1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/blkdev.h>
8 #include <linux/scatterlist.h>
9 #include <linux/swap.h>
10 #include <linux/radix-tree.h>
11 #include <linux/writeback.h>
12 #include <linux/buffer_head.h>
13 #include <linux/workqueue.h>
14 #include <linux/kthread.h>
15 #include <linux/slab.h>
16 #include <linux/migrate.h>
17 #include <linux/ratelimit.h>
18 #include <linux/uuid.h>
19 #include <linux/semaphore.h>
20 #include <linux/error-injection.h>
21 #include <linux/crc32c.h>
22 #include <asm/unaligned.h>
25 #include "transaction.h"
26 #include "btrfs_inode.h"
28 #include "print-tree.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
45 #include <asm/cpufeature.h>
48 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
49 BTRFS_HEADER_FLAG_RELOC |\
50 BTRFS_SUPER_FLAG_ERROR |\
51 BTRFS_SUPER_FLAG_SEEDING |\
52 BTRFS_SUPER_FLAG_METADUMP |\
53 BTRFS_SUPER_FLAG_METADUMP_V2)
55 static const struct extent_io_ops btree_extent_io_ops
;
56 static void end_workqueue_fn(struct btrfs_work
*work
);
57 static void free_fs_root(struct btrfs_root
*root
);
58 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
);
59 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
60 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
61 struct btrfs_fs_info
*fs_info
);
62 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
63 static int btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
64 struct extent_io_tree
*dirty_pages
,
66 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
67 struct extent_io_tree
*pinned_extents
);
68 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
);
69 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
);
72 * btrfs_end_io_wq structs are used to do processing in task context when an IO
73 * is complete. This is used during reads to verify checksums, and it is used
74 * by writes to insert metadata for new file extents after IO is complete.
76 struct btrfs_end_io_wq
{
80 struct btrfs_fs_info
*info
;
82 enum btrfs_wq_endio_type metadata
;
83 struct btrfs_work work
;
86 static struct kmem_cache
*btrfs_end_io_wq_cache
;
88 int __init
btrfs_end_io_wq_init(void)
90 btrfs_end_io_wq_cache
= kmem_cache_create("btrfs_end_io_wq",
91 sizeof(struct btrfs_end_io_wq
),
95 if (!btrfs_end_io_wq_cache
)
100 void __cold
btrfs_end_io_wq_exit(void)
102 kmem_cache_destroy(btrfs_end_io_wq_cache
);
106 * async submit bios are used to offload expensive checksumming
107 * onto the worker threads. They checksum file and metadata bios
108 * just before they are sent down the IO stack.
110 struct async_submit_bio
{
112 struct btrfs_fs_info
*fs_info
;
114 extent_submit_bio_start_t
*submit_bio_start
;
115 extent_submit_bio_done_t
*submit_bio_done
;
117 unsigned long bio_flags
;
119 * bio_offset is optional, can be used if the pages in the bio
120 * can't tell us where in the file the bio should go
123 struct btrfs_work work
;
128 * Lockdep class keys for extent_buffer->lock's in this root. For a given
129 * eb, the lockdep key is determined by the btrfs_root it belongs to and
130 * the level the eb occupies in the tree.
132 * Different roots are used for different purposes and may nest inside each
133 * other and they require separate keysets. As lockdep keys should be
134 * static, assign keysets according to the purpose of the root as indicated
135 * by btrfs_root->objectid. This ensures that all special purpose roots
136 * have separate keysets.
138 * Lock-nesting across peer nodes is always done with the immediate parent
139 * node locked thus preventing deadlock. As lockdep doesn't know this, use
140 * subclass to avoid triggering lockdep warning in such cases.
142 * The key is set by the readpage_end_io_hook after the buffer has passed
143 * csum validation but before the pages are unlocked. It is also set by
144 * btrfs_init_new_buffer on freshly allocated blocks.
146 * We also add a check to make sure the highest level of the tree is the
147 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
148 * needs update as well.
150 #ifdef CONFIG_DEBUG_LOCK_ALLOC
151 # if BTRFS_MAX_LEVEL != 8
155 static struct btrfs_lockdep_keyset
{
156 u64 id
; /* root objectid */
157 const char *name_stem
; /* lock name stem */
158 char names
[BTRFS_MAX_LEVEL
+ 1][20];
159 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
160 } btrfs_lockdep_keysets
[] = {
161 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
162 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
163 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
164 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
165 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
166 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
167 { .id
= BTRFS_QUOTA_TREE_OBJECTID
, .name_stem
= "quota" },
168 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
169 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
170 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
171 { .id
= BTRFS_UUID_TREE_OBJECTID
, .name_stem
= "uuid" },
172 { .id
= BTRFS_FREE_SPACE_TREE_OBJECTID
, .name_stem
= "free-space" },
173 { .id
= 0, .name_stem
= "tree" },
176 void __init
btrfs_init_lockdep(void)
180 /* initialize lockdep class names */
181 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
182 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
184 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
185 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
186 "btrfs-%s-%02d", ks
->name_stem
, j
);
190 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
193 struct btrfs_lockdep_keyset
*ks
;
195 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
197 /* find the matching keyset, id 0 is the default entry */
198 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
199 if (ks
->id
== objectid
)
202 lockdep_set_class_and_name(&eb
->lock
,
203 &ks
->keys
[level
], ks
->names
[level
]);
209 * extents on the btree inode are pretty simple, there's one extent
210 * that covers the entire device
212 struct extent_map
*btree_get_extent(struct btrfs_inode
*inode
,
213 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
216 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
217 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
218 struct extent_map
*em
;
221 read_lock(&em_tree
->lock
);
222 em
= lookup_extent_mapping(em_tree
, start
, len
);
224 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
225 read_unlock(&em_tree
->lock
);
228 read_unlock(&em_tree
->lock
);
230 em
= alloc_extent_map();
232 em
= ERR_PTR(-ENOMEM
);
237 em
->block_len
= (u64
)-1;
239 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
241 write_lock(&em_tree
->lock
);
242 ret
= add_extent_mapping(em_tree
, em
, 0);
243 if (ret
== -EEXIST
) {
245 em
= lookup_extent_mapping(em_tree
, start
, len
);
252 write_unlock(&em_tree
->lock
);
258 u32
btrfs_csum_data(const char *data
, u32 seed
, size_t len
)
260 return crc32c(seed
, data
, len
);
263 void btrfs_csum_final(u32 crc
, u8
*result
)
265 put_unaligned_le32(~crc
, result
);
269 * compute the csum for a btree block, and either verify it or write it
270 * into the csum field of the block.
272 static int csum_tree_block(struct btrfs_fs_info
*fs_info
,
273 struct extent_buffer
*buf
,
276 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
277 char result
[BTRFS_CSUM_SIZE
];
279 unsigned long cur_len
;
280 unsigned long offset
= BTRFS_CSUM_SIZE
;
282 unsigned long map_start
;
283 unsigned long map_len
;
287 len
= buf
->len
- offset
;
289 err
= map_private_extent_buffer(buf
, offset
, 32,
290 &kaddr
, &map_start
, &map_len
);
293 cur_len
= min(len
, map_len
- (offset
- map_start
));
294 crc
= btrfs_csum_data(kaddr
+ offset
- map_start
,
299 memset(result
, 0, BTRFS_CSUM_SIZE
);
301 btrfs_csum_final(crc
, result
);
304 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
307 memcpy(&found
, result
, csum_size
);
309 read_extent_buffer(buf
, &val
, 0, csum_size
);
310 btrfs_warn_rl(fs_info
,
311 "%s checksum verify failed on %llu wanted %X found %X level %d",
312 fs_info
->sb
->s_id
, buf
->start
,
313 val
, found
, btrfs_header_level(buf
));
317 write_extent_buffer(buf
, result
, 0, csum_size
);
324 * we can't consider a given block up to date unless the transid of the
325 * block matches the transid in the parent node's pointer. This is how we
326 * detect blocks that either didn't get written at all or got written
327 * in the wrong place.
329 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
330 struct extent_buffer
*eb
, u64 parent_transid
,
333 struct extent_state
*cached_state
= NULL
;
335 bool need_lock
= (current
->journal_info
== BTRFS_SEND_TRANS_STUB
);
337 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
344 btrfs_tree_read_lock(eb
);
345 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
348 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
350 if (extent_buffer_uptodate(eb
) &&
351 btrfs_header_generation(eb
) == parent_transid
) {
355 btrfs_err_rl(eb
->fs_info
,
356 "parent transid verify failed on %llu wanted %llu found %llu",
358 parent_transid
, btrfs_header_generation(eb
));
362 * Things reading via commit roots that don't have normal protection,
363 * like send, can have a really old block in cache that may point at a
364 * block that has been freed and re-allocated. So don't clear uptodate
365 * if we find an eb that is under IO (dirty/writeback) because we could
366 * end up reading in the stale data and then writing it back out and
367 * making everybody very sad.
369 if (!extent_buffer_under_io(eb
))
370 clear_extent_buffer_uptodate(eb
);
372 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
375 btrfs_tree_read_unlock_blocking(eb
);
380 * Return 0 if the superblock checksum type matches the checksum value of that
381 * algorithm. Pass the raw disk superblock data.
383 static int btrfs_check_super_csum(struct btrfs_fs_info
*fs_info
,
386 struct btrfs_super_block
*disk_sb
=
387 (struct btrfs_super_block
*)raw_disk_sb
;
388 u16 csum_type
= btrfs_super_csum_type(disk_sb
);
391 if (csum_type
== BTRFS_CSUM_TYPE_CRC32
) {
393 char result
[sizeof(crc
)];
396 * The super_block structure does not span the whole
397 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
398 * is filled with zeros and is included in the checksum.
400 crc
= btrfs_csum_data(raw_disk_sb
+ BTRFS_CSUM_SIZE
,
401 crc
, BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
402 btrfs_csum_final(crc
, result
);
404 if (memcmp(raw_disk_sb
, result
, sizeof(result
)))
408 if (csum_type
>= ARRAY_SIZE(btrfs_csum_sizes
)) {
409 btrfs_err(fs_info
, "unsupported checksum algorithm %u",
417 static int verify_level_key(struct btrfs_fs_info
*fs_info
,
418 struct extent_buffer
*eb
, int level
,
419 struct btrfs_key
*first_key
)
422 struct btrfs_key found_key
;
425 found_level
= btrfs_header_level(eb
);
426 if (found_level
!= level
) {
427 #ifdef CONFIG_BTRFS_DEBUG
430 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
431 eb
->start
, level
, found_level
);
440 * For live tree block (new tree blocks in current transaction),
441 * we need proper lock context to avoid race, which is impossible here.
442 * So we only checks tree blocks which is read from disk, whose
443 * generation <= fs_info->last_trans_committed.
445 if (btrfs_header_generation(eb
) > fs_info
->last_trans_committed
)
448 btrfs_node_key_to_cpu(eb
, &found_key
, 0);
450 btrfs_item_key_to_cpu(eb
, &found_key
, 0);
451 ret
= btrfs_comp_cpu_keys(first_key
, &found_key
);
453 #ifdef CONFIG_BTRFS_DEBUG
457 "tree first key mismatch detected, bytenr=%llu key expected=(%llu, %u, %llu) has=(%llu, %u, %llu)",
458 eb
->start
, first_key
->objectid
, first_key
->type
,
459 first_key
->offset
, found_key
.objectid
,
460 found_key
.type
, found_key
.offset
);
467 * helper to read a given tree block, doing retries as required when
468 * the checksums don't match and we have alternate mirrors to try.
470 * @parent_transid: expected transid, skip check if 0
471 * @level: expected level, mandatory check
472 * @first_key: expected key of first slot, skip check if NULL
474 static int btree_read_extent_buffer_pages(struct btrfs_fs_info
*fs_info
,
475 struct extent_buffer
*eb
,
476 u64 parent_transid
, int level
,
477 struct btrfs_key
*first_key
)
479 struct extent_io_tree
*io_tree
;
484 int failed_mirror
= 0;
486 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
487 io_tree
= &BTRFS_I(fs_info
->btree_inode
)->io_tree
;
489 ret
= read_extent_buffer_pages(io_tree
, eb
, WAIT_COMPLETE
,
492 if (verify_parent_transid(io_tree
, eb
,
495 else if (verify_level_key(fs_info
, eb
, level
,
503 * This buffer's crc is fine, but its contents are corrupted, so
504 * there is no reason to read the other copies, they won't be
507 if (test_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
) ||
511 num_copies
= btrfs_num_copies(fs_info
,
516 if (!failed_mirror
) {
518 failed_mirror
= eb
->read_mirror
;
522 if (mirror_num
== failed_mirror
)
525 if (mirror_num
> num_copies
)
529 if (failed
&& !ret
&& failed_mirror
)
530 repair_eb_io_failure(fs_info
, eb
, failed_mirror
);
536 * checksum a dirty tree block before IO. This has extra checks to make sure
537 * we only fill in the checksum field in the first page of a multi-page block
540 static int csum_dirty_buffer(struct btrfs_fs_info
*fs_info
, struct page
*page
)
542 u64 start
= page_offset(page
);
544 struct extent_buffer
*eb
;
546 eb
= (struct extent_buffer
*)page
->private;
547 if (page
!= eb
->pages
[0])
550 found_start
= btrfs_header_bytenr(eb
);
552 * Please do not consolidate these warnings into a single if.
553 * It is useful to know what went wrong.
555 if (WARN_ON(found_start
!= start
))
557 if (WARN_ON(!PageUptodate(page
)))
560 ASSERT(memcmp_extent_buffer(eb
, fs_info
->fsid
,
561 btrfs_header_fsid(), BTRFS_FSID_SIZE
) == 0);
563 return csum_tree_block(fs_info
, eb
, 0);
566 static int check_tree_block_fsid(struct btrfs_fs_info
*fs_info
,
567 struct extent_buffer
*eb
)
569 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
570 u8 fsid
[BTRFS_FSID_SIZE
];
573 read_extent_buffer(eb
, fsid
, btrfs_header_fsid(), BTRFS_FSID_SIZE
);
575 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
579 fs_devices
= fs_devices
->seed
;
584 static int btree_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
585 u64 phy_offset
, struct page
*page
,
586 u64 start
, u64 end
, int mirror
)
590 struct extent_buffer
*eb
;
591 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
592 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
599 eb
= (struct extent_buffer
*)page
->private;
601 /* the pending IO might have been the only thing that kept this buffer
602 * in memory. Make sure we have a ref for all this other checks
604 extent_buffer_get(eb
);
606 reads_done
= atomic_dec_and_test(&eb
->io_pages
);
610 eb
->read_mirror
= mirror
;
611 if (test_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
)) {
616 found_start
= btrfs_header_bytenr(eb
);
617 if (found_start
!= eb
->start
) {
618 btrfs_err_rl(fs_info
, "bad tree block start %llu %llu",
619 found_start
, eb
->start
);
623 if (check_tree_block_fsid(fs_info
, eb
)) {
624 btrfs_err_rl(fs_info
, "bad fsid on block %llu",
629 found_level
= btrfs_header_level(eb
);
630 if (found_level
>= BTRFS_MAX_LEVEL
) {
631 btrfs_err(fs_info
, "bad tree block level %d",
632 (int)btrfs_header_level(eb
));
637 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
640 ret
= csum_tree_block(fs_info
, eb
, 1);
645 * If this is a leaf block and it is corrupt, set the corrupt bit so
646 * that we don't try and read the other copies of this block, just
649 if (found_level
== 0 && btrfs_check_leaf_full(fs_info
, eb
)) {
650 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
654 if (found_level
> 0 && btrfs_check_node(fs_info
, eb
))
658 set_extent_buffer_uptodate(eb
);
661 test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
662 btree_readahead_hook(eb
, ret
);
666 * our io error hook is going to dec the io pages
667 * again, we have to make sure it has something
670 atomic_inc(&eb
->io_pages
);
671 clear_extent_buffer_uptodate(eb
);
673 free_extent_buffer(eb
);
678 static int btree_io_failed_hook(struct page
*page
, int failed_mirror
)
680 struct extent_buffer
*eb
;
682 eb
= (struct extent_buffer
*)page
->private;
683 set_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
684 eb
->read_mirror
= failed_mirror
;
685 atomic_dec(&eb
->io_pages
);
686 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
687 btree_readahead_hook(eb
, -EIO
);
688 return -EIO
; /* we fixed nothing */
691 static void end_workqueue_bio(struct bio
*bio
)
693 struct btrfs_end_io_wq
*end_io_wq
= bio
->bi_private
;
694 struct btrfs_fs_info
*fs_info
;
695 struct btrfs_workqueue
*wq
;
696 btrfs_work_func_t func
;
698 fs_info
= end_io_wq
->info
;
699 end_io_wq
->status
= bio
->bi_status
;
701 if (bio_op(bio
) == REQ_OP_WRITE
) {
702 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_METADATA
) {
703 wq
= fs_info
->endio_meta_write_workers
;
704 func
= btrfs_endio_meta_write_helper
;
705 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_FREE_SPACE
) {
706 wq
= fs_info
->endio_freespace_worker
;
707 func
= btrfs_freespace_write_helper
;
708 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
709 wq
= fs_info
->endio_raid56_workers
;
710 func
= btrfs_endio_raid56_helper
;
712 wq
= fs_info
->endio_write_workers
;
713 func
= btrfs_endio_write_helper
;
716 if (unlikely(end_io_wq
->metadata
==
717 BTRFS_WQ_ENDIO_DIO_REPAIR
)) {
718 wq
= fs_info
->endio_repair_workers
;
719 func
= btrfs_endio_repair_helper
;
720 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
721 wq
= fs_info
->endio_raid56_workers
;
722 func
= btrfs_endio_raid56_helper
;
723 } else if (end_io_wq
->metadata
) {
724 wq
= fs_info
->endio_meta_workers
;
725 func
= btrfs_endio_meta_helper
;
727 wq
= fs_info
->endio_workers
;
728 func
= btrfs_endio_helper
;
732 btrfs_init_work(&end_io_wq
->work
, func
, end_workqueue_fn
, NULL
, NULL
);
733 btrfs_queue_work(wq
, &end_io_wq
->work
);
736 blk_status_t
btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
737 enum btrfs_wq_endio_type metadata
)
739 struct btrfs_end_io_wq
*end_io_wq
;
741 end_io_wq
= kmem_cache_alloc(btrfs_end_io_wq_cache
, GFP_NOFS
);
743 return BLK_STS_RESOURCE
;
745 end_io_wq
->private = bio
->bi_private
;
746 end_io_wq
->end_io
= bio
->bi_end_io
;
747 end_io_wq
->info
= info
;
748 end_io_wq
->status
= 0;
749 end_io_wq
->bio
= bio
;
750 end_io_wq
->metadata
= metadata
;
752 bio
->bi_private
= end_io_wq
;
753 bio
->bi_end_io
= end_workqueue_bio
;
757 static void run_one_async_start(struct btrfs_work
*work
)
759 struct async_submit_bio
*async
;
762 async
= container_of(work
, struct async_submit_bio
, work
);
763 ret
= async
->submit_bio_start(async
->private_data
, async
->bio
,
769 static void run_one_async_done(struct btrfs_work
*work
)
771 struct async_submit_bio
*async
;
773 async
= container_of(work
, struct async_submit_bio
, work
);
775 /* If an error occurred we just want to clean up the bio and move on */
777 async
->bio
->bi_status
= async
->status
;
778 bio_endio(async
->bio
);
782 async
->submit_bio_done(async
->private_data
, async
->bio
, async
->mirror_num
);
785 static void run_one_async_free(struct btrfs_work
*work
)
787 struct async_submit_bio
*async
;
789 async
= container_of(work
, struct async_submit_bio
, work
);
793 blk_status_t
btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
794 int mirror_num
, unsigned long bio_flags
,
795 u64 bio_offset
, void *private_data
,
796 extent_submit_bio_start_t
*submit_bio_start
,
797 extent_submit_bio_done_t
*submit_bio_done
)
799 struct async_submit_bio
*async
;
801 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
803 return BLK_STS_RESOURCE
;
805 async
->private_data
= private_data
;
806 async
->fs_info
= fs_info
;
808 async
->mirror_num
= mirror_num
;
809 async
->submit_bio_start
= submit_bio_start
;
810 async
->submit_bio_done
= submit_bio_done
;
812 btrfs_init_work(&async
->work
, btrfs_worker_helper
, run_one_async_start
,
813 run_one_async_done
, run_one_async_free
);
815 async
->bio_flags
= bio_flags
;
816 async
->bio_offset
= bio_offset
;
820 if (op_is_sync(bio
->bi_opf
))
821 btrfs_set_work_high_priority(&async
->work
);
823 btrfs_queue_work(fs_info
->workers
, &async
->work
);
827 static blk_status_t
btree_csum_one_bio(struct bio
*bio
)
829 struct bio_vec
*bvec
;
830 struct btrfs_root
*root
;
833 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
834 bio_for_each_segment_all(bvec
, bio
, i
) {
835 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
836 ret
= csum_dirty_buffer(root
->fs_info
, bvec
->bv_page
);
841 return errno_to_blk_status(ret
);
844 static blk_status_t
btree_submit_bio_start(void *private_data
, struct bio
*bio
,
848 * when we're called for a write, we're already in the async
849 * submission context. Just jump into btrfs_map_bio
851 return btree_csum_one_bio(bio
);
854 static blk_status_t
btree_submit_bio_done(void *private_data
, struct bio
*bio
,
857 struct inode
*inode
= private_data
;
861 * when we're called for a write, we're already in the async
862 * submission context. Just jump into btrfs_map_bio
864 ret
= btrfs_map_bio(btrfs_sb(inode
->i_sb
), bio
, mirror_num
, 1);
866 bio
->bi_status
= ret
;
872 static int check_async_write(struct btrfs_inode
*bi
)
874 if (atomic_read(&bi
->sync_writers
))
877 if (static_cpu_has(X86_FEATURE_XMM4_2
))
883 static blk_status_t
btree_submit_bio_hook(void *private_data
, struct bio
*bio
,
884 int mirror_num
, unsigned long bio_flags
,
887 struct inode
*inode
= private_data
;
888 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
889 int async
= check_async_write(BTRFS_I(inode
));
892 if (bio_op(bio
) != REQ_OP_WRITE
) {
894 * called for a read, do the setup so that checksum validation
895 * can happen in the async kernel threads
897 ret
= btrfs_bio_wq_end_io(fs_info
, bio
,
898 BTRFS_WQ_ENDIO_METADATA
);
901 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
903 ret
= btree_csum_one_bio(bio
);
906 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
909 * kthread helpers are used to submit writes so that
910 * checksumming can happen in parallel across all CPUs
912 ret
= btrfs_wq_submit_bio(fs_info
, bio
, mirror_num
, 0,
913 bio_offset
, private_data
,
914 btree_submit_bio_start
,
915 btree_submit_bio_done
);
923 bio
->bi_status
= ret
;
928 #ifdef CONFIG_MIGRATION
929 static int btree_migratepage(struct address_space
*mapping
,
930 struct page
*newpage
, struct page
*page
,
931 enum migrate_mode mode
)
934 * we can't safely write a btree page from here,
935 * we haven't done the locking hook
940 * Buffers may be managed in a filesystem specific way.
941 * We must have no buffers or drop them.
943 if (page_has_private(page
) &&
944 !try_to_release_page(page
, GFP_KERNEL
))
946 return migrate_page(mapping
, newpage
, page
, mode
);
951 static int btree_writepages(struct address_space
*mapping
,
952 struct writeback_control
*wbc
)
954 struct btrfs_fs_info
*fs_info
;
957 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
959 if (wbc
->for_kupdate
)
962 fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
963 /* this is a bit racy, but that's ok */
964 ret
= percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
965 BTRFS_DIRTY_METADATA_THRESH
);
969 return btree_write_cache_pages(mapping
, wbc
);
972 static int btree_readpage(struct file
*file
, struct page
*page
)
974 struct extent_io_tree
*tree
;
975 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
976 return extent_read_full_page(tree
, page
, btree_get_extent
, 0);
979 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
981 if (PageWriteback(page
) || PageDirty(page
))
984 return try_release_extent_buffer(page
);
987 static void btree_invalidatepage(struct page
*page
, unsigned int offset
,
990 struct extent_io_tree
*tree
;
991 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
992 extent_invalidatepage(tree
, page
, offset
);
993 btree_releasepage(page
, GFP_NOFS
);
994 if (PagePrivate(page
)) {
995 btrfs_warn(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
996 "page private not zero on page %llu",
997 (unsigned long long)page_offset(page
));
998 ClearPagePrivate(page
);
999 set_page_private(page
, 0);
1004 static int btree_set_page_dirty(struct page
*page
)
1007 struct extent_buffer
*eb
;
1009 BUG_ON(!PagePrivate(page
));
1010 eb
= (struct extent_buffer
*)page
->private;
1012 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
1013 BUG_ON(!atomic_read(&eb
->refs
));
1014 btrfs_assert_tree_locked(eb
);
1016 return __set_page_dirty_nobuffers(page
);
1019 static const struct address_space_operations btree_aops
= {
1020 .readpage
= btree_readpage
,
1021 .writepages
= btree_writepages
,
1022 .releasepage
= btree_releasepage
,
1023 .invalidatepage
= btree_invalidatepage
,
1024 #ifdef CONFIG_MIGRATION
1025 .migratepage
= btree_migratepage
,
1027 .set_page_dirty
= btree_set_page_dirty
,
1030 void readahead_tree_block(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
1032 struct extent_buffer
*buf
= NULL
;
1033 struct inode
*btree_inode
= fs_info
->btree_inode
;
1035 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1038 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
1040 free_extent_buffer(buf
);
1043 int reada_tree_block_flagged(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1044 int mirror_num
, struct extent_buffer
**eb
)
1046 struct extent_buffer
*buf
= NULL
;
1047 struct inode
*btree_inode
= fs_info
->btree_inode
;
1048 struct extent_io_tree
*io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
1051 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1055 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
1057 ret
= read_extent_buffer_pages(io_tree
, buf
, WAIT_PAGE_LOCK
,
1060 free_extent_buffer(buf
);
1064 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
1065 free_extent_buffer(buf
);
1067 } else if (extent_buffer_uptodate(buf
)) {
1070 free_extent_buffer(buf
);
1075 struct extent_buffer
*btrfs_find_create_tree_block(
1076 struct btrfs_fs_info
*fs_info
,
1079 if (btrfs_is_testing(fs_info
))
1080 return alloc_test_extent_buffer(fs_info
, bytenr
);
1081 return alloc_extent_buffer(fs_info
, bytenr
);
1085 int btrfs_write_tree_block(struct extent_buffer
*buf
)
1087 return filemap_fdatawrite_range(buf
->pages
[0]->mapping
, buf
->start
,
1088 buf
->start
+ buf
->len
- 1);
1091 void btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
1093 filemap_fdatawait_range(buf
->pages
[0]->mapping
,
1094 buf
->start
, buf
->start
+ buf
->len
- 1);
1098 * Read tree block at logical address @bytenr and do variant basic but critical
1101 * @parent_transid: expected transid of this tree block, skip check if 0
1102 * @level: expected level, mandatory check
1103 * @first_key: expected key in slot 0, skip check if NULL
1105 struct extent_buffer
*read_tree_block(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1106 u64 parent_transid
, int level
,
1107 struct btrfs_key
*first_key
)
1109 struct extent_buffer
*buf
= NULL
;
1112 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1116 ret
= btree_read_extent_buffer_pages(fs_info
, buf
, parent_transid
,
1119 free_extent_buffer(buf
);
1120 return ERR_PTR(ret
);
1126 void clean_tree_block(struct btrfs_fs_info
*fs_info
,
1127 struct extent_buffer
*buf
)
1129 if (btrfs_header_generation(buf
) ==
1130 fs_info
->running_transaction
->transid
) {
1131 btrfs_assert_tree_locked(buf
);
1133 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1134 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
1136 fs_info
->dirty_metadata_batch
);
1137 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1138 btrfs_set_lock_blocking(buf
);
1139 clear_extent_buffer_dirty(buf
);
1144 static struct btrfs_subvolume_writers
*btrfs_alloc_subvolume_writers(void)
1146 struct btrfs_subvolume_writers
*writers
;
1149 writers
= kmalloc(sizeof(*writers
), GFP_NOFS
);
1151 return ERR_PTR(-ENOMEM
);
1153 ret
= percpu_counter_init(&writers
->counter
, 0, GFP_NOFS
);
1156 return ERR_PTR(ret
);
1159 init_waitqueue_head(&writers
->wait
);
1164 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers
*writers
)
1166 percpu_counter_destroy(&writers
->counter
);
1170 static void __setup_root(struct btrfs_root
*root
, struct btrfs_fs_info
*fs_info
,
1173 bool dummy
= test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO
, &fs_info
->fs_state
);
1175 root
->commit_root
= NULL
;
1177 root
->orphan_cleanup_state
= 0;
1179 root
->objectid
= objectid
;
1180 root
->last_trans
= 0;
1181 root
->highest_objectid
= 0;
1182 root
->nr_delalloc_inodes
= 0;
1183 root
->nr_ordered_extents
= 0;
1185 root
->inode_tree
= RB_ROOT
;
1186 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1187 root
->block_rsv
= NULL
;
1188 root
->orphan_block_rsv
= NULL
;
1190 INIT_LIST_HEAD(&root
->dirty_list
);
1191 INIT_LIST_HEAD(&root
->root_list
);
1192 INIT_LIST_HEAD(&root
->delalloc_inodes
);
1193 INIT_LIST_HEAD(&root
->delalloc_root
);
1194 INIT_LIST_HEAD(&root
->ordered_extents
);
1195 INIT_LIST_HEAD(&root
->ordered_root
);
1196 INIT_LIST_HEAD(&root
->logged_list
[0]);
1197 INIT_LIST_HEAD(&root
->logged_list
[1]);
1198 spin_lock_init(&root
->orphan_lock
);
1199 spin_lock_init(&root
->inode_lock
);
1200 spin_lock_init(&root
->delalloc_lock
);
1201 spin_lock_init(&root
->ordered_extent_lock
);
1202 spin_lock_init(&root
->accounting_lock
);
1203 spin_lock_init(&root
->log_extents_lock
[0]);
1204 spin_lock_init(&root
->log_extents_lock
[1]);
1205 spin_lock_init(&root
->qgroup_meta_rsv_lock
);
1206 mutex_init(&root
->objectid_mutex
);
1207 mutex_init(&root
->log_mutex
);
1208 mutex_init(&root
->ordered_extent_mutex
);
1209 mutex_init(&root
->delalloc_mutex
);
1210 init_waitqueue_head(&root
->log_writer_wait
);
1211 init_waitqueue_head(&root
->log_commit_wait
[0]);
1212 init_waitqueue_head(&root
->log_commit_wait
[1]);
1213 INIT_LIST_HEAD(&root
->log_ctxs
[0]);
1214 INIT_LIST_HEAD(&root
->log_ctxs
[1]);
1215 atomic_set(&root
->log_commit
[0], 0);
1216 atomic_set(&root
->log_commit
[1], 0);
1217 atomic_set(&root
->log_writers
, 0);
1218 atomic_set(&root
->log_batch
, 0);
1219 atomic_set(&root
->orphan_inodes
, 0);
1220 refcount_set(&root
->refs
, 1);
1221 atomic_set(&root
->will_be_snapshotted
, 0);
1222 root
->log_transid
= 0;
1223 root
->log_transid_committed
= -1;
1224 root
->last_log_commit
= 0;
1226 extent_io_tree_init(&root
->dirty_log_pages
, NULL
);
1228 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1229 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1230 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1232 root
->defrag_trans_start
= fs_info
->generation
;
1234 root
->defrag_trans_start
= 0;
1235 root
->root_key
.objectid
= objectid
;
1238 spin_lock_init(&root
->root_item_lock
);
1241 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
,
1244 struct btrfs_root
*root
= kzalloc(sizeof(*root
), flags
);
1246 root
->fs_info
= fs_info
;
1250 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1251 /* Should only be used by the testing infrastructure */
1252 struct btrfs_root
*btrfs_alloc_dummy_root(struct btrfs_fs_info
*fs_info
)
1254 struct btrfs_root
*root
;
1257 return ERR_PTR(-EINVAL
);
1259 root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
1261 return ERR_PTR(-ENOMEM
);
1263 /* We don't use the stripesize in selftest, set it as sectorsize */
1264 __setup_root(root
, fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1265 root
->alloc_bytenr
= 0;
1271 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
1272 struct btrfs_fs_info
*fs_info
,
1275 struct extent_buffer
*leaf
;
1276 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1277 struct btrfs_root
*root
;
1278 struct btrfs_key key
;
1280 uuid_le uuid
= NULL_UUID_LE
;
1282 root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
1284 return ERR_PTR(-ENOMEM
);
1286 __setup_root(root
, fs_info
, objectid
);
1287 root
->root_key
.objectid
= objectid
;
1288 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1289 root
->root_key
.offset
= 0;
1291 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
1293 ret
= PTR_ERR(leaf
);
1298 memzero_extent_buffer(leaf
, 0, sizeof(struct btrfs_header
));
1299 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1300 btrfs_set_header_generation(leaf
, trans
->transid
);
1301 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1302 btrfs_set_header_owner(leaf
, objectid
);
1305 write_extent_buffer_fsid(leaf
, fs_info
->fsid
);
1306 write_extent_buffer_chunk_tree_uuid(leaf
, fs_info
->chunk_tree_uuid
);
1307 btrfs_mark_buffer_dirty(leaf
);
1309 root
->commit_root
= btrfs_root_node(root
);
1310 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
1312 root
->root_item
.flags
= 0;
1313 root
->root_item
.byte_limit
= 0;
1314 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
1315 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
1316 btrfs_set_root_level(&root
->root_item
, 0);
1317 btrfs_set_root_refs(&root
->root_item
, 1);
1318 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
1319 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
1320 btrfs_set_root_dirid(&root
->root_item
, 0);
1321 if (is_fstree(objectid
))
1323 memcpy(root
->root_item
.uuid
, uuid
.b
, BTRFS_UUID_SIZE
);
1324 root
->root_item
.drop_level
= 0;
1326 key
.objectid
= objectid
;
1327 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1329 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
1333 btrfs_tree_unlock(leaf
);
1339 btrfs_tree_unlock(leaf
);
1340 free_extent_buffer(root
->commit_root
);
1341 free_extent_buffer(leaf
);
1345 return ERR_PTR(ret
);
1348 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1349 struct btrfs_fs_info
*fs_info
)
1351 struct btrfs_root
*root
;
1352 struct extent_buffer
*leaf
;
1354 root
= btrfs_alloc_root(fs_info
, GFP_NOFS
);
1356 return ERR_PTR(-ENOMEM
);
1358 __setup_root(root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1360 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1361 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1362 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1365 * DON'T set REF_COWS for log trees
1367 * log trees do not get reference counted because they go away
1368 * before a real commit is actually done. They do store pointers
1369 * to file data extents, and those reference counts still get
1370 * updated (along with back refs to the log tree).
1373 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, BTRFS_TREE_LOG_OBJECTID
,
1377 return ERR_CAST(leaf
);
1380 memzero_extent_buffer(leaf
, 0, sizeof(struct btrfs_header
));
1381 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1382 btrfs_set_header_generation(leaf
, trans
->transid
);
1383 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1384 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1387 write_extent_buffer_fsid(root
->node
, fs_info
->fsid
);
1388 btrfs_mark_buffer_dirty(root
->node
);
1389 btrfs_tree_unlock(root
->node
);
1393 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1394 struct btrfs_fs_info
*fs_info
)
1396 struct btrfs_root
*log_root
;
1398 log_root
= alloc_log_tree(trans
, fs_info
);
1399 if (IS_ERR(log_root
))
1400 return PTR_ERR(log_root
);
1401 WARN_ON(fs_info
->log_root_tree
);
1402 fs_info
->log_root_tree
= log_root
;
1406 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1407 struct btrfs_root
*root
)
1409 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1410 struct btrfs_root
*log_root
;
1411 struct btrfs_inode_item
*inode_item
;
1413 log_root
= alloc_log_tree(trans
, fs_info
);
1414 if (IS_ERR(log_root
))
1415 return PTR_ERR(log_root
);
1417 log_root
->last_trans
= trans
->transid
;
1418 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1420 inode_item
= &log_root
->root_item
.inode
;
1421 btrfs_set_stack_inode_generation(inode_item
, 1);
1422 btrfs_set_stack_inode_size(inode_item
, 3);
1423 btrfs_set_stack_inode_nlink(inode_item
, 1);
1424 btrfs_set_stack_inode_nbytes(inode_item
,
1426 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
1428 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1430 WARN_ON(root
->log_root
);
1431 root
->log_root
= log_root
;
1432 root
->log_transid
= 0;
1433 root
->log_transid_committed
= -1;
1434 root
->last_log_commit
= 0;
1438 static struct btrfs_root
*btrfs_read_tree_root(struct btrfs_root
*tree_root
,
1439 struct btrfs_key
*key
)
1441 struct btrfs_root
*root
;
1442 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1443 struct btrfs_path
*path
;
1448 path
= btrfs_alloc_path();
1450 return ERR_PTR(-ENOMEM
);
1452 root
= btrfs_alloc_root(fs_info
, GFP_NOFS
);
1458 __setup_root(root
, fs_info
, key
->objectid
);
1460 ret
= btrfs_find_root(tree_root
, key
, path
,
1461 &root
->root_item
, &root
->root_key
);
1468 generation
= btrfs_root_generation(&root
->root_item
);
1469 level
= btrfs_root_level(&root
->root_item
);
1470 root
->node
= read_tree_block(fs_info
,
1471 btrfs_root_bytenr(&root
->root_item
),
1472 generation
, level
, NULL
);
1473 if (IS_ERR(root
->node
)) {
1474 ret
= PTR_ERR(root
->node
);
1476 } else if (!btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1478 free_extent_buffer(root
->node
);
1481 root
->commit_root
= btrfs_root_node(root
);
1483 btrfs_free_path(path
);
1489 root
= ERR_PTR(ret
);
1493 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_root
*tree_root
,
1494 struct btrfs_key
*location
)
1496 struct btrfs_root
*root
;
1498 root
= btrfs_read_tree_root(tree_root
, location
);
1502 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1503 set_bit(BTRFS_ROOT_REF_COWS
, &root
->state
);
1504 btrfs_check_and_init_root_item(&root
->root_item
);
1510 int btrfs_init_fs_root(struct btrfs_root
*root
)
1513 struct btrfs_subvolume_writers
*writers
;
1515 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1516 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1518 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1523 writers
= btrfs_alloc_subvolume_writers();
1524 if (IS_ERR(writers
)) {
1525 ret
= PTR_ERR(writers
);
1528 root
->subv_writers
= writers
;
1530 btrfs_init_free_ino_ctl(root
);
1531 spin_lock_init(&root
->ino_cache_lock
);
1532 init_waitqueue_head(&root
->ino_cache_wait
);
1534 ret
= get_anon_bdev(&root
->anon_dev
);
1538 mutex_lock(&root
->objectid_mutex
);
1539 ret
= btrfs_find_highest_objectid(root
,
1540 &root
->highest_objectid
);
1542 mutex_unlock(&root
->objectid_mutex
);
1546 ASSERT(root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
1548 mutex_unlock(&root
->objectid_mutex
);
1552 /* the caller is responsible to call free_fs_root */
1556 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1559 struct btrfs_root
*root
;
1561 spin_lock(&fs_info
->fs_roots_radix_lock
);
1562 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1563 (unsigned long)root_id
);
1564 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1568 int btrfs_insert_fs_root(struct btrfs_fs_info
*fs_info
,
1569 struct btrfs_root
*root
)
1573 ret
= radix_tree_preload(GFP_NOFS
);
1577 spin_lock(&fs_info
->fs_roots_radix_lock
);
1578 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1579 (unsigned long)root
->root_key
.objectid
,
1582 set_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
);
1583 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1584 radix_tree_preload_end();
1589 struct btrfs_root
*btrfs_get_fs_root(struct btrfs_fs_info
*fs_info
,
1590 struct btrfs_key
*location
,
1593 struct btrfs_root
*root
;
1594 struct btrfs_path
*path
;
1595 struct btrfs_key key
;
1598 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1599 return fs_info
->tree_root
;
1600 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1601 return fs_info
->extent_root
;
1602 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1603 return fs_info
->chunk_root
;
1604 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1605 return fs_info
->dev_root
;
1606 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1607 return fs_info
->csum_root
;
1608 if (location
->objectid
== BTRFS_QUOTA_TREE_OBJECTID
)
1609 return fs_info
->quota_root
? fs_info
->quota_root
:
1611 if (location
->objectid
== BTRFS_UUID_TREE_OBJECTID
)
1612 return fs_info
->uuid_root
? fs_info
->uuid_root
:
1614 if (location
->objectid
== BTRFS_FREE_SPACE_TREE_OBJECTID
)
1615 return fs_info
->free_space_root
? fs_info
->free_space_root
:
1618 root
= btrfs_lookup_fs_root(fs_info
, location
->objectid
);
1620 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0)
1621 return ERR_PTR(-ENOENT
);
1625 root
= btrfs_read_fs_root(fs_info
->tree_root
, location
);
1629 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1634 ret
= btrfs_init_fs_root(root
);
1638 path
= btrfs_alloc_path();
1643 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1644 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1645 key
.offset
= location
->objectid
;
1647 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
1648 btrfs_free_path(path
);
1652 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
);
1654 ret
= btrfs_insert_fs_root(fs_info
, root
);
1656 if (ret
== -EEXIST
) {
1665 return ERR_PTR(ret
);
1668 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1670 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1672 struct btrfs_device
*device
;
1673 struct backing_dev_info
*bdi
;
1676 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1679 bdi
= device
->bdev
->bd_bdi
;
1680 if (bdi_congested(bdi
, bdi_bits
)) {
1690 * called by the kthread helper functions to finally call the bio end_io
1691 * functions. This is where read checksum verification actually happens
1693 static void end_workqueue_fn(struct btrfs_work
*work
)
1696 struct btrfs_end_io_wq
*end_io_wq
;
1698 end_io_wq
= container_of(work
, struct btrfs_end_io_wq
, work
);
1699 bio
= end_io_wq
->bio
;
1701 bio
->bi_status
= end_io_wq
->status
;
1702 bio
->bi_private
= end_io_wq
->private;
1703 bio
->bi_end_io
= end_io_wq
->end_io
;
1704 kmem_cache_free(btrfs_end_io_wq_cache
, end_io_wq
);
1708 static int cleaner_kthread(void *arg
)
1710 struct btrfs_root
*root
= arg
;
1711 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1713 struct btrfs_trans_handle
*trans
;
1718 /* Make the cleaner go to sleep early. */
1719 if (btrfs_need_cleaner_sleep(fs_info
))
1723 * Do not do anything if we might cause open_ctree() to block
1724 * before we have finished mounting the filesystem.
1726 if (!test_bit(BTRFS_FS_OPEN
, &fs_info
->flags
))
1729 if (!mutex_trylock(&fs_info
->cleaner_mutex
))
1733 * Avoid the problem that we change the status of the fs
1734 * during the above check and trylock.
1736 if (btrfs_need_cleaner_sleep(fs_info
)) {
1737 mutex_unlock(&fs_info
->cleaner_mutex
);
1741 mutex_lock(&fs_info
->cleaner_delayed_iput_mutex
);
1742 btrfs_run_delayed_iputs(fs_info
);
1743 mutex_unlock(&fs_info
->cleaner_delayed_iput_mutex
);
1745 again
= btrfs_clean_one_deleted_snapshot(root
);
1746 mutex_unlock(&fs_info
->cleaner_mutex
);
1749 * The defragger has dealt with the R/O remount and umount,
1750 * needn't do anything special here.
1752 btrfs_run_defrag_inodes(fs_info
);
1755 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1756 * with relocation (btrfs_relocate_chunk) and relocation
1757 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1758 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1759 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1760 * unused block groups.
1762 btrfs_delete_unused_bgs(fs_info
);
1765 set_current_state(TASK_INTERRUPTIBLE
);
1766 if (!kthread_should_stop())
1768 __set_current_state(TASK_RUNNING
);
1770 } while (!kthread_should_stop());
1773 * Transaction kthread is stopped before us and wakes us up.
1774 * However we might have started a new transaction and COWed some
1775 * tree blocks when deleting unused block groups for example. So
1776 * make sure we commit the transaction we started to have a clean
1777 * shutdown when evicting the btree inode - if it has dirty pages
1778 * when we do the final iput() on it, eviction will trigger a
1779 * writeback for it which will fail with null pointer dereferences
1780 * since work queues and other resources were already released and
1781 * destroyed by the time the iput/eviction/writeback is made.
1783 trans
= btrfs_attach_transaction(root
);
1784 if (IS_ERR(trans
)) {
1785 if (PTR_ERR(trans
) != -ENOENT
)
1787 "cleaner transaction attach returned %ld",
1792 ret
= btrfs_commit_transaction(trans
);
1795 "cleaner open transaction commit returned %d",
1802 static int transaction_kthread(void *arg
)
1804 struct btrfs_root
*root
= arg
;
1805 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1806 struct btrfs_trans_handle
*trans
;
1807 struct btrfs_transaction
*cur
;
1810 unsigned long delay
;
1814 cannot_commit
= false;
1815 delay
= HZ
* fs_info
->commit_interval
;
1816 mutex_lock(&fs_info
->transaction_kthread_mutex
);
1818 spin_lock(&fs_info
->trans_lock
);
1819 cur
= fs_info
->running_transaction
;
1821 spin_unlock(&fs_info
->trans_lock
);
1825 now
= get_seconds();
1826 if (cur
->state
< TRANS_STATE_BLOCKED
&&
1827 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT
, &fs_info
->flags
) &&
1828 (now
< cur
->start_time
||
1829 now
- cur
->start_time
< fs_info
->commit_interval
)) {
1830 spin_unlock(&fs_info
->trans_lock
);
1834 transid
= cur
->transid
;
1835 spin_unlock(&fs_info
->trans_lock
);
1837 /* If the file system is aborted, this will always fail. */
1838 trans
= btrfs_attach_transaction(root
);
1839 if (IS_ERR(trans
)) {
1840 if (PTR_ERR(trans
) != -ENOENT
)
1841 cannot_commit
= true;
1844 if (transid
== trans
->transid
) {
1845 btrfs_commit_transaction(trans
);
1847 btrfs_end_transaction(trans
);
1850 wake_up_process(fs_info
->cleaner_kthread
);
1851 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
1853 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR
,
1854 &fs_info
->fs_state
)))
1855 btrfs_cleanup_transaction(fs_info
);
1856 if (!kthread_should_stop() &&
1857 (!btrfs_transaction_blocked(fs_info
) ||
1859 schedule_timeout_interruptible(delay
);
1860 } while (!kthread_should_stop());
1865 * this will find the highest generation in the array of
1866 * root backups. The index of the highest array is returned,
1867 * or -1 if we can't find anything.
1869 * We check to make sure the array is valid by comparing the
1870 * generation of the latest root in the array with the generation
1871 * in the super block. If they don't match we pitch it.
1873 static int find_newest_super_backup(struct btrfs_fs_info
*info
, u64 newest_gen
)
1876 int newest_index
= -1;
1877 struct btrfs_root_backup
*root_backup
;
1880 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1881 root_backup
= info
->super_copy
->super_roots
+ i
;
1882 cur
= btrfs_backup_tree_root_gen(root_backup
);
1883 if (cur
== newest_gen
)
1887 /* check to see if we actually wrapped around */
1888 if (newest_index
== BTRFS_NUM_BACKUP_ROOTS
- 1) {
1889 root_backup
= info
->super_copy
->super_roots
;
1890 cur
= btrfs_backup_tree_root_gen(root_backup
);
1891 if (cur
== newest_gen
)
1894 return newest_index
;
1899 * find the oldest backup so we know where to store new entries
1900 * in the backup array. This will set the backup_root_index
1901 * field in the fs_info struct
1903 static void find_oldest_super_backup(struct btrfs_fs_info
*info
,
1906 int newest_index
= -1;
1908 newest_index
= find_newest_super_backup(info
, newest_gen
);
1909 /* if there was garbage in there, just move along */
1910 if (newest_index
== -1) {
1911 info
->backup_root_index
= 0;
1913 info
->backup_root_index
= (newest_index
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1918 * copy all the root pointers into the super backup array.
1919 * this will bump the backup pointer by one when it is
1922 static void backup_super_roots(struct btrfs_fs_info
*info
)
1925 struct btrfs_root_backup
*root_backup
;
1928 next_backup
= info
->backup_root_index
;
1929 last_backup
= (next_backup
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1930 BTRFS_NUM_BACKUP_ROOTS
;
1933 * just overwrite the last backup if we're at the same generation
1934 * this happens only at umount
1936 root_backup
= info
->super_for_commit
->super_roots
+ last_backup
;
1937 if (btrfs_backup_tree_root_gen(root_backup
) ==
1938 btrfs_header_generation(info
->tree_root
->node
))
1939 next_backup
= last_backup
;
1941 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
1944 * make sure all of our padding and empty slots get zero filled
1945 * regardless of which ones we use today
1947 memset(root_backup
, 0, sizeof(*root_backup
));
1949 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1951 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
1952 btrfs_set_backup_tree_root_gen(root_backup
,
1953 btrfs_header_generation(info
->tree_root
->node
));
1955 btrfs_set_backup_tree_root_level(root_backup
,
1956 btrfs_header_level(info
->tree_root
->node
));
1958 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
1959 btrfs_set_backup_chunk_root_gen(root_backup
,
1960 btrfs_header_generation(info
->chunk_root
->node
));
1961 btrfs_set_backup_chunk_root_level(root_backup
,
1962 btrfs_header_level(info
->chunk_root
->node
));
1964 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
1965 btrfs_set_backup_extent_root_gen(root_backup
,
1966 btrfs_header_generation(info
->extent_root
->node
));
1967 btrfs_set_backup_extent_root_level(root_backup
,
1968 btrfs_header_level(info
->extent_root
->node
));
1971 * we might commit during log recovery, which happens before we set
1972 * the fs_root. Make sure it is valid before we fill it in.
1974 if (info
->fs_root
&& info
->fs_root
->node
) {
1975 btrfs_set_backup_fs_root(root_backup
,
1976 info
->fs_root
->node
->start
);
1977 btrfs_set_backup_fs_root_gen(root_backup
,
1978 btrfs_header_generation(info
->fs_root
->node
));
1979 btrfs_set_backup_fs_root_level(root_backup
,
1980 btrfs_header_level(info
->fs_root
->node
));
1983 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
1984 btrfs_set_backup_dev_root_gen(root_backup
,
1985 btrfs_header_generation(info
->dev_root
->node
));
1986 btrfs_set_backup_dev_root_level(root_backup
,
1987 btrfs_header_level(info
->dev_root
->node
));
1989 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
1990 btrfs_set_backup_csum_root_gen(root_backup
,
1991 btrfs_header_generation(info
->csum_root
->node
));
1992 btrfs_set_backup_csum_root_level(root_backup
,
1993 btrfs_header_level(info
->csum_root
->node
));
1995 btrfs_set_backup_total_bytes(root_backup
,
1996 btrfs_super_total_bytes(info
->super_copy
));
1997 btrfs_set_backup_bytes_used(root_backup
,
1998 btrfs_super_bytes_used(info
->super_copy
));
1999 btrfs_set_backup_num_devices(root_backup
,
2000 btrfs_super_num_devices(info
->super_copy
));
2003 * if we don't copy this out to the super_copy, it won't get remembered
2004 * for the next commit
2006 memcpy(&info
->super_copy
->super_roots
,
2007 &info
->super_for_commit
->super_roots
,
2008 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
2012 * this copies info out of the root backup array and back into
2013 * the in-memory super block. It is meant to help iterate through
2014 * the array, so you send it the number of backups you've already
2015 * tried and the last backup index you used.
2017 * this returns -1 when it has tried all the backups
2019 static noinline
int next_root_backup(struct btrfs_fs_info
*info
,
2020 struct btrfs_super_block
*super
,
2021 int *num_backups_tried
, int *backup_index
)
2023 struct btrfs_root_backup
*root_backup
;
2024 int newest
= *backup_index
;
2026 if (*num_backups_tried
== 0) {
2027 u64 gen
= btrfs_super_generation(super
);
2029 newest
= find_newest_super_backup(info
, gen
);
2033 *backup_index
= newest
;
2034 *num_backups_tried
= 1;
2035 } else if (*num_backups_tried
== BTRFS_NUM_BACKUP_ROOTS
) {
2036 /* we've tried all the backups, all done */
2039 /* jump to the next oldest backup */
2040 newest
= (*backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
2041 BTRFS_NUM_BACKUP_ROOTS
;
2042 *backup_index
= newest
;
2043 *num_backups_tried
+= 1;
2045 root_backup
= super
->super_roots
+ newest
;
2047 btrfs_set_super_generation(super
,
2048 btrfs_backup_tree_root_gen(root_backup
));
2049 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
2050 btrfs_set_super_root_level(super
,
2051 btrfs_backup_tree_root_level(root_backup
));
2052 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
2055 * fixme: the total bytes and num_devices need to match or we should
2058 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
2059 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
2063 /* helper to cleanup workers */
2064 static void btrfs_stop_all_workers(struct btrfs_fs_info
*fs_info
)
2066 btrfs_destroy_workqueue(fs_info
->fixup_workers
);
2067 btrfs_destroy_workqueue(fs_info
->delalloc_workers
);
2068 btrfs_destroy_workqueue(fs_info
->workers
);
2069 btrfs_destroy_workqueue(fs_info
->endio_workers
);
2070 btrfs_destroy_workqueue(fs_info
->endio_raid56_workers
);
2071 btrfs_destroy_workqueue(fs_info
->endio_repair_workers
);
2072 btrfs_destroy_workqueue(fs_info
->rmw_workers
);
2073 btrfs_destroy_workqueue(fs_info
->endio_write_workers
);
2074 btrfs_destroy_workqueue(fs_info
->endio_freespace_worker
);
2075 btrfs_destroy_workqueue(fs_info
->submit_workers
);
2076 btrfs_destroy_workqueue(fs_info
->delayed_workers
);
2077 btrfs_destroy_workqueue(fs_info
->caching_workers
);
2078 btrfs_destroy_workqueue(fs_info
->readahead_workers
);
2079 btrfs_destroy_workqueue(fs_info
->flush_workers
);
2080 btrfs_destroy_workqueue(fs_info
->qgroup_rescan_workers
);
2081 btrfs_destroy_workqueue(fs_info
->extent_workers
);
2083 * Now that all other work queues are destroyed, we can safely destroy
2084 * the queues used for metadata I/O, since tasks from those other work
2085 * queues can do metadata I/O operations.
2087 btrfs_destroy_workqueue(fs_info
->endio_meta_workers
);
2088 btrfs_destroy_workqueue(fs_info
->endio_meta_write_workers
);
2091 static void free_root_extent_buffers(struct btrfs_root
*root
)
2094 free_extent_buffer(root
->node
);
2095 free_extent_buffer(root
->commit_root
);
2097 root
->commit_root
= NULL
;
2101 /* helper to cleanup tree roots */
2102 static void free_root_pointers(struct btrfs_fs_info
*info
, int chunk_root
)
2104 free_root_extent_buffers(info
->tree_root
);
2106 free_root_extent_buffers(info
->dev_root
);
2107 free_root_extent_buffers(info
->extent_root
);
2108 free_root_extent_buffers(info
->csum_root
);
2109 free_root_extent_buffers(info
->quota_root
);
2110 free_root_extent_buffers(info
->uuid_root
);
2112 free_root_extent_buffers(info
->chunk_root
);
2113 free_root_extent_buffers(info
->free_space_root
);
2116 void btrfs_free_fs_roots(struct btrfs_fs_info
*fs_info
)
2119 struct btrfs_root
*gang
[8];
2122 while (!list_empty(&fs_info
->dead_roots
)) {
2123 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2124 struct btrfs_root
, root_list
);
2125 list_del(&gang
[0]->root_list
);
2127 if (test_bit(BTRFS_ROOT_IN_RADIX
, &gang
[0]->state
)) {
2128 btrfs_drop_and_free_fs_root(fs_info
, gang
[0]);
2130 free_extent_buffer(gang
[0]->node
);
2131 free_extent_buffer(gang
[0]->commit_root
);
2132 btrfs_put_fs_root(gang
[0]);
2137 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2142 for (i
= 0; i
< ret
; i
++)
2143 btrfs_drop_and_free_fs_root(fs_info
, gang
[i
]);
2146 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
2147 btrfs_free_log_root_tree(NULL
, fs_info
);
2148 btrfs_destroy_pinned_extent(fs_info
, fs_info
->pinned_extents
);
2152 static void btrfs_init_scrub(struct btrfs_fs_info
*fs_info
)
2154 mutex_init(&fs_info
->scrub_lock
);
2155 atomic_set(&fs_info
->scrubs_running
, 0);
2156 atomic_set(&fs_info
->scrub_pause_req
, 0);
2157 atomic_set(&fs_info
->scrubs_paused
, 0);
2158 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2159 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2160 fs_info
->scrub_workers_refcnt
= 0;
2163 static void btrfs_init_balance(struct btrfs_fs_info
*fs_info
)
2165 spin_lock_init(&fs_info
->balance_lock
);
2166 mutex_init(&fs_info
->balance_mutex
);
2167 atomic_set(&fs_info
->balance_running
, 0);
2168 atomic_set(&fs_info
->balance_pause_req
, 0);
2169 atomic_set(&fs_info
->balance_cancel_req
, 0);
2170 fs_info
->balance_ctl
= NULL
;
2171 init_waitqueue_head(&fs_info
->balance_wait_q
);
2174 static void btrfs_init_btree_inode(struct btrfs_fs_info
*fs_info
)
2176 struct inode
*inode
= fs_info
->btree_inode
;
2178 inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2179 set_nlink(inode
, 1);
2181 * we set the i_size on the btree inode to the max possible int.
2182 * the real end of the address space is determined by all of
2183 * the devices in the system
2185 inode
->i_size
= OFFSET_MAX
;
2186 inode
->i_mapping
->a_ops
= &btree_aops
;
2188 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
2189 extent_io_tree_init(&BTRFS_I(inode
)->io_tree
, inode
);
2190 BTRFS_I(inode
)->io_tree
.track_uptodate
= 0;
2191 extent_map_tree_init(&BTRFS_I(inode
)->extent_tree
);
2193 BTRFS_I(inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2195 BTRFS_I(inode
)->root
= fs_info
->tree_root
;
2196 memset(&BTRFS_I(inode
)->location
, 0, sizeof(struct btrfs_key
));
2197 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
2198 btrfs_insert_inode_hash(inode
);
2201 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info
*fs_info
)
2203 fs_info
->dev_replace
.lock_owner
= 0;
2204 atomic_set(&fs_info
->dev_replace
.nesting_level
, 0);
2205 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
2206 rwlock_init(&fs_info
->dev_replace
.lock
);
2207 atomic_set(&fs_info
->dev_replace
.read_locks
, 0);
2208 atomic_set(&fs_info
->dev_replace
.blocking_readers
, 0);
2209 init_waitqueue_head(&fs_info
->replace_wait
);
2210 init_waitqueue_head(&fs_info
->dev_replace
.read_lock_wq
);
2213 static void btrfs_init_qgroup(struct btrfs_fs_info
*fs_info
)
2215 spin_lock_init(&fs_info
->qgroup_lock
);
2216 mutex_init(&fs_info
->qgroup_ioctl_lock
);
2217 fs_info
->qgroup_tree
= RB_ROOT
;
2218 fs_info
->qgroup_op_tree
= RB_ROOT
;
2219 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
2220 fs_info
->qgroup_seq
= 1;
2221 fs_info
->qgroup_ulist
= NULL
;
2222 fs_info
->qgroup_rescan_running
= false;
2223 mutex_init(&fs_info
->qgroup_rescan_lock
);
2226 static int btrfs_init_workqueues(struct btrfs_fs_info
*fs_info
,
2227 struct btrfs_fs_devices
*fs_devices
)
2229 u32 max_active
= fs_info
->thread_pool_size
;
2230 unsigned int flags
= WQ_MEM_RECLAIM
| WQ_FREEZABLE
| WQ_UNBOUND
;
2233 btrfs_alloc_workqueue(fs_info
, "worker",
2234 flags
| WQ_HIGHPRI
, max_active
, 16);
2236 fs_info
->delalloc_workers
=
2237 btrfs_alloc_workqueue(fs_info
, "delalloc",
2238 flags
, max_active
, 2);
2240 fs_info
->flush_workers
=
2241 btrfs_alloc_workqueue(fs_info
, "flush_delalloc",
2242 flags
, max_active
, 0);
2244 fs_info
->caching_workers
=
2245 btrfs_alloc_workqueue(fs_info
, "cache", flags
, max_active
, 0);
2248 * a higher idle thresh on the submit workers makes it much more
2249 * likely that bios will be send down in a sane order to the
2252 fs_info
->submit_workers
=
2253 btrfs_alloc_workqueue(fs_info
, "submit", flags
,
2254 min_t(u64
, fs_devices
->num_devices
,
2257 fs_info
->fixup_workers
=
2258 btrfs_alloc_workqueue(fs_info
, "fixup", flags
, 1, 0);
2261 * endios are largely parallel and should have a very
2264 fs_info
->endio_workers
=
2265 btrfs_alloc_workqueue(fs_info
, "endio", flags
, max_active
, 4);
2266 fs_info
->endio_meta_workers
=
2267 btrfs_alloc_workqueue(fs_info
, "endio-meta", flags
,
2269 fs_info
->endio_meta_write_workers
=
2270 btrfs_alloc_workqueue(fs_info
, "endio-meta-write", flags
,
2272 fs_info
->endio_raid56_workers
=
2273 btrfs_alloc_workqueue(fs_info
, "endio-raid56", flags
,
2275 fs_info
->endio_repair_workers
=
2276 btrfs_alloc_workqueue(fs_info
, "endio-repair", flags
, 1, 0);
2277 fs_info
->rmw_workers
=
2278 btrfs_alloc_workqueue(fs_info
, "rmw", flags
, max_active
, 2);
2279 fs_info
->endio_write_workers
=
2280 btrfs_alloc_workqueue(fs_info
, "endio-write", flags
,
2282 fs_info
->endio_freespace_worker
=
2283 btrfs_alloc_workqueue(fs_info
, "freespace-write", flags
,
2285 fs_info
->delayed_workers
=
2286 btrfs_alloc_workqueue(fs_info
, "delayed-meta", flags
,
2288 fs_info
->readahead_workers
=
2289 btrfs_alloc_workqueue(fs_info
, "readahead", flags
,
2291 fs_info
->qgroup_rescan_workers
=
2292 btrfs_alloc_workqueue(fs_info
, "qgroup-rescan", flags
, 1, 0);
2293 fs_info
->extent_workers
=
2294 btrfs_alloc_workqueue(fs_info
, "extent-refs", flags
,
2295 min_t(u64
, fs_devices
->num_devices
,
2298 if (!(fs_info
->workers
&& fs_info
->delalloc_workers
&&
2299 fs_info
->submit_workers
&& fs_info
->flush_workers
&&
2300 fs_info
->endio_workers
&& fs_info
->endio_meta_workers
&&
2301 fs_info
->endio_meta_write_workers
&&
2302 fs_info
->endio_repair_workers
&&
2303 fs_info
->endio_write_workers
&& fs_info
->endio_raid56_workers
&&
2304 fs_info
->endio_freespace_worker
&& fs_info
->rmw_workers
&&
2305 fs_info
->caching_workers
&& fs_info
->readahead_workers
&&
2306 fs_info
->fixup_workers
&& fs_info
->delayed_workers
&&
2307 fs_info
->extent_workers
&&
2308 fs_info
->qgroup_rescan_workers
)) {
2315 static int btrfs_replay_log(struct btrfs_fs_info
*fs_info
,
2316 struct btrfs_fs_devices
*fs_devices
)
2319 struct btrfs_root
*log_tree_root
;
2320 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2321 u64 bytenr
= btrfs_super_log_root(disk_super
);
2322 int level
= btrfs_super_log_root_level(disk_super
);
2324 if (fs_devices
->rw_devices
== 0) {
2325 btrfs_warn(fs_info
, "log replay required on RO media");
2329 log_tree_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2333 __setup_root(log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
2335 log_tree_root
->node
= read_tree_block(fs_info
, bytenr
,
2336 fs_info
->generation
+ 1,
2338 if (IS_ERR(log_tree_root
->node
)) {
2339 btrfs_warn(fs_info
, "failed to read log tree");
2340 ret
= PTR_ERR(log_tree_root
->node
);
2341 kfree(log_tree_root
);
2343 } else if (!extent_buffer_uptodate(log_tree_root
->node
)) {
2344 btrfs_err(fs_info
, "failed to read log tree");
2345 free_extent_buffer(log_tree_root
->node
);
2346 kfree(log_tree_root
);
2349 /* returns with log_tree_root freed on success */
2350 ret
= btrfs_recover_log_trees(log_tree_root
);
2352 btrfs_handle_fs_error(fs_info
, ret
,
2353 "Failed to recover log tree");
2354 free_extent_buffer(log_tree_root
->node
);
2355 kfree(log_tree_root
);
2359 if (sb_rdonly(fs_info
->sb
)) {
2360 ret
= btrfs_commit_super(fs_info
);
2368 static int btrfs_read_roots(struct btrfs_fs_info
*fs_info
)
2370 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
2371 struct btrfs_root
*root
;
2372 struct btrfs_key location
;
2375 BUG_ON(!fs_info
->tree_root
);
2377 location
.objectid
= BTRFS_EXTENT_TREE_OBJECTID
;
2378 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2379 location
.offset
= 0;
2381 root
= btrfs_read_tree_root(tree_root
, &location
);
2383 ret
= PTR_ERR(root
);
2386 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2387 fs_info
->extent_root
= root
;
2389 location
.objectid
= BTRFS_DEV_TREE_OBJECTID
;
2390 root
= btrfs_read_tree_root(tree_root
, &location
);
2392 ret
= PTR_ERR(root
);
2395 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2396 fs_info
->dev_root
= root
;
2397 btrfs_init_devices_late(fs_info
);
2399 location
.objectid
= BTRFS_CSUM_TREE_OBJECTID
;
2400 root
= btrfs_read_tree_root(tree_root
, &location
);
2402 ret
= PTR_ERR(root
);
2405 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2406 fs_info
->csum_root
= root
;
2408 location
.objectid
= BTRFS_QUOTA_TREE_OBJECTID
;
2409 root
= btrfs_read_tree_root(tree_root
, &location
);
2410 if (!IS_ERR(root
)) {
2411 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2412 set_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
);
2413 fs_info
->quota_root
= root
;
2416 location
.objectid
= BTRFS_UUID_TREE_OBJECTID
;
2417 root
= btrfs_read_tree_root(tree_root
, &location
);
2419 ret
= PTR_ERR(root
);
2423 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2424 fs_info
->uuid_root
= root
;
2427 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
2428 location
.objectid
= BTRFS_FREE_SPACE_TREE_OBJECTID
;
2429 root
= btrfs_read_tree_root(tree_root
, &location
);
2431 ret
= PTR_ERR(root
);
2434 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2435 fs_info
->free_space_root
= root
;
2440 btrfs_warn(fs_info
, "failed to read root (objectid=%llu): %d",
2441 location
.objectid
, ret
);
2445 int open_ctree(struct super_block
*sb
,
2446 struct btrfs_fs_devices
*fs_devices
,
2454 struct btrfs_key location
;
2455 struct buffer_head
*bh
;
2456 struct btrfs_super_block
*disk_super
;
2457 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2458 struct btrfs_root
*tree_root
;
2459 struct btrfs_root
*chunk_root
;
2462 int num_backups_tried
= 0;
2463 int backup_index
= 0;
2464 int clear_free_space_tree
= 0;
2467 tree_root
= fs_info
->tree_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2468 chunk_root
= fs_info
->chunk_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2469 if (!tree_root
|| !chunk_root
) {
2474 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
2480 ret
= percpu_counter_init(&fs_info
->dirty_metadata_bytes
, 0, GFP_KERNEL
);
2485 fs_info
->dirty_metadata_batch
= PAGE_SIZE
*
2486 (1 + ilog2(nr_cpu_ids
));
2488 ret
= percpu_counter_init(&fs_info
->delalloc_bytes
, 0, GFP_KERNEL
);
2491 goto fail_dirty_metadata_bytes
;
2494 ret
= percpu_counter_init(&fs_info
->bio_counter
, 0, GFP_KERNEL
);
2497 goto fail_delalloc_bytes
;
2500 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2501 INIT_RADIX_TREE(&fs_info
->buffer_radix
, GFP_ATOMIC
);
2502 INIT_LIST_HEAD(&fs_info
->trans_list
);
2503 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2504 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2505 INIT_LIST_HEAD(&fs_info
->delalloc_roots
);
2506 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2507 INIT_LIST_HEAD(&fs_info
->pending_raid_kobjs
);
2508 spin_lock_init(&fs_info
->pending_raid_kobjs_lock
);
2509 spin_lock_init(&fs_info
->delalloc_root_lock
);
2510 spin_lock_init(&fs_info
->trans_lock
);
2511 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2512 spin_lock_init(&fs_info
->delayed_iput_lock
);
2513 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2514 spin_lock_init(&fs_info
->tree_mod_seq_lock
);
2515 spin_lock_init(&fs_info
->super_lock
);
2516 spin_lock_init(&fs_info
->qgroup_op_lock
);
2517 spin_lock_init(&fs_info
->buffer_lock
);
2518 spin_lock_init(&fs_info
->unused_bgs_lock
);
2519 rwlock_init(&fs_info
->tree_mod_log_lock
);
2520 mutex_init(&fs_info
->unused_bg_unpin_mutex
);
2521 mutex_init(&fs_info
->delete_unused_bgs_mutex
);
2522 mutex_init(&fs_info
->reloc_mutex
);
2523 mutex_init(&fs_info
->delalloc_root_mutex
);
2524 mutex_init(&fs_info
->cleaner_delayed_iput_mutex
);
2525 seqlock_init(&fs_info
->profiles_lock
);
2527 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2528 INIT_LIST_HEAD(&fs_info
->space_info
);
2529 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2530 INIT_LIST_HEAD(&fs_info
->unused_bgs
);
2531 btrfs_mapping_init(&fs_info
->mapping_tree
);
2532 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2533 BTRFS_BLOCK_RSV_GLOBAL
);
2534 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2535 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2536 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2537 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2538 BTRFS_BLOCK_RSV_DELOPS
);
2539 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2540 atomic_set(&fs_info
->defrag_running
, 0);
2541 atomic_set(&fs_info
->qgroup_op_seq
, 0);
2542 atomic_set(&fs_info
->reada_works_cnt
, 0);
2543 atomic64_set(&fs_info
->tree_mod_seq
, 0);
2545 fs_info
->max_inline
= BTRFS_DEFAULT_MAX_INLINE
;
2546 fs_info
->metadata_ratio
= 0;
2547 fs_info
->defrag_inodes
= RB_ROOT
;
2548 atomic64_set(&fs_info
->free_chunk_space
, 0);
2549 fs_info
->tree_mod_log
= RB_ROOT
;
2550 fs_info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
2551 fs_info
->avg_delayed_ref_runtime
= NSEC_PER_SEC
>> 6; /* div by 64 */
2552 /* readahead state */
2553 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
2554 spin_lock_init(&fs_info
->reada_lock
);
2555 btrfs_init_ref_verify(fs_info
);
2557 fs_info
->thread_pool_size
= min_t(unsigned long,
2558 num_online_cpus() + 2, 8);
2560 INIT_LIST_HEAD(&fs_info
->ordered_roots
);
2561 spin_lock_init(&fs_info
->ordered_root_lock
);
2563 fs_info
->btree_inode
= new_inode(sb
);
2564 if (!fs_info
->btree_inode
) {
2566 goto fail_bio_counter
;
2568 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
2570 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2572 if (!fs_info
->delayed_root
) {
2576 btrfs_init_delayed_root(fs_info
->delayed_root
);
2578 btrfs_init_scrub(fs_info
);
2579 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2580 fs_info
->check_integrity_print_mask
= 0;
2582 btrfs_init_balance(fs_info
);
2583 btrfs_init_async_reclaim_work(&fs_info
->async_reclaim_work
);
2585 sb
->s_blocksize
= BTRFS_BDEV_BLOCKSIZE
;
2586 sb
->s_blocksize_bits
= blksize_bits(BTRFS_BDEV_BLOCKSIZE
);
2588 btrfs_init_btree_inode(fs_info
);
2590 spin_lock_init(&fs_info
->block_group_cache_lock
);
2591 fs_info
->block_group_cache_tree
= RB_ROOT
;
2592 fs_info
->first_logical_byte
= (u64
)-1;
2594 extent_io_tree_init(&fs_info
->freed_extents
[0], NULL
);
2595 extent_io_tree_init(&fs_info
->freed_extents
[1], NULL
);
2596 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
2597 set_bit(BTRFS_FS_BARRIER
, &fs_info
->flags
);
2599 mutex_init(&fs_info
->ordered_operations_mutex
);
2600 mutex_init(&fs_info
->tree_log_mutex
);
2601 mutex_init(&fs_info
->chunk_mutex
);
2602 mutex_init(&fs_info
->transaction_kthread_mutex
);
2603 mutex_init(&fs_info
->cleaner_mutex
);
2604 mutex_init(&fs_info
->volume_mutex
);
2605 mutex_init(&fs_info
->ro_block_group_mutex
);
2606 init_rwsem(&fs_info
->commit_root_sem
);
2607 init_rwsem(&fs_info
->cleanup_work_sem
);
2608 init_rwsem(&fs_info
->subvol_sem
);
2609 sema_init(&fs_info
->uuid_tree_rescan_sem
, 1);
2611 btrfs_init_dev_replace_locks(fs_info
);
2612 btrfs_init_qgroup(fs_info
);
2614 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2615 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2617 init_waitqueue_head(&fs_info
->transaction_throttle
);
2618 init_waitqueue_head(&fs_info
->transaction_wait
);
2619 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2620 init_waitqueue_head(&fs_info
->async_submit_wait
);
2622 INIT_LIST_HEAD(&fs_info
->pinned_chunks
);
2624 /* Usable values until the real ones are cached from the superblock */
2625 fs_info
->nodesize
= 4096;
2626 fs_info
->sectorsize
= 4096;
2627 fs_info
->stripesize
= 4096;
2629 ret
= btrfs_alloc_stripe_hash_table(fs_info
);
2635 __setup_root(tree_root
, fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
2637 invalidate_bdev(fs_devices
->latest_bdev
);
2640 * Read super block and check the signature bytes only
2642 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2649 * We want to check superblock checksum, the type is stored inside.
2650 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2652 if (btrfs_check_super_csum(fs_info
, bh
->b_data
)) {
2653 btrfs_err(fs_info
, "superblock checksum mismatch");
2660 * super_copy is zeroed at allocation time and we never touch the
2661 * following bytes up to INFO_SIZE, the checksum is calculated from
2662 * the whole block of INFO_SIZE
2664 memcpy(fs_info
->super_copy
, bh
->b_data
, sizeof(*fs_info
->super_copy
));
2665 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2666 sizeof(*fs_info
->super_for_commit
));
2669 memcpy(fs_info
->fsid
, fs_info
->super_copy
->fsid
, BTRFS_FSID_SIZE
);
2671 ret
= btrfs_check_super_valid(fs_info
);
2673 btrfs_err(fs_info
, "superblock contains fatal errors");
2678 disk_super
= fs_info
->super_copy
;
2679 if (!btrfs_super_root(disk_super
))
2682 /* check FS state, whether FS is broken. */
2683 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_ERROR
)
2684 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
2687 * run through our array of backup supers and setup
2688 * our ring pointer to the oldest one
2690 generation
= btrfs_super_generation(disk_super
);
2691 find_oldest_super_backup(fs_info
, generation
);
2694 * In the long term, we'll store the compression type in the super
2695 * block, and it'll be used for per file compression control.
2697 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2699 ret
= btrfs_parse_options(fs_info
, options
, sb
->s_flags
);
2705 features
= btrfs_super_incompat_flags(disk_super
) &
2706 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2709 "cannot mount because of unsupported optional features (%llx)",
2715 features
= btrfs_super_incompat_flags(disk_super
);
2716 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2717 if (fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
2718 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2719 else if (fs_info
->compress_type
== BTRFS_COMPRESS_ZSTD
)
2720 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD
;
2722 if (features
& BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA
)
2723 btrfs_info(fs_info
, "has skinny extents");
2726 * flag our filesystem as having big metadata blocks if
2727 * they are bigger than the page size
2729 if (btrfs_super_nodesize(disk_super
) > PAGE_SIZE
) {
2730 if (!(features
& BTRFS_FEATURE_INCOMPAT_BIG_METADATA
))
2732 "flagging fs with big metadata feature");
2733 features
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
2736 nodesize
= btrfs_super_nodesize(disk_super
);
2737 sectorsize
= btrfs_super_sectorsize(disk_super
);
2738 stripesize
= sectorsize
;
2739 fs_info
->dirty_metadata_batch
= nodesize
* (1 + ilog2(nr_cpu_ids
));
2740 fs_info
->delalloc_batch
= sectorsize
* 512 * (1 + ilog2(nr_cpu_ids
));
2742 /* Cache block sizes */
2743 fs_info
->nodesize
= nodesize
;
2744 fs_info
->sectorsize
= sectorsize
;
2745 fs_info
->stripesize
= stripesize
;
2748 * mixed block groups end up with duplicate but slightly offset
2749 * extent buffers for the same range. It leads to corruptions
2751 if ((features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
2752 (sectorsize
!= nodesize
)) {
2754 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2755 nodesize
, sectorsize
);
2760 * Needn't use the lock because there is no other task which will
2763 btrfs_set_super_incompat_flags(disk_super
, features
);
2765 features
= btrfs_super_compat_ro_flags(disk_super
) &
2766 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
2767 if (!sb_rdonly(sb
) && features
) {
2769 "cannot mount read-write because of unsupported optional features (%llx)",
2775 ret
= btrfs_init_workqueues(fs_info
, fs_devices
);
2778 goto fail_sb_buffer
;
2781 sb
->s_bdi
->congested_fn
= btrfs_congested_fn
;
2782 sb
->s_bdi
->congested_data
= fs_info
;
2783 sb
->s_bdi
->capabilities
|= BDI_CAP_CGROUP_WRITEBACK
;
2784 sb
->s_bdi
->ra_pages
= VM_MAX_READAHEAD
* SZ_1K
/ PAGE_SIZE
;
2785 sb
->s_bdi
->ra_pages
*= btrfs_super_num_devices(disk_super
);
2786 sb
->s_bdi
->ra_pages
= max(sb
->s_bdi
->ra_pages
, SZ_4M
/ PAGE_SIZE
);
2788 sb
->s_blocksize
= sectorsize
;
2789 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
2790 memcpy(&sb
->s_uuid
, fs_info
->fsid
, BTRFS_FSID_SIZE
);
2792 mutex_lock(&fs_info
->chunk_mutex
);
2793 ret
= btrfs_read_sys_array(fs_info
);
2794 mutex_unlock(&fs_info
->chunk_mutex
);
2796 btrfs_err(fs_info
, "failed to read the system array: %d", ret
);
2797 goto fail_sb_buffer
;
2800 generation
= btrfs_super_chunk_root_generation(disk_super
);
2801 level
= btrfs_super_chunk_root_level(disk_super
);
2803 __setup_root(chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
2805 chunk_root
->node
= read_tree_block(fs_info
,
2806 btrfs_super_chunk_root(disk_super
),
2807 generation
, level
, NULL
);
2808 if (IS_ERR(chunk_root
->node
) ||
2809 !extent_buffer_uptodate(chunk_root
->node
)) {
2810 btrfs_err(fs_info
, "failed to read chunk root");
2811 if (!IS_ERR(chunk_root
->node
))
2812 free_extent_buffer(chunk_root
->node
);
2813 chunk_root
->node
= NULL
;
2814 goto fail_tree_roots
;
2816 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
2817 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
2819 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
2820 btrfs_header_chunk_tree_uuid(chunk_root
->node
), BTRFS_UUID_SIZE
);
2822 ret
= btrfs_read_chunk_tree(fs_info
);
2824 btrfs_err(fs_info
, "failed to read chunk tree: %d", ret
);
2825 goto fail_tree_roots
;
2829 * Keep the devid that is marked to be the target device for the
2830 * device replace procedure
2832 btrfs_free_extra_devids(fs_devices
, 0);
2834 if (!fs_devices
->latest_bdev
) {
2835 btrfs_err(fs_info
, "failed to read devices");
2836 goto fail_tree_roots
;
2840 generation
= btrfs_super_generation(disk_super
);
2841 level
= btrfs_super_root_level(disk_super
);
2843 tree_root
->node
= read_tree_block(fs_info
,
2844 btrfs_super_root(disk_super
),
2845 generation
, level
, NULL
);
2846 if (IS_ERR(tree_root
->node
) ||
2847 !extent_buffer_uptodate(tree_root
->node
)) {
2848 btrfs_warn(fs_info
, "failed to read tree root");
2849 if (!IS_ERR(tree_root
->node
))
2850 free_extent_buffer(tree_root
->node
);
2851 tree_root
->node
= NULL
;
2852 goto recovery_tree_root
;
2855 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2856 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2857 btrfs_set_root_refs(&tree_root
->root_item
, 1);
2859 mutex_lock(&tree_root
->objectid_mutex
);
2860 ret
= btrfs_find_highest_objectid(tree_root
,
2861 &tree_root
->highest_objectid
);
2863 mutex_unlock(&tree_root
->objectid_mutex
);
2864 goto recovery_tree_root
;
2867 ASSERT(tree_root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
2869 mutex_unlock(&tree_root
->objectid_mutex
);
2871 ret
= btrfs_read_roots(fs_info
);
2873 goto recovery_tree_root
;
2875 fs_info
->generation
= generation
;
2876 fs_info
->last_trans_committed
= generation
;
2878 ret
= btrfs_recover_balance(fs_info
);
2880 btrfs_err(fs_info
, "failed to recover balance: %d", ret
);
2881 goto fail_block_groups
;
2884 ret
= btrfs_init_dev_stats(fs_info
);
2886 btrfs_err(fs_info
, "failed to init dev_stats: %d", ret
);
2887 goto fail_block_groups
;
2890 ret
= btrfs_init_dev_replace(fs_info
);
2892 btrfs_err(fs_info
, "failed to init dev_replace: %d", ret
);
2893 goto fail_block_groups
;
2896 btrfs_free_extra_devids(fs_devices
, 1);
2898 ret
= btrfs_sysfs_add_fsid(fs_devices
, NULL
);
2900 btrfs_err(fs_info
, "failed to init sysfs fsid interface: %d",
2902 goto fail_block_groups
;
2905 ret
= btrfs_sysfs_add_device(fs_devices
);
2907 btrfs_err(fs_info
, "failed to init sysfs device interface: %d",
2909 goto fail_fsdev_sysfs
;
2912 ret
= btrfs_sysfs_add_mounted(fs_info
);
2914 btrfs_err(fs_info
, "failed to init sysfs interface: %d", ret
);
2915 goto fail_fsdev_sysfs
;
2918 ret
= btrfs_init_space_info(fs_info
);
2920 btrfs_err(fs_info
, "failed to initialize space info: %d", ret
);
2924 ret
= btrfs_read_block_groups(fs_info
);
2926 btrfs_err(fs_info
, "failed to read block groups: %d", ret
);
2930 if (!sb_rdonly(sb
) && !btrfs_check_rw_degradable(fs_info
, NULL
)) {
2932 "writeable mount is not allowed due to too many missing devices");
2936 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
2938 if (IS_ERR(fs_info
->cleaner_kthread
))
2941 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
2943 "btrfs-transaction");
2944 if (IS_ERR(fs_info
->transaction_kthread
))
2947 if (!btrfs_test_opt(fs_info
, NOSSD
) &&
2948 !fs_info
->fs_devices
->rotating
) {
2949 btrfs_set_and_info(fs_info
, SSD
, "enabling ssd optimizations");
2953 * Mount does not set all options immediately, we can do it now and do
2954 * not have to wait for transaction commit
2956 btrfs_apply_pending_changes(fs_info
);
2958 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2959 if (btrfs_test_opt(fs_info
, CHECK_INTEGRITY
)) {
2960 ret
= btrfsic_mount(fs_info
, fs_devices
,
2961 btrfs_test_opt(fs_info
,
2962 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
2964 fs_info
->check_integrity_print_mask
);
2967 "failed to initialize integrity check module: %d",
2971 ret
= btrfs_read_qgroup_config(fs_info
);
2973 goto fail_trans_kthread
;
2975 if (btrfs_build_ref_tree(fs_info
))
2976 btrfs_err(fs_info
, "couldn't build ref tree");
2978 /* do not make disk changes in broken FS or nologreplay is given */
2979 if (btrfs_super_log_root(disk_super
) != 0 &&
2980 !btrfs_test_opt(fs_info
, NOLOGREPLAY
)) {
2981 ret
= btrfs_replay_log(fs_info
, fs_devices
);
2988 ret
= btrfs_find_orphan_roots(fs_info
);
2992 if (!sb_rdonly(sb
)) {
2993 ret
= btrfs_cleanup_fs_roots(fs_info
);
2997 mutex_lock(&fs_info
->cleaner_mutex
);
2998 ret
= btrfs_recover_relocation(tree_root
);
2999 mutex_unlock(&fs_info
->cleaner_mutex
);
3001 btrfs_warn(fs_info
, "failed to recover relocation: %d",
3008 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
3009 location
.type
= BTRFS_ROOT_ITEM_KEY
;
3010 location
.offset
= 0;
3012 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
3013 if (IS_ERR(fs_info
->fs_root
)) {
3014 err
= PTR_ERR(fs_info
->fs_root
);
3015 btrfs_warn(fs_info
, "failed to read fs tree: %d", err
);
3022 if (btrfs_test_opt(fs_info
, CLEAR_CACHE
) &&
3023 btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3024 clear_free_space_tree
= 1;
3025 } else if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
) &&
3026 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE_VALID
)) {
3027 btrfs_warn(fs_info
, "free space tree is invalid");
3028 clear_free_space_tree
= 1;
3031 if (clear_free_space_tree
) {
3032 btrfs_info(fs_info
, "clearing free space tree");
3033 ret
= btrfs_clear_free_space_tree(fs_info
);
3036 "failed to clear free space tree: %d", ret
);
3037 close_ctree(fs_info
);
3042 if (btrfs_test_opt(fs_info
, FREE_SPACE_TREE
) &&
3043 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3044 btrfs_info(fs_info
, "creating free space tree");
3045 ret
= btrfs_create_free_space_tree(fs_info
);
3048 "failed to create free space tree: %d", ret
);
3049 close_ctree(fs_info
);
3054 down_read(&fs_info
->cleanup_work_sem
);
3055 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
3056 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
3057 up_read(&fs_info
->cleanup_work_sem
);
3058 close_ctree(fs_info
);
3061 up_read(&fs_info
->cleanup_work_sem
);
3063 ret
= btrfs_resume_balance_async(fs_info
);
3065 btrfs_warn(fs_info
, "failed to resume balance: %d", ret
);
3066 close_ctree(fs_info
);
3070 ret
= btrfs_resume_dev_replace_async(fs_info
);
3072 btrfs_warn(fs_info
, "failed to resume device replace: %d", ret
);
3073 close_ctree(fs_info
);
3077 btrfs_qgroup_rescan_resume(fs_info
);
3079 if (!fs_info
->uuid_root
) {
3080 btrfs_info(fs_info
, "creating UUID tree");
3081 ret
= btrfs_create_uuid_tree(fs_info
);
3084 "failed to create the UUID tree: %d", ret
);
3085 close_ctree(fs_info
);
3088 } else if (btrfs_test_opt(fs_info
, RESCAN_UUID_TREE
) ||
3089 fs_info
->generation
!=
3090 btrfs_super_uuid_tree_generation(disk_super
)) {
3091 btrfs_info(fs_info
, "checking UUID tree");
3092 ret
= btrfs_check_uuid_tree(fs_info
);
3095 "failed to check the UUID tree: %d", ret
);
3096 close_ctree(fs_info
);
3100 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
3102 set_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
3105 * backuproot only affect mount behavior, and if open_ctree succeeded,
3106 * no need to keep the flag
3108 btrfs_clear_opt(fs_info
->mount_opt
, USEBACKUPROOT
);
3113 btrfs_free_qgroup_config(fs_info
);
3115 kthread_stop(fs_info
->transaction_kthread
);
3116 btrfs_cleanup_transaction(fs_info
);
3117 btrfs_free_fs_roots(fs_info
);
3119 kthread_stop(fs_info
->cleaner_kthread
);
3122 * make sure we're done with the btree inode before we stop our
3125 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
3128 btrfs_sysfs_remove_mounted(fs_info
);
3131 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3134 btrfs_put_block_group_cache(fs_info
);
3137 free_root_pointers(fs_info
, 1);
3138 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3141 btrfs_stop_all_workers(fs_info
);
3142 btrfs_free_block_groups(fs_info
);
3145 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3147 iput(fs_info
->btree_inode
);
3149 percpu_counter_destroy(&fs_info
->bio_counter
);
3150 fail_delalloc_bytes
:
3151 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3152 fail_dirty_metadata_bytes
:
3153 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3155 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3157 btrfs_free_stripe_hash_table(fs_info
);
3158 btrfs_close_devices(fs_info
->fs_devices
);
3162 if (!btrfs_test_opt(fs_info
, USEBACKUPROOT
))
3163 goto fail_tree_roots
;
3165 free_root_pointers(fs_info
, 0);
3167 /* don't use the log in recovery mode, it won't be valid */
3168 btrfs_set_super_log_root(disk_super
, 0);
3170 /* we can't trust the free space cache either */
3171 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
3173 ret
= next_root_backup(fs_info
, fs_info
->super_copy
,
3174 &num_backups_tried
, &backup_index
);
3176 goto fail_block_groups
;
3177 goto retry_root_backup
;
3179 ALLOW_ERROR_INJECTION(open_ctree
, ERRNO
);
3181 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
3184 set_buffer_uptodate(bh
);
3186 struct btrfs_device
*device
= (struct btrfs_device
*)
3189 btrfs_warn_rl_in_rcu(device
->fs_info
,
3190 "lost page write due to IO error on %s",
3191 rcu_str_deref(device
->name
));
3192 /* note, we don't set_buffer_write_io_error because we have
3193 * our own ways of dealing with the IO errors
3195 clear_buffer_uptodate(bh
);
3196 btrfs_dev_stat_inc_and_print(device
, BTRFS_DEV_STAT_WRITE_ERRS
);
3202 int btrfs_read_dev_one_super(struct block_device
*bdev
, int copy_num
,
3203 struct buffer_head
**bh_ret
)
3205 struct buffer_head
*bh
;
3206 struct btrfs_super_block
*super
;
3209 bytenr
= btrfs_sb_offset(copy_num
);
3210 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= i_size_read(bdev
->bd_inode
))
3213 bh
= __bread(bdev
, bytenr
/ BTRFS_BDEV_BLOCKSIZE
, BTRFS_SUPER_INFO_SIZE
);
3215 * If we fail to read from the underlying devices, as of now
3216 * the best option we have is to mark it EIO.
3221 super
= (struct btrfs_super_block
*)bh
->b_data
;
3222 if (btrfs_super_bytenr(super
) != bytenr
||
3223 btrfs_super_magic(super
) != BTRFS_MAGIC
) {
3233 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
3235 struct buffer_head
*bh
;
3236 struct buffer_head
*latest
= NULL
;
3237 struct btrfs_super_block
*super
;
3242 /* we would like to check all the supers, but that would make
3243 * a btrfs mount succeed after a mkfs from a different FS.
3244 * So, we need to add a special mount option to scan for
3245 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3247 for (i
= 0; i
< 1; i
++) {
3248 ret
= btrfs_read_dev_one_super(bdev
, i
, &bh
);
3252 super
= (struct btrfs_super_block
*)bh
->b_data
;
3254 if (!latest
|| btrfs_super_generation(super
) > transid
) {
3257 transid
= btrfs_super_generation(super
);
3264 return ERR_PTR(ret
);
3270 * Write superblock @sb to the @device. Do not wait for completion, all the
3271 * buffer heads we write are pinned.
3273 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3274 * the expected device size at commit time. Note that max_mirrors must be
3275 * same for write and wait phases.
3277 * Return number of errors when buffer head is not found or submission fails.
3279 static int write_dev_supers(struct btrfs_device
*device
,
3280 struct btrfs_super_block
*sb
, int max_mirrors
)
3282 struct buffer_head
*bh
;
3290 if (max_mirrors
== 0)
3291 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3293 for (i
= 0; i
< max_mirrors
; i
++) {
3294 bytenr
= btrfs_sb_offset(i
);
3295 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3296 device
->commit_total_bytes
)
3299 btrfs_set_super_bytenr(sb
, bytenr
);
3302 crc
= btrfs_csum_data((const char *)sb
+ BTRFS_CSUM_SIZE
, crc
,
3303 BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
3304 btrfs_csum_final(crc
, sb
->csum
);
3306 /* One reference for us, and we leave it for the caller */
3307 bh
= __getblk(device
->bdev
, bytenr
/ BTRFS_BDEV_BLOCKSIZE
,
3308 BTRFS_SUPER_INFO_SIZE
);
3310 btrfs_err(device
->fs_info
,
3311 "couldn't get super buffer head for bytenr %llu",
3317 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
3319 /* one reference for submit_bh */
3322 set_buffer_uptodate(bh
);
3324 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
3325 bh
->b_private
= device
;
3328 * we fua the first super. The others we allow
3331 op_flags
= REQ_SYNC
| REQ_META
| REQ_PRIO
;
3332 if (i
== 0 && !btrfs_test_opt(device
->fs_info
, NOBARRIER
))
3333 op_flags
|= REQ_FUA
;
3334 ret
= btrfsic_submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3338 return errors
< i
? 0 : -1;
3342 * Wait for write completion of superblocks done by write_dev_supers,
3343 * @max_mirrors same for write and wait phases.
3345 * Return number of errors when buffer head is not found or not marked up to
3348 static int wait_dev_supers(struct btrfs_device
*device
, int max_mirrors
)
3350 struct buffer_head
*bh
;
3353 bool primary_failed
= false;
3356 if (max_mirrors
== 0)
3357 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3359 for (i
= 0; i
< max_mirrors
; i
++) {
3360 bytenr
= btrfs_sb_offset(i
);
3361 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3362 device
->commit_total_bytes
)
3365 bh
= __find_get_block(device
->bdev
,
3366 bytenr
/ BTRFS_BDEV_BLOCKSIZE
,
3367 BTRFS_SUPER_INFO_SIZE
);
3371 primary_failed
= true;
3375 if (!buffer_uptodate(bh
)) {
3378 primary_failed
= true;
3381 /* drop our reference */
3384 /* drop the reference from the writing run */
3388 /* log error, force error return */
3389 if (primary_failed
) {
3390 btrfs_err(device
->fs_info
, "error writing primary super block to device %llu",
3395 return errors
< i
? 0 : -1;
3399 * endio for the write_dev_flush, this will wake anyone waiting
3400 * for the barrier when it is done
3402 static void btrfs_end_empty_barrier(struct bio
*bio
)
3404 complete(bio
->bi_private
);
3408 * Submit a flush request to the device if it supports it. Error handling is
3409 * done in the waiting counterpart.
3411 static void write_dev_flush(struct btrfs_device
*device
)
3413 struct request_queue
*q
= bdev_get_queue(device
->bdev
);
3414 struct bio
*bio
= device
->flush_bio
;
3416 if (!test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
))
3420 bio
->bi_end_io
= btrfs_end_empty_barrier
;
3421 bio_set_dev(bio
, device
->bdev
);
3422 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_PREFLUSH
;
3423 init_completion(&device
->flush_wait
);
3424 bio
->bi_private
= &device
->flush_wait
;
3426 btrfsic_submit_bio(bio
);
3427 set_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
);
3431 * If the flush bio has been submitted by write_dev_flush, wait for it.
3433 static blk_status_t
wait_dev_flush(struct btrfs_device
*device
)
3435 struct bio
*bio
= device
->flush_bio
;
3437 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
))
3440 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
);
3441 wait_for_completion_io(&device
->flush_wait
);
3443 return bio
->bi_status
;
3446 static int check_barrier_error(struct btrfs_fs_info
*fs_info
)
3448 if (!btrfs_check_rw_degradable(fs_info
, NULL
))
3454 * send an empty flush down to each device in parallel,
3455 * then wait for them
3457 static int barrier_all_devices(struct btrfs_fs_info
*info
)
3459 struct list_head
*head
;
3460 struct btrfs_device
*dev
;
3461 int errors_wait
= 0;
3464 lockdep_assert_held(&info
->fs_devices
->device_list_mutex
);
3465 /* send down all the barriers */
3466 head
= &info
->fs_devices
->devices
;
3467 list_for_each_entry(dev
, head
, dev_list
) {
3468 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
3472 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3473 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3476 write_dev_flush(dev
);
3477 dev
->last_flush_error
= BLK_STS_OK
;
3480 /* wait for all the barriers */
3481 list_for_each_entry(dev
, head
, dev_list
) {
3482 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
3488 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3489 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3492 ret
= wait_dev_flush(dev
);
3494 dev
->last_flush_error
= ret
;
3495 btrfs_dev_stat_inc_and_print(dev
,
3496 BTRFS_DEV_STAT_FLUSH_ERRS
);
3503 * At some point we need the status of all disks
3504 * to arrive at the volume status. So error checking
3505 * is being pushed to a separate loop.
3507 return check_barrier_error(info
);
3512 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags
)
3515 int min_tolerated
= INT_MAX
;
3517 if ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 ||
3518 (flags
& BTRFS_AVAIL_ALLOC_BIT_SINGLE
))
3519 min_tolerated
= min(min_tolerated
,
3520 btrfs_raid_array
[BTRFS_RAID_SINGLE
].
3521 tolerated_failures
);
3523 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
3524 if (raid_type
== BTRFS_RAID_SINGLE
)
3526 if (!(flags
& btrfs_raid_group
[raid_type
]))
3528 min_tolerated
= min(min_tolerated
,
3529 btrfs_raid_array
[raid_type
].
3530 tolerated_failures
);
3533 if (min_tolerated
== INT_MAX
) {
3534 pr_warn("BTRFS: unknown raid flag: %llu", flags
);
3538 return min_tolerated
;
3541 int write_all_supers(struct btrfs_fs_info
*fs_info
, int max_mirrors
)
3543 struct list_head
*head
;
3544 struct btrfs_device
*dev
;
3545 struct btrfs_super_block
*sb
;
3546 struct btrfs_dev_item
*dev_item
;
3550 int total_errors
= 0;
3553 do_barriers
= !btrfs_test_opt(fs_info
, NOBARRIER
);
3556 * max_mirrors == 0 indicates we're from commit_transaction,
3557 * not from fsync where the tree roots in fs_info have not
3558 * been consistent on disk.
3560 if (max_mirrors
== 0)
3561 backup_super_roots(fs_info
);
3563 sb
= fs_info
->super_for_commit
;
3564 dev_item
= &sb
->dev_item
;
3566 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
3567 head
= &fs_info
->fs_devices
->devices
;
3568 max_errors
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
3571 ret
= barrier_all_devices(fs_info
);
3574 &fs_info
->fs_devices
->device_list_mutex
);
3575 btrfs_handle_fs_error(fs_info
, ret
,
3576 "errors while submitting device barriers.");
3581 list_for_each_entry(dev
, head
, dev_list
) {
3586 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3587 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3590 btrfs_set_stack_device_generation(dev_item
, 0);
3591 btrfs_set_stack_device_type(dev_item
, dev
->type
);
3592 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
3593 btrfs_set_stack_device_total_bytes(dev_item
,
3594 dev
->commit_total_bytes
);
3595 btrfs_set_stack_device_bytes_used(dev_item
,
3596 dev
->commit_bytes_used
);
3597 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
3598 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
3599 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
3600 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
3601 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_FSID_SIZE
);
3603 flags
= btrfs_super_flags(sb
);
3604 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
3606 ret
= write_dev_supers(dev
, sb
, max_mirrors
);
3610 if (total_errors
> max_errors
) {
3611 btrfs_err(fs_info
, "%d errors while writing supers",
3613 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3615 /* FUA is masked off if unsupported and can't be the reason */
3616 btrfs_handle_fs_error(fs_info
, -EIO
,
3617 "%d errors while writing supers",
3623 list_for_each_entry(dev
, head
, dev_list
) {
3626 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3627 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3630 ret
= wait_dev_supers(dev
, max_mirrors
);
3634 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3635 if (total_errors
> max_errors
) {
3636 btrfs_handle_fs_error(fs_info
, -EIO
,
3637 "%d errors while writing supers",
3644 /* Drop a fs root from the radix tree and free it. */
3645 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info
*fs_info
,
3646 struct btrfs_root
*root
)
3648 spin_lock(&fs_info
->fs_roots_radix_lock
);
3649 radix_tree_delete(&fs_info
->fs_roots_radix
,
3650 (unsigned long)root
->root_key
.objectid
);
3651 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3653 if (btrfs_root_refs(&root
->root_item
) == 0)
3654 synchronize_srcu(&fs_info
->subvol_srcu
);
3656 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
3657 btrfs_free_log(NULL
, root
);
3658 if (root
->reloc_root
) {
3659 free_extent_buffer(root
->reloc_root
->node
);
3660 free_extent_buffer(root
->reloc_root
->commit_root
);
3661 btrfs_put_fs_root(root
->reloc_root
);
3662 root
->reloc_root
= NULL
;
3666 if (root
->free_ino_pinned
)
3667 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
3668 if (root
->free_ino_ctl
)
3669 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
3673 static void free_fs_root(struct btrfs_root
*root
)
3675 iput(root
->ino_cache_inode
);
3676 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
3677 btrfs_free_block_rsv(root
->fs_info
, root
->orphan_block_rsv
);
3678 root
->orphan_block_rsv
= NULL
;
3680 free_anon_bdev(root
->anon_dev
);
3681 if (root
->subv_writers
)
3682 btrfs_free_subvolume_writers(root
->subv_writers
);
3683 free_extent_buffer(root
->node
);
3684 free_extent_buffer(root
->commit_root
);
3685 kfree(root
->free_ino_ctl
);
3686 kfree(root
->free_ino_pinned
);
3688 btrfs_put_fs_root(root
);
3691 void btrfs_free_fs_root(struct btrfs_root
*root
)
3696 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
3698 u64 root_objectid
= 0;
3699 struct btrfs_root
*gang
[8];
3702 unsigned int ret
= 0;
3706 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
3707 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
3708 (void **)gang
, root_objectid
,
3711 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3714 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
3716 for (i
= 0; i
< ret
; i
++) {
3717 /* Avoid to grab roots in dead_roots */
3718 if (btrfs_root_refs(&gang
[i
]->root_item
) == 0) {
3722 /* grab all the search result for later use */
3723 gang
[i
] = btrfs_grab_fs_root(gang
[i
]);
3725 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3727 for (i
= 0; i
< ret
; i
++) {
3730 root_objectid
= gang
[i
]->root_key
.objectid
;
3731 err
= btrfs_orphan_cleanup(gang
[i
]);
3734 btrfs_put_fs_root(gang
[i
]);
3739 /* release the uncleaned roots due to error */
3740 for (; i
< ret
; i
++) {
3742 btrfs_put_fs_root(gang
[i
]);
3747 int btrfs_commit_super(struct btrfs_fs_info
*fs_info
)
3749 struct btrfs_root
*root
= fs_info
->tree_root
;
3750 struct btrfs_trans_handle
*trans
;
3752 mutex_lock(&fs_info
->cleaner_mutex
);
3753 btrfs_run_delayed_iputs(fs_info
);
3754 mutex_unlock(&fs_info
->cleaner_mutex
);
3755 wake_up_process(fs_info
->cleaner_kthread
);
3757 /* wait until ongoing cleanup work done */
3758 down_write(&fs_info
->cleanup_work_sem
);
3759 up_write(&fs_info
->cleanup_work_sem
);
3761 trans
= btrfs_join_transaction(root
);
3763 return PTR_ERR(trans
);
3764 return btrfs_commit_transaction(trans
);
3767 void close_ctree(struct btrfs_fs_info
*fs_info
)
3769 struct btrfs_root
*root
= fs_info
->tree_root
;
3772 set_bit(BTRFS_FS_CLOSING_START
, &fs_info
->flags
);
3774 /* wait for the qgroup rescan worker to stop */
3775 btrfs_qgroup_wait_for_completion(fs_info
, false);
3777 /* wait for the uuid_scan task to finish */
3778 down(&fs_info
->uuid_tree_rescan_sem
);
3779 /* avoid complains from lockdep et al., set sem back to initial state */
3780 up(&fs_info
->uuid_tree_rescan_sem
);
3782 /* pause restriper - we want to resume on mount */
3783 btrfs_pause_balance(fs_info
);
3785 btrfs_dev_replace_suspend_for_unmount(fs_info
);
3787 btrfs_scrub_cancel(fs_info
);
3789 /* wait for any defraggers to finish */
3790 wait_event(fs_info
->transaction_wait
,
3791 (atomic_read(&fs_info
->defrag_running
) == 0));
3793 /* clear out the rbtree of defraggable inodes */
3794 btrfs_cleanup_defrag_inodes(fs_info
);
3796 cancel_work_sync(&fs_info
->async_reclaim_work
);
3798 if (!sb_rdonly(fs_info
->sb
)) {
3800 * If the cleaner thread is stopped and there are
3801 * block groups queued for removal, the deletion will be
3802 * skipped when we quit the cleaner thread.
3804 btrfs_delete_unused_bgs(fs_info
);
3806 ret
= btrfs_commit_super(fs_info
);
3808 btrfs_err(fs_info
, "commit super ret %d", ret
);
3811 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
) ||
3812 test_bit(BTRFS_FS_STATE_TRANS_ABORTED
, &fs_info
->fs_state
))
3813 btrfs_error_commit_super(fs_info
);
3815 kthread_stop(fs_info
->transaction_kthread
);
3816 kthread_stop(fs_info
->cleaner_kthread
);
3818 set_bit(BTRFS_FS_CLOSING_DONE
, &fs_info
->flags
);
3820 btrfs_free_qgroup_config(fs_info
);
3822 if (percpu_counter_sum(&fs_info
->delalloc_bytes
)) {
3823 btrfs_info(fs_info
, "at unmount delalloc count %lld",
3824 percpu_counter_sum(&fs_info
->delalloc_bytes
));
3827 btrfs_sysfs_remove_mounted(fs_info
);
3828 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3830 btrfs_free_fs_roots(fs_info
);
3832 btrfs_put_block_group_cache(fs_info
);
3835 * we must make sure there is not any read request to
3836 * submit after we stopping all workers.
3838 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3839 btrfs_stop_all_workers(fs_info
);
3841 btrfs_free_block_groups(fs_info
);
3843 clear_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
3844 free_root_pointers(fs_info
, 1);
3846 iput(fs_info
->btree_inode
);
3848 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3849 if (btrfs_test_opt(fs_info
, CHECK_INTEGRITY
))
3850 btrfsic_unmount(fs_info
->fs_devices
);
3853 btrfs_close_devices(fs_info
->fs_devices
);
3854 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3856 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3857 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3858 percpu_counter_destroy(&fs_info
->bio_counter
);
3859 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3861 btrfs_free_stripe_hash_table(fs_info
);
3862 btrfs_free_ref_cache(fs_info
);
3864 __btrfs_free_block_rsv(root
->orphan_block_rsv
);
3865 root
->orphan_block_rsv
= NULL
;
3867 while (!list_empty(&fs_info
->pinned_chunks
)) {
3868 struct extent_map
*em
;
3870 em
= list_first_entry(&fs_info
->pinned_chunks
,
3871 struct extent_map
, list
);
3872 list_del_init(&em
->list
);
3873 free_extent_map(em
);
3877 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
,
3881 struct inode
*btree_inode
= buf
->pages
[0]->mapping
->host
;
3883 ret
= extent_buffer_uptodate(buf
);
3887 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
3888 parent_transid
, atomic
);
3894 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
3896 struct btrfs_fs_info
*fs_info
;
3897 struct btrfs_root
*root
;
3898 u64 transid
= btrfs_header_generation(buf
);
3901 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3903 * This is a fast path so only do this check if we have sanity tests
3904 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3905 * outside of the sanity tests.
3907 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY
, &buf
->bflags
)))
3910 root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3911 fs_info
= root
->fs_info
;
3912 btrfs_assert_tree_locked(buf
);
3913 if (transid
!= fs_info
->generation
)
3914 WARN(1, KERN_CRIT
"btrfs transid mismatch buffer %llu, found %llu running %llu\n",
3915 buf
->start
, transid
, fs_info
->generation
);
3916 was_dirty
= set_extent_buffer_dirty(buf
);
3918 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
3920 fs_info
->dirty_metadata_batch
);
3921 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3923 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3924 * but item data not updated.
3925 * So here we should only check item pointers, not item data.
3927 if (btrfs_header_level(buf
) == 0 &&
3928 btrfs_check_leaf_relaxed(fs_info
, buf
)) {
3929 btrfs_print_leaf(buf
);
3935 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
,
3939 * looks as though older kernels can get into trouble with
3940 * this code, they end up stuck in balance_dirty_pages forever
3944 if (current
->flags
& PF_MEMALLOC
)
3948 btrfs_balance_delayed_items(fs_info
);
3950 ret
= percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
3951 BTRFS_DIRTY_METADATA_THRESH
);
3953 balance_dirty_pages_ratelimited(fs_info
->btree_inode
->i_mapping
);
3957 void btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
)
3959 __btrfs_btree_balance_dirty(fs_info
, 1);
3962 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info
*fs_info
)
3964 __btrfs_btree_balance_dirty(fs_info
, 0);
3967 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
, int level
,
3968 struct btrfs_key
*first_key
)
3970 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3971 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3973 return btree_read_extent_buffer_pages(fs_info
, buf
, parent_transid
,
3977 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
)
3979 struct btrfs_super_block
*sb
= fs_info
->super_copy
;
3980 u64 nodesize
= btrfs_super_nodesize(sb
);
3981 u64 sectorsize
= btrfs_super_sectorsize(sb
);
3984 if (btrfs_super_magic(sb
) != BTRFS_MAGIC
) {
3985 btrfs_err(fs_info
, "no valid FS found");
3988 if (btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
) {
3989 btrfs_err(fs_info
, "unrecognized or unsupported super flag: %llu",
3990 btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
);
3993 if (btrfs_super_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
3994 btrfs_err(fs_info
, "tree_root level too big: %d >= %d",
3995 btrfs_super_root_level(sb
), BTRFS_MAX_LEVEL
);
3998 if (btrfs_super_chunk_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
3999 btrfs_err(fs_info
, "chunk_root level too big: %d >= %d",
4000 btrfs_super_chunk_root_level(sb
), BTRFS_MAX_LEVEL
);
4003 if (btrfs_super_log_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
4004 btrfs_err(fs_info
, "log_root level too big: %d >= %d",
4005 btrfs_super_log_root_level(sb
), BTRFS_MAX_LEVEL
);
4010 * Check sectorsize and nodesize first, other check will need it.
4011 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4013 if (!is_power_of_2(sectorsize
) || sectorsize
< 4096 ||
4014 sectorsize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
4015 btrfs_err(fs_info
, "invalid sectorsize %llu", sectorsize
);
4018 /* Only PAGE SIZE is supported yet */
4019 if (sectorsize
!= PAGE_SIZE
) {
4021 "sectorsize %llu not supported yet, only support %lu",
4022 sectorsize
, PAGE_SIZE
);
4025 if (!is_power_of_2(nodesize
) || nodesize
< sectorsize
||
4026 nodesize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
4027 btrfs_err(fs_info
, "invalid nodesize %llu", nodesize
);
4030 if (nodesize
!= le32_to_cpu(sb
->__unused_leafsize
)) {
4031 btrfs_err(fs_info
, "invalid leafsize %u, should be %llu",
4032 le32_to_cpu(sb
->__unused_leafsize
), nodesize
);
4036 /* Root alignment check */
4037 if (!IS_ALIGNED(btrfs_super_root(sb
), sectorsize
)) {
4038 btrfs_warn(fs_info
, "tree_root block unaligned: %llu",
4039 btrfs_super_root(sb
));
4042 if (!IS_ALIGNED(btrfs_super_chunk_root(sb
), sectorsize
)) {
4043 btrfs_warn(fs_info
, "chunk_root block unaligned: %llu",
4044 btrfs_super_chunk_root(sb
));
4047 if (!IS_ALIGNED(btrfs_super_log_root(sb
), sectorsize
)) {
4048 btrfs_warn(fs_info
, "log_root block unaligned: %llu",
4049 btrfs_super_log_root(sb
));
4053 if (memcmp(fs_info
->fsid
, sb
->dev_item
.fsid
, BTRFS_FSID_SIZE
) != 0) {
4055 "dev_item UUID does not match fsid: %pU != %pU",
4056 fs_info
->fsid
, sb
->dev_item
.fsid
);
4061 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4064 if (btrfs_super_bytes_used(sb
) < 6 * btrfs_super_nodesize(sb
)) {
4065 btrfs_err(fs_info
, "bytes_used is too small %llu",
4066 btrfs_super_bytes_used(sb
));
4069 if (!is_power_of_2(btrfs_super_stripesize(sb
))) {
4070 btrfs_err(fs_info
, "invalid stripesize %u",
4071 btrfs_super_stripesize(sb
));
4074 if (btrfs_super_num_devices(sb
) > (1UL << 31))
4075 btrfs_warn(fs_info
, "suspicious number of devices: %llu",
4076 btrfs_super_num_devices(sb
));
4077 if (btrfs_super_num_devices(sb
) == 0) {
4078 btrfs_err(fs_info
, "number of devices is 0");
4082 if (btrfs_super_bytenr(sb
) != BTRFS_SUPER_INFO_OFFSET
) {
4083 btrfs_err(fs_info
, "super offset mismatch %llu != %u",
4084 btrfs_super_bytenr(sb
), BTRFS_SUPER_INFO_OFFSET
);
4089 * Obvious sys_chunk_array corruptions, it must hold at least one key
4092 if (btrfs_super_sys_array_size(sb
) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4093 btrfs_err(fs_info
, "system chunk array too big %u > %u",
4094 btrfs_super_sys_array_size(sb
),
4095 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
);
4098 if (btrfs_super_sys_array_size(sb
) < sizeof(struct btrfs_disk_key
)
4099 + sizeof(struct btrfs_chunk
)) {
4100 btrfs_err(fs_info
, "system chunk array too small %u < %zu",
4101 btrfs_super_sys_array_size(sb
),
4102 sizeof(struct btrfs_disk_key
)
4103 + sizeof(struct btrfs_chunk
));
4108 * The generation is a global counter, we'll trust it more than the others
4109 * but it's still possible that it's the one that's wrong.
4111 if (btrfs_super_generation(sb
) < btrfs_super_chunk_root_generation(sb
))
4113 "suspicious: generation < chunk_root_generation: %llu < %llu",
4114 btrfs_super_generation(sb
),
4115 btrfs_super_chunk_root_generation(sb
));
4116 if (btrfs_super_generation(sb
) < btrfs_super_cache_generation(sb
)
4117 && btrfs_super_cache_generation(sb
) != (u64
)-1)
4119 "suspicious: generation < cache_generation: %llu < %llu",
4120 btrfs_super_generation(sb
),
4121 btrfs_super_cache_generation(sb
));
4126 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
)
4128 mutex_lock(&fs_info
->cleaner_mutex
);
4129 btrfs_run_delayed_iputs(fs_info
);
4130 mutex_unlock(&fs_info
->cleaner_mutex
);
4132 down_write(&fs_info
->cleanup_work_sem
);
4133 up_write(&fs_info
->cleanup_work_sem
);
4135 /* cleanup FS via transaction */
4136 btrfs_cleanup_transaction(fs_info
);
4139 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
4141 struct btrfs_ordered_extent
*ordered
;
4143 spin_lock(&root
->ordered_extent_lock
);
4145 * This will just short circuit the ordered completion stuff which will
4146 * make sure the ordered extent gets properly cleaned up.
4148 list_for_each_entry(ordered
, &root
->ordered_extents
,
4150 set_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
);
4151 spin_unlock(&root
->ordered_extent_lock
);
4154 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info
*fs_info
)
4156 struct btrfs_root
*root
;
4157 struct list_head splice
;
4159 INIT_LIST_HEAD(&splice
);
4161 spin_lock(&fs_info
->ordered_root_lock
);
4162 list_splice_init(&fs_info
->ordered_roots
, &splice
);
4163 while (!list_empty(&splice
)) {
4164 root
= list_first_entry(&splice
, struct btrfs_root
,
4166 list_move_tail(&root
->ordered_root
,
4167 &fs_info
->ordered_roots
);
4169 spin_unlock(&fs_info
->ordered_root_lock
);
4170 btrfs_destroy_ordered_extents(root
);
4173 spin_lock(&fs_info
->ordered_root_lock
);
4175 spin_unlock(&fs_info
->ordered_root_lock
);
4178 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
4179 struct btrfs_fs_info
*fs_info
)
4181 struct rb_node
*node
;
4182 struct btrfs_delayed_ref_root
*delayed_refs
;
4183 struct btrfs_delayed_ref_node
*ref
;
4186 delayed_refs
= &trans
->delayed_refs
;
4188 spin_lock(&delayed_refs
->lock
);
4189 if (atomic_read(&delayed_refs
->num_entries
) == 0) {
4190 spin_unlock(&delayed_refs
->lock
);
4191 btrfs_info(fs_info
, "delayed_refs has NO entry");
4195 while ((node
= rb_first(&delayed_refs
->href_root
)) != NULL
) {
4196 struct btrfs_delayed_ref_head
*head
;
4198 bool pin_bytes
= false;
4200 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
4202 if (!mutex_trylock(&head
->mutex
)) {
4203 refcount_inc(&head
->refs
);
4204 spin_unlock(&delayed_refs
->lock
);
4206 mutex_lock(&head
->mutex
);
4207 mutex_unlock(&head
->mutex
);
4208 btrfs_put_delayed_ref_head(head
);
4209 spin_lock(&delayed_refs
->lock
);
4212 spin_lock(&head
->lock
);
4213 while ((n
= rb_first(&head
->ref_tree
)) != NULL
) {
4214 ref
= rb_entry(n
, struct btrfs_delayed_ref_node
,
4217 rb_erase(&ref
->ref_node
, &head
->ref_tree
);
4218 RB_CLEAR_NODE(&ref
->ref_node
);
4219 if (!list_empty(&ref
->add_list
))
4220 list_del(&ref
->add_list
);
4221 atomic_dec(&delayed_refs
->num_entries
);
4222 btrfs_put_delayed_ref(ref
);
4224 if (head
->must_insert_reserved
)
4226 btrfs_free_delayed_extent_op(head
->extent_op
);
4227 delayed_refs
->num_heads
--;
4228 if (head
->processing
== 0)
4229 delayed_refs
->num_heads_ready
--;
4230 atomic_dec(&delayed_refs
->num_entries
);
4231 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
4232 RB_CLEAR_NODE(&head
->href_node
);
4233 spin_unlock(&head
->lock
);
4234 spin_unlock(&delayed_refs
->lock
);
4235 mutex_unlock(&head
->mutex
);
4238 btrfs_pin_extent(fs_info
, head
->bytenr
,
4239 head
->num_bytes
, 1);
4240 btrfs_put_delayed_ref_head(head
);
4242 spin_lock(&delayed_refs
->lock
);
4245 spin_unlock(&delayed_refs
->lock
);
4250 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
4252 struct btrfs_inode
*btrfs_inode
;
4253 struct list_head splice
;
4255 INIT_LIST_HEAD(&splice
);
4257 spin_lock(&root
->delalloc_lock
);
4258 list_splice_init(&root
->delalloc_inodes
, &splice
);
4260 while (!list_empty(&splice
)) {
4261 btrfs_inode
= list_first_entry(&splice
, struct btrfs_inode
,
4264 list_del_init(&btrfs_inode
->delalloc_inodes
);
4265 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
4266 &btrfs_inode
->runtime_flags
);
4267 spin_unlock(&root
->delalloc_lock
);
4269 btrfs_invalidate_inodes(btrfs_inode
->root
);
4271 spin_lock(&root
->delalloc_lock
);
4274 spin_unlock(&root
->delalloc_lock
);
4277 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info
*fs_info
)
4279 struct btrfs_root
*root
;
4280 struct list_head splice
;
4282 INIT_LIST_HEAD(&splice
);
4284 spin_lock(&fs_info
->delalloc_root_lock
);
4285 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
4286 while (!list_empty(&splice
)) {
4287 root
= list_first_entry(&splice
, struct btrfs_root
,
4289 list_del_init(&root
->delalloc_root
);
4290 root
= btrfs_grab_fs_root(root
);
4292 spin_unlock(&fs_info
->delalloc_root_lock
);
4294 btrfs_destroy_delalloc_inodes(root
);
4295 btrfs_put_fs_root(root
);
4297 spin_lock(&fs_info
->delalloc_root_lock
);
4299 spin_unlock(&fs_info
->delalloc_root_lock
);
4302 static int btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
4303 struct extent_io_tree
*dirty_pages
,
4307 struct extent_buffer
*eb
;
4312 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
4317 clear_extent_bits(dirty_pages
, start
, end
, mark
);
4318 while (start
<= end
) {
4319 eb
= find_extent_buffer(fs_info
, start
);
4320 start
+= fs_info
->nodesize
;
4323 wait_on_extent_buffer_writeback(eb
);
4325 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
4327 clear_extent_buffer_dirty(eb
);
4328 free_extent_buffer_stale(eb
);
4335 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
4336 struct extent_io_tree
*pinned_extents
)
4338 struct extent_io_tree
*unpin
;
4344 unpin
= pinned_extents
;
4347 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4348 EXTENT_DIRTY
, NULL
);
4352 clear_extent_dirty(unpin
, start
, end
);
4353 btrfs_error_unpin_extent_range(fs_info
, start
, end
);
4358 if (unpin
== &fs_info
->freed_extents
[0])
4359 unpin
= &fs_info
->freed_extents
[1];
4361 unpin
= &fs_info
->freed_extents
[0];
4369 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache
*cache
)
4371 struct inode
*inode
;
4373 inode
= cache
->io_ctl
.inode
;
4375 invalidate_inode_pages2(inode
->i_mapping
);
4376 BTRFS_I(inode
)->generation
= 0;
4377 cache
->io_ctl
.inode
= NULL
;
4380 btrfs_put_block_group(cache
);
4383 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction
*cur_trans
,
4384 struct btrfs_fs_info
*fs_info
)
4386 struct btrfs_block_group_cache
*cache
;
4388 spin_lock(&cur_trans
->dirty_bgs_lock
);
4389 while (!list_empty(&cur_trans
->dirty_bgs
)) {
4390 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
4391 struct btrfs_block_group_cache
,
4394 if (!list_empty(&cache
->io_list
)) {
4395 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4396 list_del_init(&cache
->io_list
);
4397 btrfs_cleanup_bg_io(cache
);
4398 spin_lock(&cur_trans
->dirty_bgs_lock
);
4401 list_del_init(&cache
->dirty_list
);
4402 spin_lock(&cache
->lock
);
4403 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4404 spin_unlock(&cache
->lock
);
4406 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4407 btrfs_put_block_group(cache
);
4408 spin_lock(&cur_trans
->dirty_bgs_lock
);
4410 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4413 * Refer to the definition of io_bgs member for details why it's safe
4414 * to use it without any locking
4416 while (!list_empty(&cur_trans
->io_bgs
)) {
4417 cache
= list_first_entry(&cur_trans
->io_bgs
,
4418 struct btrfs_block_group_cache
,
4421 list_del_init(&cache
->io_list
);
4422 spin_lock(&cache
->lock
);
4423 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4424 spin_unlock(&cache
->lock
);
4425 btrfs_cleanup_bg_io(cache
);
4429 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
,
4430 struct btrfs_fs_info
*fs_info
)
4432 btrfs_cleanup_dirty_bgs(cur_trans
, fs_info
);
4433 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
4434 ASSERT(list_empty(&cur_trans
->io_bgs
));
4436 btrfs_destroy_delayed_refs(cur_trans
, fs_info
);
4438 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
4439 wake_up(&fs_info
->transaction_blocked_wait
);
4441 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
4442 wake_up(&fs_info
->transaction_wait
);
4444 btrfs_destroy_delayed_inodes(fs_info
);
4445 btrfs_assert_delayed_root_empty(fs_info
);
4447 btrfs_destroy_marked_extents(fs_info
, &cur_trans
->dirty_pages
,
4449 btrfs_destroy_pinned_extent(fs_info
,
4450 fs_info
->pinned_extents
);
4452 cur_trans
->state
=TRANS_STATE_COMPLETED
;
4453 wake_up(&cur_trans
->commit_wait
);
4456 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
)
4458 struct btrfs_transaction
*t
;
4460 mutex_lock(&fs_info
->transaction_kthread_mutex
);
4462 spin_lock(&fs_info
->trans_lock
);
4463 while (!list_empty(&fs_info
->trans_list
)) {
4464 t
= list_first_entry(&fs_info
->trans_list
,
4465 struct btrfs_transaction
, list
);
4466 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
4467 refcount_inc(&t
->use_count
);
4468 spin_unlock(&fs_info
->trans_lock
);
4469 btrfs_wait_for_commit(fs_info
, t
->transid
);
4470 btrfs_put_transaction(t
);
4471 spin_lock(&fs_info
->trans_lock
);
4474 if (t
== fs_info
->running_transaction
) {
4475 t
->state
= TRANS_STATE_COMMIT_DOING
;
4476 spin_unlock(&fs_info
->trans_lock
);
4478 * We wait for 0 num_writers since we don't hold a trans
4479 * handle open currently for this transaction.
4481 wait_event(t
->writer_wait
,
4482 atomic_read(&t
->num_writers
) == 0);
4484 spin_unlock(&fs_info
->trans_lock
);
4486 btrfs_cleanup_one_transaction(t
, fs_info
);
4488 spin_lock(&fs_info
->trans_lock
);
4489 if (t
== fs_info
->running_transaction
)
4490 fs_info
->running_transaction
= NULL
;
4491 list_del_init(&t
->list
);
4492 spin_unlock(&fs_info
->trans_lock
);
4494 btrfs_put_transaction(t
);
4495 trace_btrfs_transaction_commit(fs_info
->tree_root
);
4496 spin_lock(&fs_info
->trans_lock
);
4498 spin_unlock(&fs_info
->trans_lock
);
4499 btrfs_destroy_all_ordered_extents(fs_info
);
4500 btrfs_destroy_delayed_inodes(fs_info
);
4501 btrfs_assert_delayed_root_empty(fs_info
);
4502 btrfs_destroy_pinned_extent(fs_info
, fs_info
->pinned_extents
);
4503 btrfs_destroy_all_delalloc_inodes(fs_info
);
4504 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
4509 static struct btrfs_fs_info
*btree_fs_info(void *private_data
)
4511 struct inode
*inode
= private_data
;
4512 return btrfs_sb(inode
->i_sb
);
4515 static const struct extent_io_ops btree_extent_io_ops
= {
4516 /* mandatory callbacks */
4517 .submit_bio_hook
= btree_submit_bio_hook
,
4518 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
4519 /* note we're sharing with inode.c for the merge bio hook */
4520 .merge_bio_hook
= btrfs_merge_bio_hook
,
4521 .readpage_io_failed_hook
= btree_io_failed_hook
,
4522 .set_range_writeback
= btrfs_set_range_writeback
,
4523 .tree_fs_info
= btree_fs_info
,
4525 /* optional callbacks */