2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
46 #include <linux/interrupt.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/sctp.h>
53 #include <linux/netdevice.h>
54 #ifdef CONFIG_NET_CLS_ACT
55 #include <net/pkt_sched.h>
57 #include <linux/string.h>
58 #include <linux/skbuff.h>
59 #include <linux/splice.h>
60 #include <linux/cache.h>
61 #include <linux/rtnetlink.h>
62 #include <linux/init.h>
63 #include <linux/scatterlist.h>
64 #include <linux/errqueue.h>
65 #include <linux/prefetch.h>
66 #include <linux/if_vlan.h>
68 #include <net/protocol.h>
71 #include <net/checksum.h>
72 #include <net/ip6_checksum.h>
75 #include <asm/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
81 struct kmem_cache
*skbuff_head_cache __read_mostly
;
82 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
83 int sysctl_max_skb_frags __read_mostly
= MAX_SKB_FRAGS
;
84 EXPORT_SYMBOL(sysctl_max_skb_frags
);
87 * skb_panic - private function for out-of-line support
91 * @msg: skb_over_panic or skb_under_panic
93 * Out-of-line support for skb_put() and skb_push().
94 * Called via the wrapper skb_over_panic() or skb_under_panic().
95 * Keep out of line to prevent kernel bloat.
96 * __builtin_return_address is not used because it is not always reliable.
98 static void skb_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
,
101 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
102 msg
, addr
, skb
->len
, sz
, skb
->head
, skb
->data
,
103 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
104 skb
->dev
? skb
->dev
->name
: "<NULL>");
108 static void skb_over_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
)
110 skb_panic(skb
, sz
, addr
, __func__
);
113 static void skb_under_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
)
115 skb_panic(skb
, sz
, addr
, __func__
);
119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
120 * the caller if emergency pfmemalloc reserves are being used. If it is and
121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
122 * may be used. Otherwise, the packet data may be discarded until enough
125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
126 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
128 static void *__kmalloc_reserve(size_t size
, gfp_t flags
, int node
,
129 unsigned long ip
, bool *pfmemalloc
)
132 bool ret_pfmemalloc
= false;
135 * Try a regular allocation, when that fails and we're not entitled
136 * to the reserves, fail.
138 obj
= kmalloc_node_track_caller(size
,
139 flags
| __GFP_NOMEMALLOC
| __GFP_NOWARN
,
141 if (obj
|| !(gfp_pfmemalloc_allowed(flags
)))
144 /* Try again but now we are using pfmemalloc reserves */
145 ret_pfmemalloc
= true;
146 obj
= kmalloc_node_track_caller(size
, flags
, node
);
150 *pfmemalloc
= ret_pfmemalloc
;
155 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
156 * 'private' fields and also do memory statistics to find all the
161 struct sk_buff
*__alloc_skb_head(gfp_t gfp_mask
, int node
)
166 skb
= kmem_cache_alloc_node(skbuff_head_cache
,
167 gfp_mask
& ~__GFP_DMA
, node
);
172 * Only clear those fields we need to clear, not those that we will
173 * actually initialise below. Hence, don't put any more fields after
174 * the tail pointer in struct sk_buff!
176 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
178 skb
->truesize
= sizeof(struct sk_buff
);
179 atomic_set(&skb
->users
, 1);
181 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
187 * __alloc_skb - allocate a network buffer
188 * @size: size to allocate
189 * @gfp_mask: allocation mask
190 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
191 * instead of head cache and allocate a cloned (child) skb.
192 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
193 * allocations in case the data is required for writeback
194 * @node: numa node to allocate memory on
196 * Allocate a new &sk_buff. The returned buffer has no headroom and a
197 * tail room of at least size bytes. The object has a reference count
198 * of one. The return is the buffer. On a failure the return is %NULL.
200 * Buffers may only be allocated from interrupts using a @gfp_mask of
203 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
206 struct kmem_cache
*cache
;
207 struct skb_shared_info
*shinfo
;
212 cache
= (flags
& SKB_ALLOC_FCLONE
)
213 ? skbuff_fclone_cache
: skbuff_head_cache
;
215 if (sk_memalloc_socks() && (flags
& SKB_ALLOC_RX
))
216 gfp_mask
|= __GFP_MEMALLOC
;
219 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
224 /* We do our best to align skb_shared_info on a separate cache
225 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
226 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
227 * Both skb->head and skb_shared_info are cache line aligned.
229 size
= SKB_DATA_ALIGN(size
);
230 size
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
231 data
= kmalloc_reserve(size
, gfp_mask
, node
, &pfmemalloc
);
234 /* kmalloc(size) might give us more room than requested.
235 * Put skb_shared_info exactly at the end of allocated zone,
236 * to allow max possible filling before reallocation.
238 size
= SKB_WITH_OVERHEAD(ksize(data
));
239 prefetchw(data
+ size
);
242 * Only clear those fields we need to clear, not those that we will
243 * actually initialise below. Hence, don't put any more fields after
244 * the tail pointer in struct sk_buff!
246 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
247 /* Account for allocated memory : skb + skb->head */
248 skb
->truesize
= SKB_TRUESIZE(size
);
249 skb
->pfmemalloc
= pfmemalloc
;
250 atomic_set(&skb
->users
, 1);
253 skb_reset_tail_pointer(skb
);
254 skb
->end
= skb
->tail
+ size
;
255 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
256 skb
->transport_header
= (typeof(skb
->transport_header
))~0U;
258 /* make sure we initialize shinfo sequentially */
259 shinfo
= skb_shinfo(skb
);
260 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
261 atomic_set(&shinfo
->dataref
, 1);
262 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
264 if (flags
& SKB_ALLOC_FCLONE
) {
265 struct sk_buff_fclones
*fclones
;
267 fclones
= container_of(skb
, struct sk_buff_fclones
, skb1
);
269 kmemcheck_annotate_bitfield(&fclones
->skb2
, flags1
);
270 skb
->fclone
= SKB_FCLONE_ORIG
;
271 atomic_set(&fclones
->fclone_ref
, 1);
273 fclones
->skb2
.fclone
= SKB_FCLONE_CLONE
;
274 fclones
->skb2
.pfmemalloc
= pfmemalloc
;
279 kmem_cache_free(cache
, skb
);
283 EXPORT_SYMBOL(__alloc_skb
);
286 * __build_skb - build a network buffer
287 * @data: data buffer provided by caller
288 * @frag_size: size of data, or 0 if head was kmalloced
290 * Allocate a new &sk_buff. Caller provides space holding head and
291 * skb_shared_info. @data must have been allocated by kmalloc() only if
292 * @frag_size is 0, otherwise data should come from the page allocator
294 * The return is the new skb buffer.
295 * On a failure the return is %NULL, and @data is not freed.
297 * Before IO, driver allocates only data buffer where NIC put incoming frame
298 * Driver should add room at head (NET_SKB_PAD) and
299 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
300 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
301 * before giving packet to stack.
302 * RX rings only contains data buffers, not full skbs.
304 struct sk_buff
*__build_skb(void *data
, unsigned int frag_size
)
306 struct skb_shared_info
*shinfo
;
308 unsigned int size
= frag_size
? : ksize(data
);
310 skb
= kmem_cache_alloc(skbuff_head_cache
, GFP_ATOMIC
);
314 size
-= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
316 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
317 skb
->truesize
= SKB_TRUESIZE(size
);
318 atomic_set(&skb
->users
, 1);
321 skb_reset_tail_pointer(skb
);
322 skb
->end
= skb
->tail
+ size
;
323 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
324 skb
->transport_header
= (typeof(skb
->transport_header
))~0U;
326 /* make sure we initialize shinfo sequentially */
327 shinfo
= skb_shinfo(skb
);
328 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
329 atomic_set(&shinfo
->dataref
, 1);
330 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
335 /* build_skb() is wrapper over __build_skb(), that specifically
336 * takes care of skb->head and skb->pfmemalloc
337 * This means that if @frag_size is not zero, then @data must be backed
338 * by a page fragment, not kmalloc() or vmalloc()
340 struct sk_buff
*build_skb(void *data
, unsigned int frag_size
)
342 struct sk_buff
*skb
= __build_skb(data
, frag_size
);
344 if (skb
&& frag_size
) {
346 if (page_is_pfmemalloc(virt_to_head_page(data
)))
351 EXPORT_SYMBOL(build_skb
);
353 #define NAPI_SKB_CACHE_SIZE 64
355 struct napi_alloc_cache
{
356 struct page_frag_cache page
;
358 void *skb_cache
[NAPI_SKB_CACHE_SIZE
];
361 static DEFINE_PER_CPU(struct page_frag_cache
, netdev_alloc_cache
);
362 static DEFINE_PER_CPU(struct napi_alloc_cache
, napi_alloc_cache
);
364 static void *__netdev_alloc_frag(unsigned int fragsz
, gfp_t gfp_mask
)
366 struct page_frag_cache
*nc
;
370 local_irq_save(flags
);
371 nc
= this_cpu_ptr(&netdev_alloc_cache
);
372 data
= __alloc_page_frag(nc
, fragsz
, gfp_mask
);
373 local_irq_restore(flags
);
378 * netdev_alloc_frag - allocate a page fragment
379 * @fragsz: fragment size
381 * Allocates a frag from a page for receive buffer.
382 * Uses GFP_ATOMIC allocations.
384 void *netdev_alloc_frag(unsigned int fragsz
)
386 return __netdev_alloc_frag(fragsz
, GFP_ATOMIC
| __GFP_COLD
);
388 EXPORT_SYMBOL(netdev_alloc_frag
);
390 static void *__napi_alloc_frag(unsigned int fragsz
, gfp_t gfp_mask
)
392 struct napi_alloc_cache
*nc
= this_cpu_ptr(&napi_alloc_cache
);
394 return __alloc_page_frag(&nc
->page
, fragsz
, gfp_mask
);
397 void *napi_alloc_frag(unsigned int fragsz
)
399 return __napi_alloc_frag(fragsz
, GFP_ATOMIC
| __GFP_COLD
);
401 EXPORT_SYMBOL(napi_alloc_frag
);
404 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
405 * @dev: network device to receive on
406 * @len: length to allocate
407 * @gfp_mask: get_free_pages mask, passed to alloc_skb
409 * Allocate a new &sk_buff and assign it a usage count of one. The
410 * buffer has NET_SKB_PAD headroom built in. Users should allocate
411 * the headroom they think they need without accounting for the
412 * built in space. The built in space is used for optimisations.
414 * %NULL is returned if there is no free memory.
416 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
, unsigned int len
,
419 struct page_frag_cache
*nc
;
427 if ((len
> SKB_WITH_OVERHEAD(PAGE_SIZE
)) ||
428 (gfp_mask
& (__GFP_DIRECT_RECLAIM
| GFP_DMA
))) {
429 skb
= __alloc_skb(len
, gfp_mask
, SKB_ALLOC_RX
, NUMA_NO_NODE
);
435 len
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
436 len
= SKB_DATA_ALIGN(len
);
438 if (sk_memalloc_socks())
439 gfp_mask
|= __GFP_MEMALLOC
;
441 local_irq_save(flags
);
443 nc
= this_cpu_ptr(&netdev_alloc_cache
);
444 data
= __alloc_page_frag(nc
, len
, gfp_mask
);
445 pfmemalloc
= nc
->pfmemalloc
;
447 local_irq_restore(flags
);
452 skb
= __build_skb(data
, len
);
453 if (unlikely(!skb
)) {
458 /* use OR instead of assignment to avoid clearing of bits in mask */
464 skb_reserve(skb
, NET_SKB_PAD
);
470 EXPORT_SYMBOL(__netdev_alloc_skb
);
473 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
474 * @napi: napi instance this buffer was allocated for
475 * @len: length to allocate
476 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
478 * Allocate a new sk_buff for use in NAPI receive. This buffer will
479 * attempt to allocate the head from a special reserved region used
480 * only for NAPI Rx allocation. By doing this we can save several
481 * CPU cycles by avoiding having to disable and re-enable IRQs.
483 * %NULL is returned if there is no free memory.
485 struct sk_buff
*__napi_alloc_skb(struct napi_struct
*napi
, unsigned int len
,
488 struct napi_alloc_cache
*nc
= this_cpu_ptr(&napi_alloc_cache
);
492 len
+= NET_SKB_PAD
+ NET_IP_ALIGN
;
494 if ((len
> SKB_WITH_OVERHEAD(PAGE_SIZE
)) ||
495 (gfp_mask
& (__GFP_DIRECT_RECLAIM
| GFP_DMA
))) {
496 skb
= __alloc_skb(len
, gfp_mask
, SKB_ALLOC_RX
, NUMA_NO_NODE
);
502 len
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
503 len
= SKB_DATA_ALIGN(len
);
505 if (sk_memalloc_socks())
506 gfp_mask
|= __GFP_MEMALLOC
;
508 data
= __alloc_page_frag(&nc
->page
, len
, gfp_mask
);
512 skb
= __build_skb(data
, len
);
513 if (unlikely(!skb
)) {
518 /* use OR instead of assignment to avoid clearing of bits in mask */
519 if (nc
->page
.pfmemalloc
)
524 skb_reserve(skb
, NET_SKB_PAD
+ NET_IP_ALIGN
);
525 skb
->dev
= napi
->dev
;
530 EXPORT_SYMBOL(__napi_alloc_skb
);
532 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
533 int size
, unsigned int truesize
)
535 skb_fill_page_desc(skb
, i
, page
, off
, size
);
537 skb
->data_len
+= size
;
538 skb
->truesize
+= truesize
;
540 EXPORT_SYMBOL(skb_add_rx_frag
);
542 void skb_coalesce_rx_frag(struct sk_buff
*skb
, int i
, int size
,
543 unsigned int truesize
)
545 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
547 skb_frag_size_add(frag
, size
);
549 skb
->data_len
+= size
;
550 skb
->truesize
+= truesize
;
552 EXPORT_SYMBOL(skb_coalesce_rx_frag
);
554 static void skb_drop_list(struct sk_buff
**listp
)
556 kfree_skb_list(*listp
);
560 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
562 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
565 static void skb_clone_fraglist(struct sk_buff
*skb
)
567 struct sk_buff
*list
;
569 skb_walk_frags(skb
, list
)
573 static void skb_free_head(struct sk_buff
*skb
)
575 unsigned char *head
= skb
->head
;
583 static void skb_release_data(struct sk_buff
*skb
)
585 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
589 atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
593 for (i
= 0; i
< shinfo
->nr_frags
; i
++)
594 __skb_frag_unref(&shinfo
->frags
[i
]);
597 * If skb buf is from userspace, we need to notify the caller
598 * the lower device DMA has done;
600 if (shinfo
->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
601 struct ubuf_info
*uarg
;
603 uarg
= shinfo
->destructor_arg
;
605 uarg
->callback(uarg
, true);
608 if (shinfo
->frag_list
)
609 kfree_skb_list(shinfo
->frag_list
);
615 * Free an skbuff by memory without cleaning the state.
617 static void kfree_skbmem(struct sk_buff
*skb
)
619 struct sk_buff_fclones
*fclones
;
621 switch (skb
->fclone
) {
622 case SKB_FCLONE_UNAVAILABLE
:
623 kmem_cache_free(skbuff_head_cache
, skb
);
626 case SKB_FCLONE_ORIG
:
627 fclones
= container_of(skb
, struct sk_buff_fclones
, skb1
);
629 /* We usually free the clone (TX completion) before original skb
630 * This test would have no chance to be true for the clone,
631 * while here, branch prediction will be good.
633 if (atomic_read(&fclones
->fclone_ref
) == 1)
637 default: /* SKB_FCLONE_CLONE */
638 fclones
= container_of(skb
, struct sk_buff_fclones
, skb2
);
641 if (!atomic_dec_and_test(&fclones
->fclone_ref
))
644 kmem_cache_free(skbuff_fclone_cache
, fclones
);
647 static void skb_release_head_state(struct sk_buff
*skb
)
651 secpath_put(skb
->sp
);
653 if (skb
->destructor
) {
655 skb
->destructor(skb
);
657 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
658 nf_conntrack_put(skb
->nfct
);
660 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
661 nf_bridge_put(skb
->nf_bridge
);
665 /* Free everything but the sk_buff shell. */
666 static void skb_release_all(struct sk_buff
*skb
)
668 skb_release_head_state(skb
);
669 if (likely(skb
->head
))
670 skb_release_data(skb
);
674 * __kfree_skb - private function
677 * Free an sk_buff. Release anything attached to the buffer.
678 * Clean the state. This is an internal helper function. Users should
679 * always call kfree_skb
682 void __kfree_skb(struct sk_buff
*skb
)
684 skb_release_all(skb
);
687 EXPORT_SYMBOL(__kfree_skb
);
690 * kfree_skb - free an sk_buff
691 * @skb: buffer to free
693 * Drop a reference to the buffer and free it if the usage count has
696 void kfree_skb(struct sk_buff
*skb
)
700 if (likely(atomic_read(&skb
->users
) == 1))
702 else if (likely(!atomic_dec_and_test(&skb
->users
)))
704 trace_kfree_skb(skb
, __builtin_return_address(0));
707 EXPORT_SYMBOL(kfree_skb
);
709 void kfree_skb_list(struct sk_buff
*segs
)
712 struct sk_buff
*next
= segs
->next
;
718 EXPORT_SYMBOL(kfree_skb_list
);
721 * skb_tx_error - report an sk_buff xmit error
722 * @skb: buffer that triggered an error
724 * Report xmit error if a device callback is tracking this skb.
725 * skb must be freed afterwards.
727 void skb_tx_error(struct sk_buff
*skb
)
729 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
730 struct ubuf_info
*uarg
;
732 uarg
= skb_shinfo(skb
)->destructor_arg
;
734 uarg
->callback(uarg
, false);
735 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
738 EXPORT_SYMBOL(skb_tx_error
);
741 * consume_skb - free an skbuff
742 * @skb: buffer to free
744 * Drop a ref to the buffer and free it if the usage count has hit zero
745 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
746 * is being dropped after a failure and notes that
748 void consume_skb(struct sk_buff
*skb
)
752 if (likely(atomic_read(&skb
->users
) == 1))
754 else if (likely(!atomic_dec_and_test(&skb
->users
)))
756 trace_consume_skb(skb
);
759 EXPORT_SYMBOL(consume_skb
);
761 void __kfree_skb_flush(void)
763 struct napi_alloc_cache
*nc
= this_cpu_ptr(&napi_alloc_cache
);
765 /* flush skb_cache if containing objects */
767 kmem_cache_free_bulk(skbuff_head_cache
, nc
->skb_count
,
773 static inline void _kfree_skb_defer(struct sk_buff
*skb
)
775 struct napi_alloc_cache
*nc
= this_cpu_ptr(&napi_alloc_cache
);
777 /* drop skb->head and call any destructors for packet */
778 skb_release_all(skb
);
780 /* record skb to CPU local list */
781 nc
->skb_cache
[nc
->skb_count
++] = skb
;
784 /* SLUB writes into objects when freeing */
788 /* flush skb_cache if it is filled */
789 if (unlikely(nc
->skb_count
== NAPI_SKB_CACHE_SIZE
)) {
790 kmem_cache_free_bulk(skbuff_head_cache
, NAPI_SKB_CACHE_SIZE
,
795 void __kfree_skb_defer(struct sk_buff
*skb
)
797 _kfree_skb_defer(skb
);
800 void napi_consume_skb(struct sk_buff
*skb
, int budget
)
805 /* Zero budget indicate non-NAPI context called us, like netpoll */
806 if (unlikely(!budget
)) {
807 dev_consume_skb_any(skb
);
811 if (likely(atomic_read(&skb
->users
) == 1))
813 else if (likely(!atomic_dec_and_test(&skb
->users
)))
815 /* if reaching here SKB is ready to free */
816 trace_consume_skb(skb
);
818 /* if SKB is a clone, don't handle this case */
819 if (skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
) {
824 _kfree_skb_defer(skb
);
826 EXPORT_SYMBOL(napi_consume_skb
);
828 /* Make sure a field is enclosed inside headers_start/headers_end section */
829 #define CHECK_SKB_FIELD(field) \
830 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
831 offsetof(struct sk_buff, headers_start)); \
832 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
833 offsetof(struct sk_buff, headers_end)); \
835 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
837 new->tstamp
= old
->tstamp
;
838 /* We do not copy old->sk */
840 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
841 skb_dst_copy(new, old
);
843 new->sp
= secpath_get(old
->sp
);
845 __nf_copy(new, old
, false);
847 /* Note : this field could be in headers_start/headers_end section
848 * It is not yet because we do not want to have a 16 bit hole
850 new->queue_mapping
= old
->queue_mapping
;
852 memcpy(&new->headers_start
, &old
->headers_start
,
853 offsetof(struct sk_buff
, headers_end
) -
854 offsetof(struct sk_buff
, headers_start
));
855 CHECK_SKB_FIELD(protocol
);
856 CHECK_SKB_FIELD(csum
);
857 CHECK_SKB_FIELD(hash
);
858 CHECK_SKB_FIELD(priority
);
859 CHECK_SKB_FIELD(skb_iif
);
860 CHECK_SKB_FIELD(vlan_proto
);
861 CHECK_SKB_FIELD(vlan_tci
);
862 CHECK_SKB_FIELD(transport_header
);
863 CHECK_SKB_FIELD(network_header
);
864 CHECK_SKB_FIELD(mac_header
);
865 CHECK_SKB_FIELD(inner_protocol
);
866 CHECK_SKB_FIELD(inner_transport_header
);
867 CHECK_SKB_FIELD(inner_network_header
);
868 CHECK_SKB_FIELD(inner_mac_header
);
869 CHECK_SKB_FIELD(mark
);
870 #ifdef CONFIG_NETWORK_SECMARK
871 CHECK_SKB_FIELD(secmark
);
873 #ifdef CONFIG_NET_RX_BUSY_POLL
874 CHECK_SKB_FIELD(napi_id
);
877 CHECK_SKB_FIELD(sender_cpu
);
879 #ifdef CONFIG_NET_SCHED
880 CHECK_SKB_FIELD(tc_index
);
881 #ifdef CONFIG_NET_CLS_ACT
882 CHECK_SKB_FIELD(tc_verd
);
889 * You should not add any new code to this function. Add it to
890 * __copy_skb_header above instead.
892 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
894 #define C(x) n->x = skb->x
896 n
->next
= n
->prev
= NULL
;
898 __copy_skb_header(n
, skb
);
903 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
908 n
->destructor
= NULL
;
915 atomic_set(&n
->users
, 1);
917 atomic_inc(&(skb_shinfo(skb
)->dataref
));
925 * skb_morph - morph one skb into another
926 * @dst: the skb to receive the contents
927 * @src: the skb to supply the contents
929 * This is identical to skb_clone except that the target skb is
930 * supplied by the user.
932 * The target skb is returned upon exit.
934 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
936 skb_release_all(dst
);
937 return __skb_clone(dst
, src
);
939 EXPORT_SYMBOL_GPL(skb_morph
);
942 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
943 * @skb: the skb to modify
944 * @gfp_mask: allocation priority
946 * This must be called on SKBTX_DEV_ZEROCOPY skb.
947 * It will copy all frags into kernel and drop the reference
948 * to userspace pages.
950 * If this function is called from an interrupt gfp_mask() must be
953 * Returns 0 on success or a negative error code on failure
954 * to allocate kernel memory to copy to.
956 int skb_copy_ubufs(struct sk_buff
*skb
, gfp_t gfp_mask
)
959 int num_frags
= skb_shinfo(skb
)->nr_frags
;
960 struct page
*page
, *head
= NULL
;
961 struct ubuf_info
*uarg
= skb_shinfo(skb
)->destructor_arg
;
963 for (i
= 0; i
< num_frags
; i
++) {
965 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
967 page
= alloc_page(gfp_mask
);
970 struct page
*next
= (struct page
*)page_private(head
);
976 vaddr
= kmap_atomic(skb_frag_page(f
));
977 memcpy(page_address(page
),
978 vaddr
+ f
->page_offset
, skb_frag_size(f
));
979 kunmap_atomic(vaddr
);
980 set_page_private(page
, (unsigned long)head
);
984 /* skb frags release userspace buffers */
985 for (i
= 0; i
< num_frags
; i
++)
986 skb_frag_unref(skb
, i
);
988 uarg
->callback(uarg
, false);
990 /* skb frags point to kernel buffers */
991 for (i
= num_frags
- 1; i
>= 0; i
--) {
992 __skb_fill_page_desc(skb
, i
, head
, 0,
993 skb_shinfo(skb
)->frags
[i
].size
);
994 head
= (struct page
*)page_private(head
);
997 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
1000 EXPORT_SYMBOL_GPL(skb_copy_ubufs
);
1003 * skb_clone - duplicate an sk_buff
1004 * @skb: buffer to clone
1005 * @gfp_mask: allocation priority
1007 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1008 * copies share the same packet data but not structure. The new
1009 * buffer has a reference count of 1. If the allocation fails the
1010 * function returns %NULL otherwise the new buffer is returned.
1012 * If this function is called from an interrupt gfp_mask() must be
1016 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
1018 struct sk_buff_fclones
*fclones
= container_of(skb
,
1019 struct sk_buff_fclones
,
1023 if (skb_orphan_frags(skb
, gfp_mask
))
1026 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
1027 atomic_read(&fclones
->fclone_ref
) == 1) {
1029 atomic_set(&fclones
->fclone_ref
, 2);
1031 if (skb_pfmemalloc(skb
))
1032 gfp_mask
|= __GFP_MEMALLOC
;
1034 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
1038 kmemcheck_annotate_bitfield(n
, flags1
);
1039 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
1042 return __skb_clone(n
, skb
);
1044 EXPORT_SYMBOL(skb_clone
);
1046 static void skb_headers_offset_update(struct sk_buff
*skb
, int off
)
1048 /* Only adjust this if it actually is csum_start rather than csum */
1049 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1050 skb
->csum_start
+= off
;
1051 /* {transport,network,mac}_header and tail are relative to skb->head */
1052 skb
->transport_header
+= off
;
1053 skb
->network_header
+= off
;
1054 if (skb_mac_header_was_set(skb
))
1055 skb
->mac_header
+= off
;
1056 skb
->inner_transport_header
+= off
;
1057 skb
->inner_network_header
+= off
;
1058 skb
->inner_mac_header
+= off
;
1061 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
1063 __copy_skb_header(new, old
);
1065 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
1066 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
1067 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
1070 static inline int skb_alloc_rx_flag(const struct sk_buff
*skb
)
1072 if (skb_pfmemalloc(skb
))
1073 return SKB_ALLOC_RX
;
1078 * skb_copy - create private copy of an sk_buff
1079 * @skb: buffer to copy
1080 * @gfp_mask: allocation priority
1082 * Make a copy of both an &sk_buff and its data. This is used when the
1083 * caller wishes to modify the data and needs a private copy of the
1084 * data to alter. Returns %NULL on failure or the pointer to the buffer
1085 * on success. The returned buffer has a reference count of 1.
1087 * As by-product this function converts non-linear &sk_buff to linear
1088 * one, so that &sk_buff becomes completely private and caller is allowed
1089 * to modify all the data of returned buffer. This means that this
1090 * function is not recommended for use in circumstances when only
1091 * header is going to be modified. Use pskb_copy() instead.
1094 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
1096 int headerlen
= skb_headroom(skb
);
1097 unsigned int size
= skb_end_offset(skb
) + skb
->data_len
;
1098 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
,
1099 skb_alloc_rx_flag(skb
), NUMA_NO_NODE
);
1104 /* Set the data pointer */
1105 skb_reserve(n
, headerlen
);
1106 /* Set the tail pointer and length */
1107 skb_put(n
, skb
->len
);
1109 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
1112 copy_skb_header(n
, skb
);
1115 EXPORT_SYMBOL(skb_copy
);
1118 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1119 * @skb: buffer to copy
1120 * @headroom: headroom of new skb
1121 * @gfp_mask: allocation priority
1122 * @fclone: if true allocate the copy of the skb from the fclone
1123 * cache instead of the head cache; it is recommended to set this
1124 * to true for the cases where the copy will likely be cloned
1126 * Make a copy of both an &sk_buff and part of its data, located
1127 * in header. Fragmented data remain shared. This is used when
1128 * the caller wishes to modify only header of &sk_buff and needs
1129 * private copy of the header to alter. Returns %NULL on failure
1130 * or the pointer to the buffer on success.
1131 * The returned buffer has a reference count of 1.
1134 struct sk_buff
*__pskb_copy_fclone(struct sk_buff
*skb
, int headroom
,
1135 gfp_t gfp_mask
, bool fclone
)
1137 unsigned int size
= skb_headlen(skb
) + headroom
;
1138 int flags
= skb_alloc_rx_flag(skb
) | (fclone
? SKB_ALLOC_FCLONE
: 0);
1139 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
, flags
, NUMA_NO_NODE
);
1144 /* Set the data pointer */
1145 skb_reserve(n
, headroom
);
1146 /* Set the tail pointer and length */
1147 skb_put(n
, skb_headlen(skb
));
1148 /* Copy the bytes */
1149 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
1151 n
->truesize
+= skb
->data_len
;
1152 n
->data_len
= skb
->data_len
;
1155 if (skb_shinfo(skb
)->nr_frags
) {
1158 if (skb_orphan_frags(skb
, gfp_mask
)) {
1163 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1164 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
1165 skb_frag_ref(skb
, i
);
1167 skb_shinfo(n
)->nr_frags
= i
;
1170 if (skb_has_frag_list(skb
)) {
1171 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
1172 skb_clone_fraglist(n
);
1175 copy_skb_header(n
, skb
);
1179 EXPORT_SYMBOL(__pskb_copy_fclone
);
1182 * pskb_expand_head - reallocate header of &sk_buff
1183 * @skb: buffer to reallocate
1184 * @nhead: room to add at head
1185 * @ntail: room to add at tail
1186 * @gfp_mask: allocation priority
1188 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1189 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1190 * reference count of 1. Returns zero in the case of success or error,
1191 * if expansion failed. In the last case, &sk_buff is not changed.
1193 * All the pointers pointing into skb header may change and must be
1194 * reloaded after call to this function.
1197 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
1202 int size
= nhead
+ skb_end_offset(skb
) + ntail
;
1207 if (skb_shared(skb
))
1210 size
= SKB_DATA_ALIGN(size
);
1212 if (skb_pfmemalloc(skb
))
1213 gfp_mask
|= __GFP_MEMALLOC
;
1214 data
= kmalloc_reserve(size
+ SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)),
1215 gfp_mask
, NUMA_NO_NODE
, NULL
);
1218 size
= SKB_WITH_OVERHEAD(ksize(data
));
1220 /* Copy only real data... and, alas, header. This should be
1221 * optimized for the cases when header is void.
1223 memcpy(data
+ nhead
, skb
->head
, skb_tail_pointer(skb
) - skb
->head
);
1225 memcpy((struct skb_shared_info
*)(data
+ size
),
1227 offsetof(struct skb_shared_info
, frags
[skb_shinfo(skb
)->nr_frags
]));
1230 * if shinfo is shared we must drop the old head gracefully, but if it
1231 * is not we can just drop the old head and let the existing refcount
1232 * be since all we did is relocate the values
1234 if (skb_cloned(skb
)) {
1235 /* copy this zero copy skb frags */
1236 if (skb_orphan_frags(skb
, gfp_mask
))
1238 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1239 skb_frag_ref(skb
, i
);
1241 if (skb_has_frag_list(skb
))
1242 skb_clone_fraglist(skb
);
1244 skb_release_data(skb
);
1248 off
= (data
+ nhead
) - skb
->head
;
1253 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1257 skb
->end
= skb
->head
+ size
;
1260 skb_headers_offset_update(skb
, nhead
);
1264 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
1272 EXPORT_SYMBOL(pskb_expand_head
);
1274 /* Make private copy of skb with writable head and some headroom */
1276 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
1278 struct sk_buff
*skb2
;
1279 int delta
= headroom
- skb_headroom(skb
);
1282 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
1284 skb2
= skb_clone(skb
, GFP_ATOMIC
);
1285 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
1293 EXPORT_SYMBOL(skb_realloc_headroom
);
1296 * skb_copy_expand - copy and expand sk_buff
1297 * @skb: buffer to copy
1298 * @newheadroom: new free bytes at head
1299 * @newtailroom: new free bytes at tail
1300 * @gfp_mask: allocation priority
1302 * Make a copy of both an &sk_buff and its data and while doing so
1303 * allocate additional space.
1305 * This is used when the caller wishes to modify the data and needs a
1306 * private copy of the data to alter as well as more space for new fields.
1307 * Returns %NULL on failure or the pointer to the buffer
1308 * on success. The returned buffer has a reference count of 1.
1310 * You must pass %GFP_ATOMIC as the allocation priority if this function
1311 * is called from an interrupt.
1313 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
1314 int newheadroom
, int newtailroom
,
1318 * Allocate the copy buffer
1320 struct sk_buff
*n
= __alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
1321 gfp_mask
, skb_alloc_rx_flag(skb
),
1323 int oldheadroom
= skb_headroom(skb
);
1324 int head_copy_len
, head_copy_off
;
1329 skb_reserve(n
, newheadroom
);
1331 /* Set the tail pointer and length */
1332 skb_put(n
, skb
->len
);
1334 head_copy_len
= oldheadroom
;
1336 if (newheadroom
<= head_copy_len
)
1337 head_copy_len
= newheadroom
;
1339 head_copy_off
= newheadroom
- head_copy_len
;
1341 /* Copy the linear header and data. */
1342 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
1343 skb
->len
+ head_copy_len
))
1346 copy_skb_header(n
, skb
);
1348 skb_headers_offset_update(n
, newheadroom
- oldheadroom
);
1352 EXPORT_SYMBOL(skb_copy_expand
);
1355 * skb_pad - zero pad the tail of an skb
1356 * @skb: buffer to pad
1357 * @pad: space to pad
1359 * Ensure that a buffer is followed by a padding area that is zero
1360 * filled. Used by network drivers which may DMA or transfer data
1361 * beyond the buffer end onto the wire.
1363 * May return error in out of memory cases. The skb is freed on error.
1366 int skb_pad(struct sk_buff
*skb
, int pad
)
1371 /* If the skbuff is non linear tailroom is always zero.. */
1372 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
1373 memset(skb
->data
+skb
->len
, 0, pad
);
1377 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
1378 if (likely(skb_cloned(skb
) || ntail
> 0)) {
1379 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
1384 /* FIXME: The use of this function with non-linear skb's really needs
1387 err
= skb_linearize(skb
);
1391 memset(skb
->data
+ skb
->len
, 0, pad
);
1398 EXPORT_SYMBOL(skb_pad
);
1401 * pskb_put - add data to the tail of a potentially fragmented buffer
1402 * @skb: start of the buffer to use
1403 * @tail: tail fragment of the buffer to use
1404 * @len: amount of data to add
1406 * This function extends the used data area of the potentially
1407 * fragmented buffer. @tail must be the last fragment of @skb -- or
1408 * @skb itself. If this would exceed the total buffer size the kernel
1409 * will panic. A pointer to the first byte of the extra data is
1413 unsigned char *pskb_put(struct sk_buff
*skb
, struct sk_buff
*tail
, int len
)
1416 skb
->data_len
+= len
;
1419 return skb_put(tail
, len
);
1421 EXPORT_SYMBOL_GPL(pskb_put
);
1424 * skb_put - add data to a buffer
1425 * @skb: buffer to use
1426 * @len: amount of data to add
1428 * This function extends the used data area of the buffer. If this would
1429 * exceed the total buffer size the kernel will panic. A pointer to the
1430 * first byte of the extra data is returned.
1432 unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
1434 unsigned char *tmp
= skb_tail_pointer(skb
);
1435 SKB_LINEAR_ASSERT(skb
);
1438 if (unlikely(skb
->tail
> skb
->end
))
1439 skb_over_panic(skb
, len
, __builtin_return_address(0));
1442 EXPORT_SYMBOL(skb_put
);
1445 * skb_push - add data to the start of a buffer
1446 * @skb: buffer to use
1447 * @len: amount of data to add
1449 * This function extends the used data area of the buffer at the buffer
1450 * start. If this would exceed the total buffer headroom the kernel will
1451 * panic. A pointer to the first byte of the extra data is returned.
1453 unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
1457 if (unlikely(skb
->data
<skb
->head
))
1458 skb_under_panic(skb
, len
, __builtin_return_address(0));
1461 EXPORT_SYMBOL(skb_push
);
1464 * skb_pull - remove data from the start of a buffer
1465 * @skb: buffer to use
1466 * @len: amount of data to remove
1468 * This function removes data from the start of a buffer, returning
1469 * the memory to the headroom. A pointer to the next data in the buffer
1470 * is returned. Once the data has been pulled future pushes will overwrite
1473 unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
1475 return skb_pull_inline(skb
, len
);
1477 EXPORT_SYMBOL(skb_pull
);
1480 * skb_trim - remove end from a buffer
1481 * @skb: buffer to alter
1484 * Cut the length of a buffer down by removing data from the tail. If
1485 * the buffer is already under the length specified it is not modified.
1486 * The skb must be linear.
1488 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1491 __skb_trim(skb
, len
);
1493 EXPORT_SYMBOL(skb_trim
);
1495 /* Trims skb to length len. It can change skb pointers.
1498 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1500 struct sk_buff
**fragp
;
1501 struct sk_buff
*frag
;
1502 int offset
= skb_headlen(skb
);
1503 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1507 if (skb_cloned(skb
) &&
1508 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
1515 for (; i
< nfrags
; i
++) {
1516 int end
= offset
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1523 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
++], len
- offset
);
1526 skb_shinfo(skb
)->nr_frags
= i
;
1528 for (; i
< nfrags
; i
++)
1529 skb_frag_unref(skb
, i
);
1531 if (skb_has_frag_list(skb
))
1532 skb_drop_fraglist(skb
);
1536 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
1537 fragp
= &frag
->next
) {
1538 int end
= offset
+ frag
->len
;
1540 if (skb_shared(frag
)) {
1541 struct sk_buff
*nfrag
;
1543 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1544 if (unlikely(!nfrag
))
1547 nfrag
->next
= frag
->next
;
1559 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1563 skb_drop_list(&frag
->next
);
1568 if (len
> skb_headlen(skb
)) {
1569 skb
->data_len
-= skb
->len
- len
;
1574 skb_set_tail_pointer(skb
, len
);
1579 EXPORT_SYMBOL(___pskb_trim
);
1581 /* Note : use pskb_trim_rcsum() instead of calling this directly
1583 int pskb_trim_rcsum_slow(struct sk_buff
*skb
, unsigned int len
)
1585 if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
1586 int delta
= skb
->len
- len
;
1588 skb
->csum
= csum_block_sub(skb
->csum
,
1589 skb_checksum(skb
, len
, delta
, 0),
1592 return __pskb_trim(skb
, len
);
1594 EXPORT_SYMBOL(pskb_trim_rcsum_slow
);
1597 * __pskb_pull_tail - advance tail of skb header
1598 * @skb: buffer to reallocate
1599 * @delta: number of bytes to advance tail
1601 * The function makes a sense only on a fragmented &sk_buff,
1602 * it expands header moving its tail forward and copying necessary
1603 * data from fragmented part.
1605 * &sk_buff MUST have reference count of 1.
1607 * Returns %NULL (and &sk_buff does not change) if pull failed
1608 * or value of new tail of skb in the case of success.
1610 * All the pointers pointing into skb header may change and must be
1611 * reloaded after call to this function.
1614 /* Moves tail of skb head forward, copying data from fragmented part,
1615 * when it is necessary.
1616 * 1. It may fail due to malloc failure.
1617 * 2. It may change skb pointers.
1619 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1621 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
1623 /* If skb has not enough free space at tail, get new one
1624 * plus 128 bytes for future expansions. If we have enough
1625 * room at tail, reallocate without expansion only if skb is cloned.
1627 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
1629 if (eat
> 0 || skb_cloned(skb
)) {
1630 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
1635 if (skb_copy_bits(skb
, skb_headlen(skb
), skb_tail_pointer(skb
), delta
))
1638 /* Optimization: no fragments, no reasons to preestimate
1639 * size of pulled pages. Superb.
1641 if (!skb_has_frag_list(skb
))
1644 /* Estimate size of pulled pages. */
1646 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1647 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1654 /* If we need update frag list, we are in troubles.
1655 * Certainly, it possible to add an offset to skb data,
1656 * but taking into account that pulling is expected to
1657 * be very rare operation, it is worth to fight against
1658 * further bloating skb head and crucify ourselves here instead.
1659 * Pure masohism, indeed. 8)8)
1662 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1663 struct sk_buff
*clone
= NULL
;
1664 struct sk_buff
*insp
= NULL
;
1669 if (list
->len
<= eat
) {
1670 /* Eaten as whole. */
1675 /* Eaten partially. */
1677 if (skb_shared(list
)) {
1678 /* Sucks! We need to fork list. :-( */
1679 clone
= skb_clone(list
, GFP_ATOMIC
);
1685 /* This may be pulled without
1689 if (!pskb_pull(list
, eat
)) {
1697 /* Free pulled out fragments. */
1698 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1699 skb_shinfo(skb
)->frag_list
= list
->next
;
1702 /* And insert new clone at head. */
1705 skb_shinfo(skb
)->frag_list
= clone
;
1708 /* Success! Now we may commit changes to skb data. */
1713 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1714 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1717 skb_frag_unref(skb
, i
);
1720 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1722 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1723 skb_frag_size_sub(&skb_shinfo(skb
)->frags
[k
], eat
);
1729 skb_shinfo(skb
)->nr_frags
= k
;
1732 skb
->data_len
-= delta
;
1734 return skb_tail_pointer(skb
);
1736 EXPORT_SYMBOL(__pskb_pull_tail
);
1739 * skb_copy_bits - copy bits from skb to kernel buffer
1741 * @offset: offset in source
1742 * @to: destination buffer
1743 * @len: number of bytes to copy
1745 * Copy the specified number of bytes from the source skb to the
1746 * destination buffer.
1749 * If its prototype is ever changed,
1750 * check arch/{*}/net/{*}.S files,
1751 * since it is called from BPF assembly code.
1753 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1755 int start
= skb_headlen(skb
);
1756 struct sk_buff
*frag_iter
;
1759 if (offset
> (int)skb
->len
- len
)
1763 if ((copy
= start
- offset
) > 0) {
1766 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
1767 if ((len
-= copy
) == 0)
1773 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1775 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
1777 WARN_ON(start
> offset
+ len
);
1779 end
= start
+ skb_frag_size(f
);
1780 if ((copy
= end
- offset
) > 0) {
1786 vaddr
= kmap_atomic(skb_frag_page(f
));
1788 vaddr
+ f
->page_offset
+ offset
- start
,
1790 kunmap_atomic(vaddr
);
1792 if ((len
-= copy
) == 0)
1800 skb_walk_frags(skb
, frag_iter
) {
1803 WARN_ON(start
> offset
+ len
);
1805 end
= start
+ frag_iter
->len
;
1806 if ((copy
= end
- offset
) > 0) {
1809 if (skb_copy_bits(frag_iter
, offset
- start
, to
, copy
))
1811 if ((len
-= copy
) == 0)
1825 EXPORT_SYMBOL(skb_copy_bits
);
1828 * Callback from splice_to_pipe(), if we need to release some pages
1829 * at the end of the spd in case we error'ed out in filling the pipe.
1831 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1833 put_page(spd
->pages
[i
]);
1836 static struct page
*linear_to_page(struct page
*page
, unsigned int *len
,
1837 unsigned int *offset
,
1840 struct page_frag
*pfrag
= sk_page_frag(sk
);
1842 if (!sk_page_frag_refill(sk
, pfrag
))
1845 *len
= min_t(unsigned int, *len
, pfrag
->size
- pfrag
->offset
);
1847 memcpy(page_address(pfrag
->page
) + pfrag
->offset
,
1848 page_address(page
) + *offset
, *len
);
1849 *offset
= pfrag
->offset
;
1850 pfrag
->offset
+= *len
;
1855 static bool spd_can_coalesce(const struct splice_pipe_desc
*spd
,
1857 unsigned int offset
)
1859 return spd
->nr_pages
&&
1860 spd
->pages
[spd
->nr_pages
- 1] == page
&&
1861 (spd
->partial
[spd
->nr_pages
- 1].offset
+
1862 spd
->partial
[spd
->nr_pages
- 1].len
== offset
);
1866 * Fill page/offset/length into spd, if it can hold more pages.
1868 static bool spd_fill_page(struct splice_pipe_desc
*spd
,
1869 struct pipe_inode_info
*pipe
, struct page
*page
,
1870 unsigned int *len
, unsigned int offset
,
1874 if (unlikely(spd
->nr_pages
== MAX_SKB_FRAGS
))
1878 page
= linear_to_page(page
, len
, &offset
, sk
);
1882 if (spd_can_coalesce(spd
, page
, offset
)) {
1883 spd
->partial
[spd
->nr_pages
- 1].len
+= *len
;
1887 spd
->pages
[spd
->nr_pages
] = page
;
1888 spd
->partial
[spd
->nr_pages
].len
= *len
;
1889 spd
->partial
[spd
->nr_pages
].offset
= offset
;
1895 static bool __splice_segment(struct page
*page
, unsigned int poff
,
1896 unsigned int plen
, unsigned int *off
,
1898 struct splice_pipe_desc
*spd
, bool linear
,
1900 struct pipe_inode_info
*pipe
)
1905 /* skip this segment if already processed */
1911 /* ignore any bits we already processed */
1917 unsigned int flen
= min(*len
, plen
);
1919 if (spd_fill_page(spd
, pipe
, page
, &flen
, poff
,
1925 } while (*len
&& plen
);
1931 * Map linear and fragment data from the skb to spd. It reports true if the
1932 * pipe is full or if we already spliced the requested length.
1934 static bool __skb_splice_bits(struct sk_buff
*skb
, struct pipe_inode_info
*pipe
,
1935 unsigned int *offset
, unsigned int *len
,
1936 struct splice_pipe_desc
*spd
, struct sock
*sk
)
1939 struct sk_buff
*iter
;
1941 /* map the linear part :
1942 * If skb->head_frag is set, this 'linear' part is backed by a
1943 * fragment, and if the head is not shared with any clones then
1944 * we can avoid a copy since we own the head portion of this page.
1946 if (__splice_segment(virt_to_page(skb
->data
),
1947 (unsigned long) skb
->data
& (PAGE_SIZE
- 1),
1950 skb_head_is_locked(skb
),
1955 * then map the fragments
1957 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
1958 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
1960 if (__splice_segment(skb_frag_page(f
),
1961 f
->page_offset
, skb_frag_size(f
),
1962 offset
, len
, spd
, false, sk
, pipe
))
1966 skb_walk_frags(skb
, iter
) {
1967 if (*offset
>= iter
->len
) {
1968 *offset
-= iter
->len
;
1971 /* __skb_splice_bits() only fails if the output has no room
1972 * left, so no point in going over the frag_list for the error
1975 if (__skb_splice_bits(iter
, pipe
, offset
, len
, spd
, sk
))
1983 * Map data from the skb to a pipe. Should handle both the linear part,
1984 * the fragments, and the frag list.
1986 int skb_splice_bits(struct sk_buff
*skb
, struct sock
*sk
, unsigned int offset
,
1987 struct pipe_inode_info
*pipe
, unsigned int tlen
,
1990 struct partial_page partial
[MAX_SKB_FRAGS
];
1991 struct page
*pages
[MAX_SKB_FRAGS
];
1992 struct splice_pipe_desc spd
= {
1995 .nr_pages_max
= MAX_SKB_FRAGS
,
1997 .ops
= &nosteal_pipe_buf_ops
,
1998 .spd_release
= sock_spd_release
,
2002 __skb_splice_bits(skb
, pipe
, &offset
, &tlen
, &spd
, sk
);
2005 ret
= splice_to_pipe(pipe
, &spd
);
2009 EXPORT_SYMBOL_GPL(skb_splice_bits
);
2012 * skb_store_bits - store bits from kernel buffer to skb
2013 * @skb: destination buffer
2014 * @offset: offset in destination
2015 * @from: source buffer
2016 * @len: number of bytes to copy
2018 * Copy the specified number of bytes from the source buffer to the
2019 * destination skb. This function handles all the messy bits of
2020 * traversing fragment lists and such.
2023 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
2025 int start
= skb_headlen(skb
);
2026 struct sk_buff
*frag_iter
;
2029 if (offset
> (int)skb
->len
- len
)
2032 if ((copy
= start
- offset
) > 0) {
2035 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
2036 if ((len
-= copy
) == 0)
2042 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2043 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2046 WARN_ON(start
> offset
+ len
);
2048 end
= start
+ skb_frag_size(frag
);
2049 if ((copy
= end
- offset
) > 0) {
2055 vaddr
= kmap_atomic(skb_frag_page(frag
));
2056 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
2058 kunmap_atomic(vaddr
);
2060 if ((len
-= copy
) == 0)
2068 skb_walk_frags(skb
, frag_iter
) {
2071 WARN_ON(start
> offset
+ len
);
2073 end
= start
+ frag_iter
->len
;
2074 if ((copy
= end
- offset
) > 0) {
2077 if (skb_store_bits(frag_iter
, offset
- start
,
2080 if ((len
-= copy
) == 0)
2093 EXPORT_SYMBOL(skb_store_bits
);
2095 /* Checksum skb data. */
2096 __wsum
__skb_checksum(const struct sk_buff
*skb
, int offset
, int len
,
2097 __wsum csum
, const struct skb_checksum_ops
*ops
)
2099 int start
= skb_headlen(skb
);
2100 int i
, copy
= start
- offset
;
2101 struct sk_buff
*frag_iter
;
2104 /* Checksum header. */
2108 csum
= ops
->update(skb
->data
+ offset
, copy
, csum
);
2109 if ((len
-= copy
) == 0)
2115 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2117 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2119 WARN_ON(start
> offset
+ len
);
2121 end
= start
+ skb_frag_size(frag
);
2122 if ((copy
= end
- offset
) > 0) {
2128 vaddr
= kmap_atomic(skb_frag_page(frag
));
2129 csum2
= ops
->update(vaddr
+ frag
->page_offset
+
2130 offset
- start
, copy
, 0);
2131 kunmap_atomic(vaddr
);
2132 csum
= ops
->combine(csum
, csum2
, pos
, copy
);
2141 skb_walk_frags(skb
, frag_iter
) {
2144 WARN_ON(start
> offset
+ len
);
2146 end
= start
+ frag_iter
->len
;
2147 if ((copy
= end
- offset
) > 0) {
2151 csum2
= __skb_checksum(frag_iter
, offset
- start
,
2153 csum
= ops
->combine(csum
, csum2
, pos
, copy
);
2154 if ((len
-= copy
) == 0)
2165 EXPORT_SYMBOL(__skb_checksum
);
2167 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
2168 int len
, __wsum csum
)
2170 const struct skb_checksum_ops ops
= {
2171 .update
= csum_partial_ext
,
2172 .combine
= csum_block_add_ext
,
2175 return __skb_checksum(skb
, offset
, len
, csum
, &ops
);
2177 EXPORT_SYMBOL(skb_checksum
);
2179 /* Both of above in one bottle. */
2181 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
2182 u8
*to
, int len
, __wsum csum
)
2184 int start
= skb_headlen(skb
);
2185 int i
, copy
= start
- offset
;
2186 struct sk_buff
*frag_iter
;
2193 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
2195 if ((len
-= copy
) == 0)
2202 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2205 WARN_ON(start
> offset
+ len
);
2207 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2208 if ((copy
= end
- offset
) > 0) {
2211 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2215 vaddr
= kmap_atomic(skb_frag_page(frag
));
2216 csum2
= csum_partial_copy_nocheck(vaddr
+
2220 kunmap_atomic(vaddr
);
2221 csum
= csum_block_add(csum
, csum2
, pos
);
2231 skb_walk_frags(skb
, frag_iter
) {
2235 WARN_ON(start
> offset
+ len
);
2237 end
= start
+ frag_iter
->len
;
2238 if ((copy
= end
- offset
) > 0) {
2241 csum2
= skb_copy_and_csum_bits(frag_iter
,
2244 csum
= csum_block_add(csum
, csum2
, pos
);
2245 if ((len
-= copy
) == 0)
2256 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
2259 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2260 * @from: source buffer
2262 * Calculates the amount of linear headroom needed in the 'to' skb passed
2263 * into skb_zerocopy().
2266 skb_zerocopy_headlen(const struct sk_buff
*from
)
2268 unsigned int hlen
= 0;
2270 if (!from
->head_frag
||
2271 skb_headlen(from
) < L1_CACHE_BYTES
||
2272 skb_shinfo(from
)->nr_frags
>= MAX_SKB_FRAGS
)
2273 hlen
= skb_headlen(from
);
2275 if (skb_has_frag_list(from
))
2280 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen
);
2283 * skb_zerocopy - Zero copy skb to skb
2284 * @to: destination buffer
2285 * @from: source buffer
2286 * @len: number of bytes to copy from source buffer
2287 * @hlen: size of linear headroom in destination buffer
2289 * Copies up to `len` bytes from `from` to `to` by creating references
2290 * to the frags in the source buffer.
2292 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2293 * headroom in the `to` buffer.
2296 * 0: everything is OK
2297 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2298 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2301 skb_zerocopy(struct sk_buff
*to
, struct sk_buff
*from
, int len
, int hlen
)
2304 int plen
= 0; /* length of skb->head fragment */
2307 unsigned int offset
;
2309 BUG_ON(!from
->head_frag
&& !hlen
);
2311 /* dont bother with small payloads */
2312 if (len
<= skb_tailroom(to
))
2313 return skb_copy_bits(from
, 0, skb_put(to
, len
), len
);
2316 ret
= skb_copy_bits(from
, 0, skb_put(to
, hlen
), hlen
);
2321 plen
= min_t(int, skb_headlen(from
), len
);
2323 page
= virt_to_head_page(from
->head
);
2324 offset
= from
->data
- (unsigned char *)page_address(page
);
2325 __skb_fill_page_desc(to
, 0, page
, offset
, plen
);
2332 to
->truesize
+= len
+ plen
;
2333 to
->len
+= len
+ plen
;
2334 to
->data_len
+= len
+ plen
;
2336 if (unlikely(skb_orphan_frags(from
, GFP_ATOMIC
))) {
2341 for (i
= 0; i
< skb_shinfo(from
)->nr_frags
; i
++) {
2344 skb_shinfo(to
)->frags
[j
] = skb_shinfo(from
)->frags
[i
];
2345 skb_shinfo(to
)->frags
[j
].size
= min_t(int, skb_shinfo(to
)->frags
[j
].size
, len
);
2346 len
-= skb_shinfo(to
)->frags
[j
].size
;
2347 skb_frag_ref(to
, j
);
2350 skb_shinfo(to
)->nr_frags
= j
;
2354 EXPORT_SYMBOL_GPL(skb_zerocopy
);
2356 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
2361 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2362 csstart
= skb_checksum_start_offset(skb
);
2364 csstart
= skb_headlen(skb
);
2366 BUG_ON(csstart
> skb_headlen(skb
));
2368 skb_copy_from_linear_data(skb
, to
, csstart
);
2371 if (csstart
!= skb
->len
)
2372 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
2373 skb
->len
- csstart
, 0);
2375 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2376 long csstuff
= csstart
+ skb
->csum_offset
;
2378 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
2381 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
2384 * skb_dequeue - remove from the head of the queue
2385 * @list: list to dequeue from
2387 * Remove the head of the list. The list lock is taken so the function
2388 * may be used safely with other locking list functions. The head item is
2389 * returned or %NULL if the list is empty.
2392 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
2394 unsigned long flags
;
2395 struct sk_buff
*result
;
2397 spin_lock_irqsave(&list
->lock
, flags
);
2398 result
= __skb_dequeue(list
);
2399 spin_unlock_irqrestore(&list
->lock
, flags
);
2402 EXPORT_SYMBOL(skb_dequeue
);
2405 * skb_dequeue_tail - remove from the tail of the queue
2406 * @list: list to dequeue from
2408 * Remove the tail of the list. The list lock is taken so the function
2409 * may be used safely with other locking list functions. The tail item is
2410 * returned or %NULL if the list is empty.
2412 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
2414 unsigned long flags
;
2415 struct sk_buff
*result
;
2417 spin_lock_irqsave(&list
->lock
, flags
);
2418 result
= __skb_dequeue_tail(list
);
2419 spin_unlock_irqrestore(&list
->lock
, flags
);
2422 EXPORT_SYMBOL(skb_dequeue_tail
);
2425 * skb_queue_purge - empty a list
2426 * @list: list to empty
2428 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2429 * the list and one reference dropped. This function takes the list
2430 * lock and is atomic with respect to other list locking functions.
2432 void skb_queue_purge(struct sk_buff_head
*list
)
2434 struct sk_buff
*skb
;
2435 while ((skb
= skb_dequeue(list
)) != NULL
)
2438 EXPORT_SYMBOL(skb_queue_purge
);
2441 * skb_rbtree_purge - empty a skb rbtree
2442 * @root: root of the rbtree to empty
2443 * Return value: the sum of truesizes of all purged skbs.
2445 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2446 * the list and one reference dropped. This function does not take
2447 * any lock. Synchronization should be handled by the caller (e.g., TCP
2448 * out-of-order queue is protected by the socket lock).
2450 unsigned int skb_rbtree_purge(struct rb_root
*root
)
2452 struct rb_node
*p
= rb_first(root
);
2453 unsigned int sum
= 0;
2456 struct sk_buff
*skb
= rb_entry(p
, struct sk_buff
, rbnode
);
2459 rb_erase(&skb
->rbnode
, root
);
2460 sum
+= skb
->truesize
;
2467 * skb_queue_head - queue a buffer at the list head
2468 * @list: list to use
2469 * @newsk: buffer to queue
2471 * Queue a buffer at the start of the list. This function takes the
2472 * list lock and can be used safely with other locking &sk_buff functions
2475 * A buffer cannot be placed on two lists at the same time.
2477 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2479 unsigned long flags
;
2481 spin_lock_irqsave(&list
->lock
, flags
);
2482 __skb_queue_head(list
, newsk
);
2483 spin_unlock_irqrestore(&list
->lock
, flags
);
2485 EXPORT_SYMBOL(skb_queue_head
);
2488 * skb_queue_tail - queue a buffer at the list tail
2489 * @list: list to use
2490 * @newsk: buffer to queue
2492 * Queue a buffer at the tail of the list. This function takes the
2493 * list lock and can be used safely with other locking &sk_buff functions
2496 * A buffer cannot be placed on two lists at the same time.
2498 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2500 unsigned long flags
;
2502 spin_lock_irqsave(&list
->lock
, flags
);
2503 __skb_queue_tail(list
, newsk
);
2504 spin_unlock_irqrestore(&list
->lock
, flags
);
2506 EXPORT_SYMBOL(skb_queue_tail
);
2509 * skb_unlink - remove a buffer from a list
2510 * @skb: buffer to remove
2511 * @list: list to use
2513 * Remove a packet from a list. The list locks are taken and this
2514 * function is atomic with respect to other list locked calls
2516 * You must know what list the SKB is on.
2518 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
2520 unsigned long flags
;
2522 spin_lock_irqsave(&list
->lock
, flags
);
2523 __skb_unlink(skb
, list
);
2524 spin_unlock_irqrestore(&list
->lock
, flags
);
2526 EXPORT_SYMBOL(skb_unlink
);
2529 * skb_append - append a buffer
2530 * @old: buffer to insert after
2531 * @newsk: buffer to insert
2532 * @list: list to use
2534 * Place a packet after a given packet in a list. The list locks are taken
2535 * and this function is atomic with respect to other list locked calls.
2536 * A buffer cannot be placed on two lists at the same time.
2538 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2540 unsigned long flags
;
2542 spin_lock_irqsave(&list
->lock
, flags
);
2543 __skb_queue_after(list
, old
, newsk
);
2544 spin_unlock_irqrestore(&list
->lock
, flags
);
2546 EXPORT_SYMBOL(skb_append
);
2549 * skb_insert - insert a buffer
2550 * @old: buffer to insert before
2551 * @newsk: buffer to insert
2552 * @list: list to use
2554 * Place a packet before a given packet in a list. The list locks are
2555 * taken and this function is atomic with respect to other list locked
2558 * A buffer cannot be placed on two lists at the same time.
2560 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2562 unsigned long flags
;
2564 spin_lock_irqsave(&list
->lock
, flags
);
2565 __skb_insert(newsk
, old
->prev
, old
, list
);
2566 spin_unlock_irqrestore(&list
->lock
, flags
);
2568 EXPORT_SYMBOL(skb_insert
);
2570 static inline void skb_split_inside_header(struct sk_buff
*skb
,
2571 struct sk_buff
* skb1
,
2572 const u32 len
, const int pos
)
2576 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
2578 /* And move data appendix as is. */
2579 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
2580 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
2582 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
2583 skb_shinfo(skb
)->nr_frags
= 0;
2584 skb1
->data_len
= skb
->data_len
;
2585 skb1
->len
+= skb1
->data_len
;
2588 skb_set_tail_pointer(skb
, len
);
2591 static inline void skb_split_no_header(struct sk_buff
*skb
,
2592 struct sk_buff
* skb1
,
2593 const u32 len
, int pos
)
2596 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
2598 skb_shinfo(skb
)->nr_frags
= 0;
2599 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
2601 skb
->data_len
= len
- pos
;
2603 for (i
= 0; i
< nfrags
; i
++) {
2604 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2606 if (pos
+ size
> len
) {
2607 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
2611 * We have two variants in this case:
2612 * 1. Move all the frag to the second
2613 * part, if it is possible. F.e.
2614 * this approach is mandatory for TUX,
2615 * where splitting is expensive.
2616 * 2. Split is accurately. We make this.
2618 skb_frag_ref(skb
, i
);
2619 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
2620 skb_frag_size_sub(&skb_shinfo(skb1
)->frags
[0], len
- pos
);
2621 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
], len
- pos
);
2622 skb_shinfo(skb
)->nr_frags
++;
2626 skb_shinfo(skb
)->nr_frags
++;
2629 skb_shinfo(skb1
)->nr_frags
= k
;
2633 * skb_split - Split fragmented skb to two parts at length len.
2634 * @skb: the buffer to split
2635 * @skb1: the buffer to receive the second part
2636 * @len: new length for skb
2638 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
2640 int pos
= skb_headlen(skb
);
2642 skb_shinfo(skb1
)->tx_flags
|= skb_shinfo(skb
)->tx_flags
&
2644 if (len
< pos
) /* Split line is inside header. */
2645 skb_split_inside_header(skb
, skb1
, len
, pos
);
2646 else /* Second chunk has no header, nothing to copy. */
2647 skb_split_no_header(skb
, skb1
, len
, pos
);
2649 EXPORT_SYMBOL(skb_split
);
2651 /* Shifting from/to a cloned skb is a no-go.
2653 * Caller cannot keep skb_shinfo related pointers past calling here!
2655 static int skb_prepare_for_shift(struct sk_buff
*skb
)
2657 return skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2661 * skb_shift - Shifts paged data partially from skb to another
2662 * @tgt: buffer into which tail data gets added
2663 * @skb: buffer from which the paged data comes from
2664 * @shiftlen: shift up to this many bytes
2666 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2667 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2668 * It's up to caller to free skb if everything was shifted.
2670 * If @tgt runs out of frags, the whole operation is aborted.
2672 * Skb cannot include anything else but paged data while tgt is allowed
2673 * to have non-paged data as well.
2675 * TODO: full sized shift could be optimized but that would need
2676 * specialized skb free'er to handle frags without up-to-date nr_frags.
2678 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
)
2680 int from
, to
, merge
, todo
;
2681 struct skb_frag_struct
*fragfrom
, *fragto
;
2683 BUG_ON(shiftlen
> skb
->len
);
2684 BUG_ON(skb_headlen(skb
)); /* Would corrupt stream */
2688 to
= skb_shinfo(tgt
)->nr_frags
;
2689 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2691 /* Actual merge is delayed until the point when we know we can
2692 * commit all, so that we don't have to undo partial changes
2695 !skb_can_coalesce(tgt
, to
, skb_frag_page(fragfrom
),
2696 fragfrom
->page_offset
)) {
2701 todo
-= skb_frag_size(fragfrom
);
2703 if (skb_prepare_for_shift(skb
) ||
2704 skb_prepare_for_shift(tgt
))
2707 /* All previous frag pointers might be stale! */
2708 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2709 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2711 skb_frag_size_add(fragto
, shiftlen
);
2712 skb_frag_size_sub(fragfrom
, shiftlen
);
2713 fragfrom
->page_offset
+= shiftlen
;
2721 /* Skip full, not-fitting skb to avoid expensive operations */
2722 if ((shiftlen
== skb
->len
) &&
2723 (skb_shinfo(skb
)->nr_frags
- from
) > (MAX_SKB_FRAGS
- to
))
2726 if (skb_prepare_for_shift(skb
) || skb_prepare_for_shift(tgt
))
2729 while ((todo
> 0) && (from
< skb_shinfo(skb
)->nr_frags
)) {
2730 if (to
== MAX_SKB_FRAGS
)
2733 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2734 fragto
= &skb_shinfo(tgt
)->frags
[to
];
2736 if (todo
>= skb_frag_size(fragfrom
)) {
2737 *fragto
= *fragfrom
;
2738 todo
-= skb_frag_size(fragfrom
);
2743 __skb_frag_ref(fragfrom
);
2744 fragto
->page
= fragfrom
->page
;
2745 fragto
->page_offset
= fragfrom
->page_offset
;
2746 skb_frag_size_set(fragto
, todo
);
2748 fragfrom
->page_offset
+= todo
;
2749 skb_frag_size_sub(fragfrom
, todo
);
2757 /* Ready to "commit" this state change to tgt */
2758 skb_shinfo(tgt
)->nr_frags
= to
;
2761 fragfrom
= &skb_shinfo(skb
)->frags
[0];
2762 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2764 skb_frag_size_add(fragto
, skb_frag_size(fragfrom
));
2765 __skb_frag_unref(fragfrom
);
2768 /* Reposition in the original skb */
2770 while (from
< skb_shinfo(skb
)->nr_frags
)
2771 skb_shinfo(skb
)->frags
[to
++] = skb_shinfo(skb
)->frags
[from
++];
2772 skb_shinfo(skb
)->nr_frags
= to
;
2774 BUG_ON(todo
> 0 && !skb_shinfo(skb
)->nr_frags
);
2777 /* Most likely the tgt won't ever need its checksum anymore, skb on
2778 * the other hand might need it if it needs to be resent
2780 tgt
->ip_summed
= CHECKSUM_PARTIAL
;
2781 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2783 /* Yak, is it really working this way? Some helper please? */
2784 skb
->len
-= shiftlen
;
2785 skb
->data_len
-= shiftlen
;
2786 skb
->truesize
-= shiftlen
;
2787 tgt
->len
+= shiftlen
;
2788 tgt
->data_len
+= shiftlen
;
2789 tgt
->truesize
+= shiftlen
;
2795 * skb_prepare_seq_read - Prepare a sequential read of skb data
2796 * @skb: the buffer to read
2797 * @from: lower offset of data to be read
2798 * @to: upper offset of data to be read
2799 * @st: state variable
2801 * Initializes the specified state variable. Must be called before
2802 * invoking skb_seq_read() for the first time.
2804 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
2805 unsigned int to
, struct skb_seq_state
*st
)
2807 st
->lower_offset
= from
;
2808 st
->upper_offset
= to
;
2809 st
->root_skb
= st
->cur_skb
= skb
;
2810 st
->frag_idx
= st
->stepped_offset
= 0;
2811 st
->frag_data
= NULL
;
2813 EXPORT_SYMBOL(skb_prepare_seq_read
);
2816 * skb_seq_read - Sequentially read skb data
2817 * @consumed: number of bytes consumed by the caller so far
2818 * @data: destination pointer for data to be returned
2819 * @st: state variable
2821 * Reads a block of skb data at @consumed relative to the
2822 * lower offset specified to skb_prepare_seq_read(). Assigns
2823 * the head of the data block to @data and returns the length
2824 * of the block or 0 if the end of the skb data or the upper
2825 * offset has been reached.
2827 * The caller is not required to consume all of the data
2828 * returned, i.e. @consumed is typically set to the number
2829 * of bytes already consumed and the next call to
2830 * skb_seq_read() will return the remaining part of the block.
2832 * Note 1: The size of each block of data returned can be arbitrary,
2833 * this limitation is the cost for zerocopy sequential
2834 * reads of potentially non linear data.
2836 * Note 2: Fragment lists within fragments are not implemented
2837 * at the moment, state->root_skb could be replaced with
2838 * a stack for this purpose.
2840 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
2841 struct skb_seq_state
*st
)
2843 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
2846 if (unlikely(abs_offset
>= st
->upper_offset
)) {
2847 if (st
->frag_data
) {
2848 kunmap_atomic(st
->frag_data
);
2849 st
->frag_data
= NULL
;
2855 block_limit
= skb_headlen(st
->cur_skb
) + st
->stepped_offset
;
2857 if (abs_offset
< block_limit
&& !st
->frag_data
) {
2858 *data
= st
->cur_skb
->data
+ (abs_offset
- st
->stepped_offset
);
2859 return block_limit
- abs_offset
;
2862 if (st
->frag_idx
== 0 && !st
->frag_data
)
2863 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
2865 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
2866 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
2867 block_limit
= skb_frag_size(frag
) + st
->stepped_offset
;
2869 if (abs_offset
< block_limit
) {
2871 st
->frag_data
= kmap_atomic(skb_frag_page(frag
));
2873 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
2874 (abs_offset
- st
->stepped_offset
);
2876 return block_limit
- abs_offset
;
2879 if (st
->frag_data
) {
2880 kunmap_atomic(st
->frag_data
);
2881 st
->frag_data
= NULL
;
2885 st
->stepped_offset
+= skb_frag_size(frag
);
2888 if (st
->frag_data
) {
2889 kunmap_atomic(st
->frag_data
);
2890 st
->frag_data
= NULL
;
2893 if (st
->root_skb
== st
->cur_skb
&& skb_has_frag_list(st
->root_skb
)) {
2894 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
2897 } else if (st
->cur_skb
->next
) {
2898 st
->cur_skb
= st
->cur_skb
->next
;
2905 EXPORT_SYMBOL(skb_seq_read
);
2908 * skb_abort_seq_read - Abort a sequential read of skb data
2909 * @st: state variable
2911 * Must be called if skb_seq_read() was not called until it
2914 void skb_abort_seq_read(struct skb_seq_state
*st
)
2917 kunmap_atomic(st
->frag_data
);
2919 EXPORT_SYMBOL(skb_abort_seq_read
);
2921 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2923 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
2924 struct ts_config
*conf
,
2925 struct ts_state
*state
)
2927 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
2930 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
2932 skb_abort_seq_read(TS_SKB_CB(state
));
2936 * skb_find_text - Find a text pattern in skb data
2937 * @skb: the buffer to look in
2938 * @from: search offset
2940 * @config: textsearch configuration
2942 * Finds a pattern in the skb data according to the specified
2943 * textsearch configuration. Use textsearch_next() to retrieve
2944 * subsequent occurrences of the pattern. Returns the offset
2945 * to the first occurrence or UINT_MAX if no match was found.
2947 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
2948 unsigned int to
, struct ts_config
*config
)
2950 struct ts_state state
;
2953 config
->get_next_block
= skb_ts_get_next_block
;
2954 config
->finish
= skb_ts_finish
;
2956 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(&state
));
2958 ret
= textsearch_find(config
, &state
);
2959 return (ret
<= to
- from
? ret
: UINT_MAX
);
2961 EXPORT_SYMBOL(skb_find_text
);
2964 * skb_append_datato_frags - append the user data to a skb
2965 * @sk: sock structure
2966 * @skb: skb structure to be appended with user data.
2967 * @getfrag: call back function to be used for getting the user data
2968 * @from: pointer to user message iov
2969 * @length: length of the iov message
2971 * Description: This procedure append the user data in the fragment part
2972 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2974 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
2975 int (*getfrag
)(void *from
, char *to
, int offset
,
2976 int len
, int odd
, struct sk_buff
*skb
),
2977 void *from
, int length
)
2979 int frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2983 struct page_frag
*pfrag
= ¤t
->task_frag
;
2986 /* Return error if we don't have space for new frag */
2987 if (frg_cnt
>= MAX_SKB_FRAGS
)
2990 if (!sk_page_frag_refill(sk
, pfrag
))
2993 /* copy the user data to page */
2994 copy
= min_t(int, length
, pfrag
->size
- pfrag
->offset
);
2996 ret
= getfrag(from
, page_address(pfrag
->page
) + pfrag
->offset
,
2997 offset
, copy
, 0, skb
);
3001 /* copy was successful so update the size parameters */
3002 skb_fill_page_desc(skb
, frg_cnt
, pfrag
->page
, pfrag
->offset
,
3005 pfrag
->offset
+= copy
;
3006 get_page(pfrag
->page
);
3008 skb
->truesize
+= copy
;
3009 atomic_add(copy
, &sk
->sk_wmem_alloc
);
3011 skb
->data_len
+= copy
;
3015 } while (length
> 0);
3019 EXPORT_SYMBOL(skb_append_datato_frags
);
3021 int skb_append_pagefrags(struct sk_buff
*skb
, struct page
*page
,
3022 int offset
, size_t size
)
3024 int i
= skb_shinfo(skb
)->nr_frags
;
3026 if (skb_can_coalesce(skb
, i
, page
, offset
)) {
3027 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], size
);
3028 } else if (i
< MAX_SKB_FRAGS
) {
3030 skb_fill_page_desc(skb
, i
, page
, offset
, size
);
3037 EXPORT_SYMBOL_GPL(skb_append_pagefrags
);
3040 * skb_pull_rcsum - pull skb and update receive checksum
3041 * @skb: buffer to update
3042 * @len: length of data pulled
3044 * This function performs an skb_pull on the packet and updates
3045 * the CHECKSUM_COMPLETE checksum. It should be used on
3046 * receive path processing instead of skb_pull unless you know
3047 * that the checksum difference is zero (e.g., a valid IP header)
3048 * or you are setting ip_summed to CHECKSUM_NONE.
3050 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
3052 unsigned char *data
= skb
->data
;
3054 BUG_ON(len
> skb
->len
);
3055 __skb_pull(skb
, len
);
3056 skb_postpull_rcsum(skb
, data
, len
);
3059 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
3062 * skb_segment - Perform protocol segmentation on skb.
3063 * @head_skb: buffer to segment
3064 * @features: features for the output path (see dev->features)
3066 * This function performs segmentation on the given skb. It returns
3067 * a pointer to the first in a list of new skbs for the segments.
3068 * In case of error it returns ERR_PTR(err).
3070 struct sk_buff
*skb_segment(struct sk_buff
*head_skb
,
3071 netdev_features_t features
)
3073 struct sk_buff
*segs
= NULL
;
3074 struct sk_buff
*tail
= NULL
;
3075 struct sk_buff
*list_skb
= skb_shinfo(head_skb
)->frag_list
;
3076 skb_frag_t
*frag
= skb_shinfo(head_skb
)->frags
;
3077 unsigned int mss
= skb_shinfo(head_skb
)->gso_size
;
3078 unsigned int doffset
= head_skb
->data
- skb_mac_header(head_skb
);
3079 struct sk_buff
*frag_skb
= head_skb
;
3080 unsigned int offset
= doffset
;
3081 unsigned int tnl_hlen
= skb_tnl_header_len(head_skb
);
3082 unsigned int partial_segs
= 0;
3083 unsigned int headroom
;
3084 unsigned int len
= head_skb
->len
;
3087 int nfrags
= skb_shinfo(head_skb
)->nr_frags
;
3093 __skb_push(head_skb
, doffset
);
3094 proto
= skb_network_protocol(head_skb
, &dummy
);
3095 if (unlikely(!proto
))
3096 return ERR_PTR(-EINVAL
);
3098 sg
= !!(features
& NETIF_F_SG
);
3099 csum
= !!can_checksum_protocol(features
, proto
);
3101 if (sg
&& csum
&& (mss
!= GSO_BY_FRAGS
)) {
3102 if (!(features
& NETIF_F_GSO_PARTIAL
)) {
3103 struct sk_buff
*iter
;
3104 unsigned int frag_len
;
3107 !net_gso_ok(features
, skb_shinfo(head_skb
)->gso_type
))
3110 /* If we get here then all the required
3111 * GSO features except frag_list are supported.
3112 * Try to split the SKB to multiple GSO SKBs
3113 * with no frag_list.
3114 * Currently we can do that only when the buffers don't
3115 * have a linear part and all the buffers except
3116 * the last are of the same length.
3118 frag_len
= list_skb
->len
;
3119 skb_walk_frags(head_skb
, iter
) {
3120 if (frag_len
!= iter
->len
&& iter
->next
)
3122 if (skb_headlen(iter
))
3128 if (len
!= frag_len
)
3132 /* GSO partial only requires that we trim off any excess that
3133 * doesn't fit into an MSS sized block, so take care of that
3136 partial_segs
= len
/ mss
;
3137 if (partial_segs
> 1)
3138 mss
*= partial_segs
;
3144 headroom
= skb_headroom(head_skb
);
3145 pos
= skb_headlen(head_skb
);
3148 struct sk_buff
*nskb
;
3149 skb_frag_t
*nskb_frag
;
3153 if (unlikely(mss
== GSO_BY_FRAGS
)) {
3154 len
= list_skb
->len
;
3156 len
= head_skb
->len
- offset
;
3161 hsize
= skb_headlen(head_skb
) - offset
;
3164 if (hsize
> len
|| !sg
)
3167 if (!hsize
&& i
>= nfrags
&& skb_headlen(list_skb
) &&
3168 (skb_headlen(list_skb
) == len
|| sg
)) {
3169 BUG_ON(skb_headlen(list_skb
) > len
);
3172 nfrags
= skb_shinfo(list_skb
)->nr_frags
;
3173 frag
= skb_shinfo(list_skb
)->frags
;
3174 frag_skb
= list_skb
;
3175 pos
+= skb_headlen(list_skb
);
3177 while (pos
< offset
+ len
) {
3178 BUG_ON(i
>= nfrags
);
3180 size
= skb_frag_size(frag
);
3181 if (pos
+ size
> offset
+ len
)
3189 nskb
= skb_clone(list_skb
, GFP_ATOMIC
);
3190 list_skb
= list_skb
->next
;
3192 if (unlikely(!nskb
))
3195 if (unlikely(pskb_trim(nskb
, len
))) {
3200 hsize
= skb_end_offset(nskb
);
3201 if (skb_cow_head(nskb
, doffset
+ headroom
)) {
3206 nskb
->truesize
+= skb_end_offset(nskb
) - hsize
;
3207 skb_release_head_state(nskb
);
3208 __skb_push(nskb
, doffset
);
3210 nskb
= __alloc_skb(hsize
+ doffset
+ headroom
,
3211 GFP_ATOMIC
, skb_alloc_rx_flag(head_skb
),
3214 if (unlikely(!nskb
))
3217 skb_reserve(nskb
, headroom
);
3218 __skb_put(nskb
, doffset
);
3227 __copy_skb_header(nskb
, head_skb
);
3229 skb_headers_offset_update(nskb
, skb_headroom(nskb
) - headroom
);
3230 skb_reset_mac_len(nskb
);
3232 skb_copy_from_linear_data_offset(head_skb
, -tnl_hlen
,
3233 nskb
->data
- tnl_hlen
,
3234 doffset
+ tnl_hlen
);
3236 if (nskb
->len
== len
+ doffset
)
3237 goto perform_csum_check
;
3240 if (!nskb
->remcsum_offload
)
3241 nskb
->ip_summed
= CHECKSUM_NONE
;
3242 SKB_GSO_CB(nskb
)->csum
=
3243 skb_copy_and_csum_bits(head_skb
, offset
,
3246 SKB_GSO_CB(nskb
)->csum_start
=
3247 skb_headroom(nskb
) + doffset
;
3251 nskb_frag
= skb_shinfo(nskb
)->frags
;
3253 skb_copy_from_linear_data_offset(head_skb
, offset
,
3254 skb_put(nskb
, hsize
), hsize
);
3256 skb_shinfo(nskb
)->tx_flags
|= skb_shinfo(head_skb
)->tx_flags
&
3259 while (pos
< offset
+ len
) {
3261 BUG_ON(skb_headlen(list_skb
));
3264 nfrags
= skb_shinfo(list_skb
)->nr_frags
;
3265 frag
= skb_shinfo(list_skb
)->frags
;
3266 frag_skb
= list_skb
;
3270 list_skb
= list_skb
->next
;
3273 if (unlikely(skb_shinfo(nskb
)->nr_frags
>=
3275 net_warn_ratelimited(
3276 "skb_segment: too many frags: %u %u\n",
3282 if (unlikely(skb_orphan_frags(frag_skb
, GFP_ATOMIC
)))
3286 __skb_frag_ref(nskb_frag
);
3287 size
= skb_frag_size(nskb_frag
);
3290 nskb_frag
->page_offset
+= offset
- pos
;
3291 skb_frag_size_sub(nskb_frag
, offset
- pos
);
3294 skb_shinfo(nskb
)->nr_frags
++;
3296 if (pos
+ size
<= offset
+ len
) {
3301 skb_frag_size_sub(nskb_frag
, pos
+ size
- (offset
+ len
));
3309 nskb
->data_len
= len
- hsize
;
3310 nskb
->len
+= nskb
->data_len
;
3311 nskb
->truesize
+= nskb
->data_len
;
3315 if (skb_has_shared_frag(nskb
) &&
3316 __skb_linearize(nskb
))
3319 if (!nskb
->remcsum_offload
)
3320 nskb
->ip_summed
= CHECKSUM_NONE
;
3321 SKB_GSO_CB(nskb
)->csum
=
3322 skb_checksum(nskb
, doffset
,
3323 nskb
->len
- doffset
, 0);
3324 SKB_GSO_CB(nskb
)->csum_start
=
3325 skb_headroom(nskb
) + doffset
;
3327 } while ((offset
+= len
) < head_skb
->len
);
3329 /* Some callers want to get the end of the list.
3330 * Put it in segs->prev to avoid walking the list.
3331 * (see validate_xmit_skb_list() for example)
3336 struct sk_buff
*iter
;
3337 int type
= skb_shinfo(head_skb
)->gso_type
;
3338 unsigned short gso_size
= skb_shinfo(head_skb
)->gso_size
;
3340 /* Update type to add partial and then remove dodgy if set */
3341 type
|= (features
& NETIF_F_GSO_PARTIAL
) / NETIF_F_GSO_PARTIAL
* SKB_GSO_PARTIAL
;
3342 type
&= ~SKB_GSO_DODGY
;
3344 /* Update GSO info and prepare to start updating headers on
3345 * our way back down the stack of protocols.
3347 for (iter
= segs
; iter
; iter
= iter
->next
) {
3348 skb_shinfo(iter
)->gso_size
= gso_size
;
3349 skb_shinfo(iter
)->gso_segs
= partial_segs
;
3350 skb_shinfo(iter
)->gso_type
= type
;
3351 SKB_GSO_CB(iter
)->data_offset
= skb_headroom(iter
) + doffset
;
3354 if (tail
->len
- doffset
<= gso_size
)
3355 skb_shinfo(tail
)->gso_size
= 0;
3356 else if (tail
!= segs
)
3357 skb_shinfo(tail
)->gso_segs
= DIV_ROUND_UP(tail
->len
- doffset
, gso_size
);
3360 /* Following permits correct backpressure, for protocols
3361 * using skb_set_owner_w().
3362 * Idea is to tranfert ownership from head_skb to last segment.
3364 if (head_skb
->destructor
== sock_wfree
) {
3365 swap(tail
->truesize
, head_skb
->truesize
);
3366 swap(tail
->destructor
, head_skb
->destructor
);
3367 swap(tail
->sk
, head_skb
->sk
);
3372 kfree_skb_list(segs
);
3373 return ERR_PTR(err
);
3375 EXPORT_SYMBOL_GPL(skb_segment
);
3377 int skb_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
3379 struct skb_shared_info
*pinfo
, *skbinfo
= skb_shinfo(skb
);
3380 unsigned int offset
= skb_gro_offset(skb
);
3381 unsigned int headlen
= skb_headlen(skb
);
3382 unsigned int len
= skb_gro_len(skb
);
3383 struct sk_buff
*lp
, *p
= *head
;
3384 unsigned int delta_truesize
;
3386 if (unlikely(p
->len
+ len
>= 65536))
3389 lp
= NAPI_GRO_CB(p
)->last
;
3390 pinfo
= skb_shinfo(lp
);
3392 if (headlen
<= offset
) {
3395 int i
= skbinfo
->nr_frags
;
3396 int nr_frags
= pinfo
->nr_frags
+ i
;
3398 if (nr_frags
> MAX_SKB_FRAGS
)
3402 pinfo
->nr_frags
= nr_frags
;
3403 skbinfo
->nr_frags
= 0;
3405 frag
= pinfo
->frags
+ nr_frags
;
3406 frag2
= skbinfo
->frags
+ i
;
3411 frag
->page_offset
+= offset
;
3412 skb_frag_size_sub(frag
, offset
);
3414 /* all fragments truesize : remove (head size + sk_buff) */
3415 delta_truesize
= skb
->truesize
-
3416 SKB_TRUESIZE(skb_end_offset(skb
));
3418 skb
->truesize
-= skb
->data_len
;
3419 skb
->len
-= skb
->data_len
;
3422 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE
;
3424 } else if (skb
->head_frag
) {
3425 int nr_frags
= pinfo
->nr_frags
;
3426 skb_frag_t
*frag
= pinfo
->frags
+ nr_frags
;
3427 struct page
*page
= virt_to_head_page(skb
->head
);
3428 unsigned int first_size
= headlen
- offset
;
3429 unsigned int first_offset
;
3431 if (nr_frags
+ 1 + skbinfo
->nr_frags
> MAX_SKB_FRAGS
)
3434 first_offset
= skb
->data
-
3435 (unsigned char *)page_address(page
) +
3438 pinfo
->nr_frags
= nr_frags
+ 1 + skbinfo
->nr_frags
;
3440 frag
->page
.p
= page
;
3441 frag
->page_offset
= first_offset
;
3442 skb_frag_size_set(frag
, first_size
);
3444 memcpy(frag
+ 1, skbinfo
->frags
, sizeof(*frag
) * skbinfo
->nr_frags
);
3445 /* We dont need to clear skbinfo->nr_frags here */
3447 delta_truesize
= skb
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
3448 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE_STOLEN_HEAD
;
3453 delta_truesize
= skb
->truesize
;
3454 if (offset
> headlen
) {
3455 unsigned int eat
= offset
- headlen
;
3457 skbinfo
->frags
[0].page_offset
+= eat
;
3458 skb_frag_size_sub(&skbinfo
->frags
[0], eat
);
3459 skb
->data_len
-= eat
;
3464 __skb_pull(skb
, offset
);
3466 if (NAPI_GRO_CB(p
)->last
== p
)
3467 skb_shinfo(p
)->frag_list
= skb
;
3469 NAPI_GRO_CB(p
)->last
->next
= skb
;
3470 NAPI_GRO_CB(p
)->last
= skb
;
3471 __skb_header_release(skb
);
3475 NAPI_GRO_CB(p
)->count
++;
3477 p
->truesize
+= delta_truesize
;
3480 lp
->data_len
+= len
;
3481 lp
->truesize
+= delta_truesize
;
3484 NAPI_GRO_CB(skb
)->same_flow
= 1;
3487 EXPORT_SYMBOL_GPL(skb_gro_receive
);
3489 void __init
skb_init(void)
3491 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
3492 sizeof(struct sk_buff
),
3494 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
3496 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
3497 sizeof(struct sk_buff_fclones
),
3499 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
3504 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
,
3505 unsigned int recursion_level
)
3507 int start
= skb_headlen(skb
);
3508 int i
, copy
= start
- offset
;
3509 struct sk_buff
*frag_iter
;
3512 if (unlikely(recursion_level
>= 24))
3518 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
3520 if ((len
-= copy
) == 0)
3525 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
3528 WARN_ON(start
> offset
+ len
);
3530 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
3531 if ((copy
= end
- offset
) > 0) {
3532 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
3533 if (unlikely(elt
&& sg_is_last(&sg
[elt
- 1])))
3538 sg_set_page(&sg
[elt
], skb_frag_page(frag
), copy
,
3539 frag
->page_offset
+offset
-start
);
3548 skb_walk_frags(skb
, frag_iter
) {
3551 WARN_ON(start
> offset
+ len
);
3553 end
= start
+ frag_iter
->len
;
3554 if ((copy
= end
- offset
) > 0) {
3555 if (unlikely(elt
&& sg_is_last(&sg
[elt
- 1])))
3560 ret
= __skb_to_sgvec(frag_iter
, sg
+elt
, offset
- start
,
3561 copy
, recursion_level
+ 1);
3562 if (unlikely(ret
< 0))
3565 if ((len
-= copy
) == 0)
3576 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3577 * @skb: Socket buffer containing the buffers to be mapped
3578 * @sg: The scatter-gather list to map into
3579 * @offset: The offset into the buffer's contents to start mapping
3580 * @len: Length of buffer space to be mapped
3582 * Fill the specified scatter-gather list with mappings/pointers into a
3583 * region of the buffer space attached to a socket buffer. Returns either
3584 * the number of scatterlist items used, or -EMSGSIZE if the contents
3587 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
3589 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
, 0);
3594 sg_mark_end(&sg
[nsg
- 1]);
3598 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
3600 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3601 * sglist without mark the sg which contain last skb data as the end.
3602 * So the caller can mannipulate sg list as will when padding new data after
3603 * the first call without calling sg_unmark_end to expend sg list.
3605 * Scenario to use skb_to_sgvec_nomark:
3607 * 2. skb_to_sgvec_nomark(payload1)
3608 * 3. skb_to_sgvec_nomark(payload2)
3610 * This is equivalent to:
3612 * 2. skb_to_sgvec(payload1)
3614 * 4. skb_to_sgvec(payload2)
3616 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3617 * is more preferable.
3619 int skb_to_sgvec_nomark(struct sk_buff
*skb
, struct scatterlist
*sg
,
3620 int offset
, int len
)
3622 return __skb_to_sgvec(skb
, sg
, offset
, len
, 0);
3624 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark
);
3629 * skb_cow_data - Check that a socket buffer's data buffers are writable
3630 * @skb: The socket buffer to check.
3631 * @tailbits: Amount of trailing space to be added
3632 * @trailer: Returned pointer to the skb where the @tailbits space begins
3634 * Make sure that the data buffers attached to a socket buffer are
3635 * writable. If they are not, private copies are made of the data buffers
3636 * and the socket buffer is set to use these instead.
3638 * If @tailbits is given, make sure that there is space to write @tailbits
3639 * bytes of data beyond current end of socket buffer. @trailer will be
3640 * set to point to the skb in which this space begins.
3642 * The number of scatterlist elements required to completely map the
3643 * COW'd and extended socket buffer will be returned.
3645 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
3649 struct sk_buff
*skb1
, **skb_p
;
3651 /* If skb is cloned or its head is paged, reallocate
3652 * head pulling out all the pages (pages are considered not writable
3653 * at the moment even if they are anonymous).
3655 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
3656 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
3659 /* Easy case. Most of packets will go this way. */
3660 if (!skb_has_frag_list(skb
)) {
3661 /* A little of trouble, not enough of space for trailer.
3662 * This should not happen, when stack is tuned to generate
3663 * good frames. OK, on miss we reallocate and reserve even more
3664 * space, 128 bytes is fair. */
3666 if (skb_tailroom(skb
) < tailbits
&&
3667 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
3675 /* Misery. We are in troubles, going to mincer fragments... */
3678 skb_p
= &skb_shinfo(skb
)->frag_list
;
3681 while ((skb1
= *skb_p
) != NULL
) {
3684 /* The fragment is partially pulled by someone,
3685 * this can happen on input. Copy it and everything
3688 if (skb_shared(skb1
))
3691 /* If the skb is the last, worry about trailer. */
3693 if (skb1
->next
== NULL
&& tailbits
) {
3694 if (skb_shinfo(skb1
)->nr_frags
||
3695 skb_has_frag_list(skb1
) ||
3696 skb_tailroom(skb1
) < tailbits
)
3697 ntail
= tailbits
+ 128;
3703 skb_shinfo(skb1
)->nr_frags
||
3704 skb_has_frag_list(skb1
)) {
3705 struct sk_buff
*skb2
;
3707 /* Fuck, we are miserable poor guys... */
3709 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
3711 skb2
= skb_copy_expand(skb1
,
3715 if (unlikely(skb2
== NULL
))
3719 skb_set_owner_w(skb2
, skb1
->sk
);
3721 /* Looking around. Are we still alive?
3722 * OK, link new skb, drop old one */
3724 skb2
->next
= skb1
->next
;
3731 skb_p
= &skb1
->next
;
3736 EXPORT_SYMBOL_GPL(skb_cow_data
);
3738 static void sock_rmem_free(struct sk_buff
*skb
)
3740 struct sock
*sk
= skb
->sk
;
3742 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
3746 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3748 int sock_queue_err_skb(struct sock
*sk
, struct sk_buff
*skb
)
3750 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
3751 (unsigned int)sk
->sk_rcvbuf
)
3756 skb
->destructor
= sock_rmem_free
;
3757 atomic_add(skb
->truesize
, &sk
->sk_rmem_alloc
);
3759 /* before exiting rcu section, make sure dst is refcounted */
3762 skb_queue_tail(&sk
->sk_error_queue
, skb
);
3763 if (!sock_flag(sk
, SOCK_DEAD
))
3764 sk
->sk_error_report(sk
);
3767 EXPORT_SYMBOL(sock_queue_err_skb
);
3769 struct sk_buff
*sock_dequeue_err_skb(struct sock
*sk
)
3771 struct sk_buff_head
*q
= &sk
->sk_error_queue
;
3772 struct sk_buff
*skb
, *skb_next
;
3773 unsigned long flags
;
3776 spin_lock_irqsave(&q
->lock
, flags
);
3777 skb
= __skb_dequeue(q
);
3778 if (skb
&& (skb_next
= skb_peek(q
)))
3779 err
= SKB_EXT_ERR(skb_next
)->ee
.ee_errno
;
3780 spin_unlock_irqrestore(&q
->lock
, flags
);
3784 sk
->sk_error_report(sk
);
3788 EXPORT_SYMBOL(sock_dequeue_err_skb
);
3791 * skb_clone_sk - create clone of skb, and take reference to socket
3792 * @skb: the skb to clone
3794 * This function creates a clone of a buffer that holds a reference on
3795 * sk_refcnt. Buffers created via this function are meant to be
3796 * returned using sock_queue_err_skb, or free via kfree_skb.
3798 * When passing buffers allocated with this function to sock_queue_err_skb
3799 * it is necessary to wrap the call with sock_hold/sock_put in order to
3800 * prevent the socket from being released prior to being enqueued on
3801 * the sk_error_queue.
3803 struct sk_buff
*skb_clone_sk(struct sk_buff
*skb
)
3805 struct sock
*sk
= skb
->sk
;
3806 struct sk_buff
*clone
;
3808 if (!sk
|| !atomic_inc_not_zero(&sk
->sk_refcnt
))
3811 clone
= skb_clone(skb
, GFP_ATOMIC
);
3818 clone
->destructor
= sock_efree
;
3822 EXPORT_SYMBOL(skb_clone_sk
);
3824 static void __skb_complete_tx_timestamp(struct sk_buff
*skb
,
3828 struct sock_exterr_skb
*serr
;
3831 serr
= SKB_EXT_ERR(skb
);
3832 memset(serr
, 0, sizeof(*serr
));
3833 serr
->ee
.ee_errno
= ENOMSG
;
3834 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TIMESTAMPING
;
3835 serr
->ee
.ee_info
= tstype
;
3836 serr
->header
.h4
.iif
= skb
->dev
? skb
->dev
->ifindex
: 0;
3837 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
) {
3838 serr
->ee
.ee_data
= skb_shinfo(skb
)->tskey
;
3839 if (sk
->sk_protocol
== IPPROTO_TCP
&&
3840 sk
->sk_type
== SOCK_STREAM
)
3841 serr
->ee
.ee_data
-= sk
->sk_tskey
;
3844 err
= sock_queue_err_skb(sk
, skb
);
3850 static bool skb_may_tx_timestamp(struct sock
*sk
, bool tsonly
)
3854 if (likely(sysctl_tstamp_allow_data
|| tsonly
))
3857 read_lock_bh(&sk
->sk_callback_lock
);
3858 ret
= sk
->sk_socket
&& sk
->sk_socket
->file
&&
3859 file_ns_capable(sk
->sk_socket
->file
, &init_user_ns
, CAP_NET_RAW
);
3860 read_unlock_bh(&sk
->sk_callback_lock
);
3864 void skb_complete_tx_timestamp(struct sk_buff
*skb
,
3865 struct skb_shared_hwtstamps
*hwtstamps
)
3867 struct sock
*sk
= skb
->sk
;
3869 if (!skb_may_tx_timestamp(sk
, false))
3872 /* Take a reference to prevent skb_orphan() from freeing the socket,
3873 * but only if the socket refcount is not zero.
3875 if (likely(atomic_inc_not_zero(&sk
->sk_refcnt
))) {
3876 *skb_hwtstamps(skb
) = *hwtstamps
;
3877 __skb_complete_tx_timestamp(skb
, sk
, SCM_TSTAMP_SND
);
3885 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp
);
3887 void __skb_tstamp_tx(struct sk_buff
*orig_skb
,
3888 struct skb_shared_hwtstamps
*hwtstamps
,
3889 struct sock
*sk
, int tstype
)
3891 struct sk_buff
*skb
;
3897 tsonly
= sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_TSONLY
;
3898 if (!skb_may_tx_timestamp(sk
, tsonly
))
3902 skb
= alloc_skb(0, GFP_ATOMIC
);
3904 skb
= skb_clone(orig_skb
, GFP_ATOMIC
);
3909 skb_shinfo(skb
)->tx_flags
|= skb_shinfo(orig_skb
)->tx_flags
&
3911 skb_shinfo(skb
)->tskey
= skb_shinfo(orig_skb
)->tskey
;
3915 *skb_hwtstamps(skb
) = *hwtstamps
;
3917 skb
->tstamp
= ktime_get_real();
3919 __skb_complete_tx_timestamp(skb
, sk
, tstype
);
3921 EXPORT_SYMBOL_GPL(__skb_tstamp_tx
);
3923 void skb_tstamp_tx(struct sk_buff
*orig_skb
,
3924 struct skb_shared_hwtstamps
*hwtstamps
)
3926 return __skb_tstamp_tx(orig_skb
, hwtstamps
, orig_skb
->sk
,
3929 EXPORT_SYMBOL_GPL(skb_tstamp_tx
);
3931 void skb_complete_wifi_ack(struct sk_buff
*skb
, bool acked
)
3933 struct sock
*sk
= skb
->sk
;
3934 struct sock_exterr_skb
*serr
;
3937 skb
->wifi_acked_valid
= 1;
3938 skb
->wifi_acked
= acked
;
3940 serr
= SKB_EXT_ERR(skb
);
3941 memset(serr
, 0, sizeof(*serr
));
3942 serr
->ee
.ee_errno
= ENOMSG
;
3943 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TXSTATUS
;
3945 /* Take a reference to prevent skb_orphan() from freeing the socket,
3946 * but only if the socket refcount is not zero.
3948 if (likely(atomic_inc_not_zero(&sk
->sk_refcnt
))) {
3949 err
= sock_queue_err_skb(sk
, skb
);
3955 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack
);
3958 * skb_partial_csum_set - set up and verify partial csum values for packet
3959 * @skb: the skb to set
3960 * @start: the number of bytes after skb->data to start checksumming.
3961 * @off: the offset from start to place the checksum.
3963 * For untrusted partially-checksummed packets, we need to make sure the values
3964 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3966 * This function checks and sets those values and skb->ip_summed: if this
3967 * returns false you should drop the packet.
3969 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
3971 if (unlikely(start
> skb_headlen(skb
)) ||
3972 unlikely((int)start
+ off
> skb_headlen(skb
) - 2)) {
3973 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3974 start
, off
, skb_headlen(skb
));
3977 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3978 skb
->csum_start
= skb_headroom(skb
) + start
;
3979 skb
->csum_offset
= off
;
3980 skb_set_transport_header(skb
, start
);
3983 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);
3985 static int skb_maybe_pull_tail(struct sk_buff
*skb
, unsigned int len
,
3988 if (skb_headlen(skb
) >= len
)
3991 /* If we need to pullup then pullup to the max, so we
3992 * won't need to do it again.
3997 if (__pskb_pull_tail(skb
, max
- skb_headlen(skb
)) == NULL
)
4000 if (skb_headlen(skb
) < len
)
4006 #define MAX_TCP_HDR_LEN (15 * 4)
4008 static __sum16
*skb_checksum_setup_ip(struct sk_buff
*skb
,
4009 typeof(IPPROTO_IP
) proto
,
4016 err
= skb_maybe_pull_tail(skb
, off
+ sizeof(struct tcphdr
),
4017 off
+ MAX_TCP_HDR_LEN
);
4018 if (!err
&& !skb_partial_csum_set(skb
, off
,
4019 offsetof(struct tcphdr
,
4022 return err
? ERR_PTR(err
) : &tcp_hdr(skb
)->check
;
4025 err
= skb_maybe_pull_tail(skb
, off
+ sizeof(struct udphdr
),
4026 off
+ sizeof(struct udphdr
));
4027 if (!err
&& !skb_partial_csum_set(skb
, off
,
4028 offsetof(struct udphdr
,
4031 return err
? ERR_PTR(err
) : &udp_hdr(skb
)->check
;
4034 return ERR_PTR(-EPROTO
);
4037 /* This value should be large enough to cover a tagged ethernet header plus
4038 * maximally sized IP and TCP or UDP headers.
4040 #define MAX_IP_HDR_LEN 128
4042 static int skb_checksum_setup_ipv4(struct sk_buff
*skb
, bool recalculate
)
4051 err
= skb_maybe_pull_tail(skb
,
4052 sizeof(struct iphdr
),
4057 if (ip_hdr(skb
)->frag_off
& htons(IP_OFFSET
| IP_MF
))
4060 off
= ip_hdrlen(skb
);
4067 csum
= skb_checksum_setup_ip(skb
, ip_hdr(skb
)->protocol
, off
);
4069 return PTR_ERR(csum
);
4072 *csum
= ~csum_tcpudp_magic(ip_hdr(skb
)->saddr
,
4075 ip_hdr(skb
)->protocol
, 0);
4082 /* This value should be large enough to cover a tagged ethernet header plus
4083 * an IPv6 header, all options, and a maximal TCP or UDP header.
4085 #define MAX_IPV6_HDR_LEN 256
4087 #define OPT_HDR(type, skb, off) \
4088 (type *)(skb_network_header(skb) + (off))
4090 static int skb_checksum_setup_ipv6(struct sk_buff
*skb
, bool recalculate
)
4103 off
= sizeof(struct ipv6hdr
);
4105 err
= skb_maybe_pull_tail(skb
, off
, MAX_IPV6_HDR_LEN
);
4109 nexthdr
= ipv6_hdr(skb
)->nexthdr
;
4111 len
= sizeof(struct ipv6hdr
) + ntohs(ipv6_hdr(skb
)->payload_len
);
4112 while (off
<= len
&& !done
) {
4114 case IPPROTO_DSTOPTS
:
4115 case IPPROTO_HOPOPTS
:
4116 case IPPROTO_ROUTING
: {
4117 struct ipv6_opt_hdr
*hp
;
4119 err
= skb_maybe_pull_tail(skb
,
4121 sizeof(struct ipv6_opt_hdr
),
4126 hp
= OPT_HDR(struct ipv6_opt_hdr
, skb
, off
);
4127 nexthdr
= hp
->nexthdr
;
4128 off
+= ipv6_optlen(hp
);
4132 struct ip_auth_hdr
*hp
;
4134 err
= skb_maybe_pull_tail(skb
,
4136 sizeof(struct ip_auth_hdr
),
4141 hp
= OPT_HDR(struct ip_auth_hdr
, skb
, off
);
4142 nexthdr
= hp
->nexthdr
;
4143 off
+= ipv6_authlen(hp
);
4146 case IPPROTO_FRAGMENT
: {
4147 struct frag_hdr
*hp
;
4149 err
= skb_maybe_pull_tail(skb
,
4151 sizeof(struct frag_hdr
),
4156 hp
= OPT_HDR(struct frag_hdr
, skb
, off
);
4158 if (hp
->frag_off
& htons(IP6_OFFSET
| IP6_MF
))
4161 nexthdr
= hp
->nexthdr
;
4162 off
+= sizeof(struct frag_hdr
);
4173 if (!done
|| fragment
)
4176 csum
= skb_checksum_setup_ip(skb
, nexthdr
, off
);
4178 return PTR_ERR(csum
);
4181 *csum
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
4182 &ipv6_hdr(skb
)->daddr
,
4183 skb
->len
- off
, nexthdr
, 0);
4191 * skb_checksum_setup - set up partial checksum offset
4192 * @skb: the skb to set up
4193 * @recalculate: if true the pseudo-header checksum will be recalculated
4195 int skb_checksum_setup(struct sk_buff
*skb
, bool recalculate
)
4199 switch (skb
->protocol
) {
4200 case htons(ETH_P_IP
):
4201 err
= skb_checksum_setup_ipv4(skb
, recalculate
);
4204 case htons(ETH_P_IPV6
):
4205 err
= skb_checksum_setup_ipv6(skb
, recalculate
);
4215 EXPORT_SYMBOL(skb_checksum_setup
);
4218 * skb_checksum_maybe_trim - maybe trims the given skb
4219 * @skb: the skb to check
4220 * @transport_len: the data length beyond the network header
4222 * Checks whether the given skb has data beyond the given transport length.
4223 * If so, returns a cloned skb trimmed to this transport length.
4224 * Otherwise returns the provided skb. Returns NULL in error cases
4225 * (e.g. transport_len exceeds skb length or out-of-memory).
4227 * Caller needs to set the skb transport header and free any returned skb if it
4228 * differs from the provided skb.
4230 static struct sk_buff
*skb_checksum_maybe_trim(struct sk_buff
*skb
,
4231 unsigned int transport_len
)
4233 struct sk_buff
*skb_chk
;
4234 unsigned int len
= skb_transport_offset(skb
) + transport_len
;
4239 else if (skb
->len
== len
)
4242 skb_chk
= skb_clone(skb
, GFP_ATOMIC
);
4246 ret
= pskb_trim_rcsum(skb_chk
, len
);
4256 * skb_checksum_trimmed - validate checksum of an skb
4257 * @skb: the skb to check
4258 * @transport_len: the data length beyond the network header
4259 * @skb_chkf: checksum function to use
4261 * Applies the given checksum function skb_chkf to the provided skb.
4262 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4264 * If the skb has data beyond the given transport length, then a
4265 * trimmed & cloned skb is checked and returned.
4267 * Caller needs to set the skb transport header and free any returned skb if it
4268 * differs from the provided skb.
4270 struct sk_buff
*skb_checksum_trimmed(struct sk_buff
*skb
,
4271 unsigned int transport_len
,
4272 __sum16(*skb_chkf
)(struct sk_buff
*skb
))
4274 struct sk_buff
*skb_chk
;
4275 unsigned int offset
= skb_transport_offset(skb
);
4278 skb_chk
= skb_checksum_maybe_trim(skb
, transport_len
);
4282 if (!pskb_may_pull(skb_chk
, offset
))
4285 skb_pull_rcsum(skb_chk
, offset
);
4286 ret
= skb_chkf(skb_chk
);
4287 skb_push_rcsum(skb_chk
, offset
);
4295 if (skb_chk
&& skb_chk
!= skb
)
4301 EXPORT_SYMBOL(skb_checksum_trimmed
);
4303 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
)
4305 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4308 EXPORT_SYMBOL(__skb_warn_lro_forwarding
);
4310 void kfree_skb_partial(struct sk_buff
*skb
, bool head_stolen
)
4313 skb_release_head_state(skb
);
4314 kmem_cache_free(skbuff_head_cache
, skb
);
4319 EXPORT_SYMBOL(kfree_skb_partial
);
4322 * skb_try_coalesce - try to merge skb to prior one
4324 * @from: buffer to add
4325 * @fragstolen: pointer to boolean
4326 * @delta_truesize: how much more was allocated than was requested
4328 bool skb_try_coalesce(struct sk_buff
*to
, struct sk_buff
*from
,
4329 bool *fragstolen
, int *delta_truesize
)
4331 int i
, delta
, len
= from
->len
;
4333 *fragstolen
= false;
4338 if (len
<= skb_tailroom(to
)) {
4340 BUG_ON(skb_copy_bits(from
, 0, skb_put(to
, len
), len
));
4341 *delta_truesize
= 0;
4345 if (skb_has_frag_list(to
) || skb_has_frag_list(from
))
4348 if (skb_headlen(from
) != 0) {
4350 unsigned int offset
;
4352 if (skb_shinfo(to
)->nr_frags
+
4353 skb_shinfo(from
)->nr_frags
>= MAX_SKB_FRAGS
)
4356 if (skb_head_is_locked(from
))
4359 delta
= from
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
4361 page
= virt_to_head_page(from
->head
);
4362 offset
= from
->data
- (unsigned char *)page_address(page
);
4364 skb_fill_page_desc(to
, skb_shinfo(to
)->nr_frags
,
4365 page
, offset
, skb_headlen(from
));
4368 if (skb_shinfo(to
)->nr_frags
+
4369 skb_shinfo(from
)->nr_frags
> MAX_SKB_FRAGS
)
4372 delta
= from
->truesize
- SKB_TRUESIZE(skb_end_offset(from
));
4375 WARN_ON_ONCE(delta
< len
);
4377 memcpy(skb_shinfo(to
)->frags
+ skb_shinfo(to
)->nr_frags
,
4378 skb_shinfo(from
)->frags
,
4379 skb_shinfo(from
)->nr_frags
* sizeof(skb_frag_t
));
4380 skb_shinfo(to
)->nr_frags
+= skb_shinfo(from
)->nr_frags
;
4382 if (!skb_cloned(from
))
4383 skb_shinfo(from
)->nr_frags
= 0;
4385 /* if the skb is not cloned this does nothing
4386 * since we set nr_frags to 0.
4388 for (i
= 0; i
< skb_shinfo(from
)->nr_frags
; i
++)
4389 skb_frag_ref(from
, i
);
4391 to
->truesize
+= delta
;
4393 to
->data_len
+= len
;
4395 *delta_truesize
= delta
;
4398 EXPORT_SYMBOL(skb_try_coalesce
);
4401 * skb_scrub_packet - scrub an skb
4403 * @skb: buffer to clean
4404 * @xnet: packet is crossing netns
4406 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4407 * into/from a tunnel. Some information have to be cleared during these
4409 * skb_scrub_packet can also be used to clean a skb before injecting it in
4410 * another namespace (@xnet == true). We have to clear all information in the
4411 * skb that could impact namespace isolation.
4413 void skb_scrub_packet(struct sk_buff
*skb
, bool xnet
)
4415 skb
->tstamp
.tv64
= 0;
4416 skb
->pkt_type
= PACKET_HOST
;
4422 nf_reset_trace(skb
);
4431 EXPORT_SYMBOL_GPL(skb_scrub_packet
);
4434 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4438 * skb_gso_transport_seglen is used to determine the real size of the
4439 * individual segments, including Layer4 headers (TCP/UDP).
4441 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4443 unsigned int skb_gso_transport_seglen(const struct sk_buff
*skb
)
4445 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
4446 unsigned int thlen
= 0;
4448 if (skb
->encapsulation
) {
4449 thlen
= skb_inner_transport_header(skb
) -
4450 skb_transport_header(skb
);
4452 if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)))
4453 thlen
+= inner_tcp_hdrlen(skb
);
4454 } else if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
))) {
4455 thlen
= tcp_hdrlen(skb
);
4456 } else if (unlikely(shinfo
->gso_type
& SKB_GSO_SCTP
)) {
4457 thlen
= sizeof(struct sctphdr
);
4459 /* UFO sets gso_size to the size of the fragmentation
4460 * payload, i.e. the size of the L4 (UDP) header is already
4463 return thlen
+ shinfo
->gso_size
;
4465 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen
);
4468 * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4471 * @mtu: MTU to validate against
4473 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4476 bool skb_gso_validate_mtu(const struct sk_buff
*skb
, unsigned int mtu
)
4478 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
4479 const struct sk_buff
*iter
;
4482 hlen
= skb_gso_network_seglen(skb
);
4484 if (shinfo
->gso_size
!= GSO_BY_FRAGS
)
4487 /* Undo this so we can re-use header sizes */
4488 hlen
-= GSO_BY_FRAGS
;
4490 skb_walk_frags(skb
, iter
) {
4491 if (hlen
+ skb_headlen(iter
) > mtu
)
4497 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu
);
4499 static struct sk_buff
*skb_reorder_vlan_header(struct sk_buff
*skb
)
4503 if (skb_cow(skb
, skb_headroom(skb
)) < 0) {
4508 mac_len
= skb
->data
- skb_mac_header(skb
);
4509 if (likely(mac_len
> VLAN_HLEN
+ ETH_TLEN
)) {
4510 memmove(skb_mac_header(skb
) + VLAN_HLEN
, skb_mac_header(skb
),
4511 mac_len
- VLAN_HLEN
- ETH_TLEN
);
4513 skb
->mac_header
+= VLAN_HLEN
;
4517 struct sk_buff
*skb_vlan_untag(struct sk_buff
*skb
)
4519 struct vlan_hdr
*vhdr
;
4522 if (unlikely(skb_vlan_tag_present(skb
))) {
4523 /* vlan_tci is already set-up so leave this for another time */
4527 skb
= skb_share_check(skb
, GFP_ATOMIC
);
4531 if (unlikely(!pskb_may_pull(skb
, VLAN_HLEN
)))
4534 vhdr
= (struct vlan_hdr
*)skb
->data
;
4535 vlan_tci
= ntohs(vhdr
->h_vlan_TCI
);
4536 __vlan_hwaccel_put_tag(skb
, skb
->protocol
, vlan_tci
);
4538 skb_pull_rcsum(skb
, VLAN_HLEN
);
4539 vlan_set_encap_proto(skb
, vhdr
);
4541 skb
= skb_reorder_vlan_header(skb
);
4545 skb_reset_network_header(skb
);
4546 skb_reset_transport_header(skb
);
4547 skb_reset_mac_len(skb
);
4555 EXPORT_SYMBOL(skb_vlan_untag
);
4557 int skb_ensure_writable(struct sk_buff
*skb
, int write_len
)
4559 if (!pskb_may_pull(skb
, write_len
))
4562 if (!skb_cloned(skb
) || skb_clone_writable(skb
, write_len
))
4565 return pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
4567 EXPORT_SYMBOL(skb_ensure_writable
);
4569 /* remove VLAN header from packet and update csum accordingly.
4570 * expects a non skb_vlan_tag_present skb with a vlan tag payload
4572 int __skb_vlan_pop(struct sk_buff
*skb
, u16
*vlan_tci
)
4574 struct vlan_hdr
*vhdr
;
4575 int offset
= skb
->data
- skb_mac_header(skb
);
4578 if (WARN_ONCE(offset
,
4579 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
4584 err
= skb_ensure_writable(skb
, VLAN_ETH_HLEN
);
4588 skb_postpull_rcsum(skb
, skb
->data
+ (2 * ETH_ALEN
), VLAN_HLEN
);
4590 vhdr
= (struct vlan_hdr
*)(skb
->data
+ ETH_HLEN
);
4591 *vlan_tci
= ntohs(vhdr
->h_vlan_TCI
);
4593 memmove(skb
->data
+ VLAN_HLEN
, skb
->data
, 2 * ETH_ALEN
);
4594 __skb_pull(skb
, VLAN_HLEN
);
4596 vlan_set_encap_proto(skb
, vhdr
);
4597 skb
->mac_header
+= VLAN_HLEN
;
4599 if (skb_network_offset(skb
) < ETH_HLEN
)
4600 skb_set_network_header(skb
, ETH_HLEN
);
4602 skb_reset_mac_len(skb
);
4606 EXPORT_SYMBOL(__skb_vlan_pop
);
4608 /* Pop a vlan tag either from hwaccel or from payload.
4609 * Expects skb->data at mac header.
4611 int skb_vlan_pop(struct sk_buff
*skb
)
4617 if (likely(skb_vlan_tag_present(skb
))) {
4620 if (unlikely(!eth_type_vlan(skb
->protocol
)))
4623 err
= __skb_vlan_pop(skb
, &vlan_tci
);
4627 /* move next vlan tag to hw accel tag */
4628 if (likely(!eth_type_vlan(skb
->protocol
)))
4631 vlan_proto
= skb
->protocol
;
4632 err
= __skb_vlan_pop(skb
, &vlan_tci
);
4636 __vlan_hwaccel_put_tag(skb
, vlan_proto
, vlan_tci
);
4639 EXPORT_SYMBOL(skb_vlan_pop
);
4641 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
4642 * Expects skb->data at mac header.
4644 int skb_vlan_push(struct sk_buff
*skb
, __be16 vlan_proto
, u16 vlan_tci
)
4646 if (skb_vlan_tag_present(skb
)) {
4647 int offset
= skb
->data
- skb_mac_header(skb
);
4650 if (WARN_ONCE(offset
,
4651 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
4656 err
= __vlan_insert_tag(skb
, skb
->vlan_proto
,
4657 skb_vlan_tag_get(skb
));
4661 skb
->protocol
= skb
->vlan_proto
;
4662 skb
->mac_len
+= VLAN_HLEN
;
4664 skb_postpush_rcsum(skb
, skb
->data
+ (2 * ETH_ALEN
), VLAN_HLEN
);
4666 __vlan_hwaccel_put_tag(skb
, vlan_proto
, vlan_tci
);
4669 EXPORT_SYMBOL(skb_vlan_push
);
4672 * alloc_skb_with_frags - allocate skb with page frags
4674 * @header_len: size of linear part
4675 * @data_len: needed length in frags
4676 * @max_page_order: max page order desired.
4677 * @errcode: pointer to error code if any
4678 * @gfp_mask: allocation mask
4680 * This can be used to allocate a paged skb, given a maximal order for frags.
4682 struct sk_buff
*alloc_skb_with_frags(unsigned long header_len
,
4683 unsigned long data_len
,
4688 int npages
= (data_len
+ (PAGE_SIZE
- 1)) >> PAGE_SHIFT
;
4689 unsigned long chunk
;
4690 struct sk_buff
*skb
;
4695 *errcode
= -EMSGSIZE
;
4696 /* Note this test could be relaxed, if we succeed to allocate
4697 * high order pages...
4699 if (npages
> MAX_SKB_FRAGS
)
4702 gfp_head
= gfp_mask
;
4703 if (gfp_head
& __GFP_DIRECT_RECLAIM
)
4704 gfp_head
|= __GFP_REPEAT
;
4706 *errcode
= -ENOBUFS
;
4707 skb
= alloc_skb(header_len
, gfp_head
);
4711 skb
->truesize
+= npages
<< PAGE_SHIFT
;
4713 for (i
= 0; npages
> 0; i
++) {
4714 int order
= max_page_order
;
4717 if (npages
>= 1 << order
) {
4718 page
= alloc_pages((gfp_mask
& ~__GFP_DIRECT_RECLAIM
) |
4725 /* Do not retry other high order allocations */
4731 page
= alloc_page(gfp_mask
);
4735 chunk
= min_t(unsigned long, data_len
,
4736 PAGE_SIZE
<< order
);
4737 skb_fill_page_desc(skb
, i
, page
, 0, chunk
);
4739 npages
-= 1 << order
;
4747 EXPORT_SYMBOL(alloc_skb_with_frags
);
4749 /* carve out the first off bytes from skb when off < headlen */
4750 static int pskb_carve_inside_header(struct sk_buff
*skb
, const u32 off
,
4751 const int headlen
, gfp_t gfp_mask
)
4754 int size
= skb_end_offset(skb
);
4755 int new_hlen
= headlen
- off
;
4758 size
= SKB_DATA_ALIGN(size
);
4760 if (skb_pfmemalloc(skb
))
4761 gfp_mask
|= __GFP_MEMALLOC
;
4762 data
= kmalloc_reserve(size
+
4763 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)),
4764 gfp_mask
, NUMA_NO_NODE
, NULL
);
4768 size
= SKB_WITH_OVERHEAD(ksize(data
));
4770 /* Copy real data, and all frags */
4771 skb_copy_from_linear_data_offset(skb
, off
, data
, new_hlen
);
4774 memcpy((struct skb_shared_info
*)(data
+ size
),
4776 offsetof(struct skb_shared_info
,
4777 frags
[skb_shinfo(skb
)->nr_frags
]));
4778 if (skb_cloned(skb
)) {
4779 /* drop the old head gracefully */
4780 if (skb_orphan_frags(skb
, gfp_mask
)) {
4784 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
4785 skb_frag_ref(skb
, i
);
4786 if (skb_has_frag_list(skb
))
4787 skb_clone_fraglist(skb
);
4788 skb_release_data(skb
);
4790 /* we can reuse existing recount- all we did was
4799 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4802 skb
->end
= skb
->head
+ size
;
4804 skb_set_tail_pointer(skb
, skb_headlen(skb
));
4805 skb_headers_offset_update(skb
, 0);
4809 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
4814 static int pskb_carve(struct sk_buff
*skb
, const u32 off
, gfp_t gfp
);
4816 /* carve out the first eat bytes from skb's frag_list. May recurse into
4819 static int pskb_carve_frag_list(struct sk_buff
*skb
,
4820 struct skb_shared_info
*shinfo
, int eat
,
4823 struct sk_buff
*list
= shinfo
->frag_list
;
4824 struct sk_buff
*clone
= NULL
;
4825 struct sk_buff
*insp
= NULL
;
4829 pr_err("Not enough bytes to eat. Want %d\n", eat
);
4832 if (list
->len
<= eat
) {
4833 /* Eaten as whole. */
4838 /* Eaten partially. */
4839 if (skb_shared(list
)) {
4840 clone
= skb_clone(list
, gfp_mask
);
4846 /* This may be pulled without problems. */
4849 if (pskb_carve(list
, eat
, gfp_mask
) < 0) {
4857 /* Free pulled out fragments. */
4858 while ((list
= shinfo
->frag_list
) != insp
) {
4859 shinfo
->frag_list
= list
->next
;
4862 /* And insert new clone at head. */
4865 shinfo
->frag_list
= clone
;
4870 /* carve off first len bytes from skb. Split line (off) is in the
4871 * non-linear part of skb
4873 static int pskb_carve_inside_nonlinear(struct sk_buff
*skb
, const u32 off
,
4874 int pos
, gfp_t gfp_mask
)
4877 int size
= skb_end_offset(skb
);
4879 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
4880 struct skb_shared_info
*shinfo
;
4882 size
= SKB_DATA_ALIGN(size
);
4884 if (skb_pfmemalloc(skb
))
4885 gfp_mask
|= __GFP_MEMALLOC
;
4886 data
= kmalloc_reserve(size
+
4887 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)),
4888 gfp_mask
, NUMA_NO_NODE
, NULL
);
4892 size
= SKB_WITH_OVERHEAD(ksize(data
));
4894 memcpy((struct skb_shared_info
*)(data
+ size
),
4895 skb_shinfo(skb
), offsetof(struct skb_shared_info
,
4896 frags
[skb_shinfo(skb
)->nr_frags
]));
4897 if (skb_orphan_frags(skb
, gfp_mask
)) {
4901 shinfo
= (struct skb_shared_info
*)(data
+ size
);
4902 for (i
= 0; i
< nfrags
; i
++) {
4903 int fsize
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
4905 if (pos
+ fsize
> off
) {
4906 shinfo
->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
4910 * We have two variants in this case:
4911 * 1. Move all the frag to the second
4912 * part, if it is possible. F.e.
4913 * this approach is mandatory for TUX,
4914 * where splitting is expensive.
4915 * 2. Split is accurately. We make this.
4917 shinfo
->frags
[0].page_offset
+= off
- pos
;
4918 skb_frag_size_sub(&shinfo
->frags
[0], off
- pos
);
4920 skb_frag_ref(skb
, i
);
4925 shinfo
->nr_frags
= k
;
4926 if (skb_has_frag_list(skb
))
4927 skb_clone_fraglist(skb
);
4930 /* split line is in frag list */
4931 pskb_carve_frag_list(skb
, shinfo
, off
- pos
, gfp_mask
);
4933 skb_release_data(skb
);
4938 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4941 skb
->end
= skb
->head
+ size
;
4943 skb_reset_tail_pointer(skb
);
4944 skb_headers_offset_update(skb
, 0);
4949 skb
->data_len
= skb
->len
;
4950 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
4954 /* remove len bytes from the beginning of the skb */
4955 static int pskb_carve(struct sk_buff
*skb
, const u32 len
, gfp_t gfp
)
4957 int headlen
= skb_headlen(skb
);
4960 return pskb_carve_inside_header(skb
, len
, headlen
, gfp
);
4962 return pskb_carve_inside_nonlinear(skb
, len
, headlen
, gfp
);
4965 /* Extract to_copy bytes starting at off from skb, and return this in
4968 struct sk_buff
*pskb_extract(struct sk_buff
*skb
, int off
,
4969 int to_copy
, gfp_t gfp
)
4971 struct sk_buff
*clone
= skb_clone(skb
, gfp
);
4976 if (pskb_carve(clone
, off
, gfp
) < 0 ||
4977 pskb_trim(clone
, to_copy
)) {
4983 EXPORT_SYMBOL(pskb_extract
);