2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
121 #include <asm/uaccess.h>
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
136 #include <linux/filter.h>
137 #include <net/sock_reuseport.h>
139 #include <trace/events/sock.h>
142 #include <net/busy_poll.h>
144 static DEFINE_MUTEX(proto_list_mutex
);
145 static LIST_HEAD(proto_list
);
148 * sk_ns_capable - General socket capability test
149 * @sk: Socket to use a capability on or through
150 * @user_ns: The user namespace of the capability to use
151 * @cap: The capability to use
153 * Test to see if the opener of the socket had when the socket was
154 * created and the current process has the capability @cap in the user
155 * namespace @user_ns.
157 bool sk_ns_capable(const struct sock
*sk
,
158 struct user_namespace
*user_ns
, int cap
)
160 return file_ns_capable(sk
->sk_socket
->file
, user_ns
, cap
) &&
161 ns_capable(user_ns
, cap
);
163 EXPORT_SYMBOL(sk_ns_capable
);
166 * sk_capable - Socket global capability test
167 * @sk: Socket to use a capability on or through
168 * @cap: The global capability to use
170 * Test to see if the opener of the socket had when the socket was
171 * created and the current process has the capability @cap in all user
174 bool sk_capable(const struct sock
*sk
, int cap
)
176 return sk_ns_capable(sk
, &init_user_ns
, cap
);
178 EXPORT_SYMBOL(sk_capable
);
181 * sk_net_capable - Network namespace socket capability test
182 * @sk: Socket to use a capability on or through
183 * @cap: The capability to use
185 * Test to see if the opener of the socket had when the socket was created
186 * and the current process has the capability @cap over the network namespace
187 * the socket is a member of.
189 bool sk_net_capable(const struct sock
*sk
, int cap
)
191 return sk_ns_capable(sk
, sock_net(sk
)->user_ns
, cap
);
193 EXPORT_SYMBOL(sk_net_capable
);
196 * Each address family might have different locking rules, so we have
197 * one slock key per address family:
199 static struct lock_class_key af_family_keys
[AF_MAX
];
200 static struct lock_class_key af_family_slock_keys
[AF_MAX
];
203 * Make lock validator output more readable. (we pre-construct these
204 * strings build-time, so that runtime initialization of socket
207 static const char *const af_family_key_strings
[AF_MAX
+1] = {
208 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
209 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
210 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
211 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
212 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
213 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
214 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
215 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
216 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
217 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
218 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
219 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
220 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
221 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_KCM" ,
222 "sk_lock-AF_QIPCRTR", "sk_lock-AF_MAX"
224 static const char *const af_family_slock_key_strings
[AF_MAX
+1] = {
225 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
226 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
227 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
228 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
229 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
230 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
231 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
232 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
233 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
234 "slock-27" , "slock-28" , "slock-AF_CAN" ,
235 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
236 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
237 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
238 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_KCM" ,
239 "slock-AF_QIPCRTR", "slock-AF_MAX"
241 static const char *const af_family_clock_key_strings
[AF_MAX
+1] = {
242 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
243 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
244 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
245 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
246 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
247 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
248 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
249 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
250 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
251 "clock-27" , "clock-28" , "clock-AF_CAN" ,
252 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
253 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
254 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
255 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_KCM" ,
256 "clock-AF_QIPCRTR", "clock-AF_MAX"
260 * sk_callback_lock locking rules are per-address-family,
261 * so split the lock classes by using a per-AF key:
263 static struct lock_class_key af_callback_keys
[AF_MAX
];
265 /* Take into consideration the size of the struct sk_buff overhead in the
266 * determination of these values, since that is non-constant across
267 * platforms. This makes socket queueing behavior and performance
268 * not depend upon such differences.
270 #define _SK_MEM_PACKETS 256
271 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
272 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
273 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
275 /* Run time adjustable parameters. */
276 __u32 sysctl_wmem_max __read_mostly
= SK_WMEM_MAX
;
277 EXPORT_SYMBOL(sysctl_wmem_max
);
278 __u32 sysctl_rmem_max __read_mostly
= SK_RMEM_MAX
;
279 EXPORT_SYMBOL(sysctl_rmem_max
);
280 __u32 sysctl_wmem_default __read_mostly
= SK_WMEM_MAX
;
281 __u32 sysctl_rmem_default __read_mostly
= SK_RMEM_MAX
;
283 /* Maximal space eaten by iovec or ancillary data plus some space */
284 int sysctl_optmem_max __read_mostly
= sizeof(unsigned long)*(2*UIO_MAXIOV
+512);
285 EXPORT_SYMBOL(sysctl_optmem_max
);
287 int sysctl_tstamp_allow_data __read_mostly
= 1;
289 struct static_key memalloc_socks
= STATIC_KEY_INIT_FALSE
;
290 EXPORT_SYMBOL_GPL(memalloc_socks
);
293 * sk_set_memalloc - sets %SOCK_MEMALLOC
294 * @sk: socket to set it on
296 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
297 * It's the responsibility of the admin to adjust min_free_kbytes
298 * to meet the requirements
300 void sk_set_memalloc(struct sock
*sk
)
302 sock_set_flag(sk
, SOCK_MEMALLOC
);
303 sk
->sk_allocation
|= __GFP_MEMALLOC
;
304 static_key_slow_inc(&memalloc_socks
);
306 EXPORT_SYMBOL_GPL(sk_set_memalloc
);
308 void sk_clear_memalloc(struct sock
*sk
)
310 sock_reset_flag(sk
, SOCK_MEMALLOC
);
311 sk
->sk_allocation
&= ~__GFP_MEMALLOC
;
312 static_key_slow_dec(&memalloc_socks
);
315 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
316 * progress of swapping. SOCK_MEMALLOC may be cleared while
317 * it has rmem allocations due to the last swapfile being deactivated
318 * but there is a risk that the socket is unusable due to exceeding
319 * the rmem limits. Reclaim the reserves and obey rmem limits again.
323 EXPORT_SYMBOL_GPL(sk_clear_memalloc
);
325 int __sk_backlog_rcv(struct sock
*sk
, struct sk_buff
*skb
)
328 unsigned long pflags
= current
->flags
;
330 /* these should have been dropped before queueing */
331 BUG_ON(!sock_flag(sk
, SOCK_MEMALLOC
));
333 current
->flags
|= PF_MEMALLOC
;
334 ret
= sk
->sk_backlog_rcv(sk
, skb
);
335 tsk_restore_flags(current
, pflags
, PF_MEMALLOC
);
339 EXPORT_SYMBOL(__sk_backlog_rcv
);
341 static int sock_set_timeout(long *timeo_p
, char __user
*optval
, int optlen
)
345 if (optlen
< sizeof(tv
))
347 if (copy_from_user(&tv
, optval
, sizeof(tv
)))
349 if (tv
.tv_usec
< 0 || tv
.tv_usec
>= USEC_PER_SEC
)
353 static int warned __read_mostly
;
356 if (warned
< 10 && net_ratelimit()) {
358 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
359 __func__
, current
->comm
, task_pid_nr(current
));
363 *timeo_p
= MAX_SCHEDULE_TIMEOUT
;
364 if (tv
.tv_sec
== 0 && tv
.tv_usec
== 0)
366 if (tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/HZ
- 1))
367 *timeo_p
= tv
.tv_sec
*HZ
+ (tv
.tv_usec
+(1000000/HZ
-1))/(1000000/HZ
);
371 static void sock_warn_obsolete_bsdism(const char *name
)
374 static char warncomm
[TASK_COMM_LEN
];
375 if (strcmp(warncomm
, current
->comm
) && warned
< 5) {
376 strcpy(warncomm
, current
->comm
);
377 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
383 static bool sock_needs_netstamp(const struct sock
*sk
)
385 switch (sk
->sk_family
) {
394 static void sock_disable_timestamp(struct sock
*sk
, unsigned long flags
)
396 if (sk
->sk_flags
& flags
) {
397 sk
->sk_flags
&= ~flags
;
398 if (sock_needs_netstamp(sk
) &&
399 !(sk
->sk_flags
& SK_FLAGS_TIMESTAMP
))
400 net_disable_timestamp();
405 int __sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
408 struct sk_buff_head
*list
= &sk
->sk_receive_queue
;
410 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
) {
411 atomic_inc(&sk
->sk_drops
);
412 trace_sock_rcvqueue_full(sk
, skb
);
416 if (!sk_rmem_schedule(sk
, skb
, skb
->truesize
)) {
417 atomic_inc(&sk
->sk_drops
);
422 skb_set_owner_r(skb
, sk
);
424 /* we escape from rcu protected region, make sure we dont leak
429 spin_lock_irqsave(&list
->lock
, flags
);
430 sock_skb_set_dropcount(sk
, skb
);
431 __skb_queue_tail(list
, skb
);
432 spin_unlock_irqrestore(&list
->lock
, flags
);
434 if (!sock_flag(sk
, SOCK_DEAD
))
435 sk
->sk_data_ready(sk
);
438 EXPORT_SYMBOL(__sock_queue_rcv_skb
);
440 int sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
444 err
= sk_filter(sk
, skb
);
448 return __sock_queue_rcv_skb(sk
, skb
);
450 EXPORT_SYMBOL(sock_queue_rcv_skb
);
452 int __sk_receive_skb(struct sock
*sk
, struct sk_buff
*skb
,
453 const int nested
, unsigned int trim_cap
, bool refcounted
)
455 int rc
= NET_RX_SUCCESS
;
457 if (sk_filter_trim_cap(sk
, skb
, trim_cap
))
458 goto discard_and_relse
;
462 if (sk_rcvqueues_full(sk
, sk
->sk_rcvbuf
)) {
463 atomic_inc(&sk
->sk_drops
);
464 goto discard_and_relse
;
467 bh_lock_sock_nested(sk
);
470 if (!sock_owned_by_user(sk
)) {
472 * trylock + unlock semantics:
474 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 1, _RET_IP_
);
476 rc
= sk_backlog_rcv(sk
, skb
);
478 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
479 } else if (sk_add_backlog(sk
, skb
, sk
->sk_rcvbuf
)) {
481 atomic_inc(&sk
->sk_drops
);
482 goto discard_and_relse
;
494 EXPORT_SYMBOL(__sk_receive_skb
);
496 struct dst_entry
*__sk_dst_check(struct sock
*sk
, u32 cookie
)
498 struct dst_entry
*dst
= __sk_dst_get(sk
);
500 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
501 sk_tx_queue_clear(sk
);
502 RCU_INIT_POINTER(sk
->sk_dst_cache
, NULL
);
509 EXPORT_SYMBOL(__sk_dst_check
);
511 struct dst_entry
*sk_dst_check(struct sock
*sk
, u32 cookie
)
513 struct dst_entry
*dst
= sk_dst_get(sk
);
515 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
523 EXPORT_SYMBOL(sk_dst_check
);
525 static int sock_setbindtodevice(struct sock
*sk
, char __user
*optval
,
528 int ret
= -ENOPROTOOPT
;
529 #ifdef CONFIG_NETDEVICES
530 struct net
*net
= sock_net(sk
);
531 char devname
[IFNAMSIZ
];
536 if (!ns_capable(net
->user_ns
, CAP_NET_RAW
))
543 /* Bind this socket to a particular device like "eth0",
544 * as specified in the passed interface name. If the
545 * name is "" or the option length is zero the socket
548 if (optlen
> IFNAMSIZ
- 1)
549 optlen
= IFNAMSIZ
- 1;
550 memset(devname
, 0, sizeof(devname
));
553 if (copy_from_user(devname
, optval
, optlen
))
557 if (devname
[0] != '\0') {
558 struct net_device
*dev
;
561 dev
= dev_get_by_name_rcu(net
, devname
);
563 index
= dev
->ifindex
;
571 sk
->sk_bound_dev_if
= index
;
583 static int sock_getbindtodevice(struct sock
*sk
, char __user
*optval
,
584 int __user
*optlen
, int len
)
586 int ret
= -ENOPROTOOPT
;
587 #ifdef CONFIG_NETDEVICES
588 struct net
*net
= sock_net(sk
);
589 char devname
[IFNAMSIZ
];
591 if (sk
->sk_bound_dev_if
== 0) {
600 ret
= netdev_get_name(net
, devname
, sk
->sk_bound_dev_if
);
604 len
= strlen(devname
) + 1;
607 if (copy_to_user(optval
, devname
, len
))
612 if (put_user(len
, optlen
))
623 static inline void sock_valbool_flag(struct sock
*sk
, int bit
, int valbool
)
626 sock_set_flag(sk
, bit
);
628 sock_reset_flag(sk
, bit
);
631 bool sk_mc_loop(struct sock
*sk
)
633 if (dev_recursion_level())
637 switch (sk
->sk_family
) {
639 return inet_sk(sk
)->mc_loop
;
640 #if IS_ENABLED(CONFIG_IPV6)
642 return inet6_sk(sk
)->mc_loop
;
648 EXPORT_SYMBOL(sk_mc_loop
);
651 * This is meant for all protocols to use and covers goings on
652 * at the socket level. Everything here is generic.
655 int sock_setsockopt(struct socket
*sock
, int level
, int optname
,
656 char __user
*optval
, unsigned int optlen
)
658 struct sock
*sk
= sock
->sk
;
665 * Options without arguments
668 if (optname
== SO_BINDTODEVICE
)
669 return sock_setbindtodevice(sk
, optval
, optlen
);
671 if (optlen
< sizeof(int))
674 if (get_user(val
, (int __user
*)optval
))
677 valbool
= val
? 1 : 0;
683 if (val
&& !capable(CAP_NET_ADMIN
))
686 sock_valbool_flag(sk
, SOCK_DBG
, valbool
);
689 sk
->sk_reuse
= (valbool
? SK_CAN_REUSE
: SK_NO_REUSE
);
692 sk
->sk_reuseport
= valbool
;
701 sock_valbool_flag(sk
, SOCK_LOCALROUTE
, valbool
);
704 sock_valbool_flag(sk
, SOCK_BROADCAST
, valbool
);
707 /* Don't error on this BSD doesn't and if you think
708 * about it this is right. Otherwise apps have to
709 * play 'guess the biggest size' games. RCVBUF/SNDBUF
710 * are treated in BSD as hints
712 val
= min_t(u32
, val
, sysctl_wmem_max
);
714 sk
->sk_userlocks
|= SOCK_SNDBUF_LOCK
;
715 sk
->sk_sndbuf
= max_t(int, val
* 2, SOCK_MIN_SNDBUF
);
716 /* Wake up sending tasks if we upped the value. */
717 sk
->sk_write_space(sk
);
721 if (!capable(CAP_NET_ADMIN
)) {
728 /* Don't error on this BSD doesn't and if you think
729 * about it this is right. Otherwise apps have to
730 * play 'guess the biggest size' games. RCVBUF/SNDBUF
731 * are treated in BSD as hints
733 val
= min_t(u32
, val
, sysctl_rmem_max
);
735 sk
->sk_userlocks
|= SOCK_RCVBUF_LOCK
;
737 * We double it on the way in to account for
738 * "struct sk_buff" etc. overhead. Applications
739 * assume that the SO_RCVBUF setting they make will
740 * allow that much actual data to be received on that
743 * Applications are unaware that "struct sk_buff" and
744 * other overheads allocate from the receive buffer
745 * during socket buffer allocation.
747 * And after considering the possible alternatives,
748 * returning the value we actually used in getsockopt
749 * is the most desirable behavior.
751 sk
->sk_rcvbuf
= max_t(int, val
* 2, SOCK_MIN_RCVBUF
);
755 if (!capable(CAP_NET_ADMIN
)) {
763 if (sk
->sk_protocol
== IPPROTO_TCP
&&
764 sk
->sk_type
== SOCK_STREAM
)
765 tcp_set_keepalive(sk
, valbool
);
767 sock_valbool_flag(sk
, SOCK_KEEPOPEN
, valbool
);
771 sock_valbool_flag(sk
, SOCK_URGINLINE
, valbool
);
775 sk
->sk_no_check_tx
= valbool
;
779 if ((val
>= 0 && val
<= 6) ||
780 ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
781 sk
->sk_priority
= val
;
787 if (optlen
< sizeof(ling
)) {
788 ret
= -EINVAL
; /* 1003.1g */
791 if (copy_from_user(&ling
, optval
, sizeof(ling
))) {
796 sock_reset_flag(sk
, SOCK_LINGER
);
798 #if (BITS_PER_LONG == 32)
799 if ((unsigned int)ling
.l_linger
>= MAX_SCHEDULE_TIMEOUT
/HZ
)
800 sk
->sk_lingertime
= MAX_SCHEDULE_TIMEOUT
;
803 sk
->sk_lingertime
= (unsigned int)ling
.l_linger
* HZ
;
804 sock_set_flag(sk
, SOCK_LINGER
);
809 sock_warn_obsolete_bsdism("setsockopt");
814 set_bit(SOCK_PASSCRED
, &sock
->flags
);
816 clear_bit(SOCK_PASSCRED
, &sock
->flags
);
822 if (optname
== SO_TIMESTAMP
)
823 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
825 sock_set_flag(sk
, SOCK_RCVTSTAMPNS
);
826 sock_set_flag(sk
, SOCK_RCVTSTAMP
);
827 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
829 sock_reset_flag(sk
, SOCK_RCVTSTAMP
);
830 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
834 case SO_TIMESTAMPING
:
835 if (val
& ~SOF_TIMESTAMPING_MASK
) {
840 if (val
& SOF_TIMESTAMPING_OPT_ID
&&
841 !(sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
)) {
842 if (sk
->sk_protocol
== IPPROTO_TCP
&&
843 sk
->sk_type
== SOCK_STREAM
) {
844 if ((1 << sk
->sk_state
) &
845 (TCPF_CLOSE
| TCPF_LISTEN
)) {
849 sk
->sk_tskey
= tcp_sk(sk
)->snd_una
;
854 sk
->sk_tsflags
= val
;
855 if (val
& SOF_TIMESTAMPING_RX_SOFTWARE
)
856 sock_enable_timestamp(sk
,
857 SOCK_TIMESTAMPING_RX_SOFTWARE
);
859 sock_disable_timestamp(sk
,
860 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE
));
866 sk
->sk_rcvlowat
= val
? : 1;
870 ret
= sock_set_timeout(&sk
->sk_rcvtimeo
, optval
, optlen
);
874 ret
= sock_set_timeout(&sk
->sk_sndtimeo
, optval
, optlen
);
877 case SO_ATTACH_FILTER
:
879 if (optlen
== sizeof(struct sock_fprog
)) {
880 struct sock_fprog fprog
;
883 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
886 ret
= sk_attach_filter(&fprog
, sk
);
892 if (optlen
== sizeof(u32
)) {
896 if (copy_from_user(&ufd
, optval
, sizeof(ufd
)))
899 ret
= sk_attach_bpf(ufd
, sk
);
903 case SO_ATTACH_REUSEPORT_CBPF
:
905 if (optlen
== sizeof(struct sock_fprog
)) {
906 struct sock_fprog fprog
;
909 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
912 ret
= sk_reuseport_attach_filter(&fprog
, sk
);
916 case SO_ATTACH_REUSEPORT_EBPF
:
918 if (optlen
== sizeof(u32
)) {
922 if (copy_from_user(&ufd
, optval
, sizeof(ufd
)))
925 ret
= sk_reuseport_attach_bpf(ufd
, sk
);
929 case SO_DETACH_FILTER
:
930 ret
= sk_detach_filter(sk
);
934 if (sock_flag(sk
, SOCK_FILTER_LOCKED
) && !valbool
)
937 sock_valbool_flag(sk
, SOCK_FILTER_LOCKED
, valbool
);
942 set_bit(SOCK_PASSSEC
, &sock
->flags
);
944 clear_bit(SOCK_PASSSEC
, &sock
->flags
);
947 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
954 sock_valbool_flag(sk
, SOCK_RXQ_OVFL
, valbool
);
958 sock_valbool_flag(sk
, SOCK_WIFI_STATUS
, valbool
);
962 if (sock
->ops
->set_peek_off
)
963 ret
= sock
->ops
->set_peek_off(sk
, val
);
969 sock_valbool_flag(sk
, SOCK_NOFCS
, valbool
);
972 case SO_SELECT_ERR_QUEUE
:
973 sock_valbool_flag(sk
, SOCK_SELECT_ERR_QUEUE
, valbool
);
976 #ifdef CONFIG_NET_RX_BUSY_POLL
978 /* allow unprivileged users to decrease the value */
979 if ((val
> sk
->sk_ll_usec
) && !capable(CAP_NET_ADMIN
))
985 sk
->sk_ll_usec
= val
;
990 case SO_MAX_PACING_RATE
:
991 sk
->sk_max_pacing_rate
= val
;
992 sk
->sk_pacing_rate
= min(sk
->sk_pacing_rate
,
993 sk
->sk_max_pacing_rate
);
996 case SO_INCOMING_CPU
:
997 sk
->sk_incoming_cpu
= val
;
1002 dst_negative_advice(sk
);
1011 EXPORT_SYMBOL(sock_setsockopt
);
1014 static void cred_to_ucred(struct pid
*pid
, const struct cred
*cred
,
1015 struct ucred
*ucred
)
1017 ucred
->pid
= pid_vnr(pid
);
1018 ucred
->uid
= ucred
->gid
= -1;
1020 struct user_namespace
*current_ns
= current_user_ns();
1022 ucred
->uid
= from_kuid_munged(current_ns
, cred
->euid
);
1023 ucred
->gid
= from_kgid_munged(current_ns
, cred
->egid
);
1027 int sock_getsockopt(struct socket
*sock
, int level
, int optname
,
1028 char __user
*optval
, int __user
*optlen
)
1030 struct sock
*sk
= sock
->sk
;
1038 int lv
= sizeof(int);
1041 if (get_user(len
, optlen
))
1046 memset(&v
, 0, sizeof(v
));
1050 v
.val
= sock_flag(sk
, SOCK_DBG
);
1054 v
.val
= sock_flag(sk
, SOCK_LOCALROUTE
);
1058 v
.val
= sock_flag(sk
, SOCK_BROADCAST
);
1062 v
.val
= sk
->sk_sndbuf
;
1066 v
.val
= sk
->sk_rcvbuf
;
1070 v
.val
= sk
->sk_reuse
;
1074 v
.val
= sk
->sk_reuseport
;
1078 v
.val
= sock_flag(sk
, SOCK_KEEPOPEN
);
1082 v
.val
= sk
->sk_type
;
1086 v
.val
= sk
->sk_protocol
;
1090 v
.val
= sk
->sk_family
;
1094 v
.val
= -sock_error(sk
);
1096 v
.val
= xchg(&sk
->sk_err_soft
, 0);
1100 v
.val
= sock_flag(sk
, SOCK_URGINLINE
);
1104 v
.val
= sk
->sk_no_check_tx
;
1108 v
.val
= sk
->sk_priority
;
1112 lv
= sizeof(v
.ling
);
1113 v
.ling
.l_onoff
= sock_flag(sk
, SOCK_LINGER
);
1114 v
.ling
.l_linger
= sk
->sk_lingertime
/ HZ
;
1118 sock_warn_obsolete_bsdism("getsockopt");
1122 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMP
) &&
1123 !sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1126 case SO_TIMESTAMPNS
:
1127 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1130 case SO_TIMESTAMPING
:
1131 v
.val
= sk
->sk_tsflags
;
1135 lv
= sizeof(struct timeval
);
1136 if (sk
->sk_rcvtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1140 v
.tm
.tv_sec
= sk
->sk_rcvtimeo
/ HZ
;
1141 v
.tm
.tv_usec
= ((sk
->sk_rcvtimeo
% HZ
) * 1000000) / HZ
;
1146 lv
= sizeof(struct timeval
);
1147 if (sk
->sk_sndtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1151 v
.tm
.tv_sec
= sk
->sk_sndtimeo
/ HZ
;
1152 v
.tm
.tv_usec
= ((sk
->sk_sndtimeo
% HZ
) * 1000000) / HZ
;
1157 v
.val
= sk
->sk_rcvlowat
;
1165 v
.val
= !!test_bit(SOCK_PASSCRED
, &sock
->flags
);
1170 struct ucred peercred
;
1171 if (len
> sizeof(peercred
))
1172 len
= sizeof(peercred
);
1173 cred_to_ucred(sk
->sk_peer_pid
, sk
->sk_peer_cred
, &peercred
);
1174 if (copy_to_user(optval
, &peercred
, len
))
1183 if (sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &lv
, 2))
1187 if (copy_to_user(optval
, address
, len
))
1192 /* Dubious BSD thing... Probably nobody even uses it, but
1193 * the UNIX standard wants it for whatever reason... -DaveM
1196 v
.val
= sk
->sk_state
== TCP_LISTEN
;
1200 v
.val
= !!test_bit(SOCK_PASSSEC
, &sock
->flags
);
1204 return security_socket_getpeersec_stream(sock
, optval
, optlen
, len
);
1207 v
.val
= sk
->sk_mark
;
1211 v
.val
= sock_flag(sk
, SOCK_RXQ_OVFL
);
1214 case SO_WIFI_STATUS
:
1215 v
.val
= sock_flag(sk
, SOCK_WIFI_STATUS
);
1219 if (!sock
->ops
->set_peek_off
)
1222 v
.val
= sk
->sk_peek_off
;
1225 v
.val
= sock_flag(sk
, SOCK_NOFCS
);
1228 case SO_BINDTODEVICE
:
1229 return sock_getbindtodevice(sk
, optval
, optlen
, len
);
1232 len
= sk_get_filter(sk
, (struct sock_filter __user
*)optval
, len
);
1238 case SO_LOCK_FILTER
:
1239 v
.val
= sock_flag(sk
, SOCK_FILTER_LOCKED
);
1242 case SO_BPF_EXTENSIONS
:
1243 v
.val
= bpf_tell_extensions();
1246 case SO_SELECT_ERR_QUEUE
:
1247 v
.val
= sock_flag(sk
, SOCK_SELECT_ERR_QUEUE
);
1250 #ifdef CONFIG_NET_RX_BUSY_POLL
1252 v
.val
= sk
->sk_ll_usec
;
1256 case SO_MAX_PACING_RATE
:
1257 v
.val
= sk
->sk_max_pacing_rate
;
1260 case SO_INCOMING_CPU
:
1261 v
.val
= sk
->sk_incoming_cpu
;
1265 /* We implement the SO_SNDLOWAT etc to not be settable
1268 return -ENOPROTOOPT
;
1273 if (copy_to_user(optval
, &v
, len
))
1276 if (put_user(len
, optlen
))
1282 * Initialize an sk_lock.
1284 * (We also register the sk_lock with the lock validator.)
1286 static inline void sock_lock_init(struct sock
*sk
)
1288 sock_lock_init_class_and_name(sk
,
1289 af_family_slock_key_strings
[sk
->sk_family
],
1290 af_family_slock_keys
+ sk
->sk_family
,
1291 af_family_key_strings
[sk
->sk_family
],
1292 af_family_keys
+ sk
->sk_family
);
1296 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1297 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1298 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1300 static void sock_copy(struct sock
*nsk
, const struct sock
*osk
)
1302 #ifdef CONFIG_SECURITY_NETWORK
1303 void *sptr
= nsk
->sk_security
;
1305 memcpy(nsk
, osk
, offsetof(struct sock
, sk_dontcopy_begin
));
1307 memcpy(&nsk
->sk_dontcopy_end
, &osk
->sk_dontcopy_end
,
1308 osk
->sk_prot
->obj_size
- offsetof(struct sock
, sk_dontcopy_end
));
1310 #ifdef CONFIG_SECURITY_NETWORK
1311 nsk
->sk_security
= sptr
;
1312 security_sk_clone(osk
, nsk
);
1316 static struct sock
*sk_prot_alloc(struct proto
*prot
, gfp_t priority
,
1320 struct kmem_cache
*slab
;
1324 sk
= kmem_cache_alloc(slab
, priority
& ~__GFP_ZERO
);
1327 if (priority
& __GFP_ZERO
)
1328 sk_prot_clear_nulls(sk
, prot
->obj_size
);
1330 sk
= kmalloc(prot
->obj_size
, priority
);
1333 kmemcheck_annotate_bitfield(sk
, flags
);
1335 if (security_sk_alloc(sk
, family
, priority
))
1338 if (!try_module_get(prot
->owner
))
1340 sk_tx_queue_clear(sk
);
1346 security_sk_free(sk
);
1349 kmem_cache_free(slab
, sk
);
1355 static void sk_prot_free(struct proto
*prot
, struct sock
*sk
)
1357 struct kmem_cache
*slab
;
1358 struct module
*owner
;
1360 owner
= prot
->owner
;
1363 cgroup_sk_free(&sk
->sk_cgrp_data
);
1364 mem_cgroup_sk_free(sk
);
1365 security_sk_free(sk
);
1367 kmem_cache_free(slab
, sk
);
1374 * sk_alloc - All socket objects are allocated here
1375 * @net: the applicable net namespace
1376 * @family: protocol family
1377 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1378 * @prot: struct proto associated with this new sock instance
1379 * @kern: is this to be a kernel socket?
1381 struct sock
*sk_alloc(struct net
*net
, int family
, gfp_t priority
,
1382 struct proto
*prot
, int kern
)
1386 sk
= sk_prot_alloc(prot
, priority
| __GFP_ZERO
, family
);
1388 sk
->sk_family
= family
;
1390 * See comment in struct sock definition to understand
1391 * why we need sk_prot_creator -acme
1393 sk
->sk_prot
= sk
->sk_prot_creator
= prot
;
1395 sk
->sk_net_refcnt
= kern
? 0 : 1;
1396 if (likely(sk
->sk_net_refcnt
))
1398 sock_net_set(sk
, net
);
1399 atomic_set(&sk
->sk_wmem_alloc
, 1);
1401 mem_cgroup_sk_alloc(sk
);
1402 cgroup_sk_alloc(&sk
->sk_cgrp_data
);
1403 sock_update_classid(&sk
->sk_cgrp_data
);
1404 sock_update_netprioidx(&sk
->sk_cgrp_data
);
1409 EXPORT_SYMBOL(sk_alloc
);
1411 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1412 * grace period. This is the case for UDP sockets and TCP listeners.
1414 static void __sk_destruct(struct rcu_head
*head
)
1416 struct sock
*sk
= container_of(head
, struct sock
, sk_rcu
);
1417 struct sk_filter
*filter
;
1419 if (sk
->sk_destruct
)
1420 sk
->sk_destruct(sk
);
1422 filter
= rcu_dereference_check(sk
->sk_filter
,
1423 atomic_read(&sk
->sk_wmem_alloc
) == 0);
1425 sk_filter_uncharge(sk
, filter
);
1426 RCU_INIT_POINTER(sk
->sk_filter
, NULL
);
1428 if (rcu_access_pointer(sk
->sk_reuseport_cb
))
1429 reuseport_detach_sock(sk
);
1431 sock_disable_timestamp(sk
, SK_FLAGS_TIMESTAMP
);
1433 if (atomic_read(&sk
->sk_omem_alloc
))
1434 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1435 __func__
, atomic_read(&sk
->sk_omem_alloc
));
1437 if (sk
->sk_frag
.page
) {
1438 put_page(sk
->sk_frag
.page
);
1439 sk
->sk_frag
.page
= NULL
;
1442 if (sk
->sk_peer_cred
)
1443 put_cred(sk
->sk_peer_cred
);
1444 put_pid(sk
->sk_peer_pid
);
1445 if (likely(sk
->sk_net_refcnt
))
1446 put_net(sock_net(sk
));
1447 sk_prot_free(sk
->sk_prot_creator
, sk
);
1450 void sk_destruct(struct sock
*sk
)
1452 if (sock_flag(sk
, SOCK_RCU_FREE
))
1453 call_rcu(&sk
->sk_rcu
, __sk_destruct
);
1455 __sk_destruct(&sk
->sk_rcu
);
1458 static void __sk_free(struct sock
*sk
)
1460 if (unlikely(sk
->sk_net_refcnt
&& sock_diag_has_destroy_listeners(sk
)))
1461 sock_diag_broadcast_destroy(sk
);
1466 void sk_free(struct sock
*sk
)
1469 * We subtract one from sk_wmem_alloc and can know if
1470 * some packets are still in some tx queue.
1471 * If not null, sock_wfree() will call __sk_free(sk) later
1473 if (atomic_dec_and_test(&sk
->sk_wmem_alloc
))
1476 EXPORT_SYMBOL(sk_free
);
1479 * sk_clone_lock - clone a socket, and lock its clone
1480 * @sk: the socket to clone
1481 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1483 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1485 struct sock
*sk_clone_lock(const struct sock
*sk
, const gfp_t priority
)
1488 bool is_charged
= true;
1490 newsk
= sk_prot_alloc(sk
->sk_prot
, priority
, sk
->sk_family
);
1491 if (newsk
!= NULL
) {
1492 struct sk_filter
*filter
;
1494 sock_copy(newsk
, sk
);
1496 newsk
->sk_prot_creator
= sk
->sk_prot
;
1499 if (likely(newsk
->sk_net_refcnt
))
1500 get_net(sock_net(newsk
));
1501 sk_node_init(&newsk
->sk_node
);
1502 sock_lock_init(newsk
);
1503 bh_lock_sock(newsk
);
1504 newsk
->sk_backlog
.head
= newsk
->sk_backlog
.tail
= NULL
;
1505 newsk
->sk_backlog
.len
= 0;
1507 atomic_set(&newsk
->sk_rmem_alloc
, 0);
1509 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1511 atomic_set(&newsk
->sk_wmem_alloc
, 1);
1512 atomic_set(&newsk
->sk_omem_alloc
, 0);
1513 skb_queue_head_init(&newsk
->sk_receive_queue
);
1514 skb_queue_head_init(&newsk
->sk_write_queue
);
1516 rwlock_init(&newsk
->sk_callback_lock
);
1517 lockdep_set_class_and_name(&newsk
->sk_callback_lock
,
1518 af_callback_keys
+ newsk
->sk_family
,
1519 af_family_clock_key_strings
[newsk
->sk_family
]);
1521 newsk
->sk_dst_cache
= NULL
;
1522 newsk
->sk_wmem_queued
= 0;
1523 newsk
->sk_forward_alloc
= 0;
1524 atomic_set(&newsk
->sk_drops
, 0);
1525 newsk
->sk_send_head
= NULL
;
1526 newsk
->sk_userlocks
= sk
->sk_userlocks
& ~SOCK_BINDPORT_LOCK
;
1528 sock_reset_flag(newsk
, SOCK_DONE
);
1529 cgroup_sk_alloc(&newsk
->sk_cgrp_data
);
1530 skb_queue_head_init(&newsk
->sk_error_queue
);
1532 filter
= rcu_dereference_protected(newsk
->sk_filter
, 1);
1534 /* though it's an empty new sock, the charging may fail
1535 * if sysctl_optmem_max was changed between creation of
1536 * original socket and cloning
1538 is_charged
= sk_filter_charge(newsk
, filter
);
1540 if (unlikely(!is_charged
|| xfrm_sk_clone_policy(newsk
, sk
))) {
1541 /* We need to make sure that we don't uncharge the new
1542 * socket if we couldn't charge it in the first place
1543 * as otherwise we uncharge the parent's filter.
1546 RCU_INIT_POINTER(newsk
->sk_filter
, NULL
);
1547 /* It is still raw copy of parent, so invalidate
1548 * destructor and make plain sk_free() */
1549 newsk
->sk_destruct
= NULL
;
1550 bh_unlock_sock(newsk
);
1555 RCU_INIT_POINTER(newsk
->sk_reuseport_cb
, NULL
);
1558 newsk
->sk_err_soft
= 0;
1559 newsk
->sk_priority
= 0;
1560 newsk
->sk_incoming_cpu
= raw_smp_processor_id();
1561 atomic64_set(&newsk
->sk_cookie
, 0);
1563 mem_cgroup_sk_alloc(newsk
);
1565 * Before updating sk_refcnt, we must commit prior changes to memory
1566 * (Documentation/RCU/rculist_nulls.txt for details)
1569 atomic_set(&newsk
->sk_refcnt
, 2);
1572 * Increment the counter in the same struct proto as the master
1573 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1574 * is the same as sk->sk_prot->socks, as this field was copied
1577 * This _changes_ the previous behaviour, where
1578 * tcp_create_openreq_child always was incrementing the
1579 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1580 * to be taken into account in all callers. -acme
1582 sk_refcnt_debug_inc(newsk
);
1583 sk_set_socket(newsk
, NULL
);
1584 newsk
->sk_wq
= NULL
;
1586 if (newsk
->sk_prot
->sockets_allocated
)
1587 sk_sockets_allocated_inc(newsk
);
1589 if (sock_needs_netstamp(sk
) &&
1590 newsk
->sk_flags
& SK_FLAGS_TIMESTAMP
)
1591 net_enable_timestamp();
1596 EXPORT_SYMBOL_GPL(sk_clone_lock
);
1598 void sk_setup_caps(struct sock
*sk
, struct dst_entry
*dst
)
1602 sk_dst_set(sk
, dst
);
1603 sk
->sk_route_caps
= dst
->dev
->features
;
1604 if (sk
->sk_route_caps
& NETIF_F_GSO
)
1605 sk
->sk_route_caps
|= NETIF_F_GSO_SOFTWARE
;
1606 sk
->sk_route_caps
&= ~sk
->sk_route_nocaps
;
1607 if (sk_can_gso(sk
)) {
1608 if (dst
->header_len
) {
1609 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
1611 sk
->sk_route_caps
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
1612 sk
->sk_gso_max_size
= dst
->dev
->gso_max_size
;
1613 max_segs
= max_t(u32
, dst
->dev
->gso_max_segs
, 1);
1616 sk
->sk_gso_max_segs
= max_segs
;
1618 EXPORT_SYMBOL_GPL(sk_setup_caps
);
1621 * Simple resource managers for sockets.
1626 * Write buffer destructor automatically called from kfree_skb.
1628 void sock_wfree(struct sk_buff
*skb
)
1630 struct sock
*sk
= skb
->sk
;
1631 unsigned int len
= skb
->truesize
;
1633 if (!sock_flag(sk
, SOCK_USE_WRITE_QUEUE
)) {
1635 * Keep a reference on sk_wmem_alloc, this will be released
1636 * after sk_write_space() call
1638 atomic_sub(len
- 1, &sk
->sk_wmem_alloc
);
1639 sk
->sk_write_space(sk
);
1643 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1644 * could not do because of in-flight packets
1646 if (atomic_sub_and_test(len
, &sk
->sk_wmem_alloc
))
1649 EXPORT_SYMBOL(sock_wfree
);
1651 /* This variant of sock_wfree() is used by TCP,
1652 * since it sets SOCK_USE_WRITE_QUEUE.
1654 void __sock_wfree(struct sk_buff
*skb
)
1656 struct sock
*sk
= skb
->sk
;
1658 if (atomic_sub_and_test(skb
->truesize
, &sk
->sk_wmem_alloc
))
1662 void skb_set_owner_w(struct sk_buff
*skb
, struct sock
*sk
)
1667 if (unlikely(!sk_fullsock(sk
))) {
1668 skb
->destructor
= sock_edemux
;
1673 skb
->destructor
= sock_wfree
;
1674 skb_set_hash_from_sk(skb
, sk
);
1676 * We used to take a refcount on sk, but following operation
1677 * is enough to guarantee sk_free() wont free this sock until
1678 * all in-flight packets are completed
1680 atomic_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
1682 EXPORT_SYMBOL(skb_set_owner_w
);
1684 /* This helper is used by netem, as it can hold packets in its
1685 * delay queue. We want to allow the owner socket to send more
1686 * packets, as if they were already TX completed by a typical driver.
1687 * But we also want to keep skb->sk set because some packet schedulers
1688 * rely on it (sch_fq for example).
1690 void skb_orphan_partial(struct sk_buff
*skb
)
1692 if (skb_is_tcp_pure_ack(skb
))
1695 if (skb
->destructor
== sock_wfree
1697 || skb
->destructor
== tcp_wfree
1700 struct sock
*sk
= skb
->sk
;
1702 if (atomic_inc_not_zero(&sk
->sk_refcnt
)) {
1703 atomic_sub(skb
->truesize
, &sk
->sk_wmem_alloc
);
1704 skb
->destructor
= sock_efree
;
1710 EXPORT_SYMBOL(skb_orphan_partial
);
1713 * Read buffer destructor automatically called from kfree_skb.
1715 void sock_rfree(struct sk_buff
*skb
)
1717 struct sock
*sk
= skb
->sk
;
1718 unsigned int len
= skb
->truesize
;
1720 atomic_sub(len
, &sk
->sk_rmem_alloc
);
1721 sk_mem_uncharge(sk
, len
);
1723 EXPORT_SYMBOL(sock_rfree
);
1726 * Buffer destructor for skbs that are not used directly in read or write
1727 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1729 void sock_efree(struct sk_buff
*skb
)
1733 EXPORT_SYMBOL(sock_efree
);
1735 kuid_t
sock_i_uid(struct sock
*sk
)
1739 read_lock_bh(&sk
->sk_callback_lock
);
1740 uid
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_uid
: GLOBAL_ROOT_UID
;
1741 read_unlock_bh(&sk
->sk_callback_lock
);
1744 EXPORT_SYMBOL(sock_i_uid
);
1746 unsigned long sock_i_ino(struct sock
*sk
)
1750 read_lock_bh(&sk
->sk_callback_lock
);
1751 ino
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_ino
: 0;
1752 read_unlock_bh(&sk
->sk_callback_lock
);
1755 EXPORT_SYMBOL(sock_i_ino
);
1758 * Allocate a skb from the socket's send buffer.
1760 struct sk_buff
*sock_wmalloc(struct sock
*sk
, unsigned long size
, int force
,
1763 if (force
|| atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1764 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1766 skb_set_owner_w(skb
, sk
);
1772 EXPORT_SYMBOL(sock_wmalloc
);
1775 * Allocate a memory block from the socket's option memory buffer.
1777 void *sock_kmalloc(struct sock
*sk
, int size
, gfp_t priority
)
1779 if ((unsigned int)size
<= sysctl_optmem_max
&&
1780 atomic_read(&sk
->sk_omem_alloc
) + size
< sysctl_optmem_max
) {
1782 /* First do the add, to avoid the race if kmalloc
1785 atomic_add(size
, &sk
->sk_omem_alloc
);
1786 mem
= kmalloc(size
, priority
);
1789 atomic_sub(size
, &sk
->sk_omem_alloc
);
1793 EXPORT_SYMBOL(sock_kmalloc
);
1795 /* Free an option memory block. Note, we actually want the inline
1796 * here as this allows gcc to detect the nullify and fold away the
1797 * condition entirely.
1799 static inline void __sock_kfree_s(struct sock
*sk
, void *mem
, int size
,
1802 if (WARN_ON_ONCE(!mem
))
1808 atomic_sub(size
, &sk
->sk_omem_alloc
);
1811 void sock_kfree_s(struct sock
*sk
, void *mem
, int size
)
1813 __sock_kfree_s(sk
, mem
, size
, false);
1815 EXPORT_SYMBOL(sock_kfree_s
);
1817 void sock_kzfree_s(struct sock
*sk
, void *mem
, int size
)
1819 __sock_kfree_s(sk
, mem
, size
, true);
1821 EXPORT_SYMBOL(sock_kzfree_s
);
1823 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1824 I think, these locks should be removed for datagram sockets.
1826 static long sock_wait_for_wmem(struct sock
*sk
, long timeo
)
1830 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
1834 if (signal_pending(current
))
1836 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1837 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1838 if (atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
)
1840 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1844 timeo
= schedule_timeout(timeo
);
1846 finish_wait(sk_sleep(sk
), &wait
);
1852 * Generic send/receive buffer handlers
1855 struct sk_buff
*sock_alloc_send_pskb(struct sock
*sk
, unsigned long header_len
,
1856 unsigned long data_len
, int noblock
,
1857 int *errcode
, int max_page_order
)
1859 struct sk_buff
*skb
;
1863 timeo
= sock_sndtimeo(sk
, noblock
);
1865 err
= sock_error(sk
);
1870 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1873 if (sk_wmem_alloc_get(sk
) < sk
->sk_sndbuf
)
1876 sk_set_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
1877 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1881 if (signal_pending(current
))
1883 timeo
= sock_wait_for_wmem(sk
, timeo
);
1885 skb
= alloc_skb_with_frags(header_len
, data_len
, max_page_order
,
1886 errcode
, sk
->sk_allocation
);
1888 skb_set_owner_w(skb
, sk
);
1892 err
= sock_intr_errno(timeo
);
1897 EXPORT_SYMBOL(sock_alloc_send_pskb
);
1899 struct sk_buff
*sock_alloc_send_skb(struct sock
*sk
, unsigned long size
,
1900 int noblock
, int *errcode
)
1902 return sock_alloc_send_pskb(sk
, size
, 0, noblock
, errcode
, 0);
1904 EXPORT_SYMBOL(sock_alloc_send_skb
);
1906 int __sock_cmsg_send(struct sock
*sk
, struct msghdr
*msg
, struct cmsghdr
*cmsg
,
1907 struct sockcm_cookie
*sockc
)
1911 switch (cmsg
->cmsg_type
) {
1913 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
1915 if (cmsg
->cmsg_len
!= CMSG_LEN(sizeof(u32
)))
1917 sockc
->mark
= *(u32
*)CMSG_DATA(cmsg
);
1919 case SO_TIMESTAMPING
:
1920 if (cmsg
->cmsg_len
!= CMSG_LEN(sizeof(u32
)))
1923 tsflags
= *(u32
*)CMSG_DATA(cmsg
);
1924 if (tsflags
& ~SOF_TIMESTAMPING_TX_RECORD_MASK
)
1927 sockc
->tsflags
&= ~SOF_TIMESTAMPING_TX_RECORD_MASK
;
1928 sockc
->tsflags
|= tsflags
;
1930 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
1932 case SCM_CREDENTIALS
:
1939 EXPORT_SYMBOL(__sock_cmsg_send
);
1941 int sock_cmsg_send(struct sock
*sk
, struct msghdr
*msg
,
1942 struct sockcm_cookie
*sockc
)
1944 struct cmsghdr
*cmsg
;
1947 for_each_cmsghdr(cmsg
, msg
) {
1948 if (!CMSG_OK(msg
, cmsg
))
1950 if (cmsg
->cmsg_level
!= SOL_SOCKET
)
1952 ret
= __sock_cmsg_send(sk
, msg
, cmsg
, sockc
);
1958 EXPORT_SYMBOL(sock_cmsg_send
);
1960 /* On 32bit arches, an skb frag is limited to 2^15 */
1961 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1964 * skb_page_frag_refill - check that a page_frag contains enough room
1965 * @sz: minimum size of the fragment we want to get
1966 * @pfrag: pointer to page_frag
1967 * @gfp: priority for memory allocation
1969 * Note: While this allocator tries to use high order pages, there is
1970 * no guarantee that allocations succeed. Therefore, @sz MUST be
1971 * less or equal than PAGE_SIZE.
1973 bool skb_page_frag_refill(unsigned int sz
, struct page_frag
*pfrag
, gfp_t gfp
)
1976 if (page_ref_count(pfrag
->page
) == 1) {
1980 if (pfrag
->offset
+ sz
<= pfrag
->size
)
1982 put_page(pfrag
->page
);
1986 if (SKB_FRAG_PAGE_ORDER
) {
1987 /* Avoid direct reclaim but allow kswapd to wake */
1988 pfrag
->page
= alloc_pages((gfp
& ~__GFP_DIRECT_RECLAIM
) |
1989 __GFP_COMP
| __GFP_NOWARN
|
1991 SKB_FRAG_PAGE_ORDER
);
1992 if (likely(pfrag
->page
)) {
1993 pfrag
->size
= PAGE_SIZE
<< SKB_FRAG_PAGE_ORDER
;
1997 pfrag
->page
= alloc_page(gfp
);
1998 if (likely(pfrag
->page
)) {
1999 pfrag
->size
= PAGE_SIZE
;
2004 EXPORT_SYMBOL(skb_page_frag_refill
);
2006 bool sk_page_frag_refill(struct sock
*sk
, struct page_frag
*pfrag
)
2008 if (likely(skb_page_frag_refill(32U, pfrag
, sk
->sk_allocation
)))
2011 sk_enter_memory_pressure(sk
);
2012 sk_stream_moderate_sndbuf(sk
);
2015 EXPORT_SYMBOL(sk_page_frag_refill
);
2017 static void __lock_sock(struct sock
*sk
)
2018 __releases(&sk
->sk_lock
.slock
)
2019 __acquires(&sk
->sk_lock
.slock
)
2024 prepare_to_wait_exclusive(&sk
->sk_lock
.wq
, &wait
,
2025 TASK_UNINTERRUPTIBLE
);
2026 spin_unlock_bh(&sk
->sk_lock
.slock
);
2028 spin_lock_bh(&sk
->sk_lock
.slock
);
2029 if (!sock_owned_by_user(sk
))
2032 finish_wait(&sk
->sk_lock
.wq
, &wait
);
2035 static void __release_sock(struct sock
*sk
)
2036 __releases(&sk
->sk_lock
.slock
)
2037 __acquires(&sk
->sk_lock
.slock
)
2039 struct sk_buff
*skb
, *next
;
2041 while ((skb
= sk
->sk_backlog
.head
) != NULL
) {
2042 sk
->sk_backlog
.head
= sk
->sk_backlog
.tail
= NULL
;
2044 spin_unlock_bh(&sk
->sk_lock
.slock
);
2049 WARN_ON_ONCE(skb_dst_is_noref(skb
));
2051 sk_backlog_rcv(sk
, skb
);
2056 } while (skb
!= NULL
);
2058 spin_lock_bh(&sk
->sk_lock
.slock
);
2062 * Doing the zeroing here guarantee we can not loop forever
2063 * while a wild producer attempts to flood us.
2065 sk
->sk_backlog
.len
= 0;
2068 void __sk_flush_backlog(struct sock
*sk
)
2070 spin_lock_bh(&sk
->sk_lock
.slock
);
2072 spin_unlock_bh(&sk
->sk_lock
.slock
);
2076 * sk_wait_data - wait for data to arrive at sk_receive_queue
2077 * @sk: sock to wait on
2078 * @timeo: for how long
2079 * @skb: last skb seen on sk_receive_queue
2081 * Now socket state including sk->sk_err is changed only under lock,
2082 * hence we may omit checks after joining wait queue.
2083 * We check receive queue before schedule() only as optimization;
2084 * it is very likely that release_sock() added new data.
2086 int sk_wait_data(struct sock
*sk
, long *timeo
, const struct sk_buff
*skb
)
2091 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
2092 sk_set_bit(SOCKWQ_ASYNC_WAITDATA
, sk
);
2093 rc
= sk_wait_event(sk
, timeo
, skb_peek_tail(&sk
->sk_receive_queue
) != skb
);
2094 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA
, sk
);
2095 finish_wait(sk_sleep(sk
), &wait
);
2098 EXPORT_SYMBOL(sk_wait_data
);
2101 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2103 * @size: memory size to allocate
2104 * @kind: allocation type
2106 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2107 * rmem allocation. This function assumes that protocols which have
2108 * memory_pressure use sk_wmem_queued as write buffer accounting.
2110 int __sk_mem_schedule(struct sock
*sk
, int size
, int kind
)
2112 struct proto
*prot
= sk
->sk_prot
;
2113 int amt
= sk_mem_pages(size
);
2116 sk
->sk_forward_alloc
+= amt
* SK_MEM_QUANTUM
;
2118 allocated
= sk_memory_allocated_add(sk
, amt
);
2120 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
&&
2121 !mem_cgroup_charge_skmem(sk
->sk_memcg
, amt
))
2122 goto suppress_allocation
;
2125 if (allocated
<= sk_prot_mem_limits(sk
, 0)) {
2126 sk_leave_memory_pressure(sk
);
2130 /* Under pressure. */
2131 if (allocated
> sk_prot_mem_limits(sk
, 1))
2132 sk_enter_memory_pressure(sk
);
2134 /* Over hard limit. */
2135 if (allocated
> sk_prot_mem_limits(sk
, 2))
2136 goto suppress_allocation
;
2138 /* guarantee minimum buffer size under pressure */
2139 if (kind
== SK_MEM_RECV
) {
2140 if (atomic_read(&sk
->sk_rmem_alloc
) < prot
->sysctl_rmem
[0])
2143 } else { /* SK_MEM_SEND */
2144 if (sk
->sk_type
== SOCK_STREAM
) {
2145 if (sk
->sk_wmem_queued
< prot
->sysctl_wmem
[0])
2147 } else if (atomic_read(&sk
->sk_wmem_alloc
) <
2148 prot
->sysctl_wmem
[0])
2152 if (sk_has_memory_pressure(sk
)) {
2155 if (!sk_under_memory_pressure(sk
))
2157 alloc
= sk_sockets_allocated_read_positive(sk
);
2158 if (sk_prot_mem_limits(sk
, 2) > alloc
*
2159 sk_mem_pages(sk
->sk_wmem_queued
+
2160 atomic_read(&sk
->sk_rmem_alloc
) +
2161 sk
->sk_forward_alloc
))
2165 suppress_allocation
:
2167 if (kind
== SK_MEM_SEND
&& sk
->sk_type
== SOCK_STREAM
) {
2168 sk_stream_moderate_sndbuf(sk
);
2170 /* Fail only if socket is _under_ its sndbuf.
2171 * In this case we cannot block, so that we have to fail.
2173 if (sk
->sk_wmem_queued
+ size
>= sk
->sk_sndbuf
)
2177 trace_sock_exceed_buf_limit(sk
, prot
, allocated
);
2179 /* Alas. Undo changes. */
2180 sk
->sk_forward_alloc
-= amt
* SK_MEM_QUANTUM
;
2182 sk_memory_allocated_sub(sk
, amt
);
2184 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
2185 mem_cgroup_uncharge_skmem(sk
->sk_memcg
, amt
);
2189 EXPORT_SYMBOL(__sk_mem_schedule
);
2192 * __sk_mem_reclaim - reclaim memory_allocated
2194 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2196 void __sk_mem_reclaim(struct sock
*sk
, int amount
)
2198 amount
>>= SK_MEM_QUANTUM_SHIFT
;
2199 sk_memory_allocated_sub(sk
, amount
);
2200 sk
->sk_forward_alloc
-= amount
<< SK_MEM_QUANTUM_SHIFT
;
2202 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
2203 mem_cgroup_uncharge_skmem(sk
->sk_memcg
, amount
);
2205 if (sk_under_memory_pressure(sk
) &&
2206 (sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)))
2207 sk_leave_memory_pressure(sk
);
2209 EXPORT_SYMBOL(__sk_mem_reclaim
);
2211 int sk_set_peek_off(struct sock
*sk
, int val
)
2216 sk
->sk_peek_off
= val
;
2219 EXPORT_SYMBOL_GPL(sk_set_peek_off
);
2222 * Set of default routines for initialising struct proto_ops when
2223 * the protocol does not support a particular function. In certain
2224 * cases where it makes no sense for a protocol to have a "do nothing"
2225 * function, some default processing is provided.
2228 int sock_no_bind(struct socket
*sock
, struct sockaddr
*saddr
, int len
)
2232 EXPORT_SYMBOL(sock_no_bind
);
2234 int sock_no_connect(struct socket
*sock
, struct sockaddr
*saddr
,
2239 EXPORT_SYMBOL(sock_no_connect
);
2241 int sock_no_socketpair(struct socket
*sock1
, struct socket
*sock2
)
2245 EXPORT_SYMBOL(sock_no_socketpair
);
2247 int sock_no_accept(struct socket
*sock
, struct socket
*newsock
, int flags
)
2251 EXPORT_SYMBOL(sock_no_accept
);
2253 int sock_no_getname(struct socket
*sock
, struct sockaddr
*saddr
,
2258 EXPORT_SYMBOL(sock_no_getname
);
2260 unsigned int sock_no_poll(struct file
*file
, struct socket
*sock
, poll_table
*pt
)
2264 EXPORT_SYMBOL(sock_no_poll
);
2266 int sock_no_ioctl(struct socket
*sock
, unsigned int cmd
, unsigned long arg
)
2270 EXPORT_SYMBOL(sock_no_ioctl
);
2272 int sock_no_listen(struct socket
*sock
, int backlog
)
2276 EXPORT_SYMBOL(sock_no_listen
);
2278 int sock_no_shutdown(struct socket
*sock
, int how
)
2282 EXPORT_SYMBOL(sock_no_shutdown
);
2284 int sock_no_setsockopt(struct socket
*sock
, int level
, int optname
,
2285 char __user
*optval
, unsigned int optlen
)
2289 EXPORT_SYMBOL(sock_no_setsockopt
);
2291 int sock_no_getsockopt(struct socket
*sock
, int level
, int optname
,
2292 char __user
*optval
, int __user
*optlen
)
2296 EXPORT_SYMBOL(sock_no_getsockopt
);
2298 int sock_no_sendmsg(struct socket
*sock
, struct msghdr
*m
, size_t len
)
2302 EXPORT_SYMBOL(sock_no_sendmsg
);
2304 int sock_no_recvmsg(struct socket
*sock
, struct msghdr
*m
, size_t len
,
2309 EXPORT_SYMBOL(sock_no_recvmsg
);
2311 int sock_no_mmap(struct file
*file
, struct socket
*sock
, struct vm_area_struct
*vma
)
2313 /* Mirror missing mmap method error code */
2316 EXPORT_SYMBOL(sock_no_mmap
);
2318 ssize_t
sock_no_sendpage(struct socket
*sock
, struct page
*page
, int offset
, size_t size
, int flags
)
2321 struct msghdr msg
= {.msg_flags
= flags
};
2323 char *kaddr
= kmap(page
);
2324 iov
.iov_base
= kaddr
+ offset
;
2326 res
= kernel_sendmsg(sock
, &msg
, &iov
, 1, size
);
2330 EXPORT_SYMBOL(sock_no_sendpage
);
2333 * Default Socket Callbacks
2336 static void sock_def_wakeup(struct sock
*sk
)
2338 struct socket_wq
*wq
;
2341 wq
= rcu_dereference(sk
->sk_wq
);
2342 if (skwq_has_sleeper(wq
))
2343 wake_up_interruptible_all(&wq
->wait
);
2347 static void sock_def_error_report(struct sock
*sk
)
2349 struct socket_wq
*wq
;
2352 wq
= rcu_dereference(sk
->sk_wq
);
2353 if (skwq_has_sleeper(wq
))
2354 wake_up_interruptible_poll(&wq
->wait
, POLLERR
);
2355 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_ERR
);
2359 static void sock_def_readable(struct sock
*sk
)
2361 struct socket_wq
*wq
;
2364 wq
= rcu_dereference(sk
->sk_wq
);
2365 if (skwq_has_sleeper(wq
))
2366 wake_up_interruptible_sync_poll(&wq
->wait
, POLLIN
| POLLPRI
|
2367 POLLRDNORM
| POLLRDBAND
);
2368 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
2372 static void sock_def_write_space(struct sock
*sk
)
2374 struct socket_wq
*wq
;
2378 /* Do not wake up a writer until he can make "significant"
2381 if ((atomic_read(&sk
->sk_wmem_alloc
) << 1) <= sk
->sk_sndbuf
) {
2382 wq
= rcu_dereference(sk
->sk_wq
);
2383 if (skwq_has_sleeper(wq
))
2384 wake_up_interruptible_sync_poll(&wq
->wait
, POLLOUT
|
2385 POLLWRNORM
| POLLWRBAND
);
2387 /* Should agree with poll, otherwise some programs break */
2388 if (sock_writeable(sk
))
2389 sk_wake_async(sk
, SOCK_WAKE_SPACE
, POLL_OUT
);
2395 static void sock_def_destruct(struct sock
*sk
)
2399 void sk_send_sigurg(struct sock
*sk
)
2401 if (sk
->sk_socket
&& sk
->sk_socket
->file
)
2402 if (send_sigurg(&sk
->sk_socket
->file
->f_owner
))
2403 sk_wake_async(sk
, SOCK_WAKE_URG
, POLL_PRI
);
2405 EXPORT_SYMBOL(sk_send_sigurg
);
2407 void sk_reset_timer(struct sock
*sk
, struct timer_list
* timer
,
2408 unsigned long expires
)
2410 if (!mod_timer(timer
, expires
))
2413 EXPORT_SYMBOL(sk_reset_timer
);
2415 void sk_stop_timer(struct sock
*sk
, struct timer_list
* timer
)
2417 if (del_timer(timer
))
2420 EXPORT_SYMBOL(sk_stop_timer
);
2422 void sock_init_data(struct socket
*sock
, struct sock
*sk
)
2424 skb_queue_head_init(&sk
->sk_receive_queue
);
2425 skb_queue_head_init(&sk
->sk_write_queue
);
2426 skb_queue_head_init(&sk
->sk_error_queue
);
2428 sk
->sk_send_head
= NULL
;
2430 init_timer(&sk
->sk_timer
);
2432 sk
->sk_allocation
= GFP_KERNEL
;
2433 sk
->sk_rcvbuf
= sysctl_rmem_default
;
2434 sk
->sk_sndbuf
= sysctl_wmem_default
;
2435 sk
->sk_state
= TCP_CLOSE
;
2436 sk_set_socket(sk
, sock
);
2438 sock_set_flag(sk
, SOCK_ZAPPED
);
2441 sk
->sk_type
= sock
->type
;
2442 sk
->sk_wq
= sock
->wq
;
2447 rwlock_init(&sk
->sk_callback_lock
);
2448 lockdep_set_class_and_name(&sk
->sk_callback_lock
,
2449 af_callback_keys
+ sk
->sk_family
,
2450 af_family_clock_key_strings
[sk
->sk_family
]);
2452 sk
->sk_state_change
= sock_def_wakeup
;
2453 sk
->sk_data_ready
= sock_def_readable
;
2454 sk
->sk_write_space
= sock_def_write_space
;
2455 sk
->sk_error_report
= sock_def_error_report
;
2456 sk
->sk_destruct
= sock_def_destruct
;
2458 sk
->sk_frag
.page
= NULL
;
2459 sk
->sk_frag
.offset
= 0;
2460 sk
->sk_peek_off
= -1;
2462 sk
->sk_peer_pid
= NULL
;
2463 sk
->sk_peer_cred
= NULL
;
2464 sk
->sk_write_pending
= 0;
2465 sk
->sk_rcvlowat
= 1;
2466 sk
->sk_rcvtimeo
= MAX_SCHEDULE_TIMEOUT
;
2467 sk
->sk_sndtimeo
= MAX_SCHEDULE_TIMEOUT
;
2469 sk
->sk_stamp
= ktime_set(-1L, 0);
2471 #ifdef CONFIG_NET_RX_BUSY_POLL
2473 sk
->sk_ll_usec
= sysctl_net_busy_read
;
2476 sk
->sk_max_pacing_rate
= ~0U;
2477 sk
->sk_pacing_rate
= ~0U;
2478 sk
->sk_incoming_cpu
= -1;
2480 * Before updating sk_refcnt, we must commit prior changes to memory
2481 * (Documentation/RCU/rculist_nulls.txt for details)
2484 atomic_set(&sk
->sk_refcnt
, 1);
2485 atomic_set(&sk
->sk_drops
, 0);
2487 EXPORT_SYMBOL(sock_init_data
);
2489 void lock_sock_nested(struct sock
*sk
, int subclass
)
2492 spin_lock_bh(&sk
->sk_lock
.slock
);
2493 if (sk
->sk_lock
.owned
)
2495 sk
->sk_lock
.owned
= 1;
2496 spin_unlock(&sk
->sk_lock
.slock
);
2498 * The sk_lock has mutex_lock() semantics here:
2500 mutex_acquire(&sk
->sk_lock
.dep_map
, subclass
, 0, _RET_IP_
);
2503 EXPORT_SYMBOL(lock_sock_nested
);
2505 void release_sock(struct sock
*sk
)
2507 spin_lock_bh(&sk
->sk_lock
.slock
);
2508 if (sk
->sk_backlog
.tail
)
2511 /* Warning : release_cb() might need to release sk ownership,
2512 * ie call sock_release_ownership(sk) before us.
2514 if (sk
->sk_prot
->release_cb
)
2515 sk
->sk_prot
->release_cb(sk
);
2517 sock_release_ownership(sk
);
2518 if (waitqueue_active(&sk
->sk_lock
.wq
))
2519 wake_up(&sk
->sk_lock
.wq
);
2520 spin_unlock_bh(&sk
->sk_lock
.slock
);
2522 EXPORT_SYMBOL(release_sock
);
2525 * lock_sock_fast - fast version of lock_sock
2528 * This version should be used for very small section, where process wont block
2529 * return false if fast path is taken
2530 * sk_lock.slock locked, owned = 0, BH disabled
2531 * return true if slow path is taken
2532 * sk_lock.slock unlocked, owned = 1, BH enabled
2534 bool lock_sock_fast(struct sock
*sk
)
2537 spin_lock_bh(&sk
->sk_lock
.slock
);
2539 if (!sk
->sk_lock
.owned
)
2541 * Note : We must disable BH
2546 sk
->sk_lock
.owned
= 1;
2547 spin_unlock(&sk
->sk_lock
.slock
);
2549 * The sk_lock has mutex_lock() semantics here:
2551 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 0, _RET_IP_
);
2555 EXPORT_SYMBOL(lock_sock_fast
);
2557 int sock_get_timestamp(struct sock
*sk
, struct timeval __user
*userstamp
)
2560 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2561 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2562 tv
= ktime_to_timeval(sk
->sk_stamp
);
2563 if (tv
.tv_sec
== -1)
2565 if (tv
.tv_sec
== 0) {
2566 sk
->sk_stamp
= ktime_get_real();
2567 tv
= ktime_to_timeval(sk
->sk_stamp
);
2569 return copy_to_user(userstamp
, &tv
, sizeof(tv
)) ? -EFAULT
: 0;
2571 EXPORT_SYMBOL(sock_get_timestamp
);
2573 int sock_get_timestampns(struct sock
*sk
, struct timespec __user
*userstamp
)
2576 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2577 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2578 ts
= ktime_to_timespec(sk
->sk_stamp
);
2579 if (ts
.tv_sec
== -1)
2581 if (ts
.tv_sec
== 0) {
2582 sk
->sk_stamp
= ktime_get_real();
2583 ts
= ktime_to_timespec(sk
->sk_stamp
);
2585 return copy_to_user(userstamp
, &ts
, sizeof(ts
)) ? -EFAULT
: 0;
2587 EXPORT_SYMBOL(sock_get_timestampns
);
2589 void sock_enable_timestamp(struct sock
*sk
, int flag
)
2591 if (!sock_flag(sk
, flag
)) {
2592 unsigned long previous_flags
= sk
->sk_flags
;
2594 sock_set_flag(sk
, flag
);
2596 * we just set one of the two flags which require net
2597 * time stamping, but time stamping might have been on
2598 * already because of the other one
2600 if (sock_needs_netstamp(sk
) &&
2601 !(previous_flags
& SK_FLAGS_TIMESTAMP
))
2602 net_enable_timestamp();
2606 int sock_recv_errqueue(struct sock
*sk
, struct msghdr
*msg
, int len
,
2607 int level
, int type
)
2609 struct sock_exterr_skb
*serr
;
2610 struct sk_buff
*skb
;
2614 skb
= sock_dequeue_err_skb(sk
);
2620 msg
->msg_flags
|= MSG_TRUNC
;
2623 err
= skb_copy_datagram_msg(skb
, 0, msg
, copied
);
2627 sock_recv_timestamp(msg
, sk
, skb
);
2629 serr
= SKB_EXT_ERR(skb
);
2630 put_cmsg(msg
, level
, type
, sizeof(serr
->ee
), &serr
->ee
);
2632 msg
->msg_flags
|= MSG_ERRQUEUE
;
2640 EXPORT_SYMBOL(sock_recv_errqueue
);
2643 * Get a socket option on an socket.
2645 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2646 * asynchronous errors should be reported by getsockopt. We assume
2647 * this means if you specify SO_ERROR (otherwise whats the point of it).
2649 int sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2650 char __user
*optval
, int __user
*optlen
)
2652 struct sock
*sk
= sock
->sk
;
2654 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2656 EXPORT_SYMBOL(sock_common_getsockopt
);
2658 #ifdef CONFIG_COMPAT
2659 int compat_sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2660 char __user
*optval
, int __user
*optlen
)
2662 struct sock
*sk
= sock
->sk
;
2664 if (sk
->sk_prot
->compat_getsockopt
!= NULL
)
2665 return sk
->sk_prot
->compat_getsockopt(sk
, level
, optname
,
2667 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2669 EXPORT_SYMBOL(compat_sock_common_getsockopt
);
2672 int sock_common_recvmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
,
2675 struct sock
*sk
= sock
->sk
;
2679 err
= sk
->sk_prot
->recvmsg(sk
, msg
, size
, flags
& MSG_DONTWAIT
,
2680 flags
& ~MSG_DONTWAIT
, &addr_len
);
2682 msg
->msg_namelen
= addr_len
;
2685 EXPORT_SYMBOL(sock_common_recvmsg
);
2688 * Set socket options on an inet socket.
2690 int sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2691 char __user
*optval
, unsigned int optlen
)
2693 struct sock
*sk
= sock
->sk
;
2695 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2697 EXPORT_SYMBOL(sock_common_setsockopt
);
2699 #ifdef CONFIG_COMPAT
2700 int compat_sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2701 char __user
*optval
, unsigned int optlen
)
2703 struct sock
*sk
= sock
->sk
;
2705 if (sk
->sk_prot
->compat_setsockopt
!= NULL
)
2706 return sk
->sk_prot
->compat_setsockopt(sk
, level
, optname
,
2708 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2710 EXPORT_SYMBOL(compat_sock_common_setsockopt
);
2713 void sk_common_release(struct sock
*sk
)
2715 if (sk
->sk_prot
->destroy
)
2716 sk
->sk_prot
->destroy(sk
);
2719 * Observation: when sock_common_release is called, processes have
2720 * no access to socket. But net still has.
2721 * Step one, detach it from networking:
2723 * A. Remove from hash tables.
2726 sk
->sk_prot
->unhash(sk
);
2729 * In this point socket cannot receive new packets, but it is possible
2730 * that some packets are in flight because some CPU runs receiver and
2731 * did hash table lookup before we unhashed socket. They will achieve
2732 * receive queue and will be purged by socket destructor.
2734 * Also we still have packets pending on receive queue and probably,
2735 * our own packets waiting in device queues. sock_destroy will drain
2736 * receive queue, but transmitted packets will delay socket destruction
2737 * until the last reference will be released.
2742 xfrm_sk_free_policy(sk
);
2744 sk_refcnt_debug_release(sk
);
2748 EXPORT_SYMBOL(sk_common_release
);
2750 #ifdef CONFIG_PROC_FS
2751 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2753 int val
[PROTO_INUSE_NR
];
2756 static DECLARE_BITMAP(proto_inuse_idx
, PROTO_INUSE_NR
);
2758 #ifdef CONFIG_NET_NS
2759 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2761 __this_cpu_add(net
->core
.inuse
->val
[prot
->inuse_idx
], val
);
2763 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2765 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2767 int cpu
, idx
= prot
->inuse_idx
;
2770 for_each_possible_cpu(cpu
)
2771 res
+= per_cpu_ptr(net
->core
.inuse
, cpu
)->val
[idx
];
2773 return res
>= 0 ? res
: 0;
2775 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2777 static int __net_init
sock_inuse_init_net(struct net
*net
)
2779 net
->core
.inuse
= alloc_percpu(struct prot_inuse
);
2780 return net
->core
.inuse
? 0 : -ENOMEM
;
2783 static void __net_exit
sock_inuse_exit_net(struct net
*net
)
2785 free_percpu(net
->core
.inuse
);
2788 static struct pernet_operations net_inuse_ops
= {
2789 .init
= sock_inuse_init_net
,
2790 .exit
= sock_inuse_exit_net
,
2793 static __init
int net_inuse_init(void)
2795 if (register_pernet_subsys(&net_inuse_ops
))
2796 panic("Cannot initialize net inuse counters");
2801 core_initcall(net_inuse_init
);
2803 static DEFINE_PER_CPU(struct prot_inuse
, prot_inuse
);
2805 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2807 __this_cpu_add(prot_inuse
.val
[prot
->inuse_idx
], val
);
2809 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2811 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2813 int cpu
, idx
= prot
->inuse_idx
;
2816 for_each_possible_cpu(cpu
)
2817 res
+= per_cpu(prot_inuse
, cpu
).val
[idx
];
2819 return res
>= 0 ? res
: 0;
2821 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2824 static void assign_proto_idx(struct proto
*prot
)
2826 prot
->inuse_idx
= find_first_zero_bit(proto_inuse_idx
, PROTO_INUSE_NR
);
2828 if (unlikely(prot
->inuse_idx
== PROTO_INUSE_NR
- 1)) {
2829 pr_err("PROTO_INUSE_NR exhausted\n");
2833 set_bit(prot
->inuse_idx
, proto_inuse_idx
);
2836 static void release_proto_idx(struct proto
*prot
)
2838 if (prot
->inuse_idx
!= PROTO_INUSE_NR
- 1)
2839 clear_bit(prot
->inuse_idx
, proto_inuse_idx
);
2842 static inline void assign_proto_idx(struct proto
*prot
)
2846 static inline void release_proto_idx(struct proto
*prot
)
2851 static void req_prot_cleanup(struct request_sock_ops
*rsk_prot
)
2855 kfree(rsk_prot
->slab_name
);
2856 rsk_prot
->slab_name
= NULL
;
2857 kmem_cache_destroy(rsk_prot
->slab
);
2858 rsk_prot
->slab
= NULL
;
2861 static int req_prot_init(const struct proto
*prot
)
2863 struct request_sock_ops
*rsk_prot
= prot
->rsk_prot
;
2868 rsk_prot
->slab_name
= kasprintf(GFP_KERNEL
, "request_sock_%s",
2870 if (!rsk_prot
->slab_name
)
2873 rsk_prot
->slab
= kmem_cache_create(rsk_prot
->slab_name
,
2874 rsk_prot
->obj_size
, 0,
2875 prot
->slab_flags
, NULL
);
2877 if (!rsk_prot
->slab
) {
2878 pr_crit("%s: Can't create request sock SLAB cache!\n",
2885 int proto_register(struct proto
*prot
, int alloc_slab
)
2888 prot
->slab
= kmem_cache_create(prot
->name
, prot
->obj_size
, 0,
2889 SLAB_HWCACHE_ALIGN
| prot
->slab_flags
,
2892 if (prot
->slab
== NULL
) {
2893 pr_crit("%s: Can't create sock SLAB cache!\n",
2898 if (req_prot_init(prot
))
2899 goto out_free_request_sock_slab
;
2901 if (prot
->twsk_prot
!= NULL
) {
2902 prot
->twsk_prot
->twsk_slab_name
= kasprintf(GFP_KERNEL
, "tw_sock_%s", prot
->name
);
2904 if (prot
->twsk_prot
->twsk_slab_name
== NULL
)
2905 goto out_free_request_sock_slab
;
2907 prot
->twsk_prot
->twsk_slab
=
2908 kmem_cache_create(prot
->twsk_prot
->twsk_slab_name
,
2909 prot
->twsk_prot
->twsk_obj_size
,
2913 if (prot
->twsk_prot
->twsk_slab
== NULL
)
2914 goto out_free_timewait_sock_slab_name
;
2918 mutex_lock(&proto_list_mutex
);
2919 list_add(&prot
->node
, &proto_list
);
2920 assign_proto_idx(prot
);
2921 mutex_unlock(&proto_list_mutex
);
2924 out_free_timewait_sock_slab_name
:
2925 kfree(prot
->twsk_prot
->twsk_slab_name
);
2926 out_free_request_sock_slab
:
2927 req_prot_cleanup(prot
->rsk_prot
);
2929 kmem_cache_destroy(prot
->slab
);
2934 EXPORT_SYMBOL(proto_register
);
2936 void proto_unregister(struct proto
*prot
)
2938 mutex_lock(&proto_list_mutex
);
2939 release_proto_idx(prot
);
2940 list_del(&prot
->node
);
2941 mutex_unlock(&proto_list_mutex
);
2943 kmem_cache_destroy(prot
->slab
);
2946 req_prot_cleanup(prot
->rsk_prot
);
2948 if (prot
->twsk_prot
!= NULL
&& prot
->twsk_prot
->twsk_slab
!= NULL
) {
2949 kmem_cache_destroy(prot
->twsk_prot
->twsk_slab
);
2950 kfree(prot
->twsk_prot
->twsk_slab_name
);
2951 prot
->twsk_prot
->twsk_slab
= NULL
;
2954 EXPORT_SYMBOL(proto_unregister
);
2956 #ifdef CONFIG_PROC_FS
2957 static void *proto_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2958 __acquires(proto_list_mutex
)
2960 mutex_lock(&proto_list_mutex
);
2961 return seq_list_start_head(&proto_list
, *pos
);
2964 static void *proto_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2966 return seq_list_next(v
, &proto_list
, pos
);
2969 static void proto_seq_stop(struct seq_file
*seq
, void *v
)
2970 __releases(proto_list_mutex
)
2972 mutex_unlock(&proto_list_mutex
);
2975 static char proto_method_implemented(const void *method
)
2977 return method
== NULL
? 'n' : 'y';
2979 static long sock_prot_memory_allocated(struct proto
*proto
)
2981 return proto
->memory_allocated
!= NULL
? proto_memory_allocated(proto
) : -1L;
2984 static char *sock_prot_memory_pressure(struct proto
*proto
)
2986 return proto
->memory_pressure
!= NULL
?
2987 proto_memory_pressure(proto
) ? "yes" : "no" : "NI";
2990 static void proto_seq_printf(struct seq_file
*seq
, struct proto
*proto
)
2993 seq_printf(seq
, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2994 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2997 sock_prot_inuse_get(seq_file_net(seq
), proto
),
2998 sock_prot_memory_allocated(proto
),
2999 sock_prot_memory_pressure(proto
),
3001 proto
->slab
== NULL
? "no" : "yes",
3002 module_name(proto
->owner
),
3003 proto_method_implemented(proto
->close
),
3004 proto_method_implemented(proto
->connect
),
3005 proto_method_implemented(proto
->disconnect
),
3006 proto_method_implemented(proto
->accept
),
3007 proto_method_implemented(proto
->ioctl
),
3008 proto_method_implemented(proto
->init
),
3009 proto_method_implemented(proto
->destroy
),
3010 proto_method_implemented(proto
->shutdown
),
3011 proto_method_implemented(proto
->setsockopt
),
3012 proto_method_implemented(proto
->getsockopt
),
3013 proto_method_implemented(proto
->sendmsg
),
3014 proto_method_implemented(proto
->recvmsg
),
3015 proto_method_implemented(proto
->sendpage
),
3016 proto_method_implemented(proto
->bind
),
3017 proto_method_implemented(proto
->backlog_rcv
),
3018 proto_method_implemented(proto
->hash
),
3019 proto_method_implemented(proto
->unhash
),
3020 proto_method_implemented(proto
->get_port
),
3021 proto_method_implemented(proto
->enter_memory_pressure
));
3024 static int proto_seq_show(struct seq_file
*seq
, void *v
)
3026 if (v
== &proto_list
)
3027 seq_printf(seq
, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3036 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3038 proto_seq_printf(seq
, list_entry(v
, struct proto
, node
));
3042 static const struct seq_operations proto_seq_ops
= {
3043 .start
= proto_seq_start
,
3044 .next
= proto_seq_next
,
3045 .stop
= proto_seq_stop
,
3046 .show
= proto_seq_show
,
3049 static int proto_seq_open(struct inode
*inode
, struct file
*file
)
3051 return seq_open_net(inode
, file
, &proto_seq_ops
,
3052 sizeof(struct seq_net_private
));
3055 static const struct file_operations proto_seq_fops
= {
3056 .owner
= THIS_MODULE
,
3057 .open
= proto_seq_open
,
3059 .llseek
= seq_lseek
,
3060 .release
= seq_release_net
,
3063 static __net_init
int proto_init_net(struct net
*net
)
3065 if (!proc_create("protocols", S_IRUGO
, net
->proc_net
, &proto_seq_fops
))
3071 static __net_exit
void proto_exit_net(struct net
*net
)
3073 remove_proc_entry("protocols", net
->proc_net
);
3077 static __net_initdata
struct pernet_operations proto_net_ops
= {
3078 .init
= proto_init_net
,
3079 .exit
= proto_exit_net
,
3082 static int __init
proto_init(void)
3084 return register_pernet_subsys(&proto_net_ops
);
3087 subsys_initcall(proto_init
);
3089 #endif /* PROC_FS */