4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
44 * FIXME: remove all knowledge of the buffer layer from the core VM
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
54 * Shared mappings now work. 15.8.1995 Bruno.
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
65 * ->i_mmap_mutex (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
71 * ->i_mmap_mutex (truncate->unmap_mapping_range)
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
79 * ->lock_page (access_process_vm)
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
89 * ->anon_vma.lock (vma_adjust)
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
105 * ->inode->i_lock (zap_pte_range->set_page_dirty)
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
112 static void page_cache_tree_delete(struct address_space
*mapping
,
113 struct page
*page
, void *shadow
)
115 struct radix_tree_node
*node
;
121 VM_BUG_ON(!PageLocked(page
));
123 __radix_tree_lookup(&mapping
->page_tree
, page
->index
, &node
, &slot
);
126 mapping
->nrshadows
++;
128 * Make sure the nrshadows update is committed before
129 * the nrpages update so that final truncate racing
130 * with reclaim does not see both counters 0 at the
131 * same time and miss a shadow entry.
138 /* Clear direct pointer tags in root node */
139 mapping
->page_tree
.gfp_mask
&= __GFP_BITS_MASK
;
140 radix_tree_replace_slot(slot
, shadow
);
144 /* Clear tree tags for the removed page */
146 offset
= index
& RADIX_TREE_MAP_MASK
;
147 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++) {
148 if (test_bit(offset
, node
->tags
[tag
]))
149 radix_tree_tag_clear(&mapping
->page_tree
, index
, tag
);
152 /* Delete page, swap shadow entry */
153 radix_tree_replace_slot(slot
, shadow
);
154 workingset_node_pages_dec(node
);
156 workingset_node_shadows_inc(node
);
158 if (__radix_tree_delete_node(&mapping
->page_tree
, node
))
162 * Track node that only contains shadow entries.
164 * Avoid acquiring the list_lru lock if already tracked. The
165 * list_empty() test is safe as node->private_list is
166 * protected by mapping->tree_lock.
168 if (!workingset_node_pages(node
) &&
169 list_empty(&node
->private_list
)) {
170 node
->private_data
= mapping
;
171 list_lru_add(&workingset_shadow_nodes
, &node
->private_list
);
176 * Delete a page from the page cache and free it. Caller has to make
177 * sure the page is locked and that nobody else uses it - or that usage
178 * is safe. The caller must hold the mapping's tree_lock.
180 void __delete_from_page_cache(struct page
*page
, void *shadow
)
182 struct address_space
*mapping
= page
->mapping
;
184 trace_mm_filemap_delete_from_page_cache(page
);
186 * if we're uptodate, flush out into the cleancache, otherwise
187 * invalidate any existing cleancache entries. We can't leave
188 * stale data around in the cleancache once our page is gone
190 if (PageUptodate(page
) && PageMappedToDisk(page
))
191 cleancache_put_page(page
);
193 cleancache_invalidate_page(mapping
, page
);
195 page_cache_tree_delete(mapping
, page
, shadow
);
197 page
->mapping
= NULL
;
198 /* Leave page->index set: truncation lookup relies upon it */
200 __dec_zone_page_state(page
, NR_FILE_PAGES
);
201 if (PageSwapBacked(page
))
202 __dec_zone_page_state(page
, NR_SHMEM
);
203 BUG_ON(page_mapped(page
));
206 * Some filesystems seem to re-dirty the page even after
207 * the VM has canceled the dirty bit (eg ext3 journaling).
209 * Fix it up by doing a final dirty accounting check after
210 * having removed the page entirely.
212 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
213 dec_zone_page_state(page
, NR_FILE_DIRTY
);
214 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
219 * delete_from_page_cache - delete page from page cache
220 * @page: the page which the kernel is trying to remove from page cache
222 * This must be called only on pages that have been verified to be in the page
223 * cache and locked. It will never put the page into the free list, the caller
224 * has a reference on the page.
226 void delete_from_page_cache(struct page
*page
)
228 struct address_space
*mapping
= page
->mapping
;
229 void (*freepage
)(struct page
*);
231 BUG_ON(!PageLocked(page
));
233 freepage
= mapping
->a_ops
->freepage
;
234 spin_lock_irq(&mapping
->tree_lock
);
235 __delete_from_page_cache(page
, NULL
);
236 spin_unlock_irq(&mapping
->tree_lock
);
240 page_cache_release(page
);
242 EXPORT_SYMBOL(delete_from_page_cache
);
244 static int filemap_check_errors(struct address_space
*mapping
)
247 /* Check for outstanding write errors */
248 if (test_bit(AS_ENOSPC
, &mapping
->flags
) &&
249 test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
251 if (test_bit(AS_EIO
, &mapping
->flags
) &&
252 test_and_clear_bit(AS_EIO
, &mapping
->flags
))
258 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
259 * @mapping: address space structure to write
260 * @start: offset in bytes where the range starts
261 * @end: offset in bytes where the range ends (inclusive)
262 * @sync_mode: enable synchronous operation
264 * Start writeback against all of a mapping's dirty pages that lie
265 * within the byte offsets <start, end> inclusive.
267 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
268 * opposed to a regular memory cleansing writeback. The difference between
269 * these two operations is that if a dirty page/buffer is encountered, it must
270 * be waited upon, and not just skipped over.
272 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
273 loff_t end
, int sync_mode
)
276 struct writeback_control wbc
= {
277 .sync_mode
= sync_mode
,
278 .nr_to_write
= LONG_MAX
,
279 .range_start
= start
,
283 if (!mapping_cap_writeback_dirty(mapping
))
286 ret
= do_writepages(mapping
, &wbc
);
290 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
293 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
296 int filemap_fdatawrite(struct address_space
*mapping
)
298 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
300 EXPORT_SYMBOL(filemap_fdatawrite
);
302 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
305 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
307 EXPORT_SYMBOL(filemap_fdatawrite_range
);
310 * filemap_flush - mostly a non-blocking flush
311 * @mapping: target address_space
313 * This is a mostly non-blocking flush. Not suitable for data-integrity
314 * purposes - I/O may not be started against all dirty pages.
316 int filemap_flush(struct address_space
*mapping
)
318 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
320 EXPORT_SYMBOL(filemap_flush
);
323 * filemap_fdatawait_range - wait for writeback to complete
324 * @mapping: address space structure to wait for
325 * @start_byte: offset in bytes where the range starts
326 * @end_byte: offset in bytes where the range ends (inclusive)
328 * Walk the list of under-writeback pages of the given address space
329 * in the given range and wait for all of them.
331 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
334 pgoff_t index
= start_byte
>> PAGE_CACHE_SHIFT
;
335 pgoff_t end
= end_byte
>> PAGE_CACHE_SHIFT
;
340 if (end_byte
< start_byte
)
343 pagevec_init(&pvec
, 0);
344 while ((index
<= end
) &&
345 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
346 PAGECACHE_TAG_WRITEBACK
,
347 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
350 for (i
= 0; i
< nr_pages
; i
++) {
351 struct page
*page
= pvec
.pages
[i
];
353 /* until radix tree lookup accepts end_index */
354 if (page
->index
> end
)
357 wait_on_page_writeback(page
);
358 if (TestClearPageError(page
))
361 pagevec_release(&pvec
);
365 ret2
= filemap_check_errors(mapping
);
371 EXPORT_SYMBOL(filemap_fdatawait_range
);
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
380 int filemap_fdatawait(struct address_space
*mapping
)
382 loff_t i_size
= i_size_read(mapping
->host
);
387 return filemap_fdatawait_range(mapping
, 0, i_size
- 1);
389 EXPORT_SYMBOL(filemap_fdatawait
);
391 int filemap_write_and_wait(struct address_space
*mapping
)
395 if (mapping
->nrpages
) {
396 err
= filemap_fdatawrite(mapping
);
398 * Even if the above returned error, the pages may be
399 * written partially (e.g. -ENOSPC), so we wait for it.
400 * But the -EIO is special case, it may indicate the worst
401 * thing (e.g. bug) happened, so we avoid waiting for it.
404 int err2
= filemap_fdatawait(mapping
);
409 err
= filemap_check_errors(mapping
);
413 EXPORT_SYMBOL(filemap_write_and_wait
);
416 * filemap_write_and_wait_range - write out & wait on a file range
417 * @mapping: the address_space for the pages
418 * @lstart: offset in bytes where the range starts
419 * @lend: offset in bytes where the range ends (inclusive)
421 * Write out and wait upon file offsets lstart->lend, inclusive.
423 * Note that `lend' is inclusive (describes the last byte to be written) so
424 * that this function can be used to write to the very end-of-file (end = -1).
426 int filemap_write_and_wait_range(struct address_space
*mapping
,
427 loff_t lstart
, loff_t lend
)
431 if (mapping
->nrpages
) {
432 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
434 /* See comment of filemap_write_and_wait() */
436 int err2
= filemap_fdatawait_range(mapping
,
442 err
= filemap_check_errors(mapping
);
446 EXPORT_SYMBOL(filemap_write_and_wait_range
);
449 * replace_page_cache_page - replace a pagecache page with a new one
450 * @old: page to be replaced
451 * @new: page to replace with
452 * @gfp_mask: allocation mode
454 * This function replaces a page in the pagecache with a new one. On
455 * success it acquires the pagecache reference for the new page and
456 * drops it for the old page. Both the old and new pages must be
457 * locked. This function does not add the new page to the LRU, the
458 * caller must do that.
460 * The remove + add is atomic. The only way this function can fail is
461 * memory allocation failure.
463 int replace_page_cache_page(struct page
*old
, struct page
*new, gfp_t gfp_mask
)
467 VM_BUG_ON_PAGE(!PageLocked(old
), old
);
468 VM_BUG_ON_PAGE(!PageLocked(new), new);
469 VM_BUG_ON_PAGE(new->mapping
, new);
471 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
473 struct address_space
*mapping
= old
->mapping
;
474 void (*freepage
)(struct page
*);
476 pgoff_t offset
= old
->index
;
477 freepage
= mapping
->a_ops
->freepage
;
480 new->mapping
= mapping
;
483 spin_lock_irq(&mapping
->tree_lock
);
484 __delete_from_page_cache(old
, NULL
);
485 error
= radix_tree_insert(&mapping
->page_tree
, offset
, new);
488 __inc_zone_page_state(new, NR_FILE_PAGES
);
489 if (PageSwapBacked(new))
490 __inc_zone_page_state(new, NR_SHMEM
);
491 spin_unlock_irq(&mapping
->tree_lock
);
492 mem_cgroup_migrate(old
, new, true);
493 radix_tree_preload_end();
496 page_cache_release(old
);
501 EXPORT_SYMBOL_GPL(replace_page_cache_page
);
503 static int page_cache_tree_insert(struct address_space
*mapping
,
504 struct page
*page
, void **shadowp
)
506 struct radix_tree_node
*node
;
510 error
= __radix_tree_create(&mapping
->page_tree
, page
->index
,
517 p
= radix_tree_deref_slot_protected(slot
, &mapping
->tree_lock
);
518 if (!radix_tree_exceptional_entry(p
))
522 mapping
->nrshadows
--;
524 workingset_node_shadows_dec(node
);
526 radix_tree_replace_slot(slot
, page
);
529 workingset_node_pages_inc(node
);
531 * Don't track node that contains actual pages.
533 * Avoid acquiring the list_lru lock if already
534 * untracked. The list_empty() test is safe as
535 * node->private_list is protected by
536 * mapping->tree_lock.
538 if (!list_empty(&node
->private_list
))
539 list_lru_del(&workingset_shadow_nodes
,
540 &node
->private_list
);
545 static int __add_to_page_cache_locked(struct page
*page
,
546 struct address_space
*mapping
,
547 pgoff_t offset
, gfp_t gfp_mask
,
550 int huge
= PageHuge(page
);
551 struct mem_cgroup
*memcg
;
554 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
555 VM_BUG_ON_PAGE(PageSwapBacked(page
), page
);
558 error
= mem_cgroup_try_charge(page
, current
->mm
,
564 error
= radix_tree_maybe_preload(gfp_mask
& ~__GFP_HIGHMEM
);
567 mem_cgroup_cancel_charge(page
, memcg
);
571 page_cache_get(page
);
572 page
->mapping
= mapping
;
573 page
->index
= offset
;
575 spin_lock_irq(&mapping
->tree_lock
);
576 error
= page_cache_tree_insert(mapping
, page
, shadowp
);
577 radix_tree_preload_end();
580 __inc_zone_page_state(page
, NR_FILE_PAGES
);
581 spin_unlock_irq(&mapping
->tree_lock
);
583 mem_cgroup_commit_charge(page
, memcg
, false);
584 trace_mm_filemap_add_to_page_cache(page
);
587 page
->mapping
= NULL
;
588 /* Leave page->index set: truncation relies upon it */
589 spin_unlock_irq(&mapping
->tree_lock
);
591 mem_cgroup_cancel_charge(page
, memcg
);
592 page_cache_release(page
);
597 * add_to_page_cache_locked - add a locked page to the pagecache
599 * @mapping: the page's address_space
600 * @offset: page index
601 * @gfp_mask: page allocation mode
603 * This function is used to add a page to the pagecache. It must be locked.
604 * This function does not add the page to the LRU. The caller must do that.
606 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
607 pgoff_t offset
, gfp_t gfp_mask
)
609 return __add_to_page_cache_locked(page
, mapping
, offset
,
612 EXPORT_SYMBOL(add_to_page_cache_locked
);
614 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
615 pgoff_t offset
, gfp_t gfp_mask
)
620 __set_page_locked(page
);
621 ret
= __add_to_page_cache_locked(page
, mapping
, offset
,
624 __clear_page_locked(page
);
627 * The page might have been evicted from cache only
628 * recently, in which case it should be activated like
629 * any other repeatedly accessed page.
631 if (shadow
&& workingset_refault(shadow
)) {
633 workingset_activation(page
);
635 ClearPageActive(page
);
640 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
643 struct page
*__page_cache_alloc(gfp_t gfp
)
648 if (cpuset_do_page_mem_spread()) {
649 unsigned int cpuset_mems_cookie
;
651 cpuset_mems_cookie
= read_mems_allowed_begin();
652 n
= cpuset_mem_spread_node();
653 page
= alloc_pages_exact_node(n
, gfp
, 0);
654 } while (!page
&& read_mems_allowed_retry(cpuset_mems_cookie
));
658 return alloc_pages(gfp
, 0);
660 EXPORT_SYMBOL(__page_cache_alloc
);
664 * In order to wait for pages to become available there must be
665 * waitqueues associated with pages. By using a hash table of
666 * waitqueues where the bucket discipline is to maintain all
667 * waiters on the same queue and wake all when any of the pages
668 * become available, and for the woken contexts to check to be
669 * sure the appropriate page became available, this saves space
670 * at a cost of "thundering herd" phenomena during rare hash
673 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
675 const struct zone
*zone
= page_zone(page
);
677 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
680 static inline void wake_up_page(struct page
*page
, int bit
)
682 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
685 void wait_on_page_bit(struct page
*page
, int bit_nr
)
687 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
689 if (test_bit(bit_nr
, &page
->flags
))
690 __wait_on_bit(page_waitqueue(page
), &wait
, bit_wait_io
,
691 TASK_UNINTERRUPTIBLE
);
693 EXPORT_SYMBOL(wait_on_page_bit
);
695 int wait_on_page_bit_killable(struct page
*page
, int bit_nr
)
697 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
699 if (!test_bit(bit_nr
, &page
->flags
))
702 return __wait_on_bit(page_waitqueue(page
), &wait
,
703 bit_wait_io
, TASK_KILLABLE
);
707 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
708 * @page: Page defining the wait queue of interest
709 * @waiter: Waiter to add to the queue
711 * Add an arbitrary @waiter to the wait queue for the nominated @page.
713 void add_page_wait_queue(struct page
*page
, wait_queue_t
*waiter
)
715 wait_queue_head_t
*q
= page_waitqueue(page
);
718 spin_lock_irqsave(&q
->lock
, flags
);
719 __add_wait_queue(q
, waiter
);
720 spin_unlock_irqrestore(&q
->lock
, flags
);
722 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
725 * unlock_page - unlock a locked page
728 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
729 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
730 * mechananism between PageLocked pages and PageWriteback pages is shared.
731 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
733 * The mb is necessary to enforce ordering between the clear_bit and the read
734 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
736 void unlock_page(struct page
*page
)
738 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
739 clear_bit_unlock(PG_locked
, &page
->flags
);
740 smp_mb__after_atomic();
741 wake_up_page(page
, PG_locked
);
743 EXPORT_SYMBOL(unlock_page
);
746 * end_page_writeback - end writeback against a page
749 void end_page_writeback(struct page
*page
)
752 * TestClearPageReclaim could be used here but it is an atomic
753 * operation and overkill in this particular case. Failing to
754 * shuffle a page marked for immediate reclaim is too mild to
755 * justify taking an atomic operation penalty at the end of
756 * ever page writeback.
758 if (PageReclaim(page
)) {
759 ClearPageReclaim(page
);
760 rotate_reclaimable_page(page
);
763 if (!test_clear_page_writeback(page
))
766 smp_mb__after_atomic();
767 wake_up_page(page
, PG_writeback
);
769 EXPORT_SYMBOL(end_page_writeback
);
772 * After completing I/O on a page, call this routine to update the page
773 * flags appropriately
775 void page_endio(struct page
*page
, int rw
, int err
)
779 SetPageUptodate(page
);
781 ClearPageUptodate(page
);
785 } else { /* rw == WRITE */
789 mapping_set_error(page
->mapping
, err
);
791 end_page_writeback(page
);
794 EXPORT_SYMBOL_GPL(page_endio
);
797 * __lock_page - get a lock on the page, assuming we need to sleep to get it
798 * @page: the page to lock
800 void __lock_page(struct page
*page
)
802 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
804 __wait_on_bit_lock(page_waitqueue(page
), &wait
, bit_wait_io
,
805 TASK_UNINTERRUPTIBLE
);
807 EXPORT_SYMBOL(__lock_page
);
809 int __lock_page_killable(struct page
*page
)
811 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
813 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
814 bit_wait_io
, TASK_KILLABLE
);
816 EXPORT_SYMBOL_GPL(__lock_page_killable
);
820 * 1 - page is locked; mmap_sem is still held.
821 * 0 - page is not locked.
822 * mmap_sem has been released (up_read()), unless flags had both
823 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
824 * which case mmap_sem is still held.
826 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
827 * with the page locked and the mmap_sem unperturbed.
829 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
832 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
834 * CAUTION! In this case, mmap_sem is not released
835 * even though return 0.
837 if (flags
& FAULT_FLAG_RETRY_NOWAIT
)
840 up_read(&mm
->mmap_sem
);
841 if (flags
& FAULT_FLAG_KILLABLE
)
842 wait_on_page_locked_killable(page
);
844 wait_on_page_locked(page
);
847 if (flags
& FAULT_FLAG_KILLABLE
) {
850 ret
= __lock_page_killable(page
);
852 up_read(&mm
->mmap_sem
);
862 * page_cache_next_hole - find the next hole (not-present entry)
865 * @max_scan: maximum range to search
867 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
868 * lowest indexed hole.
870 * Returns: the index of the hole if found, otherwise returns an index
871 * outside of the set specified (in which case 'return - index >=
872 * max_scan' will be true). In rare cases of index wrap-around, 0 will
875 * page_cache_next_hole may be called under rcu_read_lock. However,
876 * like radix_tree_gang_lookup, this will not atomically search a
877 * snapshot of the tree at a single point in time. For example, if a
878 * hole is created at index 5, then subsequently a hole is created at
879 * index 10, page_cache_next_hole covering both indexes may return 10
880 * if called under rcu_read_lock.
882 pgoff_t
page_cache_next_hole(struct address_space
*mapping
,
883 pgoff_t index
, unsigned long max_scan
)
887 for (i
= 0; i
< max_scan
; i
++) {
890 page
= radix_tree_lookup(&mapping
->page_tree
, index
);
891 if (!page
|| radix_tree_exceptional_entry(page
))
900 EXPORT_SYMBOL(page_cache_next_hole
);
903 * page_cache_prev_hole - find the prev hole (not-present entry)
906 * @max_scan: maximum range to search
908 * Search backwards in the range [max(index-max_scan+1, 0), index] for
911 * Returns: the index of the hole if found, otherwise returns an index
912 * outside of the set specified (in which case 'index - return >=
913 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
916 * page_cache_prev_hole may be called under rcu_read_lock. However,
917 * like radix_tree_gang_lookup, this will not atomically search a
918 * snapshot of the tree at a single point in time. For example, if a
919 * hole is created at index 10, then subsequently a hole is created at
920 * index 5, page_cache_prev_hole covering both indexes may return 5 if
921 * called under rcu_read_lock.
923 pgoff_t
page_cache_prev_hole(struct address_space
*mapping
,
924 pgoff_t index
, unsigned long max_scan
)
928 for (i
= 0; i
< max_scan
; i
++) {
931 page
= radix_tree_lookup(&mapping
->page_tree
, index
);
932 if (!page
|| radix_tree_exceptional_entry(page
))
935 if (index
== ULONG_MAX
)
941 EXPORT_SYMBOL(page_cache_prev_hole
);
944 * find_get_entry - find and get a page cache entry
945 * @mapping: the address_space to search
946 * @offset: the page cache index
948 * Looks up the page cache slot at @mapping & @offset. If there is a
949 * page cache page, it is returned with an increased refcount.
951 * If the slot holds a shadow entry of a previously evicted page, or a
952 * swap entry from shmem/tmpfs, it is returned.
954 * Otherwise, %NULL is returned.
956 struct page
*find_get_entry(struct address_space
*mapping
, pgoff_t offset
)
964 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
966 page
= radix_tree_deref_slot(pagep
);
969 if (radix_tree_exception(page
)) {
970 if (radix_tree_deref_retry(page
))
973 * A shadow entry of a recently evicted page,
974 * or a swap entry from shmem/tmpfs. Return
975 * it without attempting to raise page count.
979 if (!page_cache_get_speculative(page
))
983 * Has the page moved?
984 * This is part of the lockless pagecache protocol. See
985 * include/linux/pagemap.h for details.
987 if (unlikely(page
!= *pagep
)) {
988 page_cache_release(page
);
997 EXPORT_SYMBOL(find_get_entry
);
1000 * find_lock_entry - locate, pin and lock a page cache entry
1001 * @mapping: the address_space to search
1002 * @offset: the page cache index
1004 * Looks up the page cache slot at @mapping & @offset. If there is a
1005 * page cache page, it is returned locked and with an increased
1008 * If the slot holds a shadow entry of a previously evicted page, or a
1009 * swap entry from shmem/tmpfs, it is returned.
1011 * Otherwise, %NULL is returned.
1013 * find_lock_entry() may sleep.
1015 struct page
*find_lock_entry(struct address_space
*mapping
, pgoff_t offset
)
1020 page
= find_get_entry(mapping
, offset
);
1021 if (page
&& !radix_tree_exception(page
)) {
1023 /* Has the page been truncated? */
1024 if (unlikely(page
->mapping
!= mapping
)) {
1026 page_cache_release(page
);
1029 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
1033 EXPORT_SYMBOL(find_lock_entry
);
1036 * pagecache_get_page - find and get a page reference
1037 * @mapping: the address_space to search
1038 * @offset: the page index
1039 * @fgp_flags: PCG flags
1040 * @cache_gfp_mask: gfp mask to use for the page cache data page allocation
1041 * @radix_gfp_mask: gfp mask to use for radix tree node allocation
1043 * Looks up the page cache slot at @mapping & @offset.
1045 * PCG flags modify how the page is returned.
1047 * FGP_ACCESSED: the page will be marked accessed
1048 * FGP_LOCK: Page is return locked
1049 * FGP_CREAT: If page is not present then a new page is allocated using
1050 * @cache_gfp_mask and added to the page cache and the VM's LRU
1051 * list. If radix tree nodes are allocated during page cache
1052 * insertion then @radix_gfp_mask is used. The page is returned
1053 * locked and with an increased refcount. Otherwise, %NULL is
1056 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1057 * if the GFP flags specified for FGP_CREAT are atomic.
1059 * If there is a page cache page, it is returned with an increased refcount.
1061 struct page
*pagecache_get_page(struct address_space
*mapping
, pgoff_t offset
,
1062 int fgp_flags
, gfp_t cache_gfp_mask
, gfp_t radix_gfp_mask
)
1067 page
= find_get_entry(mapping
, offset
);
1068 if (radix_tree_exceptional_entry(page
))
1073 if (fgp_flags
& FGP_LOCK
) {
1074 if (fgp_flags
& FGP_NOWAIT
) {
1075 if (!trylock_page(page
)) {
1076 page_cache_release(page
);
1083 /* Has the page been truncated? */
1084 if (unlikely(page
->mapping
!= mapping
)) {
1086 page_cache_release(page
);
1089 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
1092 if (page
&& (fgp_flags
& FGP_ACCESSED
))
1093 mark_page_accessed(page
);
1096 if (!page
&& (fgp_flags
& FGP_CREAT
)) {
1098 if ((fgp_flags
& FGP_WRITE
) && mapping_cap_account_dirty(mapping
))
1099 cache_gfp_mask
|= __GFP_WRITE
;
1100 if (fgp_flags
& FGP_NOFS
) {
1101 cache_gfp_mask
&= ~__GFP_FS
;
1102 radix_gfp_mask
&= ~__GFP_FS
;
1105 page
= __page_cache_alloc(cache_gfp_mask
);
1109 if (WARN_ON_ONCE(!(fgp_flags
& FGP_LOCK
)))
1110 fgp_flags
|= FGP_LOCK
;
1112 /* Init accessed so avoid atomic mark_page_accessed later */
1113 if (fgp_flags
& FGP_ACCESSED
)
1114 __SetPageReferenced(page
);
1116 err
= add_to_page_cache_lru(page
, mapping
, offset
, radix_gfp_mask
);
1117 if (unlikely(err
)) {
1118 page_cache_release(page
);
1127 EXPORT_SYMBOL(pagecache_get_page
);
1130 * find_get_entries - gang pagecache lookup
1131 * @mapping: The address_space to search
1132 * @start: The starting page cache index
1133 * @nr_entries: The maximum number of entries
1134 * @entries: Where the resulting entries are placed
1135 * @indices: The cache indices corresponding to the entries in @entries
1137 * find_get_entries() will search for and return a group of up to
1138 * @nr_entries entries in the mapping. The entries are placed at
1139 * @entries. find_get_entries() takes a reference against any actual
1142 * The search returns a group of mapping-contiguous page cache entries
1143 * with ascending indexes. There may be holes in the indices due to
1144 * not-present pages.
1146 * Any shadow entries of evicted pages, or swap entries from
1147 * shmem/tmpfs, are included in the returned array.
1149 * find_get_entries() returns the number of pages and shadow entries
1152 unsigned find_get_entries(struct address_space
*mapping
,
1153 pgoff_t start
, unsigned int nr_entries
,
1154 struct page
**entries
, pgoff_t
*indices
)
1157 unsigned int ret
= 0;
1158 struct radix_tree_iter iter
;
1165 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1168 page
= radix_tree_deref_slot(slot
);
1169 if (unlikely(!page
))
1171 if (radix_tree_exception(page
)) {
1172 if (radix_tree_deref_retry(page
))
1175 * A shadow entry of a recently evicted page,
1176 * or a swap entry from shmem/tmpfs. Return
1177 * it without attempting to raise page count.
1181 if (!page_cache_get_speculative(page
))
1184 /* Has the page moved? */
1185 if (unlikely(page
!= *slot
)) {
1186 page_cache_release(page
);
1190 indices
[ret
] = iter
.index
;
1191 entries
[ret
] = page
;
1192 if (++ret
== nr_entries
)
1200 * find_get_pages - gang pagecache lookup
1201 * @mapping: The address_space to search
1202 * @start: The starting page index
1203 * @nr_pages: The maximum number of pages
1204 * @pages: Where the resulting pages are placed
1206 * find_get_pages() will search for and return a group of up to
1207 * @nr_pages pages in the mapping. The pages are placed at @pages.
1208 * find_get_pages() takes a reference against the returned pages.
1210 * The search returns a group of mapping-contiguous pages with ascending
1211 * indexes. There may be holes in the indices due to not-present pages.
1213 * find_get_pages() returns the number of pages which were found.
1215 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
1216 unsigned int nr_pages
, struct page
**pages
)
1218 struct radix_tree_iter iter
;
1222 if (unlikely(!nr_pages
))
1227 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1230 page
= radix_tree_deref_slot(slot
);
1231 if (unlikely(!page
))
1234 if (radix_tree_exception(page
)) {
1235 if (radix_tree_deref_retry(page
)) {
1237 * Transient condition which can only trigger
1238 * when entry at index 0 moves out of or back
1239 * to root: none yet gotten, safe to restart.
1241 WARN_ON(iter
.index
);
1245 * A shadow entry of a recently evicted page,
1246 * or a swap entry from shmem/tmpfs. Skip
1252 if (!page_cache_get_speculative(page
))
1255 /* Has the page moved? */
1256 if (unlikely(page
!= *slot
)) {
1257 page_cache_release(page
);
1262 if (++ret
== nr_pages
)
1271 * find_get_pages_contig - gang contiguous pagecache lookup
1272 * @mapping: The address_space to search
1273 * @index: The starting page index
1274 * @nr_pages: The maximum number of pages
1275 * @pages: Where the resulting pages are placed
1277 * find_get_pages_contig() works exactly like find_get_pages(), except
1278 * that the returned number of pages are guaranteed to be contiguous.
1280 * find_get_pages_contig() returns the number of pages which were found.
1282 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
1283 unsigned int nr_pages
, struct page
**pages
)
1285 struct radix_tree_iter iter
;
1287 unsigned int ret
= 0;
1289 if (unlikely(!nr_pages
))
1294 radix_tree_for_each_contig(slot
, &mapping
->page_tree
, &iter
, index
) {
1297 page
= radix_tree_deref_slot(slot
);
1298 /* The hole, there no reason to continue */
1299 if (unlikely(!page
))
1302 if (radix_tree_exception(page
)) {
1303 if (radix_tree_deref_retry(page
)) {
1305 * Transient condition which can only trigger
1306 * when entry at index 0 moves out of or back
1307 * to root: none yet gotten, safe to restart.
1312 * A shadow entry of a recently evicted page,
1313 * or a swap entry from shmem/tmpfs. Stop
1314 * looking for contiguous pages.
1319 if (!page_cache_get_speculative(page
))
1322 /* Has the page moved? */
1323 if (unlikely(page
!= *slot
)) {
1324 page_cache_release(page
);
1329 * must check mapping and index after taking the ref.
1330 * otherwise we can get both false positives and false
1331 * negatives, which is just confusing to the caller.
1333 if (page
->mapping
== NULL
|| page
->index
!= iter
.index
) {
1334 page_cache_release(page
);
1339 if (++ret
== nr_pages
)
1345 EXPORT_SYMBOL(find_get_pages_contig
);
1348 * find_get_pages_tag - find and return pages that match @tag
1349 * @mapping: the address_space to search
1350 * @index: the starting page index
1351 * @tag: the tag index
1352 * @nr_pages: the maximum number of pages
1353 * @pages: where the resulting pages are placed
1355 * Like find_get_pages, except we only return pages which are tagged with
1356 * @tag. We update @index to index the next page for the traversal.
1358 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
1359 int tag
, unsigned int nr_pages
, struct page
**pages
)
1361 struct radix_tree_iter iter
;
1365 if (unlikely(!nr_pages
))
1370 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
,
1371 &iter
, *index
, tag
) {
1374 page
= radix_tree_deref_slot(slot
);
1375 if (unlikely(!page
))
1378 if (radix_tree_exception(page
)) {
1379 if (radix_tree_deref_retry(page
)) {
1381 * Transient condition which can only trigger
1382 * when entry at index 0 moves out of or back
1383 * to root: none yet gotten, safe to restart.
1388 * A shadow entry of a recently evicted page.
1390 * Those entries should never be tagged, but
1391 * this tree walk is lockless and the tags are
1392 * looked up in bulk, one radix tree node at a
1393 * time, so there is a sizable window for page
1394 * reclaim to evict a page we saw tagged.
1401 if (!page_cache_get_speculative(page
))
1404 /* Has the page moved? */
1405 if (unlikely(page
!= *slot
)) {
1406 page_cache_release(page
);
1411 if (++ret
== nr_pages
)
1418 *index
= pages
[ret
- 1]->index
+ 1;
1422 EXPORT_SYMBOL(find_get_pages_tag
);
1425 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1426 * a _large_ part of the i/o request. Imagine the worst scenario:
1428 * ---R__________________________________________B__________
1429 * ^ reading here ^ bad block(assume 4k)
1431 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1432 * => failing the whole request => read(R) => read(R+1) =>
1433 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1434 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1435 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1437 * It is going insane. Fix it by quickly scaling down the readahead size.
1439 static void shrink_readahead_size_eio(struct file
*filp
,
1440 struct file_ra_state
*ra
)
1446 * do_generic_file_read - generic file read routine
1447 * @filp: the file to read
1448 * @ppos: current file position
1449 * @iter: data destination
1450 * @written: already copied
1452 * This is a generic file read routine, and uses the
1453 * mapping->a_ops->readpage() function for the actual low-level stuff.
1455 * This is really ugly. But the goto's actually try to clarify some
1456 * of the logic when it comes to error handling etc.
1458 static ssize_t
do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
1459 struct iov_iter
*iter
, ssize_t written
)
1461 struct address_space
*mapping
= filp
->f_mapping
;
1462 struct inode
*inode
= mapping
->host
;
1463 struct file_ra_state
*ra
= &filp
->f_ra
;
1467 unsigned long offset
; /* offset into pagecache page */
1468 unsigned int prev_offset
;
1471 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1472 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
1473 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
1474 last_index
= (*ppos
+ iter
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
1475 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1481 unsigned long nr
, ret
;
1485 page
= find_get_page(mapping
, index
);
1487 page_cache_sync_readahead(mapping
,
1489 index
, last_index
- index
);
1490 page
= find_get_page(mapping
, index
);
1491 if (unlikely(page
== NULL
))
1492 goto no_cached_page
;
1494 if (PageReadahead(page
)) {
1495 page_cache_async_readahead(mapping
,
1497 index
, last_index
- index
);
1499 if (!PageUptodate(page
)) {
1500 if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
||
1501 !mapping
->a_ops
->is_partially_uptodate
)
1502 goto page_not_up_to_date
;
1503 if (!trylock_page(page
))
1504 goto page_not_up_to_date
;
1505 /* Did it get truncated before we got the lock? */
1507 goto page_not_up_to_date_locked
;
1508 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1509 offset
, iter
->count
))
1510 goto page_not_up_to_date_locked
;
1515 * i_size must be checked after we know the page is Uptodate.
1517 * Checking i_size after the check allows us to calculate
1518 * the correct value for "nr", which means the zero-filled
1519 * part of the page is not copied back to userspace (unless
1520 * another truncate extends the file - this is desired though).
1523 isize
= i_size_read(inode
);
1524 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1525 if (unlikely(!isize
|| index
> end_index
)) {
1526 page_cache_release(page
);
1530 /* nr is the maximum number of bytes to copy from this page */
1531 nr
= PAGE_CACHE_SIZE
;
1532 if (index
== end_index
) {
1533 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1535 page_cache_release(page
);
1541 /* If users can be writing to this page using arbitrary
1542 * virtual addresses, take care about potential aliasing
1543 * before reading the page on the kernel side.
1545 if (mapping_writably_mapped(mapping
))
1546 flush_dcache_page(page
);
1549 * When a sequential read accesses a page several times,
1550 * only mark it as accessed the first time.
1552 if (prev_index
!= index
|| offset
!= prev_offset
)
1553 mark_page_accessed(page
);
1557 * Ok, we have the page, and it's up-to-date, so
1558 * now we can copy it to user space...
1561 ret
= copy_page_to_iter(page
, offset
, nr
, iter
);
1563 index
+= offset
>> PAGE_CACHE_SHIFT
;
1564 offset
&= ~PAGE_CACHE_MASK
;
1565 prev_offset
= offset
;
1567 page_cache_release(page
);
1569 if (!iov_iter_count(iter
))
1577 page_not_up_to_date
:
1578 /* Get exclusive access to the page ... */
1579 error
= lock_page_killable(page
);
1580 if (unlikely(error
))
1581 goto readpage_error
;
1583 page_not_up_to_date_locked
:
1584 /* Did it get truncated before we got the lock? */
1585 if (!page
->mapping
) {
1587 page_cache_release(page
);
1591 /* Did somebody else fill it already? */
1592 if (PageUptodate(page
)) {
1599 * A previous I/O error may have been due to temporary
1600 * failures, eg. multipath errors.
1601 * PG_error will be set again if readpage fails.
1603 ClearPageError(page
);
1604 /* Start the actual read. The read will unlock the page. */
1605 error
= mapping
->a_ops
->readpage(filp
, page
);
1607 if (unlikely(error
)) {
1608 if (error
== AOP_TRUNCATED_PAGE
) {
1609 page_cache_release(page
);
1613 goto readpage_error
;
1616 if (!PageUptodate(page
)) {
1617 error
= lock_page_killable(page
);
1618 if (unlikely(error
))
1619 goto readpage_error
;
1620 if (!PageUptodate(page
)) {
1621 if (page
->mapping
== NULL
) {
1623 * invalidate_mapping_pages got it
1626 page_cache_release(page
);
1630 shrink_readahead_size_eio(filp
, ra
);
1632 goto readpage_error
;
1640 /* UHHUH! A synchronous read error occurred. Report it */
1641 page_cache_release(page
);
1646 * Ok, it wasn't cached, so we need to create a new
1649 page
= page_cache_alloc_cold(mapping
);
1654 error
= add_to_page_cache_lru(page
, mapping
,
1657 page_cache_release(page
);
1658 if (error
== -EEXIST
) {
1668 ra
->prev_pos
= prev_index
;
1669 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1670 ra
->prev_pos
|= prev_offset
;
1672 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1673 file_accessed(filp
);
1674 return written
? written
: error
;
1678 * generic_file_read_iter - generic filesystem read routine
1679 * @iocb: kernel I/O control block
1680 * @iter: destination for the data read
1682 * This is the "read_iter()" routine for all filesystems
1683 * that can use the page cache directly.
1686 generic_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*iter
)
1688 struct file
*file
= iocb
->ki_filp
;
1690 loff_t
*ppos
= &iocb
->ki_pos
;
1693 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1694 if (file
->f_flags
& O_DIRECT
) {
1695 struct address_space
*mapping
= file
->f_mapping
;
1696 struct inode
*inode
= mapping
->host
;
1697 size_t count
= iov_iter_count(iter
);
1701 goto out
; /* skip atime */
1702 size
= i_size_read(inode
);
1703 retval
= filemap_write_and_wait_range(mapping
, pos
,
1706 struct iov_iter data
= *iter
;
1707 retval
= mapping
->a_ops
->direct_IO(READ
, iocb
, &data
, pos
);
1711 *ppos
= pos
+ retval
;
1712 iov_iter_advance(iter
, retval
);
1716 * Btrfs can have a short DIO read if we encounter
1717 * compressed extents, so if there was an error, or if
1718 * we've already read everything we wanted to, or if
1719 * there was a short read because we hit EOF, go ahead
1720 * and return. Otherwise fallthrough to buffered io for
1721 * the rest of the read.
1723 if (retval
< 0 || !iov_iter_count(iter
) || *ppos
>= size
) {
1724 file_accessed(file
);
1729 retval
= do_generic_file_read(file
, ppos
, iter
, retval
);
1733 EXPORT_SYMBOL(generic_file_read_iter
);
1737 * page_cache_read - adds requested page to the page cache if not already there
1738 * @file: file to read
1739 * @offset: page index
1741 * This adds the requested page to the page cache if it isn't already there,
1742 * and schedules an I/O to read in its contents from disk.
1744 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1746 struct address_space
*mapping
= file
->f_mapping
;
1751 page
= page_cache_alloc_cold(mapping
);
1755 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1757 ret
= mapping
->a_ops
->readpage(file
, page
);
1758 else if (ret
== -EEXIST
)
1759 ret
= 0; /* losing race to add is OK */
1761 page_cache_release(page
);
1763 } while (ret
== AOP_TRUNCATED_PAGE
);
1768 #define MMAP_LOTSAMISS (100)
1771 * Synchronous readahead happens when we don't even find
1772 * a page in the page cache at all.
1774 static void do_sync_mmap_readahead(struct vm_area_struct
*vma
,
1775 struct file_ra_state
*ra
,
1779 unsigned long ra_pages
;
1780 struct address_space
*mapping
= file
->f_mapping
;
1782 /* If we don't want any read-ahead, don't bother */
1783 if (vma
->vm_flags
& VM_RAND_READ
)
1788 if (vma
->vm_flags
& VM_SEQ_READ
) {
1789 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
1794 /* Avoid banging the cache line if not needed */
1795 if (ra
->mmap_miss
< MMAP_LOTSAMISS
* 10)
1799 * Do we miss much more than hit in this file? If so,
1800 * stop bothering with read-ahead. It will only hurt.
1802 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1808 ra_pages
= max_sane_readahead(ra
->ra_pages
);
1809 ra
->start
= max_t(long, 0, offset
- ra_pages
/ 2);
1810 ra
->size
= ra_pages
;
1811 ra
->async_size
= ra_pages
/ 4;
1812 ra_submit(ra
, mapping
, file
);
1816 * Asynchronous readahead happens when we find the page and PG_readahead,
1817 * so we want to possibly extend the readahead further..
1819 static void do_async_mmap_readahead(struct vm_area_struct
*vma
,
1820 struct file_ra_state
*ra
,
1825 struct address_space
*mapping
= file
->f_mapping
;
1827 /* If we don't want any read-ahead, don't bother */
1828 if (vma
->vm_flags
& VM_RAND_READ
)
1830 if (ra
->mmap_miss
> 0)
1832 if (PageReadahead(page
))
1833 page_cache_async_readahead(mapping
, ra
, file
,
1834 page
, offset
, ra
->ra_pages
);
1838 * filemap_fault - read in file data for page fault handling
1839 * @vma: vma in which the fault was taken
1840 * @vmf: struct vm_fault containing details of the fault
1842 * filemap_fault() is invoked via the vma operations vector for a
1843 * mapped memory region to read in file data during a page fault.
1845 * The goto's are kind of ugly, but this streamlines the normal case of having
1846 * it in the page cache, and handles the special cases reasonably without
1847 * having a lot of duplicated code.
1849 * vma->vm_mm->mmap_sem must be held on entry.
1851 * If our return value has VM_FAULT_RETRY set, it's because
1852 * lock_page_or_retry() returned 0.
1853 * The mmap_sem has usually been released in this case.
1854 * See __lock_page_or_retry() for the exception.
1856 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1857 * has not been released.
1859 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1861 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1864 struct file
*file
= vma
->vm_file
;
1865 struct address_space
*mapping
= file
->f_mapping
;
1866 struct file_ra_state
*ra
= &file
->f_ra
;
1867 struct inode
*inode
= mapping
->host
;
1868 pgoff_t offset
= vmf
->pgoff
;
1873 size
= round_up(i_size_read(inode
), PAGE_CACHE_SIZE
);
1874 if (offset
>= size
>> PAGE_CACHE_SHIFT
)
1875 return VM_FAULT_SIGBUS
;
1878 * Do we have something in the page cache already?
1880 page
= find_get_page(mapping
, offset
);
1881 if (likely(page
) && !(vmf
->flags
& FAULT_FLAG_TRIED
)) {
1883 * We found the page, so try async readahead before
1884 * waiting for the lock.
1886 do_async_mmap_readahead(vma
, ra
, file
, page
, offset
);
1888 /* No page in the page cache at all */
1889 do_sync_mmap_readahead(vma
, ra
, file
, offset
);
1890 count_vm_event(PGMAJFAULT
);
1891 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1892 ret
= VM_FAULT_MAJOR
;
1894 page
= find_get_page(mapping
, offset
);
1896 goto no_cached_page
;
1899 if (!lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
)) {
1900 page_cache_release(page
);
1901 return ret
| VM_FAULT_RETRY
;
1904 /* Did it get truncated? */
1905 if (unlikely(page
->mapping
!= mapping
)) {
1910 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
1913 * We have a locked page in the page cache, now we need to check
1914 * that it's up-to-date. If not, it is going to be due to an error.
1916 if (unlikely(!PageUptodate(page
)))
1917 goto page_not_uptodate
;
1920 * Found the page and have a reference on it.
1921 * We must recheck i_size under page lock.
1923 size
= round_up(i_size_read(inode
), PAGE_CACHE_SIZE
);
1924 if (unlikely(offset
>= size
>> PAGE_CACHE_SHIFT
)) {
1926 page_cache_release(page
);
1927 return VM_FAULT_SIGBUS
;
1931 return ret
| VM_FAULT_LOCKED
;
1935 * We're only likely to ever get here if MADV_RANDOM is in
1938 error
= page_cache_read(file
, offset
);
1941 * The page we want has now been added to the page cache.
1942 * In the unlikely event that someone removed it in the
1943 * meantime, we'll just come back here and read it again.
1949 * An error return from page_cache_read can result if the
1950 * system is low on memory, or a problem occurs while trying
1953 if (error
== -ENOMEM
)
1954 return VM_FAULT_OOM
;
1955 return VM_FAULT_SIGBUS
;
1959 * Umm, take care of errors if the page isn't up-to-date.
1960 * Try to re-read it _once_. We do this synchronously,
1961 * because there really aren't any performance issues here
1962 * and we need to check for errors.
1964 ClearPageError(page
);
1965 error
= mapping
->a_ops
->readpage(file
, page
);
1967 wait_on_page_locked(page
);
1968 if (!PageUptodate(page
))
1971 page_cache_release(page
);
1973 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1976 /* Things didn't work out. Return zero to tell the mm layer so. */
1977 shrink_readahead_size_eio(file
, ra
);
1978 return VM_FAULT_SIGBUS
;
1980 EXPORT_SYMBOL(filemap_fault
);
1982 void filemap_map_pages(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1984 struct radix_tree_iter iter
;
1986 struct file
*file
= vma
->vm_file
;
1987 struct address_space
*mapping
= file
->f_mapping
;
1990 unsigned long address
= (unsigned long) vmf
->virtual_address
;
1995 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, vmf
->pgoff
) {
1996 if (iter
.index
> vmf
->max_pgoff
)
1999 page
= radix_tree_deref_slot(slot
);
2000 if (unlikely(!page
))
2002 if (radix_tree_exception(page
)) {
2003 if (radix_tree_deref_retry(page
))
2009 if (!page_cache_get_speculative(page
))
2012 /* Has the page moved? */
2013 if (unlikely(page
!= *slot
)) {
2014 page_cache_release(page
);
2018 if (!PageUptodate(page
) ||
2019 PageReadahead(page
) ||
2022 if (!trylock_page(page
))
2025 if (page
->mapping
!= mapping
|| !PageUptodate(page
))
2028 size
= round_up(i_size_read(mapping
->host
), PAGE_CACHE_SIZE
);
2029 if (page
->index
>= size
>> PAGE_CACHE_SHIFT
)
2032 pte
= vmf
->pte
+ page
->index
- vmf
->pgoff
;
2033 if (!pte_none(*pte
))
2036 if (file
->f_ra
.mmap_miss
> 0)
2037 file
->f_ra
.mmap_miss
--;
2038 addr
= address
+ (page
->index
- vmf
->pgoff
) * PAGE_SIZE
;
2039 do_set_pte(vma
, addr
, page
, pte
, false, false);
2045 page_cache_release(page
);
2047 if (iter
.index
== vmf
->max_pgoff
)
2052 EXPORT_SYMBOL(filemap_map_pages
);
2054 int filemap_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2056 struct page
*page
= vmf
->page
;
2057 struct inode
*inode
= file_inode(vma
->vm_file
);
2058 int ret
= VM_FAULT_LOCKED
;
2060 sb_start_pagefault(inode
->i_sb
);
2061 file_update_time(vma
->vm_file
);
2063 if (page
->mapping
!= inode
->i_mapping
) {
2065 ret
= VM_FAULT_NOPAGE
;
2069 * We mark the page dirty already here so that when freeze is in
2070 * progress, we are guaranteed that writeback during freezing will
2071 * see the dirty page and writeprotect it again.
2073 set_page_dirty(page
);
2074 wait_for_stable_page(page
);
2076 sb_end_pagefault(inode
->i_sb
);
2079 EXPORT_SYMBOL(filemap_page_mkwrite
);
2081 const struct vm_operations_struct generic_file_vm_ops
= {
2082 .fault
= filemap_fault
,
2083 .map_pages
= filemap_map_pages
,
2084 .page_mkwrite
= filemap_page_mkwrite
,
2085 .remap_pages
= generic_file_remap_pages
,
2088 /* This is used for a general mmap of a disk file */
2090 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2092 struct address_space
*mapping
= file
->f_mapping
;
2094 if (!mapping
->a_ops
->readpage
)
2096 file_accessed(file
);
2097 vma
->vm_ops
= &generic_file_vm_ops
;
2102 * This is for filesystems which do not implement ->writepage.
2104 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2106 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
2108 return generic_file_mmap(file
, vma
);
2111 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2115 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2119 #endif /* CONFIG_MMU */
2121 EXPORT_SYMBOL(generic_file_mmap
);
2122 EXPORT_SYMBOL(generic_file_readonly_mmap
);
2124 static struct page
*wait_on_page_read(struct page
*page
)
2126 if (!IS_ERR(page
)) {
2127 wait_on_page_locked(page
);
2128 if (!PageUptodate(page
)) {
2129 page_cache_release(page
);
2130 page
= ERR_PTR(-EIO
);
2136 static struct page
*__read_cache_page(struct address_space
*mapping
,
2138 int (*filler
)(void *, struct page
*),
2145 page
= find_get_page(mapping
, index
);
2147 page
= __page_cache_alloc(gfp
| __GFP_COLD
);
2149 return ERR_PTR(-ENOMEM
);
2150 err
= add_to_page_cache_lru(page
, mapping
, index
, gfp
);
2151 if (unlikely(err
)) {
2152 page_cache_release(page
);
2155 /* Presumably ENOMEM for radix tree node */
2156 return ERR_PTR(err
);
2158 err
= filler(data
, page
);
2160 page_cache_release(page
);
2161 page
= ERR_PTR(err
);
2163 page
= wait_on_page_read(page
);
2169 static struct page
*do_read_cache_page(struct address_space
*mapping
,
2171 int (*filler
)(void *, struct page
*),
2180 page
= __read_cache_page(mapping
, index
, filler
, data
, gfp
);
2183 if (PageUptodate(page
))
2187 if (!page
->mapping
) {
2189 page_cache_release(page
);
2192 if (PageUptodate(page
)) {
2196 err
= filler(data
, page
);
2198 page_cache_release(page
);
2199 return ERR_PTR(err
);
2201 page
= wait_on_page_read(page
);
2206 mark_page_accessed(page
);
2211 * read_cache_page - read into page cache, fill it if needed
2212 * @mapping: the page's address_space
2213 * @index: the page index
2214 * @filler: function to perform the read
2215 * @data: first arg to filler(data, page) function, often left as NULL
2217 * Read into the page cache. If a page already exists, and PageUptodate() is
2218 * not set, try to fill the page and wait for it to become unlocked.
2220 * If the page does not get brought uptodate, return -EIO.
2222 struct page
*read_cache_page(struct address_space
*mapping
,
2224 int (*filler
)(void *, struct page
*),
2227 return do_read_cache_page(mapping
, index
, filler
, data
, mapping_gfp_mask(mapping
));
2229 EXPORT_SYMBOL(read_cache_page
);
2232 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2233 * @mapping: the page's address_space
2234 * @index: the page index
2235 * @gfp: the page allocator flags to use if allocating
2237 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2238 * any new page allocations done using the specified allocation flags.
2240 * If the page does not get brought uptodate, return -EIO.
2242 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
2246 filler_t
*filler
= (filler_t
*)mapping
->a_ops
->readpage
;
2248 return do_read_cache_page(mapping
, index
, filler
, NULL
, gfp
);
2250 EXPORT_SYMBOL(read_cache_page_gfp
);
2253 * Performs necessary checks before doing a write
2255 * Can adjust writing position or amount of bytes to write.
2256 * Returns appropriate error code that caller should return or
2257 * zero in case that write should be allowed.
2259 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
2261 struct inode
*inode
= file
->f_mapping
->host
;
2262 unsigned long limit
= rlimit(RLIMIT_FSIZE
);
2264 if (unlikely(*pos
< 0))
2268 /* FIXME: this is for backwards compatibility with 2.4 */
2269 if (file
->f_flags
& O_APPEND
)
2270 *pos
= i_size_read(inode
);
2272 if (limit
!= RLIM_INFINITY
) {
2273 if (*pos
>= limit
) {
2274 send_sig(SIGXFSZ
, current
, 0);
2277 if (*count
> limit
- (typeof(limit
))*pos
) {
2278 *count
= limit
- (typeof(limit
))*pos
;
2286 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
2287 !(file
->f_flags
& O_LARGEFILE
))) {
2288 if (*pos
>= MAX_NON_LFS
) {
2291 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
2292 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
2297 * Are we about to exceed the fs block limit ?
2299 * If we have written data it becomes a short write. If we have
2300 * exceeded without writing data we send a signal and return EFBIG.
2301 * Linus frestrict idea will clean these up nicely..
2303 if (likely(!isblk
)) {
2304 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
2305 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
2308 /* zero-length writes at ->s_maxbytes are OK */
2311 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
2312 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
2316 if (bdev_read_only(I_BDEV(inode
)))
2318 isize
= i_size_read(inode
);
2319 if (*pos
>= isize
) {
2320 if (*count
|| *pos
> isize
)
2324 if (*pos
+ *count
> isize
)
2325 *count
= isize
- *pos
;
2332 EXPORT_SYMBOL(generic_write_checks
);
2334 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2335 loff_t pos
, unsigned len
, unsigned flags
,
2336 struct page
**pagep
, void **fsdata
)
2338 const struct address_space_operations
*aops
= mapping
->a_ops
;
2340 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2343 EXPORT_SYMBOL(pagecache_write_begin
);
2345 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2346 loff_t pos
, unsigned len
, unsigned copied
,
2347 struct page
*page
, void *fsdata
)
2349 const struct address_space_operations
*aops
= mapping
->a_ops
;
2351 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2353 EXPORT_SYMBOL(pagecache_write_end
);
2356 generic_file_direct_write(struct kiocb
*iocb
, struct iov_iter
*from
, loff_t pos
)
2358 struct file
*file
= iocb
->ki_filp
;
2359 struct address_space
*mapping
= file
->f_mapping
;
2360 struct inode
*inode
= mapping
->host
;
2364 struct iov_iter data
;
2366 write_len
= iov_iter_count(from
);
2367 end
= (pos
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2369 written
= filemap_write_and_wait_range(mapping
, pos
, pos
+ write_len
- 1);
2374 * After a write we want buffered reads to be sure to go to disk to get
2375 * the new data. We invalidate clean cached page from the region we're
2376 * about to write. We do this *before* the write so that we can return
2377 * without clobbering -EIOCBQUEUED from ->direct_IO().
2379 if (mapping
->nrpages
) {
2380 written
= invalidate_inode_pages2_range(mapping
,
2381 pos
>> PAGE_CACHE_SHIFT
, end
);
2383 * If a page can not be invalidated, return 0 to fall back
2384 * to buffered write.
2387 if (written
== -EBUSY
)
2394 written
= mapping
->a_ops
->direct_IO(WRITE
, iocb
, &data
, pos
);
2397 * Finally, try again to invalidate clean pages which might have been
2398 * cached by non-direct readahead, or faulted in by get_user_pages()
2399 * if the source of the write was an mmap'ed region of the file
2400 * we're writing. Either one is a pretty crazy thing to do,
2401 * so we don't support it 100%. If this invalidation
2402 * fails, tough, the write still worked...
2404 if (mapping
->nrpages
) {
2405 invalidate_inode_pages2_range(mapping
,
2406 pos
>> PAGE_CACHE_SHIFT
, end
);
2411 iov_iter_advance(from
, written
);
2412 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2413 i_size_write(inode
, pos
);
2414 mark_inode_dirty(inode
);
2421 EXPORT_SYMBOL(generic_file_direct_write
);
2424 * Find or create a page at the given pagecache position. Return the locked
2425 * page. This function is specifically for buffered writes.
2427 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2428 pgoff_t index
, unsigned flags
)
2431 int fgp_flags
= FGP_LOCK
|FGP_ACCESSED
|FGP_WRITE
|FGP_CREAT
;
2433 if (flags
& AOP_FLAG_NOFS
)
2434 fgp_flags
|= FGP_NOFS
;
2436 page
= pagecache_get_page(mapping
, index
, fgp_flags
,
2437 mapping_gfp_mask(mapping
),
2440 wait_for_stable_page(page
);
2444 EXPORT_SYMBOL(grab_cache_page_write_begin
);
2446 ssize_t
generic_perform_write(struct file
*file
,
2447 struct iov_iter
*i
, loff_t pos
)
2449 struct address_space
*mapping
= file
->f_mapping
;
2450 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2452 ssize_t written
= 0;
2453 unsigned int flags
= 0;
2456 * Copies from kernel address space cannot fail (NFSD is a big user).
2458 if (segment_eq(get_fs(), KERNEL_DS
))
2459 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2463 unsigned long offset
; /* Offset into pagecache page */
2464 unsigned long bytes
; /* Bytes to write to page */
2465 size_t copied
; /* Bytes copied from user */
2468 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2469 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2474 * Bring in the user page that we will copy from _first_.
2475 * Otherwise there's a nasty deadlock on copying from the
2476 * same page as we're writing to, without it being marked
2479 * Not only is this an optimisation, but it is also required
2480 * to check that the address is actually valid, when atomic
2481 * usercopies are used, below.
2483 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2488 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2490 if (unlikely(status
< 0))
2493 if (mapping_writably_mapped(mapping
))
2494 flush_dcache_page(page
);
2496 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2497 flush_dcache_page(page
);
2499 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2501 if (unlikely(status
< 0))
2507 iov_iter_advance(i
, copied
);
2508 if (unlikely(copied
== 0)) {
2510 * If we were unable to copy any data at all, we must
2511 * fall back to a single segment length write.
2513 * If we didn't fallback here, we could livelock
2514 * because not all segments in the iov can be copied at
2515 * once without a pagefault.
2517 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2518 iov_iter_single_seg_count(i
));
2524 balance_dirty_pages_ratelimited(mapping
);
2525 if (fatal_signal_pending(current
)) {
2529 } while (iov_iter_count(i
));
2531 return written
? written
: status
;
2533 EXPORT_SYMBOL(generic_perform_write
);
2536 * __generic_file_write_iter - write data to a file
2537 * @iocb: IO state structure (file, offset, etc.)
2538 * @from: iov_iter with data to write
2540 * This function does all the work needed for actually writing data to a
2541 * file. It does all basic checks, removes SUID from the file, updates
2542 * modification times and calls proper subroutines depending on whether we
2543 * do direct IO or a standard buffered write.
2545 * It expects i_mutex to be grabbed unless we work on a block device or similar
2546 * object which does not need locking at all.
2548 * This function does *not* take care of syncing data in case of O_SYNC write.
2549 * A caller has to handle it. This is mainly due to the fact that we want to
2550 * avoid syncing under i_mutex.
2552 ssize_t
__generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
2554 struct file
*file
= iocb
->ki_filp
;
2555 struct address_space
* mapping
= file
->f_mapping
;
2556 struct inode
*inode
= mapping
->host
;
2557 loff_t pos
= iocb
->ki_pos
;
2558 ssize_t written
= 0;
2561 size_t count
= iov_iter_count(from
);
2563 /* We can write back this queue in page reclaim */
2564 current
->backing_dev_info
= mapping
->backing_dev_info
;
2565 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2572 iov_iter_truncate(from
, count
);
2574 err
= file_remove_suid(file
);
2578 err
= file_update_time(file
);
2582 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2583 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2586 written
= generic_file_direct_write(iocb
, from
, pos
);
2587 if (written
< 0 || written
== count
)
2591 * direct-io write to a hole: fall through to buffered I/O
2592 * for completing the rest of the request.
2597 status
= generic_perform_write(file
, from
, pos
);
2599 * If generic_perform_write() returned a synchronous error
2600 * then we want to return the number of bytes which were
2601 * direct-written, or the error code if that was zero. Note
2602 * that this differs from normal direct-io semantics, which
2603 * will return -EFOO even if some bytes were written.
2605 if (unlikely(status
< 0)) {
2609 iocb
->ki_pos
= pos
+ status
;
2611 * We need to ensure that the page cache pages are written to
2612 * disk and invalidated to preserve the expected O_DIRECT
2615 endbyte
= pos
+ status
- 1;
2616 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
2619 invalidate_mapping_pages(mapping
,
2620 pos
>> PAGE_CACHE_SHIFT
,
2621 endbyte
>> PAGE_CACHE_SHIFT
);
2624 * We don't know how much we wrote, so just return
2625 * the number of bytes which were direct-written
2629 written
= generic_perform_write(file
, from
, pos
);
2630 if (likely(written
>= 0))
2631 iocb
->ki_pos
= pos
+ written
;
2634 current
->backing_dev_info
= NULL
;
2635 return written
? written
: err
;
2637 EXPORT_SYMBOL(__generic_file_write_iter
);
2640 * generic_file_write_iter - write data to a file
2641 * @iocb: IO state structure
2642 * @from: iov_iter with data to write
2644 * This is a wrapper around __generic_file_write_iter() to be used by most
2645 * filesystems. It takes care of syncing the file in case of O_SYNC file
2646 * and acquires i_mutex as needed.
2648 ssize_t
generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
2650 struct file
*file
= iocb
->ki_filp
;
2651 struct inode
*inode
= file
->f_mapping
->host
;
2654 mutex_lock(&inode
->i_mutex
);
2655 ret
= __generic_file_write_iter(iocb
, from
);
2656 mutex_unlock(&inode
->i_mutex
);
2661 err
= generic_write_sync(file
, iocb
->ki_pos
- ret
, ret
);
2667 EXPORT_SYMBOL(generic_file_write_iter
);
2670 * try_to_release_page() - release old fs-specific metadata on a page
2672 * @page: the page which the kernel is trying to free
2673 * @gfp_mask: memory allocation flags (and I/O mode)
2675 * The address_space is to try to release any data against the page
2676 * (presumably at page->private). If the release was successful, return `1'.
2677 * Otherwise return zero.
2679 * This may also be called if PG_fscache is set on a page, indicating that the
2680 * page is known to the local caching routines.
2682 * The @gfp_mask argument specifies whether I/O may be performed to release
2683 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2686 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2688 struct address_space
* const mapping
= page
->mapping
;
2690 BUG_ON(!PageLocked(page
));
2691 if (PageWriteback(page
))
2694 if (mapping
&& mapping
->a_ops
->releasepage
)
2695 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2696 return try_to_free_buffers(page
);
2699 EXPORT_SYMBOL(try_to_release_page
);