmd_free(phba, mboxq);
5532 else
5533 mempool_free(mboxq, phba->mbox_mem_pool);
5535 return rc;
5539 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5540 * @phba: pointer to lpfc hba data structure.
5542 * This routine is called to explicitly arm the SLI4 device's completion and
5543 * event queues
5545 static void
5546 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5548 int qidx;
5549 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
5550 struct lpfc_sli4_hdw_queue *qp;
5552 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
5553 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
5554 if (sli4_hba->nvmels_cq)
5555 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
5556 LPFC_QUEUE_REARM);
5558 qp = sli4_hba->hdwq;
5559 if (sli4_hba->hdwq) {
5560 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
5561 sli4_hba->sli4_write_cq_db(phba, qp[qidx].fcp_cq, 0,
5562 LPFC_QUEUE_REARM);
5563 sli4_hba->sli4_write_cq_db(phba, qp[qidx].nvme_cq, 0,
5564 LPFC_QUEUE_REARM);
5567 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++)
5568 sli4_hba->sli4_write_eq_db(phba, qp[qidx].hba_eq,
5569 0, LPFC_QUEUE_REARM);
5572 if (phba->nvmet_support) {
5573 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
5574 sli4_hba->sli4_write_cq_db(phba,
5575 sli4_hba->nvmet_cqset[qidx], 0,
5576 LPFC_QUEUE_REARM);
5582 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5583 * @phba: Pointer to HBA context object.
5584 * @type: The resource extent type.
5585 * @extnt_count: buffer to hold port available extent count.
5586 * @extnt_size: buffer to hold element count per extent.
5588 * This function calls the port and retrievs the number of available
5589 * extents and their size for a particular extent type.
5591 * Returns: 0 if successful. Nonzero otherwise.
5594 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5595 uint16_t *extnt_count, uint16_t *extnt_size)
5597 int rc = 0;
5598 uint32_t length;
5599 uint32_t mbox_tmo;
5600 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5601 LPFC_MBOXQ_t *mbox;
5603 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5604 if (!mbox)
5605 return -ENOMEM;
5607 /* Find out how many extents are available for this resource type */
5608 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5609 sizeof(struct lpfc_sli4_cfg_mhdr));
5610 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5611 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5612 length, LPFC_SLI4_MBX_EMBED);
5614 /* Send an extents count of 0 - the GET doesn't use it. */
5615 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5616 LPFC_SLI4_MBX_EMBED);
5617 if (unlikely(rc)) {
5618 rc = -EIO;
5619 goto err_exit;
5622 if (!phba->sli4_hba.intr_enable)
5623 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5624 else {
5625 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5626 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5628 if (unlikely(rc)) {
5629 rc = -EIO;
5630 goto err_exit;
5633 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5634 if (bf_get(lpfc_mbox_hdr_status,
5635 &rsrc_info->header.cfg_shdr.response)) {
5636 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5637 "2930 Failed to get resource extents "
5638 "Status 0x%x Add'l Status 0x%x\n",
5639 bf_get(lpfc_mbox_hdr_status,
5640 &rsrc_info->header.cfg_shdr.response),
5641 bf_get(lpfc_mbox_hdr_add_status,
5642 &rsrc_info->header.cfg_shdr.response));
5643 rc = -EIO;
5644 goto err_exit;
5647 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5648 &rsrc_info->u.rsp);
5649 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5650 &rsrc_info->u.rsp);
5652 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5653 "3162 Retrieved extents type-%d from port: count:%d, "
5654 "size:%d\n", type, *extnt_count, *extnt_size);
5656 err_exit:
5657 mempool_free(mbox, phba->mbox_mem_pool);
5658 return rc;
5662 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5663 * @phba: Pointer to HBA context object.
5664 * @type: The extent type to check.
5666 * This function reads the current available extents from the port and checks
5667 * if the extent count or extent size has changed since the last access.
5668 * Callers use this routine post port reset to understand if there is a
5669 * extent reprovisioning requirement.
5671 * Returns:
5672 * -Error: error indicates problem.
5673 * 1: Extent count or size has changed.
5674 * 0: No changes.
5676 static int
5677 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5679 uint16_t curr_ext_cnt, rsrc_ext_cnt;
5680 uint16_t size_diff, rsrc_ext_size;
5681 int rc = 0;
5682 struct lpfc_rsrc_blks *rsrc_entry;
5683 struct list_head *rsrc_blk_list = NULL;
5685 size_diff = 0;
5686 curr_ext_cnt = 0;
5687 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5688 &rsrc_ext_cnt,
5689 &rsrc_ext_size);
5690 if (unlikely(rc))
5691 return -EIO;
5693 switch (type) {
5694 case LPFC_RSC_TYPE_FCOE_RPI:
5695 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5696 break;
5697 case LPFC_RSC_TYPE_FCOE_VPI:
5698 rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5699 break;
5700 case LPFC_RSC_TYPE_FCOE_XRI:
5701 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5702 break;
5703 case LPFC_RSC_TYPE_FCOE_VFI:
5704 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5705 break;
5706 default:
5707 break;
5710 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5711 curr_ext_cnt++;
5712 if (rsrc_entry->rsrc_size != rsrc_ext_size)
5713 size_diff++;
5716 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5717 rc = 1;
5719 return rc;
5723 * lpfc_sli4_cfg_post_extnts -
5724 * @phba: Pointer to HBA context object.
5725 * @extnt_cnt - number of available extents.
5726 * @type - the extent type (rpi, xri, vfi, vpi).
5727 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5728 * @mbox - pointer to the caller's allocated mailbox structure.
5730 * This function executes the extents allocation request. It also
5731 * takes care of the amount of memory needed to allocate or get the
5732 * allocated extents. It is the caller's responsibility to evaluate
5733 * the response.
5735 * Returns:
5736 * -Error: Error value describes the condition found.
5737 * 0: if successful
5739 static int
5740 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
5741 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
5743 int rc = 0;
5744 uint32_t req_len;
5745 uint32_t emb_len;
5746 uint32_t alloc_len, mbox_tmo;
5748 /* Calculate the total requested length of the dma memory */
5749 req_len = extnt_cnt * sizeof(uint16_t);
5752 * Calculate the size of an embedded mailbox. The uint32_t
5753 * accounts for extents-specific word.
5755 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
5756 sizeof(uint32_t);
5759 * Presume the allocation and response will fit into an embedded
5760 * mailbox. If not true, reconfigure to a non-embedded mailbox.
5762 *emb = LPFC_SLI4_MBX_EMBED;
5763 if (req_len > emb_len) {
5764 req_len = extnt_cnt * sizeof(uint16_t) +
5765 sizeof(union lpfc_sli4_cfg_shdr) +
5766 sizeof(uint32_t);
5767 *emb = LPFC_SLI4_MBX_NEMBED;
5770 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5771 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
5772 req_len, *emb);
5773 if (alloc_len < req_len) {
5774 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5775 "2982 Allocated DMA memory size (x%x) is "
5776 "less than the requested DMA memory "
5777 "size (x%x)\n", alloc_len, req_len);
5778 return -ENOMEM;
5780 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
5781 if (unlikely(rc))
5782 return -EIO;
5784 if (!phba->sli4_hba.intr_enable)
5785 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5786 else {
5787 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5788 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5791 if (unlikely(rc))
5792 rc = -EIO;
5793 return rc;
5797 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
5798 * @phba: Pointer to HBA context object.
5799 * @type: The resource extent type to allocate.
5801 * This function allocates the number of elements for the specified
5802 * resource type.
5804 static int
5805 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
5807 bool emb = false;
5808 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
5809 uint16_t rsrc_id, rsrc_start, j, k;
5810 uint16_t *ids;
5811 int i, rc;
5812 unsigned long longs;
5813 unsigned long *bmask;
5814 struct lpfc_rsrc_blks *rsrc_blks;
5815 LPFC_MBOXQ_t *mbox;
5816 uint32_t length;
5817 struct lpfc_id_range *id_array = NULL;
5818 void *virtaddr = NULL;
5819 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
5820 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
5821 struct list_head *ext_blk_list;
5823 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5824 &rsrc_cnt,
5825 &rsrc_size);
5826 if (unlikely(rc))
5827 return -EIO;
5829 if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
5830 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5831 "3009 No available Resource Extents "
5832 "for resource type 0x%x: Count: 0x%x, "
5833 "Size 0x%x\n", type, rsrc_cnt,
5834 rsrc_size);
5835 return -ENOMEM;
5838 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
5839 "2903 Post resource extents type-0x%x: "
5840 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
5842 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5843 if (!mbox)
5844 return -ENOMEM;
5846 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
5847 if (unlikely(rc)) {
5848 rc = -EIO;
5849 goto err_exit;
5853 * Figure out where the response is located. Then get local pointers
5854 * to the response data. The port does not guarantee to respond to
5855 * all extents counts request so update the local variable with the
5856 * allocated count from the port.
5858 if (emb == LPFC_SLI4_MBX_EMBED) {
5859 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
5860 id_array = &rsrc_ext->u.rsp.id[0];
5861 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
5862 } else {
5863 virtaddr = mbox->sge_array->addr[0];
5864 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
5865 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
5866 id_array = &n_rsrc->id;
5869 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
5870 rsrc_id_cnt = rsrc_cnt * rsrc_size;
5873 * Based on the resource size and count, correct the base and max
5874 * resource values.
5876 length = sizeof(struct lpfc_rsrc_blks);
5877 switch (type) {
5878 case LPFC_RSC_TYPE_FCOE_RPI:
5879 phba->sli4_hba.rpi_bmask = kcalloc(longs,
5880 sizeof(unsigned long),
5881 GFP_KERNEL);
5882 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
5883 rc = -ENOMEM;
5884 goto err_exit;
5886 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
5887 sizeof(uint16_t),
5888 GFP_KERNEL);
5889 if (unlikely(!phba->sli4_hba.rpi_ids)) {
5890 kfree(phba->sli4_hba.rpi_bmask);
5891 rc = -ENOMEM;
5892 goto err_exit;
5896 * The next_rpi was initialized with the maximum available
5897 * count but the port may allocate a smaller number. Catch
5898 * that case and update the next_rpi.
5900 phba->sli4_hba.next_rpi = rsrc_id_cnt;
5902 /* Initialize local ptrs for common extent processing later. */
5903 bmask = phba->sli4_hba.rpi_bmask;
5904 ids = phba->sli4_hba.rpi_ids;
5905 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5906 break;
5907 case LPFC_RSC_TYPE_FCOE_VPI:
5908 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
5909 GFP_KERNEL);
5910 if (unlikely(!phba->vpi_bmask)) {
5911 rc = -ENOMEM;
5912 goto err_exit;
5914 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
5915 GFP_KERNEL);
5916 if (unlikely(!phba->vpi_ids)) {
5917 kfree(phba->vpi_bmask);
5918 rc = -ENOMEM;
5919 goto err_exit;
5922 /* Initialize local ptrs for common extent processing later. */
5923 bmask = phba->vpi_bmask;
5924 ids = phba->vpi_ids;
5925 ext_blk_list = &phba->lpfc_vpi_blk_list;
5926 break;
5927 case LPFC_RSC_TYPE_FCOE_XRI:
5928 phba->sli4_hba.xri_bmask = kcalloc(longs,
5929 sizeof(unsigned long),
5930 GFP_KERNEL);
5931 if (unlikely(!phba->sli4_hba.xri_bmask)) {
5932 rc = -ENOMEM;
5933 goto err_exit;
5935 phba->sli4_hba.max_cfg_param.xri_used = 0;
5936 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
5937 sizeof(uint16_t),
5938 GFP_KERNEL);
5939 if (unlikely(!phba->sli4_hba.xri_ids)) {
5940 kfree(phba->sli4_hba.xri_bmask);
5941 rc = -ENOMEM;
5942 goto err_exit;
5945 /* Initialize local ptrs for common extent processing later. */
5946 bmask = phba->sli4_hba.xri_bmask;
5947 ids = phba->sli4_hba.xri_ids;
5948 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5949 break;
5950 case LPFC_RSC_TYPE_FCOE_VFI:
5951 phba->sli4_hba.vfi_bmask = kcalloc(longs,
5952 sizeof(unsigned long),
5953 GFP_KERNEL);
5954 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
5955 rc = -ENOMEM;
5956 goto err_exit;
5958 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
5959 sizeof(uint16_t),
5960 GFP_KERNEL);
5961 if (unlikely(!phba->sli4_hba.vfi_ids)) {
5962 kfree(phba->sli4_hba.vfi_bmask);
5963 rc = -ENOMEM;
5964 goto err_exit;
5967 /* Initialize local ptrs for common extent processing later. */
5968 bmask = phba->sli4_hba.vfi_bmask;
5969 ids = phba->sli4_hba.vfi_ids;
5970 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5971 break;
5972 default:
5973 /* Unsupported Opcode. Fail call. */
5974 id_array = NULL;
5975 bmask = NULL;
5976 ids = NULL;
5977 ext_blk_list = NULL;
5978 goto err_exit;
5982 * Complete initializing the extent configuration with the
5983 * allocated ids assigned to this function. The bitmask serves
5984 * as an index into the array and manages the available ids. The
5985 * array just stores the ids communicated to the port via the wqes.
5987 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
5988 if ((i % 2) == 0)
5989 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
5990 &id_array[k]);
5991 else
5992 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
5993 &id_array[k]);
5995 rsrc_blks = kzalloc(length, GFP_KERNEL);
5996 if (unlikely(!rsrc_blks)) {
5997 rc = -ENOMEM;
5998 kfree(bmask);
5999 kfree(ids);
6000 goto err_exit;
6002 rsrc_blks->rsrc_start = rsrc_id;
6003 rsrc_blks->rsrc_size = rsrc_size;
6004 list_add_tail(&rsrc_blks->list, ext_blk_list);
6005 rsrc_start = rsrc_id;
6006 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6007 phba->sli4_hba.io_xri_start = rsrc_start +
6008 lpfc_sli4_get_iocb_cnt(phba);
6011 while (rsrc_id < (rsrc_start + rsrc_size)) {
6012 ids[j] = rsrc_id;
6013 rsrc_id++;
6014 j++;
6016 /* Entire word processed. Get next word.*/
6017 if ((i % 2) == 1)
6018 k++;
6020 err_exit:
6021 lpfc_sli4_mbox_cmd_free(phba, mbox);
6022 return rc;
6028 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6029 * @phba: Pointer to HBA context object.
6030 * @type: the extent's type.
6032 * This function deallocates all extents of a particular resource type.
6033 * SLI4 does not allow for deallocating a particular extent range. It
6034 * is the caller's responsibility to release all kernel memory resources.
6036 static int
6037 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6039 int rc;
6040 uint32_t length, mbox_tmo = 0;
6041 LPFC_MBOXQ_t *mbox;
6042 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6043 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6045 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6046 if (!mbox)
6047 return -ENOMEM;
6050 * This function sends an embedded mailbox because it only sends the
6051 * the resource type. All extents of this type are released by the
6052 * port.
6054 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6055 sizeof(struct lpfc_sli4_cfg_mhdr));
6056 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6057 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6058 length, LPFC_SLI4_MBX_EMBED);
6060 /* Send an extents count of 0 - the dealloc doesn't use it. */
6061 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6062 LPFC_SLI4_MBX_EMBED);
6063 if (unlikely(rc)) {
6064 rc = -EIO;
6065 goto out_free_mbox;
6067 if (!phba->sli4_hba.intr_enable)
6068 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6069 else {
6070 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6071 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6073 if (unlikely(rc)) {
6074 rc = -EIO;
6075 goto out_free_mbox;
6078 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6079 if (bf_get(lpfc_mbox_hdr_status,
6080 &dealloc_rsrc->header.cfg_shdr.response)) {
6081 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6082 "2919 Failed to release resource extents "
6083 "for type %d - Status 0x%x Add'l Status 0x%x. "
6084 "Resource memory not released.\n",
6085 type,
6086 bf_get(lpfc_mbox_hdr_status,
6087 &dealloc_rsrc->header.cfg_shdr.response),
6088 bf_get(lpfc_mbox_hdr_add_status,
6089 &dealloc_rsrc->header.cfg_shdr.response));
6090 rc = -EIO;
6091 goto out_free_mbox;
6094 /* Release kernel memory resources for the specific type. */
6095 switch (type) {
6096 case LPFC_RSC_TYPE_FCOE_VPI:
6097 kfree(phba->vpi_bmask);
6098 kfree(phba->vpi_ids);
6099 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6100 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6101 &phba->lpfc_vpi_blk_list, list) {
6102 list_del_init(&rsrc_blk->list);
6103 kfree(rsrc_blk);
6105 phba->sli4_hba.max_cfg_param.vpi_used = 0;
6106 break;
6107 case LPFC_RSC_TYPE_FCOE_XRI:
6108 kfree(phba->sli4_hba.xri_bmask);
6109 kfree(phba->sli4_hba.xri_ids);
6110 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6111 &phba->sli4_hba.lpfc_xri_blk_list, list) {
6112 list_del_init(&rsrc_blk->list);
6113 kfree(rsrc_blk);
6115 break;
6116 case LPFC_RSC_TYPE_FCOE_VFI:
6117 kfree(phba->sli4_hba.vfi_bmask);
6118 kfree(phba->sli4_hba.vfi_ids);
6119 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6120 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6121 &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6122 list_del_init(&rsrc_blk->list);
6123 kfree(rsrc_blk);
6125 break;
6126 case LPFC_RSC_TYPE_FCOE_RPI:
6127 /* RPI bitmask and physical id array are cleaned up earlier. */
6128 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6129 &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6130 list_del_init(&rsrc_blk->list);
6131 kfree(rsrc_blk);
6133 break;
6134 default:
6135 break;
6138 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6140 out_free_mbox:
6141 mempool_free(mbox, phba->mbox_mem_pool);
6142 return rc;
6145 static void
6146 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6147 uint32_t feature)
6149 uint32_t len;
6151 len = sizeof(struct lpfc_mbx_set_feature) -
6152 sizeof(struct lpfc_sli4_cfg_mhdr);
6153 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6154 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6155 LPFC_SLI4_MBX_EMBED);
6157 switch (feature) {
6158 case LPFC_SET_UE_RECOVERY:
6159 bf_set(lpfc_mbx_set_feature_UER,
6160 &mbox->u.mqe.un.set_feature, 1);
6161 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6162 mbox->u.mqe.un.set_feature.param_len = 8;
6163 break;
6164 case LPFC_SET_MDS_DIAGS:
6165 bf_set(lpfc_mbx_set_feature_mds,
6166 &mbox->u.mqe.un.set_feature, 1);
6167 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6168 &mbox->u.mqe.un.set_feature, 1);
6169 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6170 mbox->u.mqe.un.set_feature.param_len = 8;
6171 break;
6174 return;
6178 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6179 * @phba: Pointer to HBA context object.
6181 * Disable FW logging into host memory on the adapter. To
6182 * be done before reading logs from the host memory.
6184 void
6185 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6187 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6189 ras_fwlog->ras_active = false;
6191 /* Disable FW logging to host memory */
6192 writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6193 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6197 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6198 * @phba: Pointer to HBA context object.
6200 * This function is called to free memory allocated for RAS FW logging
6201 * support in the driver.
6203 void
6204 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6206 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6207 struct lpfc_dmabuf *dmabuf, *next;
6209 if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6210 list_for_each_entry_safe(dmabuf, next,
6211 &ras_fwlog->fwlog_buff_list,
6212 list) {
6213 list_del(&dmabuf->list);
6214 dma_free_coherent(&phba->pcidev->dev,
6215 LPFC_RAS_MAX_ENTRY_SIZE,
6216 dmabuf->virt, dmabuf->phys);
6217 kfree(dmabuf);
6221 if (ras_fwlog->lwpd.virt) {
6222 dma_free_coherent(&phba->pcidev->dev,
6223 sizeof(uint32_t) * 2,
6224 ras_fwlog->lwpd.virt,
6225 ras_fwlog->lwpd.phys);
6226 ras_fwlog->lwpd.virt = NULL;
6229 ras_fwlog->ras_active = false;
6233 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6234 * @phba: Pointer to HBA context object.
6235 * @fwlog_buff_count: Count of buffers to be created.
6237 * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6238 * to update FW log is posted to the adapter.
6239 * Buffer count is calculated based on module param ras_fwlog_buffsize
6240 * Size of each buffer posted to FW is 64K.
6243 static int
6244 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6245 uint32_t fwlog_buff_count)
6247 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6248 struct lpfc_dmabuf *dmabuf;
6249 int rc = 0, i = 0;
6251 /* Initialize List */
6252 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6254 /* Allocate memory for the LWPD */
6255 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6256 sizeof(uint32_t) * 2,
6257 &ras_fwlog->lwpd.phys,
6258 GFP_KERNEL);
6259 if (!ras_fwlog->lwpd.virt) {
6260 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6261 "6185 LWPD Memory Alloc Failed\n");
6263 return -ENOMEM;
6266 ras_fwlog->fw_buffcount = fwlog_buff_count;
6267 for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6268 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6269 GFP_KERNEL);
6270 if (!dmabuf) {
6271 rc = -ENOMEM;
6272 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6273 "6186 Memory Alloc failed FW logging");
6274 goto free_mem;
6277 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6278 LPFC_RAS_MAX_ENTRY_SIZE,
6279 &dmabuf->phys, GFP_KERNEL);
6280 if (!dmabuf->virt) {
6281 kfree(dmabuf);
6282 rc = -ENOMEM;
6283 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6284 "6187 DMA Alloc Failed FW logging");
6285 goto free_mem;
6287 dmabuf->buffer_tag = i;
6288 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6291 free_mem:
6292 if (rc)
6293 lpfc_sli4_ras_dma_free(phba);
6295 return rc;
6299 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6300 * @phba: pointer to lpfc hba data structure.
6301 * @pmboxq: pointer to the driver internal queue element for mailbox command.
6303 * Completion handler for driver's RAS MBX command to the device.
6305 static void
6306 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6308 MAILBOX_t *mb;
6309 union lpfc_sli4_cfg_shdr *shdr;
6310 uint32_t shdr_status, shdr_add_status;
6311 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6313 mb = &pmb->u.mb;
6315 shdr = (union lpfc_sli4_cfg_shdr *)
6316 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6317 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6318 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6320 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6321 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
6322 "6188 FW LOG mailbox "
6323 "completed with status x%x add_status x%x,"
6324 " mbx status x%x\n",
6325 shdr_status, shdr_add_status, mb->mbxStatus);
6327 ras_fwlog->ras_hwsupport = false;
6328 goto disable_ras;
6331 ras_fwlog->ras_active = true;
6332 mempool_free(pmb, phba->mbox_mem_pool);
6334 return;
6336 disable_ras:
6337 /* Free RAS DMA memory */
6338 lpfc_sli4_ras_dma_free(phba);
6339 mempool_free(pmb, phba->mbox_mem_pool);
6343 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
6344 * @phba: pointer to lpfc hba data structure.
6345 * @fwlog_level: Logging verbosity level.
6346 * @fwlog_enable: Enable/Disable logging.
6348 * Initialize memory and post mailbox command to enable FW logging in host
6349 * memory.
6352 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
6353 uint32_t fwlog_level,
6354 uint32_t fwlog_enable)
6356 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6357 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
6358 struct lpfc_dmabuf *dmabuf;
6359 LPFC_MBOXQ_t *mbox;
6360 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
6361 int rc = 0;
6363 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
6364 phba->cfg_ras_fwlog_buffsize);
6365 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
6368 * If re-enabling FW logging support use earlier allocated
6369 * DMA buffers while posting MBX command.
6371 if (!ras_fwlog->lwpd.virt) {
6372 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
6373 if (rc) {
6374 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6375 "6189 FW Log Memory Allocation Failed");
6376 return rc;
6380 /* Setup Mailbox command */
6381 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6382 if (!mbox) {
6383 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6384 "6190 RAS MBX Alloc Failed");
6385 rc = -ENOMEM;
6386 goto mem_free;
6389 ras_fwlog->fw_loglevel = fwlog_level;
6390 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
6391 sizeof(struct lpfc_sli4_cfg_mhdr));
6393 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
6394 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
6395 len, LPFC_SLI4_MBX_EMBED);
6397 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
6398 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
6399 fwlog_enable);
6400 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
6401 ras_fwlog->fw_loglevel);
6402 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
6403 ras_fwlog->fw_buffcount);
6404 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
6405 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
6407 /* Update DMA buffer address */
6408 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
6409 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
6411 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
6412 putPaddrLow(dmabuf->phys);
6414 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
6415 putPaddrHigh(dmabuf->phys);
6418 /* Update LPWD address */
6419 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
6420 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
6422 mbox->vport = phba->pport;
6423 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
6425 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
6427 if (rc == MBX_NOT_FINISHED) {
6428 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6429 "6191 FW-Log Mailbox failed. "
6430 "status %d mbxStatus : x%x", rc,
6431 bf_get(lpfc_mqe_status, &mbox->u.mqe));
6432 mempool_free(mbox, phba->mbox_mem_pool);
6433 rc = -EIO;
6434 goto mem_free;
6435 } else
6436 rc = 0;
6437 mem_free:
6438 if (rc)
6439 lpfc_sli4_ras_dma_free(phba);
6441 return rc;
6445 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
6446 * @phba: Pointer to HBA context object.
6448 * Check if RAS is supported on the adapter and initialize it.
6450 void
6451 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
6453 /* Check RAS FW Log needs to be enabled or not */
6454 if (lpfc_check_fwlog_support(phba))
6455 return;
6457 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
6458 LPFC_RAS_ENABLE_LOGGING);
6462 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
6463 * @phba: Pointer to HBA context object.
6465 * This function allocates all SLI4 resource identifiers.
6468 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
6470 int i, rc, error = 0;
6471 uint16_t count, base;
6472 unsigned long longs;
6474 if (!phba->sli4_hba.rpi_hdrs_in_use)
6475 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
6476 if (phba->sli4_hba.extents_in_use) {
6478 * The port supports resource extents. The XRI, VPI, VFI, RPI
6479 * resource extent count must be read and allocated before
6480 * provisioning the resource id arrays.
6482 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6483 LPFC_IDX_RSRC_RDY) {
6485 * Extent-based resources are set - the driver could
6486 * be in a port reset. Figure out if any corrective
6487 * actions need to be taken.
6489 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6490 LPFC_RSC_TYPE_FCOE_VFI);
6491 if (rc != 0)
6492 error++;
6493 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6494 LPFC_RSC_TYPE_FCOE_VPI);
6495 if (rc != 0)
6496 error++;
6497 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6498 LPFC_RSC_TYPE_FCOE_XRI);
6499 if (rc != 0)
6500 error++;
6501 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6502 LPFC_RSC_TYPE_FCOE_RPI);
6503 if (rc != 0)
6504 error++;
6507 * It's possible that the number of resources
6508 * provided to this port instance changed between
6509 * resets. Detect this condition and reallocate
6510 * resources. Otherwise, there is no action.
6512 if (error) {
6513 lpfc_printf_log(phba, KERN_INFO,
6514 LOG_MBOX | LOG_INIT,
6515 "2931 Detected extent resource "
6516 "change. Reallocating all "
6517 "extents.\n");
6518 rc = lpfc_sli4_dealloc_extent(phba,
6519 LPFC_RSC_TYPE_FCOE_VFI);
6520 rc = lpfc_sli4_dealloc_extent(phba,
6521 LPFC_RSC_TYPE_FCOE_VPI);
6522 rc = lpfc_sli4_dealloc_extent(phba,
6523 LPFC_RSC_TYPE_FCOE_XRI);
6524 rc = lpfc_sli4_dealloc_extent(phba,
6525 LPFC_RSC_TYPE_FCOE_RPI);
6526 } else
6527 return 0;
6530 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6531 if (unlikely(rc))
6532 goto err_exit;
6534 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6535 if (unlikely(rc))
6536 goto err_exit;
6538 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6539 if (unlikely(rc))
6540 goto err_exit;
6542 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6543 if (unlikely(rc))
6544 goto err_exit;
6545 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6546 LPFC_IDX_RSRC_RDY);
6547 return rc;
6548 } else {
6550 * The port does not support resource extents. The XRI, VPI,
6551 * VFI, RPI resource ids were determined from READ_CONFIG.
6552 * Just allocate the bitmasks and provision the resource id
6553 * arrays. If a port reset is active, the resources don't
6554 * need any action - just exit.
6556 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6557 LPFC_IDX_RSRC_RDY) {
6558 lpfc_sli4_dealloc_resource_identifiers(phba);
6559 lpfc_sli4_remove_rpis(phba);
6561 /* RPIs. */
6562 count = phba->sli4_hba.max_cfg_param.max_rpi;
6563 if (count <= 0) {
6564 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6565 "3279 Invalid provisioning of "
6566 "rpi:%d\n", count);
6567 rc = -EINVAL;
6568 goto err_exit;
6570 base = phba->sli4_hba.max_cfg_param.rpi_base;
6571 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6572 phba->sli4_hba.rpi_bmask = kcalloc(longs,
6573 sizeof(unsigned long),
6574 GFP_KERNEL);
6575 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6576 rc = -ENOMEM;
6577 goto err_exit;
6579 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
6580 GFP_KERNEL);
6581 if (unlikely(!phba->sli4_hba.rpi_ids)) {
6582 rc = -ENOMEM;
6583 goto free_rpi_bmask;
6586 for (i = 0; i < count; i++)
6587 phba->sli4_hba.rpi_ids[i] = base + i;
6589 /* VPIs. */
6590 count = phba->sli4_hba.max_cfg_param.max_vpi;
6591 if (count <= 0) {
6592 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6593 "3280 Invalid provisioning of "
6594 "vpi:%d\n", count);
6595 rc = -EINVAL;
6596 goto free_rpi_ids;
6598 base = phba->sli4_hba.max_cfg_param.vpi_base;
6599 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6600 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6601 GFP_KERNEL);
6602 if (unlikely(!phba->vpi_bmask)) {
6603 rc = -ENOMEM;
6604 goto free_rpi_ids;
6606 phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
6607 GFP_KERNEL);
6608 if (unlikely(!phba->vpi_ids)) {
6609 rc = -ENOMEM;
6610 goto free_vpi_bmask;
6613 for (i = 0; i < count; i++)
6614 phba->vpi_ids[i] = base + i;
6616 /* XRIs. */
6617 count = phba->sli4_hba.max_cfg_param.max_xri;
6618 if (count <= 0) {
6619 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6620 "3281 Invalid provisioning of "
6621 "xri:%d\n", count);
6622 rc = -EINVAL;
6623 goto free_vpi_ids;
6625 base = phba->sli4_hba.max_cfg_param.xri_base;
6626 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6627 phba->sli4_hba.xri_bmask = kcalloc(longs,
6628 sizeof(unsigned long),
6629 GFP_KERNEL);
6630 if (unlikely(!phba->sli4_hba.xri_bmask)) {
6631 rc = -ENOMEM;
6632 goto free_vpi_ids;
6634 phba->sli4_hba.max_cfg_param.xri_used = 0;
6635 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
6636 GFP_KERNEL);
6637 if (unlikely(!phba->sli4_hba.xri_ids)) {
6638 rc = -ENOMEM;
6639 goto free_xri_bmask;
6642 for (i = 0; i < count; i++)
6643 phba->sli4_hba.xri_ids[i] = base + i;
6645 /* VFIs. */
6646 count = phba->sli4_hba.max_cfg_param.max_vfi;
6647 if (count <= 0) {
6648 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6649 "3282 Invalid provisioning of "
6650 "vfi:%d\n", count);
6651 rc = -EINVAL;
6652 goto free_xri_ids;
6654 base = phba->sli4_hba.max_cfg_param.vfi_base;
6655 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6656 phba->sli4_hba.vfi_bmask = kcalloc(longs,
6657 sizeof(unsigned long),
6658 GFP_KERNEL);
6659 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6660 rc = -ENOMEM;
6661 goto free_xri_ids;
6663 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
6664 GFP_KERNEL);
6665 if (unlikely(!phba->sli4_hba.vfi_ids)) {
6666 rc = -ENOMEM;
6667 goto free_vfi_bmask;
6670 for (i = 0; i < count; i++)
6671 phba->sli4_hba.vfi_ids[i] = base + i;
6674 * Mark all resources ready. An HBA reset doesn't need
6675 * to reset the initialization.
6677 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6678 LPFC_IDX_RSRC_RDY);
6679 return 0;
6682 free_vfi_bmask:
6683 kfree(phba->sli4_hba.vfi_bmask);
6684 phba->sli4_hba.vfi_bmask = NULL;
6685 free_xri_ids:
6686 kfree(phba->sli4_hba.xri_ids);
6687 phba->sli4_hba.xri_ids = NULL;
6688 free_xri_bmask:
6689 kfree(phba->sli4_hba.xri_bmask);
6690 phba->sli4_hba.xri_bmask = NULL;
6691 free_vpi_ids:
6692 kfree(phba->vpi_ids);
6693 phba->vpi_ids = NULL;
6694 free_vpi_bmask:
6695 kfree(phba->vpi_bmask);
6696 phba->vpi_bmask = NULL;
6697 free_rpi_ids:
6698 kfree(phba->sli4_hba.rpi_ids);
6699 phba->sli4_hba.rpi_ids = NULL;
6700 free_rpi_bmask:
6701 kfree(phba->sli4_hba.rpi_bmask);
6702 phba->sli4_hba.rpi_bmask = NULL;
6703 err_exit:
6704 return rc;
6708 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
6709 * @phba: Pointer to HBA context object.
6711 * This function allocates the number of elements for the specified
6712 * resource type.
6715 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
6717 if (phba->sli4_hba.extents_in_use) {
6718 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6719 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6720 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6721 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6722 } else {
6723 kfree(phba->vpi_bmask);
6724 phba->sli4_hba.max_cfg_param.vpi_used = 0;
6725 kfree(phba->vpi_ids);
6726 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6727 kfree(phba->sli4_hba.xri_bmask);
6728 kfree(phba->sli4_hba.xri_ids);
6729 kfree(phba->sli4_hba.vfi_bmask);
6730 kfree(phba->sli4_hba.vfi_ids);
6731 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6732 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6735 return 0;
6739 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
6740 * @phba: Pointer to HBA context object.
6741 * @type: The resource extent type.
6742 * @extnt_count: buffer to hold port extent count response
6743 * @extnt_size: buffer to hold port extent size response.
6745 * This function calls the port to read the host allocated extents
6746 * for a particular type.
6749 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
6750 uint16_t *extnt_cnt, uint16_t *extnt_size)
6752 bool emb;
6753 int rc = 0;
6754 uint16_t curr_blks = 0;
6755 uint32_t req_len, emb_len;
6756 uint32_t alloc_len, mbox_tmo;
6757 struct list_head *blk_list_head;
6758 struct lpfc_rsrc_blks *rsrc_blk;
6759 LPFC_MBOXQ_t *mbox;
6760 void *virtaddr = NULL;
6761 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6762 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6763 union lpfc_sli4_cfg_shdr *shdr;
6765 switch (type) {
6766 case LPFC_RSC_TYPE_FCOE_VPI:
6767 blk_list_head = &phba->lpfc_vpi_blk_list;
6768 break;
6769 case LPFC_RSC_TYPE_FCOE_XRI:
6770 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
6771 break;
6772 case LPFC_RSC_TYPE_FCOE_VFI:
6773 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
6774 break;
6775 case LPFC_RSC_TYPE_FCOE_RPI:
6776 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
6777 break;
6778 default:
6779 return -EIO;
6782 /* Count the number of extents currently allocatd for this type. */
6783 list_for_each_entry(rsrc_blk, blk_list_head, list) {
6784 if (curr_blks == 0) {
6786 * The GET_ALLOCATED mailbox does not return the size,
6787 * just the count. The size should be just the size
6788 * stored in the current allocated block and all sizes
6789 * for an extent type are the same so set the return
6790 * value now.
6792 *extnt_size = rsrc_blk->rsrc_size;
6794 curr_blks++;
6798 * Calculate the size of an embedded mailbox. The uint32_t
6799 * accounts for extents-specific word.
6801 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6802 sizeof(uint32_t);
6805 * Presume the allocation and response will fit into an embedded
6806 * mailbox. If not true, reconfigure to a non-embedded mailbox.
6808 emb = LPFC_SLI4_MBX_EMBED;
6809 req_len = emb_len;
6810 if (req_len > emb_len) {
6811 req_len = curr_blks * sizeof(uint16_t) +
6812 sizeof(union lpfc_sli4_cfg_shdr) +
6813 sizeof(uint32_t);
6814 emb = LPFC_SLI4_MBX_NEMBED;
6817 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6818 if (!mbox)
6819 return -ENOMEM;
6820 memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
6822 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6823 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
6824 req_len, emb);
6825 if (alloc_len < req_len) {
6826 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6827 "2983 Allocated DMA memory size (x%x) is "
6828 "less than the requested DMA memory "
6829 "size (x%x)\n", alloc_len, req_len);
6830 rc = -ENOMEM;
6831 goto err_exit;
6833 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
6834 if (unlikely(rc)) {
6835 rc = -EIO;
6836 goto err_exit;
6839 if (!phba->sli4_hba.intr_enable)
6840 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6841 else {
6842 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6843 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6846 if (unlikely(rc)) {
6847 rc = -EIO;
6848 goto err_exit;
6852 * Figure out where the response is located. Then get local pointers
6853 * to the response data. The port does not guarantee to respond to
6854 * all extents counts request so update the local variable with the
6855 * allocated count from the port.
6857 if (emb == LPFC_SLI4_MBX_EMBED) {
6858 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6859 shdr = &rsrc_ext->header.cfg_shdr;
6860 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6861 } else {
6862 virtaddr = mbox->sge_array->addr[0];
6863 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6864 shdr = &n_rsrc->cfg_shdr;
6865 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6868 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
6869 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6870 "2984 Failed to read allocated resources "
6871 "for type %d - Status 0x%x Add'l Status 0x%x.\n",
6872 type,
6873 bf_get(lpfc_mbox_hdr_status, &shdr->response),
6874 bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
6875 rc = -EIO;
6876 goto err_exit;
6878 err_exit:
6879 lpfc_sli4_mbox_cmd_free(phba, mbox);
6880 return rc;
6884 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
6885 * @phba: pointer to lpfc hba data structure.
6886 * @pring: Pointer to driver SLI ring object.
6887 * @sgl_list: linked link of sgl buffers to post
6888 * @cnt: number of linked list buffers
6890 * This routine walks the list of buffers that have been allocated and
6891 * repost them to the port by using SGL block post. This is needed after a
6892 * pci_function_reset/warm_start or start. It attempts to construct blocks
6893 * of buffer sgls which contains contiguous xris and uses the non-embedded
6894 * SGL block post mailbox commands to post them to the port. For single
6895 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
6896 * mailbox command for posting.
6898 * Returns: 0 = success, non-zero failure.
6900 static int
6901 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
6902 struct list_head *sgl_list, int cnt)
6904 struct lpfc_sglq *sglq_entry = NULL;
6905 struct lpfc_sglq *sglq_entry_next = NULL;
6906 struct lpfc_sglq *sglq_entry_first = NULL;
6907 int status, total_cnt;
6908 int post_cnt = 0, num_posted = 0, block_cnt = 0;
6909 int last_xritag = NO_XRI;
6910 LIST_HEAD(prep_sgl_list);
6911 LIST_HEAD(blck_sgl_list);
6912 LIST_HEAD(allc_sgl_list);
6913 LIST_HEAD(post_sgl_list);
6914 LIST_HEAD(free_sgl_list);
6916 spin_lock_irq(&phba->hbalock);
6917 spin_lock(&phba->sli4_hba.sgl_list_lock);
6918 list_splice_init(sgl_list, &allc_sgl_list);
6919 spin_unlock(&phba->sli4_hba.sgl_list_lock);
6920 spin_unlock_irq(&phba->hbalock);
6922 total_cnt = cnt;
6923 list_for_each_entry_safe(sglq_entry, sglq_entry_next,
6924 &allc_sgl_list, list) {
6925 list_del_init(&sglq_entry->list);
6926 block_cnt++;
6927 if ((last_xritag != NO_XRI) &&
6928 (sglq_entry->sli4_xritag != last_xritag + 1)) {
6929 /* a hole in xri block, form a sgl posting block */
6930 list_splice_init(&prep_sgl_list, &blck_sgl_list);
6931 post_cnt = block_cnt - 1;
6932 /* prepare list for next posting block */
6933 list_add_tail(&sglq_entry->list, &prep_sgl_list);
6934 block_cnt = 1;
6935 } else {
6936 /* prepare list for next posting block */
6937 list_add_tail(&sglq_entry->list, &prep_sgl_list);
6938 /* enough sgls for non-embed sgl mbox command */
6939 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
6940 list_splice_init(&prep_sgl_list,
6941 &blck_sgl_list);
6942 post_cnt = block_cnt;
6943 block_cnt = 0;
6946 num_posted++;
6948 /* keep track of last sgl's xritag */
6949 last_xritag = sglq_entry->sli4_xritag;
6951 /* end of repost sgl list condition for buffers */
6952 if (num_posted == total_cnt) {
6953 if (post_cnt == 0) {
6954 list_splice_init(&prep_sgl_list,
6955 &blck_sgl_list);
6956 post_cnt = block_cnt;
6957 } else if (block_cnt == 1) {
6958 status = lpfc_sli4_post_sgl(phba,
6959 sglq_entry->phys, 0,
6960 sglq_entry->sli4_xritag);
6961 if (!status) {
6962 /* successful, put sgl to posted list */
6963 list_add_tail(&sglq_entry->list,
6964 &post_sgl_list);
6965 } else {
6966 /* Failure, put sgl to free list */
6967 lpfc_printf_log(phba, KERN_WARNING,
6968 LOG_SLI,
6969 "3159 Failed to post "
6970 "sgl, xritag:x%x\n",
6971 sglq_entry->sli4_xritag);
6972 list_add_tail(&sglq_entry->list,
6973 &free_sgl_list);
6974 total_cnt--;
6979 /* continue until a nembed page worth of sgls */
6980 if (post_cnt == 0)
6981 continue;
6983 /* post the buffer list sgls as a block */
6984 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
6985 post_cnt);
6987 if (!status) {
6988 /* success, put sgl list to posted sgl list */
6989 list_splice_init(&blck_sgl_list, &post_sgl_list);
6990 } else {
6991 /* Failure, put sgl list to free sgl list */
6992 sglq_entry_first = list_first_entry(&blck_sgl_list,
6993 struct lpfc_sglq,
6994 list);
6995 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6996 "3160 Failed to post sgl-list, "
6997 "xritag:x%x-x%x\n",
6998 sglq_entry_first->sli4_xritag,
6999 (sglq_entry_first->sli4_xritag +
7000 post_cnt - 1));
7001 list_splice_init(&blck_sgl_list, &free_sgl_list);
7002 total_cnt -= post_cnt;
7005 /* don't reset xirtag due to hole in xri block */
7006 if (block_cnt == 0)
7007 last_xritag = NO_XRI;
7009 /* reset sgl post count for next round of posting */
7010 post_cnt = 0;
7013 /* free the sgls failed to post */
7014 lpfc_free_sgl_list(phba, &free_sgl_list);
7016 /* push sgls posted to the available list */
7017 if (!list_empty(&post_sgl_list)) {
7018 spin_lock_irq(&phba->hbalock);
7019 spin_lock(&phba->sli4_hba.sgl_list_lock);
7020 list_splice_init(&post_sgl_list, sgl_list);
7021 spin_unlock(&phba->sli4_hba.sgl_list_lock);
7022 spin_unlock_irq(&phba->hbalock);
7023 } else {
7024 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7025 "3161 Failure to post sgl to port.\n");
7026 return -EIO;
7029 /* return the number of XRIs actually posted */
7030 return total_cnt;
7034 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7035 * @phba: pointer to lpfc hba data structure.
7037 * This routine walks the list of nvme buffers that have been allocated and
7038 * repost them to the port by using SGL block post. This is needed after a
7039 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7040 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7041 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7043 * Returns: 0 = success, non-zero failure.
7045 static int
7046 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7048 LIST_HEAD(post_nblist);
7049 int num_posted, rc = 0;
7051 /* get all NVME buffers need to repost to a local list */
7052 lpfc_io_buf_flush(phba, &post_nblist);
7054 /* post the list of nvme buffer sgls to port if available */
7055 if (!list_empty(&post_nblist)) {
7056 num_posted = lpfc_sli4_post_io_sgl_list(
7057 phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7058 /* failed to post any nvme buffer, return error */
7059 if (num_posted == 0)
7060 rc = -EIO;
7062 return rc;
7065 static void
7066 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7068 uint32_t len;
7070 len = sizeof(struct lpfc_mbx_set_host_data) -
7071 sizeof(struct lpfc_sli4_cfg_mhdr);
7072 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7073 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7074 LPFC_SLI4_MBX_EMBED);
7076 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7077 mbox->u.mqe.un.set_host_data.param_len =
7078 LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7079 snprintf(mbox->u.mqe.un.set_host_data.data,
7080 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7081 "Linux %s v"LPFC_DRIVER_VERSION,
7082 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7086 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7087 struct lpfc_queue *drq, int count, int idx)
7089 int rc, i;
7090 struct lpfc_rqe hrqe;
7091 struct lpfc_rqe drqe;
7092 struct lpfc_rqb *rqbp;
7093 unsigned long flags;
7094 struct rqb_dmabuf *rqb_buffer;
7095 LIST_HEAD(rqb_buf_list);
7097 spin_lock_irqsave(&phba->hbalock, flags);
7098 rqbp = hrq->rqbp;
7099 for (i = 0; i < count; i++) {
7100 /* IF RQ is already full, don't bother */
7101 if (rqbp->buffer_count + i >= rqbp->entry_count - 1)
7102 break;
7103 rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7104 if (!rqb_buffer)
7105 break;
7106 rqb_buffer->hrq = hrq;
7107 rqb_buffer->drq = drq;
7108 rqb_buffer->idx = idx;
7109 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7111 while (!list_empty(&rqb_buf_list)) {
7112 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7113 hbuf.list);
7115 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7116 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7117 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7118 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7119 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7120 if (rc < 0) {
7121 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7122 "6421 Cannot post to HRQ %d: %x %x %x "
7123 "DRQ %x %x\n",
7124 hrq->queue_id,
7125 hrq->host_index,
7126 hrq->hba_index,
7127 hrq->entry_count,
7128 drq->host_index,
7129 drq->hba_index);
7130 rqbp->rqb_free_buffer(phba, rqb_buffer);
7131 } else {
7132 list_add_tail(&rqb_buffer->hbuf.list,
7133 &rqbp->rqb_buffer_list);
7134 rqbp->buffer_count++;
7137 spin_unlock_irqrestore(&phba->hbalock, flags);
7138 return 1;
7142 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
7143 * @phba: Pointer to HBA context object.
7145 * This function is the main SLI4 device initialization PCI function. This
7146 * function is called by the HBA initialization code, HBA reset code and
7147 * HBA error attention handler code. Caller is not required to hold any
7148 * locks.
7151 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
7153 int rc, i, cnt, len;
7154 LPFC_MBOXQ_t *mboxq;
7155 struct lpfc_mqe *mqe;
7156 uint8_t *vpd;
7157 uint32_t vpd_size;
7158 uint32_t ftr_rsp = 0;
7159 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
7160 struct lpfc_vport *vport = phba->pport;
7161 struct lpfc_dmabuf *mp;
7162 struct lpfc_rqb *rqbp;
7164 /* Perform a PCI function reset to start from clean */
7165 rc = lpfc_pci_function_reset(phba);
7166 if (unlikely(rc))
7167 return -ENODEV;
7169 /* Check the HBA Host Status Register for readyness */
7170 rc = lpfc_sli4_post_status_check(phba);
7171 if (unlikely(rc))
7172 return -ENODEV;
7173 else {
7174 spin_lock_irq(&phba->hbalock);
7175 phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
7176 spin_unlock_irq(&phba->hbalock);
7180 * Allocate a single mailbox container for initializing the
7181 * port.
7183 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7184 if (!mboxq)
7185 return -ENOMEM;
7187 /* Issue READ_REV to collect vpd and FW information. */
7188 vpd_size = SLI4_PAGE_SIZE;
7189 vpd = kzalloc(vpd_size, GFP_KERNEL);
7190 if (!vpd) {
7191 rc = -ENOMEM;
7192 goto out_free_mbox;
7195 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
7196 if (unlikely(rc)) {
7197 kfree(vpd);
7198 goto out_free_mbox;
7201 mqe = &mboxq->u.mqe;
7202 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
7203 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
7204 phba->hba_flag |= HBA_FCOE_MODE;
7205 phba->fcp_embed_io = 0; /* SLI4 FC support only */
7206 } else {
7207 phba->hba_flag &= ~HBA_FCOE_MODE;
7210 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
7211 LPFC_DCBX_CEE_MODE)
7212 phba->hba_flag |= HBA_FIP_SUPPORT;
7213 else
7214 phba->hba_flag &= ~HBA_FIP_SUPPORT;
7216 phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH;
7218 if (phba->sli_rev != LPFC_SLI_REV4) {
7219 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7220 "0376 READ_REV Error. SLI Level %d "
7221 "FCoE enabled %d\n",
7222 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
7223 rc = -EIO;
7224 kfree(vpd);
7225 goto out_free_mbox;
7229 * Continue initialization with default values even if driver failed
7230 * to read FCoE param config regions, only read parameters if the
7231 * board is FCoE
7233 if (phba->hba_flag & HBA_FCOE_MODE &&
7234 lpfc_sli4_read_fcoe_params(phba))
7235 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
7236 "2570 Failed to read FCoE parameters\n");
7239 * Retrieve sli4 device physical port name, failure of doing it
7240 * is considered as non-fatal.
7242 rc = lpfc_sli4_retrieve_pport_name(phba);
7243 if (!rc)
7244 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7245 "3080 Successful retrieving SLI4 device "
7246 "physical port name: %s.\n", phba->Port);
7248 rc = lpfc_sli4_get_ctl_attr(phba);
7249 if (!rc)
7250 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7251 "8351 Successful retrieving SLI4 device "
7252 "CTL ATTR\n");
7255 * Evaluate the read rev and vpd data. Populate the driver
7256 * state with the results. If this routine fails, the failure
7257 * is not fatal as the driver will use generic values.
7259 rc = lpfc_parse_vpd(phba, vpd, vpd_size);
7260 if (unlikely(!rc)) {
7261 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7262 "0377 Error %d parsing vpd. "
7263 "Using defaults.\n", rc);
7264 rc = 0;
7266 kfree(vpd);
7268 /* Save information as VPD data */
7269 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
7270 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
7273 * This is because first G7 ASIC doesn't support the standard
7274 * 0x5a NVME cmd descriptor type/subtype
7276 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7277 LPFC_SLI_INTF_IF_TYPE_6) &&
7278 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
7279 (phba->vpd.rev.smRev == 0) &&
7280 (phba->cfg_nvme_embed_cmd == 1))
7281 phba->cfg_nvme_embed_cmd = 0;
7283 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
7284 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
7285 &mqe->un.read_rev);
7286 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
7287 &mqe->un.read_rev);
7288 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
7289 &mqe->un.read_rev);
7290 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
7291 &mqe->un.read_rev);
7292 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
7293 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
7294 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
7295 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
7296 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
7297 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
7298 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7299 "(%d):0380 READ_REV Status x%x "
7300 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
7301 mboxq->vport ? mboxq->vport->vpi : 0,
7302 bf_get(lpfc_mqe_status, mqe),
7303 phba->vpd.rev.opFwName,
7304 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
7305 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
7307 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */
7308 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3);
7309 if (phba->pport->cfg_lun_queue_depth > rc) {
7310 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7311 "3362 LUN queue depth changed from %d to %d\n",
7312 phba->pport->cfg_lun_queue_depth, rc);
7313 phba->pport->cfg_lun_queue_depth = rc;
7316 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7317 LPFC_SLI_INTF_IF_TYPE_0) {
7318 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
7319 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7320 if (rc == MBX_SUCCESS) {
7321 phba->hba_flag |= HBA_RECOVERABLE_UE;
7322 /* Set 1Sec interval to detect UE */
7323 phba->eratt_poll_interval = 1;
7324 phba->sli4_hba.ue_to_sr = bf_get(
7325 lpfc_mbx_set_feature_UESR,
7326 &mboxq->u.mqe.un.set_feature);
7327 phba->sli4_hba.ue_to_rp = bf_get(
7328 lpfc_mbx_set_feature_UERP,
7329 &mboxq->u.mqe.un.set_feature);
7333 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
7334 /* Enable MDS Diagnostics only if the SLI Port supports it */
7335 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
7336 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7337 if (rc != MBX_SUCCESS)
7338 phba->mds_diags_support = 0;
7342 * Discover the port's supported feature set and match it against the
7343 * hosts requests.
7345 lpfc_request_features(phba, mboxq);
7346 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7347 if (unlikely(rc)) {
7348 rc = -EIO;
7349 goto out_free_mbox;
7353 * The port must support FCP initiator mode as this is the
7354 * only mode running in the host.
7356 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
7357 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7358 "0378 No support for fcpi mode.\n");
7359 ftr_rsp++;
7362 /* Performance Hints are ONLY for FCoE */
7363 if (phba->hba_flag & HBA_FCOE_MODE) {
7364 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
7365 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
7366 else
7367 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
7371 * If the port cannot support the host's requested features
7372 * then turn off the global config parameters to disable the
7373 * feature in the driver. This is not a fatal error.
7375 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
7376 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
7377 phba->cfg_enable_bg = 0;
7378 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
7379 ftr_rsp++;
7383 if (phba->max_vpi && phba->cfg_enable_npiv &&
7384 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7385 ftr_rsp++;
7387 if (ftr_rsp) {
7388 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7389 "0379 Feature Mismatch Data: x%08x %08x "
7390 "x%x x%x x%x\n", mqe->un.req_ftrs.word2,
7391 mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
7392 phba->cfg_enable_npiv, phba->max_vpi);
7393 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
7394 phba->cfg_enable_bg = 0;
7395 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7396 phba->cfg_enable_npiv = 0;
7399 /* These SLI3 features are assumed in SLI4 */
7400 spin_lock_irq(&phba->hbalock);
7401 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
7402 spin_unlock_irq(&phba->hbalock);
7405 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent
7406 * calls depends on these resources to complete port setup.
7408 rc = lpfc_sli4_alloc_resource_identifiers(phba);
7409 if (rc) {
7410 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7411 "2920 Failed to alloc Resource IDs "
7412 "rc = x%x\n", rc);
7413 goto out_free_mbox;
7416 lpfc_set_host_data(phba, mboxq);
7418 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7419 if (rc) {
7420 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7421 "2134 Failed to set host os driver version %x",
7422 rc);
7425 /* Read the port's service parameters. */
7426 rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
7427 if (rc) {
7428 phba->link_state = LPFC_HBA_ERROR;
7429 rc = -ENOMEM;
7430 goto out_free_mbox;
7433 mboxq->vport = vport;
7434 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7435 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
7436 if (rc == MBX_SUCCESS) {
7437 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
7438 rc = 0;
7442 * This memory was allocated by the lpfc_read_sparam routine. Release
7443 * it to the mbuf pool.
7445 lpfc_mbuf_free(phba, mp->virt, mp->phys);
7446 kfree(mp);
7447 mboxq->ctx_buf = NULL;
7448 if (unlikely(rc)) {
7449 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7450 "0382 READ_SPARAM command failed "
7451 "status %d, mbxStatus x%x\n",
7452 rc, bf_get(lpfc_mqe_status, mqe));
7453 phba->link_state = LPFC_HBA_ERROR;
7454 rc = -EIO;
7455 goto out_free_mbox;
7458 lpfc_update_vport_wwn(vport);
7460 /* Update the fc_host data structures with new wwn. */
7461 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
7462 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
7464 /* Create all the SLI4 queues */
7465 rc = lpfc_sli4_queue_create(phba);
7466 if (rc) {
7467 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7468 "3089 Failed to allocate queues\n");
7469 rc = -ENODEV;
7470 goto out_free_mbox;
7472 /* Set up all the queues to the device */
7473 rc = lpfc_sli4_queue_setup(phba);
7474 if (unlikely(rc)) {
7475 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7476 "0381 Error %d during queue setup.\n ", rc);
7477 goto out_stop_timers;
7479 /* Initialize the driver internal SLI layer lists. */
7480 lpfc_sli4_setup(phba);
7481 lpfc_sli4_queue_init(phba);
7483 /* update host els xri-sgl sizes and mappings */
7484 rc = lpfc_sli4_els_sgl_update(phba);
7485 if (unlikely(rc)) {
7486 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7487 "1400 Failed to update xri-sgl size and "
7488 "mapping: %d\n", rc);
7489 goto out_destroy_queue;
7492 /* register the els sgl pool to the port */
7493 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
7494 phba->sli4_hba.els_xri_cnt);
7495 if (unlikely(rc < 0)) {
7496 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7497 "0582 Error %d during els sgl post "
7498 "operation\n", rc);
7499 rc = -ENODEV;
7500 goto out_destroy_queue;
7502 phba->sli4_hba.els_xri_cnt = rc;
7504 if (phba->nvmet_support) {
7505 /* update host nvmet xri-sgl sizes and mappings */
7506 rc = lpfc_sli4_nvmet_sgl_update(phba);
7507 if (unlikely(rc)) {
7508 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7509 "6308 Failed to update nvmet-sgl size "
7510 "and mapping: %d\n", rc);
7511 goto out_destroy_queue;
7514 /* register the nvmet sgl pool to the port */
7515 rc = lpfc_sli4_repost_sgl_list(
7516 phba,
7517 &phba->sli4_hba.lpfc_nvmet_sgl_list,
7518 phba->sli4_hba.nvmet_xri_cnt);
7519 if (unlikely(rc < 0)) {
7520 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7521 "3117 Error %d during nvmet "
7522 "sgl post\n", rc);
7523 rc = -ENODEV;
7524 goto out_destroy_queue;
7526 phba->sli4_hba.nvmet_xri_cnt = rc;
7528 cnt = phba->cfg_iocb_cnt * 1024;
7529 /* We need 1 iocbq for every SGL, for IO processing */
7530 cnt += phba->sli4_hba.nvmet_xri_cnt;
7531 } else {
7532 /* update host common xri-sgl sizes and mappings */
7533 rc = lpfc_sli4_io_sgl_update(phba);
7534 if (unlikely(rc)) {
7535 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7536 "6082 Failed to update nvme-sgl size "
7537 "and mapping: %d\n", rc);
7538 goto out_destroy_queue;
7541 /* register the allocated common sgl pool to the port */
7542 rc = lpfc_sli4_repost_io_sgl_list(phba);
7543 if (unlikely(rc)) {
7544 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7545 "6116 Error %d during nvme sgl post "
7546 "operation\n", rc);
7547 /* Some NVME buffers were moved to abort nvme list */
7548 /* A pci function reset will repost them */
7549 rc = -ENODEV;
7550 goto out_destroy_queue;
7552 cnt = phba->cfg_iocb_cnt * 1024;
7555 if (!phba->sli.iocbq_lookup) {
7556 /* Initialize and populate the iocb list per host */
7557 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7558 "2821 initialize iocb list %d total %d\n",
7559 phba->cfg_iocb_cnt, cnt);
7560 rc = lpfc_init_iocb_list(phba, cnt);
7561 if (rc) {
7562 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7563 "1413 Failed to init iocb list.\n");
7564 goto out_destroy_queue;
7568 if (phba->nvmet_support)
7569 lpfc_nvmet_create_targetport(phba);
7571 if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
7572 /* Post initial buffers to all RQs created */
7573 for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
7574 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
7575 INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
7576 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
7577 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
7578 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
7579 rqbp->buffer_count = 0;
7581 lpfc_post_rq_buffer(
7582 phba, phba->sli4_hba.nvmet_mrq_hdr[i],
7583 phba->sli4_hba.nvmet_mrq_data[i],
7584 phba->cfg_nvmet_mrq_post, i);
7588 /* Post the rpi header region to the device. */
7589 rc = lpfc_sli4_post_all_rpi_hdrs(phba);
7590 if (unlikely(rc)) {
7591 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7592 "0393 Error %d during rpi post operation\n",
7593 rc);
7594 rc = -ENODEV;
7595 goto out_destroy_queue;
7597 lpfc_sli4_node_prep(phba);
7599 if (!(phba->hba_flag & HBA_FCOE_MODE)) {
7600 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
7602 * The FC Port needs to register FCFI (index 0)
7604 lpfc_reg_fcfi(phba, mboxq);
7605 mboxq->vport = phba->pport;
7606 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7607 if (rc != MBX_SUCCESS)
7608 goto out_unset_queue;
7609 rc = 0;
7610 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
7611 &mboxq->u.mqe.un.reg_fcfi);
7612 } else {
7613 /* We are a NVME Target mode with MRQ > 1 */
7615 /* First register the FCFI */
7616 lpfc_reg_fcfi_mrq(phba, mboxq, 0);
7617 mboxq->vport = phba->pport;
7618 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7619 if (rc != MBX_SUCCESS)
7620 goto out_unset_queue;
7621 rc = 0;
7622 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
7623 &mboxq->u.mqe.un.reg_fcfi_mrq);
7625 /* Next register the MRQs */
7626 lpfc_reg_fcfi_mrq(phba, mboxq, 1);
7627 mboxq->vport = phba->pport;
7628 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7629 if (rc != MBX_SUCCESS)
7630 goto out_unset_queue;
7631 rc = 0;
7633 /* Check if the port is configured to be disabled */
7634 lpfc_sli_read_link_ste(phba);
7637 /* Don't post more new bufs if repost already recovered
7638 * the nvme sgls.
7640 if (phba->nvmet_support == 0) {
7641 if (phba->sli4_hba.io_xri_cnt == 0) {
7642 len = lpfc_new_io_buf(
7643 phba, phba->sli4_hba.io_xri_max);
7644 if (len == 0) {
7645 rc = -ENOMEM;
7646 goto out_unset_queue;
7649 if (phba->cfg_xri_rebalancing)
7650 lpfc_create_multixri_pools(phba);
7652 } else {
7653 phba->cfg_xri_rebalancing = 0;
7656 /* Allow asynchronous mailbox command to go through */
7657 spin_lock_irq(&phba->hbalock);
7658 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7659 spin_unlock_irq(&phba->hbalock);
7661 /* Post receive buffers to the device */
7662 lpfc_sli4_rb_setup(phba);
7664 /* Reset HBA FCF states after HBA reset */
7665 phba->fcf.fcf_flag = 0;
7666 phba->fcf.current_rec.flag = 0;
7668 /* Start the ELS watchdog timer */
7669 mod_timer(&vport->els_tmofunc,
7670 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
7672 /* Start heart beat timer */
7673 mod_timer(&phba->hb_tmofunc,
7674 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
7675 phba->hb_outstanding = 0;
7676 phba->last_completion_time = jiffies;
7678 /* start eq_delay heartbeat */
7679 if (phba->cfg_auto_imax)
7680 queue_delayed_work(phba->wq, &phba->eq_delay_work,
7681 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
7683 /* Start error attention (ERATT) polling timer */
7684 mod_timer(&phba->eratt_poll,
7685 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
7687 /* Enable PCIe device Advanced Error Reporting (AER) if configured */
7688 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
7689 rc = pci_enable_pcie_error_reporting(phba->pcidev);
7690 if (!rc) {
7691 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7692 "2829 This device supports "
7693 "Advanced Error Reporting (AER)\n");
7694 spin_lock_irq(&phba->hbalock);
7695 phba->hba_flag |= HBA_AER_ENABLED;
7696 spin_unlock_irq(&phba->hbalock);
7697 } else {
7698 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7699 "2830 This device does not support "
7700 "Advanced Error Reporting (AER)\n");
7701 phba->cfg_aer_support = 0;
7703 rc = 0;
7707 * The port is ready, set the host's link state to LINK_DOWN
7708 * in preparation for link interrupts.
7710 spin_lock_irq(&phba->hbalock);
7711 phba->link_state = LPFC_LINK_DOWN;
7713 /* Check if physical ports are trunked */
7714 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
7715 phba->trunk_link.link0.state = LPFC_LINK_DOWN;
7716 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
7717 phba->trunk_link.link1.state = LPFC_LINK_DOWN;
7718 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
7719 phba->trunk_link.link2.state = LPFC_LINK_DOWN;
7720 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
7721 phba->trunk_link.link3.state = LPFC_LINK_DOWN;
7722 spin_unlock_irq(&phba->hbalock);
7724 /* Arm the CQs and then EQs on device */
7725 lpfc_sli4_arm_cqeq_intr(phba);
7727 /* Indicate device interrupt mode */
7728 phba->sli4_hba.intr_enable = 1;
7730 if (!(phba->hba_flag & HBA_FCOE_MODE) &&
7731 (phba->hba_flag & LINK_DISABLED)) {
7732 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7733 "3103 Adapter Link is disabled.\n");
7734 lpfc_down_link(phba, mboxq);
7735 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7736 if (rc != MBX_SUCCESS) {
7737 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7738 "3104 Adapter failed to issue "
7739 "DOWN_LINK mbox cmd, rc:x%x\n", rc);
7740 goto out_io_buff_free;
7742 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
7743 /* don't perform init_link on SLI4 FC port loopback test */
7744 if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
7745 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
7746 if (rc)
7747 goto out_io_buff_free;
7750 mempool_free(mboxq, phba->mbox_mem_pool);
7751 return rc;
7752 out_io_buff_free:
7753 /* Free allocated IO Buffers */
7754 lpfc_io_free(phba);
7755 out_unset_queue:
7756 /* Unset all the queues set up in this routine when error out */
7757 lpfc_sli4_queue_unset(phba);
7758 out_destroy_queue:
7759 lpfc_free_iocb_list(phba);
7760 lpfc_sli4_queue_destroy(phba);
7761 out_stop_timers:
7762 lpfc_stop_hba_timers(phba);
7763 out_free_mbox:
7764 mempool_free(mboxq, phba->mbox_mem_pool);
7765 return rc;
7769 * lpfc_mbox_timeout - Timeout call back function for mbox timer
7770 * @ptr: context object - pointer to hba structure.
7772 * This is the callback function for mailbox timer. The mailbox
7773 * timer is armed when a new mailbox command is issued and the timer
7774 * is deleted when the mailbox complete. The function is called by
7775 * the kernel timer code when a mailbox does not complete within
7776 * expected time. This function wakes up the worker thread to
7777 * process the mailbox timeout and returns. All the processing is
7778 * done by the worker thread function lpfc_mbox_timeout_handler.
7780 void
7781 lpfc_mbox_timeout(struct timer_list *t)
7783 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo);
7784 unsigned long iflag;
7785 uint32_t tmo_posted;
7787 spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
7788 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
7789 if (!tmo_posted)
7790 phba->pport->work_port_events |= WORKER_MBOX_TMO;
7791 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
7793 if (!tmo_posted)
7794 lpfc_worker_wake_up(phba);
7795 return;
7799 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
7800 * are pending
7801 * @phba: Pointer to HBA context object.
7803 * This function checks if any mailbox completions are present on the mailbox
7804 * completion queue.
7806 static bool
7807 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
7810 uint32_t idx;
7811 struct lpfc_queue *mcq;
7812 struct lpfc_mcqe *mcqe;
7813 bool pending_completions = false;
7814 uint8_t qe_valid;
7816 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7817 return false;
7819 /* Check for completions on mailbox completion queue */
7821 mcq = phba->sli4_hba.mbx_cq;
7822 idx = mcq->hba_index;
7823 qe_valid = mcq->qe_valid;
7824 while (bf_get_le32(lpfc_cqe_valid,
7825 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
7826 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
7827 if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
7828 (!bf_get_le32(lpfc_trailer_async, mcqe))) {
7829 pending_completions = true;
7830 break;
7832 idx = (idx + 1) % mcq->entry_count;
7833 if (mcq->hba_index == idx)
7834 break;
7836 /* if the index wrapped around, toggle the valid bit */
7837 if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
7838 qe_valid = (qe_valid) ? 0 : 1;
7840 return pending_completions;
7845 * lpfc_sli4_process_missed_mbox_completions - process mbox completions
7846 * that were missed.
7847 * @phba: Pointer to HBA context object.
7849 * For sli4, it is possible to miss an interrupt. As such mbox completions
7850 * maybe missed causing erroneous mailbox timeouts to occur. This function
7851 * checks to see if mbox completions are on the mailbox completion queue
7852 * and will process all the completions associated with the eq for the
7853 * mailbox completion queue.
7855 bool
7856 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
7858 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
7859 uint32_t eqidx;
7860 struct lpfc_queue *fpeq = NULL;
7861 bool mbox_pending;
7863 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7864 return false;
7866 /* Find the eq associated with the mcq */
7868 if (sli4_hba->hdwq)
7869 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++)
7870 if (sli4_hba->hdwq[eqidx].hba_eq->queue_id ==
7871 sli4_hba->mbx_cq->assoc_qid) {
7872 fpeq = sli4_hba->hdwq[eqidx].hba_eq;
7873 break;
7875 if (!fpeq)
7876 return false;
7878 /* Turn off interrupts from this EQ */
7880 sli4_hba->sli4_eq_clr_intr(fpeq);
7882 /* Check to see if a mbox completion is pending */
7884 mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
7887 * If a mbox completion is pending, process all the events on EQ
7888 * associated with the mbox completion queue (this could include
7889 * mailbox commands, async events, els commands, receive queue data
7890 * and fcp commands)
7893 if (mbox_pending)
7894 /* process and rearm the EQ */
7895 lpfc_sli4_process_eq(phba, fpeq);
7896 else
7897 /* Always clear and re-arm the EQ */
7898 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
7900 return mbox_pending;
7905 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
7906 * @phba: Pointer to HBA context object.
7908 * This function is called from worker thread when a mailbox command times out.
7909 * The caller is not required to hold any locks. This function will reset the
7910 * HBA and recover all the pending commands.
7912 void
7913 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
7915 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
7916 MAILBOX_t *mb = NULL;
7918 struct lpfc_sli *psli = &phba->sli;
7920 /* If the mailbox completed, process the completion and return */
7921 if (lpfc_sli4_process_missed_mbox_completions(phba))
7922 return;
7924 if (pmbox != NULL)
7925 mb = &pmbox->u.mb;
7926 /* Check the pmbox pointer first. There is a race condition
7927 * between the mbox timeout handler getting executed in the
7928 * worklist and the mailbox actually completing. When this
7929 * race condition occurs, the mbox_active will be NULL.
7931 spin_lock_irq(&phba->hbalock);
7932 if (pmbox == NULL) {
7933 lpfc_printf_log(phba, KERN_WARNING,
7934 LOG_MBOX | LOG_SLI,
7935 "0353 Active Mailbox cleared - mailbox timeout "
7936 "exiting\n");
7937 spin_unlock_irq(&phba->hbalock);
7938 return;
7941 /* Mbox cmd <mbxCommand> timeout */
7942 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7943 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n",
7944 mb->mbxCommand,
7945 phba->pport->port_state,
7946 phba->sli.sli_flag,
7947 phba->sli.mbox_active);
7948 spin_unlock_irq(&phba->hbalock);
7950 /* Setting state unknown so lpfc_sli_abort_iocb_ring
7951 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
7952 * it to fail all outstanding SCSI IO.
7954 spin_lock_irq(&phba->pport->work_port_lock);
7955 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
7956 spin_unlock_irq(&phba->pport->work_port_lock);
7957 spin_lock_irq(&phba->hbalock);
7958 phba->link_state = LPFC_LINK_UNKNOWN;
7959 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
7960 spin_unlock_irq(&phba->hbalock);
7962 lpfc_sli_abort_fcp_rings(phba);
7964 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7965 "0345 Resetting board due to mailbox timeout\n");
7967 /* Reset the HBA device */
7968 lpfc_reset_hba(phba);
7972 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
7973 * @phba: Pointer to HBA context object.
7974 * @pmbox: Pointer to mailbox object.
7975 * @flag: Flag indicating how the mailbox need to be processed.
7977 * This function is called by discovery code and HBA management code
7978 * to submit a mailbox command to firmware with SLI-3 interface spec. This
7979 * function gets the hbalock to protect the data structures.
7980 * The mailbox command can be submitted in polling mode, in which case
7981 * this function will wait in a polling loop for the completion of the
7982 * mailbox.
7983 * If the mailbox is submitted in no_wait mode (not polling) the
7984 * function will submit the command and returns immediately without waiting
7985 * for the mailbox completion. The no_wait is supported only when HBA
7986 * is in SLI2/SLI3 mode - interrupts are enabled.
7987 * The SLI interface allows only one mailbox pending at a time. If the
7988 * mailbox is issued in polling mode and there is already a mailbox
7989 * pending, then the function will return an error. If the mailbox is issued
7990 * in NO_WAIT mode and there is a mailbox pending already, the function
7991 * will return MBX_BUSY after queuing the mailbox into mailbox queue.
7992 * The sli layer owns the mailbox object until the completion of mailbox
7993 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
7994 * return codes the caller owns the mailbox command after the return of
7995 * the function.
7997 static int
7998 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
7999 uint32_t flag)
8001 MAILBOX_t *mbx;
8002 struct lpfc_sli *psli = &phba->sli;
8003 uint32_t status, evtctr;
8004 uint32_t ha_copy, hc_copy;
8005 int i;
8006 unsigned long timeout;
8007 unsigned long drvr_flag = 0;
8008 uint32_t word0, ldata;
8009 void __iomem *to_slim;
8010 int processing_queue = 0;
8012 spin_lock_irqsave(&phba->hbalock, drvr_flag);
8013 if (!pmbox) {
8014 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8015 /* processing mbox queue from intr_handler */
8016 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8017 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8018 return MBX_SUCCESS;
8020 processing_queue = 1;
8021 pmbox = lpfc_mbox_get(phba);
8022 if (!pmbox) {
8023 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8024 return MBX_SUCCESS;
8028 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
8029 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
8030 if(!pmbox->vport) {
8031 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8032 lpfc_printf_log(phba, KERN_ERR,
8033 LOG_MBOX | LOG_VPORT,
8034 "1806 Mbox x%x failed. No vport\n",
8035 pmbox->u.mb.mbxCommand);
8036 dump_stack();
8037 goto out_not_finished;
8041 /* If the PCI channel is in offline state, do not post mbox. */
8042 if (unlikely(pci_channel_offline(phba->pcidev))) {
8043 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8044 goto out_not_finished;
8047 /* If HBA has a deferred error attention, fail the iocb. */
8048 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
8049 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8050 goto out_not_finished;
8053 psli = &phba->sli;
8055 mbx = &pmbox->u.mb;
8056 status = MBX_SUCCESS;
8058 if (phba->link_state == LPFC_HBA_ERROR) {
8059 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8061 /* Mbox command <mbxCommand> cannot issue */
8062 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8063 "(%d):0311 Mailbox command x%x cannot "
8064 "issue Data: x%x x%x\n",
8065 pmbox->vport ? pmbox->vport->vpi : 0,
8066 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8067 goto out_not_finished;
8070 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
8071 if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
8072 !(hc_copy & HC_MBINT_ENA)) {
8073 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8074 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8075 "(%d):2528 Mailbox command x%x cannot "
8076 "issue Data: x%x x%x\n",
8077 pmbox->vport ? pmbox->vport->vpi : 0,
8078 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8079 goto out_not_finished;
8083 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8084 /* Polling for a mbox command when another one is already active
8085 * is not allowed in SLI. Also, the driver must have established
8086 * SLI2 mode to queue and process multiple mbox commands.
8089 if (flag & MBX_POLL) {
8090 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8092 /* Mbox command <mbxCommand> cannot issue */
8093 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8094 "(%d):2529 Mailbox command x%x "
8095 "cannot issue Data: x%x x%x\n",
8096 pmbox->vport ? pmbox->vport->vpi : 0,
8097 pmbox->u.mb.mbxCommand,
8098 psli->sli_flag, flag);
8099 goto out_not_finished;
8102 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
8103 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8104 /* Mbox command <mbxCommand> cannot issue */
8105 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8106 "(%d):2530 Mailbox command x%x "
8107 "cannot issue Data: x%x x%x\n",
8108 pmbox->vport ? pmbox->vport->vpi : 0,
8109 pmbox->u.mb.mbxCommand,
8110 psli->sli_flag, flag);
8111 goto out_not_finished;
8114 /* Another mailbox command is still being processed, queue this
8115 * command to be processed later.
8117 lpfc_mbox_put(phba, pmbox);
8119 /* Mbox cmd issue - BUSY */
8120 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8121 "(%d):0308 Mbox cmd issue - BUSY Data: "
8122 "x%x x%x x%x x%x\n",
8123 pmbox->vport ? pmbox->vport->vpi : 0xffffff,
8124 mbx->mbxCommand,
8125 phba->pport ? phba->pport->port_state : 0xff,
8126 psli->sli_flag, flag);
8128 psli->slistat.mbox_busy++;
8129 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8131 if (pmbox->vport) {
8132 lpfc_debugfs_disc_trc(pmbox->vport,
8133 LPFC_DISC_TRC_MBOX_VPORT,
8134 "MBOX Bsy vport: cmd:x%x mb:x%x x%x",
8135 (uint32_t)mbx->mbxCommand,
8136 mbx->un.varWords[0], mbx->un.varWords[1]);
8138 else {
8139 lpfc_debugfs_disc_trc(phba->pport,
8140 LPFC_DISC_TRC_MBOX,
8141 "MBOX Bsy: cmd:x%x mb:x%x x%x",
8142 (uint32_t)mbx->mbxCommand,
8143 mbx->un.varWords[0], mbx->un.varWords[1]);
8146 return MBX_BUSY;
8149 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8151 /* If we are not polling, we MUST be in SLI2 mode */
8152 if (flag != MBX_POLL) {
8153 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
8154 (mbx->mbxCommand != MBX_KILL_BOARD)) {
8155 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8156 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8157 /* Mbox command <mbxCommand> cannot issue */
8158 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8159 "(%d):2531 Mailbox command x%x "
8160 "cannot issue Data: x%x x%x\n",
8161 pmbox->vport ? pmbox->vport->vpi : 0,
8162 pmbox->u.mb.mbxCommand,
8163 psli->sli_flag, flag);
8164 goto out_not_finished;
8166 /* timeout active mbox command */
8167 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8168 1000);
8169 mod_timer(&psli->mbox_tmo, jiffies + timeout);
8172 /* Mailbox cmd <cmd> issue */
8173 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8174 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
8175 "x%x\n",
8176 pmbox->vport ? pmbox->vport->vpi : 0,
8177 mbx->mbxCommand,
8178 phba->pport ? phba->pport->port_state : 0xff,
8179 psli->sli_flag, flag);
8181 if (mbx->mbxCommand != MBX_HEARTBEAT) {
8182 if (pmbox->vport) {
8183 lpfc_debugfs_disc_trc(pmbox->vport,
8184 LPFC_DISC_TRC_MBOX_VPORT,
8185 "MBOX Send vport: cmd:x%x mb:x%x x%x",
8186 (uint32_t)mbx->mbxCommand,
8187 mbx->un.varWords[0], mbx->un.varWords[1]);
8189 else {
8190 lpfc_debugfs_disc_trc(phba->pport,
8191 LPFC_DISC_TRC_MBOX,
8192 "MBOX Send: cmd:x%x mb:x%x x%x",
8193 (uint32_t)mbx->mbxCommand,
8194 mbx->un.varWords[0], mbx->un.varWords[1]);
8198 psli->slistat.mbox_cmd++;
8199 evtctr = psli->slistat.mbox_event;
8201 /* next set own bit for the adapter and copy over command word */
8202 mbx->mbxOwner = OWN_CHIP;
8204 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8205 /* Populate mbox extension offset word. */
8206 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
8207 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8208 = (uint8_t *)phba->mbox_ext
8209 - (uint8_t *)phba->mbox;
8212 /* Copy the mailbox extension data */
8213 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) {
8214 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf,
8215 (uint8_t *)phba->mbox_ext,
8216 pmbox->in_ext_byte_len);
8218 /* Copy command data to host SLIM area */
8219 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
8220 } else {
8221 /* Populate mbox extension offset word. */
8222 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
8223 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8224 = MAILBOX_HBA_EXT_OFFSET;
8226 /* Copy the mailbox extension data */
8227 if (pmbox->in_ext_byte_len && pmbox->ctx_buf)
8228 lpfc_memcpy_to_slim(phba->MBslimaddr +
8229 MAILBOX_HBA_EXT_OFFSET,
8230 pmbox->ctx_buf, pmbox->in_ext_byte_len);
8232 if (mbx->mbxCommand == MBX_CONFIG_PORT)
8233 /* copy command data into host mbox for cmpl */
8234 lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
8235 MAILBOX_CMD_SIZE);
8237 /* First copy mbox command data to HBA SLIM, skip past first
8238 word */
8239 to_slim = phba->MBslimaddr + sizeof (uint32_t);
8240 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
8241 MAILBOX_CMD_SIZE - sizeof (uint32_t));
8243 /* Next copy over first word, with mbxOwner set */
8244 ldata = *((uint32_t *)mbx);
8245 to_slim = phba->MBslimaddr;
8246 writel(ldata, to_slim);
8247 readl(to_slim); /* flush */
8249 if (mbx->mbxCommand == MBX_CONFIG_PORT)
8250 /* switch over to host mailbox */
8251 psli->sli_flag |= LPFC_SLI_ACTIVE;
8254 wmb();
8256 switch (flag) {
8257 case MBX_NOWAIT:
8258 /* Set up reference to mailbox command */
8259 psli->mbox_active = pmbox;
8260 /* Interrupt board to do it */
8261 writel(CA_MBATT, phba->CAregaddr);
8262 readl(phba->CAregaddr); /* flush */
8263 /* Don't wait for it to finish, just return */
8264 break;
8266 case MBX_POLL:
8267 /* Set up null reference to mailbox command */
8268 psli->mbox_active = NULL;
8269 /* Interrupt board to do it */
8270 writel(CA_MBATT, phba->CAregaddr);
8271 readl(phba->CAregaddr); /* flush */
8273 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8274 /* First read mbox status word */
8275 word0 = *((uint32_t *)phba->mbox);
8276 word0 = le32_to_cpu(word0);
8277 } else {
8278 /* First read mbox status word */
8279 if (lpfc_readl(phba->MBslimaddr, &word0)) {
8280 spin_unlock_irqrestore(&phba->hbalock,
8281 drvr_flag);
8282 goto out_not_finished;
8286 /* Read the HBA Host Attention Register */
8287 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8288 spin_unlock_irqrestore(&phba->hbalock,
8289 drvr_flag);
8290 goto out_not_finished;
8292 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8293 1000) + jiffies;
8294 i = 0;
8295 /* Wait for command to complete */
8296 while (((word0 & OWN_CHIP) == OWN_CHIP) ||
8297 (!(ha_copy & HA_MBATT) &&
8298 (phba->link_state > LPFC_WARM_START))) {
8299 if (time_after(jiffies, timeout)) {
8300 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8301 spin_unlock_irqrestore(&phba->hbalock,
8302 drvr_flag);
8303 goto out_not_finished;
8306 /* Check if we took a mbox interrupt while we were
8307 polling */
8308 if (((word0 & OWN_CHIP) != OWN_CHIP)
8309 && (evtctr != psli->slistat.mbox_event))
8310 break;
8312 if (i++ > 10) {
8313 spin_unlock_irqrestore(&phba->hbalock,
8314 drvr_flag);
8315 msleep(1);
8316 spin_lock_irqsave(&phba->hbalock, drvr_flag);
8319 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8320 /* First copy command data */
8321 word0 = *((uint32_t *)phba->mbox);
8322 word0 = le32_to_cpu(word0);
8323 if (mbx->mbxCommand == MBX_CONFIG_PORT) {
8324 MAILBOX_t *slimmb;
8325 uint32_t slimword0;
8326 /* Check real SLIM for any errors */
8327 slimword0 = readl(phba->MBslimaddr);
8328 slimmb = (MAILBOX_t *) & slimword0;
8329 if (((slimword0 & OWN_CHIP) != OWN_CHIP)
8330 && slimmb->mbxStatus) {
8331 psli->sli_flag &=
8332 ~LPFC_SLI_ACTIVE;
8333 word0 = slimword0;
8336 } else {
8337 /* First copy command data */
8338 word0 = readl(phba->MBslimaddr);
8340 /* Read the HBA Host Attention Register */
8341 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8342 spin_unlock_irqrestore(&phba->hbalock,
8343 drvr_flag);
8344 goto out_not_finished;
8348 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8349 /* copy results back to user */
8350 lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
8351 MAILBOX_CMD_SIZE);
8352 /* Copy the mailbox extension data */
8353 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8354 lpfc_sli_pcimem_bcopy(phba->mbox_ext,
8355 pmbox->ctx_buf,
8356 pmbox->out_ext_byte_len);
8358 } else {
8359 /* First copy command data */
8360 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
8361 MAILBOX_CMD_SIZE);
8362 /* Copy the mailbox extension data */
8363 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8364 lpfc_memcpy_from_slim(
8365 pmbox->ctx_buf,
8366 phba->MBslimaddr +
8367 MAILBOX_HBA_EXT_OFFSET,
8368 pmbox->out_ext_byte_len);
8372 writel(HA_MBATT, phba->HAregaddr);
8373 readl(phba->HAregaddr); /* flush */
8375 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8376 status = mbx->mbxStatus;
8379 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8380 return status;
8382 out_not_finished:
8383 if (processing_queue) {
8384 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
8385 lpfc_mbox_cmpl_put(phba, pmbox);
8387 return MBX_NOT_FINISHED;
8391 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
8392 * @phba: Pointer to HBA context object.
8394 * The function blocks the posting of SLI4 asynchronous mailbox commands from
8395 * the driver internal pending mailbox queue. It will then try to wait out the
8396 * possible outstanding mailbox command before return.
8398 * Returns:
8399 * 0 - the outstanding mailbox command completed; otherwise, the wait for
8400 * the outstanding mailbox command timed out.
8402 static int
8403 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
8405 struct lpfc_sli *psli = &phba->sli;
8406 int rc = 0;
8407 unsigned long timeout = 0;
8409 /* Mark the asynchronous mailbox command posting as blocked */
8410 spin_lock_irq(&phba->hbalock);
8411 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
8412 /* Determine how long we might wait for the active mailbox
8413 * command to be gracefully completed by firmware.
8415 if (phba->sli.mbox_active)
8416 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
8417 phba->sli.mbox_active) *
8418 1000) + jiffies;
8419 spin_unlock_irq(&phba->hbalock);
8421 /* Make sure the mailbox is really active */
8422 if (timeout)
8423 lpfc_sli4_process_missed_mbox_completions(phba);
8425 /* Wait for the outstnading mailbox command to complete */
8426 while (phba->sli.mbox_active) {
8427 /* Check active mailbox complete status every 2ms */
8428 msleep(2);
8429 if (time_after(jiffies, timeout)) {
8430 /* Timeout, marked the outstanding cmd not complete */
8431 rc = 1;
8432 break;
8436 /* Can not cleanly block async mailbox command, fails it */
8437 if (rc) {
8438 spin_lock_irq(&phba->hbalock);
8439 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8440 spin_unlock_irq(&phba->hbalock);
8442 return rc;
8446 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
8447 * @phba: Pointer to HBA context object.
8449 * The function unblocks and resume posting of SLI4 asynchronous mailbox
8450 * commands from the driver internal pending mailbox queue. It makes sure
8451 * that there is no outstanding mailbox command before resuming posting
8452 * asynchronous mailbox commands. If, for any reason, there is outstanding
8453 * mailbox command, it will try to wait it out before resuming asynchronous
8454 * mailbox command posting.
8456 static void
8457 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
8459 struct lpfc_sli *psli = &phba->sli;
8461 spin_lock_irq(&phba->hbalock);
8462 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8463 /* Asynchronous mailbox posting is not blocked, do nothing */
8464 spin_unlock_irq(&phba->hbalock);
8465 return;
8468 /* Outstanding synchronous mailbox command is guaranteed to be done,
8469 * successful or timeout, after timing-out the outstanding mailbox
8470 * command shall always be removed, so just unblock posting async
8471 * mailbox command and resume
8473 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8474 spin_unlock_irq(&phba->hbalock);
8476 /* wake up worker thread to post asynchronlous mailbox command */
8477 lpfc_worker_wake_up(phba);
8481 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
8482 * @phba: Pointer to HBA context object.
8483 * @mboxq: Pointer to mailbox object.
8485 * The function waits for the bootstrap mailbox register ready bit from
8486 * port for twice the regular mailbox command timeout value.
8488 * 0 - no timeout on waiting for bootstrap mailbox register ready.
8489 * MBXERR_ERROR - wait for bootstrap mailbox register timed out.
8491 static int
8492 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8494 uint32_t db_ready;
8495 unsigned long timeout;
8496 struct lpfc_register bmbx_reg;
8498 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
8499 * 1000) + jiffies;
8501 do {
8502 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
8503 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
8504 if (!db_ready)
8505 mdelay(2);
8507 if (time_after(jiffies, timeout))
8508 return MBXERR_ERROR;
8509 } while (!db_ready);
8511 return 0;
8515 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
8516 * @phba: Pointer to HBA context object.
8517 * @mboxq: Pointer to mailbox object.
8519 * The function posts a mailbox to the port. The mailbox is expected
8520 * to be comletely filled in and ready for the port to operate on it.
8521 * This routine executes a synchronous completion operation on the
8522 * mailbox by polling for its completion.
8524 * The caller must not be holding any locks when calling this routine.
8526 * Returns:
8527 * MBX_SUCCESS - mailbox posted successfully
8528 * Any of the MBX error values.
8530 static int
8531 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8533 int rc = MBX_SUCCESS;
8534 unsigned long iflag;
8535 uint32_t mcqe_status;
8536 uint32_t mbx_cmnd;
8537 struct lpfc_sli *psli = &phba->sli;
8538 struct lpfc_mqe *mb = &mboxq->u.mqe;
8539 struct lpfc_bmbx_create *mbox_rgn;
8540 struct dma_address *dma_address;
8543 * Only one mailbox can be active to the bootstrap mailbox region
8544 * at a time and there is no queueing provided.
8546 spin_lock_irqsave(&phba->hbalock, iflag);
8547 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8548 spin_unlock_irqrestore(&phba->hbalock, iflag);
8549 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8550 "(%d):2532 Mailbox command x%x (x%x/x%x) "
8551 "cannot issue Data: x%x x%x\n",
8552 mboxq->vport ? mboxq->vport->vpi : 0,
8553 mboxq->u.mb.mbxCommand,
8554 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8555 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8556 psli->sli_flag, MBX_POLL);
8557 return MBXERR_ERROR;
8559 /* The server grabs the token and owns it until release */
8560 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8561 phba->sli.mbox_active = mboxq;
8562 spin_unlock_irqrestore(&phba->hbalock, iflag);
8564 /* wait for bootstrap mbox register for readyness */
8565 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8566 if (rc)
8567 goto exit;
8569 * Initialize the bootstrap memory region to avoid stale data areas
8570 * in the mailbox post. Then copy the caller's mailbox contents to
8571 * the bmbx mailbox region.
8573 mbx_cmnd = bf_get(lpfc_mqe_command, mb);
8574 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
8575 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
8576 sizeof(struct lpfc_mqe));
8578 /* Post the high mailbox dma address to the port and wait for ready. */
8579 dma_address = &phba->sli4_hba.bmbx.dma_address;
8580 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
8582 /* wait for bootstrap mbox register for hi-address write done */
8583 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8584 if (rc)
8585 goto exit;
8587 /* Post the low mailbox dma address to the port. */
8588 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
8590 /* wait for bootstrap mbox register for low address write done */
8591 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8592 if (rc)
8593 goto exit;
8596 * Read the CQ to ensure the mailbox has completed.
8597 * If so, update the mailbox status so that the upper layers
8598 * can complete the request normally.
8600 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
8601 sizeof(struct lpfc_mqe));
8602 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
8603 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
8604 sizeof(struct lpfc_mcqe));
8605 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
8607 * When the CQE status indicates a failure and the mailbox status
8608 * indicates success then copy the CQE status into the mailbox status
8609 * (and prefix it with x4000).
8611 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
8612 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
8613 bf_set(lpfc_mqe_status, mb,
8614 (LPFC_MBX_ERROR_RANGE | mcqe_status));
8615 rc = MBXERR_ERROR;
8616 } else
8617 lpfc_sli4_swap_str(phba, mboxq);
8619 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8620 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
8621 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
8622 " x%x x%x CQ: x%x x%x x%x x%x\n",
8623 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8624 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8625 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8626 bf_get(lpfc_mqe_status, mb),
8627 mb->un.mb_words[0], mb->un.mb_words[1],
8628 mb->un.mb_words[2], mb->un.mb_words[3],
8629 mb->un.mb_words[4], mb->un.mb_words[5],
8630 mb->un.mb_words[6], mb->un.mb_words[7],
8631 mb->un.mb_words[8], mb->un.mb_words[9],
8632 mb->un.mb_words[10], mb->un.mb_words[11],
8633 mb->un.mb_words[12], mboxq->mcqe.word0,
8634 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
8635 mboxq->mcqe.trailer);
8636 exit:
8637 /* We are holding the token, no needed for lock when release */
8638 spin_lock_irqsave(&phba->hbalock, iflag);
8639 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8640 phba->sli.mbox_active = NULL;
8641 spin_unlock_irqrestore(&phba->hbalock, iflag);
8642 return rc;
8646 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
8647 * @phba: Pointer to HBA context object.
8648 * @pmbox: Pointer to mailbox object.
8649 * @flag: Flag indicating how the mailbox need to be processed.
8651 * This function is called by discovery code and HBA management code to submit
8652 * a mailbox command to firmware with SLI-4 interface spec.
8654 * Return codes the caller owns the mailbox command after the return of the
8655 * function.
8657 static int
8658 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
8659 uint32_t flag)
8661 struct lpfc_sli *psli = &phba->sli;
8662 unsigned long iflags;
8663 int rc;
8665 /* dump from issue mailbox command if setup */
8666 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
8668 rc = lpfc_mbox_dev_check(phba);
8669 if (unlikely(rc)) {
8670 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8671 "(%d):2544 Mailbox command x%x (x%x/x%x) "
8672 "cannot issue Data: x%x x%x\n",
8673 mboxq->vport ? mboxq->vport->vpi : 0,
8674 mboxq->u.mb.mbxCommand,
8675 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8676 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8677 psli->sli_flag, flag);
8678 goto out_not_finished;
8681 /* Detect polling mode and jump to a handler */
8682 if (!phba->sli4_hba.intr_enable) {
8683 if (flag == MBX_POLL)
8684 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8685 else
8686 rc = -EIO;
8687 if (rc != MBX_SUCCESS)
8688 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8689 "(%d):2541 Mailbox command x%x "
8690 "(x%x/x%x) failure: "
8691 "mqe_sta: x%x mcqe_sta: x%x/x%x "
8692 "Data: x%x x%x\n,",
8693 mboxq->vport ? mboxq->vport->vpi : 0,
8694 mboxq->u.mb.mbxCommand,
8695 lpfc_sli_config_mbox_subsys_get(phba,
8696 mboxq),
8697 lpfc_sli_config_mbox_opcode_get(phba,
8698 mboxq),
8699 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8700 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8701 bf_get(lpfc_mcqe_ext_status,
8702 &mboxq->mcqe),
8703 psli->sli_flag, flag);
8704 return rc;
8705 } else if (flag == MBX_POLL) {
8706 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8707 "(%d):2542 Try to issue mailbox command "
8708 "x%x (x%x/x%x) synchronously ahead of async "
8709 "mailbox command queue: x%x x%x\n",
8710 mboxq->vport ? mboxq->vport->vpi : 0,
8711 mboxq->u.mb.mbxCommand,
8712 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8713 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8714 psli->sli_flag, flag);
8715 /* Try to block the asynchronous mailbox posting */
8716 rc = lpfc_sli4_async_mbox_block(phba);
8717 if (!rc) {
8718 /* Successfully blocked, now issue sync mbox cmd */
8719 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8720 if (rc != MBX_SUCCESS)
8721 lpfc_printf_log(phba, KERN_WARNING,
8722 LOG_MBOX | LOG_SLI,
8723 "(%d):2597 Sync Mailbox command "
8724 "x%x (x%x/x%x) failure: "
8725 "mqe_sta: x%x mcqe_sta: x%x/x%x "
8726 "Data: x%x x%x\n,",
8727 mboxq->vport ? mboxq->vport->vpi : 0,
8728 mboxq->u.mb.mbxCommand,
8729 lpfc_sli_config_mbox_subsys_get(phba,
8730 mboxq),
8731 lpfc_sli_config_mbox_opcode_get(phba,
8732 mboxq),
8733 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8734 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8735 bf_get(lpfc_mcqe_ext_status,
8736 &mboxq->mcqe),
8737 psli->sli_flag, flag);
8738 /* Unblock the async mailbox posting afterward */
8739 lpfc_sli4_async_mbox_unblock(phba);
8741 return rc;
8744 /* Now, interrupt mode asynchrous mailbox command */
8745 rc = lpfc_mbox_cmd_check(phba, mboxq);
8746 if (rc) {
8747 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8748 "(%d):2543 Mailbox command x%x (x%x/x%x) "
8749 "cannot issue Data: x%x x%x\n",
8750 mboxq->vport ? mboxq->vport->vpi : 0,
8751 mboxq->u.mb.mbxCommand,
8752 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8753 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8754 psli->sli_flag, flag);
8755 goto out_not_finished;
8758 /* Put the mailbox command to the driver internal FIFO */
8759 psli->slistat.mbox_busy++;
8760 spin_lock_irqsave(&phba->hbalock, iflags);
8761 lpfc_mbox_put(phba, mboxq);
8762 spin_unlock_irqrestore(&phba->hbalock, iflags);
8763 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8764 "(%d):0354 Mbox cmd issue - Enqueue Data: "
8765 "x%x (x%x/x%x) x%x x%x x%x\n",
8766 mboxq->vport ? mboxq->vport->vpi : 0xffffff,
8767 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8768 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8769 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8770 phba->pport->port_state,
8771 psli->sli_flag, MBX_NOWAIT);
8772 /* Wake up worker thread to transport mailbox command from head */
8773 lpfc_worker_wake_up(phba);
8775 return MBX_BUSY;
8777 out_not_finished:
8778 return MBX_NOT_FINISHED;
8782 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
8783 * @phba: Pointer to HBA context object.
8785 * This function is called by worker thread to send a mailbox command to
8786 * SLI4 HBA firmware.
8790 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
8792 struct lpfc_sli *psli = &phba->sli;
8793 LPFC_MBOXQ_t *mboxq;
8794 int rc = MBX_SUCCESS;
8795 unsigned long iflags;
8796 struct lpfc_mqe *mqe;
8797 uint32_t mbx_cmnd;
8799 /* Check interrupt mode before post async mailbox command */
8800 if (unlikely(!phba->sli4_hba.intr_enable))
8801 return MBX_NOT_FINISHED;
8803 /* Check for mailbox command service token */
8804 spin_lock_irqsave(&phba->hbalock, iflags);
8805 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8806 spin_unlock_irqrestore(&phba->hbalock, iflags);
8807 return MBX_NOT_FINISHED;
8809 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8810 spin_unlock_irqrestore(&phba->hbalock, iflags);
8811 return MBX_NOT_FINISHED;
8813 if (unlikely(phba->sli.mbox_active)) {
8814 spin_unlock_irqrestore(&phba->hbalock, iflags);
8815 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8816 "0384 There is pending active mailbox cmd\n");
8817 return MBX_NOT_FINISHED;
8819 /* Take the mailbox command service token */
8820 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8822 /* Get the next mailbox command from head of queue */
8823 mboxq = lpfc_mbox_get(phba);
8825 /* If no more mailbox command waiting for post, we're done */
8826 if (!mboxq) {
8827 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8828 spin_unlock_irqrestore(&phba->hbalock, iflags);
8829 return MBX_SUCCESS;
8831 phba->sli.mbox_active = mboxq;
8832 spin_unlock_irqrestore(&phba->hbalock, iflags);
8834 /* Check device readiness for posting mailbox command */
8835 rc = lpfc_mbox_dev_check(phba);
8836 if (unlikely(rc))
8837 /* Driver clean routine will clean up pending mailbox */
8838 goto out_not_finished;
8840 /* Prepare the mbox command to be posted */
8841 mqe = &mboxq->u.mqe;
8842 mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
8844 /* Start timer for the mbox_tmo and log some mailbox post messages */
8845 mod_timer(&psli->mbox_tmo, (jiffies +
8846 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
8848 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8849 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
8850 "x%x x%x\n",
8851 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8852 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8853 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8854 phba->pport->port_state, psli->sli_flag);
8856 if (mbx_cmnd != MBX_HEARTBEAT) {
8857 if (mboxq->vport) {
8858 lpfc_debugfs_disc_trc(mboxq->vport,
8859 LPFC_DISC_TRC_MBOX_VPORT,
8860 "MBOX Send vport: cmd:x%x mb:x%x x%x",
8861 mbx_cmnd, mqe->un.mb_words[0],
8862 mqe->un.mb_words[1]);
8863 } else {
8864 lpfc_debugfs_disc_trc(phba->pport,
8865 LPFC_DISC_TRC_MBOX,
8866 "MBOX Send: cmd:x%x mb:x%x x%x",
8867 mbx_cmnd, mqe->un.mb_words[0],
8868 mqe->un.mb_words[1]);
8871 psli->slistat.mbox_cmd++;
8873 /* Post the mailbox command to the port */
8874 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
8875 if (rc != MBX_SUCCESS) {
8876 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8877 "(%d):2533 Mailbox command x%x (x%x/x%x) "
8878 "cannot issue Data: x%x x%x\n",
8879 mboxq->vport ? mboxq->vport->vpi : 0,
8880 mboxq->u.mb.mbxCommand,
8881 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8882 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8883 psli->sli_flag, MBX_NOWAIT);
8884 goto out_not_finished;
8887 return rc;
8889 out_not_finished:
8890 spin_lock_irqsave(&phba->hbalock, iflags);
8891 if (phba->sli.mbox_active) {
8892 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
8893 __lpfc_mbox_cmpl_put(phba, mboxq);
8894 /* Release the token */
8895 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8896 phba->sli.mbox_active = NULL;
8898 spin_unlock_irqrestore(&phba->hbalock, iflags);
8900 return MBX_NOT_FINISHED;
8904 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
8905 * @phba: Pointer to HBA context object.
8906 * @pmbox: Pointer to mailbox object.
8907 * @flag: Flag indicating how the mailbox need to be processed.
8909 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
8910 * the API jump table function pointer from the lpfc_hba struct.
8912 * Return codes the caller owns the mailbox command after the return of the
8913 * function.
8916 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
8918 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
8922 * lpfc_mbox_api_table_setup - Set up mbox api function jump table
8923 * @phba: The hba struct for which this call is being executed.
8924 * @dev_grp: The HBA PCI-Device group number.
8926 * This routine sets up the mbox interface API function jump table in @phba
8927 * struct.
8928 * Returns: 0 - success, -ENODEV - failure.
8931 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8934 switch (dev_grp) {
8935 case LPFC_PCI_DEV_LP:
8936 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
8937 phba->lpfc_sli_handle_slow_ring_event =
8938 lpfc_sli_handle_slow_ring_event_s3;
8939 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
8940 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
8941 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
8942 break;
8943 case LPFC_PCI_DEV_OC:
8944 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
8945 phba->lpfc_sli_handle_slow_ring_event =
8946 lpfc_sli_handle_slow_ring_event_s4;
8947 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
8948 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
8949 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
8950 break;
8951 default:
8952 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8953 "1420 Invalid HBA PCI-device group: 0x%x\n",
8954 dev_grp);
8955 return -ENODEV;
8956 break;
8958 return 0;
8962 * __lpfc_sli_ringtx_put - Add an iocb to the txq
8963 * @phba: Pointer to HBA context object.
8964 * @pring: Pointer to driver SLI ring object.
8965 * @piocb: Pointer to address of newly added command iocb.
8967 * This function is called with hbalock held to add a command
8968 * iocb to the txq when SLI layer cannot submit the command iocb
8969 * to the ring.
8971 void
8972 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8973 struct lpfc_iocbq *piocb)
8975 lockdep_assert_held(&phba->hbalock);
8976 /* Insert the caller's iocb in the txq tail for later processing. */
8977 list_add_tail(&piocb->list, &pring->txq);
8981 * lpfc_sli_next_iocb - Get the next iocb in the txq
8982 * @phba: Pointer to HBA context object.
8983 * @pring: Pointer to driver SLI ring object.
8984 * @piocb: Pointer to address of newly added command iocb.
8986 * This function is called with hbalock held before a new
8987 * iocb is submitted to the firmware. This function checks
8988 * txq to flush the iocbs in txq to Firmware before
8989 * submitting new iocbs to the Firmware.
8990 * If there are iocbs in the txq which need to be submitted
8991 * to firmware, lpfc_sli_next_iocb returns the first element
8992 * of the txq after dequeuing it from txq.
8993 * If there is no iocb in the txq then the function will return
8994 * *piocb and *piocb is set to NULL. Caller needs to check
8995 * *piocb to find if there are more commands in the txq.
8997 static struct lpfc_iocbq *
8998 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8999 struct lpfc_iocbq **piocb)
9001 struct lpfc_iocbq * nextiocb;
9003 lockdep_assert_held(&phba->hbalock);
9005 nextiocb = lpfc_sli_ringtx_get(phba, pring);
9006 if (!nextiocb) {
9007 nextiocb = *piocb;
9008 *piocb = NULL;
9011 return nextiocb;
9015 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
9016 * @phba: Pointer to HBA context object.
9017 * @ring_number: SLI ring number to issue iocb on.
9018 * @piocb: Pointer to command iocb.
9019 * @flag: Flag indicating if this command can be put into txq.
9021 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
9022 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
9023 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
9024 * flag is turned on, the function returns IOCB_ERROR. When the link is down,
9025 * this function allows only iocbs for posting buffers. This function finds
9026 * next available slot in the command ring and posts the command to the
9027 * available slot and writes the port attention register to request HBA start
9028 * processing new iocb. If there is no slot available in the ring and
9029 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
9030 * the function returns IOCB_BUSY.
9032 * This function is called with hbalock held. The function will return success
9033 * after it successfully submit the iocb to firmware or after adding to the
9034 * txq.
9036 static int
9037 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
9038 struct lpfc_iocbq *piocb, uint32_t flag)
9040 struct lpfc_iocbq *nextiocb;
9041 IOCB_t *iocb;
9042 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
9044 lockdep_assert_held(&phba->hbalock);
9046 if (piocb->iocb_cmpl && (!piocb->vport) &&
9047 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
9048 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
9049 lpfc_printf_log(phba, KERN_ERR,
9050 LOG_SLI | LOG_VPORT,
9051 "1807 IOCB x%x failed. No vport\n",
9052 piocb->iocb.ulpCommand);
9053 dump_stack();
9054 return IOCB_ERROR;
9058 /* If the PCI channel is in offline state, do not post iocbs. */
9059 if (unlikely(pci_channel_offline(phba->pcidev)))
9060 return IOCB_ERROR;
9062 /* If HBA has a deferred error attention, fail the iocb. */
9063 if (unlikely(phba->hba_flag & DEFER_ERATT))
9064 return IOCB_ERROR;
9067 * We should never get an IOCB if we are in a < LINK_DOWN state
9069 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
9070 return IOCB_ERROR;
9073 * Check to see if we are blocking IOCB processing because of a
9074 * outstanding event.
9076 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
9077 goto iocb_busy;
9079 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
9081 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
9082 * can be issued if the link is not up.
9084 switch (piocb->iocb.ulpCommand) {
9085 case CMD_GEN_REQUEST64_CR:
9086 case CMD_GEN_REQUEST64_CX:
9087 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
9088 (piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
9089 FC_RCTL_DD_UNSOL_CMD) ||
9090 (piocb->iocb.un.genreq64.w5.hcsw.Type !=
9091 MENLO_TRANSPORT_TYPE))
9093 goto iocb_busy;
9094 break;
9095 case CMD_QUE_RING_BUF_CN:
9096 case CMD_QUE_RING_BUF64_CN:
9098 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
9099 * completion, iocb_cmpl MUST be 0.
9101 if (piocb->iocb_cmpl)
9102 piocb->iocb_cmpl = NULL;
9103 /*FALLTHROUGH*/
9104 case CMD_CREATE_XRI_CR:
9105 case CMD_CLOSE_XRI_CN:
9106 case CMD_CLOSE_XRI_CX:
9107 break;
9108 default:
9109 goto iocb_busy;
9113 * For FCP commands, we must be in a state where we can process link
9114 * attention events.
9116 } else if (unlikely(pring->ringno == LPFC_FCP_RING &&
9117 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
9118 goto iocb_busy;
9121 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
9122 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
9123 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
9125 if (iocb)
9126 lpfc_sli_update_ring(phba, pring);
9127 else
9128 lpfc_sli_update_full_ring(phba, pring);
9130 if (!piocb)
9131 return IOCB_SUCCESS;
9133 goto out_busy;
9135 iocb_busy:
9136 pring->stats.iocb_cmd_delay++;
9138 out_busy:
9140 if (!(flag & SLI_IOCB_RET_IOCB)) {
9141 __lpfc_sli_ringtx_put(phba, pring, piocb);
9142 return IOCB_SUCCESS;
9145 return IOCB_BUSY;
9149 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
9150 * @phba: Pointer to HBA context object.
9151 * @piocb: Pointer to command iocb.
9152 * @sglq: Pointer to the scatter gather queue object.
9154 * This routine converts the bpl or bde that is in the IOCB
9155 * to a sgl list for the sli4 hardware. The physical address
9156 * of the bpl/bde is converted back to a virtual address.
9157 * If the IOCB contains a BPL then the list of BDE's is
9158 * converted to sli4_sge's. If the IOCB contains a single
9159 * BDE then it is converted to a single sli_sge.
9160 * The IOCB is still in cpu endianess so the contents of
9161 * the bpl can be used without byte swapping.
9163 * Returns valid XRI = Success, NO_XRI = Failure.
9165 static uint16_t
9166 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
9167 struct lpfc_sglq *sglq)
9169 uint16_t xritag = NO_XRI;
9170 struct ulp_bde64 *bpl = NULL;
9171 struct ulp_bde64 bde;
9172 struct sli4_sge *sgl = NULL;
9173 struct lpfc_dmabuf *dmabuf;
9174 IOCB_t *icmd;
9175 int numBdes = 0;
9176 int i = 0;
9177 uint32_t offset = 0; /* accumulated offset in the sg request list */
9178 int inbound = 0; /* number of sg reply entries inbound from firmware */
9180 if (!piocbq || !sglq)
9181 return xritag;
9183 sgl = (struct sli4_sge *)sglq->sgl;
9184 icmd = &piocbq->iocb;
9185 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
9186 return sglq->sli4_xritag;
9187 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9188 numBdes = icmd->un.genreq64.bdl.bdeSize /
9189 sizeof(struct ulp_bde64);
9190 /* The addrHigh and addrLow fields within the IOCB
9191 * have not been byteswapped yet so there is no
9192 * need to swap them back.
9194 if (piocbq->context3)
9195 dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
9196 else
9197 return xritag;
9199 bpl = (struct ulp_bde64 *)dmabuf->virt;
9200 if (!bpl)
9201 return xritag;
9203 for (i = 0; i < numBdes; i++) {
9204 /* Should already be byte swapped. */
9205 sgl->addr_hi = bpl->addrHigh;
9206 sgl->addr_lo = bpl->addrLow;
9208 sgl->word2 = le32_to_cpu(sgl->word2);
9209 if ((i+1) == numBdes)
9210 bf_set(lpfc_sli4_sge_last, sgl, 1);
9211 else
9212 bf_set(lpfc_sli4_sge_last, sgl, 0);
9213 /* swap the size field back to the cpu so we
9214 * can assign it to the sgl.
9216 bde.tus.w = le32_to_cpu(bpl->tus.w);
9217 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
9218 /* The offsets in the sgl need to be accumulated
9219 * separately for the request and reply lists.
9220 * The request is always first, the reply follows.
9222 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
9223 /* add up the reply sg entries */
9224 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
9225 inbound++;
9226 /* first inbound? reset the offset */
9227 if (inbound == 1)
9228 offset = 0;
9229 bf_set(lpfc_sli4_sge_offset, sgl, offset);
9230 bf_set(lpfc_sli4_sge_type, sgl,
9231 LPFC_SGE_TYPE_DATA);
9232 offset += bde.tus.f.bdeSize;
9234 sgl->word2 = cpu_to_le32(sgl->word2);
9235 bpl++;
9236 sgl++;
9238 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
9239 /* The addrHigh and addrLow fields of the BDE have not
9240 * been byteswapped yet so they need to be swapped
9241 * before putting them in the sgl.
9243 sgl->addr_hi =
9244 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
9245 sgl->addr_lo =
9246 cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
9247 sgl->word2 = le32_to_cpu(sgl->word2);
9248 bf_set(lpfc_sli4_sge_last, sgl, 1);
9249 sgl->word2 = cpu_to_le32(sgl->word2);
9250 sgl->sge_len =
9251 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
9253 return sglq->sli4_xritag;
9257 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
9258 * @phba: Pointer to HBA context object.
9259 * @piocb: Pointer to command iocb.
9260 * @wqe: Pointer to the work queue entry.
9262 * This routine converts the iocb command to its Work Queue Entry
9263 * equivalent. The wqe pointer should not have any fields set when
9264 * this routine is called because it will memcpy over them.
9265 * This routine does not set the CQ_ID or the WQEC bits in the
9266 * wqe.
9268 * Returns: 0 = Success, IOCB_ERROR = Failure.
9270 static int
9271 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
9272 union lpfc_wqe128 *wqe)
9274 uint32_t xmit_len = 0, total_len = 0;
9275 uint8_t ct = 0;
9276 uint32_t fip;
9277 uint32_t abort_tag;
9278 uint8_t command_type = ELS_COMMAND_NON_FIP;
9279 uint8_t cmnd;
9280 uint16_t xritag;
9281 uint16_t abrt_iotag;
9282 struct lpfc_iocbq *abrtiocbq;
9283 struct ulp_bde64 *bpl = NULL;
9284 uint32_t els_id = LPFC_ELS_ID_DEFAULT;
9285 int numBdes, i;
9286 struct ulp_bde64 bde;
9287 struct lpfc_nodelist *ndlp;
9288 uint32_t *pcmd;
9289 uint32_t if_type;
9291 fip = phba->hba_flag & HBA_FIP_SUPPORT;
9292 /* The fcp commands will set command type */
9293 if (iocbq->iocb_flag & LPFC_IO_FCP)
9294 command_type = FCP_COMMAND;
9295 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
9296 command_type = ELS_COMMAND_FIP;
9297 else
9298 command_type = ELS_COMMAND_NON_FIP;
9300 if (phba->fcp_embed_io)
9301 memset(wqe, 0, sizeof(union lpfc_wqe128));
9302 /* Some of the fields are in the right position already */
9303 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
9304 if (iocbq->iocb.ulpCommand != CMD_SEND_FRAME) {
9305 /* The ct field has moved so reset */
9306 wqe->generic.wqe_com.word7 = 0;
9307 wqe->generic.wqe_com.word10 = 0;
9310 abort_tag = (uint32_t) iocbq->iotag;
9311 xritag = iocbq->sli4_xritag;
9312 /* words0-2 bpl convert bde */
9313 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9314 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9315 sizeof(struct ulp_bde64);
9316 bpl = (struct ulp_bde64 *)
9317 ((struct lpfc_dmabuf *)iocbq->context3)->virt;
9318 if (!bpl)
9319 return IOCB_ERROR;
9321 /* Should already be byte swapped. */
9322 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh);
9323 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow);
9324 /* swap the size field back to the cpu so we
9325 * can assign it to the sgl.
9327 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w);
9328 xmit_len = wqe->generic.bde.tus.f.bdeSize;
9329 total_len = 0;
9330 for (i = 0; i < numBdes; i++) {
9331 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
9332 total_len += bde.tus.f.bdeSize;
9334 } else
9335 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
9337 iocbq->iocb.ulpIoTag = iocbq->iotag;
9338 cmnd = iocbq->iocb.ulpCommand;
9340 switch (iocbq->iocb.ulpCommand) {
9341 case CMD_ELS_REQUEST64_CR:
9342 if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
9343 ndlp = iocbq->context_un.ndlp;
9344 else
9345 ndlp = (struct lpfc_nodelist *)iocbq->context1;
9346 if (!iocbq->iocb.ulpLe) {
9347 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9348 "2007 Only Limited Edition cmd Format"
9349 " supported 0x%x\n",
9350 iocbq->iocb.ulpCommand);
9351 return IOCB_ERROR;
9354 wqe->els_req.payload_len = xmit_len;
9355 /* Els_reguest64 has a TMO */
9356 bf_set(wqe_tmo, &wqe->els_req.wqe_com,
9357 iocbq->iocb.ulpTimeout);
9358 /* Need a VF for word 4 set the vf bit*/
9359 bf_set(els_req64_vf, &wqe->els_req, 0);
9360 /* And a VFID for word 12 */
9361 bf_set(els_req64_vfid, &wqe->els_req, 0);
9362 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9363 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9364 iocbq->iocb.ulpContext);
9365 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
9366 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
9367 /* CCP CCPE PV PRI in word10 were set in the memcpy */
9368 if (command_type == ELS_COMMAND_FIP)
9369 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
9370 >> LPFC_FIP_ELS_ID_SHIFT);
9371 pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9372 iocbq->context2)->virt);
9373 if_type = bf_get(lpfc_sli_intf_if_type,
9374 &phba->sli4_hba.sli_intf);
9375 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9376 if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
9377 *pcmd == ELS_CMD_SCR ||
9378 *pcmd == ELS_CMD_FDISC ||
9379 *pcmd == ELS_CMD_LOGO ||
9380 *pcmd == ELS_CMD_PLOGI)) {
9381 bf_set(els_req64_sp, &wqe->els_req, 1);
9382 bf_set(els_req64_sid, &wqe->els_req,
9383 iocbq->vport->fc_myDID);
9384 if ((*pcmd == ELS_CMD_FLOGI) &&
9385 !(phba->fc_topology ==
9386 LPFC_TOPOLOGY_LOOP))
9387 bf_set(els_req64_sid, &wqe->els_req, 0);
9388 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
9389 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9390 phba->vpi_ids[iocbq->vport->vpi]);
9391 } else if (pcmd && iocbq->context1) {
9392 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
9393 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9394 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9397 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
9398 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9399 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
9400 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
9401 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
9402 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
9403 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9404 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
9405 wqe->els_req.max_response_payload_len = total_len - xmit_len;
9406 break;
9407 case CMD_XMIT_SEQUENCE64_CX:
9408 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
9409 iocbq->iocb.un.ulpWord[3]);
9410 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
9411 iocbq->iocb.unsli3.rcvsli3.ox_id);
9412 /* The entire sequence is transmitted for this IOCB */
9413 xmit_len = total_len;
9414 cmnd = CMD_XMIT_SEQUENCE64_CR;
9415 if (phba->link_flag & LS_LOOPBACK_MODE)
9416 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
9417 /* fall through */
9418 case CMD_XMIT_SEQUENCE64_CR:
9419 /* word3 iocb=io_tag32 wqe=reserved */
9420 wqe->xmit_sequence.rsvd3 = 0;
9421 /* word4 relative_offset memcpy */
9422 /* word5 r_ctl/df_ctl memcpy */
9423 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
9424 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
9425 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
9426 LPFC_WQE_IOD_WRITE);
9427 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
9428 LPFC_WQE_LENLOC_WORD12);
9429 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
9430 wqe->xmit_sequence.xmit_len = xmit_len;
9431 command_type = OTHER_COMMAND;
9432 break;
9433 case CMD_XMIT_BCAST64_CN:
9434 /* word3 iocb=iotag32 wqe=seq_payload_len */
9435 wqe->xmit_bcast64.seq_payload_len = xmit_len;
9436 /* word4 iocb=rsvd wqe=rsvd */
9437 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
9438 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
9439 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
9440 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9441 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
9442 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
9443 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
9444 LPFC_WQE_LENLOC_WORD3);
9445 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
9446 break;
9447 case CMD_FCP_IWRITE64_CR:
9448 command_type = FCP_COMMAND_DATA_OUT;
9449 /* word3 iocb=iotag wqe=payload_offset_len */
9450 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9451 bf_set(payload_offset_len, &wqe->fcp_iwrite,
9452 xmit_len + sizeof(struct fcp_rsp));
9453 bf_set(cmd_buff_len, &wqe->fcp_iwrite,
9455 /* word4 iocb=parameter wqe=total_xfer_length memcpy */
9456 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9457 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
9458 iocbq->iocb.ulpFCP2Rcvy);
9459 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
9460 /* Always open the exchange */
9461 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
9462 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
9463 LPFC_WQE_LENLOC_WORD4);
9464 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
9465 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
9466 if (iocbq->iocb_flag & LPFC_IO_OAS) {
9467 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
9468 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
9469 if (iocbq->priority) {
9470 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9471 (iocbq->priority << 1));
9472 } else {
9473 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9474 (phba->cfg_XLanePriority << 1));
9477 /* Note, word 10 is already initialized to 0 */
9479 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9480 if (phba->cfg_enable_pbde)
9481 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1);
9482 else
9483 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
9485 if (phba->fcp_embed_io) {
9486 struct lpfc_io_buf *lpfc_cmd;
9487 struct sli4_sge *sgl;
9488 struct fcp_cmnd *fcp_cmnd;
9489 uint32_t *ptr;
9491 /* 128 byte wqe support here */
9493 lpfc_cmd = iocbq->context1;
9494 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9495 fcp_cmnd = lpfc_cmd->fcp_cmnd;
9497 /* Word 0-2 - FCP_CMND */
9498 wqe->generic.bde.tus.f.bdeFlags =
9499 BUFF_TYPE_BDE_IMMED;
9500 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9501 wqe->generic.bde.addrHigh = 0;
9502 wqe->generic.bde.addrLow = 88; /* Word 22 */
9504 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
9505 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
9507 /* Word 22-29 FCP CMND Payload */
9508 ptr = &wqe->words[22];
9509 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9511 break;
9512 case CMD_FCP_IREAD64_CR:
9513 /* word3 iocb=iotag wqe=payload_offset_len */
9514 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9515 bf_set(payload_offset_len, &wqe->fcp_iread,
9516 xmit_len + sizeof(struct fcp_rsp));
9517 bf_set(cmd_buff_len, &wqe->fcp_iread,
9519 /* word4 iocb=parameter wqe=total_xfer_length memcpy */
9520 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9521 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
9522 iocbq->iocb.ulpFCP2Rcvy);
9523 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
9524 /* Always open the exchange */
9525 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
9526 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
9527 LPFC_WQE_LENLOC_WORD4);
9528 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
9529 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
9530 if (iocbq->iocb_flag & LPFC_IO_OAS) {
9531 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
9532 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
9533 if (iocbq->priority) {
9534 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9535 (iocbq->priority << 1));
9536 } else {
9537 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9538 (phba->cfg_XLanePriority << 1));
9541 /* Note, word 10 is already initialized to 0 */
9543 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9544 if (phba->cfg_enable_pbde)
9545 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1);
9546 else
9547 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
9549 if (phba->fcp_embed_io) {
9550 struct lpfc_io_buf *lpfc_cmd;
9551 struct sli4_sge *sgl;
9552 struct fcp_cmnd *fcp_cmnd;
9553 uint32_t *ptr;
9555 /* 128 byte wqe support here */
9557 lpfc_cmd = iocbq->context1;
9558 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9559 fcp_cmnd = lpfc_cmd->fcp_cmnd;
9561 /* Word 0-2 - FCP_CMND */
9562 wqe->generic.bde.tus.f.bdeFlags =
9563 BUFF_TYPE_BDE_IMMED;
9564 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9565 wqe->generic.bde.addrHigh = 0;
9566 wqe->generic.bde.addrLow = 88; /* Word 22 */
9568 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
9569 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
9571 /* Word 22-29 FCP CMND Payload */
9572 ptr = &wqe->words[22];
9573 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9575 break;
9576 case CMD_FCP_ICMND64_CR:
9577 /* word3 iocb=iotag wqe=payload_offset_len */
9578 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9579 bf_set(payload_offset_len, &wqe->fcp_icmd,
9580 xmit_len + sizeof(struct fcp_rsp));
9581 bf_set(cmd_buff_len, &wqe->fcp_icmd,
9583 /* word3 iocb=IO_TAG wqe=reserved */
9584 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
9585 /* Always open the exchange */
9586 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
9587 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
9588 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
9589 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
9590 LPFC_WQE_LENLOC_NONE);
9591 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
9592 iocbq->iocb.ulpFCP2Rcvy);
9593 if (iocbq->iocb_flag & LPFC_IO_OAS) {
9594 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
9595 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
9596 if (iocbq->priority) {
9597 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9598 (iocbq->priority << 1));
9599 } else {
9600 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9601 (phba->cfg_XLanePriority << 1));
9604 /* Note, word 10 is already initialized to 0 */
9606 if (phba->fcp_embed_io) {
9607 struct lpfc_io_buf *lpfc_cmd;
9608 struct sli4_sge *sgl;
9609 struct fcp_cmnd *fcp_cmnd;
9610 uint32_t *ptr;
9612 /* 128 byte wqe support here */
9614 lpfc_cmd = iocbq->context1;
9615 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9616 fcp_cmnd = lpfc_cmd->fcp_cmnd;
9618 /* Word 0-2 - FCP_CMND */
9619 wqe->generic.bde.tus.f.bdeFlags =
9620 BUFF_TYPE_BDE_IMMED;
9621 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9622 wqe->generic.bde.addrHigh = 0;
9623 wqe->generic.bde.addrLow = 88; /* Word 22 */
9625 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
9626 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
9628 /* Word 22-29 FCP CMND Payload */
9629 ptr = &wqe->words[22];
9630 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9632 break;
9633 case CMD_GEN_REQUEST64_CR:
9634 /* For this command calculate the xmit length of the
9635 * request bde.
9637 xmit_len = 0;
9638 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9639 sizeof(struct ulp_bde64);
9640 for (i = 0; i < numBdes; i++) {
9641 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
9642 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
9643 break;
9644 xmit_len += bde.tus.f.bdeSize;
9646 /* word3 iocb=IO_TAG wqe=request_payload_len */
9647 wqe->gen_req.request_payload_len = xmit_len;
9648 /* word4 iocb=parameter wqe=relative_offset memcpy */
9649 /* word5 [rctl, type, df_ctl, la] copied in memcpy */
9650 /* word6 context tag copied in memcpy */
9651 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) {
9652 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9653 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9654 "2015 Invalid CT %x command 0x%x\n",
9655 ct, iocbq->iocb.ulpCommand);
9656 return IOCB_ERROR;
9658 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
9659 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
9660 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
9661 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
9662 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
9663 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
9664 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9665 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
9666 wqe->gen_req.max_response_payload_len = total_len - xmit_len;
9667 command_type = OTHER_COMMAND;
9668 break;
9669 case CMD_XMIT_ELS_RSP64_CX:
9670 ndlp = (struct lpfc_nodelist *)iocbq->context1;
9671 /* words0-2 BDE memcpy */
9672 /* word3 iocb=iotag32 wqe=response_payload_len */
9673 wqe->xmit_els_rsp.response_payload_len = xmit_len;
9674 /* word4 */
9675 wqe->xmit_els_rsp.word4 = 0;
9676 /* word5 iocb=rsvd wge=did */
9677 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
9678 iocbq->iocb.un.xseq64.xmit_els_remoteID);
9680 if_type = bf_get(lpfc_sli_intf_if_type,
9681 &phba->sli4_hba.sli_intf);
9682 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9683 if (iocbq->vport->fc_flag & FC_PT2PT) {
9684 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9685 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9686 iocbq->vport->fc_myDID);
9687 if (iocbq->vport->fc_myDID == Fabric_DID) {
9688 bf_set(wqe_els_did,
9689 &wqe->xmit_els_rsp.wqe_dest, 0);
9693 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
9694 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9695 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
9696 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
9697 iocbq->iocb.unsli3.rcvsli3.ox_id);
9698 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
9699 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9700 phba->vpi_ids[iocbq->vport->vpi]);
9701 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
9702 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
9703 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
9704 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
9705 LPFC_WQE_LENLOC_WORD3);
9706 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
9707 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
9708 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9709 pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9710 iocbq->context2)->virt);
9711 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
9712 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9713 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9714 iocbq->vport->fc_myDID);
9715 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
9716 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9717 phba->vpi_ids[phba->pport->vpi]);
9719 command_type = OTHER_COMMAND;
9720 break;
9721 case CMD_CLOSE_XRI_CN:
9722 case CMD_ABORT_XRI_CN:
9723 case CMD_ABORT_XRI_CX:
9724 /* words 0-2 memcpy should be 0 rserved */
9725 /* port will send abts */
9726 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
9727 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
9728 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
9729 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
9730 } else
9731 fip = 0;
9733 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
9735 * The link is down, or the command was ELS_FIP
9736 * so the fw does not need to send abts
9737 * on the wire.
9739 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
9740 else
9741 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
9742 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
9743 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
9744 wqe->abort_cmd.rsrvd5 = 0;
9745 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
9746 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9747 abort_tag = iocbq->iocb.un.acxri.abortIoTag;
9749 * The abort handler will send us CMD_ABORT_XRI_CN or
9750 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
9752 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
9753 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
9754 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
9755 LPFC_WQE_LENLOC_NONE);
9756 cmnd = CMD_ABORT_XRI_CX;
9757 command_type = OTHER_COMMAND;
9758 xritag = 0;
9759 break;
9760 case CMD_XMIT_BLS_RSP64_CX:
9761 ndlp = (struct lpfc_nodelist *)iocbq->context1;
9762 /* As BLS ABTS RSP WQE is very different from other WQEs,
9763 * we re-construct this WQE here based on information in
9764 * iocbq from scratch.
9766 memset(wqe, 0, sizeof(union lpfc_wqe));
9767 /* OX_ID is invariable to who sent ABTS to CT exchange */
9768 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
9769 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
9770 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
9771 LPFC_ABTS_UNSOL_INT) {
9772 /* ABTS sent by initiator to CT exchange, the
9773 * RX_ID field will be filled with the newly
9774 * allocated responder XRI.
9776 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9777 iocbq->sli4_xritag);
9778 } else {
9779 /* ABTS sent by responder to CT exchange, the
9780 * RX_ID field will be filled with the responder
9781 * RX_ID from ABTS.
9783 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9784 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
9786 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
9787 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
9789 /* Use CT=VPI */
9790 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
9791 ndlp->nlp_DID);
9792 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
9793 iocbq->iocb.ulpContext);
9794 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
9795 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
9796 phba->vpi_ids[phba->pport->vpi]);
9797 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
9798 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
9799 LPFC_WQE_LENLOC_NONE);
9800 /* Overwrite the pre-set comnd type with OTHER_COMMAND */
9801 command_type = OTHER_COMMAND;
9802 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
9803 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
9804 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
9805 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
9806 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
9807 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
9808 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
9811 break;
9812 case CMD_SEND_FRAME:
9813 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9814 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9815 return 0;
9816 case CMD_XRI_ABORTED_CX:
9817 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
9818 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
9819 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
9820 case CMD_FCP_TRSP64_CX: /* Target mode rcv */
9821 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
9822 default:
9823 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9824 "2014 Invalid command 0x%x\n",
9825 iocbq->iocb.ulpCommand);
9826 return IOCB_ERROR;
9827 break;
9830 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
9831 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
9832 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
9833 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
9834 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
9835 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
9836 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
9837 LPFC_IO_DIF_INSERT);
9838 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9839 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9840 wqe->generic.wqe_com.abort_tag = abort_tag;
9841 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
9842 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
9843 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
9844 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
9845 return 0;
9849 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
9850 * @phba: Pointer to HBA context object.
9851 * @ring_number: SLI ring number to issue iocb on.
9852 * @piocb: Pointer to command iocb.
9853 * @flag: Flag indicating if this command can be put into txq.
9855 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
9856 * an iocb command to an HBA with SLI-4 interface spec.
9858 * This function is called with hbalock held. The function will return success
9859 * after it successfully submit the iocb to firmware or after adding to the
9860 * txq.
9862 static int
9863 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
9864 struct lpfc_iocbq *piocb, uint32_t flag)
9866 struct lpfc_sglq *sglq;
9867 union lpfc_wqe128 wqe;
9868 struct lpfc_queue *wq;
9869 struct lpfc_sli_ring *pring;
9871 /* Get the WQ */
9872 if ((piocb->iocb_flag & LPFC_IO_FCP) ||
9873 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
9874 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].fcp_wq;
9875 } else {
9876 wq = phba->sli4_hba.els_wq;
9879 /* Get corresponding ring */
9880 pring = wq->pring;
9883 * The WQE can be either 64 or 128 bytes,
9886 lockdep_assert_held(&pring->ring_lock);
9888 if (piocb->sli4_xritag == NO_XRI) {
9889 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
9890 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
9891 sglq = NULL;
9892 else {
9893 if (!list_empty(&pring->txq)) {
9894 if (!(flag & SLI_IOCB_RET_IOCB)) {
9895 __lpfc_sli_ringtx_put(phba,
9896 pring, piocb);
9897 return IOCB_SUCCESS;
9898 } else {
9899 return IOCB_BUSY;
9901 } else {
9902 sglq = __lpfc_sli_get_els_sglq(phba, piocb);
9903 if (!sglq) {
9904 if (!(flag & SLI_IOCB_RET_IOCB)) {
9905 __lpfc_sli_ringtx_put(phba,
9906 pring,
9907 piocb);
9908 return IOCB_SUCCESS;
9909 } else
9910 return IOCB_BUSY;
9914 } else if (piocb->iocb_flag & LPFC_IO_FCP)
9915 /* These IO's already have an XRI and a mapped sgl. */
9916 sglq = NULL;
9917 else {
9919 * This is a continuation of a commandi,(CX) so this
9920 * sglq is on the active list
9922 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
9923 if (!sglq)
9924 return IOCB_ERROR;
9927 if (sglq) {
9928 piocb->sli4_lxritag = sglq->sli4_lxritag;
9929 piocb->sli4_xritag = sglq->sli4_xritag;
9930 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
9931 return IOCB_ERROR;
9934 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe))
9935 return IOCB_ERROR;
9937 if (lpfc_sli4_wq_put(wq, &wqe))
9938 return IOCB_ERROR;
9939 lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
9941 return 0;
9945 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
9947 * This routine wraps the actual lockless version for issusing IOCB function
9948 * pointer from the lpfc_hba struct.
9950 * Return codes:
9951 * IOCB_ERROR - Error
9952 * IOCB_SUCCESS - Success
9953 * IOCB_BUSY - Busy
9956 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
9957 struct lpfc_iocbq *piocb, uint32_t flag)
9959 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9963 * lpfc_sli_api_table_setup - Set up sli api function jump table
9964 * @phba: The hba struct for which this call is being executed.
9965 * @dev_grp: The HBA PCI-Device group number.
9967 * This routine sets up the SLI interface API function jump table in @phba
9968 * struct.
9969 * Returns: 0 - success, -ENODEV - failure.
9972 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
9975 switch (dev_grp) {
9976 case LPFC_PCI_DEV_LP:
9977 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
9978 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
9979 break;
9980 case LPFC_PCI_DEV_OC:
9981 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
9982 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
9983 break;
9984 default:
9985 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9986 "1419 Invalid HBA PCI-device group: 0x%x\n",
9987 dev_grp);
9988 return -ENODEV;
9989 break;
9991 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
9992 return 0;
9996 * lpfc_sli4_calc_ring - Calculates which ring to use
9997 * @phba: Pointer to HBA context object.
9998 * @piocb: Pointer to command iocb.
10000 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
10001 * hba_wqidx, thus we need to calculate the corresponding ring.
10002 * Since ABORTS must go on the same WQ of the command they are
10003 * aborting, we use command's hba_wqidx.
10005 struct lpfc_sli_ring *
10006 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
10008 struct lpfc_io_buf *lpfc_cmd;
10010 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
10011 if (unlikely(!phba->sli4_hba.hdwq))
10012 return NULL;
10014 * for abort iocb hba_wqidx should already
10015 * be setup based on what work queue we used.
10017 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
10018 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1;
10019 piocb->hba_wqidx = lpfc_cmd->hdwq_no;
10021 return phba->sli4_hba.hdwq[piocb->hba_wqidx].fcp_wq->pring;
10022 } else {
10023 if (unlikely(!phba->sli4_hba.els_wq))
10024 return NULL;
10025 piocb->hba_wqidx = 0;
10026 return phba->sli4_hba.els_wq->pring;
10031 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
10032 * @phba: Pointer to HBA context object.
10033 * @pring: Pointer to driver SLI ring object.
10034 * @piocb: Pointer to command iocb.
10035 * @flag: Flag indicating if this command can be put into txq.
10037 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
10038 * function. This function gets the hbalock and calls
10039 * __lpfc_sli_issue_iocb function and will return the error returned
10040 * by __lpfc_sli_issue_iocb function. This wrapper is used by
10041 * functions which do not hold hbalock.
10044 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10045 struct lpfc_iocbq *piocb, uint32_t flag)
10047 struct lpfc_sli_ring *pring;
10048 unsigned long iflags;
10049 int rc;
10051 if (phba->sli_rev == LPFC_SLI_REV4) {
10052 pring = lpfc_sli4_calc_ring(phba, piocb);
10053 if (unlikely(pring == NULL))
10054 return IOCB_ERROR;
10056 spin_lock_irqsave(&pring->ring_lock, iflags);
10057 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10058 spin_unlock_irqrestore(&pring->ring_lock, iflags);
10059 } else {
10060 /* For now, SLI2/3 will still use hbalock */
10061 spin_lock_irqsave(&phba->hbalock, iflags);
10062 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10063 spin_unlock_irqrestore(&phba->hbalock, iflags);
10065 return rc;
10069 * lpfc_extra_ring_setup - Extra ring setup function
10070 * @phba: Pointer to HBA context object.
10072 * This function is called while driver attaches with the
10073 * HBA to setup the extra ring. The extra ring is used
10074 * only when driver needs to support target mode functionality
10075 * or IP over FC functionalities.
10077 * This function is called with no lock held. SLI3 only.
10079 static int
10080 lpfc_extra_ring_setup( struct lpfc_hba *phba)
10082 struct lpfc_sli *psli;
10083 struct lpfc_sli_ring *pring;
10085 psli = &phba->sli;
10087 /* Adjust cmd/rsp ring iocb entries more evenly */
10089 /* Take some away from the FCP ring */
10090 pring = &psli->sli3_ring[LPFC_FCP_RING];
10091 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10092 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10093 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10094 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10096 /* and give them to the extra ring */
10097 pring = &psli->sli3_ring[LPFC_EXTRA_RING];
10099 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10100 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10101 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10102 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10104 /* Setup default profile for this ring */
10105 pring->iotag_max = 4096;
10106 pring->num_mask = 1;
10107 pring->prt[0].profile = 0; /* Mask 0 */
10108 pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
10109 pring->prt[0].type = phba->cfg_multi_ring_type;
10110 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
10111 return 0;
10114 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
10115 * @phba: Pointer to HBA context object.
10116 * @iocbq: Pointer to iocb object.
10118 * The async_event handler calls this routine when it receives
10119 * an ASYNC_STATUS_CN event from the port. The port generates
10120 * this event when an Abort Sequence request to an rport fails
10121 * twice in succession. The abort could be originated by the
10122 * driver or by the port. The ABTS could have been for an ELS
10123 * or FCP IO. The port only generates this event when an ABTS
10124 * fails to complete after one retry.
10126 static void
10127 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
10128 struct lpfc_iocbq *iocbq)
10130 struct lpfc_nodelist *ndlp = NULL;
10131 uint16_t rpi = 0, vpi = 0;
10132 struct lpfc_vport *vport = NULL;
10134 /* The rpi in the ulpContext is vport-sensitive. */
10135 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
10136 rpi = iocbq->iocb.ulpContext;
10138 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10139 "3092 Port generated ABTS async event "
10140 "on vpi %d rpi %d status 0x%x\n",
10141 vpi, rpi, iocbq->iocb.ulpStatus);
10143 vport = lpfc_find_vport_by_vpid(phba, vpi);
10144 if (!vport)
10145 goto err_exit;
10146 ndlp = lpfc_findnode_rpi(vport, rpi);
10147 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp))
10148 goto err_exit;
10150 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
10151 lpfc_sli_abts_recover_port(vport, ndlp);
10152 return;
10154 err_exit:
10155 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10156 "3095 Event Context not found, no "
10157 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
10158 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
10159 vpi, rpi);
10162 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
10163 * @phba: pointer to HBA context object.
10164 * @ndlp: nodelist pointer for the impacted rport.
10165 * @axri: pointer to the wcqe containing the failed exchange.
10167 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
10168 * port. The port generates this event when an abort exchange request to an
10169 * rport fails twice in succession with no reply. The abort could be originated
10170 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO.
10172 void
10173 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
10174 struct lpfc_nodelist *ndlp,
10175 struct sli4_wcqe_xri_aborted *axri)
10177 struct lpfc_vport *vport;
10178 uint32_t ext_status = 0;
10180 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
10181 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10182 "3115 Node Context not found, driver "
10183 "ignoring abts err event\n");
10184 return;
10187 vport = ndlp->vport;
10188 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10189 "3116 Port generated FCP XRI ABORT event on "
10190 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
10191 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
10192 bf_get(lpfc_wcqe_xa_xri, axri),
10193 bf_get(lpfc_wcqe_xa_status, axri),
10194 axri->parameter);
10197 * Catch the ABTS protocol failure case. Older OCe FW releases returned
10198 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
10199 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
10201 ext_status = axri->parameter & IOERR_PARAM_MASK;
10202 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
10203 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
10204 lpfc_sli_abts_recover_port(vport, ndlp);
10208 * lpfc_sli_async_event_handler - ASYNC iocb handler function
10209 * @phba: Pointer to HBA context object.
10210 * @pring: Pointer to driver SLI ring object.
10211 * @iocbq: Pointer to iocb object.
10213 * This function is called by the slow ring event handler
10214 * function when there is an ASYNC event iocb in the ring.
10215 * This function is called with no lock held.
10216 * Currently this function handles only temperature related
10217 * ASYNC events. The function decodes the temperature sensor
10218 * event message and posts events for the management applications.
10220 static void
10221 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
10222 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
10224 IOCB_t *icmd;
10225 uint16_t evt_code;
10226 struct temp_event temp_event_data;
10227 struct Scsi_Host *shost;
10228 uint32_t *iocb_w;
10230 icmd = &iocbq->iocb;
10231 evt_code = icmd->un.asyncstat.evt_code;
10233 switch (evt_code) {
10234 case ASYNC_TEMP_WARN:
10235 case ASYNC_TEMP_SAFE:
10236 temp_event_data.data = (uint32_t) icmd->ulpContext;
10237 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
10238 if (evt_code == ASYNC_TEMP_WARN) {
10239 temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
10240 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10241 "0347 Adapter is very hot, please take "
10242 "corrective action. temperature : %d Celsius\n",
10243 (uint32_t) icmd->ulpContext);
10244 } else {
10245 temp_event_data.event_code = LPFC_NORMAL_TEMP;
10246 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10247 "0340 Adapter temperature is OK now. "
10248 "temperature : %d Celsius\n",
10249 (uint32_t) icmd->ulpContext);
10252 /* Send temperature change event to applications */
10253 shost = lpfc_shost_from_vport(phba->pport);
10254 fc_host_post_vendor_event(shost, fc_get_event_number(),
10255 sizeof(temp_event_data), (char *) &temp_event_data,
10256 LPFC_NL_VENDOR_ID);
10257 break;
10258 case ASYNC_STATUS_CN:
10259 lpfc_sli_abts_err_handler(phba, iocbq);
10260 break;
10261 default:
10262 iocb_w = (uint32_t *) icmd;
10263 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10264 "0346 Ring %d handler: unexpected ASYNC_STATUS"
10265 " evt_code 0x%x\n"
10266 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n"
10267 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n"
10268 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n"
10269 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
10270 pring->ringno, icmd->un.asyncstat.evt_code,
10271 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
10272 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
10273 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
10274 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
10276 break;
10282 * lpfc_sli4_setup - SLI ring setup function
10283 * @phba: Pointer to HBA context object.
10285 * lpfc_sli_setup sets up rings of the SLI interface with
10286 * number of iocbs per ring and iotags. This function is
10287 * called while driver attach to the HBA and before the
10288 * interrupts are enabled. So there is no need for locking.
10290 * This function always returns 0.
10293 lpfc_sli4_setup(struct lpfc_hba *phba)
10295 struct lpfc_sli_ring *pring;
10297 pring = phba->sli4_hba.els_wq->pring;
10298 pring->num_mask = LPFC_MAX_RING_MASK;
10299 pring->prt[0].profile = 0; /* Mask 0 */
10300 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10301 pring->prt[0].type = FC_TYPE_ELS;
10302 pring->prt[0].lpfc_sli_rcv_unsol_event =
10303 lpfc_els_unsol_event;
10304 pring->prt[1].profile = 0; /* Mask 1 */
10305 pring->prt[1].rctl = FC_RCTL_ELS_REP;
10306 pring->prt[1].type = FC_TYPE_ELS;
10307 pring->prt[1].lpfc_sli_rcv_unsol_event =
10308 lpfc_els_unsol_event;
10309 pring->prt[2].profile = 0; /* Mask 2 */
10310 /* NameServer Inquiry */
10311 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10312 /* NameServer */
10313 pring->prt[2].type = FC_TYPE_CT;
10314 pring->prt[2].lpfc_sli_rcv_unsol_event =
10315 lpfc_ct_unsol_event;
10316 pring->prt[3].profile = 0; /* Mask 3 */
10317 /* NameServer response */
10318 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10319 /* NameServer */
10320 pring->prt[3].type = FC_TYPE_CT;
10321 pring->prt[3].lpfc_sli_rcv_unsol_event =
10322 lpfc_ct_unsol_event;
10323 return 0;
10327 * lpfc_sli_setup - SLI ring setup function
10328 * @phba: Pointer to HBA context object.
10330 * lpfc_sli_setup sets up rings of the SLI interface with
10331 * number of iocbs per ring and iotags. This function is
10332 * called while driver attach to the HBA and before the
10333 * interrupts are enabled. So there is no need for locking.
10335 * This function always returns 0. SLI3 only.
10338 lpfc_sli_setup(struct lpfc_hba *phba)
10340 int i, totiocbsize = 0;
10341 struct lpfc_sli *psli = &phba->sli;
10342 struct lpfc_sli_ring *pring;
10344 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
10345 psli->sli_flag = 0;
10347 psli->iocbq_lookup = NULL;
10348 psli->iocbq_lookup_len = 0;
10349 psli->last_iotag = 0;
10351 for (i = 0; i < psli->num_rings; i++) {
10352 pring = &psli->sli3_ring[i];
10353 switch (i) {
10354 case LPFC_FCP_RING: /* ring 0 - FCP */
10355 /* numCiocb and numRiocb are used in config_port */
10356 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
10357 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
10358 pring->sli.sli3.numCiocb +=
10359 SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10360 pring->sli.sli3.numRiocb +=
10361 SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10362 pring->sli.sli3.numCiocb +=
10363 SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10364 pring->sli.sli3.numRiocb +=
10365 SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10366 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10367 SLI3_IOCB_CMD_SIZE :
10368 SLI2_IOCB_CMD_SIZE;
10369 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10370 SLI3_IOCB_RSP_SIZE :
10371 SLI2_IOCB_RSP_SIZE;
10372 pring->iotag_ctr = 0;
10373 pring->iotag_max =
10374 (phba->cfg_hba_queue_depth * 2);
10375 pring->fast_iotag = pring->iotag_max;
10376 pring->num_mask = 0;
10377 break;
10378 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */
10379 /* numCiocb and numRiocb are used in config_port */
10380 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
10381 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
10382 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10383 SLI3_IOCB_CMD_SIZE :
10384 SLI2_IOCB_CMD_SIZE;
10385 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10386 SLI3_IOCB_RSP_SIZE :
10387 SLI2_IOCB_RSP_SIZE;
10388 pring->iotag_max = phba->cfg_hba_queue_depth;
10389 pring->num_mask = 0;
10390 break;
10391 case LPFC_ELS_RING: /* ring 2 - ELS / CT */
10392 /* numCiocb and numRiocb are used in config_port */
10393 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
10394 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
10395 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10396 SLI3_IOCB_CMD_SIZE :
10397 SLI2_IOCB_CMD_SIZE;
10398 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10399 SLI3_IOCB_RSP_SIZE :
10400 SLI2_IOCB_RSP_SIZE;
10401 pring->fast_iotag = 0;
10402 pring->iotag_ctr = 0;
10403 pring->iotag_max = 4096;
10404 pring->lpfc_sli_rcv_async_status =
10405 lpfc_sli_async_event_handler;
10406 pring->num_mask = LPFC_MAX_RING_MASK;
10407 pring->prt[0].profile = 0; /* Mask 0 */
10408 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10409 pring->prt[0].type = FC_TYPE_ELS;
10410 pring->prt[0].lpfc_sli_rcv_unsol_event =
10411 lpfc_els_unsol_event;
10412 pring->prt[1].profile = 0; /* Mask 1 */
10413 pring->prt[1].rctl = FC_RCTL_ELS_REP;
10414 pring->prt[1].type = FC_TYPE_ELS;
10415 pring->prt[1].lpfc_sli_rcv_unsol_event =
10416 lpfc_els_unsol_event;
10417 pring->prt[2].profile = 0; /* Mask 2 */
10418 /* NameServer Inquiry */
10419 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10420 /* NameServer */
10421 pring->prt[2].type = FC_TYPE_CT;
10422 pring->prt[2].lpfc_sli_rcv_unsol_event =
10423 lpfc_ct_unsol_event;
10424 pring->prt[3].profile = 0; /* Mask 3 */
10425 /* NameServer response */
10426 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10427 /* NameServer */
10428 pring->prt[3].type = FC_TYPE_CT;
10429 pring->prt[3].lpfc_sli_rcv_unsol_event =
10430 lpfc_ct_unsol_event;
10431 break;
10433 totiocbsize += (pring->sli.sli3.numCiocb *
10434 pring->sli.sli3.sizeCiocb) +
10435 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
10437 if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
10438 /* Too many cmd / rsp ring entries in SLI2 SLIM */
10439 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
10440 "SLI2 SLIM Data: x%x x%lx\n",
10441 phba->brd_no, totiocbsize,
10442 (unsigned long) MAX_SLIM_IOCB_SIZE);
10444 if (phba->cfg_multi_ring_support == 2)
10445 lpfc_extra_ring_setup(phba);
10447 return 0;
10451 * lpfc_sli4_queue_init - Queue initialization function
10452 * @phba: Pointer to HBA context object.
10454 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
10455 * ring. This function also initializes ring indices of each ring.
10456 * This function is called during the initialization of the SLI
10457 * interface of an HBA.
10458 * This function is called with no lock held and always returns
10459 * 1.
10461 void
10462 lpfc_sli4_queue_init(struct lpfc_hba *phba)
10464 struct lpfc_sli *psli;
10465 struct lpfc_sli_ring *pring;
10466 int i;
10468 psli = &phba->sli;
10469 spin_lock_irq(&phba->hbalock);
10470 INIT_LIST_HEAD(&psli->mboxq);
10471 INIT_LIST_HEAD(&psli->mboxq_cmpl);
10472 /* Initialize list headers for txq and txcmplq as double linked lists */
10473 for (i = 0; i < phba->cfg_hdw_queue; i++) {
10474 pring = phba->sli4_hba.hdwq[i].fcp_wq->pring;
10475 pring->flag = 0;
10476 pring->ringno = LPFC_FCP_RING;
10477 pring->txcmplq_cnt = 0;
10478 INIT_LIST_HEAD(&pring->txq);
10479 INIT_LIST_HEAD(&pring->txcmplq);
10480 INIT_LIST_HEAD(&pring->iocb_continueq);
10481 spin_lock_init(&pring->ring_lock);
10483 pring = phba->sli4_hba.els_wq->pring;
10484 pring->flag = 0;
10485 pring->ringno = LPFC_ELS_RING;
10486 pring->txcmplq_cnt = 0;
10487 INIT_LIST_HEAD(&pring->txq);
10488 INIT_LIST_HEAD(&pring->txcmplq);
10489 INIT_LIST_HEAD(&pring->iocb_continueq);
10490 spin_lock_init(&pring->ring_lock);
10492 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10493 for (i = 0; i < phba->cfg_hdw_queue; i++) {
10494 pring = phba->sli4_hba.hdwq[i].nvme_wq->pring;
10495 pring->flag = 0;
10496 pring->ringno = LPFC_FCP_RING;
10497 pring->txcmplq_cnt = 0;
10498 INIT_LIST_HEAD(&pring->txq);
10499 INIT_LIST_HEAD(&pring->txcmplq);
10500 INIT_LIST_HEAD(&pring->iocb_continueq);
10501 spin_lock_init(&pring->ring_lock);
10503 pring = phba->sli4_hba.nvmels_wq->pring;
10504 pring->flag = 0;
10505 pring->ringno = LPFC_ELS_RING;
10506 pring->txcmplq_cnt = 0;
10507 INIT_LIST_HEAD(&pring->txq);
10508 INIT_LIST_HEAD(&pring->txcmplq);
10509 INIT_LIST_HEAD(&pring->iocb_continueq);
10510 spin_lock_init(&pring->ring_lock);
10513 spin_unlock_irq(&phba->hbalock);
10517 * lpfc_sli_queue_init - Queue initialization function
10518 * @phba: Pointer to HBA context object.
10520 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
10521 * ring. This function also initializes ring indices of each ring.
10522 * This function is called during the initialization of the SLI
10523 * interface of an HBA.
10524 * This function is called with no lock held and always returns
10525 * 1.
10527 void
10528 lpfc_sli_queue_init(struct lpfc_hba *phba)
10530 struct lpfc_sli *psli;
10531 struct lpfc_sli_ring *pring;
10532 int i;
10534 psli = &phba->sli;
10535 spin_lock_irq(&phba->hbalock);
10536 INIT_LIST_HEAD(&psli->mboxq);
10537 INIT_LIST_HEAD(&psli->mboxq_cmpl);
10538 /* Initialize list headers for txq and txcmplq as double linked lists */
10539 for (i = 0; i < psli->num_rings; i++) {
10540 pring = &psli->sli3_ring[i];
10541 pring->ringno = i;
10542 pring->sli.sli3.next_cmdidx = 0;
10543 pring->sli.sli3.local_getidx = 0;
10544 pring->sli.sli3.cmdidx = 0;
10545 INIT_LIST_HEAD(&pring->iocb_continueq);
10546 INIT_LIST_HEAD(&pring->iocb_continue_saveq);
10547 INIT_LIST_HEAD(&pring->postbufq);
10548 pring->flag = 0;
10549 INIT_LIST_HEAD(&pring->txq);
10550 INIT_LIST_HEAD(&pring->txcmplq);
10551 spin_lock_init(&pring->ring_lock);
10553 spin_unlock_irq(&phba->hbalock);
10557 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
10558 * @phba: Pointer to HBA context object.
10560 * This routine flushes the mailbox command subsystem. It will unconditionally
10561 * flush all the mailbox commands in the three possible stages in the mailbox
10562 * command sub-system: pending mailbox command queue; the outstanding mailbox
10563 * command; and completed mailbox command queue. It is caller's responsibility
10564 * to make sure that the driver is in the proper state to flush the mailbox
10565 * command sub-system. Namely, the posting of mailbox commands into the
10566 * pending mailbox command queue from the various clients must be stopped;
10567 * either the HBA is in a state that it will never works on the outstanding
10568 * mailbox command (such as in EEH or ERATT conditions) or the outstanding
10569 * mailbox command has been completed.
10571 static void
10572 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
10574 LIST_HEAD(completions);
10575 struct lpfc_sli *psli = &phba->sli;
10576 LPFC_MBOXQ_t *pmb;
10577 unsigned long iflag;
10579 /* Disable softirqs, including timers from obtaining phba->hbalock */
10580 local_bh_disable();
10582 /* Flush all the mailbox commands in the mbox system */
10583 spin_lock_irqsave(&phba->hbalock, iflag);
10585 /* The pending mailbox command queue */
10586 list_splice_init(&phba->sli.mboxq, &completions);
10587 /* The outstanding active mailbox command */
10588 if (psli->mbox_active) {
10589 list_add_tail(&psli->mbox_active->list, &completions);
10590 psli->mbox_active = NULL;
10591 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10593 /* The completed mailbox command queue */
10594 list_splice_init(&phba->sli.mboxq_cmpl, &completions);
10595 spin_unlock_irqrestore(&phba->hbalock, iflag);
10597 /* Enable softirqs again, done with phba->hbalock */
10598 local_bh_enable();
10600 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
10601 while (!list_empty(&completions)) {
10602 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
10603 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
10604 if (pmb->mbox_cmpl)
10605 pmb->mbox_cmpl(phba, pmb);
10610 * lpfc_sli_host_down - Vport cleanup function
10611 * @vport: Pointer to virtual port object.
10613 * lpfc_sli_host_down is called to clean up the resources
10614 * associated with a vport before destroying virtual
10615 * port data structures.
10616 * This function does following operations:
10617 * - Free discovery resources associated with this virtual
10618 * port.
10619 * - Free iocbs associated with this virtual port in
10620 * the txq.
10621 * - Send abort for all iocb commands associated with this
10622 * vport in txcmplq.
10624 * This function is called with no lock held and always returns 1.
10627 lpfc_sli_host_down(struct lpfc_vport *vport)
10629 LIST_HEAD(completions);
10630 struct lpfc_hba *phba = vport->phba;
10631 struct lpfc_sli *psli = &phba->sli;
10632 struct lpfc_queue *qp = NULL;
10633 struct lpfc_sli_ring *pring;
10634 struct lpfc_iocbq *iocb, *next_iocb;
10635 int i;
10636 unsigned long flags = 0;
10637 uint16_t prev_pring_flag;
10639 lpfc_cleanup_discovery_resources(vport);
10641 spin_lock_irqsave(&phba->hbalock, flags);
10644 * Error everything on the txq since these iocbs
10645 * have not been given to the FW yet.
10646 * Also issue ABTS for everything on the txcmplq
10648 if (phba->sli_rev != LPFC_SLI_REV4) {
10649 for (i = 0; i < psli->num_rings; i++) {
10650 pring = &psli->sli3_ring[i];
10651 prev_pring_flag = pring->flag;
10652 /* Only slow rings */
10653 if (pring->ringno == LPFC_ELS_RING) {
10654 pring->flag |= LPFC_DEFERRED_RING_EVENT;
10655 /* Set the lpfc data pending flag */
10656 set_bit(LPFC_DATA_READY, &phba->data_flags);
10658 list_for_each_entry_safe(iocb, next_iocb,
10659 &pring->txq, list) {
10660 if (iocb->vport != vport)
10661 continue;
10662 list_move_tail(&iocb->list, &completions);
10664 list_for_each_entry_safe(iocb, next_iocb,
10665 &pring->txcmplq, list) {
10666 if (iocb->vport != vport)
10667 continue;
10668 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10670 pring->flag = prev_pring_flag;
10672 } else {
10673 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10674 pring = qp->pring;
10675 if (!pring)
10676 continue;
10677 if (pring == phba->sli4_hba.els_wq->pring) {
10678 pring->flag |= LPFC_DEFERRED_RING_EVENT;
10679 /* Set the lpfc data pending flag */
10680 set_bit(LPFC_DATA_READY, &phba->data_flags);
10682 prev_pring_flag = pring->flag;
10683 spin_lock_irq(&pring->ring_lock);
10684 list_for_each_entry_safe(iocb, next_iocb,
10685 &pring->txq, list) {
10686 if (iocb->vport != vport)
10687 continue;
10688 list_move_tail(&iocb->list, &completions);
10690 spin_unlock_irq(&pring->ring_lock);
10691 list_for_each_entry_safe(iocb, next_iocb,
10692 &pring->txcmplq, list) {
10693 if (iocb->vport != vport)
10694 continue;
10695 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10697 pring->flag = prev_pring_flag;
10700 spin_unlock_irqrestore(&phba->hbalock, flags);
10702 /* Cancel all the IOCBs from the completions list */
10703 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10704 IOERR_SLI_DOWN);
10705 return 1;
10709 * lpfc_sli_hba_down - Resource cleanup function for the HBA
10710 * @phba: Pointer to HBA context object.
10712 * This function cleans up all iocb, buffers, mailbox commands
10713 * while shutting down the HBA. This function is called with no
10714 * lock held and always returns 1.
10715 * This function does the following to cleanup driver resources:
10716 * - Free discovery resources for each virtual port
10717 * - Cleanup any pending fabric iocbs
10718 * - Iterate through the iocb txq and free each entry
10719 * in the list.
10720 * - Free up any buffer posted to the HBA
10721 * - Free mailbox commands in the mailbox queue.
10724 lpfc_sli_hba_down(struct lpfc_hba *phba)
10726 LIST_HEAD(completions);
10727 struct lpfc_sli *psli = &phba->sli;
10728 struct lpfc_queue *qp = NULL;
10729 struct lpfc_sli_ring *pring;
10730 struct lpfc_dmabuf *buf_ptr;
10731 unsigned long flags = 0;
10732 int i;
10734 /* Shutdown the mailbox command sub-system */
10735 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
10737 lpfc_hba_down_prep(phba);
10739 /* Disable softirqs, including timers from obtaining phba->hbalock */
10740 local_bh_disable();
10742 lpfc_fabric_abort_hba(phba);
10744 spin_lock_irqsave(&phba->hbalock, flags);
10747 * Error everything on the txq since these iocbs
10748 * have not been given to the FW yet.
10750 if (phba->sli_rev != LPFC_SLI_REV4) {
10751 for (i = 0; i < psli->num_rings; i++) {
10752 pring = &psli->sli3_ring[i];
10753 /* Only slow rings */
10754 if (pring->ringno == LPFC_ELS_RING) {
10755 pring->flag |= LPFC_DEFERRED_RING_EVENT;
10756 /* Set the lpfc data pending flag */
10757 set_bit(LPFC_DATA_READY, &phba->data_flags);
10759 list_splice_init(&pring->txq, &completions);
10761 } else {
10762 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10763 pring = qp->pring;
10764 if (!pring)
10765 continue;
10766 spin_lock_irq(&pring->ring_lock);
10767 list_splice_init(&pring->txq, &completions);
10768 spin_unlock_irq(&pring->ring_lock);
10769 if (pring == phba->sli4_hba.els_wq->pring) {
10770 pring->flag |= LPFC_DEFERRED_RING_EVENT;
10771 /* Set the lpfc data pending flag */
10772 set_bit(LPFC_DATA_READY, &phba->data_flags);
10776 spin_unlock_irqrestore(&phba->hbalock, flags);
10778 /* Cancel all the IOCBs from the completions list */
10779 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10780 IOERR_SLI_DOWN);
10782 spin_lock_irqsave(&phba->hbalock, flags);
10783 list_splice_init(&phba->elsbuf, &completions);
10784 phba->elsbuf_cnt = 0;
10785 phba->elsbuf_prev_cnt = 0;
10786 spin_unlock_irqrestore(&phba->hbalock, flags);
10788 while (!list_empty(&completions)) {
10789 list_remove_head(&completions, buf_ptr,
10790 struct lpfc_dmabuf, list);
10791 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
10792 kfree(buf_ptr);
10795 /* Enable softirqs again, done with phba->hbalock */
10796 local_bh_enable();
10798 /* Return any active mbox cmds */
10799 del_timer_sync(&psli->mbox_tmo);
10801 spin_lock_irqsave(&phba->pport->work_port_lock, flags);
10802 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
10803 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
10805 return 1;
10809 * lpfc_sli_pcimem_bcopy - SLI memory copy function
10810 * @srcp: Source memory pointer.
10811 * @destp: Destination memory pointer.
10812 * @cnt: Number of words required to be copied.
10814 * This function is used for copying data between driver memory
10815 * and the SLI memory. This function also changes the endianness
10816 * of each word if native endianness is different from SLI
10817 * endianness. This function can be called with or without
10818 * lock.
10820 void
10821 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
10823 uint32_t *src = srcp;
10824 uint32_t *dest = destp;
10825 uint32_t ldata;
10826 int i;
10828 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
10829 ldata = *src;
10830 ldata = le32_to_cpu(ldata);
10831 *dest = ldata;
10832 src++;
10833 dest++;
10839 * lpfc_sli_bemem_bcopy - SLI memory copy function
10840 * @srcp: Source memory pointer.
10841 * @destp: Destination memory pointer.
10842 * @cnt: Number of words required to be copied.
10844 * This function is used for copying data between a data structure
10845 * with big endian representation to local endianness.
10846 * This function can be called with or without lock.
10848 void
10849 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
10851 uint32_t *src = srcp;
10852 uint32_t *dest = destp;
10853 uint32_t ldata;
10854 int i;
10856 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
10857 ldata = *src;
10858 ldata = be32_to_cpu(ldata);
10859 *dest = ldata;
10860 src++;
10861 dest++;
10866 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
10867 * @phba: Pointer to HBA context object.
10868 * @pring: Pointer to driver SLI ring object.
10869 * @mp: Pointer to driver buffer object.
10871 * This function is called with no lock held.
10872 * It always return zero after adding the buffer to the postbufq
10873 * buffer list.
10876 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10877 struct lpfc_dmabuf *mp)
10879 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
10880 later */
10881 spin_lock_irq(&phba->hbalock);
10882 list_add_tail(&mp->list, &pring->postbufq);
10883 pring->postbufq_cnt++;
10884 spin_unlock_irq(&phba->hbalock);
10885 return 0;
10889 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
10890 * @phba: Pointer to HBA context object.
10892 * When HBQ is enabled, buffers are searched based on tags. This function
10893 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
10894 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
10895 * does not conflict with tags of buffer posted for unsolicited events.
10896 * The function returns the allocated tag. The function is called with
10897 * no locks held.
10899 uint32_t
10900 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
10902 spin_lock_irq(&phba->hbalock);
10903 phba->buffer_tag_count++;
10905 * Always set the QUE_BUFTAG_BIT to distiguish between
10906 * a tag assigned by HBQ.
10908 phba->buffer_tag_count |= QUE_BUFTAG_BIT;
10909 spin_unlock_irq(&phba->hbalock);
10910 return phba->buffer_tag_count;
10914 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
10915 * @phba: Pointer to HBA context object.
10916 * @pring: Pointer to driver SLI ring object.
10917 * @tag: Buffer tag.
10919 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
10920 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
10921 * iocb is posted to the response ring with the tag of the buffer.
10922 * This function searches the pring->postbufq list using the tag
10923 * to find buffer associated with CMD_IOCB_RET_XRI64_CX
10924 * iocb. If the buffer is found then lpfc_dmabuf object of the
10925 * buffer is returned to the caller else NULL is returned.
10926 * This function is called with no lock held.
10928 struct lpfc_dmabuf *
10929 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10930 uint32_t tag)
10932 struct lpfc_dmabuf *mp, *next_mp;
10933 struct list_head *slp = &pring->postbufq;
10935 /* Search postbufq, from the beginning, looking for a match on tag */
10936 spin_lock_irq(&phba->hbalock);
10937 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
10938 if (mp->buffer_tag == tag) {
10939 list_del_init(&mp->list);
10940 pring->postbufq_cnt--;
10941 spin_unlock_irq(&phba->hbalock);
10942 return mp;
10946 spin_unlock_irq(&phba->hbalock);
10947 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10948 "0402 Cannot find virtual addr for buffer tag on "
10949 "ring %d Data x%lx x%p x%p x%x\n",
10950 pring->ringno, (unsigned long) tag,
10951 slp->next, slp->prev, pring->postbufq_cnt);
10953 return NULL;
10957 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
10958 * @phba: Pointer to HBA context object.
10959 * @pring: Pointer to driver SLI ring object.
10960 * @phys: DMA address of the buffer.
10962 * This function searches the buffer list using the dma_address
10963 * of unsolicited event to find the driver's lpfc_dmabuf object
10964 * corresponding to the dma_address. The function returns the
10965 * lpfc_dmabuf object if a buffer is found else it returns NULL.
10966 * This function is called by the ct and els unsolicited event
10967 * handlers to get the buffer associated with the unsolicited
10968 * event.
10970 * This function is called with no lock held.
10972 struct lpfc_dmabuf *
10973 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10974 dma_addr_t phys)
10976 struct lpfc_dmabuf *mp, *next_mp;
10977 struct list_head *slp = &pring->postbufq;
10979 /* Search postbufq, from the beginning, looking for a match on phys */
10980 spin_lock_irq(&phba->hbalock);
10981 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
10982 if (mp->phys == phys) {
10983 list_del_init(&mp->list);
10984 pring->postbufq_cnt--;
10985 spin_unlock_irq(&phba->hbalock);
10986 return mp;
10990 spin_unlock_irq(&phba->hbalock);
10991 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10992 "0410 Cannot find virtual addr for mapped buf on "
10993 "ring %d Data x%llx x%p x%p x%x\n",
10994 pring->ringno, (unsigned long long)phys,
10995 slp->next, slp->prev, pring->postbufq_cnt);
10996 return NULL;
11000 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
11001 * @phba: Pointer to HBA context object.
11002 * @cmdiocb: Pointer to driver command iocb object.
11003 * @rspiocb: Pointer to driver response iocb object.
11005 * This function is the completion handler for the abort iocbs for
11006 * ELS commands. This function is called from the ELS ring event
11007 * handler with no lock held. This function frees memory resources
11008 * associated with the abort iocb.
11010 static void
11011 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11012 struct lpfc_iocbq *rspiocb)
11014 IOCB_t *irsp = &rspiocb->iocb;
11015 uint16_t abort_iotag, abort_context;
11016 struct lpfc_iocbq *abort_iocb = NULL;
11018 if (irsp->ulpStatus) {
11021 * Assume that the port already completed and returned, or
11022 * will return the iocb. Just Log the message.
11024 abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
11025 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
11027 spin_lock_irq(&phba->hbalock);
11028 if (phba->sli_rev < LPFC_SLI_REV4) {
11029 if (irsp->ulpCommand == CMD_ABORT_XRI_CX &&
11030 irsp->ulpStatus == IOSTAT_LOCAL_REJECT &&
11031 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) {
11032 spin_unlock_irq(&phba->hbalock);
11033 goto release_iocb;
11035 if (abort_iotag != 0 &&
11036 abort_iotag <= phba->sli.last_iotag)
11037 abort_iocb =
11038 phba->sli.iocbq_lookup[abort_iotag];
11039 } else
11040 /* For sli4 the abort_tag is the XRI,
11041 * so the abort routine puts the iotag of the iocb
11042 * being aborted in the context field of the abort
11043 * IOCB.
11045 abort_iocb = phba->sli.iocbq_lookup[abort_context];
11047 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
11048 "0327 Cannot abort els iocb %p "
11049 "with tag %x context %x, abort status %x, "
11050 "abort code %x\n",
11051 abort_iocb, abort_iotag, abort_context,
11052 irsp->ulpStatus, irsp->un.ulpWord[4]);
11054 spin_unlock_irq(&phba->hbalock);
11056 release_iocb:
11057 lpfc_sli_release_iocbq(phba, cmdiocb);
11058 return;
11062 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
11063 * @phba: Pointer to HBA context object.
11064 * @cmdiocb: Pointer to driver command iocb object.
11065 * @rspiocb: Pointer to driver response iocb object.
11067 * The function is called from SLI ring event handler with no
11068 * lock held. This function is the completion handler for ELS commands
11069 * which are aborted. The function frees memory resources used for
11070 * the aborted ELS commands.
11072 static void
11073 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11074 struct lpfc_iocbq *rspiocb)
11076 IOCB_t *irsp = &rspiocb->iocb;
11078 /* ELS cmd tag <ulpIoTag> completes */
11079 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
11080 "0139 Ignoring ELS cmd tag x%x completion Data: "
11081 "x%x x%x x%x\n",
11082 irsp->ulpIoTag, irsp->ulpStatus,
11083 irsp->un.ulpWord[4], irsp->ulpTimeout);
11084 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
11085 lpfc_ct_free_iocb(phba, cmdiocb);
11086 else
11087 lpfc_els_free_iocb(phba, cmdiocb);
11088 return;
11092 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb
11093 * @phba: Pointer to HBA context object.
11094 * @pring: Pointer to driver SLI ring object.
11095 * @cmdiocb: Pointer to driver command iocb object.
11097 * This function issues an abort iocb for the provided command iocb down to
11098 * the port. Other than the case the outstanding command iocb is an abort
11099 * request, this function issues abort out unconditionally. This function is
11100 * called with hbalock held. The function returns 0 when it fails due to
11101 * memory allocation failure or when the command iocb is an abort request.
11103 static int
11104 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11105 struct lpfc_iocbq *cmdiocb)
11107 struct lpfc_vport *vport = cmdiocb->vport;
11108 struct lpfc_iocbq *abtsiocbp;
11109 IOCB_t *icmd = NULL;
11110 IOCB_t *iabt = NULL;
11111 int retval;
11112 unsigned long iflags;
11113 struct lpfc_nodelist *ndlp;
11115 lockdep_assert_held(&phba->hbalock);
11118 * There are certain command types we don't want to abort. And we
11119 * don't want to abort commands that are already in the process of
11120 * being aborted.
11122 icmd = &cmdiocb->iocb;
11123 if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11124 icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11125 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11126 return 0;
11128 /* issue ABTS for this IOCB based on iotag */
11129 abtsiocbp = __lpfc_sli_get_iocbq(phba);
11130 if (abtsiocbp == NULL)
11131 return 0;
11133 /* This signals the response to set the correct status
11134 * before calling the completion handler
11136 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
11138 iabt = &abtsiocbp->iocb;
11139 iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
11140 iabt->un.acxri.abortContextTag = icmd->ulpContext;
11141 if (phba->sli_rev == LPFC_SLI_REV4) {
11142 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
11143 iabt->un.acxri.abortContextTag = cmdiocb->iotag;
11144 } else {
11145 iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
11146 if (pring->ringno == LPFC_ELS_RING) {
11147 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1);
11148 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi;
11151 iabt->ulpLe = 1;
11152 iabt->ulpClass = icmd->ulpClass;
11154 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
11155 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
11156 if (cmdiocb->iocb_flag & LPFC_IO_FCP)
11157 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
11158 if (cmdiocb->iocb_flag & LPFC_IO_FOF)
11159 abtsiocbp->iocb_flag |= LPFC_IO_FOF;
11161 if (phba->link_state >= LPFC_LINK_UP)
11162 iabt->ulpCommand = CMD_ABORT_XRI_CN;
11163 else
11164 iabt->ulpCommand = CMD_CLOSE_XRI_CN;
11166 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
11167 abtsiocbp->vport = vport;
11169 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
11170 "0339 Abort xri x%x, original iotag x%x, "
11171 "abort cmd iotag x%x\n",
11172 iabt->un.acxri.abortIoTag,
11173 iabt->un.acxri.abortContextTag,
11174 abtsiocbp->iotag);
11176 if (phba->sli_rev == LPFC_SLI_REV4) {
11177 pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
11178 if (unlikely(pring == NULL))
11179 return 0;
11180 /* Note: both hbalock and ring_lock need to be set here */
11181 spin_lock_irqsave(&pring->ring_lock, iflags);
11182 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11183 abtsiocbp, 0);
11184 spin_unlock_irqrestore(&pring->ring_lock, iflags);
11185 } else {
11186 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11187 abtsiocbp, 0);
11190 if (retval)
11191 __lpfc_sli_release_iocbq(phba, abtsiocbp);
11194 * Caller to this routine should check for IOCB_ERROR
11195 * and handle it properly. This routine no longer removes
11196 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11198 return retval;
11202 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
11203 * @phba: Pointer to HBA context object.
11204 * @pring: Pointer to driver SLI ring object.
11205 * @cmdiocb: Pointer to driver command iocb object.
11207 * This function issues an abort iocb for the provided command iocb. In case
11208 * of unloading, the abort iocb will not be issued to commands on the ELS
11209 * ring. Instead, the callback function shall be changed to those commands
11210 * so that nothing happens when them finishes. This function is called with
11211 * hbalock held. The function returns 0 when the command iocb is an abort
11212 * request.
11215 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11216 struct lpfc_iocbq *cmdiocb)
11218 struct lpfc_vport *vport = cmdiocb->vport;
11219 int retval = IOCB_ERROR;
11220 IOCB_t *icmd = NULL;
11222 lockdep_assert_held(&phba->hbalock);
11225 * There are certain command types we don't want to abort. And we
11226 * don't want to abort commands that are already in the process of
11227 * being aborted.
11229 icmd = &cmdiocb->iocb;
11230 if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11231 icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11232 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11233 return 0;
11235 if (!pring) {
11236 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11237 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11238 else
11239 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11240 goto abort_iotag_exit;
11244 * If we're unloading, don't abort iocb on the ELS ring, but change
11245 * the callback so that nothing happens when it finishes.
11247 if ((vport->load_flag & FC_UNLOADING) &&
11248 (pring->ringno == LPFC_ELS_RING)) {
11249 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11250 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11251 else
11252 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11253 goto abort_iotag_exit;
11256 /* Now, we try to issue the abort to the cmdiocb out */
11257 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb);
11259 abort_iotag_exit:
11261 * Caller to this routine should check for IOCB_ERROR
11262 * and handle it properly. This routine no longer removes
11263 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11265 return retval;
11269 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
11270 * @phba: pointer to lpfc HBA data structure.
11272 * This routine will abort all pending and outstanding iocbs to an HBA.
11274 void
11275 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
11277 struct lpfc_sli *psli = &phba->sli;
11278 struct lpfc_sli_ring *pring;
11279 struct lpfc_queue *qp = NULL;
11280 int i;
11282 if (phba->sli_rev != LPFC_SLI_REV4) {
11283 for (i = 0; i < psli->num_rings; i++) {
11284 pring = &psli->sli3_ring[i];
11285 lpfc_sli_abort_iocb_ring(phba, pring);
11287 return;
11289 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11290 pring = qp->pring;
11291 if (!pring)
11292 continue;
11293 lpfc_sli_abort_iocb_ring(phba, pring);
11298 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
11299 * @iocbq: Pointer to driver iocb object.
11300 * @vport: Pointer to driver virtual port object.
11301 * @tgt_id: SCSI ID of the target.
11302 * @lun_id: LUN ID of the scsi device.
11303 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
11305 * This function acts as an iocb filter for functions which abort or count
11306 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
11307 * 0 if the filtering criteria is met for the given iocb and will return
11308 * 1 if the filtering criteria is not met.
11309 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
11310 * given iocb is for the SCSI device specified by vport, tgt_id and
11311 * lun_id parameter.
11312 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the
11313 * given iocb is for the SCSI target specified by vport and tgt_id
11314 * parameters.
11315 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
11316 * given iocb is for the SCSI host associated with the given vport.
11317 * This function is called with no locks held.
11319 static int
11320 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
11321 uint16_t tgt_id, uint64_t lun_id,
11322 lpfc_ctx_cmd ctx_cmd)
11324 struct lpfc_io_buf *lpfc_cmd;
11325 int rc = 1;
11327 if (iocbq->vport != vport)
11328 return rc;
11330 if (!(iocbq->iocb_flag & LPFC_IO_FCP) ||
11331 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ))
11332 return rc;
11334 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11336 if (lpfc_cmd->pCmd == NULL)
11337 return rc;
11339 switch (ctx_cmd) {
11340 case LPFC_CTX_LUN:
11341 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11342 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
11343 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
11344 rc = 0;
11345 break;
11346 case LPFC_CTX_TGT:
11347 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11348 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
11349 rc = 0;
11350 break;
11351 case LPFC_CTX_HOST:
11352 rc = 0;
11353 break;
11354 default:
11355 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
11356 __func__, ctx_cmd);
11357 break;
11360 return rc;
11364 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
11365 * @vport: Pointer to virtual port.
11366 * @tgt_id: SCSI ID of the target.
11367 * @lun_id: LUN ID of the scsi device.
11368 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11370 * This function returns number of FCP commands pending for the vport.
11371 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
11372 * commands pending on the vport associated with SCSI device specified
11373 * by tgt_id and lun_id parameters.
11374 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
11375 * commands pending on the vport associated with SCSI target specified
11376 * by tgt_id parameter.
11377 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
11378 * commands pending on the vport.
11379 * This function returns the number of iocbs which satisfy the filter.
11380 * This function is called without any lock held.
11383 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
11384 lpfc_ctx_cmd ctx_cmd)
11386 struct lpfc_hba *phba = vport->phba;
11387 struct lpfc_iocbq *iocbq;
11388 int sum, i;
11390 spin_lock_irq(&phba->hbalock);
11391 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
11392 iocbq = phba->sli.iocbq_lookup[i];
11394 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
11395 ctx_cmd) == 0)
11396 sum++;
11398 spin_unlock_irq(&phba->hbalock);
11400 return sum;
11404 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
11405 * @phba: Pointer to HBA context object
11406 * @cmdiocb: Pointer to command iocb object.
11407 * @rspiocb: Pointer to response iocb object.
11409 * This function is called when an aborted FCP iocb completes. This
11410 * function is called by the ring event handler with no lock held.
11411 * This function frees the iocb.
11413 void
11414 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11415 struct lpfc_iocbq *rspiocb)
11417 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11418 "3096 ABORT_XRI_CN completing on rpi x%x "
11419 "original iotag x%x, abort cmd iotag x%x "
11420 "status 0x%x, reason 0x%x\n",
11421 cmdiocb->iocb.un.acxri.abortContextTag,
11422 cmdiocb->iocb.un.acxri.abortIoTag,
11423 cmdiocb->iotag, rspiocb->iocb.ulpStatus,
11424 rspiocb->iocb.un.ulpWord[4]);
11425 lpfc_sli_release_iocbq(phba, cmdiocb);
11426 return;
11430 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
11431 * @vport: Pointer to virtual port.
11432 * @pring: Pointer to driver SLI ring object.
11433 * @tgt_id: SCSI ID of the target.
11434 * @lun_id: LUN ID of the scsi device.
11435 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11437 * This function sends an abort command for every SCSI command
11438 * associated with the given virtual port pending on the ring
11439 * filtered by lpfc_sli_validate_fcp_iocb function.
11440 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
11441 * FCP iocbs associated with lun specified by tgt_id and lun_id
11442 * parameters
11443 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
11444 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11445 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
11446 * FCP iocbs associated with virtual port.
11447 * This function returns number of iocbs it failed to abort.
11448 * This function is called with no locks held.
11451 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11452 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
11454 struct lpfc_hba *phba = vport->phba;
11455 struct lpfc_iocbq *iocbq;
11456 struct lpfc_iocbq *abtsiocb;
11457 struct lpfc_sli_ring *pring_s4;
11458 IOCB_t *cmd = NULL;
11459 int errcnt = 0, ret_val = 0;
11460 int i;
11462 /* all I/Os are in process of being flushed */
11463 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH)
11464 return errcnt;
11466 for (i = 1; i <= phba->sli.last_iotag; i++) {
11467 iocbq = phba->sli.iocbq_lookup[i];
11469 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11470 abort_cmd) != 0)
11471 continue;
11474 * If the iocbq is already being aborted, don't take a second
11475 * action, but do count it.
11477 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
11478 continue;
11480 /* issue ABTS for this IOCB based on iotag */
11481 abtsiocb = lpfc_sli_get_iocbq(phba);
11482 if (abtsiocb == NULL) {
11483 errcnt++;
11484 continue;
11487 /* indicate the IO is being aborted by the driver. */
11488 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11490 cmd = &iocbq->iocb;
11491 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11492 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext;
11493 if (phba->sli_rev == LPFC_SLI_REV4)
11494 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag;
11495 else
11496 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag;
11497 abtsiocb->iocb.ulpLe = 1;
11498 abtsiocb->iocb.ulpClass = cmd->ulpClass;
11499 abtsiocb->vport = vport;
11501 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
11502 abtsiocb->hba_wqidx = iocbq->hba_wqidx;
11503 if (iocbq->iocb_flag & LPFC_IO_FCP)
11504 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
11505 if (iocbq->iocb_flag & LPFC_IO_FOF)
11506 abtsiocb->iocb_flag |= LPFC_IO_FOF;
11508 if (lpfc_is_link_up(phba))
11509 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11510 else
11511 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11513 /* Setup callback routine and issue the command. */
11514 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11515 if (phba->sli_rev == LPFC_SLI_REV4) {
11516 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq);
11517 if (!pring_s4)
11518 continue;
11519 ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11520 abtsiocb, 0);
11521 } else
11522 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno,
11523 abtsiocb, 0);
11524 if (ret_val == IOCB_ERROR) {
11525 lpfc_sli_release_iocbq(phba, abtsiocb);
11526 errcnt++;
11527 continue;
11531 return errcnt;
11535 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
11536 * @vport: Pointer to virtual port.
11537 * @pring: Pointer to driver SLI ring object.
11538 * @tgt_id: SCSI ID of the target.
11539 * @lun_id: LUN ID of the scsi device.
11540 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11542 * This function sends an abort command for every SCSI command
11543 * associated with the given virtual port pending on the ring
11544 * filtered by lpfc_sli_validate_fcp_iocb function.
11545 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
11546 * FCP iocbs associated with lun specified by tgt_id and lun_id
11547 * parameters
11548 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
11549 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11550 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
11551 * FCP iocbs associated with virtual port.
11552 * This function returns number of iocbs it aborted .
11553 * This function is called with no locks held right after a taskmgmt
11554 * command is sent.
11557 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11558 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
11560 struct lpfc_hba *phba = vport->phba;
11561 struct lpfc_io_buf *lpfc_cmd;
11562 struct lpfc_iocbq *abtsiocbq;
11563 struct lpfc_nodelist *ndlp;
11564 struct lpfc_iocbq *iocbq;
11565 IOCB_t *icmd;
11566 int sum, i, ret_val;
11567 unsigned long iflags;
11568 struct lpfc_sli_ring *pring_s4 = NULL;
11570 spin_lock_irqsave(&phba->hbalock, iflags);
11572 /* all I/Os are in process of being flushed */
11573 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) {
11574 spin_unlock_irqrestore(&phba->hbalock, iflags);
11575 return 0;
11577 sum = 0;
11579 for (i = 1; i <= phba->sli.last_iotag; i++) {
11580 iocbq = phba->sli.iocbq_lookup[i];
11582 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11583 cmd) != 0)
11584 continue;
11586 /* Guard against IO completion being called at same time */
11587 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11588 spin_lock(&lpfc_cmd->buf_lock);
11590 if (!lpfc_cmd->pCmd) {
11591 spin_unlock(&lpfc_cmd->buf_lock);
11592 continue;
11595 if (phba->sli_rev == LPFC_SLI_REV4) {
11596 pring_s4 =
11597 phba->sli4_hba.hdwq[iocbq->hba_wqidx].fcp_wq->pring;
11598 if (!pring_s4) {
11599 spin_unlock(&lpfc_cmd->buf_lock);
11600 continue;
11602 /* Note: both hbalock and ring_lock must be set here */
11603 spin_lock(&pring_s4->ring_lock);
11607 * If the iocbq is already being aborted, don't take a second
11608 * action, but do count it.
11610 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) ||
11611 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) {
11612 if (phba->sli_rev == LPFC_SLI_REV4)
11613 spin_unlock(&pring_s4->ring_lock);
11614 spin_unlock(&lpfc_cmd->buf_lock);
11615 continue;
11618 /* issue ABTS for this IOCB based on iotag */
11619 abtsiocbq = __lpfc_sli_get_iocbq(phba);
11620 if (!abtsiocbq) {
11621 if (phba->sli_rev == LPFC_SLI_REV4)
11622 spin_unlock(&pring_s4->ring_lock);
11623 spin_unlock(&lpfc_cmd->buf_lock);
11624 continue;
11627 icmd = &iocbq->iocb;
11628 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11629 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
11630 if (phba->sli_rev == LPFC_SLI_REV4)
11631 abtsiocbq->iocb.un.acxri.abortIoTag =
11632 iocbq->sli4_xritag;
11633 else
11634 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
11635 abtsiocbq->iocb.ulpLe = 1;
11636 abtsiocbq->iocb.ulpClass = icmd->ulpClass;
11637 abtsiocbq->vport = vport;
11639 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
11640 abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
11641 if (iocbq->iocb_flag & LPFC_IO_FCP)
11642 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
11643 if (iocbq->iocb_flag & LPFC_IO_FOF)
11644 abtsiocbq->iocb_flag |= LPFC_IO_FOF;
11646 ndlp = lpfc_cmd->rdata->pnode;
11648 if (lpfc_is_link_up(phba) &&
11649 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
11650 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11651 else
11652 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11654 /* Setup callback routine and issue the command. */
11655 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11658 * Indicate the IO is being aborted by the driver and set
11659 * the caller's flag into the aborted IO.
11661 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11663 if (phba->sli_rev == LPFC_SLI_REV4) {
11664 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11665 abtsiocbq, 0);
11666 spin_unlock(&pring_s4->ring_lock);
11667 } else {
11668 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
11669 abtsiocbq, 0);
11672 spin_unlock(&lpfc_cmd->buf_lock);
11674 if (ret_val == IOCB_ERROR)
11675 __lpfc_sli_release_iocbq(phba, abtsiocbq);
11676 else
11677 sum++;
11679 spin_unlock_irqrestore(&phba->hbalock, iflags);
11680 return sum;
11684 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
11685 * @phba: Pointer to HBA context object.
11686 * @cmdiocbq: Pointer to command iocb.
11687 * @rspiocbq: Pointer to response iocb.
11689 * This function is the completion handler for iocbs issued using
11690 * lpfc_sli_issue_iocb_wait function. This function is called by the
11691 * ring event handler function without any lock held. This function
11692 * can be called from both worker thread context and interrupt
11693 * context. This function also can be called from other thread which
11694 * cleans up the SLI layer objects.
11695 * This function copy the contents of the response iocb to the
11696 * response iocb memory object provided by the caller of
11697 * lpfc_sli_issue_iocb_wait and then wakes up the thread which
11698 * sleeps for the iocb completion.
11700 static void
11701 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
11702 struct lpfc_iocbq *cmdiocbq,
11703 struct lpfc_iocbq *rspiocbq)
11705 wait_queue_head_t *pdone_q;
11706 unsigned long iflags;
11707 struct lpfc_io_buf *lpfc_cmd;
11709 spin_lock_irqsave(&phba->hbalock, iflags);
11710 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
11713 * A time out has occurred for the iocb. If a time out
11714 * completion handler has been supplied, call it. Otherwise,
11715 * just free the iocbq.
11718 spin_unlock_irqrestore(&phba->hbalock, iflags);
11719 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
11720 cmdiocbq->wait_iocb_cmpl = NULL;
11721 if (cmdiocbq->iocb_cmpl)
11722 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
11723 else
11724 lpfc_sli_release_iocbq(phba, cmdiocbq);
11725 return;
11728 cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
11729 if (cmdiocbq->context2 && rspiocbq)
11730 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
11731 &rspiocbq->iocb, sizeof(IOCB_t));
11733 /* Set the exchange busy flag for task management commands */
11734 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
11735 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
11736 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
11737 cur_iocbq);
11738 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY;
11741 pdone_q = cmdiocbq->context_un.wait_queue;
11742 if (pdone_q)
11743 wake_up(pdone_q);
11744 spin_unlock_irqrestore(&phba->hbalock, iflags);
11745 return;
11749 * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
11750 * @phba: Pointer to HBA context object..
11751 * @piocbq: Pointer to command iocb.
11752 * @flag: Flag to test.
11754 * This routine grabs the hbalock and then test the iocb_flag to
11755 * see if the passed in flag is set.
11756 * Returns:
11757 * 1 if flag is set.
11758 * 0 if flag is not set.
11760 static int
11761 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
11762 struct lpfc_iocbq *piocbq, uint32_t flag)
11764 unsigned long iflags;
11765 int ret;
11767 spin_lock_irqsave(&phba->hbalock, iflags);
11768 ret = piocbq->iocb_flag & flag;
11769 spin_unlock_irqrestore(&phba->hbalock, iflags);
11770 return ret;
11775 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
11776 * @phba: Pointer to HBA context object..
11777 * @pring: Pointer to sli ring.
11778 * @piocb: Pointer to command iocb.
11779 * @prspiocbq: Pointer to response iocb.
11780 * @timeout: Timeout in number of seconds.
11782 * This function issues the iocb to firmware and waits for the
11783 * iocb to complete. The iocb_cmpl field of the shall be used
11784 * to handle iocbs which time out. If the field is NULL, the
11785 * function shall free the iocbq structure. If more clean up is
11786 * needed, the caller is expected to provide a completion function
11787 * that will provide the needed clean up. If the iocb command is
11788 * not completed within timeout seconds, the function will either
11789 * free the iocbq structure (if iocb_cmpl == NULL) or execute the
11790 * completion function set in the iocb_cmpl field and then return
11791 * a status of IOCB_TIMEDOUT. The caller should not free the iocb
11792 * resources if this function returns IOCB_TIMEDOUT.
11793 * The function waits for the iocb completion using an
11794 * non-interruptible wait.
11795 * This function will sleep while waiting for iocb completion.
11796 * So, this function should not be called from any context which
11797 * does not allow sleeping. Due to the same reason, this function
11798 * cannot be called with interrupt disabled.
11799 * This function assumes that the iocb completions occur while
11800 * this function sleep. So, this function cannot be called from
11801 * the thread which process iocb completion for this ring.
11802 * This function clears the iocb_flag of the iocb object before
11803 * issuing the iocb and the iocb completion handler sets this
11804 * flag and wakes this thread when the iocb completes.
11805 * The contents of the response iocb will be copied to prspiocbq
11806 * by the completion handler when the command completes.
11807 * This function returns IOCB_SUCCESS when success.
11808 * This function is called with no lock held.
11811 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
11812 uint32_t ring_number,
11813 struct lpfc_iocbq *piocb,
11814 struct lpfc_iocbq *prspiocbq,
11815 uint32_t timeout)
11817 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
11818 long timeleft, timeout_req = 0;
11819 int retval = IOCB_SUCCESS;
11820 uint32_t creg_val;
11821 struct lpfc_iocbq *iocb;
11822 int txq_cnt = 0;
11823 int txcmplq_cnt = 0;
11824 struct lpfc_sli_ring *pring;
11825 unsigned long iflags;
11826 bool iocb_completed = true;
11828 if (phba->sli_rev >= LPFC_SLI_REV4)
11829 pring = lpfc_sli4_calc_ring(phba, piocb);
11830 else
11831 pring = &phba->sli.sli3_ring[ring_number];
11833 * If the caller has provided a response iocbq buffer, then context2
11834 * is NULL or its an error.
11836 if (prspiocbq) {
11837 if (piocb->context2)
11838 return IOCB_ERROR;
11839 piocb->context2 = prspiocbq;
11842 piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
11843 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
11844 piocb->context_un.wait_queue = &done_q;
11845 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
11847 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11848 if (lpfc_readl(phba->HCregaddr, &creg_val))
11849 return IOCB_ERROR;
11850 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
11851 writel(creg_val, phba->HCregaddr);
11852 readl(phba->HCregaddr); /* flush */
11855 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
11856 SLI_IOCB_RET_IOCB);
11857 if (retval == IOCB_SUCCESS) {
11858 timeout_req = msecs_to_jiffies(timeout * 1000);
11859 timeleft = wait_event_timeout(done_q,
11860 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
11861 timeout_req);
11862 spin_lock_irqsave(&phba->hbalock, iflags);
11863 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
11866 * IOCB timed out. Inform the wake iocb wait
11867 * completion function and set local status
11870 iocb_completed = false;
11871 piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
11873 spin_unlock_irqrestore(&phba->hbalock, iflags);
11874 if (iocb_completed) {
11875 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11876 "0331 IOCB wake signaled\n");
11877 /* Note: we are not indicating if the IOCB has a success
11878 * status or not - that's for the caller to check.
11879 * IOCB_SUCCESS means just that the command was sent and
11880 * completed. Not that it completed successfully.
11881 * */
11882 } else if (timeleft == 0) {
11883 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11884 "0338 IOCB wait timeout error - no "
11885 "wake response Data x%x\n", timeout);
11886 retval = IOCB_TIMEDOUT;
11887 } else {
11888 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11889 "0330 IOCB wake NOT set, "
11890 "Data x%x x%lx\n",
11891 timeout, (timeleft / jiffies));
11892 retval = IOCB_TIMEDOUT;
11894 } else if (retval == IOCB_BUSY) {
11895 if (phba->cfg_log_verbose & LOG_SLI) {
11896 list_for_each_entry(iocb, &pring->txq, list) {
11897 txq_cnt++;
11899 list_for_each_entry(iocb, &pring->txcmplq, list) {
11900 txcmplq_cnt++;
11902 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11903 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
11904 phba->iocb_cnt, txq_cnt, txcmplq_cnt);
11906 return retval;
11907 } else {
11908 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11909 "0332 IOCB wait issue failed, Data x%x\n",
11910 retval);
11911 retval = IOCB_ERROR;
11914 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11915 if (lpfc_readl(phba->HCregaddr, &creg_val))
11916 return IOCB_ERROR;
11917 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
11918 writel(creg_val, phba->HCregaddr);
11919 readl(phba->HCregaddr); /* flush */
11922 if (prspiocbq)
11923 piocb->context2 = NULL;
11925 piocb->context_un.wait_queue = NULL;
11926 piocb->iocb_cmpl = NULL;
11927 return retval;
11931 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
11932 * @phba: Pointer to HBA context object.
11933 * @pmboxq: Pointer to driver mailbox object.
11934 * @timeout: Timeout in number of seconds.
11936 * This function issues the mailbox to firmware and waits for the
11937 * mailbox command to complete. If the mailbox command is not
11938 * completed within timeout seconds, it returns MBX_TIMEOUT.
11939 * The function waits for the mailbox completion using an
11940 * interruptible wait. If the thread is woken up due to a
11941 * signal, MBX_TIMEOUT error is returned to the caller. Caller
11942 * should not free the mailbox resources, if this function returns
11943 * MBX_TIMEOUT.
11944 * This function will sleep while waiting for mailbox completion.
11945 * So, this function should not be called from any context which
11946 * does not allow sleeping. Due to the same reason, this function
11947 * cannot be called with interrupt disabled.
11948 * This function assumes that the mailbox completion occurs while
11949 * this function sleep. So, this function cannot be called from
11950 * the worker thread which processes mailbox completion.
11951 * This function is called in the context of HBA management
11952 * applications.
11953 * This function returns MBX_SUCCESS when successful.
11954 * This function is called with no lock held.
11957 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
11958 uint32_t timeout)
11960 struct completion mbox_done;
11961 int retval;
11962 unsigned long flag;
11964 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
11965 /* setup wake call as IOCB callback */
11966 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
11968 /* setup context3 field to pass wait_queue pointer to wake function */
11969 init_completion(&mbox_done);
11970 pmboxq->context3 = &mbox_done;
11971 /* now issue the command */
11972 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
11973 if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
11974 wait_for_completion_timeout(&mbox_done,
11975 msecs_to_jiffies(timeout * 1000));
11977 spin_lock_irqsave(&phba->hbalock, flag);
11978 pmboxq->context3 = NULL;
11980 * if LPFC_MBX_WAKE flag is set the mailbox is completed
11981 * else do not free the resources.
11983 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
11984 retval = MBX_SUCCESS;
11985 } else {
11986 retval = MBX_TIMEOUT;
11987 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
11989 spin_unlock_irqrestore(&phba->hbalock, flag);
11991 return retval;
11995 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
11996 * @phba: Pointer to HBA context.
11998 * This function is called to shutdown the driver's mailbox sub-system.
11999 * It first marks the mailbox sub-system is in a block state to prevent
12000 * the asynchronous mailbox command from issued off the pending mailbox
12001 * command queue. If the mailbox command sub-system shutdown is due to
12002 * HBA error conditions such as EEH or ERATT, this routine shall invoke
12003 * the mailbox sub-system flush routine to forcefully bring down the
12004 * mailbox sub-system. Otherwise, if it is due to normal condition (such
12005 * as with offline or HBA function reset), this routine will wait for the
12006 * outstanding mailbox command to complete before invoking the mailbox
12007 * sub-system flush routine to gracefully bring down mailbox sub-system.
12009 void
12010 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
12012 struct lpfc_sli *psli = &phba->sli;
12013 unsigned long timeout;
12015 if (mbx_action == LPFC_MBX_NO_WAIT) {
12016 /* delay 100ms for port state */
12017 msleep(100);
12018 lpfc_sli_mbox_sys_flush(phba);
12019 return;
12021 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
12023 /* Disable softirqs, including timers from obtaining phba->hbalock */
12024 local_bh_disable();
12026 spin_lock_irq(&phba->hbalock);
12027 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
12029 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
12030 /* Determine how long we might wait for the active mailbox
12031 * command to be gracefully completed by firmware.
12033 if (phba->sli.mbox_active)
12034 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
12035 phba->sli.mbox_active) *
12036 1000) + jiffies;
12037 spin_unlock_irq(&phba->hbalock);
12039 /* Enable softirqs again, done with phba->hbalock */
12040 local_bh_enable();
12042 while (phba->sli.mbox_active) {
12043 /* Check active mailbox complete status every 2ms */
12044 msleep(2);
12045 if (time_after(jiffies, timeout))
12046 /* Timeout, let the mailbox flush routine to
12047 * forcefully release active mailbox command
12049 break;
12051 } else {
12052 spin_unlock_irq(&phba->hbalock);
12054 /* Enable softirqs again, done with phba->hbalock */
12055 local_bh_enable();
12058 lpfc_sli_mbox_sys_flush(phba);
12062 * lpfc_sli_eratt_read - read sli-3 error attention events
12063 * @phba: Pointer to HBA context.
12065 * This function is called to read the SLI3 device error attention registers
12066 * for possible error attention events. The caller must hold the hostlock
12067 * with spin_lock_irq().
12069 * This function returns 1 when there is Error Attention in the Host Attention
12070 * Register and returns 0 otherwise.
12072 static int
12073 lpfc_sli_eratt_read(struct lpfc_hba *phba)
12075 uint32_t ha_copy;
12077 /* Read chip Host Attention (HA) register */
12078 if (lpfc_readl(phba->HAregaddr, &ha_copy))
12079 goto unplug_err;
12081 if (ha_copy & HA_ERATT) {
12082 /* Read host status register to retrieve error event */
12083 if (lpfc_sli_read_hs(phba))
12084 goto unplug_err;
12086 /* Check if there is a deferred error condition is active */
12087 if ((HS_FFER1 & phba->work_hs) &&
12088 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12089 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
12090 phba->hba_flag |= DEFER_ERATT;
12091 /* Clear all interrupt enable conditions */
12092 writel(0, phba->HCregaddr);
12093 readl(phba->HCregaddr);
12096 /* Set the driver HA work bitmap */
12097 phba->work_ha |= HA_ERATT;
12098 /* Indicate polling handles this ERATT */
12099 phba->hba_flag |= HBA_ERATT_HANDLED;
12100 return 1;
12102 return 0;
12104 unplug_err:
12105 /* Set the driver HS work bitmap */
12106 phba->work_hs |= UNPLUG_ERR;
12107 /* Set the driver HA work bitmap */
12108 phba->work_ha |= HA_ERATT;
12109 /* Indicate polling handles this ERATT */
12110 phba->hba_flag |= HBA_ERATT_HANDLED;
12111 return 1;
12115 * lpfc_sli4_eratt_read - read sli-4 error attention events
12116 * @phba: Pointer to HBA context.
12118 * This function is called to read the SLI4 device error attention registers
12119 * for possible error attention events. The caller must hold the hostlock
12120 * with spin_lock_irq().
12122 * This function returns 1 when there is Error Attention in the Host Attention
12123 * Register and returns 0 otherwise.
12125 static int
12126 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
12128 uint32_t uerr_sta_hi, uerr_sta_lo;
12129 uint32_t if_type, portsmphr;
12130 struct lpfc_register portstat_reg;
12133 * For now, use the SLI4 device internal unrecoverable error
12134 * registers for error attention. This can be changed later.
12136 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12137 switch (if_type) {
12138 case LPFC_SLI_INTF_IF_TYPE_0:
12139 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
12140 &uerr_sta_lo) ||
12141 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
12142 &uerr_sta_hi)) {
12143 phba->work_hs |= UNPLUG_ERR;
12144 phba->work_ha |= HA_ERATT;
12145 phba->hba_flag |= HBA_ERATT_HANDLED;
12146 return 1;
12148 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
12149 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
12150 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12151 "1423 HBA Unrecoverable error: "
12152 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
12153 "ue_mask_lo_reg=0x%x, "
12154 "ue_mask_hi_reg=0x%x\n",
12155 uerr_sta_lo, uerr_sta_hi,
12156 phba->sli4_hba.ue_mask_lo,
12157 phba->sli4_hba.ue_mask_hi);
12158 phba->work_status[0] = uerr_sta_lo;
12159 phba->work_status[1] = uerr_sta_hi;
12160 phba->work_ha |= HA_ERATT;
12161 phba->hba_flag |= HBA_ERATT_HANDLED;
12162 return 1;
12164 break;
12165 case LPFC_SLI_INTF_IF_TYPE_2:
12166 case LPFC_SLI_INTF_IF_TYPE_6:
12167 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
12168 &portstat_reg.word0) ||
12169 lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
12170 &portsmphr)){
12171 phba->work_hs |= UNPLUG_ERR;
12172 phba->work_ha |= HA_ERATT;
12173 phba->hba_flag |= HBA_ERATT_HANDLED;
12174 return 1;
12176 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
12177 phba->work_status[0] =
12178 readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
12179 phba->work_status[1] =
12180 readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
12181 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12182 "2885 Port Status Event: "
12183 "port status reg 0x%x, "
12184 "port smphr reg 0x%x, "
12185 "error 1=0x%x, error 2=0x%x\n",
12186 portstat_reg.word0,
12187 portsmphr,
12188 phba->work_status[0],
12189 phba->work_status[1]);
12190 phba->work_ha |= HA_ERATT;
12191 phba->hba_flag |= HBA_ERATT_HANDLED;
12192 return 1;
12194 break;
12195 case LPFC_SLI_INTF_IF_TYPE_1:
12196 default:
12197 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12198 "2886 HBA Error Attention on unsupported "
12199 "if type %d.", if_type);
12200 return 1;
12203 return 0;
12207 * lpfc_sli_check_eratt - check error attention events
12208 * @phba: Pointer to HBA context.
12210 * This function is called from timer soft interrupt context to check HBA's
12211 * error attention register bit for error attention events.
12213 * This function returns 1 when there is Error Attention in the Host Attention
12214 * Register and returns 0 otherwise.
12217 lpfc_sli_check_eratt(struct lpfc_hba *phba)
12219 uint32_t ha_copy;
12221 /* If somebody is waiting to handle an eratt, don't process it
12222 * here. The brdkill function will do this.
12224 if (phba->link_flag & LS_IGNORE_ERATT)
12225 return 0;
12227 /* Check if interrupt handler handles this ERATT */
12228 spin_lock_irq(&phba->hbalock);
12229 if (phba->hba_flag & HBA_ERATT_HANDLED) {
12230 /* Interrupt handler has handled ERATT */
12231 spin_unlock_irq(&phba->hbalock);
12232 return 0;
12236 * If there is deferred error attention, do not check for error
12237 * attention
12239 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12240 spin_unlock_irq(&phba->hbalock);
12241 return 0;
12244 /* If PCI channel is offline, don't process it */
12245 if (unlikely(pci_channel_offline(phba->pcidev))) {
12246 spin_unlock_irq(&phba->hbalock);
12247 return 0;
12250 switch (phba->sli_rev) {
12251 case LPFC_SLI_REV2:
12252 case LPFC_SLI_REV3:
12253 /* Read chip Host Attention (HA) register */
12254 ha_copy = lpfc_sli_eratt_read(phba);
12255 break;
12256 case LPFC_SLI_REV4:
12257 /* Read device Uncoverable Error (UERR) registers */
12258 ha_copy = lpfc_sli4_eratt_read(phba);
12259 break;
12260 default:
12261 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12262 "0299 Invalid SLI revision (%d)\n",
12263 phba->sli_rev);
12264 ha_copy = 0;
12265 break;
12267 spin_unlock_irq(&phba->hbalock);
12269 return ha_copy;
12273 * lpfc_intr_state_check - Check device state for interrupt handling
12274 * @phba: Pointer to HBA context.
12276 * This inline routine checks whether a device or its PCI slot is in a state
12277 * that the interrupt should be handled.
12279 * This function returns 0 if the device or the PCI slot is in a state that
12280 * interrupt should be handled, otherwise -EIO.
12282 static inline int
12283 lpfc_intr_state_check(struct lpfc_hba *phba)
12285 /* If the pci channel is offline, ignore all the interrupts */
12286 if (unlikely(pci_channel_offline(phba->pcidev)))
12287 return -EIO;
12289 /* Update device level interrupt statistics */
12290 phba->sli.slistat.sli_intr++;
12292 /* Ignore all interrupts during initialization. */
12293 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
12294 return -EIO;
12296 return 0;
12300 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
12301 * @irq: Interrupt number.
12302 * @dev_id: The device context pointer.
12304 * This function is directly called from the PCI layer as an interrupt
12305 * service routine when device with SLI-3 interface spec is enabled with
12306 * MSI-X multi-message interrupt mode and there are slow-path events in
12307 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
12308 * interrupt mode, this function is called as part of the device-level
12309 * interrupt handler. When the PCI slot is in error recovery or the HBA
12310 * is undergoing initialization, the interrupt handler will not process
12311 * the interrupt. The link attention and ELS ring attention events are
12312 * handled by the worker thread. The interrupt handler signals the worker
12313 * thread and returns for these events. This function is called without
12314 * any lock held. It gets the hbalock to access and update SLI data
12315 * structures.
12317 * This function returns IRQ_HANDLED when interrupt is handled else it
12318 * returns IRQ_NONE.
12320 irqreturn_t
12321 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
12323 struct lpfc_hba *phba;
12324 uint32_t ha_copy, hc_copy;
12325 uint32_t work_ha_copy;
12326 unsigned long status;
12327 unsigned long iflag;
12328 uint32_t control;
12330 MAILBOX_t *mbox, *pmbox;
12331 struct lpfc_vport *vport;
12332 struct lpfc_nodelist *ndlp;
12333 struct lpfc_dmabuf *mp;
12334 LPFC_MBOXQ_t *pmb;
12335 int rc;
12338 * Get the driver's phba structure from the dev_id and
12339 * assume the HBA is not interrupting.
12341 phba = (struct lpfc_hba *)dev_id;
12343 if (unlikely(!phba))
12344 return IRQ_NONE;
12347 * Stuff needs to be attented to when this function is invoked as an
12348 * individual interrupt handler in MSI-X multi-message interrupt mode
12350 if (phba->intr_type == MSIX) {
12351 /* Check device state for handling interrupt */
12352 if (lpfc_intr_state_check(phba))
12353 return IRQ_NONE;
12354 /* Need to read HA REG for slow-path events */
12355 spin_lock_irqsave(&phba->hbalock, iflag);
12356 if (lpfc_readl(phba->HAregaddr, &ha_copy))
12357 goto unplug_error;
12358 /* If somebody is waiting to handle an eratt don't process it
12359 * here. The brdkill function will do this.
12361 if (phba->link_flag & LS_IGNORE_ERATT)
12362 ha_copy &= ~HA_ERATT;
12363 /* Check the need for handling ERATT in interrupt handler */
12364 if (ha_copy & HA_ERATT) {
12365 if (phba->hba_flag & HBA_ERATT_HANDLED)
12366 /* ERATT polling has handled ERATT */
12367 ha_copy &= ~HA_ERATT;
12368 else
12369 /* Indicate interrupt handler handles ERATT */
12370 phba->hba_flag |= HBA_ERATT_HANDLED;
12374 * If there is deferred error attention, do not check for any
12375 * interrupt.
12377 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12378 spin_unlock_irqrestore(&phba->hbalock, iflag);
12379 return IRQ_NONE;
12382 /* Clear up only attention source related to slow-path */
12383 if (lpfc_readl(phba->HCregaddr, &hc_copy))
12384 goto unplug_error;
12386 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
12387 HC_LAINT_ENA | HC_ERINT_ENA),
12388 phba->HCregaddr);
12389 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
12390 phba->HAregaddr);
12391 writel(hc_copy, phba->HCregaddr);
12392 readl(phba->HAregaddr); /* flush */
12393 spin_unlock_irqrestore(&phba->hbalock, iflag);
12394 } else
12395 ha_copy = phba->ha_copy;
12397 work_ha_copy = ha_copy & phba->work_ha_mask;
12399 if (work_ha_copy) {
12400 if (work_ha_copy & HA_LATT) {
12401 if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
12403 * Turn off Link Attention interrupts
12404 * until CLEAR_LA done
12406 spin_lock_irqsave(&phba->hbalock, iflag);
12407 phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
12408 if (lpfc_readl(phba->HCregaddr, &control))
12409 goto unplug_error;
12410 control &= ~HC_LAINT_ENA;
12411 writel(control, phba->HCregaddr);
12412 readl(phba->HCregaddr); /* flush */
12413 spin_unlock_irqrestore(&phba->hbalock, iflag);
12415 else
12416 work_ha_copy &= ~HA_LATT;
12419 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
12421 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
12422 * the only slow ring.
12424 status = (work_ha_copy &
12425 (HA_RXMASK << (4*LPFC_ELS_RING)));
12426 status >>= (4*LPFC_ELS_RING);
12427 if (status & HA_RXMASK) {
12428 spin_lock_irqsave(&phba->hbalock, iflag);
12429 if (lpfc_readl(phba->HCregaddr, &control))
12430 goto unplug_error;
12432 lpfc_debugfs_slow_ring_trc(phba,
12433 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x",
12434 control, status,
12435 (uint32_t)phba->sli.slistat.sli_intr);
12437 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
12438 lpfc_debugfs_slow_ring_trc(phba,
12439 "ISR Disable ring:"
12440 "pwork:x%x hawork:x%x wait:x%x",
12441 phba->work_ha, work_ha_copy,
12442 (uint32_t)((unsigned long)
12443 &phba->work_waitq));
12445 control &=
12446 ~(HC_R0INT_ENA << LPFC_ELS_RING);
12447 writel(control, phba->HCregaddr);
12448 readl(phba->HCregaddr); /* flush */
12450 else {
12451 lpfc_debugfs_slow_ring_trc(phba,
12452 "ISR slow ring: pwork:"
12453 "x%x hawork:x%x wait:x%x",
12454 phba->work_ha, work_ha_copy,
12455 (uint32_t)((unsigned long)
12456 &phba->work_waitq));
12458 spin_unlock_irqrestore(&phba->hbalock, iflag);
12461 spin_lock_irqsave(&phba->hbalock, iflag);
12462 if (work_ha_copy & HA_ERATT) {
12463 if (lpfc_sli_read_hs(phba))
12464 goto unplug_error;
12466 * Check if there is a deferred error condition
12467 * is active
12469 if ((HS_FFER1 & phba->work_hs) &&
12470 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12471 HS_FFER6 | HS_FFER7 | HS_FFER8) &
12472 phba->work_hs)) {
12473 phba->hba_flag |= DEFER_ERATT;
12474 /* Clear all interrupt enable conditions */
12475 writel(0, phba->HCregaddr);
12476 readl(phba->HCregaddr);
12480 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
12481 pmb = phba->sli.mbox_active;
12482 pmbox = &pmb->u.mb;
12483 mbox = phba->mbox;
12484 vport = pmb->vport;
12486 /* First check out the status word */
12487 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
12488 if (pmbox->mbxOwner != OWN_HOST) {
12489 spin_unlock_irqrestore(&phba->hbalock, iflag);
12491 * Stray Mailbox Interrupt, mbxCommand <cmd>
12492 * mbxStatus <status>
12494 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12495 LOG_SLI,
12496 "(%d):0304 Stray Mailbox "
12497 "Interrupt mbxCommand x%x "
12498 "mbxStatus x%x\n",
12499 (vport ? vport->vpi : 0),
12500 pmbox->mbxCommand,
12501 pmbox->mbxStatus);
12502 /* clear mailbox attention bit */
12503 work_ha_copy &= ~HA_MBATT;
12504 } else {
12505 phba->sli.mbox_active = NULL;
12506 spin_unlock_irqrestore(&phba->hbalock, iflag);
12507 phba->last_completion_time = jiffies;
12508 del_timer(&phba->sli.mbox_tmo);
12509 if (pmb->mbox_cmpl) {
12510 lpfc_sli_pcimem_bcopy(mbox, pmbox,
12511 MAILBOX_CMD_SIZE);
12512 if (pmb->out_ext_byte_len &&
12513 pmb->ctx_buf)
12514 lpfc_sli_pcimem_bcopy(
12515 phba->mbox_ext,
12516 pmb->ctx_buf,
12517 pmb->out_ext_byte_len);
12519 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
12520 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
12522 lpfc_debugfs_disc_trc(vport,
12523 LPFC_DISC_TRC_MBOX_VPORT,
12524 "MBOX dflt rpi: : "
12525 "status:x%x rpi:x%x",
12526 (uint32_t)pmbox->mbxStatus,
12527 pmbox->un.varWords[0], 0);
12529 if (!pmbox->mbxStatus) {
12530 mp = (struct lpfc_dmabuf *)
12531 (pmb->ctx_buf);
12532 ndlp = (struct lpfc_nodelist *)
12533 pmb->ctx_ndlp;
12535 /* Reg_LOGIN of dflt RPI was
12536 * successful. new lets get
12537 * rid of the RPI using the
12538 * same mbox buffer.
12540 lpfc_unreg_login(phba,
12541 vport->vpi,
12542 pmbox->un.varWords[0],
12543 pmb);
12544 pmb->mbox_cmpl =
12545 lpfc_mbx_cmpl_dflt_rpi;
12546 pmb->ctx_buf = mp;
12547 pmb->ctx_ndlp = ndlp;
12548 pmb->vport = vport;
12549 rc = lpfc_sli_issue_mbox(phba,
12550 pmb,
12551 MBX_NOWAIT);
12552 if (rc != MBX_BUSY)
12553 lpfc_printf_log(phba,
12554 KERN_ERR,
12555 LOG_MBOX | LOG_SLI,
12556 "0350 rc should have"
12557 "been MBX_BUSY\n");
12558 if (rc != MBX_NOT_FINISHED)
12559 goto send_current_mbox;
12562 spin_lock_irqsave(
12563 &phba->pport->work_port_lock,
12564 iflag);
12565 phba->pport->work_port_events &=
12566 ~WORKER_MBOX_TMO;
12567 spin_unlock_irqrestore(
12568 &phba->pport->work_port_lock,
12569 iflag);
12570 lpfc_mbox_cmpl_put(phba, pmb);
12572 } else
12573 spin_unlock_irqrestore(&phba->hbalock, iflag);
12575 if ((work_ha_copy & HA_MBATT) &&
12576 (phba->sli.mbox_active == NULL)) {
12577 send_current_mbox:
12578 /* Process next mailbox command if there is one */
12579 do {
12580 rc = lpfc_sli_issue_mbox(phba, NULL,
12581 MBX_NOWAIT);
12582 } while (rc == MBX_NOT_FINISHED);
12583 if (rc != MBX_SUCCESS)
12584 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12585 LOG_SLI, "0349 rc should be "
12586 "MBX_SUCCESS\n");
12589 spin_lock_irqsave(&phba->hbalock, iflag);
12590 phba->work_ha |= work_ha_copy;
12591 spin_unlock_irqrestore(&phba->hbalock, iflag);
12592 lpfc_worker_wake_up(phba);
12594 return IRQ_HANDLED;
12595 unplug_error:
12596 spin_unlock_irqrestore(&phba->hbalock, iflag);
12597 return IRQ_HANDLED;
12599 } /* lpfc_sli_sp_intr_handler */
12602 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
12603 * @irq: Interrupt number.
12604 * @dev_id: The device context pointer.
12606 * This function is directly called from the PCI layer as an interrupt
12607 * service routine when device with SLI-3 interface spec is enabled with
12608 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
12609 * ring event in the HBA. However, when the device is enabled with either
12610 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
12611 * device-level interrupt handler. When the PCI slot is in error recovery
12612 * or the HBA is undergoing initialization, the interrupt handler will not
12613 * process the interrupt. The SCSI FCP fast-path ring event are handled in
12614 * the intrrupt context. This function is called without any lock held.
12615 * It gets the hbalock to access and update SLI data structures.
12617 * This function returns IRQ_HANDLED when interrupt is handled else it
12618 * returns IRQ_NONE.
12620 irqreturn_t
12621 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
12623 struct lpfc_hba *phba;
12624 uint32_t ha_copy;
12625 unsigned long status;
12626 unsigned long iflag;
12627 struct lpfc_sli_ring *pring;
12629 /* Get the driver's phba structure from the dev_id and
12630 * assume the HBA is not interrupting.
12632 phba = (struct lpfc_hba *) dev_id;
12634 if (unlikely(!phba))
12635 return IRQ_NONE;
12638 * Stuff needs to be attented to when this function is invoked as an
12639 * individual interrupt handler in MSI-X multi-message interrupt mode
12641 if (phba->intr_type == MSIX) {
12642 /* Check device state for handling interrupt */
12643 if (lpfc_intr_state_check(phba))
12644 return IRQ_NONE;
12645 /* Need to read HA REG for FCP ring and other ring events */
12646 if (lpfc_readl(phba->HAregaddr, &ha_copy))
12647 return IRQ_HANDLED;
12648 /* Clear up only attention source related to fast-path */
12649 spin_lock_irqsave(&phba->hbalock, iflag);
12651 * If there is deferred error attention, do not check for
12652 * any interrupt.
12654 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12655 spin_unlock_irqrestore(&phba->hbalock, iflag);
12656 return IRQ_NONE;
12658 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
12659 phba->HAregaddr);
12660 readl(phba->HAregaddr); /* flush */
12661 spin_unlock_irqrestore(&phba->hbalock, iflag);
12662 } else
12663 ha_copy = phba->ha_copy;
12666 * Process all events on FCP ring. Take the optimized path for FCP IO.
12668 ha_copy &= ~(phba->work_ha_mask);
12670 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12671 status >>= (4*LPFC_FCP_RING);
12672 pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12673 if (status & HA_RXMASK)
12674 lpfc_sli_handle_fast_ring_event(phba, pring, status);
12676 if (phba->cfg_multi_ring_support == 2) {
12678 * Process all events on extra ring. Take the optimized path
12679 * for extra ring IO.
12681 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12682 status >>= (4*LPFC_EXTRA_RING);
12683 if (status & HA_RXMASK) {
12684 lpfc_sli_handle_fast_ring_event(phba,
12685 &phba->sli.sli3_ring[LPFC_EXTRA_RING],
12686 status);
12689 return IRQ_HANDLED;
12690 } /* lpfc_sli_fp_intr_handler */
12693 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
12694 * @irq: Interrupt number.
12695 * @dev_id: The device context pointer.
12697 * This function is the HBA device-level interrupt handler to device with
12698 * SLI-3 interface spec, called from the PCI layer when either MSI or
12699 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
12700 * requires driver attention. This function invokes the slow-path interrupt
12701 * attention handling function and fast-path interrupt attention handling
12702 * function in turn to process the relevant HBA attention events. This
12703 * function is called without any lock held. It gets the hbalock to access
12704 * and update SLI data structures.
12706 * This function returns IRQ_HANDLED when interrupt is handled, else it
12707 * returns IRQ_NONE.
12709 irqreturn_t
12710 lpfc_sli_intr_handler(int irq, void *dev_id)
12712 struct lpfc_hba *phba;
12713 irqreturn_t sp_irq_rc, fp_irq_rc;
12714 unsigned long status1, status2;
12715 uint32_t hc_copy;
12718 * Get the driver's phba structure from the dev_id and
12719 * assume the HBA is not interrupting.
12721 phba = (struct lpfc_hba *) dev_id;
12723 if (unlikely(!phba))
12724 return IRQ_NONE;
12726 /* Check device state for handling interrupt */
12727 if (lpfc_intr_state_check(phba))
12728 return IRQ_NONE;
12730 spin_lock(&phba->hbalock);
12731 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
12732 spin_unlock(&phba->hbalock);
12733 return IRQ_HANDLED;
12736 if (unlikely(!phba->ha_copy)) {
12737 spin_unlock(&phba->hbalock);
12738 return IRQ_NONE;
12739 } else if (phba->ha_copy & HA_ERATT) {
12740 if (phba->hba_flag & HBA_ERATT_HANDLED)
12741 /* ERATT polling has handled ERATT */
12742 phba->ha_copy &= ~HA_ERATT;
12743 else
12744 /* Indicate interrupt handler handles ERATT */
12745 phba->hba_flag |= HBA_ERATT_HANDLED;
12749 * If there is deferred error attention, do not check for any interrupt.
12751 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12752 spin_unlock(&phba->hbalock);
12753 return IRQ_NONE;
12756 /* Clear attention sources except link and error attentions */
12757 if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
12758 spin_unlock(&phba->hbalock);
12759 return IRQ_HANDLED;
12761 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
12762 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
12763 phba->HCregaddr);
12764 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
12765 writel(hc_copy, phba->HCregaddr);
12766 readl(phba->HAregaddr); /* flush */
12767 spin_unlock(&phba->hbalock);
12770 * Invokes slow-path host attention interrupt handling as appropriate.
12773 /* status of events with mailbox and link attention */
12774 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
12776 /* status of events with ELS ring */
12777 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING)));
12778 status2 >>= (4*LPFC_ELS_RING);
12780 if (status1 || (status2 & HA_RXMASK))
12781 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
12782 else
12783 sp_irq_rc = IRQ_NONE;
12786 * Invoke fast-path host attention interrupt handling as appropriate.
12789 /* status of events with FCP ring */
12790 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12791 status1 >>= (4*LPFC_FCP_RING);
12793 /* status of events with extra ring */
12794 if (phba->cfg_multi_ring_support == 2) {
12795 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12796 status2 >>= (4*LPFC_EXTRA_RING);
12797 } else
12798 status2 = 0;
12800 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
12801 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
12802 else
12803 fp_irq_rc = IRQ_NONE;
12805 /* Return device-level interrupt handling status */
12806 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
12807 } /* lpfc_sli_intr_handler */
12810 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
12811 * @phba: pointer to lpfc hba data structure.
12813 * This routine is invoked by the worker thread to process all the pending
12814 * SLI4 els abort xri events.
12816 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
12818 struct lpfc_cq_event *cq_event;
12820 /* First, declare the els xri abort event has been handled */
12821 spin_lock_irq(&phba->hbalock);
12822 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
12823 spin_unlock_irq(&phba->hbalock);
12824 /* Now, handle all the els xri abort events */
12825 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
12826 /* Get the first event from the head of the event queue */
12827 spin_lock_irq(&phba->hbalock);
12828 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
12829 cq_event, struct lpfc_cq_event, list);
12830 spin_unlock_irq(&phba->hbalock);
12831 /* Notify aborted XRI for ELS work queue */
12832 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
12833 /* Free the event processed back to the free pool */
12834 lpfc_sli4_cq_event_release(phba, cq_event);
12839 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
12840 * @phba: pointer to lpfc hba data structure
12841 * @pIocbIn: pointer to the rspiocbq
12842 * @pIocbOut: pointer to the cmdiocbq
12843 * @wcqe: pointer to the complete wcqe
12845 * This routine transfers the fields of a command iocbq to a response iocbq
12846 * by copying all the IOCB fields from command iocbq and transferring the
12847 * completion status information from the complete wcqe.
12849 static void
12850 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
12851 struct lpfc_iocbq *pIocbIn,
12852 struct lpfc_iocbq *pIocbOut,
12853 struct lpfc_wcqe_complete *wcqe)
12855 int numBdes, i;
12856 unsigned long iflags;
12857 uint32_t status, max_response;
12858 struct lpfc_dmabuf *dmabuf;
12859 struct ulp_bde64 *bpl, bde;
12860 size_t offset = offsetof(struct lpfc_iocbq, iocb);
12862 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
12863 sizeof(struct lpfc_iocbq) - offset);
12864 /* Map WCQE parameters into irspiocb parameters */
12865 status = bf_get(lpfc_wcqe_c_status, wcqe);
12866 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
12867 if (pIocbOut->iocb_flag & LPFC_IO_FCP)
12868 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
12869 pIocbIn->iocb.un.fcpi.fcpi_parm =
12870 pIocbOut->iocb.un.fcpi.fcpi_parm -
12871 wcqe->total_data_placed;
12872 else
12873 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12874 else {
12875 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12876 switch (pIocbOut->iocb.ulpCommand) {
12877 case CMD_ELS_REQUEST64_CR:
12878 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12879 bpl = (struct ulp_bde64 *)dmabuf->virt;
12880 bde.tus.w = le32_to_cpu(bpl[1].tus.w);
12881 max_response = bde.tus.f.bdeSize;
12882 break;
12883 case CMD_GEN_REQUEST64_CR:
12884 max_response = 0;
12885 if (!pIocbOut->context3)
12886 break;
12887 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
12888 sizeof(struct ulp_bde64);
12889 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12890 bpl = (struct ulp_bde64 *)dmabuf->virt;
12891 for (i = 0; i < numBdes; i++) {
12892 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
12893 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
12894 max_response += bde.tus.f.bdeSize;
12896 break;
12897 default:
12898 max_response = wcqe->total_data_placed;
12899 break;
12901 if (max_response < wcqe->total_data_placed)
12902 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
12903 else
12904 pIocbIn->iocb.un.genreq64.bdl.bdeSize =
12905 wcqe->total_data_placed;
12908 /* Convert BG errors for completion status */
12909 if (status == CQE_STATUS_DI_ERROR) {
12910 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
12912 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
12913 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
12914 else
12915 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
12917 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
12918 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
12919 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12920 BGS_GUARD_ERR_MASK;
12921 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
12922 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12923 BGS_APPTAG_ERR_MASK;
12924 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
12925 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12926 BGS_REFTAG_ERR_MASK;
12928 /* Check to see if there was any good data before the error */
12929 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
12930 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12931 BGS_HI_WATER_MARK_PRESENT_MASK;
12932 pIocbIn->iocb.unsli3.sli3_bg.bghm =
12933 wcqe->total_data_placed;
12937 * Set ALL the error bits to indicate we don't know what
12938 * type of error it is.
12940 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
12941 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12942 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
12943 BGS_GUARD_ERR_MASK);
12946 /* Pick up HBA exchange busy condition */
12947 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
12948 spin_lock_irqsave(&phba->hbalock, iflags);
12949 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
12950 spin_unlock_irqrestore(&phba->hbalock, iflags);
12955 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
12956 * @phba: Pointer to HBA context object.
12957 * @wcqe: Pointer to work-queue completion queue entry.
12959 * This routine handles an ELS work-queue completion event and construct
12960 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
12961 * discovery engine to handle.
12963 * Return: Pointer to the receive IOCBQ, NULL otherwise.
12965 static struct lpfc_iocbq *
12966 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
12967 struct lpfc_iocbq *irspiocbq)
12969 struct lpfc_sli_ring *pring;
12970 struct lpfc_iocbq *cmdiocbq;
12971 struct lpfc_wcqe_complete *wcqe;
12972 unsigned long iflags;
12974 pring = lpfc_phba_elsring(phba);
12975 if (unlikely(!pring))
12976 return NULL;
12978 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
12979 spin_lock_irqsave(&pring->ring_lock, iflags);
12980 pring->stats.iocb_event++;
12981 /* Look up the ELS command IOCB and create pseudo response IOCB */
12982 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
12983 bf_get(lpfc_wcqe_c_request_tag, wcqe));
12984 if (unlikely(!cmdiocbq)) {
12985 spin_unlock_irqrestore(&pring->ring_lock, iflags);
12986 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12987 "0386 ELS complete with no corresponding "
12988 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
12989 wcqe->word0, wcqe->total_data_placed,
12990 wcqe->parameter, wcqe->word3);
12991 lpfc_sli_release_iocbq(phba, irspiocbq);
12992 return NULL;
12995 /* Put the iocb back on the txcmplq */
12996 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
12997 spin_unlock_irqrestore(&pring->ring_lock, iflags);
12999 /* Fake the irspiocbq and copy necessary response information */
13000 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
13002 return irspiocbq;
13005 inline struct lpfc_cq_event *
13006 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
13008 struct lpfc_cq_event *cq_event;
13010 /* Allocate a new internal CQ_EVENT entry */
13011 cq_event = lpfc_sli4_cq_event_alloc(phba);
13012 if (!cq_event) {
13013 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13014 "0602 Failed to alloc CQ_EVENT entry\n");
13015 return NULL;
13018 /* Move the CQE into the event */
13019 memcpy(&cq_event->cqe, entry, size);
13020 return cq_event;
13024 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event
13025 * @phba: Pointer to HBA context object.
13026 * @cqe: Pointer to mailbox completion queue entry.
13028 * This routine process a mailbox completion queue entry with asynchrous
13029 * event.
13031 * Return: true if work posted to worker thread, otherwise false.
13033 static bool
13034 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13036 struct lpfc_cq_event *cq_event;
13037 unsigned long iflags;
13039 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13040 "0392 Async Event: word0:x%x, word1:x%x, "
13041 "word2:x%x, word3:x%x\n", mcqe->word0,
13042 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
13044 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
13045 if (!cq_event)
13046 return false;
13047 spin_lock_irqsave(&phba->hbalock, iflags);
13048 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
13049 /* Set the async event flag */
13050 phba->hba_flag |= ASYNC_EVENT;
13051 spin_unlock_irqrestore(&phba->hbalock, iflags);
13053 return true;
13057 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
13058 * @phba: Pointer to HBA context object.
13059 * @cqe: Pointer to mailbox completion queue entry.
13061 * This routine process a mailbox completion queue entry with mailbox
13062 * completion event.
13064 * Return: true if work posted to worker thread, otherwise false.
13066 static bool
13067 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13069 uint32_t mcqe_status;
13070 MAILBOX_t *mbox, *pmbox;
13071 struct lpfc_mqe *mqe;
13072 struct lpfc_vport *vport;
13073 struct lpfc_nodelist *ndlp;
13074 struct lpfc_dmabuf *mp;
13075 unsigned long iflags;
13076 LPFC_MBOXQ_t *pmb;
13077 bool workposted = false;
13078 int rc;
13080 /* If not a mailbox complete MCQE, out by checking mailbox consume */
13081 if (!bf_get(lpfc_trailer_completed, mcqe))
13082 goto out_no_mqe_complete;
13084 /* Get the reference to the active mbox command */
13085 spin_lock_irqsave(&phba->hbalock, iflags);
13086 pmb = phba->sli.mbox_active;
13087 if (unlikely(!pmb)) {
13088 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13089 "1832 No pending MBOX command to handle\n");
13090 spin_unlock_irqrestore(&phba->hbalock, iflags);
13091 goto out_no_mqe_complete;
13093 spin_unlock_irqrestore(&phba->hbalock, iflags);
13094 mqe = &pmb->u.mqe;
13095 pmbox = (MAILBOX_t *)&pmb->u.mqe;
13096 mbox = phba->mbox;
13097 vport = pmb->vport;
13099 /* Reset heartbeat timer */
13100 phba->last_completion_time = jiffies;
13101 del_timer(&phba->sli.mbox_tmo);
13103 /* Move mbox data to caller's mailbox region, do endian swapping */
13104 if (pmb->mbox_cmpl && mbox)
13105 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
13108 * For mcqe errors, conditionally move a modified error code to
13109 * the mbox so that the error will not be missed.
13111 mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
13112 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
13113 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
13114 bf_set(lpfc_mqe_status, mqe,
13115 (LPFC_MBX_ERROR_RANGE | mcqe_status));
13117 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13118 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13119 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
13120 "MBOX dflt rpi: status:x%x rpi:x%x",
13121 mcqe_status,
13122 pmbox->un.varWords[0], 0);
13123 if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
13124 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
13125 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
13126 /* Reg_LOGIN of dflt RPI was successful. Now lets get
13127 * RID of the PPI using the same mbox buffer.
13129 lpfc_unreg_login(phba, vport->vpi,
13130 pmbox->un.varWords[0], pmb);
13131 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
13132 pmb->ctx_buf = mp;
13133 pmb->ctx_ndlp = ndlp;
13134 pmb->vport = vport;
13135 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
13136 if (rc != MBX_BUSY)
13137 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
13138 LOG_SLI, "0385 rc should "
13139 "have been MBX_BUSY\n");
13140 if (rc != MBX_NOT_FINISHED)
13141 goto send_current_mbox;
13144 spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
13145 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
13146 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
13148 /* There is mailbox completion work to do */
13149 spin_lock_irqsave(&phba->hbalock, iflags);
13150 __lpfc_mbox_cmpl_put(phba, pmb);
13151 phba->work_ha |= HA_MBATT;
13152 spin_unlock_irqrestore(&phba->hbalock, iflags);
13153 workposted = true;
13155 send_current_mbox:
13156 spin_lock_irqsave(&phba->hbalock, iflags);
13157 /* Release the mailbox command posting token */
13158 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13159 /* Setting active mailbox pointer need to be in sync to flag clear */
13160 phba->sli.mbox_active = NULL;
13161 spin_unlock_irqrestore(&phba->hbalock, iflags);
13162 /* Wake up worker thread to post the next pending mailbox command */
13163 lpfc_worker_wake_up(phba);
13164 out_no_mqe_complete:
13165 if (bf_get(lpfc_trailer_consumed, mcqe))
13166 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13167 return workposted;
13171 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
13172 * @phba: Pointer to HBA context object.
13173 * @cqe: Pointer to mailbox completion queue entry.
13175 * This routine process a mailbox completion queue entry, it invokes the
13176 * proper mailbox complete handling or asynchrous event handling routine
13177 * according to the MCQE's async bit.
13179 * Return: true if work posted to worker thread, otherwise false.
13181 static bool
13182 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13183 struct lpfc_cqe *cqe)
13185 struct lpfc_mcqe mcqe;
13186 bool workposted;
13188 cq->CQ_mbox++;
13190 /* Copy the mailbox MCQE and convert endian order as needed */
13191 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
13193 /* Invoke the proper event handling routine */
13194 if (!bf_get(lpfc_trailer_async, &mcqe))
13195 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
13196 else
13197 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
13198 return workposted;
13202 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
13203 * @phba: Pointer to HBA context object.
13204 * @cq: Pointer to associated CQ
13205 * @wcqe: Pointer to work-queue completion queue entry.
13207 * This routine handles an ELS work-queue completion event.
13209 * Return: true if work posted to worker thread, otherwise false.
13211 static bool
13212 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13213 struct lpfc_wcqe_complete *wcqe)
13215 struct lpfc_iocbq *irspiocbq;
13216 unsigned long iflags;
13217 struct lpfc_sli_ring *pring = cq->pring;
13218 int txq_cnt = 0;
13219 int txcmplq_cnt = 0;
13220 int fcp_txcmplq_cnt = 0;
13222 /* Check for response status */
13223 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13224 /* Log the error status */
13225 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13226 "0357 ELS CQE error: status=x%x: "
13227 "CQE: %08x %08x %08x %08x\n",
13228 bf_get(lpfc_wcqe_c_status, wcqe),
13229 wcqe->word0, wcqe->total_data_placed,
13230 wcqe->parameter, wcqe->word3);
13233 /* Get an irspiocbq for later ELS response processing use */
13234 irspiocbq = lpfc_sli_get_iocbq(phba);
13235 if (!irspiocbq) {
13236 if (!list_empty(&pring->txq))
13237 txq_cnt++;
13238 if (!list_empty(&pring->txcmplq))
13239 txcmplq_cnt++;
13240 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13241 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
13242 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n",
13243 txq_cnt, phba->iocb_cnt,
13244 fcp_txcmplq_cnt,
13245 txcmplq_cnt);
13246 return false;
13249 /* Save off the slow-path queue event for work thread to process */
13250 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
13251 spin_lock_irqsave(&phba->hbalock, iflags);
13252 list_add_tail(&irspiocbq->cq_event.list,
13253 &phba->sli4_hba.sp_queue_event);
13254 phba->hba_flag |= HBA_SP_QUEUE_EVT;
13255 spin_unlock_irqrestore(&phba->hbalock, iflags);
13257 return true;
13261 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
13262 * @phba: Pointer to HBA context object.
13263 * @wcqe: Pointer to work-queue completion queue entry.
13265 * This routine handles slow-path WQ entry consumed event by invoking the
13266 * proper WQ release routine to the slow-path WQ.
13268 static void
13269 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
13270 struct lpfc_wcqe_release *wcqe)
13272 /* sanity check on queue memory */
13273 if (unlikely(!phba->sli4_hba.els_wq))
13274 return;
13275 /* Check for the slow-path ELS work queue */
13276 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
13277 lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
13278 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13279 else
13280 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13281 "2579 Slow-path wqe consume event carries "
13282 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
13283 bf_get(lpfc_wcqe_r_wqe_index, wcqe),
13284 phba->sli4_hba.els_wq->queue_id);
13288 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
13289 * @phba: Pointer to HBA context object.
13290 * @cq: Pointer to a WQ completion queue.
13291 * @wcqe: Pointer to work-queue completion queue entry.
13293 * This routine handles an XRI abort event.
13295 * Return: true if work posted to worker thread, otherwise false.
13297 static bool
13298 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
13299 struct lpfc_queue *cq,
13300 struct sli4_wcqe_xri_aborted *wcqe)
13302 bool workposted = false;
13303 struct lpfc_cq_event *cq_event;
13304 unsigned long iflags;
13306 switch (cq->subtype) {
13307 case LPFC_FCP:
13308 lpfc_sli4_fcp_xri_aborted(phba, wcqe, cq->hdwq);
13309 workposted = false;
13310 break;
13311 case LPFC_NVME_LS: /* NVME LS uses ELS resources */
13312 case LPFC_ELS:
13313 cq_event = lpfc_cq_event_setup(
13314 phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
13315 if (!cq_event)
13316 return false;
13317 cq_event->hdwq = cq->hdwq;
13318 spin_lock_irqsave(&phba->hbalock, iflags);
13319 list_add_tail(&cq_event->list,
13320 &phba->sli4_hba.sp_els_xri_aborted_work_queue);
13321 /* Set the els xri abort event flag */
13322 phba->hba_flag |= ELS_XRI_ABORT_EVENT;
13323 spin_unlock_irqrestore(&phba->hbalock, iflags);
13324 workposted = true;
13325 break;
13326 case LPFC_NVME:
13327 /* Notify aborted XRI for NVME work queue */
13328 if (phba->nvmet_support)
13329 lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
13330 else
13331 lpfc_sli4_nvme_xri_aborted(phba, wcqe, cq->hdwq);
13333 workposted = false;
13334 break;
13335 default:
13336 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13337 "0603 Invalid CQ subtype %d: "
13338 "%08x %08x %08x %08x\n",
13339 cq->subtype, wcqe->word0, wcqe->parameter,
13340 wcqe->word2, wcqe->word3);
13341 workposted = false;
13342 break;
13344 return workposted;
13347 #define FC_RCTL_MDS_DIAGS 0xF4
13350 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
13351 * @phba: Pointer to HBA context object.
13352 * @rcqe: Pointer to receive-queue completion queue entry.
13354 * This routine process a receive-queue completion queue entry.
13356 * Return: true if work posted to worker thread, otherwise false.
13358 static bool
13359 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
13361 bool workposted = false;
13362 struct fc_frame_header *fc_hdr;
13363 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
13364 struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
13365 struct lpfc_nvmet_tgtport *tgtp;
13366 struct hbq_dmabuf *dma_buf;
13367 uint32_t status, rq_id;
13368 unsigned long iflags;
13370 /* sanity check on queue memory */
13371 if (unlikely(!hrq) || unlikely(!drq))
13372 return workposted;
13374 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13375 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13376 else
13377 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13378 if (rq_id != hrq->queue_id)
13379 goto out;
13381 status = bf_get(lpfc_rcqe_status, rcqe);
13382 switch (status) {
13383 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13384 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13385 "2537 Receive Frame Truncated!!\n");
13386 /* fall through */
13387 case FC_STATUS_RQ_SUCCESS:
13388 spin_lock_irqsave(&phba->hbalock, iflags);
13389 lpfc_sli4_rq_release(hrq, drq);
13390 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
13391 if (!dma_buf) {
13392 hrq->RQ_no_buf_found++;
13393 spin_unlock_irqrestore(&phba->hbalock, iflags);
13394 goto out;
13396 hrq->RQ_rcv_buf++;
13397 hrq->RQ_buf_posted--;
13398 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
13400 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13402 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
13403 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
13404 spin_unlock_irqrestore(&phba->hbalock, iflags);
13405 /* Handle MDS Loopback frames */
13406 lpfc_sli4_handle_mds_loopback(phba->pport, dma_buf);
13407 break;
13410 /* save off the frame for the work thread to process */
13411 list_add_tail(&dma_buf->cq_event.list,
13412 &phba->sli4_hba.sp_queue_event);
13413 /* Frame received */
13414 phba->hba_flag |= HBA_SP_QUEUE_EVT;
13415 spin_unlock_irqrestore(&phba->hbalock, iflags);
13416 workposted = true;
13417 break;
13418 case FC_STATUS_INSUFF_BUF_FRM_DISC:
13419 if (phba->nvmet_support) {
13420 tgtp = phba->targetport->private;
13421 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
13422 "6402 RQE Error x%x, posted %d err_cnt "
13423 "%d: %x %x %x\n",
13424 status, hrq->RQ_buf_posted,
13425 hrq->RQ_no_posted_buf,
13426 atomic_read(&tgtp->rcv_fcp_cmd_in),
13427 atomic_read(&tgtp->rcv_fcp_cmd_out),
13428 atomic_read(&tgtp->xmt_fcp_release));
13430 /* fallthrough */
13432 case FC_STATUS_INSUFF_BUF_NEED_BUF:
13433 hrq->RQ_no_posted_buf++;
13434 /* Post more buffers if possible */
13435 spin_lock_irqsave(&phba->hbalock, iflags);
13436 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
13437 spin_unlock_irqrestore(&phba->hbalock, iflags);
13438 workposted = true;
13439 break;
13441 out:
13442 return workposted;
13446 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
13447 * @phba: Pointer to HBA context object.
13448 * @cq: Pointer to the completion queue.
13449 * @cqe: Pointer to a completion queue entry.
13451 * This routine process a slow-path work-queue or receive queue completion queue
13452 * entry.
13454 * Return: true if work posted to worker thread, otherwise false.
13456 static bool
13457 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13458 struct lpfc_cqe *cqe)
13460 struct lpfc_cqe cqevt;
13461 bool workposted = false;
13463 /* Copy the work queue CQE and convert endian order if needed */
13464 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
13466 /* Check and process for different type of WCQE and dispatch */
13467 switch (bf_get(lpfc_cqe_code, &cqevt)) {
13468 case CQE_CODE_COMPL_WQE:
13469 /* Process the WQ/RQ complete event */
13470 phba->last_completion_time = jiffies;
13471 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
13472 (struct lpfc_wcqe_complete *)&cqevt);
13473 break;
13474 case CQE_CODE_RELEASE_WQE:
13475 /* Process the WQ release event */
13476 lpfc_sli4_sp_handle_rel_wcqe(phba,
13477 (struct lpfc_wcqe_release *)&cqevt);
13478 break;
13479 case CQE_CODE_XRI_ABORTED:
13480 /* Process the WQ XRI abort event */
13481 phba->last_completion_time = jiffies;
13482 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13483 (struct sli4_wcqe_xri_aborted *)&cqevt);
13484 break;
13485 case CQE_CODE_RECEIVE:
13486 case CQE_CODE_RECEIVE_V1:
13487 /* Process the RQ event */
13488 phba->last_completion_time = jiffies;
13489 workposted = lpfc_sli4_sp_handle_rcqe(phba,
13490 (struct lpfc_rcqe *)&cqevt);
13491 break;
13492 default:
13493 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13494 "0388 Not a valid WCQE code: x%x\n",
13495 bf_get(lpfc_cqe_code, &cqevt));
13496 break;
13498 return workposted;
13502 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
13503 * @phba: Pointer to HBA context object.
13504 * @eqe: Pointer to fast-path event queue entry.
13506 * This routine process a event queue entry from the slow-path event queue.
13507 * It will check the MajorCode and MinorCode to determine this is for a
13508 * completion event on a completion queue, if not, an error shall be logged
13509 * and just return. Otherwise, it will get to the corresponding completion
13510 * queue and process all the entries on that completion queue, rearm the
13511 * completion queue, and then return.
13514 static void
13515 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
13516 struct lpfc_queue *speq)
13518 struct lpfc_queue *cq = NULL, *childq;
13519 uint16_t cqid;
13521 /* Get the reference to the corresponding CQ */
13522 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
13524 list_for_each_entry(childq, &speq->child_list, list) {
13525 if (childq->queue_id == cqid) {
13526 cq = childq;
13527 break;
13530 if (unlikely(!cq)) {
13531 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
13532 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13533 "0365 Slow-path CQ identifier "
13534 "(%d) does not exist\n", cqid);
13535 return;
13538 /* Save EQ associated with this CQ */
13539 cq->assoc_qp = speq;
13541 if (!queue_work_on(cq->chann, phba->wq, &cq->spwork))
13542 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13543 "0390 Cannot schedule soft IRQ "
13544 "for CQ eqcqid=%d, cqid=%d on CPU %d\n",
13545 cqid, cq->queue_id, raw_smp_processor_id());
13549 * __lpfc_sli4_process_cq - Process elements of a CQ
13550 * @phba: Pointer to HBA context object.
13551 * @cq: Pointer to CQ to be processed
13552 * @handler: Routine to process each cqe
13553 * @delay: Pointer to usdelay to set in case of rescheduling of the handler
13555 * This routine processes completion queue entries in a CQ. While a valid
13556 * queue element is found, the handler is called. During processing checks
13557 * are made for periodic doorbell writes to let the hardware know of
13558 * element consumption.
13560 * If the max limit on cqes to process is hit, or there are no more valid
13561 * entries, the loop stops. If we processed a sufficient number of elements,
13562 * meaning there is sufficient load, rather than rearming and generating
13563 * another interrupt, a cq rescheduling delay will be set. A delay of 0
13564 * indicates no rescheduling.
13566 * Returns True if work scheduled, False otherwise.
13568 static bool
13569 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
13570 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
13571 struct lpfc_cqe *), unsigned long *delay)
13573 struct lpfc_cqe *cqe;
13574 bool workposted = false;
13575 int count = 0, consumed = 0;
13576 bool arm = true;
13578 /* default - no reschedule */
13579 *delay = 0;
13581 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
13582 goto rearm_and_exit;
13584 /* Process all the entries to the CQ */
13585 cqe = lpfc_sli4_cq_get(cq);
13586 while (cqe) {
13587 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) && defined(BUILD_NVME)
13588 if (phba->ktime_on)
13589 cq->isr_timestamp = ktime_get_ns();
13590 else
13591 cq->isr_timestamp = 0;
13592 #endif
13593 workposted |= handler(phba, cq, cqe);
13594 __lpfc_sli4_consume_cqe(phba, cq, cqe);
13596 consumed++;
13597 if (!(++count % cq->max_proc_limit))
13598 break;
13600 if (!(count % cq->notify_interval)) {
13601 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13602 LPFC_QUEUE_NOARM);
13603 consumed = 0;
13606 cqe = lpfc_sli4_cq_get(cq);
13608 if (count >= phba->cfg_cq_poll_threshold) {
13609 *delay = 1;
13610 arm = false;
13613 /* Track the max number of CQEs processed in 1 EQ */
13614 if (count > cq->CQ_max_cqe)
13615 cq->CQ_max_cqe = count;
13617 cq->assoc_qp->EQ_cqe_cnt += count;
13619 /* Catch the no cq entry condition */
13620 if (unlikely(count == 0))
13621 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13622 "0369 No entry from completion queue "
13623 "qid=%d\n", cq->queue_id);
13625 cq->queue_claimed = 0;
13627 rearm_and_exit:
13628 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13629 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
13631 return workposted;
13635 * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
13636 * @cq: pointer to CQ to process
13638 * This routine calls the cq processing routine with a handler specific
13639 * to the type of queue bound to it.
13641 * The CQ routine returns two values: the first is the calling status,
13642 * which indicates whether work was queued to the background discovery
13643 * thread. If true, the routine should wakeup the discovery thread;
13644 * the second is the delay parameter. If non-zero, rather than rearming
13645 * the CQ and yet another interrupt, the CQ handler should be queued so
13646 * that it is processed in a subsequent polling action. The value of
13647 * the delay indicates when to reschedule it.
13649 static void
13650 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
13652 struct lpfc_hba *phba = cq->phba;
13653 unsigned long delay;
13654 bool workposted = false;
13656 /* Process and rearm the CQ */
13657 switch (cq->type) {
13658 case LPFC_MCQ:
13659 workposted |= __lpfc_sli4_process_cq(phba, cq,
13660 lpfc_sli4_sp_handle_mcqe,
13661 &delay);
13662 break;
13663 case LPFC_WCQ:
13664 if (cq->subtype == LPFC_FCP || cq->subtype == LPFC_NVME)
13665 workposted |= __lpfc_sli4_process_cq(phba, cq,
13666 lpfc_sli4_fp_handle_cqe,
13667 &delay);
13668 else
13669 workposted |= __lpfc_sli4_process_cq(phba, cq,
13670 lpfc_sli4_sp_handle_cqe,
13671 &delay);
13672 break;
13673 default:
13674 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13675 "0370 Invalid completion queue type (%d)\n",
13676 cq->type);
13677 return;
13680 if (delay) {
13681 if (!queue_delayed_work_on(cq->chann, phba->wq,
13682 &cq->sched_spwork, delay))
13683 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13684 "0394 Cannot schedule soft IRQ "
13685 "for cqid=%d on CPU %d\n",
13686 cq->queue_id, cq->chann);
13689 /* wake up worker thread if there are works to be done */
13690 if (workposted)
13691 lpfc_worker_wake_up(phba);
13695 * lpfc_sli4_sp_process_cq - slow-path work handler when started by
13696 * interrupt
13697 * @work: pointer to work element
13699 * translates from the work handler and calls the slow-path handler.
13701 static void
13702 lpfc_sli4_sp_process_cq(struct work_struct *work)
13704 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
13706 __lpfc_sli4_sp_process_cq(cq);
13710 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
13711 * @work: pointer to work element
13713 * translates from the work handler and calls the slow-path handler.
13715 static void
13716 lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
13718 struct lpfc_queue *cq = container_of(to_delayed_work(work),
13719 struct lpfc_queue, sched_spwork);
13721 __lpfc_sli4_sp_process_cq(cq);
13725 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
13726 * @phba: Pointer to HBA context object.
13727 * @cq: Pointer to associated CQ
13728 * @wcqe: Pointer to work-queue completion queue entry.
13730 * This routine process a fast-path work queue completion entry from fast-path
13731 * event queue for FCP command response completion.
13733 static void
13734 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13735 struct lpfc_wcqe_complete *wcqe)
13737 struct lpfc_sli_ring *pring = cq->pring;
13738 struct lpfc_iocbq *cmdiocbq;
13739 struct lpfc_iocbq irspiocbq;
13740 unsigned long iflags;
13742 /* Check for response status */
13743 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13744 /* If resource errors reported from HBA, reduce queue
13745 * depth of the SCSI device.
13747 if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
13748 IOSTAT_LOCAL_REJECT)) &&
13749 ((wcqe->parameter & IOERR_PARAM_MASK) ==
13750 IOERR_NO_RESOURCES))
13751 phba->lpfc_rampdown_queue_depth(phba);
13753 /* Log the error status */
13754 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13755 "0373 FCP CQE error: status=x%x: "
13756 "CQE: %08x %08x %08x %08x\n",
13757 bf_get(lpfc_wcqe_c_status, wcqe),
13758 wcqe->word0, wcqe->total_data_placed,
13759 wcqe->parameter, wcqe->word3);
13762 /* Look up the FCP command IOCB and create pseudo response IOCB */
13763 spin_lock_irqsave(&pring->ring_lock, iflags);
13764 pring->stats.iocb_event++;
13765 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13766 bf_get(lpfc_wcqe_c_request_tag, wcqe));
13767 spin_unlock_irqrestore(&pring->ring_lock, iflags);
13768 if (unlikely(!cmdiocbq)) {
13769 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13770 "0374 FCP complete with no corresponding "
13771 "cmdiocb: iotag (%d)\n",
13772 bf_get(lpfc_wcqe_c_request_tag, wcqe));
13773 return;
13775 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
13776 cmdiocbq->isr_timestamp = cq->isr_timestamp;
13777 #endif
13778 if (cmdiocbq->iocb_cmpl == NULL) {
13779 if (cmdiocbq->wqe_cmpl) {
13780 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13781 spin_lock_irqsave(&phba->hbalock, iflags);
13782 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13783 spin_unlock_irqrestore(&phba->hbalock, iflags);
13786 /* Pass the cmd_iocb and the wcqe to the upper layer */
13787 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
13788 return;
13790 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13791 "0375 FCP cmdiocb not callback function "
13792 "iotag: (%d)\n",
13793 bf_get(lpfc_wcqe_c_request_tag, wcqe));
13794 return;
13797 /* Fake the irspiocb and copy necessary response information */
13798 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
13800 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13801 spin_lock_irqsave(&phba->hbalock, iflags);
13802 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13803 spin_unlock_irqrestore(&phba->hbalock, iflags);
13806 /* Pass the cmd_iocb and the rsp state to the upper layer */
13807 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
13811 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
13812 * @phba: Pointer to HBA context object.
13813 * @cq: Pointer to completion queue.
13814 * @wcqe: Pointer to work-queue completion queue entry.
13816 * This routine handles an fast-path WQ entry consumed event by invoking the
13817 * proper WQ release routine to the slow-path WQ.
13819 static void
13820 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13821 struct lpfc_wcqe_release *wcqe)
13823 struct lpfc_queue *childwq;
13824 bool wqid_matched = false;
13825 uint16_t hba_wqid;
13827 /* Check for fast-path FCP work queue release */
13828 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
13829 list_for_each_entry(childwq, &cq->child_list, list) {
13830 if (childwq->queue_id == hba_wqid) {
13831 lpfc_sli4_wq_release(childwq,
13832 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13833 if (childwq->q_flag & HBA_NVMET_WQFULL)
13834 lpfc_nvmet_wqfull_process(phba, childwq);
13835 wqid_matched = true;
13836 break;
13839 /* Report warning log message if no match found */
13840 if (wqid_matched != true)
13841 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13842 "2580 Fast-path wqe consume event carries "
13843 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
13847 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
13848 * @phba: Pointer to HBA context object.
13849 * @rcqe: Pointer to receive-queue completion queue entry.
13851 * This routine process a receive-queue completion queue entry.
13853 * Return: true if work posted to worker thread, otherwise false.
13855 static bool
13856 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13857 struct lpfc_rcqe *rcqe)
13859 bool workposted = false;
13860 struct lpfc_queue *hrq;
13861 struct lpfc_queue *drq;
13862 struct rqb_dmabuf *dma_buf;
13863 struct fc_frame_header *fc_hdr;
13864 struct lpfc_nvmet_tgtport *tgtp;
13865 uint32_t status, rq_id;
13866 unsigned long iflags;
13867 uint32_t fctl, idx;
13869 if ((phba->nvmet_support == 0) ||
13870 (phba->sli4_hba.nvmet_cqset == NULL))
13871 return workposted;
13873 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
13874 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
13875 drq = phba->sli4_hba.nvmet_mrq_data[idx];
13877 /* sanity check on queue memory */
13878 if (unlikely(!hrq) || unlikely(!drq))
13879 return workposted;
13881 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13882 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13883 else
13884 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13886 if ((phba->nvmet_support == 0) ||
13887 (rq_id != hrq->queue_id))
13888 return workposted;
13890 status = bf_get(lpfc_rcqe_status, rcqe);
13891 switch (status) {
13892 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13893 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13894 "6126 Receive Frame Truncated!!\n");
13895 /* fall through */
13896 case FC_STATUS_RQ_SUCCESS:
13897 spin_lock_irqsave(&phba->hbalock, iflags);
13898 lpfc_sli4_rq_release(hrq, drq);
13899 dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
13900 if (!dma_buf) {
13901 hrq->RQ_no_buf_found++;
13902 spin_unlock_irqrestore(&phba->hbalock, iflags);
13903 goto out;
13905 spin_unlock_irqrestore(&phba->hbalock, iflags);
13906 hrq->RQ_rcv_buf++;
13907 hrq->RQ_buf_posted--;
13908 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13910 /* Just some basic sanity checks on FCP Command frame */
13911 fctl = (fc_hdr->fh_f_ctl[0] << 16 |
13912 fc_hdr->fh_f_ctl[1] << 8 |
13913 fc_hdr->fh_f_ctl[2]);
13914 if (((fctl &
13915 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
13916 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
13917 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
13918 goto drop;
13920 if (fc_hdr->fh_type == FC_TYPE_FCP) {
13921 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
13922 lpfc_nvmet_unsol_fcp_event(
13923 phba, idx, dma_buf,
13924 cq->isr_timestamp);
13925 return false;
13927 drop:
13928 lpfc_rq_buf_free(phba, &dma_buf->hbuf);
13929 break;
13930 case FC_STATUS_INSUFF_BUF_FRM_DISC:
13931 if (phba->nvmet_support) {
13932 tgtp = phba->targetport->private;
13933 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
13934 "6401 RQE Error x%x, posted %d err_cnt "
13935 "%d: %x %x %x\n",
13936 status, hrq->RQ_buf_posted,
13937 hrq->RQ_no_posted_buf,
13938 atomic_read(&tgtp->rcv_fcp_cmd_in),
13939 atomic_read(&tgtp->rcv_fcp_cmd_out),
13940 atomic_read(&tgtp->xmt_fcp_release));
13942 /* fallthrough */
13944 case FC_STATUS_INSUFF_BUF_NEED_BUF:
13945 hrq->RQ_no_posted_buf++;
13946 /* Post more buffers if possible */
13947 break;
13949 out:
13950 return workposted;
13954 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
13955 * @phba: adapter with cq
13956 * @cq: Pointer to the completion queue.
13957 * @eqe: Pointer to fast-path completion queue entry.
13959 * This routine process a fast-path work queue completion entry from fast-path
13960 * event queue for FCP command response completion.
13962 * Return: true if work posted to worker thread, otherwise false.
13964 static bool
13965 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13966 struct lpfc_cqe *cqe)
13968 struct lpfc_wcqe_release wcqe;
13969 bool workposted = false;
13971 /* Copy the work queue CQE and convert endian order if needed */
13972 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
13974 /* Check and process for different type of WCQE and dispatch */
13975 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
13976 case CQE_CODE_COMPL_WQE:
13977 case CQE_CODE_NVME_ERSP:
13978 cq->CQ_wq++;
13979 /* Process the WQ complete event */
13980 phba->last_completion_time = jiffies;
13981 if ((cq->subtype == LPFC_FCP) || (cq->subtype == LPFC_NVME))
13982 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
13983 (struct lpfc_wcqe_complete *)&wcqe);
13984 if (cq->subtype == LPFC_NVME_LS)
13985 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
13986 (struct lpfc_wcqe_complete *)&wcqe);
13987 break;
13988 case CQE_CODE_RELEASE_WQE:
13989 cq->CQ_release_wqe++;
13990 /* Process the WQ release event */
13991 lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
13992 (struct lpfc_wcqe_release *)&wcqe);
13993 break;
13994 case CQE_CODE_XRI_ABORTED:
13995 cq->CQ_xri_aborted++;
13996 /* Process the WQ XRI abort event */
13997 phba->last_completion_time = jiffies;
13998 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13999 (struct sli4_wcqe_xri_aborted *)&wcqe);
14000 break;
14001 case CQE_CODE_RECEIVE_V1:
14002 case CQE_CODE_RECEIVE:
14003 phba->last_completion_time = jiffies;
14004 if (cq->subtype == LPFC_NVMET) {
14005 workposted = lpfc_sli4_nvmet_handle_rcqe(
14006 phba, cq, (struct lpfc_rcqe *)&wcqe);
14008 break;
14009 default:
14010 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14011 "0144 Not a valid CQE code: x%x\n",
14012 bf_get(lpfc_wcqe_c_code, &wcqe));
14013 break;
14015 return workposted;
14019 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
14020 * @phba: Pointer to HBA context object.
14021 * @eqe: Pointer to fast-path event queue entry.
14023 * This routine process a event queue entry from the fast-path event queue.
14024 * It will check the MajorCode and MinorCode to determine this is for a
14025 * completion event on a completion queue, if not, an error shall be logged
14026 * and just return. Otherwise, it will get to the corresponding completion
14027 * queue and process all the entries on the completion queue, rearm the
14028 * completion queue, and then return.
14030 static void
14031 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
14032 struct lpfc_eqe *eqe)
14034 struct lpfc_queue *cq = NULL;
14035 uint32_t qidx = eq->hdwq;
14036 uint16_t cqid, id;
14038 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
14039 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14040 "0366 Not a valid completion "
14041 "event: majorcode=x%x, minorcode=x%x\n",
14042 bf_get_le32(lpfc_eqe_major_code, eqe),
14043 bf_get_le32(lpfc_eqe_minor_code, eqe));
14044 return;
14047 /* Get the reference to the corresponding CQ */
14048 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14050 /* Use the fast lookup method first */
14051 if (cqid <= phba->sli4_hba.cq_max) {
14052 cq = phba->sli4_hba.cq_lookup[cqid];
14053 if (cq)
14054 goto work_cq;
14057 /* Next check for NVMET completion */
14058 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
14059 id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
14060 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
14061 /* Process NVMET unsol rcv */
14062 cq = phba->sli4_hba.nvmet_cqset[cqid - id];
14063 goto process_cq;
14067 if (phba->sli4_hba.nvmels_cq &&
14068 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
14069 /* Process NVME unsol rcv */
14070 cq = phba->sli4_hba.nvmels_cq;
14073 /* Otherwise this is a Slow path event */
14074 if (cq == NULL) {
14075 lpfc_sli4_sp_handle_eqe(phba, eqe,
14076 phba->sli4_hba.hdwq[qidx].hba_eq);
14077 return;
14080 process_cq:
14081 if (unlikely(cqid != cq->queue_id)) {
14082 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14083 "0368 Miss-matched fast-path completion "
14084 "queue identifier: eqcqid=%d, fcpcqid=%d\n",
14085 cqid, cq->queue_id);
14086 return;
14089 work_cq:
14090 if (!queue_work_on(cq->chann, phba->wq, &cq->irqwork))
14091 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14092 "0363 Cannot schedule soft IRQ "
14093 "for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14094 cqid, cq->queue_id, raw_smp_processor_id());
14098 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
14099 * @cq: Pointer to CQ to be processed
14101 * This routine calls the cq processing routine with the handler for
14102 * fast path CQEs.
14104 * The CQ routine returns two values: the first is the calling status,
14105 * which indicates whether work was queued to the background discovery
14106 * thread. If true, the routine should wakeup the discovery thread;
14107 * the second is the delay parameter. If non-zero, rather than rearming
14108 * the CQ and yet another interrupt, the CQ handler should be queued so
14109 * that it is processed in a subsequent polling action. The value of
14110 * the delay indicates when to reschedule it.
14112 static void
14113 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq)
14115 struct lpfc_hba *phba = cq->phba;
14116 unsigned long delay;
14117 bool workposted = false;
14119 /* process and rearm the CQ */
14120 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
14121 &delay);
14123 if (delay) {
14124 if (!queue_delayed_work_on(cq->chann, phba->wq,
14125 &cq->sched_irqwork, delay))
14126 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14127 "0367 Cannot schedule soft IRQ "
14128 "for cqid=%d on CPU %d\n",
14129 cq->queue_id, cq->chann);
14132 /* wake up worker thread if there are works to be done */
14133 if (workposted)
14134 lpfc_worker_wake_up(phba);
14138 * lpfc_sli4_hba_process_cq - fast-path work handler when started by
14139 * interrupt
14140 * @work: pointer to work element
14142 * translates from the work handler and calls the fast-path handler.
14144 static void
14145 lpfc_sli4_hba_process_cq(struct work_struct *work)
14147 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
14149 __lpfc_sli4_hba_process_cq(cq);
14153 * lpfc_sli4_hba_process_cq - fast-path work handler when started by timer
14154 * @work: pointer to work element
14156 * translates from the work handler and calls the fast-path handler.
14158 static void
14159 lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
14161 struct lpfc_queue *cq = container_of(to_delayed_work(work),
14162 struct lpfc_queue, sched_irqwork);
14164 __lpfc_sli4_hba_process_cq(cq);
14168 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
14169 * @irq: Interrupt number.
14170 * @dev_id: The device context pointer.
14172 * This function is directly called from the PCI layer as an interrupt
14173 * service routine when device with SLI-4 interface spec is enabled with
14174 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
14175 * ring event in the HBA. However, when the device is enabled with either
14176 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
14177 * device-level interrupt handler. When the PCI slot is in error recovery
14178 * or the HBA is undergoing initialization, the interrupt handler will not
14179 * process the interrupt. The SCSI FCP fast-path ring event are handled in
14180 * the intrrupt context. This function is called without any lock held.
14181 * It gets the hbalock to access and update SLI data structures. Note that,
14182 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
14183 * equal to that of FCP CQ index.
14185 * The link attention and ELS ring attention events are handled
14186 * by the worker thread. The interrupt handler signals the worker thread
14187 * and returns for these events. This function is called without any lock
14188 * held. It gets the hbalock to access and update SLI data structures.
14190 * This function returns IRQ_HANDLED when interrupt is handled else it
14191 * returns IRQ_NONE.
14193 irqreturn_t
14194 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
14196 struct lpfc_hba *phba;
14197 struct lpfc_hba_eq_hdl *hba_eq_hdl;
14198 struct lpfc_queue *fpeq;
14199 unsigned long iflag;
14200 int ecount = 0;
14201 int hba_eqidx;
14202 struct lpfc_eq_intr_info *eqi;
14203 uint32_t icnt;
14205 /* Get the driver's phba structure from the dev_id */
14206 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
14207 phba = hba_eq_hdl->phba;
14208 hba_eqidx = hba_eq_hdl->idx;
14210 if (unlikely(!phba))
14211 return IRQ_NONE;
14212 if (unlikely(!phba->sli4_hba.hdwq))
14213 return IRQ_NONE;
14215 /* Get to the EQ struct associated with this vector */
14216 fpeq = phba->sli4_hba.hdwq[hba_eqidx].hba_eq;
14217 if (unlikely(!fpeq))
14218 return IRQ_NONE;
14220 /* Check device state for handling interrupt */
14221 if (unlikely(lpfc_intr_state_check(phba))) {
14222 /* Check again for link_state with lock held */
14223 spin_lock_irqsave(&phba->hbalock, iflag);
14224 if (phba->link_state < LPFC_LINK_DOWN)
14225 /* Flush, clear interrupt, and rearm the EQ */
14226 lpfc_sli4_eq_flush(phba, fpeq);
14227 spin_unlock_irqrestore(&phba->hbalock, iflag);
14228 return IRQ_NONE;
14231 eqi = phba->sli4_hba.eq_info;
14232 icnt = this_cpu_inc_return(eqi->icnt);
14233 fpeq->last_cpu = raw_smp_processor_id();
14235 if (icnt > LPFC_EQD_ISR_TRIGGER &&
14236 phba->cfg_irq_chann == 1 &&
14237 phba->cfg_auto_imax &&
14238 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
14239 phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
14240 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
14242 /* process and rearm the EQ */
14243 ecount = lpfc_sli4_process_eq(phba, fpeq);
14245 if (unlikely(ecount == 0)) {
14246 fpeq->EQ_no_entry++;
14247 if (phba->intr_type == MSIX)
14248 /* MSI-X treated interrupt served as no EQ share INT */
14249 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14250 "0358 MSI-X interrupt with no EQE\n");
14251 else
14252 /* Non MSI-X treated on interrupt as EQ share INT */
14253 return IRQ_NONE;
14256 return IRQ_HANDLED;
14257 } /* lpfc_sli4_fp_intr_handler */
14260 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
14261 * @irq: Interrupt number.
14262 * @dev_id: The device context pointer.
14264 * This function is the device-level interrupt handler to device with SLI-4
14265 * interface spec, called from the PCI layer when either MSI or Pin-IRQ
14266 * interrupt mode is enabled and there is an event in the HBA which requires
14267 * driver attention. This function invokes the slow-path interrupt attention
14268 * handling function and fast-path interrupt attention handling function in
14269 * turn to process the relevant HBA attention events. This function is called
14270 * without any lock held. It gets the hbalock to access and update SLI data
14271 * structures.
14273 * This function returns IRQ_HANDLED when interrupt is handled, else it
14274 * returns IRQ_NONE.
14276 irqreturn_t
14277 lpfc_sli4_intr_handler(int irq, void *dev_id)
14279 struct lpfc_hba *phba;
14280 irqreturn_t hba_irq_rc;
14281 bool hba_handled = false;
14282 int qidx;
14284 /* Get the driver's phba structure from the dev_id */
14285 phba = (struct lpfc_hba *)dev_id;
14287 if (unlikely(!phba))
14288 return IRQ_NONE;
14291 * Invoke fast-path host attention interrupt handling as appropriate.
14293 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
14294 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
14295 &phba->sli4_hba.hba_eq_hdl[qidx]);
14296 if (hba_irq_rc == IRQ_HANDLED)
14297 hba_handled |= true;
14300 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
14301 } /* lpfc_sli4_intr_handler */
14304 * lpfc_sli4_queue_free - free a queue structure and associated memory
14305 * @queue: The queue structure to free.
14307 * This function frees a queue structure and the DMAable memory used for
14308 * the host resident queue. This function must be called after destroying the
14309 * queue on the HBA.
14311 void
14312 lpfc_sli4_queue_free(struct lpfc_queue *queue)
14314 struct lpfc_dmabuf *dmabuf;
14316 if (!queue)
14317 return;
14319 if (!list_empty(&queue->wq_list))
14320 list_del(&queue->wq_list);
14322 while (!list_empty(&queue->page_list)) {
14323 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
14324 list);
14325 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
14326 dmabuf->virt, dmabuf->phys);
14327 kfree(dmabuf);
14329 if (queue->rqbp) {
14330 lpfc_free_rq_buffer(queue->phba, queue);
14331 kfree(queue->rqbp);
14334 if (!list_empty(&queue->cpu_list))
14335 list_del(&queue->cpu_list);
14337 kfree(queue);
14338 return;
14342 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
14343 * @phba: The HBA that this queue is being created on.
14344 * @page_size: The size of a queue page
14345 * @entry_size: The size of each queue entry for this queue.
14346 * @entry count: The number of entries that this queue will handle.
14347 * @cpu: The cpu that will primarily utilize this queue.
14349 * This function allocates a queue structure and the DMAable memory used for
14350 * the host resident queue. This function must be called before creating the
14351 * queue on the HBA.
14353 struct lpfc_queue *
14354 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
14355 uint32_t entry_size, uint32_t entry_count, int cpu)
14357 struct lpfc_queue *queue;
14358 struct lpfc_dmabuf *dmabuf;
14359 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14360 uint16_t x, pgcnt;
14362 if (!phba->sli4_hba.pc_sli4_params.supported)
14363 hw_page_size = page_size;
14365 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
14367 /* If needed, Adjust page count to match the max the adapter supports */
14368 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
14369 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
14371 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
14372 GFP_KERNEL, cpu_to_node(cpu));
14373 if (!queue)
14374 return NULL;
14376 INIT_LIST_HEAD(&queue->list);
14377 INIT_LIST_HEAD(&queue->wq_list);
14378 INIT_LIST_HEAD(&queue->wqfull_list);
14379 INIT_LIST_HEAD(&queue->page_list);
14380 INIT_LIST_HEAD(&queue->child_list);
14381 INIT_LIST_HEAD(&queue->cpu_list);
14383 /* Set queue parameters now. If the system cannot provide memory
14384 * resources, the free routine needs to know what was allocated.
14386 queue->page_count = pgcnt;
14387 queue->q_pgs = (void **)&queue[1];
14388 queue->entry_cnt_per_pg = hw_page_size / entry_size;
14389 queue->entry_size = entry_size;
14390 queue->entry_count = entry_count;
14391 queue->page_size = hw_page_size;
14392 queue->phba = phba;
14394 for (x = 0; x < queue->page_count; x++) {
14395 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
14396 dev_to_node(&phba->pcidev->dev));
14397 if (!dmabuf)
14398 goto out_fail;
14399 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14400 hw_page_size, &dmabuf->phys,
14401 GFP_KERNEL);
14402 if (!dmabuf->virt) {
14403 kfree(dmabuf);
14404 goto out_fail;
14406 dmabuf->buffer_tag = x;
14407 list_add_tail(&dmabuf->list, &queue->page_list);
14408 /* use lpfc_sli4_qe to index a paritcular entry in this page */
14409 queue->q_pgs[x] = dmabuf->virt;
14411 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
14412 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
14413 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
14414 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
14416 /* notify_interval will be set during q creation */
14418 return queue;
14419 out_fail:
14420 lpfc_sli4_queue_free(queue);
14421 return NULL;
14425 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
14426 * @phba: HBA structure that indicates port to create a queue on.
14427 * @pci_barset: PCI BAR set flag.
14429 * This function shall perform iomap of the specified PCI BAR address to host
14430 * memory address if not already done so and return it. The returned host
14431 * memory address can be NULL.
14433 static void __iomem *
14434 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
14436 if (!phba->pcidev)
14437 return NULL;
14439 switch (pci_barset) {
14440 case WQ_PCI_BAR_0_AND_1:
14441 return phba->pci_bar0_memmap_p;
14442 case WQ_PCI_BAR_2_AND_3:
14443 return phba->pci_bar2_memmap_p;
14444 case WQ_PCI_BAR_4_AND_5:
14445 return phba->pci_bar4_memmap_p;
14446 default:
14447 break;
14449 return NULL;
14453 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
14454 * @phba: HBA structure that EQs are on.
14455 * @startq: The starting EQ index to modify
14456 * @numq: The number of EQs (consecutive indexes) to modify
14457 * @usdelay: amount of delay
14459 * This function revises the EQ delay on 1 or more EQs. The EQ delay
14460 * is set either by writing to a register (if supported by the SLI Port)
14461 * or by mailbox command. The mailbox command allows several EQs to be
14462 * updated at once.
14464 * The @phba struct is used to send a mailbox command to HBA. The @startq
14465 * is used to get the starting EQ index to change. The @numq value is
14466 * used to specify how many consecutive EQ indexes, starting at EQ index,
14467 * are to be changed. This function is asynchronous and will wait for any
14468 * mailbox commands to finish before returning.
14470 * On success this function will return a zero. If unable to allocate
14471 * enough memory this function will return -ENOMEM. If a mailbox command
14472 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
14473 * have had their delay multipler changed.
14475 void
14476 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
14477 uint32_t numq, uint32_t usdelay)
14479 struct lpfc_mbx_modify_eq_delay *eq_delay;
14480 LPFC_MBOXQ_t *mbox;
14481 struct lpfc_queue *eq;
14482 int cnt = 0, rc, length;
14483 uint32_t shdr_status, shdr_add_status;
14484 uint32_t dmult;
14485 int qidx;
14486 union lpfc_sli4_cfg_shdr *shdr;
14488 if (startq >= phba->cfg_irq_chann)
14489 return;
14491 if (usdelay > 0xFFFF) {
14492 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
14493 "6429 usdelay %d too large. Scaled down to "
14494 "0xFFFF.\n", usdelay);
14495 usdelay = 0xFFFF;
14498 /* set values by EQ_DELAY register if supported */
14499 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
14500 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
14501 eq = phba->sli4_hba.hdwq[qidx].hba_eq;
14502 if (!eq)
14503 continue;
14505 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
14507 if (++cnt >= numq)
14508 break;
14511 return;
14514 /* Otherwise, set values by mailbox cmd */
14516 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14517 if (!mbox) {
14518 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_FCP | LOG_NVME,
14519 "6428 Failed allocating mailbox cmd buffer."
14520 " EQ delay was not set.\n");
14521 return;
14523 length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
14524 sizeof(struct lpfc_sli4_cfg_mhdr));
14525 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14526 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
14527 length, LPFC_SLI4_MBX_EMBED);
14528 eq_delay = &mbox->u.mqe.un.eq_delay;
14530 /* Calculate delay multiper from maximum interrupt per second */
14531 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
14532 if (dmult)
14533 dmult--;
14534 if (dmult > LPFC_DMULT_MAX)
14535 dmult = LPFC_DMULT_MAX;
14537 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
14538 eq = phba->sli4_hba.hdwq[qidx].hba_eq;
14539 if (!eq)
14540 continue;
14541 eq->q_mode = usdelay;
14542 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
14543 eq_delay->u.request.eq[cnt].phase = 0;
14544 eq_delay->u.request.eq[cnt].delay_multi = dmult;
14546 if (++cnt >= numq)
14547 break;
14549 eq_delay->u.request.num_eq = cnt;
14551 mbox->vport = phba->pport;
14552 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14553 mbox->ctx_buf = NULL;
14554 mbox->ctx_ndlp = NULL;
14555 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14556 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
14557 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14558 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14559 if (shdr_status || shdr_add_status || rc) {
14560 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14561 "2512 MODIFY_EQ_DELAY mailbox failed with "
14562 "status x%x add_status x%x, mbx status x%x\n",
14563 shdr_status, shdr_add_status, rc);
14565 mempool_free(mbox, phba->mbox_mem_pool);
14566 return;
14570 * lpfc_eq_create - Create an Event Queue on the HBA
14571 * @phba: HBA structure that indicates port to create a queue on.
14572 * @eq: The queue structure to use to create the event queue.
14573 * @imax: The maximum interrupt per second limit.
14575 * This function creates an event queue, as detailed in @eq, on a port,
14576 * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
14578 * The @phba struct is used to send mailbox command to HBA. The @eq struct
14579 * is used to get the entry count and entry size that are necessary to
14580 * determine the number of pages to allocate and use for this queue. This
14581 * function will send the EQ_CREATE mailbox command to the HBA to setup the
14582 * event queue. This function is asynchronous and will wait for the mailbox
14583 * command to finish before continuing.
14585 * On success this function will return a zero. If unable to allocate enough
14586 * memory this function will return -ENOMEM. If the queue create mailbox command
14587 * fails this function will return -ENXIO.
14590 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
14592 struct lpfc_mbx_eq_create *eq_create;
14593 LPFC_MBOXQ_t *mbox;
14594 int rc, length, status = 0;
14595 struct lpfc_dmabuf *dmabuf;
14596 uint32_t shdr_status, shdr_add_status;
14597 union lpfc_sli4_cfg_shdr *shdr;
14598 uint16_t dmult;
14599 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14601 /* sanity check on queue memory */
14602 if (!eq)
14603 return -ENODEV;
14604 if (!phba->sli4_hba.pc_sli4_params.supported)
14605 hw_page_size = SLI4_PAGE_SIZE;
14607 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14608 if (!mbox)
14609 return -ENOMEM;
14610 length = (sizeof(struct lpfc_mbx_eq_create) -
14611 sizeof(struct lpfc_sli4_cfg_mhdr));
14612 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14613 LPFC_MBOX_OPCODE_EQ_CREATE,
14614 length, LPFC_SLI4_MBX_EMBED);
14615 eq_create = &mbox->u.mqe.un.eq_create;
14616 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
14617 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
14618 eq->page_count);
14619 bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
14620 LPFC_EQE_SIZE);
14621 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
14623 /* Use version 2 of CREATE_EQ if eqav is set */
14624 if (phba->sli4_hba.pc_sli4_params.eqav) {
14625 bf_set(lpfc_mbox_hdr_version, &shdr->request,
14626 LPFC_Q_CREATE_VERSION_2);
14627 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
14628 phba->sli4_hba.pc_sli4_params.eqav);
14631 /* don't setup delay multiplier using EQ_CREATE */
14632 dmult = 0;
14633 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
14634 dmult);
14635 switch (eq->entry_count) {
14636 default:
14637 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14638 "0360 Unsupported EQ count. (%d)\n",
14639 eq->entry_count);
14640 if (eq->entry_count < 256)
14641 return -EINVAL;
14642 /* fall through - otherwise default to smallest count */
14643 case 256:
14644 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14645 LPFC_EQ_CNT_256);
14646 break;
14647 case 512:
14648 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14649 LPFC_EQ_CNT_512);
14650 break;
14651 case 1024:
14652 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14653 LPFC_EQ_CNT_1024);
14654 break;
14655 case 2048:
14656 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14657 LPFC_EQ_CNT_2048);
14658 break;
14659 case 4096:
14660 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14661 LPFC_EQ_CNT_4096);
14662 break;
14664 list_for_each_entry(dmabuf, &eq->page_list, list) {
14665 memset(dmabuf->virt, 0, hw_page_size);
14666 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14667 putPaddrLow(dmabuf->phys);
14668 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14669 putPaddrHigh(dmabuf->phys);
14671 mbox->vport = phba->pport;
14672 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14673 mbox->ctx_buf = NULL;
14674 mbox->ctx_ndlp = NULL;
14675 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14676 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14677 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14678 if (shdr_status || shdr_add_status || rc) {
14679 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14680 "2500 EQ_CREATE mailbox failed with "
14681 "status x%x add_status x%x, mbx status x%x\n",
14682 shdr_status, shdr_add_status, rc);
14683 status = -ENXIO;
14685 eq->type = LPFC_EQ;
14686 eq->subtype = LPFC_NONE;
14687 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
14688 if (eq->queue_id == 0xFFFF)
14689 status = -ENXIO;
14690 eq->host_index = 0;
14691 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
14692 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
14694 mempool_free(mbox, phba->mbox_mem_pool);
14695 return status;
14699 * lpfc_cq_create - Create a Completion Queue on the HBA
14700 * @phba: HBA structure that indicates port to create a queue on.
14701 * @cq: The queue structure to use to create the completion queue.
14702 * @eq: The event queue to bind this completion queue to.
14704 * This function creates a completion queue, as detailed in @wq, on a port,
14705 * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
14707 * The @phba struct is used to send mailbox command to HBA. The @cq struct
14708 * is used to get the entry count and entry size that are necessary to
14709 * determine the number of pages to allocate and use for this queue. The @eq
14710 * is used to indicate which event queue to bind this completion queue to. This
14711 * function will send the CQ_CREATE mailbox command to the HBA to setup the
14712 * completion queue. This function is asynchronous and will wait for the mailbox
14713 * command to finish before continuing.
14715 * On success this function will return a zero. If unable to allocate enough
14716 * memory this function will return -ENOMEM. If the queue create mailbox command
14717 * fails this function will return -ENXIO.
14720 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
14721 struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
14723 struct lpfc_mbx_cq_create *cq_create;
14724 struct lpfc_dmabuf *dmabuf;
14725 LPFC_MBOXQ_t *mbox;
14726 int rc, length, status = 0;
14727 uint32_t shdr_status, shdr_add_status;
14728 union lpfc_sli4_cfg_shdr *shdr;
14730 /* sanity check on queue memory */
14731 if (!cq || !eq)
14732 return -ENODEV;
14734 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14735 if (!mbox)
14736 return -ENOMEM;
14737 length = (sizeof(struct lpfc_mbx_cq_create) -
14738 sizeof(struct lpfc_sli4_cfg_mhdr));
14739 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14740 LPFC_MBOX_OPCODE_CQ_CREATE,
14741 length, LPFC_SLI4_MBX_EMBED);
14742 cq_create = &mbox->u.mqe.un.cq_create;
14743 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
14744 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
14745 cq->page_count);
14746 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
14747 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
14748 bf_set(lpfc_mbox_hdr_version, &shdr->request,
14749 phba->sli4_hba.pc_sli4_params.cqv);
14750 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
14751 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
14752 (cq->page_size / SLI4_PAGE_SIZE));
14753 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
14754 eq->queue_id);
14755 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
14756 phba->sli4_hba.pc_sli4_params.cqav);
14757 } else {
14758 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
14759 eq->queue_id);
14761 switch (cq->entry_count) {
14762 case 2048:
14763 case 4096:
14764 if (phba->sli4_hba.pc_sli4_params.cqv ==
14765 LPFC_Q_CREATE_VERSION_2) {
14766 cq_create->u.request.context.lpfc_cq_context_count =
14767 cq->entry_count;
14768 bf_set(lpfc_cq_context_count,
14769 &cq_create->u.request.context,
14770 LPFC_CQ_CNT_WORD7);
14771 break;
14773 /* fall through */
14774 default:
14775 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14776 "0361 Unsupported CQ count: "
14777 "entry cnt %d sz %d pg cnt %d\n",
14778 cq->entry_count, cq->entry_size,
14779 cq->page_count);
14780 if (cq->entry_count < 256) {
14781 status = -EINVAL;
14782 goto out;
14784 /* fall through - otherwise default to smallest count */
14785 case 256:
14786 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14787 LPFC_CQ_CNT_256);
14788 break;
14789 case 512:
14790 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14791 LPFC_CQ_CNT_512);
14792 break;
14793 case 1024:
14794 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14795 LPFC_CQ_CNT_1024);
14796 break;
14798 list_for_each_entry(dmabuf, &cq->page_list, list) {
14799 memset(dmabuf->virt, 0, cq->page_size);
14800 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14801 putPaddrLow(dmabuf->phys);
14802 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14803 putPaddrHigh(dmabuf->phys);
14805 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14807 /* The IOCTL status is embedded in the mailbox subheader. */
14808 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14809 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14810 if (shdr_status || shdr_add_status || rc) {
14811 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14812 "2501 CQ_CREATE mailbox failed with "
14813 "status x%x add_status x%x, mbx status x%x\n",
14814 shdr_status, shdr_add_status, rc);
14815 status = -ENXIO;
14816 goto out;
14818 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
14819 if (cq->queue_id == 0xFFFF) {
14820 status = -ENXIO;
14821 goto out;
14823 /* link the cq onto the parent eq child list */
14824 list_add_tail(&cq->list, &eq->child_list);
14825 /* Set up completion queue's type and subtype */
14826 cq->type = type;
14827 cq->subtype = subtype;
14828 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
14829 cq->assoc_qid = eq->queue_id;
14830 cq->assoc_qp = eq;
14831 cq->host_index = 0;
14832 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
14833 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
14835 if (cq->queue_id > phba->sli4_hba.cq_max)
14836 phba->sli4_hba.cq_max = cq->queue_id;
14837 out:
14838 mempool_free(mbox, phba->mbox_mem_pool);
14839 return status;
14843 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
14844 * @phba: HBA structure that indicates port to create a queue on.
14845 * @cqp: The queue structure array to use to create the completion queues.
14846 * @hdwq: The hardware queue array with the EQ to bind completion queues to.
14848 * This function creates a set of completion queue, s to support MRQ
14849 * as detailed in @cqp, on a port,
14850 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
14852 * The @phba struct is used to send mailbox command to HBA. The @cq struct
14853 * is used to get the entry count and entry size that are necessary to
14854 * determine the number of pages to allocate and use for this queue. The @eq
14855 * is used to indicate which event queue to bind this completion queue to. This
14856 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
14857 * completion queue. This function is asynchronous and will wait for the mailbox
14858 * command to finish before continuing.
14860 * On success this function will return a zero. If unable to allocate enough
14861 * memory this function will return -ENOMEM. If the queue create mailbox command
14862 * fails this function will return -ENXIO.
14865 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
14866 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
14867 uint32_t subtype)
14869 struct lpfc_queue *cq;
14870 struct lpfc_queue *eq;
14871 struct lpfc_mbx_cq_create_set *cq_set;
14872 struct lpfc_dmabuf *dmabuf;
14873 LPFC_MBOXQ_t *mbox;
14874 int rc, length, alloclen, status = 0;
14875 int cnt, idx, numcq, page_idx = 0;
14876 uint32_t shdr_status, shdr_add_status;
14877 union lpfc_sli4_cfg_shdr *shdr;
14878 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14880 /* sanity check on queue memory */
14881 numcq = phba->cfg_nvmet_mrq;
14882 if (!cqp || !hdwq || !numcq)
14883 return -ENODEV;
14885 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14886 if (!mbox)
14887 return -ENOMEM;
14889 length = sizeof(struct lpfc_mbx_cq_create_set);
14890 length += ((numcq * cqp[0]->page_count) *
14891 sizeof(struct dma_address));
14892 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14893 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
14894 LPFC_SLI4_MBX_NEMBED);
14895 if (alloclen < length) {
14896 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14897 "3098 Allocated DMA memory size (%d) is "
14898 "less than the requested DMA memory size "
14899 "(%d)\n", alloclen, length);
14900 status = -ENOMEM;
14901 goto out;
14903 cq_set = mbox->sge_array->addr[0];
14904 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
14905 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
14907 for (idx = 0; idx < numcq; idx++) {
14908 cq = cqp[idx];
14909 eq = hdwq[idx].hba_eq;
14910 if (!cq || !eq) {
14911 status = -ENOMEM;
14912 goto out;
14914 if (!phba->sli4_hba.pc_sli4_params.supported)
14915 hw_page_size = cq->page_size;
14917 switch (idx) {
14918 case 0:
14919 bf_set(lpfc_mbx_cq_create_set_page_size,
14920 &cq_set->u.request,
14921 (hw_page_size / SLI4_PAGE_SIZE));
14922 bf_set(lpfc_mbx_cq_create_set_num_pages,
14923 &cq_set->u.request, cq->page_count);
14924 bf_set(lpfc_mbx_cq_create_set_evt,
14925 &cq_set->u.request, 1);
14926 bf_set(lpfc_mbx_cq_create_set_valid,
14927 &cq_set->u.request, 1);
14928 bf_set(lpfc_mbx_cq_create_set_cqe_size,
14929 &cq_set->u.request, 0);
14930 bf_set(lpfc_mbx_cq_create_set_num_cq,
14931 &cq_set->u.request, numcq);
14932 bf_set(lpfc_mbx_cq_create_set_autovalid,
14933 &cq_set->u.request,
14934 phba->sli4_hba.pc_sli4_params.cqav);
14935 switch (cq->entry_count) {
14936 case 2048:
14937 case 4096:
14938 if (phba->sli4_hba.pc_sli4_params.cqv ==
14939 LPFC_Q_CREATE_VERSION_2) {
14940 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14941 &cq_set->u.request,
14942 cq->entry_count);
14943 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14944 &cq_set->u.request,
14945 LPFC_CQ_CNT_WORD7);
14946 break;
14948 /* fall through */
14949 default:
14950 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14951 "3118 Bad CQ count. (%d)\n",
14952 cq->entry_count);
14953 if (cq->entry_count < 256) {
14954 status = -EINVAL;
14955 goto out;
14957 /* fall through - otherwise default to smallest */
14958 case 256:
14959 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14960 &cq_set->u.request, LPFC_CQ_CNT_256);
14961 break;
14962 case 512:
14963 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14964 &cq_set->u.request, LPFC_CQ_CNT_512);
14965 break;
14966 case 1024:
14967 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14968 &cq_set->u.request, LPFC_CQ_CNT_1024);
14969 break;
14971 bf_set(lpfc_mbx_cq_create_set_eq_id0,
14972 &cq_set->u.request, eq->queue_id);
14973 break;
14974 case 1:
14975 bf_set(lpfc_mbx_cq_create_set_eq_id1,
14976 &cq_set->u.request, eq->queue_id);
14977 break;
14978 case 2:
14979 bf_set(lpfc_mbx_cq_create_set_eq_id2,
14980 &cq_set->u.request, eq->queue_id);
14981 break;
14982 case 3:
14983 bf_set(lpfc_mbx_cq_create_set_eq_id3,
14984 &cq_set->u.request, eq->queue_id);
14985 break;
14986 case 4:
14987 bf_set(lpfc_mbx_cq_create_set_eq_id4,
14988 &cq_set->u.request, eq->queue_id);
14989 break;
14990 case 5:
14991 bf_set(lpfc_mbx_cq_create_set_eq_id5,
14992 &cq_set->u.request, eq->queue_id);
14993 break;
14994 case 6:
14995 bf_set(lpfc_mbx_cq_create_set_eq_id6,
14996 &cq_set->u.request, eq->queue_id);
14997 break;
14998 case 7:
14999 bf_set(lpfc_mbx_cq_create_set_eq_id7,
15000 &cq_set->u.request, eq->queue_id);
15001 break;
15002 case 8:
15003 bf_set(lpfc_mbx_cq_create_set_eq_id8,
15004 &cq_set->u.request, eq->queue_id);
15005 break;
15006 case 9:
15007 bf_set(lpfc_mbx_cq_create_set_eq_id9,
15008 &cq_set->u.request, eq->queue_id);
15009 break;
15010 case 10:
15011 bf_set(lpfc_mbx_cq_create_set_eq_id10,
15012 &cq_set->u.request, eq->queue_id);
15013 break;
15014 case 11:
15015 bf_set(lpfc_mbx_cq_create_set_eq_id11,
15016 &cq_set->u.request, eq->queue_id);
15017 break;
15018 case 12:
15019 bf_set(lpfc_mbx_cq_create_set_eq_id12,
15020 &cq_set->u.request, eq->queue_id);
15021 break;
15022 case 13:
15023 bf_set(lpfc_mbx_cq_create_set_eq_id13,
15024 &cq_set->u.request, eq->queue_id);
15025 break;
15026 case 14:
15027 bf_set(lpfc_mbx_cq_create_set_eq_id14,
15028 &cq_set->u.request, eq->queue_id);
15029 break;
15030 case 15:
15031 bf_set(lpfc_mbx_cq_create_set_eq_id15,
15032 &cq_set->u.request, eq->queue_id);
15033 break;
15036 /* link the cq onto the parent eq child list */
15037 list_add_tail(&cq->list, &eq->child_list);
15038 /* Set up completion queue's type and subtype */
15039 cq->type = type;
15040 cq->subtype = subtype;
15041 cq->assoc_qid = eq->queue_id;
15042 cq->assoc_qp = eq;
15043 cq->host_index = 0;
15044 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15045 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
15046 cq->entry_count);
15047 cq->chann = idx;
15049 rc = 0;
15050 list_for_each_entry(dmabuf, &cq->page_list, list) {
15051 memset(dmabuf->virt, 0, hw_page_size);
15052 cnt = page_idx + dmabuf->buffer_tag;
15053 cq_set->u.request.page[cnt].addr_lo =
15054 putPaddrLow(dmabuf->phys);
15055 cq_set->u.request.page[cnt].addr_hi =
15056 putPaddrHigh(dmabuf->phys);
15057 rc++;
15059 page_idx += rc;
15062 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15064 /* The IOCTL status is embedded in the mailbox subheader. */
15065 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15066 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15067 if (shdr_status || shdr_add_status || rc) {
15068 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15069 "3119 CQ_CREATE_SET mailbox failed with "
15070 "status x%x add_status x%x, mbx status x%x\n",
15071 shdr_status, shdr_add_status, rc);
15072 status = -ENXIO;
15073 goto out;
15075 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
15076 if (rc == 0xFFFF) {
15077 status = -ENXIO;
15078 goto out;
15081 for (idx = 0; idx < numcq; idx++) {
15082 cq = cqp[idx];
15083 cq->queue_id = rc + idx;
15084 if (cq->queue_id > phba->sli4_hba.cq_max)
15085 phba->sli4_hba.cq_max = cq->queue_id;
15088 out:
15089 lpfc_sli4_mbox_cmd_free(phba, mbox);
15090 return status;
15094 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
15095 * @phba: HBA structure that indicates port to create a queue on.
15096 * @mq: The queue structure to use to create the mailbox queue.
15097 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
15098 * @cq: The completion queue to associate with this cq.
15100 * This function provides failback (fb) functionality when the
15101 * mq_create_ext fails on older FW generations. It's purpose is identical
15102 * to mq_create_ext otherwise.
15104 * This routine cannot fail as all attributes were previously accessed and
15105 * initialized in mq_create_ext.
15107 static void
15108 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
15109 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
15111 struct lpfc_mbx_mq_create *mq_create;
15112 struct lpfc_dmabuf *dmabuf;
15113 int length;
15115 length = (sizeof(struct lpfc_mbx_mq_create) -
15116 sizeof(struct lpfc_sli4_cfg_mhdr));
15117 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15118 LPFC_MBOX_OPCODE_MQ_CREATE,
15119 length, LPFC_SLI4_MBX_EMBED);
15120 mq_create = &mbox->u.mqe.un.mq_create;
15121 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
15122 mq->page_count);
15123 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
15124 cq->queue_id);
15125 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
15126 switch (mq->entry_count) {
15127 case 16:
15128 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15129 LPFC_MQ_RING_SIZE_16);
15130 break;
15131 case 32:
15132 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15133 LPFC_MQ_RING_SIZE_32);
15134 break;
15135 case 64:
15136 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15137 LPFC_MQ_RING_SIZE_64);
15138 break;
15139 case 128:
15140 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15141 LPFC_MQ_RING_SIZE_128);
15142 break;
15144 list_for_each_entry(dmabuf, &mq->page_list, list) {
15145 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15146 putPaddrLow(dmabuf->phys);
15147 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15148 putPaddrHigh(dmabuf->phys);
15153 * lpfc_mq_create - Create a mailbox Queue on the HBA
15154 * @phba: HBA structure that indicates port to create a queue on.
15155 * @mq: The queue structure to use to create the mailbox queue.
15156 * @cq: The completion queue to associate with this cq.
15157 * @subtype: The queue's subtype.
15159 * This function creates a mailbox queue, as detailed in @mq, on a port,
15160 * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
15162 * The @phba struct is used to send mailbox command to HBA. The @cq struct
15163 * is used to get the entry count and entry size that are necessary to
15164 * determine the number of pages to allocate and use for this queue. This
15165 * function will send the MQ_CREATE mailbox command to the HBA to setup the
15166 * mailbox queue. This function is asynchronous and will wait for the mailbox
15167 * command to finish before continuing.
15169 * On success this function will return a zero. If unable to allocate enough
15170 * memory this function will return -ENOMEM. If the queue create mailbox command
15171 * fails this function will return -ENXIO.
15173 int32_t
15174 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
15175 struct lpfc_queue *cq, uint32_t subtype)
15177 struct lpfc_mbx_mq_create *mq_create;
15178 struct lpfc_mbx_mq_create_ext *mq_create_ext;
15179 struct lpfc_dmabuf *dmabuf;
15180 LPFC_MBOXQ_t *mbox;
15181 int rc, length, status = 0;
15182 uint32_t shdr_status, shdr_add_status;
15183 union lpfc_sli4_cfg_shdr *shdr;
15184 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15186 /* sanity check on queue memory */
15187 if (!mq || !cq)
15188 return -ENODEV;
15189 if (!phba->sli4_hba.pc_sli4_params.supported)
15190 hw_page_size = SLI4_PAGE_SIZE;
15192 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15193 if (!mbox)
15194 return -ENOMEM;
15195 length = (sizeof(struct lpfc_mbx_mq_create_ext) -
15196 sizeof(struct lpfc_sli4_cfg_mhdr));
15197 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15198 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
15199 length, LPFC_SLI4_MBX_EMBED);
15201 mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
15202 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
15203 bf_set(lpfc_mbx_mq_create_ext_num_pages,
15204 &mq_create_ext->u.request, mq->page_count);
15205 bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
15206 &mq_create_ext->u.request, 1);
15207 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
15208 &mq_create_ext->u.request, 1);
15209 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
15210 &mq_create_ext->u.request, 1);
15211 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
15212 &mq_create_ext->u.request, 1);
15213 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
15214 &mq_create_ext->u.request, 1);
15215 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
15216 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15217 phba->sli4_hba.pc_sli4_params.mqv);
15218 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
15219 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
15220 cq->queue_id);
15221 else
15222 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
15223 cq->queue_id);
15224 switch (mq->entry_count) {
15225 default:
15226 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15227 "0362 Unsupported MQ count. (%d)\n",
15228 mq->entry_count);
15229 if (mq->entry_count < 16) {
15230 status = -EINVAL;
15231 goto out;
15233 /* fall through - otherwise default to smallest count */
15234 case 16:
15235 bf_set(lpfc_mq_context_ring_size,
15236 &mq_create_ext->u.request.context,
15237 LPFC_MQ_RING_SIZE_16);
15238 break;
15239 case 32:
15240 bf_set(lpfc_mq_context_ring_size,
15241 &mq_create_ext->u.request.context,
15242 LPFC_MQ_RING_SIZE_32);
15243 break;
15244 case 64:
15245 bf_set(lpfc_mq_context_ring_size,
15246 &mq_create_ext->u.request.context,
15247 LPFC_MQ_RING_SIZE_64);
15248 break;
15249 case 128:
15250 bf_set(lpfc_mq_context_ring_size,
15251 &mq_create_ext->u.request.context,
15252 LPFC_MQ_RING_SIZE_128);
15253 break;
15255 list_for_each_entry(dmabuf, &mq->page_list, list) {
15256 memset(dmabuf->virt, 0, hw_page_size);
15257 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
15258 putPaddrLow(dmabuf->phys);
15259 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
15260 putPaddrHigh(dmabuf->phys);
15262 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15263 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15264 &mq_create_ext->u.response);
15265 if (rc != MBX_SUCCESS) {
15266 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15267 "2795 MQ_CREATE_EXT failed with "
15268 "status x%x. Failback to MQ_CREATE.\n",
15269 rc);
15270 lpfc_mq_create_fb_init(phba, mq, mbox, cq);
15271 mq_create = &mbox->u.mqe.un.mq_create;
15272 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15273 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
15274 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15275 &mq_create->u.response);
15278 /* The IOCTL status is embedded in the mailbox subheader. */
15279 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15280 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15281 if (shdr_status || shdr_add_status || rc) {
15282 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15283 "2502 MQ_CREATE mailbox failed with "
15284 "status x%x add_status x%x, mbx status x%x\n",
15285 shdr_status, shdr_add_status, rc);
15286 status = -ENXIO;
15287 goto out;
15289 if (mq->queue_id == 0xFFFF) {
15290 status = -ENXIO;
15291 goto out;
15293 mq->type = LPFC_MQ;
15294 mq->assoc_qid = cq->queue_id;
15295 mq->subtype = subtype;
15296 mq->host_index = 0;
15297 mq->hba_index = 0;
15299 /* link the mq onto the parent cq child list */
15300 list_add_tail(&mq->list, &cq->child_list);
15301 out:
15302 mempool_free(mbox, phba->mbox_mem_pool);
15303 return status;
15307 * lpfc_wq_create - Create a Work Queue on the HBA
15308 * @phba: HBA structure that indicates port to create a queue on.
15309 * @wq: The queue structure to use to create the work queue.
15310 * @cq: The completion queue to bind this work queue to.
15311 * @subtype: The subtype of the work queue indicating its functionality.
15313 * This function creates a work queue, as detailed in @wq, on a port, described
15314 * by @phba by sending a WQ_CREATE mailbox command to the HBA.
15316 * The @phba struct is used to send mailbox command to HBA. The @wq struct
15317 * is used to get the entry count and entry size that are necessary to
15318 * determine the number of pages to allocate and use for this queue. The @cq
15319 * is used to indicate which completion queue to bind this work queue to. This
15320 * function will send the WQ_CREATE mailbox command to the HBA to setup the
15321 * work queue. This function is asynchronous and will wait for the mailbox
15322 * command to finish before continuing.
15324 * On success this function will return a zero. If unable to allocate enough
15325 * memory this function will return -ENOMEM. If the queue create mailbox command
15326 * fails this function will return -ENXIO.
15329 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
15330 struct lpfc_queue *cq, uint32_t subtype)
15332 struct lpfc_mbx_wq_create *wq_create;
15333 struct lpfc_dmabuf *dmabuf;
15334 LPFC_MBOXQ_t *mbox;
15335 int rc, length, status = 0;
15336 uint32_t shdr_status, shdr_add_status;
15337 union lpfc_sli4_cfg_shdr *shdr;
15338 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15339 struct dma_address *page;
15340 void __iomem *bar_memmap_p;
15341 uint32_t db_offset;
15342 uint16_t pci_barset;
15343 uint8_t dpp_barset;
15344 uint32_t dpp_offset;
15345 unsigned long pg_addr;
15346 uint8_t wq_create_version;
15348 /* sanity check on queue memory */
15349 if (!wq || !cq)
15350 return -ENODEV;
15351 if (!phba->sli4_hba.pc_sli4_params.supported)
15352 hw_page_size = wq->page_size;
15354 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15355 if (!mbox)
15356 return -ENOMEM;
15357 length = (sizeof(struct lpfc_mbx_wq_create) -
15358 sizeof(struct lpfc_sli4_cfg_mhdr));
15359 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15360 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
15361 length, LPFC_SLI4_MBX_EMBED);
15362 wq_create = &mbox->u.mqe.un.wq_create;
15363 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
15364 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
15365 wq->page_count);
15366 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
15367 cq->queue_id);
15369 /* wqv is the earliest version supported, NOT the latest */
15370 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15371 phba->sli4_hba.pc_sli4_params.wqv);
15373 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
15374 (wq->page_size > SLI4_PAGE_SIZE))
15375 wq_create_version = LPFC_Q_CREATE_VERSION_1;
15376 else
15377 wq_create_version = LPFC_Q_CREATE_VERSION_0;
15380 if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT)
15381 wq_create_version = LPFC_Q_CREATE_VERSION_1;
15382 else
15383 wq_create_version = LPFC_Q_CREATE_VERSION_0;
15385 switch (wq_create_version) {
15386 case LPFC_Q_CREATE_VERSION_1:
15387 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
15388 wq->entry_count);
15389 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15390 LPFC_Q_CREATE_VERSION_1);
15392 switch (wq->entry_size) {
15393 default:
15394 case 64:
15395 bf_set(lpfc_mbx_wq_create_wqe_size,
15396 &wq_create->u.request_1,
15397 LPFC_WQ_WQE_SIZE_64);
15398 break;
15399 case 128:
15400 bf_set(lpfc_mbx_wq_create_wqe_size,
15401 &wq_create->u.request_1,
15402 LPFC_WQ_WQE_SIZE_128);
15403 break;
15405 /* Request DPP by default */
15406 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
15407 bf_set(lpfc_mbx_wq_create_page_size,
15408 &wq_create->u.request_1,
15409 (wq->page_size / SLI4_PAGE_SIZE));
15410 page = wq_create->u.request_1.page;
15411 break;
15412 default:
15413 page = wq_create->u.request.page;
15414 break;
15417 list_for_each_entry(dmabuf, &wq->page_list, list) {
15418 memset(dmabuf->virt, 0, hw_page_size);
15419 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
15420 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
15423 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15424 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
15426 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15427 /* The IOCTL status is embedded in the mailbox subheader. */
15428 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15429 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15430 if (shdr_status || shdr_add_status || rc) {
15431 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15432 "2503 WQ_CREATE mailbox failed with "
15433 "status x%x add_status x%x, mbx status x%x\n",
15434 shdr_status, shdr_add_status, rc);
15435 status = -ENXIO;
15436 goto out;
15439 if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
15440 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
15441 &wq_create->u.response);
15442 else
15443 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
15444 &wq_create->u.response_1);
15446 if (wq->queue_id == 0xFFFF) {
15447 status = -ENXIO;
15448 goto out;
15451 wq->db_format = LPFC_DB_LIST_FORMAT;
15452 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
15453 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15454 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
15455 &wq_create->u.response);
15456 if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
15457 (wq->db_format != LPFC_DB_RING_FORMAT)) {
15458 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15459 "3265 WQ[%d] doorbell format "
15460 "not supported: x%x\n",
15461 wq->queue_id, wq->db_format);
15462 status = -EINVAL;
15463 goto out;
15465 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
15466 &wq_create->u.response);
15467 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15468 pci_barset);
15469 if (!bar_memmap_p) {
15470 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15471 "3263 WQ[%d] failed to memmap "
15472 "pci barset:x%x\n",
15473 wq->queue_id, pci_barset);
15474 status = -ENOMEM;
15475 goto out;
15477 db_offset = wq_create->u.response.doorbell_offset;
15478 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
15479 (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
15480 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15481 "3252 WQ[%d] doorbell offset "
15482 "not supported: x%x\n",
15483 wq->queue_id, db_offset);
15484 status = -EINVAL;
15485 goto out;
15487 wq->db_regaddr = bar_memmap_p + db_offset;
15488 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15489 "3264 WQ[%d]: barset:x%x, offset:x%x, "
15490 "format:x%x\n", wq->queue_id,
15491 pci_barset, db_offset, wq->db_format);
15492 } else
15493 wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15494 } else {
15495 /* Check if DPP was honored by the firmware */
15496 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
15497 &wq_create->u.response_1);
15498 if (wq->dpp_enable) {
15499 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
15500 &wq_create->u.response_1);
15501 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15502 pci_barset);
15503 if (!bar_memmap_p) {
15504 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15505 "3267 WQ[%d] failed to memmap "
15506 "pci barset:x%x\n",
15507 wq->queue_id, pci_barset);
15508 status = -ENOMEM;
15509 goto out;
15511 db_offset = wq_create->u.response_1.doorbell_offset;
15512 wq->db_regaddr = bar_memmap_p + db_offset;
15513 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
15514 &wq_create->u.response_1);
15515 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
15516 &wq_create->u.response_1);
15517 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15518 dpp_barset);
15519 if (!bar_memmap_p) {
15520 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15521 "3268 WQ[%d] failed to memmap "
15522 "pci barset:x%x\n",
15523 wq->queue_id, dpp_barset);
15524 status = -ENOMEM;
15525 goto out;
15527 dpp_offset = wq_create->u.response_1.dpp_offset;
15528 wq->dpp_regaddr = bar_memmap_p + dpp_offset;
15529 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15530 "3271 WQ[%d]: barset:x%x, offset:x%x, "
15531 "dpp_id:x%x dpp_barset:x%x "
15532 "dpp_offset:x%x\n",
15533 wq->queue_id, pci_barset, db_offset,
15534 wq->dpp_id, dpp_barset, dpp_offset);
15536 /* Enable combined writes for DPP aperture */
15537 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
15538 #ifdef CONFIG_X86
15539 rc = set_memory_wc(pg_addr, 1);
15540 if (rc) {
15541 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15542 "3272 Cannot setup Combined "
15543 "Write on WQ[%d] - disable DPP\n",
15544 wq->queue_id);
15545 phba->cfg_enable_dpp = 0;
15547 #else
15548 phba->cfg_enable_dpp = 0;
15549 #endif
15550 } else
15551 wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15553 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
15554 if (wq->pring == NULL) {
15555 status = -ENOMEM;
15556 goto out;
15558 wq->type = LPFC_WQ;
15559 wq->assoc_qid = cq->queue_id;
15560 wq->subtype = subtype;
15561 wq->host_index = 0;
15562 wq->hba_index = 0;
15563 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
15565 /* link the wq onto the parent cq child list */
15566 list_add_tail(&wq->list, &cq->child_list);
15567 out:
15568 mempool_free(mbox, phba->mbox_mem_pool);
15569 return status;
15573 * lpfc_rq_create - Create a Receive Queue on the HBA
15574 * @phba: HBA structure that indicates port to create a queue on.
15575 * @hrq: The queue structure to use to create the header receive queue.
15576 * @drq: The queue structure to use to create the data receive queue.
15577 * @cq: The completion queue to bind this work queue to.
15579 * This function creates a receive buffer queue pair , as detailed in @hrq and
15580 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15581 * to the HBA.
15583 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15584 * struct is used to get the entry count that is necessary to determine the
15585 * number of pages to use for this queue. The @cq is used to indicate which
15586 * completion queue to bind received buffers that are posted to these queues to.
15587 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15588 * receive queue pair. This function is asynchronous and will wait for the
15589 * mailbox command to finish before continuing.
15591 * On success this function will return a zero. If unable to allocate enough
15592 * memory this function will return -ENOMEM. If the queue create mailbox command
15593 * fails this function will return -ENXIO.
15596 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
15597 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
15599 struct lpfc_mbx_rq_create *rq_create;
15600 struct lpfc_dmabuf *dmabuf;
15601 LPFC_MBOXQ_t *mbox;
15602 int rc, length, status = 0;
15603 uint32_t shdr_status, shdr_add_status;
15604 union lpfc_sli4_cfg_shdr *shdr;
15605 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15606 void __iomem *bar_memmap_p;
15607 uint32_t db_offset;
15608 uint16_t pci_barset;
15610 /* sanity check on queue memory */
15611 if (!hrq || !drq || !cq)
15612 return -ENODEV;
15613 if (!phba->sli4_hba.pc_sli4_params.supported)
15614 hw_page_size = SLI4_PAGE_SIZE;
15616 if (hrq->entry_count != drq->entry_count)
15617 return -EINVAL;
15618 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15619 if (!mbox)
15620 return -ENOMEM;
15621 length = (sizeof(struct lpfc_mbx_rq_create) -
15622 sizeof(struct lpfc_sli4_cfg_mhdr));
15623 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15624 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15625 length, LPFC_SLI4_MBX_EMBED);
15626 rq_create = &mbox->u.mqe.un.rq_create;
15627 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15628 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15629 phba->sli4_hba.pc_sli4_params.rqv);
15630 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15631 bf_set(lpfc_rq_context_rqe_count_1,
15632 &rq_create->u.request.context,
15633 hrq->entry_count);
15634 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
15635 bf_set(lpfc_rq_context_rqe_size,
15636 &rq_create->u.request.context,
15637 LPFC_RQE_SIZE_8);
15638 bf_set(lpfc_rq_context_page_size,
15639 &rq_create->u.request.context,
15640 LPFC_RQ_PAGE_SIZE_4096);
15641 } else {
15642 switch (hrq->entry_count) {
15643 default:
15644 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15645 "2535 Unsupported RQ count. (%d)\n",
15646 hrq->entry_count);
15647 if (hrq->entry_count < 512) {
15648 status = -EINVAL;
15649 goto out;
15651 /* fall through - otherwise default to smallest count */
15652 case 512:
15653 bf_set(lpfc_rq_context_rqe_count,
15654 &rq_create->u.request.context,
15655 LPFC_RQ_RING_SIZE_512);
15656 break;
15657 case 1024:
15658 bf_set(lpfc_rq_context_rqe_count,
15659 &rq_create->u.request.context,
15660 LPFC_RQ_RING_SIZE_1024);
15661 break;
15662 case 2048:
15663 bf_set(lpfc_rq_context_rqe_count,
15664 &rq_create->u.request.context,
15665 LPFC_RQ_RING_SIZE_2048);
15666 break;
15667 case 4096:
15668 bf_set(lpfc_rq_context_rqe_count,
15669 &rq_create->u.request.context,
15670 LPFC_RQ_RING_SIZE_4096);
15671 break;
15673 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
15674 LPFC_HDR_BUF_SIZE);
15676 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15677 cq->queue_id);
15678 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15679 hrq->page_count);
15680 list_for_each_entry(dmabuf, &hrq->page_list, list) {
15681 memset(dmabuf->virt, 0, hw_page_size);
15682 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15683 putPaddrLow(dmabuf->phys);
15684 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15685 putPaddrHigh(dmabuf->phys);
15687 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15688 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15690 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15691 /* The IOCTL status is embedded in the mailbox subheader. */
15692 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15693 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15694 if (shdr_status || shdr_add_status || rc) {
15695 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15696 "2504 RQ_CREATE mailbox failed with "
15697 "status x%x add_status x%x, mbx status x%x\n",
15698 shdr_status, shdr_add_status, rc);
15699 status = -ENXIO;
15700 goto out;
15702 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15703 if (hrq->queue_id == 0xFFFF) {
15704 status = -ENXIO;
15705 goto out;
15708 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15709 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
15710 &rq_create->u.response);
15711 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
15712 (hrq->db_format != LPFC_DB_RING_FORMAT)) {
15713 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15714 "3262 RQ [%d] doorbell format not "
15715 "supported: x%x\n", hrq->queue_id,
15716 hrq->db_format);
15717 status = -EINVAL;
15718 goto out;
15721 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
15722 &rq_create->u.response);
15723 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
15724 if (!bar_memmap_p) {
15725 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15726 "3269 RQ[%d] failed to memmap pci "
15727 "barset:x%x\n", hrq->queue_id,
15728 pci_barset);
15729 status = -ENOMEM;
15730 goto out;
15733 db_offset = rq_create->u.response.doorbell_offset;
15734 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
15735 (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
15736 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15737 "3270 RQ[%d] doorbell offset not "
15738 "supported: x%x\n", hrq->queue_id,
15739 db_offset);
15740 status = -EINVAL;
15741 goto out;
15743 hrq->db_regaddr = bar_memmap_p + db_offset;
15744 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15745 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
15746 "format:x%x\n", hrq->queue_id, pci_barset,
15747 db_offset, hrq->db_format);
15748 } else {
15749 hrq->db_format = LPFC_DB_RING_FORMAT;
15750 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
15752 hrq->type = LPFC_HRQ;
15753 hrq->assoc_qid = cq->queue_id;
15754 hrq->subtype = subtype;
15755 hrq->host_index = 0;
15756 hrq->hba_index = 0;
15757 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
15759 /* now create the data queue */
15760 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15761 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15762 length, LPFC_SLI4_MBX_EMBED);
15763 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15764 phba->sli4_hba.pc_sli4_params.rqv);
15765 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15766 bf_set(lpfc_rq_context_rqe_count_1,
15767 &rq_create->u.request.context, hrq->entry_count);
15768 if (subtype == LPFC_NVMET)
15769 rq_create->u.request.context.buffer_size =
15770 LPFC_NVMET_DATA_BUF_SIZE;
15771 else
15772 rq_create->u.request.context.buffer_size =
15773 LPFC_DATA_BUF_SIZE;
15774 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
15775 LPFC_RQE_SIZE_8);
15776 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
15777 (PAGE_SIZE/SLI4_PAGE_SIZE));
15778 } else {
15779 switch (drq->entry_count) {
15780 default:
15781 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15782 "2536 Unsupported RQ count. (%d)\n",
15783 drq->entry_count);
15784 if (drq->entry_count < 512) {
15785 status = -EINVAL;
15786 goto out;
15788 /* fall through - otherwise default to smallest count */
15789 case 512:
15790 bf_set(lpfc_rq_context_rqe_count,
15791 &rq_create->u.request.context,
15792 LPFC_RQ_RING_SIZE_512);
15793 break;
15794 case 1024:
15795 bf_set(lpfc_rq_context_rqe_count,
15796 &rq_create->u.request.context,
15797 LPFC_RQ_RING_SIZE_1024);
15798 break;
15799 case 2048:
15800 bf_set(lpfc_rq_context_rqe_count,
15801 &rq_create->u.request.context,
15802 LPFC_RQ_RING_SIZE_2048);
15803 break;
15804 case 4096:
15805 bf_set(lpfc_rq_context_rqe_count,
15806 &rq_create->u.request.context,
15807 LPFC_RQ_RING_SIZE_4096);
15808 break;
15810 if (subtype == LPFC_NVMET)
15811 bf_set(lpfc_rq_context_buf_size,
15812 &rq_create->u.request.context,
15813 LPFC_NVMET_DATA_BUF_SIZE);
15814 else
15815 bf_set(lpfc_rq_context_buf_size,
15816 &rq_create->u.request.context,
15817 LPFC_DATA_BUF_SIZE);
15819 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15820 cq->queue_id);
15821 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15822 drq->page_count);
15823 list_for_each_entry(dmabuf, &drq->page_list, list) {
15824 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15825 putPaddrLow(dmabuf->phys);
15826 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15827 putPaddrHigh(dmabuf->phys);
15829 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15830 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15831 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15832 /* The IOCTL status is embedded in the mailbox subheader. */
15833 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15834 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15835 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15836 if (shdr_status || shdr_add_status || rc) {
15837 status = -ENXIO;
15838 goto out;
15840 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15841 if (drq->queue_id == 0xFFFF) {
15842 status = -ENXIO;
15843 goto out;
15845 drq->type = LPFC_DRQ;
15846 drq->assoc_qid = cq->queue_id;
15847 drq->subtype = subtype;
15848 drq->host_index = 0;
15849 drq->hba_index = 0;
15850 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
15852 /* link the header and data RQs onto the parent cq child list */
15853 list_add_tail(&hrq->list, &cq->child_list);
15854 list_add_tail(&drq->list, &cq->child_list);
15856 out:
15857 mempool_free(mbox, phba->mbox_mem_pool);
15858 return status;
15862 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
15863 * @phba: HBA structure that indicates port to create a queue on.
15864 * @hrqp: The queue structure array to use to create the header receive queues.
15865 * @drqp: The queue structure array to use to create the data receive queues.
15866 * @cqp: The completion queue array to bind these receive queues to.
15868 * This function creates a receive buffer queue pair , as detailed in @hrq and
15869 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15870 * to the HBA.
15872 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15873 * struct is used to get the entry count that is necessary to determine the
15874 * number of pages to use for this queue. The @cq is used to indicate which
15875 * completion queue to bind received buffers that are posted to these queues to.
15876 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15877 * receive queue pair. This function is asynchronous and will wait for the
15878 * mailbox command to finish before continuing.
15880 * On success this function will return a zero. If unable to allocate enough
15881 * memory this function will return -ENOMEM. If the queue create mailbox command
15882 * fails this function will return -ENXIO.
15885 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
15886 struct lpfc_queue **drqp, struct lpfc_queue **cqp,
15887 uint32_t subtype)
15889 struct lpfc_queue *hrq, *drq, *cq;
15890 struct lpfc_mbx_rq_create_v2 *rq_create;
15891 struct lpfc_dmabuf *dmabuf;
15892 LPFC_MBOXQ_t *mbox;
15893 int rc, length, alloclen, status = 0;
15894 int cnt, idx, numrq, page_idx = 0;
15895 uint32_t shdr_status, shdr_add_status;
15896 union lpfc_sli4_cfg_shdr *shdr;
15897 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15899 numrq = phba->cfg_nvmet_mrq;
15900 /* sanity check on array memory */
15901 if (!hrqp || !drqp || !cqp || !numrq)
15902 return -ENODEV;
15903 if (!phba->sli4_hba.pc_sli4_params.supported)
15904 hw_page_size = SLI4_PAGE_SIZE;
15906 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15907 if (!mbox)
15908 return -ENOMEM;
15910 length = sizeof(struct lpfc_mbx_rq_create_v2);
15911 length += ((2 * numrq * hrqp[0]->page_count) *
15912 sizeof(struct dma_address));
15914 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15915 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
15916 LPFC_SLI4_MBX_NEMBED);
15917 if (alloclen < length) {
15918 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15919 "3099 Allocated DMA memory size (%d) is "
15920 "less than the requested DMA memory size "
15921 "(%d)\n", alloclen, length);
15922 status = -ENOMEM;
15923 goto out;
15928 rq_create = mbox->sge_array->addr[0];
15929 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
15931 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
15932 cnt = 0;
15934 for (idx = 0; idx < numrq; idx++) {
15935 hrq = hrqp[idx];
15936 drq = drqp[idx];
15937 cq = cqp[idx];
15939 /* sanity check on queue memory */
15940 if (!hrq || !drq || !cq) {
15941 status = -ENODEV;
15942 goto out;
15945 if (hrq->entry_count != drq->entry_count) {
15946 status = -EINVAL;
15947 goto out;
15950 if (idx == 0) {
15951 bf_set(lpfc_mbx_rq_create_num_pages,
15952 &rq_create->u.request,
15953 hrq->page_count);
15954 bf_set(lpfc_mbx_rq_create_rq_cnt,
15955 &rq_create->u.request, (numrq * 2));
15956 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
15958 bf_set(lpfc_rq_context_base_cq,
15959 &rq_create->u.request.context,
15960 cq->queue_id);
15961 bf_set(lpfc_rq_context_data_size,
15962 &rq_create->u.request.context,
15963 LPFC_NVMET_DATA_BUF_SIZE);
15964 bf_set(lpfc_rq_context_hdr_size,
15965 &rq_create->u.request.context,
15966 LPFC_HDR_BUF_SIZE);
15967 bf_set(lpfc_rq_context_rqe_count_1,
15968 &rq_create->u.request.context,
15969 hrq->entry_count);
15970 bf_set(lpfc_rq_context_rqe_size,
15971 &rq_create->u.request.context,
15972 LPFC_RQE_SIZE_8);
15973 bf_set(lpfc_rq_context_page_size,
15974 &rq_create->u.request.context,
15975 (PAGE_SIZE/SLI4_PAGE_SIZE));
15977 rc = 0;
15978 list_for_each_entry(dmabuf, &hrq->page_list, list) {
15979 memset(dmabuf->virt, 0, hw_page_size);
15980 cnt = page_idx + dmabuf->buffer_tag;
15981 rq_create->u.request.page[cnt].addr_lo =
15982 putPaddrLow(dmabuf->phys);
15983 rq_create->u.request.page[cnt].addr_hi =
15984 putPaddrHigh(dmabuf->phys);
15985 rc++;
15987 page_idx += rc;
15989 rc = 0;
15990 list_for_each_entry(dmabuf, &drq->page_list, list) {
15991 memset(dmabuf->virt, 0, hw_page_size);
15992 cnt = page_idx + dmabuf->buffer_tag;
15993 rq_create->u.request.page[cnt].addr_lo =
15994 putPaddrLow(dmabuf->phys);
15995 rq_create->u.request.page[cnt].addr_hi =
15996 putPaddrHigh(dmabuf->phys);
15997 rc++;
15999 page_idx += rc;
16001 hrq->db_format = LPFC_DB_RING_FORMAT;
16002 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16003 hrq->type = LPFC_HRQ;
16004 hrq->assoc_qid = cq->queue_id;
16005 hrq->subtype = subtype;
16006 hrq->host_index = 0;
16007 hrq->hba_index = 0;
16008 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16010 drq->db_format = LPFC_DB_RING_FORMAT;
16011 drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16012 drq->type = LPFC_DRQ;
16013 drq->assoc_qid = cq->queue_id;
16014 drq->subtype = subtype;
16015 drq->host_index = 0;
16016 drq->hba_index = 0;
16017 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16019 list_add_tail(&hrq->list, &cq->child_list);
16020 list_add_tail(&drq->list, &cq->child_list);
16023 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16024 /* The IOCTL status is embedded in the mailbox subheader. */
16025 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16026 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16027 if (shdr_status || shdr_add_status || rc) {
16028 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16029 "3120 RQ_CREATE mailbox failed with "
16030 "status x%x add_status x%x, mbx status x%x\n",
16031 shdr_status, shdr_add_status, rc);
16032 status = -ENXIO;
16033 goto out;
16035 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16036 if (rc == 0xFFFF) {
16037 status = -ENXIO;
16038 goto out;
16041 /* Initialize all RQs with associated queue id */
16042 for (idx = 0; idx < numrq; idx++) {
16043 hrq = hrqp[idx];
16044 hrq->queue_id = rc + (2 * idx);
16045 drq = drqp[idx];
16046 drq->queue_id = rc + (2 * idx) + 1;
16049 out:
16050 lpfc_sli4_mbox_cmd_free(phba, mbox);
16051 return status;
16055 * lpfc_eq_destroy - Destroy an event Queue on the HBA
16056 * @eq: The queue structure associated with the queue to destroy.
16058 * This function destroys a queue, as detailed in @eq by sending an mailbox
16059 * command, specific to the type of queue, to the HBA.
16061 * The @eq struct is used to get the queue ID of the queue to destroy.
16063 * On success this function will return a zero. If the queue destroy mailbox
16064 * command fails this function will return -ENXIO.
16067 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
16069 LPFC_MBOXQ_t *mbox;
16070 int rc, length, status = 0;
16071 uint32_t shdr_status, shdr_add_status;
16072 union lpfc_sli4_cfg_shdr *shdr;
16074 /* sanity check on queue memory */
16075 if (!eq)
16076 return -ENODEV;
16078 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
16079 if (!mbox)
16080 return -ENOMEM;
16081 length = (sizeof(struct lpfc_mbx_eq_destroy) -
16082 sizeof(struct lpfc_sli4_cfg_mhdr));
16083 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16084 LPFC_MBOX_OPCODE_EQ_DESTROY,
16085 length, LPFC_SLI4_MBX_EMBED);
16086 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
16087 eq->queue_id);
16088 mbox->vport = eq->phba->pport;
16089 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16091 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
16092 /* The IOCTL status is embedded in the mailbox subheader. */
16093 shdr = (union lpfc_sli4_cfg_shdr *)
16094 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
16095 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16096 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16097 if (shdr_status || shdr_add_status || rc) {
16098 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16099 "2505 EQ_DESTROY mailbox failed with "
16100 "status x%x add_status x%x, mbx status x%x\n",
16101 shdr_status, shdr_add_status, rc);
16102 status = -ENXIO;
16105 /* Remove eq from any list */
16106 list_del_init(&eq->list);
16107 mempool_free(mbox, eq->phba->mbox_mem_pool);
16108 return status;
16112 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
16113 * @cq: The queue structure associated with the queue to destroy.
16115 * This function destroys a queue, as detailed in @cq by sending an mailbox
16116 * command, specific to the type of queue, to the HBA.
16118 * The @cq struct is used to get the queue ID of the queue to destroy.
16120 * On success this function will return a zero. If the queue destroy mailbox
16121 * command fails this function will return -ENXIO.
16124 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
16126 LPFC_MBOXQ_t *mbox;
16127 int rc, length, status = 0;
16128 uint32_t shdr_status, shdr_add_status;
16129 union lpfc_sli4_cfg_shdr *shdr;
16131 /* sanity check on queue memory */
16132 if (!cq)
16133 return -ENODEV;
16134 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
16135 if (!mbox)
16136 return -ENOMEM;
16137 length = (sizeof(struct lpfc_mbx_cq_destroy) -
16138 sizeof(struct lpfc_sli4_cfg_mhdr));
16139 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16140 LPFC_MBOX_OPCODE_CQ_DESTROY,
16141 length, LPFC_SLI4_MBX_EMBED);
16142 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
16143 cq->queue_id);
16144 mbox->vport = cq->phba->pport;
16145 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16146 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
16147 /* The IOCTL status is embedded in the mailbox subheader. */
16148 shdr = (union lpfc_sli4_cfg_shdr *)
16149 &mbox->u.mqe.un.wq_create.header.cfg_shdr;
16150 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16151 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16152 if (shdr_status || shdr_add_status || rc) {
16153 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16154 "2506 CQ_DESTROY mailbox failed with "
16155 "status x%x add_status x%x, mbx status x%x\n",
16156 shdr_status, shdr_add_status, rc);
16157 status = -ENXIO;
16159 /* Remove cq from any list */
16160 list_del_init(&cq->list);
16161 mempool_free(mbox, cq->phba->mbox_mem_pool);
16162 return status;
16166 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
16167 * @qm: The queue structure associated with the queue to destroy.
16169 * This function destroys a queue, as detailed in @mq by sending an mailbox
16170 * command, specific to the type of queue, to the HBA.
16172 * The @mq struct is used to get the queue ID of the queue to destroy.
16174 * On success this function will return a zero. If the queue destroy mailbox
16175 * command fails this function will return -ENXIO.
16178 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
16180 LPFC_MBOXQ_t *mbox;
16181 int rc, length, status = 0;
16182 uint32_t shdr_status, shdr_add_status;
16183 union lpfc_sli4_cfg_shdr *shdr;
16185 /* sanity check on queue memory */
16186 if (!mq)
16187 return -ENODEV;
16188 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
16189 if (!mbox)
16190 return -ENOMEM;
16191 length = (sizeof(struct lpfc_mbx_mq_destroy) -
16192 sizeof(struct lpfc_sli4_cfg_mhdr));
16193 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16194 LPFC_MBOX_OPCODE_MQ_DESTROY,
16195 length, LPFC_SLI4_MBX_EMBED);
16196 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
16197 mq->queue_id);
16198 mbox->vport = mq->phba->pport;
16199 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16200 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
16201 /* The IOCTL status is embedded in the mailbox subheader. */
16202 shdr = (union lpfc_sli4_cfg_shdr *)
16203 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
16204 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16205 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16206 if (shdr_status || shdr_add_status || rc) {
16207 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16208 "2507 MQ_DESTROY mailbox failed with "
16209 "status x%x add_status x%x, mbx status x%x\n",
16210 shdr_status, shdr_add_status, rc);
16211 status = -ENXIO;
16213 /* Remove mq from any list */
16214 list_del_init(&mq->list);
16215 mempool_free(mbox, mq->phba->mbox_mem_pool);
16216 return status;
16220 * lpfc_wq_destroy - Destroy a Work Queue on the HBA
16221 * @wq: The queue structure associated with the queue to destroy.
16223 * This function destroys a queue, as detailed in @wq by sending an mailbox
16224 * command, specific to the type of queue, to the HBA.
16226 * The @wq struct is used to get the queue ID of the queue to destroy.
16228 * On success this function will return a zero. If the queue destroy mailbox
16229 * command fails this function will return -ENXIO.
16232 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
16234 LPFC_MBOXQ_t *mbox;
16235 int rc, length, status = 0;
16236 uint32_t shdr_status, shdr_add_status;
16237 union lpfc_sli4_cfg_shdr *shdr;
16239 /* sanity check on queue memory */
16240 if (!wq)
16241 return -ENODEV;
16242 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
16243 if (!mbox)
16244 return -ENOMEM;
16245 length = (sizeof(struct lpfc_mbx_wq_destroy) -
16246 sizeof(struct lpfc_sli4_cfg_mhdr));
16247 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16248 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
16249 length, LPFC_SLI4_MBX_EMBED);
16250 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
16251 wq->queue_id);
16252 mbox->vport = wq->phba->pport;
16253 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16254 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
16255 shdr = (union lpfc_sli4_cfg_shdr *)
16256 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
16257 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16258 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16259 if (shdr_status || shdr_add_status || rc) {
16260 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16261 "2508 WQ_DESTROY mailbox failed with "
16262 "status x%x add_status x%x, mbx status x%x\n",
16263 shdr_status, shdr_add_status, rc);
16264 status = -ENXIO;
16266 /* Remove wq from any list */
16267 list_del_init(&wq->list);
16268 kfree(wq->pring);
16269 wq->pring = NULL;
16270 mempool_free(mbox, wq->phba->mbox_mem_pool);
16271 return status;
16275 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
16276 * @rq: The queue structure associated with the queue to destroy.
16278 * This function destroys a queue, as detailed in @rq by sending an mailbox
16279 * command, specific to the type of queue, to the HBA.
16281 * The @rq struct is used to get the queue ID of the queue to destroy.
16283 * On success this function will return a zero. If the queue destroy mailbox
16284 * command fails this function will return -ENXIO.
16287 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
16288 struct lpfc_queue *drq)
16290 LPFC_MBOXQ_t *mbox;
16291 int rc, length, status = 0;
16292 uint32_t shdr_status, shdr_add_status;
16293 union lpfc_sli4_cfg_shdr *shdr;
16295 /* sanity check on queue memory */
16296 if (!hrq || !drq)
16297 return -ENODEV;
16298 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
16299 if (!mbox)
16300 return -ENOMEM;
16301 length = (sizeof(struct lpfc_mbx_rq_destroy) -
16302 sizeof(struct lpfc_sli4_cfg_mhdr));
16303 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16304 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
16305 length, LPFC_SLI4_MBX_EMBED);
16306 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16307 hrq->queue_id);
16308 mbox->vport = hrq->phba->pport;
16309 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16310 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
16311 /* The IOCTL status is embedded in the mailbox subheader. */
16312 shdr = (union lpfc_sli4_cfg_shdr *)
16313 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16314 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16315 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16316 if (shdr_status || shdr_add_status || rc) {
16317 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16318 "2509 RQ_DESTROY mailbox failed with "
16319 "status x%x add_status x%x, mbx status x%x\n",
16320 shdr_status, shdr_add_status, rc);
16321 if (rc != MBX_TIMEOUT)
16322 mempool_free(mbox, hrq->phba->mbox_mem_pool);
16323 return -ENXIO;
16325 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16326 drq->queue_id);
16327 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
16328 shdr = (union lpfc_sli4_cfg_shdr *)
16329 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16330 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16331 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16332 if (shdr_status || shdr_add_status || rc) {
16333 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16334 "2510 RQ_DESTROY mailbox failed with "
16335 "status x%x add_status x%x, mbx status x%x\n",
16336 shdr_status, shdr_add_status, rc);
16337 status = -ENXIO;
16339 list_del_init(&hrq->list);
16340 list_del_init(&drq->list);
16341 mempool_free(mbox, hrq->phba->mbox_mem_pool);
16342 return status;
16346 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
16347 * @phba: The virtual port for which this call being executed.
16348 * @pdma_phys_addr0: Physical address of the 1st SGL page.
16349 * @pdma_phys_addr1: Physical address of the 2nd SGL page.
16350 * @xritag: the xritag that ties this io to the SGL pages.
16352 * This routine will post the sgl pages for the IO that has the xritag
16353 * that is in the iocbq structure. The xritag is assigned during iocbq
16354 * creation and persists for as long as the driver is loaded.
16355 * if the caller has fewer than 256 scatter gather segments to map then
16356 * pdma_phys_addr1 should be 0.
16357 * If the caller needs to map more than 256 scatter gather segment then
16358 * pdma_phys_addr1 should be a valid physical address.
16359 * physical address for SGLs must be 64 byte aligned.
16360 * If you are going to map 2 SGL's then the first one must have 256 entries
16361 * the second sgl can have between 1 and 256 entries.
16363 * Return codes:
16364 * 0 - Success
16365 * -ENXIO, -ENOMEM - Failure
16368 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
16369 dma_addr_t pdma_phys_addr0,
16370 dma_addr_t pdma_phys_addr1,
16371 uint16_t xritag)
16373 struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
16374 LPFC_MBOXQ_t *mbox;
16375 int rc;
16376 uint32_t shdr_status, shdr_add_status;
16377 uint32_t mbox_tmo;
16378 union lpfc_sli4_cfg_shdr *shdr;
16380 if (xritag == NO_XRI) {
16381 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16382 "0364 Invalid param:\n");
16383 return -EINVAL;
16386 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16387 if (!mbox)
16388 return -ENOMEM;
16390 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16391 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16392 sizeof(struct lpfc_mbx_post_sgl_pages) -
16393 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
16395 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
16396 &mbox->u.mqe.un.post_sgl_pages;
16397 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
16398 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
16400 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo =
16401 cpu_to_le32(putPaddrLow(pdma_phys_addr0));
16402 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
16403 cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
16405 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo =
16406 cpu_to_le32(putPaddrLow(pdma_phys_addr1));
16407 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
16408 cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
16409 if (!phba->sli4_hba.intr_enable)
16410 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16411 else {
16412 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16413 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16415 /* The IOCTL status is embedded in the mailbox subheader. */
16416 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
16417 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16418 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16419 if (rc != MBX_TIMEOUT)
16420 mempool_free(mbox, phba->mbox_mem_pool);
16421 if (shdr_status || shdr_add_status || rc) {
16422 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16423 "2511 POST_SGL mailbox failed with "
16424 "status x%x add_status x%x, mbx status x%x\n",
16425 shdr_status, shdr_add_status, rc);
16427 return 0;
16431 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
16432 * @phba: pointer to lpfc hba data structure.
16434 * This routine is invoked to post rpi header templates to the
16435 * HBA consistent with the SLI-4 interface spec. This routine
16436 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
16437 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
16439 * Returns
16440 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
16441 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
16443 static uint16_t
16444 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
16446 unsigned long xri;
16449 * Fetch the next logical xri. Because this index is logical,
16450 * the driver starts at 0 each time.
16452 spin_lock_irq(&phba->hbalock);
16453 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
16454 phba->sli4_hba.max_cfg_param.max_xri, 0);
16455 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
16456 spin_unlock_irq(&phba->hbalock);
16457 return NO_XRI;
16458 } else {
16459 set_bit(xri, phba->sli4_hba.xri_bmask);
16460 phba->sli4_hba.max_cfg_param.xri_used++;
16462 spin_unlock_irq(&phba->hbalock);
16463 return xri;
16467 * lpfc_sli4_free_xri - Release an xri for reuse.
16468 * @phba: pointer to lpfc hba data structure.
16470 * This routine is invoked to release an xri to the pool of
16471 * available rpis maintained by the driver.
16473 static void
16474 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16476 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
16477 phba->sli4_hba.max_cfg_param.xri_used--;
16482 * lpfc_sli4_free_xri - Release an xri for reuse.
16483 * @phba: pointer to lpfc hba data structure.
16485 * This routine is invoked to release an xri to the pool of
16486 * available rpis maintained by the driver.
16488 void
16489 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16491 spin_lock_irq(&phba->hbalock);
16492 __lpfc_sli4_free_xri(phba, xri);
16493 spin_unlock_irq(&phba->hbalock);
16497 * lpfc_sli4_next_xritag - Get an xritag for the io
16498 * @phba: Pointer to HBA context object.
16500 * This function gets an xritag for the iocb. If there is no unused xritag
16501 * it will return 0xffff.
16502 * The function returns the allocated xritag if successful, else returns zero.
16503 * Zero is not a valid xritag.
16504 * The caller is not required to hold any lock.
16506 uint16_t
16507 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
16509 uint16_t xri_index;
16511 xri_index = lpfc_sli4_alloc_xri(phba);
16512 if (xri_index == NO_XRI)
16513 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
16514 "2004 Failed to allocate XRI.last XRITAG is %d"
16515 " Max XRI is %d, Used XRI is %d\n",
16516 xri_index,
16517 phba->sli4_hba.max_cfg_param.max_xri,
16518 phba->sli4_hba.max_cfg_param.xri_used);
16519 return xri_index;
16523 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
16524 * @phba: pointer to lpfc hba data structure.
16525 * @post_sgl_list: pointer to els sgl entry list.
16526 * @count: number of els sgl entries on the list.
16528 * This routine is invoked to post a block of driver's sgl pages to the
16529 * HBA using non-embedded mailbox command. No Lock is held. This routine
16530 * is only called when the driver is loading and after all IO has been
16531 * stopped.
16533 static int
16534 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
16535 struct list_head *post_sgl_list,
16536 int post_cnt)
16538 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
16539 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16540 struct sgl_page_pairs *sgl_pg_pairs;
16541 void *viraddr;
16542 LPFC_MBOXQ_t *mbox;
16543 uint32_t reqlen, alloclen, pg_pairs;
16544 uint32_t mbox_tmo;
16545 uint16_t xritag_start = 0;
16546 int rc = 0;
16547 uint32_t shdr_status, shdr_add_status;
16548 union lpfc_sli4_cfg_shdr *shdr;
16550 reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
16551 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16552 if (reqlen > SLI4_PAGE_SIZE) {
16553 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16554 "2559 Block sgl registration required DMA "
16555 "size (%d) great than a page\n", reqlen);
16556 return -ENOMEM;
16559 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16560 if (!mbox)
16561 return -ENOMEM;
16563 /* Allocate DMA memory and set up the non-embedded mailbox command */
16564 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16565 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
16566 LPFC_SLI4_MBX_NEMBED);
16568 if (alloclen < reqlen) {
16569 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16570 "0285 Allocated DMA memory size (%d) is "
16571 "less than the requested DMA memory "
16572 "size (%d)\n", alloclen, reqlen);
16573 lpfc_sli4_mbox_cmd_free(phba, mbox);
16574 return -ENOMEM;
16576 /* Set up the SGL pages in the non-embedded DMA pages */
16577 viraddr = mbox->sge_array->addr[0];
16578 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16579 sgl_pg_pairs = &sgl->sgl_pg_pairs;
16581 pg_pairs = 0;
16582 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
16583 /* Set up the sge entry */
16584 sgl_pg_pairs->sgl_pg0_addr_lo =
16585 cpu_to_le32(putPaddrLow(sglq_entry->phys));
16586 sgl_pg_pairs->sgl_pg0_addr_hi =
16587 cpu_to_le32(putPaddrHigh(sglq_entry->phys));
16588 sgl_pg_pairs->sgl_pg1_addr_lo =
16589 cpu_to_le32(putPaddrLow(0));
16590 sgl_pg_pairs->sgl_pg1_addr_hi =
16591 cpu_to_le32(putPaddrHigh(0));
16593 /* Keep the first xritag on the list */
16594 if (pg_pairs == 0)
16595 xritag_start = sglq_entry->sli4_xritag;
16596 sgl_pg_pairs++;
16597 pg_pairs++;
16600 /* Complete initialization and perform endian conversion. */
16601 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16602 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
16603 sgl->word0 = cpu_to_le32(sgl->word0);
16605 if (!phba->sli4_hba.intr_enable)
16606 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16607 else {
16608 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16609 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16611 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
16612 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16613 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16614 if (rc != MBX_TIMEOUT)
16615 lpfc_sli4_mbox_cmd_free(phba, mbox);
16616 if (shdr_status || shdr_add_status || rc) {
16617 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16618 "2513 POST_SGL_BLOCK mailbox command failed "
16619 "status x%x add_status x%x mbx status x%x\n",
16620 shdr_status, shdr_add_status, rc);
16621 rc = -ENXIO;
16623 return rc;
16627 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
16628 * @phba: pointer to lpfc hba data structure.
16629 * @nblist: pointer to nvme buffer list.
16630 * @count: number of scsi buffers on the list.
16632 * This routine is invoked to post a block of @count scsi sgl pages from a
16633 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
16634 * No Lock is held.
16637 static int
16638 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
16639 int count)
16641 struct lpfc_io_buf *lpfc_ncmd;
16642 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16643 struct sgl_page_pairs *sgl_pg_pairs;
16644 void *viraddr;
16645 LPFC_MBOXQ_t *mbox;
16646 uint32_t reqlen, alloclen, pg_pairs;
16647 uint32_t mbox_tmo;
16648 uint16_t xritag_start = 0;
16649 int rc = 0;
16650 uint32_t shdr_status, shdr_add_status;
16651 dma_addr_t pdma_phys_bpl1;
16652 union lpfc_sli4_cfg_shdr *shdr;
16654 /* Calculate the requested length of the dma memory */
16655 reqlen = count * sizeof(struct sgl_page_pairs) +
16656 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16657 if (reqlen > SLI4_PAGE_SIZE) {
16658 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
16659 "6118 Block sgl registration required DMA "
16660 "size (%d) great than a page\n", reqlen);
16661 return -ENOMEM;
16663 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16664 if (!mbox) {
16665 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16666 "6119 Failed to allocate mbox cmd memory\n");
16667 return -ENOMEM;
16670 /* Allocate DMA memory and set up the non-embedded mailbox command */
16671 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16672 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16673 reqlen, LPFC_SLI4_MBX_NEMBED);
16675 if (alloclen < reqlen) {
16676 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16677 "6120 Allocated DMA memory size (%d) is "
16678 "less than the requested DMA memory "
16679 "size (%d)\n", alloclen, reqlen);
16680 lpfc_sli4_mbox_cmd_free(phba, mbox);
16681 return -ENOMEM;
16684 /* Get the first SGE entry from the non-embedded DMA memory */
16685 viraddr = mbox->sge_array->addr[0];
16687 /* Set up the SGL pages in the non-embedded DMA pages */
16688 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16689 sgl_pg_pairs = &sgl->sgl_pg_pairs;
16691 pg_pairs = 0;
16692 list_for_each_entry(lpfc_ncmd, nblist, list) {
16693 /* Set up the sge entry */
16694 sgl_pg_pairs->sgl_pg0_addr_lo =
16695 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
16696 sgl_pg_pairs->sgl_pg0_addr_hi =
16697 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
16698 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
16699 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
16700 SGL_PAGE_SIZE;
16701 else
16702 pdma_phys_bpl1 = 0;
16703 sgl_pg_pairs->sgl_pg1_addr_lo =
16704 cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
16705 sgl_pg_pairs->sgl_pg1_addr_hi =
16706 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
16707 /* Keep the first xritag on the list */
16708 if (pg_pairs == 0)
16709 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
16710 sgl_pg_pairs++;
16711 pg_pairs++;
16713 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16714 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
16715 /* Perform endian conversion if necessary */
16716 sgl->word0 = cpu_to_le32(sgl->word0);
16718 if (!phba->sli4_hba.intr_enable) {
16719 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16720 } else {
16721 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16722 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16724 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
16725 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16726 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16727 if (rc != MBX_TIMEOUT)
16728 lpfc_sli4_mbox_cmd_free(phba, mbox);
16729 if (shdr_status || shdr_add_status || rc) {
16730 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16731 "6125 POST_SGL_BLOCK mailbox command failed "
16732 "status x%x add_status x%x mbx status x%x\n",
16733 shdr_status, shdr_add_status, rc);
16734 rc = -ENXIO;
16736 return rc;
16740 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
16741 * @phba: pointer to lpfc hba data structure.
16742 * @post_nblist: pointer to the nvme buffer list.
16744 * This routine walks a list of nvme buffers that was passed in. It attempts
16745 * to construct blocks of nvme buffer sgls which contains contiguous xris and
16746 * uses the non-embedded SGL block post mailbox commands to post to the port.
16747 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
16748 * embedded SGL post mailbox command for posting. The @post_nblist passed in
16749 * must be local list, thus no lock is needed when manipulate the list.
16751 * Returns: 0 = failure, non-zero number of successfully posted buffers.
16754 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
16755 struct list_head *post_nblist, int sb_count)
16757 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
16758 int status, sgl_size;
16759 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
16760 dma_addr_t pdma_phys_sgl1;
16761 int last_xritag = NO_XRI;
16762 int cur_xritag;
16763 LIST_HEAD(prep_nblist);
16764 LIST_HEAD(blck_nblist);
16765 LIST_HEAD(nvme_nblist);
16767 /* sanity check */
16768 if (sb_count <= 0)
16769 return -EINVAL;
16771 sgl_size = phba->cfg_sg_dma_buf_size;
16772 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
16773 list_del_init(&lpfc_ncmd->list);
16774 block_cnt++;
16775 if ((last_xritag != NO_XRI) &&
16776 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
16777 /* a hole in xri block, form a sgl posting block */
16778 list_splice_init(&prep_nblist, &blck_nblist);
16779 post_cnt = block_cnt - 1;
16780 /* prepare list for next posting block */
16781 list_add_tail(&lpfc_ncmd->list, &prep_nblist);
16782 block_cnt = 1;
16783 } else {
16784 /* prepare list for next posting block */
16785 list_add_tail(&lpfc_ncmd->list, &prep_nblist);
16786 /* enough sgls for non-embed sgl mbox command */
16787 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
16788 list_splice_init(&prep_nblist, &blck_nblist);
16789 post_cnt = block_cnt;
16790 block_cnt = 0;
16793 num_posting++;
16794 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
16796 /* end of repost sgl list condition for NVME buffers */
16797 if (num_posting == sb_count) {
16798 if (post_cnt == 0) {
16799 /* last sgl posting block */
16800 list_splice_init(&prep_nblist, &blck_nblist);
16801 post_cnt = block_cnt;
16802 } else if (block_cnt == 1) {
16803 /* last single sgl with non-contiguous xri */
16804 if (sgl_size > SGL_PAGE_SIZE)
16805 pdma_phys_sgl1 =
16806 lpfc_ncmd->dma_phys_sgl +
16807 SGL_PAGE_SIZE;
16808 else
16809 pdma_phys_sgl1 = 0;
16810 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
16811 status = lpfc_sli4_post_sgl(
16812 phba, lpfc_ncmd->dma_phys_sgl,
16813 pdma_phys_sgl1, cur_xritag);
16814 if (status) {
16815 /* Post error. Buffer unavailable. */
16816 lpfc_ncmd->flags |=
16817 LPFC_SBUF_NOT_POSTED;
16818 } else {
16819 /* Post success. Bffer available. */
16820 lpfc_ncmd->flags &=
16821 ~LPFC_SBUF_NOT_POSTED;
16822 lpfc_ncmd->status = IOSTAT_SUCCESS;
16823 num_posted++;
16825 /* success, put on NVME buffer sgl list */
16826 list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
16830 /* continue until a nembed page worth of sgls */
16831 if (post_cnt == 0)
16832 continue;
16834 /* post block of NVME buffer list sgls */
16835 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
16836 post_cnt);
16838 /* don't reset xirtag due to hole in xri block */
16839 if (block_cnt == 0)
16840 last_xritag = NO_XRI;
16842 /* reset NVME buffer post count for next round of posting */
16843 post_cnt = 0;
16845 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */
16846 while (!list_empty(&blck_nblist)) {
16847 list_remove_head(&blck_nblist, lpfc_ncmd,
16848 struct lpfc_io_buf, list);
16849 if (status) {
16850 /* Post error. Mark buffer unavailable. */
16851 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
16852 } else {
16853 /* Post success, Mark buffer available. */
16854 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
16855 lpfc_ncmd->status = IOSTAT_SUCCESS;
16856 num_posted++;
16858 list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
16861 /* Push NVME buffers with sgl posted to the available list */
16862 lpfc_io_buf_replenish(phba, &nvme_nblist);
16864 return num_posted;
16868 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
16869 * @phba: pointer to lpfc_hba struct that the frame was received on
16870 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16872 * This function checks the fields in the @fc_hdr to see if the FC frame is a
16873 * valid type of frame that the LPFC driver will handle. This function will
16874 * return a zero if the frame is a valid frame or a non zero value when the
16875 * frame does not pass the check.
16877 static int
16878 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
16880 /* make rctl_names static to save stack space */
16881 struct fc_vft_header *fc_vft_hdr;
16882 uint32_t *header = (uint32_t *) fc_hdr;
16884 switch (fc_hdr->fh_r_ctl) {
16885 case FC_RCTL_DD_UNCAT: /* uncategorized information */
16886 case FC_RCTL_DD_SOL_DATA: /* solicited data */
16887 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */
16888 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */
16889 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */
16890 case FC_RCTL_DD_DATA_DESC: /* data descriptor */
16891 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */
16892 case FC_RCTL_DD_CMD_STATUS: /* command status */
16893 case FC_RCTL_ELS_REQ: /* extended link services request */
16894 case FC_RCTL_ELS_REP: /* extended link services reply */
16895 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */
16896 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */
16897 case FC_RCTL_BA_NOP: /* basic link service NOP */
16898 case FC_RCTL_BA_ABTS: /* basic link service abort */
16899 case FC_RCTL_BA_RMC: /* remove connection */
16900 case FC_RCTL_BA_ACC: /* basic accept */
16901 case FC_RCTL_BA_RJT: /* basic reject */
16902 case FC_RCTL_BA_PRMT:
16903 case FC_RCTL_ACK_1: /* acknowledge_1 */
16904 case FC_RCTL_ACK_0: /* acknowledge_0 */
16905 case FC_RCTL_P_RJT: /* port reject */
16906 case FC_RCTL_F_RJT: /* fabric reject */
16907 case FC_RCTL_P_BSY: /* port busy */
16908 case FC_RCTL_F_BSY: /* fabric busy to data frame */
16909 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */
16910 case FC_RCTL_LCR: /* link credit reset */
16911 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
16912 case FC_RCTL_END: /* end */
16913 break;
16914 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */
16915 fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
16916 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
16917 return lpfc_fc_frame_check(phba, fc_hdr);
16918 default:
16919 goto drop;
16922 switch (fc_hdr->fh_type) {
16923 case FC_TYPE_BLS:
16924 case FC_TYPE_ELS:
16925 case FC_TYPE_FCP:
16926 case FC_TYPE_CT:
16927 case FC_TYPE_NVME:
16928 break;
16929 case FC_TYPE_IP:
16930 case FC_TYPE_ILS:
16931 default:
16932 goto drop;
16935 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
16936 "2538 Received frame rctl:x%x, type:x%x, "
16937 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
16938 fc_hdr->fh_r_ctl, fc_hdr->fh_type,
16939 be32_to_cpu(header[0]), be32_to_cpu(header[1]),
16940 be32_to_cpu(header[2]), be32_to_cpu(header[3]),
16941 be32_to_cpu(header[4]), be32_to_cpu(header[5]),
16942 be32_to_cpu(header[6]));
16943 return 0;
16944 drop:
16945 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
16946 "2539 Dropped frame rctl:x%x type:x%x\n",
16947 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
16948 return 1;
16952 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
16953 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16955 * This function processes the FC header to retrieve the VFI from the VF
16956 * header, if one exists. This function will return the VFI if one exists
16957 * or 0 if no VSAN Header exists.
16959 static uint32_t
16960 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
16962 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
16964 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
16965 return 0;
16966 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
16970 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
16971 * @phba: Pointer to the HBA structure to search for the vport on
16972 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16973 * @fcfi: The FC Fabric ID that the frame came from
16975 * This function searches the @phba for a vport that matches the content of the
16976 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
16977 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
16978 * returns the matching vport pointer or NULL if unable to match frame to a
16979 * vport.
16981 static struct lpfc_vport *
16982 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
16983 uint16_t fcfi, uint32_t did)
16985 struct lpfc_vport **vports;
16986 struct lpfc_vport *vport = NULL;
16987 int i;
16989 if (did == Fabric_DID)
16990 return phba->pport;
16991 if ((phba->pport->fc_flag & FC_PT2PT) &&
16992 !(phba->link_state == LPFC_HBA_READY))
16993 return phba->pport;
16995 vports = lpfc_create_vport_work_array(phba);
16996 if (vports != NULL) {
16997 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
16998 if (phba->fcf.fcfi == fcfi &&
16999 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
17000 vports[i]->fc_myDID == did) {
17001 vport = vports[i];
17002 break;
17006 lpfc_destroy_vport_work_array(phba, vports);
17007 return vport;
17011 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
17012 * @vport: The vport to work on.
17014 * This function updates the receive sequence time stamp for this vport. The
17015 * receive sequence time stamp indicates the time that the last frame of the
17016 * the sequence that has been idle for the longest amount of time was received.
17017 * the driver uses this time stamp to indicate if any received sequences have
17018 * timed out.
17020 static void
17021 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
17023 struct lpfc_dmabuf *h_buf;
17024 struct hbq_dmabuf *dmabuf = NULL;
17026 /* get the oldest sequence on the rcv list */
17027 h_buf = list_get_first(&vport->rcv_buffer_list,
17028 struct lpfc_dmabuf, list);
17029 if (!h_buf)
17030 return;
17031 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17032 vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
17036 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
17037 * @vport: The vport that the received sequences were sent to.
17039 * This function cleans up all outstanding received sequences. This is called
17040 * by the driver when a link event or user action invalidates all the received
17041 * sequences.
17043 void
17044 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
17046 struct lpfc_dmabuf *h_buf, *hnext;
17047 struct lpfc_dmabuf *d_buf, *dnext;
17048 struct hbq_dmabuf *dmabuf = NULL;
17050 /* start with the oldest sequence on the rcv list */
17051 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17052 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17053 list_del_init(&dmabuf->hbuf.list);
17054 list_for_each_entry_safe(d_buf, dnext,
17055 &dmabuf->dbuf.list, list) {
17056 list_del_init(&d_buf->list);
17057 lpfc_in_buf_free(vport->phba, d_buf);
17059 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17064 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
17065 * @vport: The vport that the received sequences were sent to.
17067 * This function determines whether any received sequences have timed out by
17068 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
17069 * indicates that there is at least one timed out sequence this routine will
17070 * go through the received sequences one at a time from most inactive to most
17071 * active to determine which ones need to be cleaned up. Once it has determined
17072 * that a sequence needs to be cleaned up it will simply free up the resources
17073 * without sending an abort.
17075 void
17076 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
17078 struct lpfc_dmabuf *h_buf, *hnext;
17079 struct lpfc_dmabuf *d_buf, *dnext;
17080 struct hbq_dmabuf *dmabuf = NULL;
17081 unsigned long timeout;
17082 int abort_count = 0;
17084 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17085 vport->rcv_buffer_time_stamp);
17086 if (list_empty(&vport->rcv_buffer_list) ||
17087 time_before(jiffies, timeout))
17088 return;
17089 /* start with the oldest sequence on the rcv list */
17090 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17091 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17092 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17093 dmabuf->time_stamp);
17094 if (time_before(jiffies, timeout))
17095 break;
17096 abort_count++;
17097 list_del_init(&dmabuf->hbuf.list);
17098 list_for_each_entry_safe(d_buf, dnext,
17099 &dmabuf->dbuf.list, list) {
17100 list_del_init(&d_buf->list);
17101 lpfc_in_buf_free(vport->phba, d_buf);
17103 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17105 if (abort_count)
17106 lpfc_update_rcv_time_stamp(vport);
17110 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
17111 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
17113 * This function searches through the existing incomplete sequences that have
17114 * been sent to this @vport. If the frame matches one of the incomplete
17115 * sequences then the dbuf in the @dmabuf is added to the list of frames that
17116 * make up that sequence. If no sequence is found that matches this frame then
17117 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
17118 * This function returns a pointer to the first dmabuf in the sequence list that
17119 * the frame was linked to.
17121 static struct hbq_dmabuf *
17122 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17124 struct fc_frame_header *new_hdr;
17125 struct fc_frame_header *temp_hdr;
17126 struct lpfc_dmabuf *d_buf;
17127 struct lpfc_dmabuf *h_buf;
17128 struct hbq_dmabuf *seq_dmabuf = NULL;
17129 struct hbq_dmabuf *temp_dmabuf = NULL;
17130 uint8_t found = 0;
17132 INIT_LIST_HEAD(&dmabuf->dbuf.list);
17133 dmabuf->time_stamp = jiffies;
17134 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17136 /* Use the hdr_buf to find the sequence that this frame belongs to */
17137 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17138 temp_hdr = (struct fc_frame_header *)h_buf->virt;
17139 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17140 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17141 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17142 continue;
17143 /* found a pending sequence that matches this frame */
17144 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17145 break;
17147 if (!seq_dmabuf) {
17149 * This indicates first frame received for this sequence.
17150 * Queue the buffer on the vport's rcv_buffer_list.
17152 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17153 lpfc_update_rcv_time_stamp(vport);
17154 return dmabuf;
17156 temp_hdr = seq_dmabuf->hbuf.virt;
17157 if (be16_to_cpu(new_hdr->fh_seq_cnt) <
17158 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17159 list_del_init(&seq_dmabuf->hbuf.list);
17160 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17161 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17162 lpfc_update_rcv_time_stamp(vport);
17163 return dmabuf;
17165 /* move this sequence to the tail to indicate a young sequence */
17166 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
17167 seq_dmabuf->time_stamp = jiffies;
17168 lpfc_update_rcv_time_stamp(vport);
17169 if (list_empty(&seq_dmabuf->dbuf.list)) {
17170 temp_hdr = dmabuf->hbuf.virt;
17171 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17172 return seq_dmabuf;
17174 /* find the correct place in the sequence to insert this frame */
17175 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
17176 while (!found) {
17177 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17178 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
17180 * If the frame's sequence count is greater than the frame on
17181 * the list then insert the frame right after this frame
17183 if (be16_to_cpu(new_hdr->fh_seq_cnt) >
17184 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17185 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
17186 found = 1;
17187 break;
17190 if (&d_buf->list == &seq_dmabuf->dbuf.list)
17191 break;
17192 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
17195 if (found)
17196 return seq_dmabuf;
17197 return NULL;
17201 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
17202 * @vport: pointer to a vitural port
17203 * @dmabuf: pointer to a dmabuf that describes the FC sequence
17205 * This function tries to abort from the partially assembed sequence, described
17206 * by the information from basic abbort @dmabuf. It checks to see whether such
17207 * partially assembled sequence held by the driver. If so, it shall free up all
17208 * the frames from the partially assembled sequence.
17210 * Return
17211 * true -- if there is matching partially assembled sequence present and all
17212 * the frames freed with the sequence;
17213 * false -- if there is no matching partially assembled sequence present so
17214 * nothing got aborted in the lower layer driver
17216 static bool
17217 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
17218 struct hbq_dmabuf *dmabuf)
17220 struct fc_frame_header *new_hdr;
17221 struct fc_frame_header *temp_hdr;
17222 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
17223 struct hbq_dmabuf *seq_dmabuf = NULL;
17225 /* Use the hdr_buf to find the sequence that matches this frame */
17226 INIT_LIST_HEAD(&dmabuf->dbuf.list);
17227 INIT_LIST_HEAD(&dmabuf->hbuf.list);
17228 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17229 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17230 temp_hdr = (struct fc_frame_header *)h_buf->virt;
17231 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17232 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17233 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17234 continue;
17235 /* found a pending sequence that matches this frame */
17236 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17237 break;
17240 /* Free up all the frames from the partially assembled sequence */
17241 if (seq_dmabuf) {
17242 list_for_each_entry_safe(d_buf, n_buf,
17243 &seq_dmabuf->dbuf.list, list) {
17244 list_del_init(&d_buf->list);
17245 lpfc_in_buf_free(vport->phba, d_buf);
17247 return true;
17249 return false;
17253 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
17254 * @vport: pointer to a vitural port
17255 * @dmabuf: pointer to a dmabuf that describes the FC sequence
17257 * This function tries to abort from the assembed sequence from upper level
17258 * protocol, described by the information from basic abbort @dmabuf. It
17259 * checks to see whether such pending context exists at upper level protocol.
17260 * If so, it shall clean up the pending context.
17262 * Return
17263 * true -- if there is matching pending context of the sequence cleaned
17264 * at ulp;
17265 * false -- if there is no matching pending context of the sequence present
17266 * at ulp.
17268 static bool
17269 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17271 struct lpfc_hba *phba = vport->phba;
17272 int handled;
17274 /* Accepting abort at ulp with SLI4 only */
17275 if (phba->sli_rev < LPFC_SLI_REV4)
17276 return false;
17278 /* Register all caring upper level protocols to attend abort */
17279 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
17280 if (handled)
17281 return true;
17283 return false;
17287 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
17288 * @phba: Pointer to HBA context object.
17289 * @cmd_iocbq: pointer to the command iocbq structure.
17290 * @rsp_iocbq: pointer to the response iocbq structure.
17292 * This function handles the sequence abort response iocb command complete
17293 * event. It properly releases the memory allocated to the sequence abort
17294 * accept iocb.
17296 static void
17297 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
17298 struct lpfc_iocbq *cmd_iocbq,
17299 struct lpfc_iocbq *rsp_iocbq)
17301 struct lpfc_nodelist *ndlp;
17303 if (cmd_iocbq) {
17304 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
17305 lpfc_nlp_put(ndlp);
17306 lpfc_nlp_not_used(ndlp);
17307 lpfc_sli_release_iocbq(phba, cmd_iocbq);
17310 /* Failure means BLS ABORT RSP did not get delivered to remote node*/
17311 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
17312 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17313 "3154 BLS ABORT RSP failed, data: x%x/x%x\n",
17314 rsp_iocbq->iocb.ulpStatus,
17315 rsp_iocbq->iocb.un.ulpWord[4]);
17319 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
17320 * @phba: Pointer to HBA context object.
17321 * @xri: xri id in transaction.
17323 * This function validates the xri maps to the known range of XRIs allocated an
17324 * used by the driver.
17326 uint16_t
17327 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
17328 uint16_t xri)
17330 uint16_t i;
17332 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
17333 if (xri == phba->sli4_hba.xri_ids[i])
17334 return i;
17336 return NO_XRI;
17340 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
17341 * @phba: Pointer to HBA context object.
17342 * @fc_hdr: pointer to a FC frame header.
17344 * This function sends a basic response to a previous unsol sequence abort
17345 * event after aborting the sequence handling.
17347 void
17348 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
17349 struct fc_frame_header *fc_hdr, bool aborted)
17351 struct lpfc_hba *phba = vport->phba;
17352 struct lpfc_iocbq *ctiocb = NULL;
17353 struct lpfc_nodelist *ndlp;
17354 uint16_t oxid, rxid, xri, lxri;
17355 uint32_t sid, fctl;
17356 IOCB_t *icmd;
17357 int rc;
17359 if (!lpfc_is_link_up(phba))
17360 return;
17362 sid = sli4_sid_from_fc_hdr(fc_hdr);
17363 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
17364 rxid = be16_to_cpu(fc_hdr->fh_rx_id);
17366 ndlp = lpfc_findnode_did(vport, sid);
17367 if (!ndlp) {
17368 ndlp = lpfc_nlp_init(vport, sid);
17369 if (!ndlp) {
17370 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17371 "1268 Failed to allocate ndlp for "
17372 "oxid:x%x SID:x%x\n", oxid, sid);
17373 return;
17375 /* Put ndlp onto pport node list */
17376 lpfc_enqueue_node(vport, ndlp);
17377 } else if (!NLP_CHK_NODE_ACT(ndlp)) {
17378 /* re-setup ndlp without removing from node list */
17379 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE);
17380 if (!ndlp) {
17381 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17382 "3275 Failed to active ndlp found "
17383 "for oxid:x%x SID:x%x\n", oxid, sid);
17384 return;
17388 /* Allocate buffer for rsp iocb */
17389 ctiocb = lpfc_sli_get_iocbq(phba);
17390 if (!ctiocb)
17391 return;
17393 /* Extract the F_CTL field from FC_HDR */
17394 fctl = sli4_fctl_from_fc_hdr(fc_hdr);
17396 icmd = &ctiocb->iocb;
17397 icmd->un.xseq64.bdl.bdeSize = 0;
17398 icmd->un.xseq64.bdl.ulpIoTag32 = 0;
17399 icmd->un.xseq64.w5.hcsw.Dfctl = 0;
17400 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
17401 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
17403 /* Fill in the rest of iocb fields */
17404 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
17405 icmd->ulpBdeCount = 0;
17406 icmd->ulpLe = 1;
17407 icmd->ulpClass = CLASS3;
17408 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
17409 ctiocb->context1 = lpfc_nlp_get(ndlp);
17411 ctiocb->iocb_cmpl = NULL;
17412 ctiocb->vport = phba->pport;
17413 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
17414 ctiocb->sli4_lxritag = NO_XRI;
17415 ctiocb->sli4_xritag = NO_XRI;
17417 if (fctl & FC_FC_EX_CTX)
17418 /* Exchange responder sent the abort so we
17419 * own the oxid.
17421 xri = oxid;
17422 else
17423 xri = rxid;
17424 lxri = lpfc_sli4_xri_inrange(phba, xri);
17425 if (lxri != NO_XRI)
17426 lpfc_set_rrq_active(phba, ndlp, lxri,
17427 (xri == oxid) ? rxid : oxid, 0);
17428 /* For BA_ABTS from exchange responder, if the logical xri with
17429 * the oxid maps to the FCP XRI range, the port no longer has
17430 * that exchange context, send a BLS_RJT. Override the IOCB for
17431 * a BA_RJT.
17433 if ((fctl & FC_FC_EX_CTX) &&
17434 (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
17435 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17436 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17437 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17438 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17441 /* If BA_ABTS failed to abort a partially assembled receive sequence,
17442 * the driver no longer has that exchange, send a BLS_RJT. Override
17443 * the IOCB for a BA_RJT.
17445 if (aborted == false) {
17446 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17447 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17448 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17449 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17452 if (fctl & FC_FC_EX_CTX) {
17453 /* ABTS sent by responder to CT exchange, construction
17454 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
17455 * field and RX_ID from ABTS for RX_ID field.
17457 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
17458 } else {
17459 /* ABTS sent by initiator to CT exchange, construction
17460 * of BA_ACC will need to allocate a new XRI as for the
17461 * XRI_TAG field.
17463 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
17465 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
17466 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
17468 /* Xmit CT abts response on exchange <xid> */
17469 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
17470 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
17471 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
17473 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
17474 if (rc == IOCB_ERROR) {
17475 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
17476 "2925 Failed to issue CT ABTS RSP x%x on "
17477 "xri x%x, Data x%x\n",
17478 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
17479 phba->link_state);
17480 lpfc_nlp_put(ndlp);
17481 ctiocb->context1 = NULL;
17482 lpfc_sli_release_iocbq(phba, ctiocb);
17487 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
17488 * @vport: Pointer to the vport on which this sequence was received
17489 * @dmabuf: pointer to a dmabuf that describes the FC sequence
17491 * This function handles an SLI-4 unsolicited abort event. If the unsolicited
17492 * receive sequence is only partially assembed by the driver, it shall abort
17493 * the partially assembled frames for the sequence. Otherwise, if the
17494 * unsolicited receive sequence has been completely assembled and passed to
17495 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the
17496 * unsolicited sequence has been aborted. After that, it will issue a basic
17497 * accept to accept the abort.
17499 static void
17500 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
17501 struct hbq_dmabuf *dmabuf)
17503 struct lpfc_hba *phba = vport->phba;
17504 struct fc_frame_header fc_hdr;
17505 uint32_t fctl;
17506 bool aborted;
17508 /* Make a copy of fc_hdr before the dmabuf being released */
17509 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
17510 fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
17512 if (fctl & FC_FC_EX_CTX) {
17513 /* ABTS by responder to exchange, no cleanup needed */
17514 aborted = true;
17515 } else {
17516 /* ABTS by initiator to exchange, need to do cleanup */
17517 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
17518 if (aborted == false)
17519 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
17521 lpfc_in_buf_free(phba, &dmabuf->dbuf);
17523 if (phba->nvmet_support) {
17524 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
17525 return;
17528 /* Respond with BA_ACC or BA_RJT accordingly */
17529 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
17533 * lpfc_seq_complete - Indicates if a sequence is complete
17534 * @dmabuf: pointer to a dmabuf that describes the FC sequence
17536 * This function checks the sequence, starting with the frame described by
17537 * @dmabuf, to see if all the frames associated with this sequence are present.
17538 * the frames associated with this sequence are linked to the @dmabuf using the
17539 * dbuf list. This function looks for two major things. 1) That the first frame
17540 * has a sequence count of zero. 2) There is a frame with last frame of sequence
17541 * set. 3) That there are no holes in the sequence count. The function will
17542 * return 1 when the sequence is complete, otherwise it will return 0.
17544 static int
17545 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
17547 struct fc_frame_header *hdr;
17548 struct lpfc_dmabuf *d_buf;
17549 struct hbq_dmabuf *seq_dmabuf;
17550 uint32_t fctl;
17551 int seq_count = 0;
17553 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17554 /* make sure first fame of sequence has a sequence count of zero */
17555 if (hdr->fh_seq_cnt != seq_count)
17556 return 0;
17557 fctl = (hdr->fh_f_ctl[0] << 16 |
17558 hdr->fh_f_ctl[1] << 8 |
17559 hdr->fh_f_ctl[2]);
17560 /* If last frame of sequence we can return success. */
17561 if (fctl & FC_FC_END_SEQ)
17562 return 1;
17563 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
17564 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17565 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17566 /* If there is a hole in the sequence count then fail. */
17567 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
17568 return 0;
17569 fctl = (hdr->fh_f_ctl[0] << 16 |
17570 hdr->fh_f_ctl[1] << 8 |
17571 hdr->fh_f_ctl[2]);
17572 /* If last frame of sequence we can return success. */
17573 if (fctl & FC_FC_END_SEQ)
17574 return 1;
17576 return 0;
17580 * lpfc_prep_seq - Prep sequence for ULP processing
17581 * @vport: Pointer to the vport on which this sequence was received
17582 * @dmabuf: pointer to a dmabuf that describes the FC sequence
17584 * This function takes a sequence, described by a list of frames, and creates
17585 * a list of iocbq structures to describe the sequence. This iocbq list will be
17586 * used to issue to the generic unsolicited sequence handler. This routine
17587 * returns a pointer to the first iocbq in the list. If the function is unable
17588 * to allocate an iocbq then it throw out the received frames that were not
17589 * able to be described and return a pointer to the first iocbq. If unable to
17590 * allocate any iocbqs (including the first) this function will return NULL.
17592 static struct lpfc_iocbq *
17593 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
17595 struct hbq_dmabuf *hbq_buf;
17596 struct lpfc_dmabuf *d_buf, *n_buf;
17597 struct lpfc_iocbq *first_iocbq, *iocbq;
17598 struct fc_frame_header *fc_hdr;
17599 uint32_t sid;
17600 uint32_t len, tot_len;
17601 struct ulp_bde64 *pbde;
17603 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17604 /* remove from receive buffer list */
17605 list_del_init(&seq_dmabuf->hbuf.list);
17606 lpfc_update_rcv_time_stamp(vport);
17607 /* get the Remote Port's SID */
17608 sid = sli4_sid_from_fc_hdr(fc_hdr);
17609 tot_len = 0;
17610 /* Get an iocbq struct to fill in. */
17611 first_iocbq = lpfc_sli_get_iocbq(vport->phba);
17612 if (first_iocbq) {
17613 /* Initialize the first IOCB. */
17614 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
17615 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
17616 first_iocbq->vport = vport;
17618 /* Check FC Header to see what TYPE of frame we are rcv'ing */
17619 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
17620 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
17621 first_iocbq->iocb.un.rcvels.parmRo =
17622 sli4_did_from_fc_hdr(fc_hdr);
17623 first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
17624 } else
17625 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
17626 first_iocbq->iocb.ulpContext = NO_XRI;
17627 first_iocbq->iocb.unsli3.rcvsli3.ox_id =
17628 be16_to_cpu(fc_hdr->fh_ox_id);
17629 /* iocbq is prepped for internal consumption. Physical vpi. */
17630 first_iocbq->iocb.unsli3.rcvsli3.vpi =
17631 vport->phba->vpi_ids[vport->vpi];
17632 /* put the first buffer into the first IOCBq */
17633 tot_len = bf_get(lpfc_rcqe_length,
17634 &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
17636 first_iocbq->context2 = &seq_dmabuf->dbuf;
17637 first_iocbq->context3 = NULL;
17638 first_iocbq->iocb.ulpBdeCount = 1;
17639 if (tot_len > LPFC_DATA_BUF_SIZE)
17640 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17641 LPFC_DATA_BUF_SIZE;
17642 else
17643 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
17645 first_iocbq->iocb.un.rcvels.remoteID = sid;
17647 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17649 iocbq = first_iocbq;
17651 * Each IOCBq can have two Buffers assigned, so go through the list
17652 * of buffers for this sequence and save two buffers in each IOCBq
17654 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
17655 if (!iocbq) {
17656 lpfc_in_buf_free(vport->phba, d_buf);
17657 continue;
17659 if (!iocbq->context3) {
17660 iocbq->context3 = d_buf;
17661 iocbq->iocb.ulpBdeCount++;
17662 /* We need to get the size out of the right CQE */
17663 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17664 len = bf_get(lpfc_rcqe_length,
17665 &hbq_buf->cq_event.cqe.rcqe_cmpl);
17666 pbde = (struct ulp_bde64 *)
17667 &iocbq->iocb.unsli3.sli3Words[4];
17668 if (len > LPFC_DATA_BUF_SIZE)
17669 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
17670 else
17671 pbde->tus.f.bdeSize = len;
17673 iocbq->iocb.unsli3.rcvsli3.acc_len += len;
17674 tot_len += len;
17675 } else {
17676 iocbq = lpfc_sli_get_iocbq(vport->phba);
17677 if (!iocbq) {
17678 if (first_iocbq) {
17679 first_iocbq->iocb.ulpStatus =
17680 IOSTAT_FCP_RSP_ERROR;
17681 first_iocbq->iocb.un.ulpWord[4] =
17682 IOERR_NO_RESOURCES;
17684 lpfc_in_buf_free(vport->phba, d_buf);
17685 continue;
17687 /* We need to get the size out of the right CQE */
17688 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17689 len = bf_get(lpfc_rcqe_length,
17690 &hbq_buf->cq_event.cqe.rcqe_cmpl);
17691 iocbq->context2 = d_buf;
17692 iocbq->context3 = NULL;
17693 iocbq->iocb.ulpBdeCount = 1;
17694 if (len > LPFC_DATA_BUF_SIZE)
17695 iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17696 LPFC_DATA_BUF_SIZE;
17697 else
17698 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
17700 tot_len += len;
17701 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17703 iocbq->iocb.un.rcvels.remoteID = sid;
17704 list_add_tail(&iocbq->list, &first_iocbq->list);
17707 return first_iocbq;
17710 static void
17711 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
17712 struct hbq_dmabuf *seq_dmabuf)
17714 struct fc_frame_header *fc_hdr;
17715 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
17716 struct lpfc_hba *phba = vport->phba;
17718 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17719 iocbq = lpfc_prep_seq(vport, seq_dmabuf);
17720 if (!iocbq) {
17721 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17722 "2707 Ring %d handler: Failed to allocate "
17723 "iocb Rctl x%x Type x%x received\n",
17724 LPFC_ELS_RING,
17725 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17726 return;
17728 if (!lpfc_complete_unsol_iocb(phba,
17729 phba->sli4_hba.els_wq->pring,
17730 iocbq, fc_hdr->fh_r_ctl,
17731 fc_hdr->fh_type))
17732 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17733 "2540 Ring %d handler: unexpected Rctl "
17734 "x%x Type x%x received\n",
17735 LPFC_ELS_RING,
17736 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17738 /* Free iocb created in lpfc_prep_seq */
17739 list_for_each_entry_safe(curr_iocb, next_iocb,
17740 &iocbq->list, list) {
17741 list_del_init(&curr_iocb->list);
17742 lpfc_sli_release_iocbq(phba, curr_iocb);
17744 lpfc_sli_release_iocbq(phba, iocbq);
17747 static void
17748 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
17749 struct lpfc_iocbq *rspiocb)
17751 struct lpfc_dmabuf *pcmd = cmdiocb->context2;
17753 if (pcmd && pcmd->virt)
17754 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
17755 kfree(pcmd);
17756 lpfc_sli_release_iocbq(phba, cmdiocb);
17757 lpfc_drain_txq(phba);
17760 static void
17761 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
17762 struct hbq_dmabuf *dmabuf)
17764 struct fc_frame_header *fc_hdr;
17765 struct lpfc_hba *phba = vport->phba;
17766 struct lpfc_iocbq *iocbq = NULL;
17767 union lpfc_wqe *wqe;
17768 struct lpfc_dmabuf *pcmd = NULL;
17769 uint32_t frame_len;
17770 int rc;
17771 unsigned long iflags;
17773 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17774 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
17776 /* Send the received frame back */
17777 iocbq = lpfc_sli_get_iocbq(phba);
17778 if (!iocbq) {
17779 /* Queue cq event and wakeup worker thread to process it */
17780 spin_lock_irqsave(&phba->hbalock, iflags);
17781 list_add_tail(&dmabuf->cq_event.list,
17782 &phba->sli4_hba.sp_queue_event);
17783 phba->hba_flag |= HBA_SP_QUEUE_EVT;
17784 spin_unlock_irqrestore(&phba->hbalock, iflags);
17785 lpfc_worker_wake_up(phba);
17786 return;
17789 /* Allocate buffer for command payload */
17790 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
17791 if (pcmd)
17792 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
17793 &pcmd->phys);
17794 if (!pcmd || !pcmd->virt)
17795 goto exit;
17797 INIT_LIST_HEAD(&pcmd->list);
17799 /* copyin the payload */
17800 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
17802 /* fill in BDE's for command */
17803 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys);
17804 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys);
17805 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
17806 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len;
17808 iocbq->context2 = pcmd;
17809 iocbq->vport = vport;
17810 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK;
17811 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
17814 * Setup rest of the iocb as though it were a WQE
17815 * Build the SEND_FRAME WQE
17817 wqe = (union lpfc_wqe *)&iocbq->iocb;
17819 wqe->send_frame.frame_len = frame_len;
17820 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr));
17821 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1));
17822 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2));
17823 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3));
17824 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4));
17825 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5));
17827 iocbq->iocb.ulpCommand = CMD_SEND_FRAME;
17828 iocbq->iocb.ulpLe = 1;
17829 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl;
17830 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
17831 if (rc == IOCB_ERROR)
17832 goto exit;
17834 lpfc_in_buf_free(phba, &dmabuf->dbuf);
17835 return;
17837 exit:
17838 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
17839 "2023 Unable to process MDS loopback frame\n");
17840 if (pcmd && pcmd->virt)
17841 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
17842 kfree(pcmd);
17843 if (iocbq)
17844 lpfc_sli_release_iocbq(phba, iocbq);
17845 lpfc_in_buf_free(phba, &dmabuf->dbuf);
17849 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
17850 * @phba: Pointer to HBA context object.
17852 * This function is called with no lock held. This function processes all
17853 * the received buffers and gives it to upper layers when a received buffer
17854 * indicates that it is the final frame in the sequence. The interrupt
17855 * service routine processes received buffers at interrupt contexts.
17856 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
17857 * appropriate receive function when the final frame in a sequence is received.
17859 void
17860 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
17861 struct hbq_dmabuf *dmabuf)
17863 struct hbq_dmabuf *seq_dmabuf;
17864 struct fc_frame_header *fc_hdr;
17865 struct lpfc_vport *vport;
17866 uint32_t fcfi;
17867 uint32_t did;
17869 /* Process each received buffer */
17870 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17872 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
17873 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
17874 vport = phba->pport;
17875 /* Handle MDS Loopback frames */
17876 lpfc_sli4_handle_mds_loopback(vport, dmabuf);
17877 return;
17880 /* check to see if this a valid type of frame */
17881 if (lpfc_fc_frame_check(phba, fc_hdr)) {
17882 lpfc_in_buf_free(phba, &dmabuf->dbuf);
17883 return;
17886 if ((bf_get(lpfc_cqe_code,
17887 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
17888 fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
17889 &dmabuf->cq_event.cqe.rcqe_cmpl);
17890 else
17891 fcfi = bf_get(lpfc_rcqe_fcf_id,
17892 &dmabuf->cq_event.cqe.rcqe_cmpl);
17894 /* d_id this frame is directed to */
17895 did = sli4_did_from_fc_hdr(fc_hdr);
17897 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
17898 if (!vport) {
17899 /* throw out the frame */
17900 lpfc_in_buf_free(phba, &dmabuf->dbuf);
17901 return;
17904 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
17905 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
17906 (did != Fabric_DID)) {
17908 * Throw out the frame if we are not pt2pt.
17909 * The pt2pt protocol allows for discovery frames
17910 * to be received without a registered VPI.
17912 if (!(vport->fc_flag & FC_PT2PT) ||
17913 (phba->link_state == LPFC_HBA_READY)) {
17914 lpfc_in_buf_free(phba, &dmabuf->dbuf);
17915 return;
17919 /* Handle the basic abort sequence (BA_ABTS) event */
17920 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
17921 lpfc_sli4_handle_unsol_abort(vport, dmabuf);
17922 return;
17925 /* Link this frame */
17926 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
17927 if (!seq_dmabuf) {
17928 /* unable to add frame to vport - throw it out */
17929 lpfc_in_buf_free(phba, &dmabuf->dbuf);
17930 return;
17932 /* If not last frame in sequence continue processing frames. */
17933 if (!lpfc_seq_complete(seq_dmabuf))
17934 return;
17936 /* Send the complete sequence to the upper layer protocol */
17937 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
17941 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
17942 * @phba: pointer to lpfc hba data structure.
17944 * This routine is invoked to post rpi header templates to the
17945 * HBA consistent with the SLI-4 interface spec. This routine
17946 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
17947 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
17949 * This routine does not require any locks. It's usage is expected
17950 * to be driver load or reset recovery when the driver is
17951 * sequential.
17953 * Return codes
17954 * 0 - successful
17955 * -EIO - The mailbox failed to complete successfully.
17956 * When this error occurs, the driver is not guaranteed
17957 * to have any rpi regions posted to the device and
17958 * must either attempt to repost the regions or take a
17959 * fatal error.
17962 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
17964 struct lpfc_rpi_hdr *rpi_page;
17965 uint32_t rc = 0;
17966 uint16_t lrpi = 0;
17968 /* SLI4 ports that support extents do not require RPI headers. */
17969 if (!phba->sli4_hba.rpi_hdrs_in_use)
17970 goto exit;
17971 if (phba->sli4_hba.extents_in_use)
17972 return -EIO;
17974 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
17976 * Assign the rpi headers a physical rpi only if the driver
17977 * has not initialized those resources. A port reset only
17978 * needs the headers posted.
17980 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
17981 LPFC_RPI_RSRC_RDY)
17982 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
17984 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
17985 if (rc != MBX_SUCCESS) {
17986 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17987 "2008 Error %d posting all rpi "
17988 "headers\n", rc);
17989 rc = -EIO;
17990 break;
17994 exit:
17995 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
17996 LPFC_RPI_RSRC_RDY);
17997 return rc;
18001 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
18002 * @phba: pointer to lpfc hba data structure.
18003 * @rpi_page: pointer to the rpi memory region.
18005 * This routine is invoked to post a single rpi header to the
18006 * HBA consistent with the SLI-4 interface spec. This memory region
18007 * maps up to 64 rpi context regions.
18009 * Return codes
18010 * 0 - successful
18011 * -ENOMEM - No available memory
18012 * -EIO - The mailbox failed to complete successfully.
18015 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
18017 LPFC_MBOXQ_t *mboxq;
18018 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
18019 uint32_t rc = 0;
18020 uint32_t shdr_status, shdr_add_status;
18021 union lpfc_sli4_cfg_shdr *shdr;
18023 /* SLI4 ports that support extents do not require RPI headers. */
18024 if (!phba->sli4_hba.rpi_hdrs_in_use)
18025 return rc;
18026 if (phba->sli4_hba.extents_in_use)
18027 return -EIO;
18029 /* The port is notified of the header region via a mailbox command. */
18030 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18031 if (!mboxq) {
18032 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18033 "2001 Unable to allocate memory for issuing "
18034 "SLI_CONFIG_SPECIAL mailbox command\n");
18035 return -ENOMEM;
18038 /* Post all rpi memory regions to the port. */
18039 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
18040 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18041 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
18042 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
18043 sizeof(struct lpfc_sli4_cfg_mhdr),
18044 LPFC_SLI4_MBX_EMBED);
18047 /* Post the physical rpi to the port for this rpi header. */
18048 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
18049 rpi_page->start_rpi);
18050 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
18051 hdr_tmpl, rpi_page->page_count);
18053 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
18054 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
18055 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
18056 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
18057 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18058 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18059 if (rc != MBX_TIMEOUT)
18060 mempool_free(mboxq, phba->mbox_mem_pool);
18061 if (shdr_status || shdr_add_status || rc) {
18062 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18063 "2514 POST_RPI_HDR mailbox failed with "
18064 "status x%x add_status x%x, mbx status x%x\n",
18065 shdr_status, shdr_add_status, rc);
18066 rc = -ENXIO;
18067 } else {
18069 * The next_rpi stores the next logical module-64 rpi value used
18070 * to post physical rpis in subsequent rpi postings.
18072 spin_lock_irq(&phba->hbalock);
18073 phba->sli4_hba.next_rpi = rpi_page->next_rpi;
18074 spin_unlock_irq(&phba->hbalock);
18076 return rc;
18080 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
18081 * @phba: pointer to lpfc hba data structure.
18083 * This routine is invoked to post rpi header templates to the
18084 * HBA consistent with the SLI-4 interface spec. This routine
18085 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18086 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18088 * Returns
18089 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
18090 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
18093 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
18095 unsigned long rpi;
18096 uint16_t max_rpi, rpi_limit;
18097 uint16_t rpi_remaining, lrpi = 0;
18098 struct lpfc_rpi_hdr *rpi_hdr;
18099 unsigned long iflag;
18102 * Fetch the next logical rpi. Because this index is logical,
18103 * the driver starts at 0 each time.
18105 spin_lock_irqsave(&phba->hbalock, iflag);
18106 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
18107 rpi_limit = phba->sli4_hba.next_rpi;
18109 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
18110 if (rpi >= rpi_limit)
18111 rpi = LPFC_RPI_ALLOC_ERROR;
18112 else {
18113 set_bit(rpi, phba->sli4_hba.rpi_bmask);
18114 phba->sli4_hba.max_cfg_param.rpi_used++;
18115 phba->sli4_hba.rpi_count++;
18117 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
18118 "0001 rpi:%x max:%x lim:%x\n",
18119 (int) rpi, max_rpi, rpi_limit);
18122 * Don't try to allocate more rpi header regions if the device limit
18123 * has been exhausted.
18125 if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
18126 (phba->sli4_hba.rpi_count >= max_rpi)) {
18127 spin_unlock_irqrestore(&phba->hbalock, iflag);
18128 return rpi;
18132 * RPI header postings are not required for SLI4 ports capable of
18133 * extents.
18135 if (!phba->sli4_hba.rpi_hdrs_in_use) {
18136 spin_unlock_irqrestore(&phba->hbalock, iflag);
18137 return rpi;
18141 * If the driver is running low on rpi resources, allocate another
18142 * page now. Note that the next_rpi value is used because
18143 * it represents how many are actually in use whereas max_rpi notes
18144 * how many are supported max by the device.
18146 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
18147 spin_unlock_irqrestore(&phba->hbalock, iflag);
18148 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
18149 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
18150 if (!rpi_hdr) {
18151 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18152 "2002 Error Could not grow rpi "
18153 "count\n");
18154 } else {
18155 lrpi = rpi_hdr->start_rpi;
18156 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18157 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
18161 return rpi;
18165 * lpfc_sli4_free_rpi - Release an rpi for reuse.
18166 * @phba: pointer to lpfc hba data structure.
18168 * This routine is invoked to release an rpi to the pool of
18169 * available rpis maintained by the driver.
18171 static void
18172 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18174 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
18175 phba->sli4_hba.rpi_count--;
18176 phba->sli4_hba.max_cfg_param.rpi_used--;
18181 * lpfc_sli4_free_rpi - Release an rpi for reuse.
18182 * @phba: pointer to lpfc hba data structure.
18184 * This routine is invoked to release an rpi to the pool of
18185 * available rpis maintained by the driver.
18187 void
18188 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18190 spin_lock_irq(&phba->hbalock);
18191 __lpfc_sli4_free_rpi(phba, rpi);
18192 spin_unlock_irq(&phba->hbalock);
18196 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
18197 * @phba: pointer to lpfc hba data structure.
18199 * This routine is invoked to remove the memory region that
18200 * provided rpi via a bitmask.
18202 void
18203 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
18205 kfree(phba->sli4_hba.rpi_bmask);
18206 kfree(phba->sli4_hba.rpi_ids);
18207 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
18211 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
18212 * @phba: pointer to lpfc hba data structure.
18214 * This routine is invoked to remove the memory region that
18215 * provided rpi via a bitmask.
18218 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
18219 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
18221 LPFC_MBOXQ_t *mboxq;
18222 struct lpfc_hba *phba = ndlp->phba;
18223 int rc;
18225 /* The port is notified of the header region via a mailbox command. */
18226 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18227 if (!mboxq)
18228 return -ENOMEM;
18230 /* Post all rpi memory regions to the port. */
18231 lpfc_resume_rpi(mboxq, ndlp);
18232 if (cmpl) {
18233 mboxq->mbox_cmpl = cmpl;
18234 mboxq->ctx_buf = arg;
18235 mboxq->ctx_ndlp = ndlp;
18236 } else
18237 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18238 mboxq->vport = ndlp->vport;
18239 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18240 if (rc == MBX_NOT_FINISHED) {
18241 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18242 "2010 Resume RPI Mailbox failed "
18243 "status %d, mbxStatus x%x\n", rc,
18244 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18245 mempool_free(mboxq, phba->mbox_mem_pool);
18246 return -EIO;
18248 return 0;
18252 * lpfc_sli4_init_vpi - Initialize a vpi with the port
18253 * @vport: Pointer to the vport for which the vpi is being initialized
18255 * This routine is invoked to activate a vpi with the port.
18257 * Returns:
18258 * 0 success
18259 * -Evalue otherwise
18262 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
18264 LPFC_MBOXQ_t *mboxq;
18265 int rc = 0;
18266 int retval = MBX_SUCCESS;
18267 uint32_t mbox_tmo;
18268 struct lpfc_hba *phba = vport->phba;
18269 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18270 if (!mboxq)
18271 return -ENOMEM;
18272 lpfc_init_vpi(phba, mboxq, vport->vpi);
18273 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
18274 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
18275 if (rc != MBX_SUCCESS) {
18276 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI,
18277 "2022 INIT VPI Mailbox failed "
18278 "status %d, mbxStatus x%x\n", rc,
18279 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18280 retval = -EIO;
18282 if (rc != MBX_TIMEOUT)
18283 mempool_free(mboxq, vport->phba->mbox_mem_pool);
18285 return retval;
18289 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
18290 * @phba: pointer to lpfc hba data structure.
18291 * @mboxq: Pointer to mailbox object.
18293 * This routine is invoked to manually add a single FCF record. The caller
18294 * must pass a completely initialized FCF_Record. This routine takes
18295 * care of the nonembedded mailbox operations.
18297 static void
18298 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
18300 void *virt_addr;
18301 union lpfc_sli4_cfg_shdr *shdr;
18302 uint32_t shdr_status, shdr_add_status;
18304 virt_addr = mboxq->sge_array->addr[0];
18305 /* The IOCTL status is embedded in the mailbox subheader. */
18306 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
18307 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18308 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18310 if ((shdr_status || shdr_add_status) &&
18311 (shdr_status != STATUS_FCF_IN_USE))
18312 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18313 "2558 ADD_FCF_RECORD mailbox failed with "
18314 "status x%x add_status x%x\n",
18315 shdr_status, shdr_add_status);
18317 lpfc_sli4_mbox_cmd_free(phba, mboxq);
18321 * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
18322 * @phba: pointer to lpfc hba data structure.
18323 * @fcf_record: pointer to the initialized fcf record to add.
18325 * This routine is invoked to manually add a single FCF record. The caller
18326 * must pass a completely initialized FCF_Record. This routine takes
18327 * care of the nonembedded mailbox operations.
18330 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
18332 int rc = 0;
18333 LPFC_MBOXQ_t *mboxq;
18334 uint8_t *bytep;
18335 void *virt_addr;
18336 struct lpfc_mbx_sge sge;
18337 uint32_t alloc_len, req_len;
18338 uint32_t fcfindex;
18340 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18341 if (!mboxq) {
18342 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18343 "2009 Failed to allocate mbox for ADD_FCF cmd\n");
18344 return -ENOMEM;
18347 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
18348 sizeof(uint32_t);
18350 /* Allocate DMA memory and set up the non-embedded mailbox command */
18351 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18352 LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
18353 req_len, LPFC_SLI4_MBX_NEMBED);
18354 if (alloc_len < req_len) {
18355 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18356 "2523 Allocated DMA memory size (x%x) is "
18357 "less than the requested DMA memory "
18358 "size (x%x)\n", alloc_len, req_len);
18359 lpfc_sli4_mbox_cmd_free(phba, mboxq);
18360 return -ENOMEM;
18364 * Get the first SGE entry from the non-embedded DMA memory. This
18365 * routine only uses a single SGE.
18367 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
18368 virt_addr = mboxq->sge_array->addr[0];
18370 * Configure the FCF record for FCFI 0. This is the driver's
18371 * hardcoded default and gets used in nonFIP mode.
18373 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
18374 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
18375 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
18378 * Copy the fcf_index and the FCF Record Data. The data starts after
18379 * the FCoE header plus word10. The data copy needs to be endian
18380 * correct.
18382 bytep += sizeof(uint32_t);
18383 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
18384 mboxq->vport = phba->pport;
18385 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
18386 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18387 if (rc == MBX_NOT_FINISHED) {
18388 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18389 "2515 ADD_FCF_RECORD mailbox failed with "
18390 "status 0x%x\n", rc);
18391 lpfc_sli4_mbox_cmd_free(phba, mboxq);
18392 rc = -EIO;
18393 } else
18394 rc = 0;
18396 return rc;
18400 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
18401 * @phba: pointer to lpfc hba data structure.
18402 * @fcf_record: pointer to the fcf record to write the default data.
18403 * @fcf_index: FCF table entry index.
18405 * This routine is invoked to build the driver's default FCF record. The
18406 * values used are hardcoded. This routine handles memory initialization.
18409 void
18410 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
18411 struct fcf_record *fcf_record,
18412 uint16_t fcf_index)
18414 memset(fcf_record, 0, sizeof(struct fcf_record));
18415 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
18416 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
18417 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
18418 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
18419 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
18420 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
18421 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
18422 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
18423 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
18424 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
18425 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
18426 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
18427 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
18428 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
18429 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
18430 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
18431 LPFC_FCF_FPMA | LPFC_FCF_SPMA);
18432 /* Set the VLAN bit map */
18433 if (phba->valid_vlan) {
18434 fcf_record->vlan_bitmap[phba->vlan_id / 8]
18435 = 1 << (phba->vlan_id % 8);
18440 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
18441 * @phba: pointer to lpfc hba data structure.
18442 * @fcf_index: FCF table entry offset.
18444 * This routine is invoked to scan the entire FCF table by reading FCF
18445 * record and processing it one at a time starting from the @fcf_index
18446 * for initial FCF discovery or fast FCF failover rediscovery.
18448 * Return 0 if the mailbox command is submitted successfully, none 0
18449 * otherwise.
18452 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18454 int rc = 0, error;
18455 LPFC_MBOXQ_t *mboxq;
18457 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
18458 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
18459 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18460 if (!mboxq) {
18461 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18462 "2000 Failed to allocate mbox for "
18463 "READ_FCF cmd\n");
18464 error = -ENOMEM;
18465 goto fail_fcf_scan;
18467 /* Construct the read FCF record mailbox command */
18468 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18469 if (rc) {
18470 error = -EINVAL;
18471 goto fail_fcf_scan;
18473 /* Issue the mailbox command asynchronously */
18474 mboxq->vport = phba->pport;
18475 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
18477 spin_lock_irq(&phba->hbalock);
18478 phba->hba_flag |= FCF_TS_INPROG;
18479 spin_unlock_irq(&phba->hbalock);
18481 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18482 if (rc == MBX_NOT_FINISHED)
18483 error = -EIO;
18484 else {
18485 /* Reset eligible FCF count for new scan */
18486 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
18487 phba->fcf.eligible_fcf_cnt = 0;
18488 error = 0;
18490 fail_fcf_scan:
18491 if (error) {
18492 if (mboxq)
18493 lpfc_sli4_mbox_cmd_free(phba, mboxq);
18494 /* FCF scan failed, clear FCF_TS_INPROG flag */
18495 spin_lock_irq(&phba->hbalock);
18496 phba->hba_flag &= ~FCF_TS_INPROG;
18497 spin_unlock_irq(&phba->hbalock);
18499 return error;
18503 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
18504 * @phba: pointer to lpfc hba data structure.
18505 * @fcf_index: FCF table entry offset.
18507 * This routine is invoked to read an FCF record indicated by @fcf_index
18508 * and to use it for FLOGI roundrobin FCF failover.
18510 * Return 0 if the mailbox command is submitted successfully, none 0
18511 * otherwise.
18514 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18516 int rc = 0, error;
18517 LPFC_MBOXQ_t *mboxq;
18519 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18520 if (!mboxq) {
18521 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18522 "2763 Failed to allocate mbox for "
18523 "READ_FCF cmd\n");
18524 error = -ENOMEM;
18525 goto fail_fcf_read;
18527 /* Construct the read FCF record mailbox command */
18528 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18529 if (rc) {
18530 error = -EINVAL;
18531 goto fail_fcf_read;
18533 /* Issue the mailbox command asynchronously */
18534 mboxq->vport = phba->pport;
18535 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
18536 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18537 if (rc == MBX_NOT_FINISHED)
18538 error = -EIO;
18539 else
18540 error = 0;
18542 fail_fcf_read:
18543 if (error && mboxq)
18544 lpfc_sli4_mbox_cmd_free(phba, mboxq);
18545 return error;
18549 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
18550 * @phba: pointer to lpfc hba data structure.
18551 * @fcf_index: FCF table entry offset.
18553 * This routine is invoked to read an FCF record indicated by @fcf_index to
18554 * determine whether it's eligible for FLOGI roundrobin failover list.
18556 * Return 0 if the mailbox command is submitted successfully, none 0
18557 * otherwise.
18560 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18562 int rc = 0, error;
18563 LPFC_MBOXQ_t *mboxq;
18565 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18566 if (!mboxq) {
18567 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18568 "2758 Failed to allocate mbox for "
18569 "READ_FCF cmd\n");
18570 error = -ENOMEM;
18571 goto fail_fcf_read;
18573 /* Construct the read FCF record mailbox command */
18574 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18575 if (rc) {
18576 error = -EINVAL;
18577 goto fail_fcf_read;
18579 /* Issue the mailbox command asynchronously */
18580 mboxq->vport = phba->pport;
18581 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
18582 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18583 if (rc == MBX_NOT_FINISHED)
18584 error = -EIO;
18585 else
18586 error = 0;
18588 fail_fcf_read:
18589 if (error && mboxq)
18590 lpfc_sli4_mbox_cmd_free(phba, mboxq);
18591 return error;
18595 * lpfc_check_next_fcf_pri_level
18596 * phba pointer to the lpfc_hba struct for this port.
18597 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
18598 * routine when the rr_bmask is empty. The FCF indecies are put into the
18599 * rr_bmask based on their priority level. Starting from the highest priority
18600 * to the lowest. The most likely FCF candidate will be in the highest
18601 * priority group. When this routine is called it searches the fcf_pri list for
18602 * next lowest priority group and repopulates the rr_bmask with only those
18603 * fcf_indexes.
18604 * returns:
18605 * 1=success 0=failure
18607 static int
18608 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
18610 uint16_t next_fcf_pri;
18611 uint16_t last_index;
18612 struct lpfc_fcf_pri *fcf_pri;
18613 int rc;
18614 int ret = 0;
18616 last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
18617 LPFC_SLI4_FCF_TBL_INDX_MAX);
18618 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18619 "3060 Last IDX %d\n", last_index);
18621 /* Verify the priority list has 2 or more entries */
18622 spin_lock_irq(&phba->hbalock);
18623 if (list_empty(&phba->fcf.fcf_pri_list) ||
18624 list_is_singular(&phba->fcf.fcf_pri_list)) {
18625 spin_unlock_irq(&phba->hbalock);
18626 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18627 "3061 Last IDX %d\n", last_index);
18628 return 0; /* Empty rr list */
18630 spin_unlock_irq(&phba->hbalock);
18632 next_fcf_pri = 0;
18634 * Clear the rr_bmask and set all of the bits that are at this
18635 * priority.
18637 memset(phba->fcf.fcf_rr_bmask, 0,
18638 sizeof(*phba->fcf.fcf_rr_bmask));
18639 spin_lock_irq(&phba->hbalock);
18640 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18641 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
18642 continue;
18644 * the 1st priority that has not FLOGI failed
18645 * will be the highest.
18647 if (!next_fcf_pri)
18648 next_fcf_pri = fcf_pri->fcf_rec.priority;
18649 spin_unlock_irq(&phba->hbalock);
18650 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18651 rc = lpfc_sli4_fcf_rr_index_set(phba,
18652 fcf_pri->fcf_rec.fcf_index);
18653 if (rc)
18654 return 0;
18656 spin_lock_irq(&phba->hbalock);
18659 * if next_fcf_pri was not set above and the list is not empty then
18660 * we have failed flogis on all of them. So reset flogi failed
18661 * and start at the beginning.
18663 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
18664 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18665 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
18667 * the 1st priority that has not FLOGI failed
18668 * will be the highest.
18670 if (!next_fcf_pri)
18671 next_fcf_pri = fcf_pri->fcf_rec.priority;
18672 spin_unlock_irq(&phba->hbalock);
18673 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18674 rc = lpfc_sli4_fcf_rr_index_set(phba,
18675 fcf_pri->fcf_rec.fcf_index);
18676 if (rc)
18677 return 0;
18679 spin_lock_irq(&phba->hbalock);
18681 } else
18682 ret = 1;
18683 spin_unlock_irq(&phba->hbalock);
18685 return ret;
18688 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
18689 * @phba: pointer to lpfc hba data structure.
18691 * This routine is to get the next eligible FCF record index in a round
18692 * robin fashion. If the next eligible FCF record index equals to the
18693 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
18694 * shall be returned, otherwise, the next eligible FCF record's index
18695 * shall be returned.
18697 uint16_t
18698 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
18700 uint16_t next_fcf_index;
18702 initial_priority:
18703 /* Search start from next bit of currently registered FCF index */
18704 next_fcf_index = phba->fcf.current_rec.fcf_indx;
18706 next_priority:
18707 /* Determine the next fcf index to check */
18708 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
18709 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18710 LPFC_SLI4_FCF_TBL_INDX_MAX,
18711 next_fcf_index);
18713 /* Wrap around condition on phba->fcf.fcf_rr_bmask */
18714 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18716 * If we have wrapped then we need to clear the bits that
18717 * have been tested so that we can detect when we should
18718 * change the priority level.
18720 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18721 LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
18725 /* Check roundrobin failover list empty condition */
18726 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
18727 next_fcf_index == phba->fcf.current_rec.fcf_indx) {
18729 * If next fcf index is not found check if there are lower
18730 * Priority level fcf's in the fcf_priority list.
18731 * Set up the rr_bmask with all of the avaiable fcf bits
18732 * at that level and continue the selection process.
18734 if (lpfc_check_next_fcf_pri_level(phba))
18735 goto initial_priority;
18736 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
18737 "2844 No roundrobin failover FCF available\n");
18739 return LPFC_FCOE_FCF_NEXT_NONE;
18742 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
18743 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
18744 LPFC_FCF_FLOGI_FAILED) {
18745 if (list_is_singular(&phba->fcf.fcf_pri_list))
18746 return LPFC_FCOE_FCF_NEXT_NONE;
18748 goto next_priority;
18751 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18752 "2845 Get next roundrobin failover FCF (x%x)\n",
18753 next_fcf_index);
18755 return next_fcf_index;
18759 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
18760 * @phba: pointer to lpfc hba data structure.
18762 * This routine sets the FCF record index in to the eligible bmask for
18763 * roundrobin failover search. It checks to make sure that the index
18764 * does not go beyond the range of the driver allocated bmask dimension
18765 * before setting the bit.
18767 * Returns 0 if the index bit successfully set, otherwise, it returns
18768 * -EINVAL.
18771 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
18773 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18774 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18775 "2610 FCF (x%x) reached driver's book "
18776 "keeping dimension:x%x\n",
18777 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
18778 return -EINVAL;
18780 /* Set the eligible FCF record index bmask */
18781 set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
18783 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18784 "2790 Set FCF (x%x) to roundrobin FCF failover "
18785 "bmask\n", fcf_index);
18787 return 0;
18791 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
18792 * @phba: pointer to lpfc hba data structure.
18794 * This routine clears the FCF record index from the eligible bmask for
18795 * roundrobin failover search. It checks to make sure that the index
18796 * does not go beyond the range of the driver allocated bmask dimension
18797 * before clearing the bit.
18799 void
18800 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
18802 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
18803 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18804 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18805 "2762 FCF (x%x) reached driver's book "
18806 "keeping dimension:x%x\n",
18807 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
18808 return;
18810 /* Clear the eligible FCF record index bmask */
18811 spin_lock_irq(&phba->hbalock);
18812 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
18813 list) {
18814 if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
18815 list_del_init(&fcf_pri->list);
18816 break;
18819 spin_unlock_irq(&phba->hbalock);
18820 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
18822 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18823 "2791 Clear FCF (x%x) from roundrobin failover "
18824 "bmask\n", fcf_index);
18828 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
18829 * @phba: pointer to lpfc hba data structure.
18831 * This routine is the completion routine for the rediscover FCF table mailbox
18832 * command. If the mailbox command returned failure, it will try to stop the
18833 * FCF rediscover wait timer.
18835 static void
18836 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
18838 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
18839 uint32_t shdr_status, shdr_add_status;
18841 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
18843 shdr_status = bf_get(lpfc_mbox_hdr_status,
18844 &redisc_fcf->header.cfg_shdr.response);
18845 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
18846 &redisc_fcf->header.cfg_shdr.response);
18847 if (shdr_status || shdr_add_status) {
18848 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18849 "2746 Requesting for FCF rediscovery failed "
18850 "status x%x add_status x%x\n",
18851 shdr_status, shdr_add_status);
18852 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
18853 spin_lock_irq(&phba->hbalock);
18854 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
18855 spin_unlock_irq(&phba->hbalock);
18857 * CVL event triggered FCF rediscover request failed,
18858 * last resort to re-try current registered FCF entry.
18860 lpfc_retry_pport_discovery(phba);
18861 } else {
18862 spin_lock_irq(&phba->hbalock);
18863 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
18864 spin_unlock_irq(&phba->hbalock);
18866 * DEAD FCF event triggered FCF rediscover request
18867 * failed, last resort to fail over as a link down
18868 * to FCF registration.
18870 lpfc_sli4_fcf_dead_failthrough(phba);
18872 } else {
18873 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18874 "2775 Start FCF rediscover quiescent timer\n");
18876 * Start FCF rediscovery wait timer for pending FCF
18877 * before rescan FCF record table.
18879 lpfc_fcf_redisc_wait_start_timer(phba);
18882 mempool_free(mbox, phba->mbox_mem_pool);
18886 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
18887 * @phba: pointer to lpfc hba data structure.
18889 * This routine is invoked to request for rediscovery of the entire FCF table
18890 * by the port.
18893 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
18895 LPFC_MBOXQ_t *mbox;
18896 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
18897 int rc, length;
18899 /* Cancel retry delay timers to all vports before FCF rediscover */
18900 lpfc_cancel_all_vport_retry_delay_timer(phba);
18902 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18903 if (!mbox) {
18904 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18905 "2745 Failed to allocate mbox for "
18906 "requesting FCF rediscover.\n");
18907 return -ENOMEM;
18910 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
18911 sizeof(struct lpfc_sli4_cfg_mhdr));
18912 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18913 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
18914 length, LPFC_SLI4_MBX_EMBED);
18916 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
18917 /* Set count to 0 for invalidating the entire FCF database */
18918 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
18920 /* Issue the mailbox command asynchronously */
18921 mbox->vport = phba->pport;
18922 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
18923 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
18925 if (rc == MBX_NOT_FINISHED) {
18926 mempool_free(mbox, phba->mbox_mem_pool);
18927 return -EIO;
18929 return 0;
18933 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
18934 * @phba: pointer to lpfc hba data structure.
18936 * This function is the failover routine as a last resort to the FCF DEAD
18937 * event when driver failed to perform fast FCF failover.
18939 void
18940 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
18942 uint32_t link_state;
18945 * Last resort as FCF DEAD event failover will treat this as
18946 * a link down, but save the link state because we don't want
18947 * it to be changed to Link Down unless it is already down.
18949 link_state = phba->link_state;
18950 lpfc_linkdown(phba);
18951 phba->link_state = link_state;
18953 /* Unregister FCF if no devices connected to it */
18954 lpfc_unregister_unused_fcf(phba);
18958 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
18959 * @phba: pointer to lpfc hba data structure.
18960 * @rgn23_data: pointer to configure region 23 data.
18962 * This function gets SLI3 port configure region 23 data through memory dump
18963 * mailbox command. When it successfully retrieves data, the size of the data
18964 * will be returned, otherwise, 0 will be returned.
18966 static uint32_t
18967 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
18969 LPFC_MBOXQ_t *pmb = NULL;
18970 MAILBOX_t *mb;
18971 uint32_t offset = 0;
18972 int rc;
18974 if (!rgn23_data)
18975 return 0;
18977 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18978 if (!pmb) {
18979 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18980 "2600 failed to allocate mailbox memory\n");
18981 return 0;
18983 mb = &pmb->u.mb;
18985 do {
18986 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
18987 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
18989 if (rc != MBX_SUCCESS) {
18990 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
18991 "2601 failed to read config "
18992 "region 23, rc 0x%x Status 0x%x\n",
18993 rc, mb->mbxStatus);
18994 mb->un.varDmp.word_cnt = 0;
18997 * dump mem may return a zero when finished or we got a
18998 * mailbox error, either way we are done.
19000 if (mb->un.varDmp.word_cnt == 0)
19001 break;
19002 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
19003 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
19005 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
19006 rgn23_data + offset,
19007 mb->un.varDmp.word_cnt);
19008 offset += mb->un.varDmp.word_cnt;
19009 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
19011 mempool_free(pmb, phba->mbox_mem_pool);
19012 return offset;
19016 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
19017 * @phba: pointer to lpfc hba data structure.
19018 * @rgn23_data: pointer to configure region 23 data.
19020 * This function gets SLI4 port configure region 23 data through memory dump
19021 * mailbox command. When it successfully retrieves data, the size of the data
19022 * will be returned, otherwise, 0 will be returned.
19024 static uint32_t
19025 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19027 LPFC_MBOXQ_t *mboxq = NULL;
19028 struct lpfc_dmabuf *mp = NULL;
19029 struct lpfc_mqe *mqe;
19030 uint32_t data_length = 0;
19031 int rc;
19033 if (!rgn23_data)
19034 return 0;
19036 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19037 if (!mboxq) {
19038 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19039 "3105 failed to allocate mailbox memory\n");
19040 return 0;
19043 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
19044 goto out;
19045 mqe = &mboxq->u.mqe;
19046 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
19047 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19048 if (rc)
19049 goto out;
19050 data_length = mqe->un.mb_words[5];
19051 if (data_length == 0)
19052 goto out;
19053 if (data_length > DMP_RGN23_SIZE) {
19054 data_length = 0;
19055 goto out;
19057 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
19058 out:
19059 mempool_free(mboxq, phba->mbox_mem_pool);
19060 if (mp) {
19061 lpfc_mbuf_free(phba, mp->virt, mp->phys);
19062 kfree(mp);
19064 return data_length;
19068 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
19069 * @phba: pointer to lpfc hba data structure.
19071 * This function read region 23 and parse TLV for port status to
19072 * decide if the user disaled the port. If the TLV indicates the
19073 * port is disabled, the hba_flag is set accordingly.
19075 void
19076 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
19078 uint8_t *rgn23_data = NULL;
19079 uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
19080 uint32_t offset = 0;
19082 /* Get adapter Region 23 data */
19083 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
19084 if (!rgn23_data)
19085 goto out;
19087 if (phba->sli_rev < LPFC_SLI_REV4)
19088 data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
19089 else {
19090 if_type = bf_get(lpfc_sli_intf_if_type,
19091 &phba->sli4_hba.sli_intf);
19092 if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
19093 goto out;
19094 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
19097 if (!data_size)
19098 goto out;
19100 /* Check the region signature first */
19101 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
19102 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19103 "2619 Config region 23 has bad signature\n");
19104 goto out;
19106 offset += 4;
19108 /* Check the data structure version */
19109 if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
19110 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19111 "2620 Config region 23 has bad version\n");
19112 goto out;
19114 offset += 4;
19116 /* Parse TLV entries in the region */
19117 while (offset < data_size) {
19118 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
19119 break;
19121 * If the TLV is not driver specific TLV or driver id is
19122 * not linux driver id, skip the record.
19124 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
19125 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
19126 (rgn23_data[offset + 3] != 0)) {
19127 offset += rgn23_data[offset + 1] * 4 + 4;
19128 continue;
19131 /* Driver found a driver specific TLV in the config region */
19132 sub_tlv_len = rgn23_data[offset + 1] * 4;
19133 offset += 4;
19134 tlv_offset = 0;
19137 * Search for configured port state sub-TLV.
19139 while ((offset < data_size) &&
19140 (tlv_offset < sub_tlv_len)) {
19141 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
19142 offset += 4;
19143 tlv_offset += 4;
19144 break;
19146 if (rgn23_data[offset] != PORT_STE_TYPE) {
19147 offset += rgn23_data[offset + 1] * 4 + 4;
19148 tlv_offset += rgn23_data[offset + 1] * 4 + 4;
19149 continue;
19152 /* This HBA contains PORT_STE configured */
19153 if (!rgn23_data[offset + 2])
19154 phba->hba_flag |= LINK_DISABLED;
19156 goto out;
19160 out:
19161 kfree(rgn23_data);
19162 return;
19166 * lpfc_wr_object - write an object to the firmware
19167 * @phba: HBA structure that indicates port to create a queue on.
19168 * @dmabuf_list: list of dmabufs to write to the port.
19169 * @size: the total byte value of the objects to write to the port.
19170 * @offset: the current offset to be used to start the transfer.
19172 * This routine will create a wr_object mailbox command to send to the port.
19173 * the mailbox command will be constructed using the dma buffers described in
19174 * @dmabuf_list to create a list of BDEs. This routine will fill in as many
19175 * BDEs that the imbedded mailbox can support. The @offset variable will be
19176 * used to indicate the starting offset of the transfer and will also return
19177 * the offset after the write object mailbox has completed. @size is used to
19178 * determine the end of the object and whether the eof bit should be set.
19180 * Return 0 is successful and offset will contain the the new offset to use
19181 * for the next write.
19182 * Return negative value for error cases.
19185 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
19186 uint32_t size, uint32_t *offset)
19188 struct lpfc_mbx_wr_object *wr_object;
19189 LPFC_MBOXQ_t *mbox;
19190 int rc = 0, i = 0;
19191 uint32_t shdr_status, shdr_add_status, shdr_change_status;
19192 uint32_t mbox_tmo;
19193 struct lpfc_dmabuf *dmabuf;
19194 uint32_t written = 0;
19195 bool check_change_status = false;
19197 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19198 if (!mbox)
19199 return -ENOMEM;
19201 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
19202 LPFC_MBOX_OPCODE_WRITE_OBJECT,
19203 sizeof(struct lpfc_mbx_wr_object) -
19204 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
19206 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
19207 wr_object->u.request.write_offset = *offset;
19208 sprintf((uint8_t *)wr_object->u.request.object_name, "/");
19209 wr_object->u.request.object_name[0] =
19210 cpu_to_le32(wr_object->u.request.object_name[0]);
19211 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
19212 list_for_each_entry(dmabuf, dmabuf_list, list) {
19213 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
19214 break;
19215 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
19216 wr_object->u.request.bde[i].addrHigh =
19217 putPaddrHigh(dmabuf->phys);
19218 if (written + SLI4_PAGE_SIZE >= size) {
19219 wr_object->u.request.bde[i].tus.f.bdeSize =
19220 (size - written);
19221 written += (size - written);
19222 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
19223 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
19224 check_change_status = true;
19225 } else {
19226 wr_object->u.request.bde[i].tus.f.bdeSize =
19227 SLI4_PAGE_SIZE;
19228 written += SLI4_PAGE_SIZE;
19230 i++;
19232 wr_object->u.request.bde_count = i;
19233 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
19234 if (!phba->sli4_hba.intr_enable)
19235 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
19236 else {
19237 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
19238 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
19240 /* The IOCTL status is embedded in the mailbox subheader. */
19241 shdr_status = bf_get(lpfc_mbox_hdr_status,
19242 &wr_object->header.cfg_shdr.response);
19243 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19244 &wr_object->header.cfg_shdr.response);
19245 if (check_change_status) {
19246 shdr_change_status = bf_get(lpfc_wr_object_change_status,
19247 &wr_object->u.response);
19248 switch (shdr_change_status) {
19249 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
19250 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19251 "3198 Firmware write complete: System "
19252 "reboot required to instantiate\n");
19253 break;
19254 case (LPFC_CHANGE_STATUS_FW_RESET):
19255 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19256 "3199 Firmware write complete: Firmware"
19257 " reset required to instantiate\n");
19258 break;
19259 case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
19260 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19261 "3200 Firmware write complete: Port "
19262 "Migration or PCI Reset required to "
19263 "instantiate\n");
19264 break;
19265 case (LPFC_CHANGE_STATUS_PCI_RESET):
19266 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19267 "3201 Firmware write complete: PCI "
19268 "Reset required to instantiate\n");
19269 break;
19270 default:
19271 break;
19274 if (rc != MBX_TIMEOUT)
19275 mempool_free(mbox, phba->mbox_mem_pool);
19276 if (shdr_status || shdr_add_status || rc) {
19277 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19278 "3025 Write Object mailbox failed with "
19279 "status x%x add_status x%x, mbx status x%x\n",
19280 shdr_status, shdr_add_status, rc);
19281 rc = -ENXIO;
19282 *offset = shdr_add_status;
19283 } else
19284 *offset += wr_object->u.response.actual_write_length;
19285 return rc;
19289 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
19290 * @vport: pointer to vport data structure.
19292 * This function iterate through the mailboxq and clean up all REG_LOGIN
19293 * and REG_VPI mailbox commands associated with the vport. This function
19294 * is called when driver want to restart discovery of the vport due to
19295 * a Clear Virtual Link event.
19297 void
19298 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
19300 struct lpfc_hba *phba = vport->phba;
19301 LPFC_MBOXQ_t *mb, *nextmb;
19302 struct lpfc_dmabuf *mp;
19303 struct lpfc_nodelist *ndlp;
19304 struct lpfc_nodelist *act_mbx_ndlp = NULL;
19305 struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
19306 LIST_HEAD(mbox_cmd_list);
19307 uint8_t restart_loop;
19309 /* Clean up internally queued mailbox commands with the vport */
19310 spin_lock_irq(&phba->hbalock);
19311 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
19312 if (mb->vport != vport)
19313 continue;
19315 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19316 (mb->u.mb.mbxCommand != MBX_REG_VPI))
19317 continue;
19319 list_del(&mb->list);
19320 list_add_tail(&mb->list, &mbox_cmd_list);
19322 /* Clean up active mailbox command with the vport */
19323 mb = phba->sli.mbox_active;
19324 if (mb && (mb->vport == vport)) {
19325 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
19326 (mb->u.mb.mbxCommand == MBX_REG_VPI))
19327 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19328 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19329 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19330 /* Put reference count for delayed processing */
19331 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
19332 /* Unregister the RPI when mailbox complete */
19333 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19336 /* Cleanup any mailbox completions which are not yet processed */
19337 do {
19338 restart_loop = 0;
19339 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
19341 * If this mailox is already processed or it is
19342 * for another vport ignore it.
19344 if ((mb->vport != vport) ||
19345 (mb->mbox_flag & LPFC_MBX_IMED_UNREG))
19346 continue;
19348 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19349 (mb->u.mb.mbxCommand != MBX_REG_VPI))
19350 continue;
19352 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19353 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19354 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19355 /* Unregister the RPI when mailbox complete */
19356 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19357 restart_loop = 1;
19358 spin_unlock_irq(&phba->hbalock);
19359 spin_lock(shost->host_lock);
19360 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19361 spin_unlock(shost->host_lock);
19362 spin_lock_irq(&phba->hbalock);
19363 break;
19366 } while (restart_loop);
19368 spin_unlock_irq(&phba->hbalock);
19370 /* Release the cleaned-up mailbox commands */
19371 while (!list_empty(&mbox_cmd_list)) {
19372 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
19373 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19374 mp = (struct lpfc_dmabuf *)(mb->ctx_buf);
19375 if (mp) {
19376 __lpfc_mbuf_free(phba, mp->virt, mp->phys);
19377 kfree(mp);
19379 mb->ctx_buf = NULL;
19380 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19381 mb->ctx_ndlp = NULL;
19382 if (ndlp) {
19383 spin_lock(shost->host_lock);
19384 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19385 spin_unlock(shost->host_lock);
19386 lpfc_nlp_put(ndlp);
19389 mempool_free(mb, phba->mbox_mem_pool);
19392 /* Release the ndlp with the cleaned-up active mailbox command */
19393 if (act_mbx_ndlp) {
19394 spin_lock(shost->host_lock);
19395 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19396 spin_unlock(shost->host_lock);
19397 lpfc_nlp_put(act_mbx_ndlp);
19402 * lpfc_drain_txq - Drain the txq
19403 * @phba: Pointer to HBA context object.
19405 * This function attempt to submit IOCBs on the txq
19406 * to the adapter. For SLI4 adapters, the txq contains
19407 * ELS IOCBs that have been deferred because the there
19408 * are no SGLs. This congestion can occur with large
19409 * vport counts during node discovery.
19412 uint32_t
19413 lpfc_drain_txq(struct lpfc_hba *phba)
19415 LIST_HEAD(completions);
19416 struct lpfc_sli_ring *pring;
19417 struct lpfc_iocbq *piocbq = NULL;
19418 unsigned long iflags = 0;
19419 char *fail_msg = NULL;
19420 struct lpfc_sglq *sglq;
19421 union lpfc_wqe128 wqe;
19422 uint32_t txq_cnt = 0;
19423 struct lpfc_queue *wq;
19425 if (phba->link_flag & LS_MDS_LOOPBACK) {
19426 /* MDS WQE are posted only to first WQ*/
19427 wq = phba->sli4_hba.hdwq[0].fcp_wq;
19428 if (unlikely(!wq))
19429 return 0;
19430 pring = wq->pring;
19431 } else {
19432 wq = phba->sli4_hba.els_wq;
19433 if (unlikely(!wq))
19434 return 0;
19435 pring = lpfc_phba_elsring(phba);
19438 if (unlikely(!pring) || list_empty(&pring->txq))
19439 return 0;
19441 spin_lock_irqsave(&pring->ring_lock, iflags);
19442 list_for_each_entry(piocbq, &pring->txq, list) {
19443 txq_cnt++;
19446 if (txq_cnt > pring->txq_max)
19447 pring->txq_max = txq_cnt;
19449 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19451 while (!list_empty(&pring->txq)) {
19452 spin_lock_irqsave(&pring->ring_lock, iflags);
19454 piocbq = lpfc_sli_ringtx_get(phba, pring);
19455 if (!piocbq) {
19456 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19457 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19458 "2823 txq empty and txq_cnt is %d\n ",
19459 txq_cnt);
19460 break;
19462 sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
19463 if (!sglq) {
19464 __lpfc_sli_ringtx_put(phba, pring, piocbq);
19465 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19466 break;
19468 txq_cnt--;
19470 /* The xri and iocb resources secured,
19471 * attempt to issue request
19473 piocbq->sli4_lxritag = sglq->sli4_lxritag;
19474 piocbq->sli4_xritag = sglq->sli4_xritag;
19475 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
19476 fail_msg = "to convert bpl to sgl";
19477 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
19478 fail_msg = "to convert iocb to wqe";
19479 else if (lpfc_sli4_wq_put(wq, &wqe))
19480 fail_msg = " - Wq is full";
19481 else
19482 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
19484 if (fail_msg) {
19485 /* Failed means we can't issue and need to cancel */
19486 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19487 "2822 IOCB failed %s iotag 0x%x "
19488 "xri 0x%x\n",
19489 fail_msg,
19490 piocbq->iotag, piocbq->sli4_xritag);
19491 list_add_tail(&piocbq->list, &completions);
19493 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19496 /* Cancel all the IOCBs that cannot be issued */
19497 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
19498 IOERR_SLI_ABORTED);
19500 return txq_cnt;
19504 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
19505 * @phba: Pointer to HBA context object.
19506 * @pwqe: Pointer to command WQE.
19507 * @sglq: Pointer to the scatter gather queue object.
19509 * This routine converts the bpl or bde that is in the WQE
19510 * to a sgl list for the sli4 hardware. The physical address
19511 * of the bpl/bde is converted back to a virtual address.
19512 * If the WQE contains a BPL then the list of BDE's is
19513 * converted to sli4_sge's. If the WQE contains a single
19514 * BDE then it is converted to a single sli_sge.
19515 * The WQE is still in cpu endianness so the contents of
19516 * the bpl can be used without byte swapping.
19518 * Returns valid XRI = Success, NO_XRI = Failure.
19520 static uint16_t
19521 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
19522 struct lpfc_sglq *sglq)
19524 uint16_t xritag = NO_XRI;
19525 struct ulp_bde64 *bpl = NULL;
19526 struct ulp_bde64 bde;
19527 struct sli4_sge *sgl = NULL;
19528 struct lpfc_dmabuf *dmabuf;
19529 union lpfc_wqe128 *wqe;
19530 int numBdes = 0;
19531 int i = 0;
19532 uint32_t offset = 0; /* accumulated offset in the sg request list */
19533 int inbound = 0; /* number of sg reply entries inbound from firmware */
19534 uint32_t cmd;
19536 if (!pwqeq || !sglq)
19537 return xritag;
19539 sgl = (struct sli4_sge *)sglq->sgl;
19540 wqe = &pwqeq->wqe;
19541 pwqeq->iocb.ulpIoTag = pwqeq->iotag;
19543 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
19544 if (cmd == CMD_XMIT_BLS_RSP64_WQE)
19545 return sglq->sli4_xritag;
19546 numBdes = pwqeq->rsvd2;
19547 if (numBdes) {
19548 /* The addrHigh and addrLow fields within the WQE
19549 * have not been byteswapped yet so there is no
19550 * need to swap them back.
19552 if (pwqeq->context3)
19553 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
19554 else
19555 return xritag;
19557 bpl = (struct ulp_bde64 *)dmabuf->virt;
19558 if (!bpl)
19559 return xritag;
19561 for (i = 0; i < numBdes; i++) {
19562 /* Should already be byte swapped. */
19563 sgl->addr_hi = bpl->addrHigh;
19564 sgl->addr_lo = bpl->addrLow;
19566 sgl->word2 = le32_to_cpu(sgl->word2);
19567 if ((i+1) == numBdes)
19568 bf_set(lpfc_sli4_sge_last, sgl, 1);
19569 else
19570 bf_set(lpfc_sli4_sge_last, sgl, 0);
19571 /* swap the size field back to the cpu so we
19572 * can assign it to the sgl.
19574 bde.tus.w = le32_to_cpu(bpl->tus.w);
19575 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
19576 /* The offsets in the sgl need to be accumulated
19577 * separately for the request and reply lists.
19578 * The request is always first, the reply follows.
19580 switch (cmd) {
19581 case CMD_GEN_REQUEST64_WQE:
19582 /* add up the reply sg entries */
19583 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
19584 inbound++;
19585 /* first inbound? reset the offset */
19586 if (inbound == 1)
19587 offset = 0;
19588 bf_set(lpfc_sli4_sge_offset, sgl, offset);
19589 bf_set(lpfc_sli4_sge_type, sgl,
19590 LPFC_SGE_TYPE_DATA);
19591 offset += bde.tus.f.bdeSize;
19592 break;
19593 case CMD_FCP_TRSP64_WQE:
19594 bf_set(lpfc_sli4_sge_offset, sgl, 0);
19595 bf_set(lpfc_sli4_sge_type, sgl,
19596 LPFC_SGE_TYPE_DATA);
19597 break;
19598 case CMD_FCP_TSEND64_WQE:
19599 case CMD_FCP_TRECEIVE64_WQE:
19600 bf_set(lpfc_sli4_sge_type, sgl,
19601 bpl->tus.f.bdeFlags);
19602 if (i < 3)
19603 offset = 0;
19604 else
19605 offset += bde.tus.f.bdeSize;
19606 bf_set(lpfc_sli4_sge_offset, sgl, offset);
19607 break;
19609 sgl->word2 = cpu_to_le32(sgl->word2);
19610 bpl++;
19611 sgl++;
19613 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
19614 /* The addrHigh and addrLow fields of the BDE have not
19615 * been byteswapped yet so they need to be swapped
19616 * before putting them in the sgl.
19618 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
19619 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
19620 sgl->word2 = le32_to_cpu(sgl->word2);
19621 bf_set(lpfc_sli4_sge_last, sgl, 1);
19622 sgl->word2 = cpu_to_le32(sgl->word2);
19623 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
19625 return sglq->sli4_xritag;
19629 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
19630 * @phba: Pointer to HBA context object.
19631 * @ring_number: Base sli ring number
19632 * @pwqe: Pointer to command WQE.
19635 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
19636 struct lpfc_iocbq *pwqe)
19638 union lpfc_wqe128 *wqe = &pwqe->wqe;
19639 struct lpfc_nvmet_rcv_ctx *ctxp;
19640 struct lpfc_queue *wq;
19641 struct lpfc_sglq *sglq;
19642 struct lpfc_sli_ring *pring;
19643 unsigned long iflags;
19644 uint32_t ret = 0;
19646 /* NVME_LS and NVME_LS ABTS requests. */
19647 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
19648 pring = phba->sli4_hba.nvmels_wq->pring;
19649 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19650 qp, wq_access);
19651 sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
19652 if (!sglq) {
19653 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19654 return WQE_BUSY;
19656 pwqe->sli4_lxritag = sglq->sli4_lxritag;
19657 pwqe->sli4_xritag = sglq->sli4_xritag;
19658 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
19659 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19660 return WQE_ERROR;
19662 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19663 pwqe->sli4_xritag);
19664 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
19665 if (ret) {
19666 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19667 return ret;
19670 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19671 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19672 return 0;
19675 /* NVME_FCREQ and NVME_ABTS requests */
19676 if (pwqe->iocb_flag & LPFC_IO_NVME) {
19677 /* Get the IO distribution (hba_wqidx) for WQ assignment. */
19678 wq = qp->nvme_wq;
19679 pring = wq->pring;
19681 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->nvme_cq_map);
19683 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19684 qp, wq_access);
19685 ret = lpfc_sli4_wq_put(wq, wqe);
19686 if (ret) {
19687 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19688 return ret;
19690 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19691 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19692 return 0;
19695 /* NVMET requests */
19696 if (pwqe->iocb_flag & LPFC_IO_NVMET) {
19697 /* Get the IO distribution (hba_wqidx) for WQ assignment. */
19698 wq = qp->nvme_wq;
19699 pring = wq->pring;
19701 ctxp = pwqe->context2;
19702 sglq = ctxp->ctxbuf->sglq;
19703 if (pwqe->sli4_xritag == NO_XRI) {
19704 pwqe->sli4_lxritag = sglq->sli4_lxritag;
19705 pwqe->sli4_xritag = sglq->sli4_xritag;
19707 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19708 pwqe->sli4_xritag);
19709 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->nvme_cq_map);
19711 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19712 qp, wq_access);
19713 ret = lpfc_sli4_wq_put(wq, wqe);
19714 if (ret) {
19715 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19716 return ret;
19718 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19719 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19720 return 0;
19722 return WQE_ERROR;
19725 #ifdef LPFC_MXP_STAT
19727 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
19728 * @phba: pointer to lpfc hba data structure.
19729 * @hwqid: belong to which HWQ.
19731 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
19732 * 15 seconds after a test case is running.
19734 * The user should call lpfc_debugfs_multixripools_write before running a test
19735 * case to clear stat_snapshot_taken. Then the user starts a test case. During
19736 * test case is running, stat_snapshot_taken is incremented by 1 every time when
19737 * this routine is called from heartbeat timer. When stat_snapshot_taken is
19738 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
19740 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
19742 struct lpfc_sli4_hdw_queue *qp;
19743 struct lpfc_multixri_pool *multixri_pool;
19744 struct lpfc_pvt_pool *pvt_pool;
19745 struct lpfc_pbl_pool *pbl_pool;
19746 u32 txcmplq_cnt;
19748 qp = &phba->sli4_hba.hdwq[hwqid];
19749 multixri_pool = qp->p_multixri_pool;
19750 if (!multixri_pool)
19751 return;
19753 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
19754 pvt_pool = &qp->p_multixri_pool->pvt_pool;
19755 pbl_pool = &qp->p_multixri_pool->pbl_pool;
19756 txcmplq_cnt = qp->fcp_wq->pring->txcmplq_cnt;
19757 if (qp->nvme_wq)
19758 txcmplq_cnt += qp->nvme_wq->pring->txcmplq_cnt;
19760 multixri_pool->stat_pbl_count = pbl_pool->count;
19761 multixri_pool->stat_pvt_count = pvt_pool->count;
19762 multixri_pool->stat_busy_count = txcmplq_cnt;
19765 multixri_pool->stat_snapshot_taken++;
19767 #endif
19770 * lpfc_adjust_pvt_pool_count - Adjust private pool count
19771 * @phba: pointer to lpfc hba data structure.
19772 * @hwqid: belong to which HWQ.
19774 * This routine moves some XRIs from private to public pool when private pool
19775 * is not busy.
19777 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
19779 struct lpfc_multixri_pool *multixri_pool;
19780 u32 io_req_count;
19781 u32 prev_io_req_count;
19783 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
19784 if (!multixri_pool)
19785 return;
19786 io_req_count = multixri_pool->io_req_count;
19787 prev_io_req_count = multixri_pool->prev_io_req_count;
19789 if (prev_io_req_count != io_req_count) {
19790 /* Private pool is busy */
19791 multixri_pool->prev_io_req_count = io_req_count;
19792 } else {
19793 /* Private pool is not busy.
19794 * Move XRIs from private to public pool.
19796 lpfc_move_xri_pvt_to_pbl(phba, hwqid);
19801 * lpfc_adjust_high_watermark - Adjust high watermark
19802 * @phba: pointer to lpfc hba data structure.
19803 * @hwqid: belong to which HWQ.
19805 * This routine sets high watermark as number of outstanding XRIs,
19806 * but make sure the new value is between xri_limit/2 and xri_limit.
19808 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
19810 u32 new_watermark;
19811 u32 watermark_max;
19812 u32 watermark_min;
19813 u32 xri_limit;
19814 u32 txcmplq_cnt;
19815 u32 abts_io_bufs;
19816 struct lpfc_multixri_pool *multixri_pool;
19817 struct lpfc_sli4_hdw_queue *qp;
19819 qp = &phba->sli4_hba.hdwq[hwqid];
19820 multixri_pool = qp->p_multixri_pool;
19821 if (!multixri_pool)
19822 return;
19823 xri_limit = multixri_pool->xri_limit;
19825 watermark_max = xri_limit;
19826 watermark_min = xri_limit / 2;
19828 txcmplq_cnt = qp->fcp_wq->pring->txcmplq_cnt;
19829 abts_io_bufs = qp->abts_scsi_io_bufs;
19830 if (qp->nvme_wq) {
19831 txcmplq_cnt += qp->nvme_wq->pring->txcmplq_cnt;
19832 abts_io_bufs += qp->abts_nvme_io_bufs;
19835 new_watermark = txcmplq_cnt + abts_io_bufs;
19836 new_watermark = min(watermark_max, new_watermark);
19837 new_watermark = max(watermark_min, new_watermark);
19838 multixri_pool->pvt_pool.high_watermark = new_watermark;
19840 #ifdef LPFC_MXP_STAT
19841 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
19842 new_watermark);
19843 #endif
19847 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
19848 * @phba: pointer to lpfc hba data structure.
19849 * @hwqid: belong to which HWQ.
19851 * This routine is called from hearbeat timer when pvt_pool is idle.
19852 * All free XRIs are moved from private to public pool on hwqid with 2 steps.
19853 * The first step moves (all - low_watermark) amount of XRIs.
19854 * The second step moves the rest of XRIs.
19856 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
19858 struct lpfc_pbl_pool *pbl_pool;
19859 struct lpfc_pvt_pool *pvt_pool;
19860 struct lpfc_sli4_hdw_queue *qp;
19861 struct lpfc_io_buf *lpfc_ncmd;
19862 struct lpfc_io_buf *lpfc_ncmd_next;
19863 unsigned long iflag;
19864 struct list_head tmp_list;
19865 u32 tmp_count;
19867 qp = &phba->sli4_hba.hdwq[hwqid];
19868 pbl_pool = &qp->p_multixri_pool->pbl_pool;
19869 pvt_pool = &qp->p_multixri_pool->pvt_pool;
19870 tmp_count = 0;
19872 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
19873 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
19875 if (pvt_pool->count > pvt_pool->low_watermark) {
19876 /* Step 1: move (all - low_watermark) from pvt_pool
19877 * to pbl_pool
19880 /* Move low watermark of bufs from pvt_pool to tmp_list */
19881 INIT_LIST_HEAD(&tmp_list);
19882 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
19883 &pvt_pool->list, list) {
19884 list_move_tail(&lpfc_ncmd->list, &tmp_list);
19885 tmp_count++;
19886 if (tmp_count >= pvt_pool->low_watermark)
19887 break;
19890 /* Move all bufs from pvt_pool to pbl_pool */
19891 list_splice_init(&pvt_pool->list, &pbl_pool->list);
19893 /* Move all bufs from tmp_list to pvt_pool */
19894 list_splice(&tmp_list, &pvt_pool->list);
19896 pbl_pool->count += (pvt_pool->count - tmp_count);
19897 pvt_pool->count = tmp_count;
19898 } else {
19899 /* Step 2: move the rest from pvt_pool to pbl_pool */
19900 list_splice_init(&pvt_pool->list, &pbl_pool->list);
19901 pbl_pool->count += pvt_pool->count;
19902 pvt_pool->count = 0;
19905 spin_unlock(&pvt_pool->lock);
19906 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
19910 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
19911 * @phba: pointer to lpfc hba data structure
19912 * @pbl_pool: specified public free XRI pool
19913 * @pvt_pool: specified private free XRI pool
19914 * @count: number of XRIs to move
19916 * This routine tries to move some free common bufs from the specified pbl_pool
19917 * to the specified pvt_pool. It might move less than count XRIs if there's not
19918 * enough in public pool.
19920 * Return:
19921 * true - if XRIs are successfully moved from the specified pbl_pool to the
19922 * specified pvt_pool
19923 * false - if the specified pbl_pool is empty or locked by someone else
19925 static bool
19926 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
19927 struct lpfc_pbl_pool *pbl_pool,
19928 struct lpfc_pvt_pool *pvt_pool, u32 count)
19930 struct lpfc_io_buf *lpfc_ncmd;
19931 struct lpfc_io_buf *lpfc_ncmd_next;
19932 unsigned long iflag;
19933 int ret;
19935 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
19936 if (ret) {
19937 if (pbl_pool->count) {
19938 /* Move a batch of XRIs from public to private pool */
19939 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
19940 list_for_each_entry_safe(lpfc_ncmd,
19941 lpfc_ncmd_next,
19942 &pbl_pool->list,
19943 list) {
19944 list_move_tail(&lpfc_ncmd->list,
19945 &pvt_pool->list);
19946 pvt_pool->count++;
19947 pbl_pool->count--;
19948 count--;
19949 if (count == 0)
19950 break;
19953 spin_unlock(&pvt_pool->lock);
19954 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
19955 return true;
19957 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
19960 return false;
19964 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
19965 * @phba: pointer to lpfc hba data structure.
19966 * @hwqid: belong to which HWQ.
19967 * @count: number of XRIs to move
19969 * This routine tries to find some free common bufs in one of public pools with
19970 * Round Robin method. The search always starts from local hwqid, then the next
19971 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
19972 * a batch of free common bufs are moved to private pool on hwqid.
19973 * It might move less than count XRIs if there's not enough in public pool.
19975 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
19977 struct lpfc_multixri_pool *multixri_pool;
19978 struct lpfc_multixri_pool *next_multixri_pool;
19979 struct lpfc_pvt_pool *pvt_pool;
19980 struct lpfc_pbl_pool *pbl_pool;
19981 struct lpfc_sli4_hdw_queue *qp;
19982 u32 next_hwqid;
19983 u32 hwq_count;
19984 int ret;
19986 qp = &phba->sli4_hba.hdwq[hwqid];
19987 multixri_pool = qp->p_multixri_pool;
19988 pvt_pool = &multixri_pool->pvt_pool;
19989 pbl_pool = &multixri_pool->pbl_pool;
19991 /* Check if local pbl_pool is available */
19992 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
19993 if (ret) {
19994 #ifdef LPFC_MXP_STAT
19995 multixri_pool->local_pbl_hit_count++;
19996 #endif
19997 return;
20000 hwq_count = phba->cfg_hdw_queue;
20002 /* Get the next hwqid which was found last time */
20003 next_hwqid = multixri_pool->rrb_next_hwqid;
20005 do {
20006 /* Go to next hwq */
20007 next_hwqid = (next_hwqid + 1) % hwq_count;
20009 next_multixri_pool =
20010 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
20011 pbl_pool = &next_multixri_pool->pbl_pool;
20013 /* Check if the public free xri pool is available */
20014 ret = _lpfc_move_xri_pbl_to_pvt(
20015 phba, qp, pbl_pool, pvt_pool, count);
20017 /* Exit while-loop if success or all hwqid are checked */
20018 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
20020 /* Starting point for the next time */
20021 multixri_pool->rrb_next_hwqid = next_hwqid;
20023 if (!ret) {
20024 /* stats: all public pools are empty*/
20025 multixri_pool->pbl_empty_count++;
20028 #ifdef LPFC_MXP_STAT
20029 if (ret) {
20030 if (next_hwqid == hwqid)
20031 multixri_pool->local_pbl_hit_count++;
20032 else
20033 multixri_pool->other_pbl_hit_count++;
20035 #endif
20039 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
20040 * @phba: pointer to lpfc hba data structure.
20041 * @qp: belong to which HWQ.
20043 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
20044 * low watermark.
20046 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
20048 struct lpfc_multixri_pool *multixri_pool;
20049 struct lpfc_pvt_pool *pvt_pool;
20051 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20052 pvt_pool = &multixri_pool->pvt_pool;
20054 if (pvt_pool->count < pvt_pool->low_watermark)
20055 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20059 * lpfc_release_io_buf - Return one IO buf back to free pool
20060 * @phba: pointer to lpfc hba data structure.
20061 * @lpfc_ncmd: IO buf to be returned.
20062 * @qp: belong to which HWQ.
20064 * This routine returns one IO buf back to free pool. If this is an urgent IO,
20065 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
20066 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
20067 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to
20068 * lpfc_io_buf_list_put.
20070 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
20071 struct lpfc_sli4_hdw_queue *qp)
20073 unsigned long iflag;
20074 struct lpfc_pbl_pool *pbl_pool;
20075 struct lpfc_pvt_pool *pvt_pool;
20076 struct lpfc_epd_pool *epd_pool;
20077 u32 txcmplq_cnt;
20078 u32 xri_owned;
20079 u32 xri_limit;
20080 u32 abts_io_bufs;
20082 /* MUST zero fields if buffer is reused by another protocol */
20083 lpfc_ncmd->nvmeCmd = NULL;
20084 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL;
20085 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL;
20087 if (phba->cfg_xri_rebalancing) {
20088 if (lpfc_ncmd->expedite) {
20089 /* Return to expedite pool */
20090 epd_pool = &phba->epd_pool;
20091 spin_lock_irqsave(&epd_pool->lock, iflag);
20092 list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
20093 epd_pool->count++;
20094 spin_unlock_irqrestore(&epd_pool->lock, iflag);
20095 return;
20098 /* Avoid invalid access if an IO sneaks in and is being rejected
20099 * just _after_ xri pools are destroyed in lpfc_offline.
20100 * Nothing much can be done at this point.
20102 if (!qp->p_multixri_pool)
20103 return;
20105 pbl_pool = &qp->p_multixri_pool->pbl_pool;
20106 pvt_pool = &qp->p_multixri_pool->pvt_pool;
20108 txcmplq_cnt = qp->fcp_wq->pring->txcmplq_cnt;
20109 abts_io_bufs = qp->abts_scsi_io_bufs;
20110 if (qp->nvme_wq) {
20111 txcmplq_cnt += qp->nvme_wq->pring->txcmplq_cnt;
20112 abts_io_bufs += qp->abts_nvme_io_bufs;
20115 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
20116 xri_limit = qp->p_multixri_pool->xri_limit;
20118 #ifdef LPFC_MXP_STAT
20119 if (xri_owned <= xri_limit)
20120 qp->p_multixri_pool->below_limit_count++;
20121 else
20122 qp->p_multixri_pool->above_limit_count++;
20123 #endif
20125 /* XRI goes to either public or private free xri pool
20126 * based on watermark and xri_limit
20128 if ((pvt_pool->count < pvt_pool->low_watermark) ||
20129 (xri_owned < xri_limit &&
20130 pvt_pool->count < pvt_pool->high_watermark)) {
20131 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
20132 qp, free_pvt_pool);
20133 list_add_tail(&lpfc_ncmd->list,
20134 &pvt_pool->list);
20135 pvt_pool->count++;
20136 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20137 } else {
20138 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
20139 qp, free_pub_pool);
20140 list_add_tail(&lpfc_ncmd->list,
20141 &pbl_pool->list);
20142 pbl_pool->count++;
20143 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20145 } else {
20146 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
20147 qp, free_xri);
20148 list_add_tail(&lpfc_ncmd->list,
20149 &qp->lpfc_io_buf_list_put);
20150 qp->put_io_bufs++;
20151 spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
20152 iflag);
20157 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
20158 * @phba: pointer to lpfc hba data structure.
20159 * @pvt_pool: pointer to private pool data structure.
20160 * @ndlp: pointer to lpfc nodelist data structure.
20162 * This routine tries to get one free IO buf from private pool.
20164 * Return:
20165 * pointer to one free IO buf - if private pool is not empty
20166 * NULL - if private pool is empty
20168 static struct lpfc_io_buf *
20169 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
20170 struct lpfc_sli4_hdw_queue *qp,
20171 struct lpfc_pvt_pool *pvt_pool,
20172 struct lpfc_nodelist *ndlp)
20174 struct lpfc_io_buf *lpfc_ncmd;
20175 struct lpfc_io_buf *lpfc_ncmd_next;
20176 unsigned long iflag;
20178 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
20179 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20180 &pvt_pool->list, list) {
20181 if (lpfc_test_rrq_active(
20182 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
20183 continue;
20184 list_del(&lpfc_ncmd->list);
20185 pvt_pool->count--;
20186 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20187 return lpfc_ncmd;
20189 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20191 return NULL;
20195 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
20196 * @phba: pointer to lpfc hba data structure.
20198 * This routine tries to get one free IO buf from expedite pool.
20200 * Return:
20201 * pointer to one free IO buf - if expedite pool is not empty
20202 * NULL - if expedite pool is empty
20204 static struct lpfc_io_buf *
20205 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
20207 struct lpfc_io_buf *lpfc_ncmd;
20208 struct lpfc_io_buf *lpfc_ncmd_next;
20209 unsigned long iflag;
20210 struct lpfc_epd_pool *epd_pool;
20212 epd_pool = &phba->epd_pool;
20213 lpfc_ncmd = NULL;
20215 spin_lock_irqsave(&epd_pool->lock, iflag);
20216 if (epd_pool->count > 0) {
20217 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20218 &epd_pool->list, list) {
20219 list_del(&lpfc_ncmd->list);
20220 epd_pool->count--;
20221 break;
20224 spin_unlock_irqrestore(&epd_pool->lock, iflag);
20226 return lpfc_ncmd;
20230 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
20231 * @phba: pointer to lpfc hba data structure.
20232 * @ndlp: pointer to lpfc nodelist data structure.
20233 * @hwqid: belong to which HWQ
20234 * @expedite: 1 means this request is urgent.
20236 * This routine will do the following actions and then return a pointer to
20237 * one free IO buf.
20239 * 1. If private free xri count is empty, move some XRIs from public to
20240 * private pool.
20241 * 2. Get one XRI from private free xri pool.
20242 * 3. If we fail to get one from pvt_pool and this is an expedite request,
20243 * get one free xri from expedite pool.
20245 * Note: ndlp is only used on SCSI side for RRQ testing.
20246 * The caller should pass NULL for ndlp on NVME side.
20248 * Return:
20249 * pointer to one free IO buf - if private pool is not empty
20250 * NULL - if private pool is empty
20252 static struct lpfc_io_buf *
20253 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
20254 struct lpfc_nodelist *ndlp,
20255 int hwqid, int expedite)
20257 struct lpfc_sli4_hdw_queue *qp;
20258 struct lpfc_multixri_pool *multixri_pool;
20259 struct lpfc_pvt_pool *pvt_pool;
20260 struct lpfc_io_buf *lpfc_ncmd;
20262 qp = &phba->sli4_hba.hdwq[hwqid];
20263 lpfc_ncmd = NULL;
20264 multixri_pool = qp->p_multixri_pool;
20265 pvt_pool = &multixri_pool->pvt_pool;
20266 multixri_pool->io_req_count++;
20268 /* If pvt_pool is empty, move some XRIs from public to private pool */
20269 if (pvt_pool->count == 0)
20270 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20272 /* Get one XRI from private free xri pool */
20273 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
20275 if (lpfc_ncmd) {
20276 lpfc_ncmd->hdwq = qp;
20277 lpfc_ncmd->hdwq_no = hwqid;
20278 } else if (expedite) {
20279 /* If we fail to get one from pvt_pool and this is an expedite
20280 * request, get one free xri from expedite pool.
20282 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
20285 return lpfc_ncmd;
20288 static inline struct lpfc_io_buf *
20289 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
20291 struct lpfc_sli4_hdw_queue *qp;
20292 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
20294 qp = &phba->sli4_hba.hdwq[idx];
20295 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
20296 &qp->lpfc_io_buf_list_get, list) {
20297 if (lpfc_test_rrq_active(phba, ndlp,
20298 lpfc_cmd->cur_iocbq.sli4_lxritag))
20299 continue;
20301 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
20302 continue;
20304 list_del_init(&lpfc_cmd->list);
20305 qp->get_io_bufs--;
20306 lpfc_cmd->hdwq = qp;
20307 lpfc_cmd->hdwq_no = idx;
20308 return lpfc_cmd;
20310 return NULL;
20314 * lpfc_get_io_buf - Get one IO buffer from free pool
20315 * @phba: The HBA for which this call is being executed.
20316 * @ndlp: pointer to lpfc nodelist data structure.
20317 * @hwqid: belong to which HWQ
20318 * @expedite: 1 means this request is urgent.
20320 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
20321 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
20322 * a IO buffer from head of @hdwq io_buf_list and returns to caller.
20324 * Note: ndlp is only used on SCSI side for RRQ testing.
20325 * The caller should pass NULL for ndlp on NVME side.
20327 * Return codes:
20328 * NULL - Error
20329 * Pointer to lpfc_io_buf - Success
20331 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
20332 struct lpfc_nodelist *ndlp,
20333 u32 hwqid, int expedite)
20335 struct lpfc_sli4_hdw_queue *qp;
20336 unsigned long iflag;
20337 struct lpfc_io_buf *lpfc_cmd;
20339 qp = &phba->sli4_hba.hdwq[hwqid];
20340 lpfc_cmd = NULL;
20342 if (phba->cfg_xri_rebalancing)
20343 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
20344 phba, ndlp, hwqid, expedite);
20345 else {
20346 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
20347 qp, alloc_xri_get);
20348 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
20349 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20350 if (!lpfc_cmd) {
20351 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
20352 qp, alloc_xri_put);
20353 list_splice(&qp->lpfc_io_buf_list_put,
20354 &qp->lpfc_io_buf_list_get);
20355 qp->get_io_bufs += qp->put_io_bufs;
20356 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
20357 qp->put_io_bufs = 0;
20358 spin_unlock(&qp->io_buf_list_put_lock);
20359 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
20360 expedite)
20361 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20363 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
20366 return lpfc_cmd;