dm: remove nr_iovecs parameter from alloc_tio()
[linux/fpc-iii.git] / mm / swap_state.c
blob3e0ec83d000cdf3f7a65e620dc6696f039dc8d98
1 /*
2 * linux/mm/swap_state.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/page_cgroup.h>
22 #include <asm/pgtable.h>
25 * swapper_space is a fiction, retained to simplify the path through
26 * vmscan's shrink_page_list.
28 static const struct address_space_operations swap_aops = {
29 .writepage = swap_writepage,
30 .set_page_dirty = swap_set_page_dirty,
31 .migratepage = migrate_page,
34 static struct backing_dev_info swap_backing_dev_info = {
35 .name = "swap",
36 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
39 struct address_space swapper_spaces[MAX_SWAPFILES] = {
40 [0 ... MAX_SWAPFILES - 1] = {
41 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
42 .i_mmap_writable = ATOMIC_INIT(0),
43 .a_ops = &swap_aops,
44 .backing_dev_info = &swap_backing_dev_info,
48 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
50 static struct {
51 unsigned long add_total;
52 unsigned long del_total;
53 unsigned long find_success;
54 unsigned long find_total;
55 } swap_cache_info;
57 unsigned long total_swapcache_pages(void)
59 int i;
60 unsigned long ret = 0;
62 for (i = 0; i < MAX_SWAPFILES; i++)
63 ret += swapper_spaces[i].nrpages;
64 return ret;
67 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
69 void show_swap_cache_info(void)
71 printk("%lu pages in swap cache\n", total_swapcache_pages());
72 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
73 swap_cache_info.add_total, swap_cache_info.del_total,
74 swap_cache_info.find_success, swap_cache_info.find_total);
75 printk("Free swap = %ldkB\n",
76 get_nr_swap_pages() << (PAGE_SHIFT - 10));
77 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
81 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
82 * but sets SwapCache flag and private instead of mapping and index.
84 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
86 int error;
87 struct address_space *address_space;
89 VM_BUG_ON_PAGE(!PageLocked(page), page);
90 VM_BUG_ON_PAGE(PageSwapCache(page), page);
91 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
93 page_cache_get(page);
94 SetPageSwapCache(page);
95 set_page_private(page, entry.val);
97 address_space = swap_address_space(entry);
98 spin_lock_irq(&address_space->tree_lock);
99 error = radix_tree_insert(&address_space->page_tree,
100 entry.val, page);
101 if (likely(!error)) {
102 address_space->nrpages++;
103 __inc_zone_page_state(page, NR_FILE_PAGES);
104 INC_CACHE_INFO(add_total);
106 spin_unlock_irq(&address_space->tree_lock);
108 if (unlikely(error)) {
110 * Only the context which have set SWAP_HAS_CACHE flag
111 * would call add_to_swap_cache().
112 * So add_to_swap_cache() doesn't returns -EEXIST.
114 VM_BUG_ON(error == -EEXIST);
115 set_page_private(page, 0UL);
116 ClearPageSwapCache(page);
117 page_cache_release(page);
120 return error;
124 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
126 int error;
128 error = radix_tree_maybe_preload(gfp_mask);
129 if (!error) {
130 error = __add_to_swap_cache(page, entry);
131 radix_tree_preload_end();
133 return error;
137 * This must be called only on pages that have
138 * been verified to be in the swap cache.
140 void __delete_from_swap_cache(struct page *page)
142 swp_entry_t entry;
143 struct address_space *address_space;
145 VM_BUG_ON_PAGE(!PageLocked(page), page);
146 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
147 VM_BUG_ON_PAGE(PageWriteback(page), page);
149 entry.val = page_private(page);
150 address_space = swap_address_space(entry);
151 radix_tree_delete(&address_space->page_tree, page_private(page));
152 set_page_private(page, 0);
153 ClearPageSwapCache(page);
154 address_space->nrpages--;
155 __dec_zone_page_state(page, NR_FILE_PAGES);
156 INC_CACHE_INFO(del_total);
160 * add_to_swap - allocate swap space for a page
161 * @page: page we want to move to swap
163 * Allocate swap space for the page and add the page to the
164 * swap cache. Caller needs to hold the page lock.
166 int add_to_swap(struct page *page, struct list_head *list)
168 swp_entry_t entry;
169 int err;
171 VM_BUG_ON_PAGE(!PageLocked(page), page);
172 VM_BUG_ON_PAGE(!PageUptodate(page), page);
174 entry = get_swap_page();
175 if (!entry.val)
176 return 0;
178 if (unlikely(PageTransHuge(page)))
179 if (unlikely(split_huge_page_to_list(page, list))) {
180 swapcache_free(entry);
181 return 0;
185 * Radix-tree node allocations from PF_MEMALLOC contexts could
186 * completely exhaust the page allocator. __GFP_NOMEMALLOC
187 * stops emergency reserves from being allocated.
189 * TODO: this could cause a theoretical memory reclaim
190 * deadlock in the swap out path.
193 * Add it to the swap cache and mark it dirty
195 err = add_to_swap_cache(page, entry,
196 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
198 if (!err) { /* Success */
199 SetPageDirty(page);
200 return 1;
201 } else { /* -ENOMEM radix-tree allocation failure */
203 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
204 * clear SWAP_HAS_CACHE flag.
206 swapcache_free(entry);
207 return 0;
212 * This must be called only on pages that have
213 * been verified to be in the swap cache and locked.
214 * It will never put the page into the free list,
215 * the caller has a reference on the page.
217 void delete_from_swap_cache(struct page *page)
219 swp_entry_t entry;
220 struct address_space *address_space;
222 entry.val = page_private(page);
224 address_space = swap_address_space(entry);
225 spin_lock_irq(&address_space->tree_lock);
226 __delete_from_swap_cache(page);
227 spin_unlock_irq(&address_space->tree_lock);
229 swapcache_free(entry);
230 page_cache_release(page);
234 * If we are the only user, then try to free up the swap cache.
236 * Its ok to check for PageSwapCache without the page lock
237 * here because we are going to recheck again inside
238 * try_to_free_swap() _with_ the lock.
239 * - Marcelo
241 static inline void free_swap_cache(struct page *page)
243 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
244 try_to_free_swap(page);
245 unlock_page(page);
250 * Perform a free_page(), also freeing any swap cache associated with
251 * this page if it is the last user of the page.
253 void free_page_and_swap_cache(struct page *page)
255 free_swap_cache(page);
256 page_cache_release(page);
260 * Passed an array of pages, drop them all from swapcache and then release
261 * them. They are removed from the LRU and freed if this is their last use.
263 void free_pages_and_swap_cache(struct page **pages, int nr)
265 struct page **pagep = pages;
267 lru_add_drain();
268 while (nr) {
269 int todo = min(nr, PAGEVEC_SIZE);
270 int i;
272 for (i = 0; i < todo; i++)
273 free_swap_cache(pagep[i]);
274 release_pages(pagep, todo, false);
275 pagep += todo;
276 nr -= todo;
281 * Lookup a swap entry in the swap cache. A found page will be returned
282 * unlocked and with its refcount incremented - we rely on the kernel
283 * lock getting page table operations atomic even if we drop the page
284 * lock before returning.
286 struct page * lookup_swap_cache(swp_entry_t entry)
288 struct page *page;
290 page = find_get_page(swap_address_space(entry), entry.val);
292 if (page) {
293 INC_CACHE_INFO(find_success);
294 if (TestClearPageReadahead(page))
295 atomic_inc(&swapin_readahead_hits);
298 INC_CACHE_INFO(find_total);
299 return page;
303 * Locate a page of swap in physical memory, reserving swap cache space
304 * and reading the disk if it is not already cached.
305 * A failure return means that either the page allocation failed or that
306 * the swap entry is no longer in use.
308 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
309 struct vm_area_struct *vma, unsigned long addr)
311 struct page *found_page, *new_page = NULL;
312 int err;
314 do {
316 * First check the swap cache. Since this is normally
317 * called after lookup_swap_cache() failed, re-calling
318 * that would confuse statistics.
320 found_page = find_get_page(swap_address_space(entry),
321 entry.val);
322 if (found_page)
323 break;
326 * Get a new page to read into from swap.
328 if (!new_page) {
329 new_page = alloc_page_vma(gfp_mask, vma, addr);
330 if (!new_page)
331 break; /* Out of memory */
335 * call radix_tree_preload() while we can wait.
337 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
338 if (err)
339 break;
342 * Swap entry may have been freed since our caller observed it.
344 err = swapcache_prepare(entry);
345 if (err == -EEXIST) {
346 radix_tree_preload_end();
348 * We might race against get_swap_page() and stumble
349 * across a SWAP_HAS_CACHE swap_map entry whose page
350 * has not been brought into the swapcache yet, while
351 * the other end is scheduled away waiting on discard
352 * I/O completion at scan_swap_map().
354 * In order to avoid turning this transitory state
355 * into a permanent loop around this -EEXIST case
356 * if !CONFIG_PREEMPT and the I/O completion happens
357 * to be waiting on the CPU waitqueue where we are now
358 * busy looping, we just conditionally invoke the
359 * scheduler here, if there are some more important
360 * tasks to run.
362 cond_resched();
363 continue;
365 if (err) { /* swp entry is obsolete ? */
366 radix_tree_preload_end();
367 break;
370 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
371 __set_page_locked(new_page);
372 SetPageSwapBacked(new_page);
373 err = __add_to_swap_cache(new_page, entry);
374 if (likely(!err)) {
375 radix_tree_preload_end();
377 * Initiate read into locked page and return.
379 lru_cache_add_anon(new_page);
380 swap_readpage(new_page);
381 return new_page;
383 radix_tree_preload_end();
384 ClearPageSwapBacked(new_page);
385 __clear_page_locked(new_page);
387 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
388 * clear SWAP_HAS_CACHE flag.
390 swapcache_free(entry);
391 } while (err != -ENOMEM);
393 if (new_page)
394 page_cache_release(new_page);
395 return found_page;
398 static unsigned long swapin_nr_pages(unsigned long offset)
400 static unsigned long prev_offset;
401 unsigned int pages, max_pages, last_ra;
402 static atomic_t last_readahead_pages;
404 max_pages = 1 << ACCESS_ONCE(page_cluster);
405 if (max_pages <= 1)
406 return 1;
409 * This heuristic has been found to work well on both sequential and
410 * random loads, swapping to hard disk or to SSD: please don't ask
411 * what the "+ 2" means, it just happens to work well, that's all.
413 pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
414 if (pages == 2) {
416 * We can have no readahead hits to judge by: but must not get
417 * stuck here forever, so check for an adjacent offset instead
418 * (and don't even bother to check whether swap type is same).
420 if (offset != prev_offset + 1 && offset != prev_offset - 1)
421 pages = 1;
422 prev_offset = offset;
423 } else {
424 unsigned int roundup = 4;
425 while (roundup < pages)
426 roundup <<= 1;
427 pages = roundup;
430 if (pages > max_pages)
431 pages = max_pages;
433 /* Don't shrink readahead too fast */
434 last_ra = atomic_read(&last_readahead_pages) / 2;
435 if (pages < last_ra)
436 pages = last_ra;
437 atomic_set(&last_readahead_pages, pages);
439 return pages;
443 * swapin_readahead - swap in pages in hope we need them soon
444 * @entry: swap entry of this memory
445 * @gfp_mask: memory allocation flags
446 * @vma: user vma this address belongs to
447 * @addr: target address for mempolicy
449 * Returns the struct page for entry and addr, after queueing swapin.
451 * Primitive swap readahead code. We simply read an aligned block of
452 * (1 << page_cluster) entries in the swap area. This method is chosen
453 * because it doesn't cost us any seek time. We also make sure to queue
454 * the 'original' request together with the readahead ones...
456 * This has been extended to use the NUMA policies from the mm triggering
457 * the readahead.
459 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
461 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
462 struct vm_area_struct *vma, unsigned long addr)
464 struct page *page;
465 unsigned long entry_offset = swp_offset(entry);
466 unsigned long offset = entry_offset;
467 unsigned long start_offset, end_offset;
468 unsigned long mask;
469 struct blk_plug plug;
471 mask = swapin_nr_pages(offset) - 1;
472 if (!mask)
473 goto skip;
475 /* Read a page_cluster sized and aligned cluster around offset. */
476 start_offset = offset & ~mask;
477 end_offset = offset | mask;
478 if (!start_offset) /* First page is swap header. */
479 start_offset++;
481 blk_start_plug(&plug);
482 for (offset = start_offset; offset <= end_offset ; offset++) {
483 /* Ok, do the async read-ahead now */
484 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
485 gfp_mask, vma, addr);
486 if (!page)
487 continue;
488 if (offset != entry_offset)
489 SetPageReadahead(page);
490 page_cache_release(page);
492 blk_finish_plug(&plug);
494 lru_add_drain(); /* Push any new pages onto the LRU now */
495 skip:
496 return read_swap_cache_async(entry, gfp_mask, vma, addr);