1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/mpage.h>
18 #include <linux/swap.h>
19 #include <linux/writeback.h>
20 #include <linux/compat.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/xattr.h>
23 #include <linux/posix_acl.h>
24 #include <linux/falloc.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/mount.h>
28 #include <linux/btrfs.h>
29 #include <linux/blkdev.h>
30 #include <linux/posix_acl_xattr.h>
31 #include <linux/uio.h>
32 #include <linux/magic.h>
33 #include <linux/iversion.h>
34 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "ordered-data.h"
44 #include "compression.h"
46 #include "free-space-cache.h"
47 #include "inode-map.h"
53 struct btrfs_iget_args
{
54 struct btrfs_key
*location
;
55 struct btrfs_root
*root
;
58 struct btrfs_dio_data
{
60 u64 unsubmitted_oe_range_start
;
61 u64 unsubmitted_oe_range_end
;
65 static const struct inode_operations btrfs_dir_inode_operations
;
66 static const struct inode_operations btrfs_symlink_inode_operations
;
67 static const struct inode_operations btrfs_dir_ro_inode_operations
;
68 static const struct inode_operations btrfs_special_inode_operations
;
69 static const struct inode_operations btrfs_file_inode_operations
;
70 static const struct address_space_operations btrfs_aops
;
71 static const struct address_space_operations btrfs_symlink_aops
;
72 static const struct file_operations btrfs_dir_file_operations
;
73 static const struct extent_io_ops btrfs_extent_io_ops
;
75 static struct kmem_cache
*btrfs_inode_cachep
;
76 struct kmem_cache
*btrfs_trans_handle_cachep
;
77 struct kmem_cache
*btrfs_path_cachep
;
78 struct kmem_cache
*btrfs_free_space_cachep
;
81 static const unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
82 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
83 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
84 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
85 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
86 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
87 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
88 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
91 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
);
92 static int btrfs_truncate(struct inode
*inode
, bool skip_writeback
);
93 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
94 static noinline
int cow_file_range(struct inode
*inode
,
95 struct page
*locked_page
,
96 u64 start
, u64 end
, u64 delalloc_end
,
97 int *page_started
, unsigned long *nr_written
,
98 int unlock
, struct btrfs_dedupe_hash
*hash
);
99 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
100 u64 orig_start
, u64 block_start
,
101 u64 block_len
, u64 orig_block_len
,
102 u64 ram_bytes
, int compress_type
,
105 static void __endio_write_update_ordered(struct inode
*inode
,
106 const u64 offset
, const u64 bytes
,
107 const bool uptodate
);
110 * Cleanup all submitted ordered extents in specified range to handle errors
111 * from the fill_dellaloc() callback.
113 * NOTE: caller must ensure that when an error happens, it can not call
114 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
115 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
116 * to be released, which we want to happen only when finishing the ordered
117 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
118 * fill_delalloc() callback already does proper cleanup for the first page of
119 * the range, that is, it invokes the callback writepage_end_io_hook() for the
120 * range of the first page.
122 static inline void btrfs_cleanup_ordered_extents(struct inode
*inode
,
126 unsigned long index
= offset
>> PAGE_SHIFT
;
127 unsigned long end_index
= (offset
+ bytes
- 1) >> PAGE_SHIFT
;
130 while (index
<= end_index
) {
131 page
= find_get_page(inode
->i_mapping
, index
);
135 ClearPagePrivate2(page
);
138 return __endio_write_update_ordered(inode
, offset
+ PAGE_SIZE
,
139 bytes
- PAGE_SIZE
, false);
142 static int btrfs_dirty_inode(struct inode
*inode
);
144 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
145 void btrfs_test_inode_set_ops(struct inode
*inode
)
147 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
151 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
152 struct inode
*inode
, struct inode
*dir
,
153 const struct qstr
*qstr
)
157 err
= btrfs_init_acl(trans
, inode
, dir
);
159 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
164 * this does all the hard work for inserting an inline extent into
165 * the btree. The caller should have done a btrfs_drop_extents so that
166 * no overlapping inline items exist in the btree
168 static int insert_inline_extent(struct btrfs_trans_handle
*trans
,
169 struct btrfs_path
*path
, int extent_inserted
,
170 struct btrfs_root
*root
, struct inode
*inode
,
171 u64 start
, size_t size
, size_t compressed_size
,
173 struct page
**compressed_pages
)
175 struct extent_buffer
*leaf
;
176 struct page
*page
= NULL
;
179 struct btrfs_file_extent_item
*ei
;
181 size_t cur_size
= size
;
182 unsigned long offset
;
184 if (compressed_size
&& compressed_pages
)
185 cur_size
= compressed_size
;
187 inode_add_bytes(inode
, size
);
189 if (!extent_inserted
) {
190 struct btrfs_key key
;
193 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
195 key
.type
= BTRFS_EXTENT_DATA_KEY
;
197 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
198 path
->leave_spinning
= 1;
199 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
204 leaf
= path
->nodes
[0];
205 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
206 struct btrfs_file_extent_item
);
207 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
208 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
209 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
210 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
211 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
212 ptr
= btrfs_file_extent_inline_start(ei
);
214 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
217 while (compressed_size
> 0) {
218 cpage
= compressed_pages
[i
];
219 cur_size
= min_t(unsigned long, compressed_size
,
222 kaddr
= kmap_atomic(cpage
);
223 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
224 kunmap_atomic(kaddr
);
228 compressed_size
-= cur_size
;
230 btrfs_set_file_extent_compression(leaf
, ei
,
233 page
= find_get_page(inode
->i_mapping
,
234 start
>> PAGE_SHIFT
);
235 btrfs_set_file_extent_compression(leaf
, ei
, 0);
236 kaddr
= kmap_atomic(page
);
237 offset
= start
& (PAGE_SIZE
- 1);
238 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
239 kunmap_atomic(kaddr
);
242 btrfs_mark_buffer_dirty(leaf
);
243 btrfs_release_path(path
);
246 * we're an inline extent, so nobody can
247 * extend the file past i_size without locking
248 * a page we already have locked.
250 * We must do any isize and inode updates
251 * before we unlock the pages. Otherwise we
252 * could end up racing with unlink.
254 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
255 ret
= btrfs_update_inode(trans
, root
, inode
);
263 * conditionally insert an inline extent into the file. This
264 * does the checks required to make sure the data is small enough
265 * to fit as an inline extent.
267 static noinline
int cow_file_range_inline(struct inode
*inode
, u64 start
,
268 u64 end
, size_t compressed_size
,
270 struct page
**compressed_pages
)
272 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
273 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
274 struct btrfs_trans_handle
*trans
;
275 u64 isize
= i_size_read(inode
);
276 u64 actual_end
= min(end
+ 1, isize
);
277 u64 inline_len
= actual_end
- start
;
278 u64 aligned_end
= ALIGN(end
, fs_info
->sectorsize
);
279 u64 data_len
= inline_len
;
281 struct btrfs_path
*path
;
282 int extent_inserted
= 0;
283 u32 extent_item_size
;
286 data_len
= compressed_size
;
289 actual_end
> fs_info
->sectorsize
||
290 data_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
) ||
292 (actual_end
& (fs_info
->sectorsize
- 1)) == 0) ||
294 data_len
> fs_info
->max_inline
) {
298 path
= btrfs_alloc_path();
302 trans
= btrfs_join_transaction(root
);
304 btrfs_free_path(path
);
305 return PTR_ERR(trans
);
307 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
309 if (compressed_size
&& compressed_pages
)
310 extent_item_size
= btrfs_file_extent_calc_inline_size(
313 extent_item_size
= btrfs_file_extent_calc_inline_size(
316 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
317 start
, aligned_end
, NULL
,
318 1, 1, extent_item_size
, &extent_inserted
);
320 btrfs_abort_transaction(trans
, ret
);
324 if (isize
> actual_end
)
325 inline_len
= min_t(u64
, isize
, actual_end
);
326 ret
= insert_inline_extent(trans
, path
, extent_inserted
,
328 inline_len
, compressed_size
,
329 compress_type
, compressed_pages
);
330 if (ret
&& ret
!= -ENOSPC
) {
331 btrfs_abort_transaction(trans
, ret
);
333 } else if (ret
== -ENOSPC
) {
338 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
339 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, aligned_end
- 1, 0);
342 * Don't forget to free the reserved space, as for inlined extent
343 * it won't count as data extent, free them directly here.
344 * And at reserve time, it's always aligned to page size, so
345 * just free one page here.
347 btrfs_qgroup_free_data(inode
, NULL
, 0, PAGE_SIZE
);
348 btrfs_free_path(path
);
349 btrfs_end_transaction(trans
);
353 struct async_extent
{
358 unsigned long nr_pages
;
360 struct list_head list
;
365 struct btrfs_root
*root
;
366 struct page
*locked_page
;
369 unsigned int write_flags
;
370 struct list_head extents
;
371 struct btrfs_work work
;
374 static noinline
int add_async_extent(struct async_cow
*cow
,
375 u64 start
, u64 ram_size
,
378 unsigned long nr_pages
,
381 struct async_extent
*async_extent
;
383 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
384 BUG_ON(!async_extent
); /* -ENOMEM */
385 async_extent
->start
= start
;
386 async_extent
->ram_size
= ram_size
;
387 async_extent
->compressed_size
= compressed_size
;
388 async_extent
->pages
= pages
;
389 async_extent
->nr_pages
= nr_pages
;
390 async_extent
->compress_type
= compress_type
;
391 list_add_tail(&async_extent
->list
, &cow
->extents
);
395 static inline int inode_need_compress(struct inode
*inode
, u64 start
, u64 end
)
397 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
400 if (btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
403 if (BTRFS_I(inode
)->defrag_compress
)
405 /* bad compression ratios */
406 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
408 if (btrfs_test_opt(fs_info
, COMPRESS
) ||
409 BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
||
410 BTRFS_I(inode
)->prop_compress
)
411 return btrfs_compress_heuristic(inode
, start
, end
);
415 static inline void inode_should_defrag(struct btrfs_inode
*inode
,
416 u64 start
, u64 end
, u64 num_bytes
, u64 small_write
)
418 /* If this is a small write inside eof, kick off a defrag */
419 if (num_bytes
< small_write
&&
420 (start
> 0 || end
+ 1 < inode
->disk_i_size
))
421 btrfs_add_inode_defrag(NULL
, inode
);
425 * we create compressed extents in two phases. The first
426 * phase compresses a range of pages that have already been
427 * locked (both pages and state bits are locked).
429 * This is done inside an ordered work queue, and the compression
430 * is spread across many cpus. The actual IO submission is step
431 * two, and the ordered work queue takes care of making sure that
432 * happens in the same order things were put onto the queue by
433 * writepages and friends.
435 * If this code finds it can't get good compression, it puts an
436 * entry onto the work queue to write the uncompressed bytes. This
437 * makes sure that both compressed inodes and uncompressed inodes
438 * are written in the same order that the flusher thread sent them
441 static noinline
void compress_file_range(struct inode
*inode
,
442 struct page
*locked_page
,
444 struct async_cow
*async_cow
,
447 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
448 u64 blocksize
= fs_info
->sectorsize
;
450 u64 isize
= i_size_read(inode
);
452 struct page
**pages
= NULL
;
453 unsigned long nr_pages
;
454 unsigned long total_compressed
= 0;
455 unsigned long total_in
= 0;
458 int compress_type
= fs_info
->compress_type
;
461 inode_should_defrag(BTRFS_I(inode
), start
, end
, end
- start
+ 1,
464 actual_end
= min_t(u64
, isize
, end
+ 1);
467 nr_pages
= (end
>> PAGE_SHIFT
) - (start
>> PAGE_SHIFT
) + 1;
468 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED
% PAGE_SIZE
) != 0);
469 nr_pages
= min_t(unsigned long, nr_pages
,
470 BTRFS_MAX_COMPRESSED
/ PAGE_SIZE
);
473 * we don't want to send crud past the end of i_size through
474 * compression, that's just a waste of CPU time. So, if the
475 * end of the file is before the start of our current
476 * requested range of bytes, we bail out to the uncompressed
477 * cleanup code that can deal with all of this.
479 * It isn't really the fastest way to fix things, but this is a
480 * very uncommon corner.
482 if (actual_end
<= start
)
483 goto cleanup_and_bail_uncompressed
;
485 total_compressed
= actual_end
- start
;
488 * skip compression for a small file range(<=blocksize) that
489 * isn't an inline extent, since it doesn't save disk space at all.
491 if (total_compressed
<= blocksize
&&
492 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
493 goto cleanup_and_bail_uncompressed
;
495 total_compressed
= min_t(unsigned long, total_compressed
,
496 BTRFS_MAX_UNCOMPRESSED
);
501 * we do compression for mount -o compress and when the
502 * inode has not been flagged as nocompress. This flag can
503 * change at any time if we discover bad compression ratios.
505 if (inode_need_compress(inode
, start
, end
)) {
507 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_NOFS
);
509 /* just bail out to the uncompressed code */
513 if (BTRFS_I(inode
)->defrag_compress
)
514 compress_type
= BTRFS_I(inode
)->defrag_compress
;
515 else if (BTRFS_I(inode
)->prop_compress
)
516 compress_type
= BTRFS_I(inode
)->prop_compress
;
519 * we need to call clear_page_dirty_for_io on each
520 * page in the range. Otherwise applications with the file
521 * mmap'd can wander in and change the page contents while
522 * we are compressing them.
524 * If the compression fails for any reason, we set the pages
525 * dirty again later on.
527 * Note that the remaining part is redirtied, the start pointer
528 * has moved, the end is the original one.
531 extent_range_clear_dirty_for_io(inode
, start
, end
);
535 /* Compression level is applied here and only here */
536 ret
= btrfs_compress_pages(
537 compress_type
| (fs_info
->compress_level
<< 4),
538 inode
->i_mapping
, start
,
545 unsigned long offset
= total_compressed
&
547 struct page
*page
= pages
[nr_pages
- 1];
550 /* zero the tail end of the last page, we might be
551 * sending it down to disk
554 kaddr
= kmap_atomic(page
);
555 memset(kaddr
+ offset
, 0,
557 kunmap_atomic(kaddr
);
564 /* lets try to make an inline extent */
565 if (ret
|| total_in
< actual_end
) {
566 /* we didn't compress the entire range, try
567 * to make an uncompressed inline extent.
569 ret
= cow_file_range_inline(inode
, start
, end
, 0,
570 BTRFS_COMPRESS_NONE
, NULL
);
572 /* try making a compressed inline extent */
573 ret
= cow_file_range_inline(inode
, start
, end
,
575 compress_type
, pages
);
578 unsigned long clear_flags
= EXTENT_DELALLOC
|
579 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
580 EXTENT_DO_ACCOUNTING
;
581 unsigned long page_error_op
;
583 page_error_op
= ret
< 0 ? PAGE_SET_ERROR
: 0;
586 * inline extent creation worked or returned error,
587 * we don't need to create any more async work items.
588 * Unlock and free up our temp pages.
590 * We use DO_ACCOUNTING here because we need the
591 * delalloc_release_metadata to be done _after_ we drop
592 * our outstanding extent for clearing delalloc for this
595 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
608 * we aren't doing an inline extent round the compressed size
609 * up to a block size boundary so the allocator does sane
612 total_compressed
= ALIGN(total_compressed
, blocksize
);
615 * one last check to make sure the compression is really a
616 * win, compare the page count read with the blocks on disk,
617 * compression must free at least one sector size
619 total_in
= ALIGN(total_in
, PAGE_SIZE
);
620 if (total_compressed
+ blocksize
<= total_in
) {
624 * The async work queues will take care of doing actual
625 * allocation on disk for these compressed pages, and
626 * will submit them to the elevator.
628 add_async_extent(async_cow
, start
, total_in
,
629 total_compressed
, pages
, nr_pages
,
632 if (start
+ total_in
< end
) {
643 * the compression code ran but failed to make things smaller,
644 * free any pages it allocated and our page pointer array
646 for (i
= 0; i
< nr_pages
; i
++) {
647 WARN_ON(pages
[i
]->mapping
);
652 total_compressed
= 0;
655 /* flag the file so we don't compress in the future */
656 if (!btrfs_test_opt(fs_info
, FORCE_COMPRESS
) &&
657 !(BTRFS_I(inode
)->prop_compress
)) {
658 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
661 cleanup_and_bail_uncompressed
:
663 * No compression, but we still need to write the pages in the file
664 * we've been given so far. redirty the locked page if it corresponds
665 * to our extent and set things up for the async work queue to run
666 * cow_file_range to do the normal delalloc dance.
668 if (page_offset(locked_page
) >= start
&&
669 page_offset(locked_page
) <= end
)
670 __set_page_dirty_nobuffers(locked_page
);
671 /* unlocked later on in the async handlers */
674 extent_range_redirty_for_io(inode
, start
, end
);
675 add_async_extent(async_cow
, start
, end
- start
+ 1, 0, NULL
, 0,
676 BTRFS_COMPRESS_NONE
);
682 for (i
= 0; i
< nr_pages
; i
++) {
683 WARN_ON(pages
[i
]->mapping
);
689 static void free_async_extent_pages(struct async_extent
*async_extent
)
693 if (!async_extent
->pages
)
696 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
697 WARN_ON(async_extent
->pages
[i
]->mapping
);
698 put_page(async_extent
->pages
[i
]);
700 kfree(async_extent
->pages
);
701 async_extent
->nr_pages
= 0;
702 async_extent
->pages
= NULL
;
706 * phase two of compressed writeback. This is the ordered portion
707 * of the code, which only gets called in the order the work was
708 * queued. We walk all the async extents created by compress_file_range
709 * and send them down to the disk.
711 static noinline
void submit_compressed_extents(struct inode
*inode
,
712 struct async_cow
*async_cow
)
714 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
715 struct async_extent
*async_extent
;
717 struct btrfs_key ins
;
718 struct extent_map
*em
;
719 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
720 struct extent_io_tree
*io_tree
;
724 while (!list_empty(&async_cow
->extents
)) {
725 async_extent
= list_entry(async_cow
->extents
.next
,
726 struct async_extent
, list
);
727 list_del(&async_extent
->list
);
729 io_tree
= &BTRFS_I(inode
)->io_tree
;
732 /* did the compression code fall back to uncompressed IO? */
733 if (!async_extent
->pages
) {
734 int page_started
= 0;
735 unsigned long nr_written
= 0;
737 lock_extent(io_tree
, async_extent
->start
,
738 async_extent
->start
+
739 async_extent
->ram_size
- 1);
741 /* allocate blocks */
742 ret
= cow_file_range(inode
, async_cow
->locked_page
,
744 async_extent
->start
+
745 async_extent
->ram_size
- 1,
746 async_extent
->start
+
747 async_extent
->ram_size
- 1,
748 &page_started
, &nr_written
, 0,
754 * if page_started, cow_file_range inserted an
755 * inline extent and took care of all the unlocking
756 * and IO for us. Otherwise, we need to submit
757 * all those pages down to the drive.
759 if (!page_started
&& !ret
)
760 extent_write_locked_range(inode
,
762 async_extent
->start
+
763 async_extent
->ram_size
- 1,
766 unlock_page(async_cow
->locked_page
);
772 lock_extent(io_tree
, async_extent
->start
,
773 async_extent
->start
+ async_extent
->ram_size
- 1);
775 ret
= btrfs_reserve_extent(root
, async_extent
->ram_size
,
776 async_extent
->compressed_size
,
777 async_extent
->compressed_size
,
778 0, alloc_hint
, &ins
, 1, 1);
780 free_async_extent_pages(async_extent
);
782 if (ret
== -ENOSPC
) {
783 unlock_extent(io_tree
, async_extent
->start
,
784 async_extent
->start
+
785 async_extent
->ram_size
- 1);
788 * we need to redirty the pages if we decide to
789 * fallback to uncompressed IO, otherwise we
790 * will not submit these pages down to lower
793 extent_range_redirty_for_io(inode
,
795 async_extent
->start
+
796 async_extent
->ram_size
- 1);
803 * here we're doing allocation and writeback of the
806 em
= create_io_em(inode
, async_extent
->start
,
807 async_extent
->ram_size
, /* len */
808 async_extent
->start
, /* orig_start */
809 ins
.objectid
, /* block_start */
810 ins
.offset
, /* block_len */
811 ins
.offset
, /* orig_block_len */
812 async_extent
->ram_size
, /* ram_bytes */
813 async_extent
->compress_type
,
814 BTRFS_ORDERED_COMPRESSED
);
816 /* ret value is not necessary due to void function */
817 goto out_free_reserve
;
820 ret
= btrfs_add_ordered_extent_compress(inode
,
823 async_extent
->ram_size
,
825 BTRFS_ORDERED_COMPRESSED
,
826 async_extent
->compress_type
);
828 btrfs_drop_extent_cache(BTRFS_I(inode
),
830 async_extent
->start
+
831 async_extent
->ram_size
- 1, 0);
832 goto out_free_reserve
;
834 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
837 * clear dirty, set writeback and unlock the pages.
839 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
840 async_extent
->start
+
841 async_extent
->ram_size
- 1,
842 async_extent
->start
+
843 async_extent
->ram_size
- 1,
844 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
,
845 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
847 if (btrfs_submit_compressed_write(inode
,
849 async_extent
->ram_size
,
851 ins
.offset
, async_extent
->pages
,
852 async_extent
->nr_pages
,
853 async_cow
->write_flags
)) {
854 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
855 struct page
*p
= async_extent
->pages
[0];
856 const u64 start
= async_extent
->start
;
857 const u64 end
= start
+ async_extent
->ram_size
- 1;
859 p
->mapping
= inode
->i_mapping
;
860 tree
->ops
->writepage_end_io_hook(p
, start
, end
,
863 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
867 free_async_extent_pages(async_extent
);
869 alloc_hint
= ins
.objectid
+ ins
.offset
;
875 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
876 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
878 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
879 async_extent
->start
+
880 async_extent
->ram_size
- 1,
881 async_extent
->start
+
882 async_extent
->ram_size
- 1,
883 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
884 EXTENT_DELALLOC_NEW
|
885 EXTENT_DEFRAG
| EXTENT_DO_ACCOUNTING
,
886 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
887 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
889 free_async_extent_pages(async_extent
);
894 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
897 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
898 struct extent_map
*em
;
901 read_lock(&em_tree
->lock
);
902 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
905 * if block start isn't an actual block number then find the
906 * first block in this inode and use that as a hint. If that
907 * block is also bogus then just don't worry about it.
909 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
911 em
= search_extent_mapping(em_tree
, 0, 0);
912 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
913 alloc_hint
= em
->block_start
;
917 alloc_hint
= em
->block_start
;
921 read_unlock(&em_tree
->lock
);
927 * when extent_io.c finds a delayed allocation range in the file,
928 * the call backs end up in this code. The basic idea is to
929 * allocate extents on disk for the range, and create ordered data structs
930 * in ram to track those extents.
932 * locked_page is the page that writepage had locked already. We use
933 * it to make sure we don't do extra locks or unlocks.
935 * *page_started is set to one if we unlock locked_page and do everything
936 * required to start IO on it. It may be clean and already done with
939 static noinline
int cow_file_range(struct inode
*inode
,
940 struct page
*locked_page
,
941 u64 start
, u64 end
, u64 delalloc_end
,
942 int *page_started
, unsigned long *nr_written
,
943 int unlock
, struct btrfs_dedupe_hash
*hash
)
945 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
946 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
949 unsigned long ram_size
;
950 u64 cur_alloc_size
= 0;
951 u64 blocksize
= fs_info
->sectorsize
;
952 struct btrfs_key ins
;
953 struct extent_map
*em
;
955 unsigned long page_ops
;
956 bool extent_reserved
= false;
959 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
965 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
966 num_bytes
= max(blocksize
, num_bytes
);
967 ASSERT(num_bytes
<= btrfs_super_total_bytes(fs_info
->super_copy
));
969 inode_should_defrag(BTRFS_I(inode
), start
, end
, num_bytes
, SZ_64K
);
972 /* lets try to make an inline extent */
973 ret
= cow_file_range_inline(inode
, start
, end
, 0,
974 BTRFS_COMPRESS_NONE
, NULL
);
977 * We use DO_ACCOUNTING here because we need the
978 * delalloc_release_metadata to be run _after_ we drop
979 * our outstanding extent for clearing delalloc for this
982 extent_clear_unlock_delalloc(inode
, start
, end
,
984 EXTENT_LOCKED
| EXTENT_DELALLOC
|
985 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
986 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
987 PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
989 *nr_written
= *nr_written
+
990 (end
- start
+ PAGE_SIZE
) / PAGE_SIZE
;
993 } else if (ret
< 0) {
998 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
999 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
1000 start
+ num_bytes
- 1, 0);
1002 while (num_bytes
> 0) {
1003 cur_alloc_size
= num_bytes
;
1004 ret
= btrfs_reserve_extent(root
, cur_alloc_size
, cur_alloc_size
,
1005 fs_info
->sectorsize
, 0, alloc_hint
,
1009 cur_alloc_size
= ins
.offset
;
1010 extent_reserved
= true;
1012 ram_size
= ins
.offset
;
1013 em
= create_io_em(inode
, start
, ins
.offset
, /* len */
1014 start
, /* orig_start */
1015 ins
.objectid
, /* block_start */
1016 ins
.offset
, /* block_len */
1017 ins
.offset
, /* orig_block_len */
1018 ram_size
, /* ram_bytes */
1019 BTRFS_COMPRESS_NONE
, /* compress_type */
1020 BTRFS_ORDERED_REGULAR
/* type */);
1023 free_extent_map(em
);
1025 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
1026 ram_size
, cur_alloc_size
, 0);
1028 goto out_drop_extent_cache
;
1030 if (root
->root_key
.objectid
==
1031 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1032 ret
= btrfs_reloc_clone_csums(inode
, start
,
1035 * Only drop cache here, and process as normal.
1037 * We must not allow extent_clear_unlock_delalloc()
1038 * at out_unlock label to free meta of this ordered
1039 * extent, as its meta should be freed by
1040 * btrfs_finish_ordered_io().
1042 * So we must continue until @start is increased to
1043 * skip current ordered extent.
1046 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
1047 start
+ ram_size
- 1, 0);
1050 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1052 /* we're not doing compressed IO, don't unlock the first
1053 * page (which the caller expects to stay locked), don't
1054 * clear any dirty bits and don't set any writeback bits
1056 * Do set the Private2 bit so we know this page was properly
1057 * setup for writepage
1059 page_ops
= unlock
? PAGE_UNLOCK
: 0;
1060 page_ops
|= PAGE_SET_PRIVATE2
;
1062 extent_clear_unlock_delalloc(inode
, start
,
1063 start
+ ram_size
- 1,
1064 delalloc_end
, locked_page
,
1065 EXTENT_LOCKED
| EXTENT_DELALLOC
,
1067 if (num_bytes
< cur_alloc_size
)
1070 num_bytes
-= cur_alloc_size
;
1071 alloc_hint
= ins
.objectid
+ ins
.offset
;
1072 start
+= cur_alloc_size
;
1073 extent_reserved
= false;
1076 * btrfs_reloc_clone_csums() error, since start is increased
1077 * extent_clear_unlock_delalloc() at out_unlock label won't
1078 * free metadata of current ordered extent, we're OK to exit.
1086 out_drop_extent_cache
:
1087 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, start
+ ram_size
- 1, 0);
1089 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1090 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
1092 clear_bits
= EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
1093 EXTENT_DEFRAG
| EXTENT_CLEAR_META_RESV
;
1094 page_ops
= PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
1097 * If we reserved an extent for our delalloc range (or a subrange) and
1098 * failed to create the respective ordered extent, then it means that
1099 * when we reserved the extent we decremented the extent's size from
1100 * the data space_info's bytes_may_use counter and incremented the
1101 * space_info's bytes_reserved counter by the same amount. We must make
1102 * sure extent_clear_unlock_delalloc() does not try to decrement again
1103 * the data space_info's bytes_may_use counter, therefore we do not pass
1104 * it the flag EXTENT_CLEAR_DATA_RESV.
1106 if (extent_reserved
) {
1107 extent_clear_unlock_delalloc(inode
, start
,
1108 start
+ cur_alloc_size
,
1109 start
+ cur_alloc_size
,
1113 start
+= cur_alloc_size
;
1117 extent_clear_unlock_delalloc(inode
, start
, end
, delalloc_end
,
1119 clear_bits
| EXTENT_CLEAR_DATA_RESV
,
1125 * work queue call back to started compression on a file and pages
1127 static noinline
void async_cow_start(struct btrfs_work
*work
)
1129 struct async_cow
*async_cow
;
1131 async_cow
= container_of(work
, struct async_cow
, work
);
1133 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
1134 async_cow
->start
, async_cow
->end
, async_cow
,
1136 if (num_added
== 0) {
1137 btrfs_add_delayed_iput(async_cow
->inode
);
1138 async_cow
->inode
= NULL
;
1143 * work queue call back to submit previously compressed pages
1145 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1147 struct btrfs_fs_info
*fs_info
;
1148 struct async_cow
*async_cow
;
1149 struct btrfs_root
*root
;
1150 unsigned long nr_pages
;
1152 async_cow
= container_of(work
, struct async_cow
, work
);
1154 root
= async_cow
->root
;
1155 fs_info
= root
->fs_info
;
1156 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_SIZE
) >>
1160 * atomic_sub_return implies a barrier for waitqueue_active
1162 if (atomic_sub_return(nr_pages
, &fs_info
->async_delalloc_pages
) <
1164 waitqueue_active(&fs_info
->async_submit_wait
))
1165 wake_up(&fs_info
->async_submit_wait
);
1167 if (async_cow
->inode
)
1168 submit_compressed_extents(async_cow
->inode
, async_cow
);
1171 static noinline
void async_cow_free(struct btrfs_work
*work
)
1173 struct async_cow
*async_cow
;
1174 async_cow
= container_of(work
, struct async_cow
, work
);
1175 if (async_cow
->inode
)
1176 btrfs_add_delayed_iput(async_cow
->inode
);
1180 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
1181 u64 start
, u64 end
, int *page_started
,
1182 unsigned long *nr_written
,
1183 unsigned int write_flags
)
1185 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1186 struct async_cow
*async_cow
;
1187 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1188 unsigned long nr_pages
;
1191 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
1193 while (start
< end
) {
1194 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
1195 BUG_ON(!async_cow
); /* -ENOMEM */
1196 async_cow
->inode
= igrab(inode
);
1197 async_cow
->root
= root
;
1198 async_cow
->locked_page
= locked_page
;
1199 async_cow
->start
= start
;
1200 async_cow
->write_flags
= write_flags
;
1202 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
&&
1203 !btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
1206 cur_end
= min(end
, start
+ SZ_512K
- 1);
1208 async_cow
->end
= cur_end
;
1209 INIT_LIST_HEAD(&async_cow
->extents
);
1211 btrfs_init_work(&async_cow
->work
,
1212 btrfs_delalloc_helper
,
1213 async_cow_start
, async_cow_submit
,
1216 nr_pages
= (cur_end
- start
+ PAGE_SIZE
) >>
1218 atomic_add(nr_pages
, &fs_info
->async_delalloc_pages
);
1220 btrfs_queue_work(fs_info
->delalloc_workers
, &async_cow
->work
);
1222 *nr_written
+= nr_pages
;
1223 start
= cur_end
+ 1;
1229 static noinline
int csum_exist_in_range(struct btrfs_fs_info
*fs_info
,
1230 u64 bytenr
, u64 num_bytes
)
1233 struct btrfs_ordered_sum
*sums
;
1236 ret
= btrfs_lookup_csums_range(fs_info
->csum_root
, bytenr
,
1237 bytenr
+ num_bytes
- 1, &list
, 0);
1238 if (ret
== 0 && list_empty(&list
))
1241 while (!list_empty(&list
)) {
1242 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1243 list_del(&sums
->list
);
1252 * when nowcow writeback call back. This checks for snapshots or COW copies
1253 * of the extents that exist in the file, and COWs the file as required.
1255 * If no cow copies or snapshots exist, we write directly to the existing
1258 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1259 struct page
*locked_page
,
1260 u64 start
, u64 end
, int *page_started
, int force
,
1261 unsigned long *nr_written
)
1263 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1264 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1265 struct extent_buffer
*leaf
;
1266 struct btrfs_path
*path
;
1267 struct btrfs_file_extent_item
*fi
;
1268 struct btrfs_key found_key
;
1269 struct extent_map
*em
;
1284 u64 ino
= btrfs_ino(BTRFS_I(inode
));
1286 path
= btrfs_alloc_path();
1288 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
1290 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1291 EXTENT_DO_ACCOUNTING
|
1292 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1294 PAGE_SET_WRITEBACK
|
1295 PAGE_END_WRITEBACK
);
1299 nolock
= btrfs_is_free_space_inode(BTRFS_I(inode
));
1301 cow_start
= (u64
)-1;
1304 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, ino
,
1308 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1309 leaf
= path
->nodes
[0];
1310 btrfs_item_key_to_cpu(leaf
, &found_key
,
1311 path
->slots
[0] - 1);
1312 if (found_key
.objectid
== ino
&&
1313 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1318 leaf
= path
->nodes
[0];
1319 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1320 ret
= btrfs_next_leaf(root
, path
);
1322 if (cow_start
!= (u64
)-1)
1323 cur_offset
= cow_start
;
1328 leaf
= path
->nodes
[0];
1334 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1336 if (found_key
.objectid
> ino
)
1338 if (WARN_ON_ONCE(found_key
.objectid
< ino
) ||
1339 found_key
.type
< BTRFS_EXTENT_DATA_KEY
) {
1343 if (found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1344 found_key
.offset
> end
)
1347 if (found_key
.offset
> cur_offset
) {
1348 extent_end
= found_key
.offset
;
1353 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1354 struct btrfs_file_extent_item
);
1355 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1357 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1358 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1359 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1360 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1361 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1362 extent_end
= found_key
.offset
+
1363 btrfs_file_extent_num_bytes(leaf
, fi
);
1365 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1366 if (extent_end
<= start
) {
1370 if (disk_bytenr
== 0)
1372 if (btrfs_file_extent_compression(leaf
, fi
) ||
1373 btrfs_file_extent_encryption(leaf
, fi
) ||
1374 btrfs_file_extent_other_encoding(leaf
, fi
))
1376 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1378 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
1380 ret
= btrfs_cross_ref_exist(root
, ino
,
1382 extent_offset
, disk_bytenr
);
1385 * ret could be -EIO if the above fails to read
1389 if (cow_start
!= (u64
)-1)
1390 cur_offset
= cow_start
;
1394 WARN_ON_ONCE(nolock
);
1397 disk_bytenr
+= extent_offset
;
1398 disk_bytenr
+= cur_offset
- found_key
.offset
;
1399 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1401 * if there are pending snapshots for this root,
1402 * we fall into common COW way.
1405 err
= btrfs_start_write_no_snapshotting(root
);
1410 * force cow if csum exists in the range.
1411 * this ensure that csum for a given extent are
1412 * either valid or do not exist.
1414 ret
= csum_exist_in_range(fs_info
, disk_bytenr
,
1418 btrfs_end_write_no_snapshotting(root
);
1421 * ret could be -EIO if the above fails to read
1425 if (cow_start
!= (u64
)-1)
1426 cur_offset
= cow_start
;
1429 WARN_ON_ONCE(nolock
);
1432 if (!btrfs_inc_nocow_writers(fs_info
, disk_bytenr
)) {
1434 btrfs_end_write_no_snapshotting(root
);
1438 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1439 extent_end
= found_key
.offset
+
1440 btrfs_file_extent_inline_len(leaf
,
1441 path
->slots
[0], fi
);
1442 extent_end
= ALIGN(extent_end
,
1443 fs_info
->sectorsize
);
1448 if (extent_end
<= start
) {
1450 if (!nolock
&& nocow
)
1451 btrfs_end_write_no_snapshotting(root
);
1453 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1457 if (cow_start
== (u64
)-1)
1458 cow_start
= cur_offset
;
1459 cur_offset
= extent_end
;
1460 if (cur_offset
> end
)
1466 btrfs_release_path(path
);
1467 if (cow_start
!= (u64
)-1) {
1468 ret
= cow_file_range(inode
, locked_page
,
1469 cow_start
, found_key
.offset
- 1,
1470 end
, page_started
, nr_written
, 1,
1473 if (!nolock
&& nocow
)
1474 btrfs_end_write_no_snapshotting(root
);
1476 btrfs_dec_nocow_writers(fs_info
,
1480 cow_start
= (u64
)-1;
1483 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1484 u64 orig_start
= found_key
.offset
- extent_offset
;
1486 em
= create_io_em(inode
, cur_offset
, num_bytes
,
1488 disk_bytenr
, /* block_start */
1489 num_bytes
, /* block_len */
1490 disk_num_bytes
, /* orig_block_len */
1491 ram_bytes
, BTRFS_COMPRESS_NONE
,
1492 BTRFS_ORDERED_PREALLOC
);
1494 if (!nolock
&& nocow
)
1495 btrfs_end_write_no_snapshotting(root
);
1497 btrfs_dec_nocow_writers(fs_info
,
1502 free_extent_map(em
);
1505 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1506 type
= BTRFS_ORDERED_PREALLOC
;
1508 type
= BTRFS_ORDERED_NOCOW
;
1511 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1512 num_bytes
, num_bytes
, type
);
1514 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1515 BUG_ON(ret
); /* -ENOMEM */
1517 if (root
->root_key
.objectid
==
1518 BTRFS_DATA_RELOC_TREE_OBJECTID
)
1520 * Error handled later, as we must prevent
1521 * extent_clear_unlock_delalloc() in error handler
1522 * from freeing metadata of created ordered extent.
1524 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1527 extent_clear_unlock_delalloc(inode
, cur_offset
,
1528 cur_offset
+ num_bytes
- 1, end
,
1529 locked_page
, EXTENT_LOCKED
|
1531 EXTENT_CLEAR_DATA_RESV
,
1532 PAGE_UNLOCK
| PAGE_SET_PRIVATE2
);
1534 if (!nolock
&& nocow
)
1535 btrfs_end_write_no_snapshotting(root
);
1536 cur_offset
= extent_end
;
1539 * btrfs_reloc_clone_csums() error, now we're OK to call error
1540 * handler, as metadata for created ordered extent will only
1541 * be freed by btrfs_finish_ordered_io().
1545 if (cur_offset
> end
)
1548 btrfs_release_path(path
);
1550 if (cur_offset
<= end
&& cow_start
== (u64
)-1) {
1551 cow_start
= cur_offset
;
1555 if (cow_start
!= (u64
)-1) {
1556 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
, end
,
1557 page_started
, nr_written
, 1, NULL
);
1563 if (ret
&& cur_offset
< end
)
1564 extent_clear_unlock_delalloc(inode
, cur_offset
, end
, end
,
1565 locked_page
, EXTENT_LOCKED
|
1566 EXTENT_DELALLOC
| EXTENT_DEFRAG
|
1567 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1569 PAGE_SET_WRITEBACK
|
1570 PAGE_END_WRITEBACK
);
1571 btrfs_free_path(path
);
1575 static inline int need_force_cow(struct inode
*inode
, u64 start
, u64 end
)
1578 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
1579 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
))
1583 * @defrag_bytes is a hint value, no spinlock held here,
1584 * if is not zero, it means the file is defragging.
1585 * Force cow if given extent needs to be defragged.
1587 if (BTRFS_I(inode
)->defrag_bytes
&&
1588 test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1589 EXTENT_DEFRAG
, 0, NULL
))
1596 * extent_io.c call back to do delayed allocation processing
1598 static int run_delalloc_range(void *private_data
, struct page
*locked_page
,
1599 u64 start
, u64 end
, int *page_started
,
1600 unsigned long *nr_written
,
1601 struct writeback_control
*wbc
)
1603 struct inode
*inode
= private_data
;
1605 int force_cow
= need_force_cow(inode
, start
, end
);
1606 unsigned int write_flags
= wbc_to_write_flags(wbc
);
1608 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
&& !force_cow
) {
1609 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1610 page_started
, 1, nr_written
);
1611 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
&& !force_cow
) {
1612 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1613 page_started
, 0, nr_written
);
1614 } else if (!inode_need_compress(inode
, start
, end
)) {
1615 ret
= cow_file_range(inode
, locked_page
, start
, end
, end
,
1616 page_started
, nr_written
, 1, NULL
);
1618 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1619 &BTRFS_I(inode
)->runtime_flags
);
1620 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1621 page_started
, nr_written
,
1625 btrfs_cleanup_ordered_extents(inode
, start
, end
- start
+ 1);
1629 static void btrfs_split_extent_hook(void *private_data
,
1630 struct extent_state
*orig
, u64 split
)
1632 struct inode
*inode
= private_data
;
1635 /* not delalloc, ignore it */
1636 if (!(orig
->state
& EXTENT_DELALLOC
))
1639 size
= orig
->end
- orig
->start
+ 1;
1640 if (size
> BTRFS_MAX_EXTENT_SIZE
) {
1645 * See the explanation in btrfs_merge_extent_hook, the same
1646 * applies here, just in reverse.
1648 new_size
= orig
->end
- split
+ 1;
1649 num_extents
= count_max_extents(new_size
);
1650 new_size
= split
- orig
->start
;
1651 num_extents
+= count_max_extents(new_size
);
1652 if (count_max_extents(size
) >= num_extents
)
1656 spin_lock(&BTRFS_I(inode
)->lock
);
1657 btrfs_mod_outstanding_extents(BTRFS_I(inode
), 1);
1658 spin_unlock(&BTRFS_I(inode
)->lock
);
1662 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1663 * extents so we can keep track of new extents that are just merged onto old
1664 * extents, such as when we are doing sequential writes, so we can properly
1665 * account for the metadata space we'll need.
1667 static void btrfs_merge_extent_hook(void *private_data
,
1668 struct extent_state
*new,
1669 struct extent_state
*other
)
1671 struct inode
*inode
= private_data
;
1672 u64 new_size
, old_size
;
1675 /* not delalloc, ignore it */
1676 if (!(other
->state
& EXTENT_DELALLOC
))
1679 if (new->start
> other
->start
)
1680 new_size
= new->end
- other
->start
+ 1;
1682 new_size
= other
->end
- new->start
+ 1;
1684 /* we're not bigger than the max, unreserve the space and go */
1685 if (new_size
<= BTRFS_MAX_EXTENT_SIZE
) {
1686 spin_lock(&BTRFS_I(inode
)->lock
);
1687 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1688 spin_unlock(&BTRFS_I(inode
)->lock
);
1693 * We have to add up either side to figure out how many extents were
1694 * accounted for before we merged into one big extent. If the number of
1695 * extents we accounted for is <= the amount we need for the new range
1696 * then we can return, otherwise drop. Think of it like this
1700 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1701 * need 2 outstanding extents, on one side we have 1 and the other side
1702 * we have 1 so they are == and we can return. But in this case
1704 * [MAX_SIZE+4k][MAX_SIZE+4k]
1706 * Each range on their own accounts for 2 extents, but merged together
1707 * they are only 3 extents worth of accounting, so we need to drop in
1710 old_size
= other
->end
- other
->start
+ 1;
1711 num_extents
= count_max_extents(old_size
);
1712 old_size
= new->end
- new->start
+ 1;
1713 num_extents
+= count_max_extents(old_size
);
1714 if (count_max_extents(new_size
) >= num_extents
)
1717 spin_lock(&BTRFS_I(inode
)->lock
);
1718 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1719 spin_unlock(&BTRFS_I(inode
)->lock
);
1722 static void btrfs_add_delalloc_inodes(struct btrfs_root
*root
,
1723 struct inode
*inode
)
1725 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1727 spin_lock(&root
->delalloc_lock
);
1728 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1729 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1730 &root
->delalloc_inodes
);
1731 set_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1732 &BTRFS_I(inode
)->runtime_flags
);
1733 root
->nr_delalloc_inodes
++;
1734 if (root
->nr_delalloc_inodes
== 1) {
1735 spin_lock(&fs_info
->delalloc_root_lock
);
1736 BUG_ON(!list_empty(&root
->delalloc_root
));
1737 list_add_tail(&root
->delalloc_root
,
1738 &fs_info
->delalloc_roots
);
1739 spin_unlock(&fs_info
->delalloc_root_lock
);
1742 spin_unlock(&root
->delalloc_lock
);
1745 static void btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1746 struct btrfs_inode
*inode
)
1748 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
1750 spin_lock(&root
->delalloc_lock
);
1751 if (!list_empty(&inode
->delalloc_inodes
)) {
1752 list_del_init(&inode
->delalloc_inodes
);
1753 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1754 &inode
->runtime_flags
);
1755 root
->nr_delalloc_inodes
--;
1756 if (!root
->nr_delalloc_inodes
) {
1757 spin_lock(&fs_info
->delalloc_root_lock
);
1758 BUG_ON(list_empty(&root
->delalloc_root
));
1759 list_del_init(&root
->delalloc_root
);
1760 spin_unlock(&fs_info
->delalloc_root_lock
);
1763 spin_unlock(&root
->delalloc_lock
);
1767 * extent_io.c set_bit_hook, used to track delayed allocation
1768 * bytes in this file, and to maintain the list of inodes that
1769 * have pending delalloc work to be done.
1771 static void btrfs_set_bit_hook(void *private_data
,
1772 struct extent_state
*state
, unsigned *bits
)
1774 struct inode
*inode
= private_data
;
1776 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1778 if ((*bits
& EXTENT_DEFRAG
) && !(*bits
& EXTENT_DELALLOC
))
1781 * set_bit and clear bit hooks normally require _irqsave/restore
1782 * but in this case, we are only testing for the DELALLOC
1783 * bit, which is only set or cleared with irqs on
1785 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1786 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1787 u64 len
= state
->end
+ 1 - state
->start
;
1788 u32 num_extents
= count_max_extents(len
);
1789 bool do_list
= !btrfs_is_free_space_inode(BTRFS_I(inode
));
1791 spin_lock(&BTRFS_I(inode
)->lock
);
1792 btrfs_mod_outstanding_extents(BTRFS_I(inode
), num_extents
);
1793 spin_unlock(&BTRFS_I(inode
)->lock
);
1795 /* For sanity tests */
1796 if (btrfs_is_testing(fs_info
))
1799 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, len
,
1800 fs_info
->delalloc_batch
);
1801 spin_lock(&BTRFS_I(inode
)->lock
);
1802 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1803 if (*bits
& EXTENT_DEFRAG
)
1804 BTRFS_I(inode
)->defrag_bytes
+= len
;
1805 if (do_list
&& !test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1806 &BTRFS_I(inode
)->runtime_flags
))
1807 btrfs_add_delalloc_inodes(root
, inode
);
1808 spin_unlock(&BTRFS_I(inode
)->lock
);
1811 if (!(state
->state
& EXTENT_DELALLOC_NEW
) &&
1812 (*bits
& EXTENT_DELALLOC_NEW
)) {
1813 spin_lock(&BTRFS_I(inode
)->lock
);
1814 BTRFS_I(inode
)->new_delalloc_bytes
+= state
->end
+ 1 -
1816 spin_unlock(&BTRFS_I(inode
)->lock
);
1821 * extent_io.c clear_bit_hook, see set_bit_hook for why
1823 static void btrfs_clear_bit_hook(void *private_data
,
1824 struct extent_state
*state
,
1827 struct btrfs_inode
*inode
= BTRFS_I((struct inode
*)private_data
);
1828 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
1829 u64 len
= state
->end
+ 1 - state
->start
;
1830 u32 num_extents
= count_max_extents(len
);
1832 if ((state
->state
& EXTENT_DEFRAG
) && (*bits
& EXTENT_DEFRAG
)) {
1833 spin_lock(&inode
->lock
);
1834 inode
->defrag_bytes
-= len
;
1835 spin_unlock(&inode
->lock
);
1839 * set_bit and clear bit hooks normally require _irqsave/restore
1840 * but in this case, we are only testing for the DELALLOC
1841 * bit, which is only set or cleared with irqs on
1843 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1844 struct btrfs_root
*root
= inode
->root
;
1845 bool do_list
= !btrfs_is_free_space_inode(inode
);
1847 spin_lock(&inode
->lock
);
1848 btrfs_mod_outstanding_extents(inode
, -num_extents
);
1849 spin_unlock(&inode
->lock
);
1852 * We don't reserve metadata space for space cache inodes so we
1853 * don't need to call dellalloc_release_metadata if there is an
1856 if (*bits
& EXTENT_CLEAR_META_RESV
&&
1857 root
!= fs_info
->tree_root
)
1858 btrfs_delalloc_release_metadata(inode
, len
, false);
1860 /* For sanity tests. */
1861 if (btrfs_is_testing(fs_info
))
1864 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1865 do_list
&& !(state
->state
& EXTENT_NORESERVE
) &&
1866 (*bits
& EXTENT_CLEAR_DATA_RESV
))
1867 btrfs_free_reserved_data_space_noquota(
1871 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, -len
,
1872 fs_info
->delalloc_batch
);
1873 spin_lock(&inode
->lock
);
1874 inode
->delalloc_bytes
-= len
;
1875 if (do_list
&& inode
->delalloc_bytes
== 0 &&
1876 test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1877 &inode
->runtime_flags
))
1878 btrfs_del_delalloc_inode(root
, inode
);
1879 spin_unlock(&inode
->lock
);
1882 if ((state
->state
& EXTENT_DELALLOC_NEW
) &&
1883 (*bits
& EXTENT_DELALLOC_NEW
)) {
1884 spin_lock(&inode
->lock
);
1885 ASSERT(inode
->new_delalloc_bytes
>= len
);
1886 inode
->new_delalloc_bytes
-= len
;
1887 spin_unlock(&inode
->lock
);
1892 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1893 * we don't create bios that span stripes or chunks
1895 * return 1 if page cannot be merged to bio
1896 * return 0 if page can be merged to bio
1897 * return error otherwise
1899 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1900 size_t size
, struct bio
*bio
,
1901 unsigned long bio_flags
)
1903 struct inode
*inode
= page
->mapping
->host
;
1904 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1905 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
1910 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1913 length
= bio
->bi_iter
.bi_size
;
1914 map_length
= length
;
1915 ret
= btrfs_map_block(fs_info
, btrfs_op(bio
), logical
, &map_length
,
1919 if (map_length
< length
+ size
)
1925 * in order to insert checksums into the metadata in large chunks,
1926 * we wait until bio submission time. All the pages in the bio are
1927 * checksummed and sums are attached onto the ordered extent record.
1929 * At IO completion time the cums attached on the ordered extent record
1930 * are inserted into the btree
1932 static blk_status_t
btrfs_submit_bio_start(void *private_data
, struct bio
*bio
,
1935 struct inode
*inode
= private_data
;
1936 blk_status_t ret
= 0;
1938 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
1939 BUG_ON(ret
); /* -ENOMEM */
1944 * in order to insert checksums into the metadata in large chunks,
1945 * we wait until bio submission time. All the pages in the bio are
1946 * checksummed and sums are attached onto the ordered extent record.
1948 * At IO completion time the cums attached on the ordered extent record
1949 * are inserted into the btree
1951 static blk_status_t
btrfs_submit_bio_done(void *private_data
, struct bio
*bio
,
1954 struct inode
*inode
= private_data
;
1955 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1958 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 1);
1960 bio
->bi_status
= ret
;
1967 * extent_io.c submission hook. This does the right thing for csum calculation
1968 * on write, or reading the csums from the tree before a read.
1970 * Rules about async/sync submit,
1971 * a) read: sync submit
1973 * b) write without checksum: sync submit
1975 * c) write with checksum:
1976 * c-1) if bio is issued by fsync: sync submit
1977 * (sync_writers != 0)
1979 * c-2) if root is reloc root: sync submit
1980 * (only in case of buffered IO)
1982 * c-3) otherwise: async submit
1984 static blk_status_t
btrfs_submit_bio_hook(void *private_data
, struct bio
*bio
,
1985 int mirror_num
, unsigned long bio_flags
,
1988 struct inode
*inode
= private_data
;
1989 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1990 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1991 enum btrfs_wq_endio_type metadata
= BTRFS_WQ_ENDIO_DATA
;
1992 blk_status_t ret
= 0;
1994 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
1996 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1998 if (btrfs_is_free_space_inode(BTRFS_I(inode
)))
1999 metadata
= BTRFS_WQ_ENDIO_FREE_SPACE
;
2001 if (bio_op(bio
) != REQ_OP_WRITE
) {
2002 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, metadata
);
2006 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
2007 ret
= btrfs_submit_compressed_read(inode
, bio
,
2011 } else if (!skip_sum
) {
2012 ret
= btrfs_lookup_bio_sums(inode
, bio
, NULL
);
2017 } else if (async
&& !skip_sum
) {
2018 /* csum items have already been cloned */
2019 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2021 /* we're doing a write, do the async checksumming */
2022 ret
= btrfs_wq_submit_bio(fs_info
, bio
, mirror_num
, bio_flags
,
2024 btrfs_submit_bio_start
,
2025 btrfs_submit_bio_done
);
2027 } else if (!skip_sum
) {
2028 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
2034 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
2038 bio
->bi_status
= ret
;
2045 * given a list of ordered sums record them in the inode. This happens
2046 * at IO completion time based on sums calculated at bio submission time.
2048 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
2049 struct inode
*inode
, struct list_head
*list
)
2051 struct btrfs_ordered_sum
*sum
;
2054 list_for_each_entry(sum
, list
, list
) {
2055 trans
->adding_csums
= true;
2056 ret
= btrfs_csum_file_blocks(trans
,
2057 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
2058 trans
->adding_csums
= false;
2065 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
2066 unsigned int extra_bits
,
2067 struct extent_state
**cached_state
, int dedupe
)
2069 WARN_ON((end
& (PAGE_SIZE
- 1)) == 0);
2070 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
2071 extra_bits
, cached_state
);
2074 /* see btrfs_writepage_start_hook for details on why this is required */
2075 struct btrfs_writepage_fixup
{
2077 struct btrfs_work work
;
2080 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
2082 struct btrfs_writepage_fixup
*fixup
;
2083 struct btrfs_ordered_extent
*ordered
;
2084 struct extent_state
*cached_state
= NULL
;
2085 struct extent_changeset
*data_reserved
= NULL
;
2087 struct inode
*inode
;
2092 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
2096 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
2097 ClearPageChecked(page
);
2101 inode
= page
->mapping
->host
;
2102 page_start
= page_offset(page
);
2103 page_end
= page_offset(page
) + PAGE_SIZE
- 1;
2105 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2108 /* already ordered? We're done */
2109 if (PagePrivate2(page
))
2112 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
2115 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
2116 page_end
, &cached_state
);
2118 btrfs_start_ordered_extent(inode
, ordered
, 1);
2119 btrfs_put_ordered_extent(ordered
);
2123 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
2126 mapping_set_error(page
->mapping
, ret
);
2127 end_extent_writepage(page
, ret
, page_start
, page_end
);
2128 ClearPageChecked(page
);
2132 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
, 0,
2135 mapping_set_error(page
->mapping
, ret
);
2136 end_extent_writepage(page
, ret
, page_start
, page_end
);
2137 ClearPageChecked(page
);
2141 ClearPageChecked(page
);
2142 set_page_dirty(page
);
2143 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
, false);
2145 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2151 extent_changeset_free(data_reserved
);
2155 * There are a few paths in the higher layers of the kernel that directly
2156 * set the page dirty bit without asking the filesystem if it is a
2157 * good idea. This causes problems because we want to make sure COW
2158 * properly happens and the data=ordered rules are followed.
2160 * In our case any range that doesn't have the ORDERED bit set
2161 * hasn't been properly setup for IO. We kick off an async process
2162 * to fix it up. The async helper will wait for ordered extents, set
2163 * the delalloc bit and make it safe to write the page.
2165 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
2167 struct inode
*inode
= page
->mapping
->host
;
2168 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2169 struct btrfs_writepage_fixup
*fixup
;
2171 /* this page is properly in the ordered list */
2172 if (TestClearPagePrivate2(page
))
2175 if (PageChecked(page
))
2178 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
2182 SetPageChecked(page
);
2184 btrfs_init_work(&fixup
->work
, btrfs_fixup_helper
,
2185 btrfs_writepage_fixup_worker
, NULL
, NULL
);
2187 btrfs_queue_work(fs_info
->fixup_workers
, &fixup
->work
);
2191 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
2192 struct inode
*inode
, u64 file_pos
,
2193 u64 disk_bytenr
, u64 disk_num_bytes
,
2194 u64 num_bytes
, u64 ram_bytes
,
2195 u8 compression
, u8 encryption
,
2196 u16 other_encoding
, int extent_type
)
2198 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2199 struct btrfs_file_extent_item
*fi
;
2200 struct btrfs_path
*path
;
2201 struct extent_buffer
*leaf
;
2202 struct btrfs_key ins
;
2204 int extent_inserted
= 0;
2207 path
= btrfs_alloc_path();
2212 * we may be replacing one extent in the tree with another.
2213 * The new extent is pinned in the extent map, and we don't want
2214 * to drop it from the cache until it is completely in the btree.
2216 * So, tell btrfs_drop_extents to leave this extent in the cache.
2217 * the caller is expected to unpin it and allow it to be merged
2220 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, file_pos
,
2221 file_pos
+ num_bytes
, NULL
, 0,
2222 1, sizeof(*fi
), &extent_inserted
);
2226 if (!extent_inserted
) {
2227 ins
.objectid
= btrfs_ino(BTRFS_I(inode
));
2228 ins
.offset
= file_pos
;
2229 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
2231 path
->leave_spinning
= 1;
2232 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
2237 leaf
= path
->nodes
[0];
2238 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2239 struct btrfs_file_extent_item
);
2240 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
2241 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
2242 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
2243 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
2244 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2245 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2246 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
2247 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
2248 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
2249 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
2251 btrfs_mark_buffer_dirty(leaf
);
2252 btrfs_release_path(path
);
2254 inode_add_bytes(inode
, num_bytes
);
2256 ins
.objectid
= disk_bytenr
;
2257 ins
.offset
= disk_num_bytes
;
2258 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2261 * Release the reserved range from inode dirty range map, as it is
2262 * already moved into delayed_ref_head
2264 ret
= btrfs_qgroup_release_data(inode
, file_pos
, ram_bytes
);
2268 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
2269 btrfs_ino(BTRFS_I(inode
)),
2270 file_pos
, qg_released
, &ins
);
2272 btrfs_free_path(path
);
2277 /* snapshot-aware defrag */
2278 struct sa_defrag_extent_backref
{
2279 struct rb_node node
;
2280 struct old_sa_defrag_extent
*old
;
2289 struct old_sa_defrag_extent
{
2290 struct list_head list
;
2291 struct new_sa_defrag_extent
*new;
2300 struct new_sa_defrag_extent
{
2301 struct rb_root root
;
2302 struct list_head head
;
2303 struct btrfs_path
*path
;
2304 struct inode
*inode
;
2312 static int backref_comp(struct sa_defrag_extent_backref
*b1
,
2313 struct sa_defrag_extent_backref
*b2
)
2315 if (b1
->root_id
< b2
->root_id
)
2317 else if (b1
->root_id
> b2
->root_id
)
2320 if (b1
->inum
< b2
->inum
)
2322 else if (b1
->inum
> b2
->inum
)
2325 if (b1
->file_pos
< b2
->file_pos
)
2327 else if (b1
->file_pos
> b2
->file_pos
)
2331 * [------------------------------] ===> (a range of space)
2332 * |<--->| |<---->| =============> (fs/file tree A)
2333 * |<---------------------------->| ===> (fs/file tree B)
2335 * A range of space can refer to two file extents in one tree while
2336 * refer to only one file extent in another tree.
2338 * So we may process a disk offset more than one time(two extents in A)
2339 * and locate at the same extent(one extent in B), then insert two same
2340 * backrefs(both refer to the extent in B).
2345 static void backref_insert(struct rb_root
*root
,
2346 struct sa_defrag_extent_backref
*backref
)
2348 struct rb_node
**p
= &root
->rb_node
;
2349 struct rb_node
*parent
= NULL
;
2350 struct sa_defrag_extent_backref
*entry
;
2355 entry
= rb_entry(parent
, struct sa_defrag_extent_backref
, node
);
2357 ret
= backref_comp(backref
, entry
);
2361 p
= &(*p
)->rb_right
;
2364 rb_link_node(&backref
->node
, parent
, p
);
2365 rb_insert_color(&backref
->node
, root
);
2369 * Note the backref might has changed, and in this case we just return 0.
2371 static noinline
int record_one_backref(u64 inum
, u64 offset
, u64 root_id
,
2374 struct btrfs_file_extent_item
*extent
;
2375 struct old_sa_defrag_extent
*old
= ctx
;
2376 struct new_sa_defrag_extent
*new = old
->new;
2377 struct btrfs_path
*path
= new->path
;
2378 struct btrfs_key key
;
2379 struct btrfs_root
*root
;
2380 struct sa_defrag_extent_backref
*backref
;
2381 struct extent_buffer
*leaf
;
2382 struct inode
*inode
= new->inode
;
2383 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2389 if (BTRFS_I(inode
)->root
->root_key
.objectid
== root_id
&&
2390 inum
== btrfs_ino(BTRFS_I(inode
)))
2393 key
.objectid
= root_id
;
2394 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2395 key
.offset
= (u64
)-1;
2397 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2399 if (PTR_ERR(root
) == -ENOENT
)
2402 btrfs_debug(fs_info
, "inum=%llu, offset=%llu, root_id=%llu",
2403 inum
, offset
, root_id
);
2404 return PTR_ERR(root
);
2407 key
.objectid
= inum
;
2408 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2409 if (offset
> (u64
)-1 << 32)
2412 key
.offset
= offset
;
2414 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2415 if (WARN_ON(ret
< 0))
2422 leaf
= path
->nodes
[0];
2423 slot
= path
->slots
[0];
2425 if (slot
>= btrfs_header_nritems(leaf
)) {
2426 ret
= btrfs_next_leaf(root
, path
);
2429 } else if (ret
> 0) {
2438 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2440 if (key
.objectid
> inum
)
2443 if (key
.objectid
< inum
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2446 extent
= btrfs_item_ptr(leaf
, slot
,
2447 struct btrfs_file_extent_item
);
2449 if (btrfs_file_extent_disk_bytenr(leaf
, extent
) != old
->bytenr
)
2453 * 'offset' refers to the exact key.offset,
2454 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2455 * (key.offset - extent_offset).
2457 if (key
.offset
!= offset
)
2460 extent_offset
= btrfs_file_extent_offset(leaf
, extent
);
2461 num_bytes
= btrfs_file_extent_num_bytes(leaf
, extent
);
2463 if (extent_offset
>= old
->extent_offset
+ old
->offset
+
2464 old
->len
|| extent_offset
+ num_bytes
<=
2465 old
->extent_offset
+ old
->offset
)
2470 backref
= kmalloc(sizeof(*backref
), GFP_NOFS
);
2476 backref
->root_id
= root_id
;
2477 backref
->inum
= inum
;
2478 backref
->file_pos
= offset
;
2479 backref
->num_bytes
= num_bytes
;
2480 backref
->extent_offset
= extent_offset
;
2481 backref
->generation
= btrfs_file_extent_generation(leaf
, extent
);
2483 backref_insert(&new->root
, backref
);
2486 btrfs_release_path(path
);
2491 static noinline
bool record_extent_backrefs(struct btrfs_path
*path
,
2492 struct new_sa_defrag_extent
*new)
2494 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2495 struct old_sa_defrag_extent
*old
, *tmp
;
2500 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2501 ret
= iterate_inodes_from_logical(old
->bytenr
+
2502 old
->extent_offset
, fs_info
,
2503 path
, record_one_backref
,
2505 if (ret
< 0 && ret
!= -ENOENT
)
2508 /* no backref to be processed for this extent */
2510 list_del(&old
->list
);
2515 if (list_empty(&new->head
))
2521 static int relink_is_mergable(struct extent_buffer
*leaf
,
2522 struct btrfs_file_extent_item
*fi
,
2523 struct new_sa_defrag_extent
*new)
2525 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) != new->bytenr
)
2528 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2531 if (btrfs_file_extent_compression(leaf
, fi
) != new->compress_type
)
2534 if (btrfs_file_extent_encryption(leaf
, fi
) ||
2535 btrfs_file_extent_other_encoding(leaf
, fi
))
2542 * Note the backref might has changed, and in this case we just return 0.
2544 static noinline
int relink_extent_backref(struct btrfs_path
*path
,
2545 struct sa_defrag_extent_backref
*prev
,
2546 struct sa_defrag_extent_backref
*backref
)
2548 struct btrfs_file_extent_item
*extent
;
2549 struct btrfs_file_extent_item
*item
;
2550 struct btrfs_ordered_extent
*ordered
;
2551 struct btrfs_trans_handle
*trans
;
2552 struct btrfs_root
*root
;
2553 struct btrfs_key key
;
2554 struct extent_buffer
*leaf
;
2555 struct old_sa_defrag_extent
*old
= backref
->old
;
2556 struct new_sa_defrag_extent
*new = old
->new;
2557 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2558 struct inode
*inode
;
2559 struct extent_state
*cached
= NULL
;
2568 if (prev
&& prev
->root_id
== backref
->root_id
&&
2569 prev
->inum
== backref
->inum
&&
2570 prev
->file_pos
+ prev
->num_bytes
== backref
->file_pos
)
2573 /* step 1: get root */
2574 key
.objectid
= backref
->root_id
;
2575 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2576 key
.offset
= (u64
)-1;
2578 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
2580 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2582 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2583 if (PTR_ERR(root
) == -ENOENT
)
2585 return PTR_ERR(root
);
2588 if (btrfs_root_readonly(root
)) {
2589 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2593 /* step 2: get inode */
2594 key
.objectid
= backref
->inum
;
2595 key
.type
= BTRFS_INODE_ITEM_KEY
;
2598 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
2599 if (IS_ERR(inode
)) {
2600 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2604 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2606 /* step 3: relink backref */
2607 lock_start
= backref
->file_pos
;
2608 lock_end
= backref
->file_pos
+ backref
->num_bytes
- 1;
2609 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2612 ordered
= btrfs_lookup_first_ordered_extent(inode
, lock_end
);
2614 btrfs_put_ordered_extent(ordered
);
2618 trans
= btrfs_join_transaction(root
);
2619 if (IS_ERR(trans
)) {
2620 ret
= PTR_ERR(trans
);
2624 key
.objectid
= backref
->inum
;
2625 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2626 key
.offset
= backref
->file_pos
;
2628 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2631 } else if (ret
> 0) {
2636 extent
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2637 struct btrfs_file_extent_item
);
2639 if (btrfs_file_extent_generation(path
->nodes
[0], extent
) !=
2640 backref
->generation
)
2643 btrfs_release_path(path
);
2645 start
= backref
->file_pos
;
2646 if (backref
->extent_offset
< old
->extent_offset
+ old
->offset
)
2647 start
+= old
->extent_offset
+ old
->offset
-
2648 backref
->extent_offset
;
2650 len
= min(backref
->extent_offset
+ backref
->num_bytes
,
2651 old
->extent_offset
+ old
->offset
+ old
->len
);
2652 len
-= max(backref
->extent_offset
, old
->extent_offset
+ old
->offset
);
2654 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
2659 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
2660 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2663 path
->leave_spinning
= 1;
2665 struct btrfs_file_extent_item
*fi
;
2667 struct btrfs_key found_key
;
2669 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2674 leaf
= path
->nodes
[0];
2675 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2677 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2678 struct btrfs_file_extent_item
);
2679 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
2681 if (extent_len
+ found_key
.offset
== start
&&
2682 relink_is_mergable(leaf
, fi
, new)) {
2683 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2685 btrfs_mark_buffer_dirty(leaf
);
2686 inode_add_bytes(inode
, len
);
2692 btrfs_release_path(path
);
2697 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2700 btrfs_abort_transaction(trans
, ret
);
2704 leaf
= path
->nodes
[0];
2705 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2706 struct btrfs_file_extent_item
);
2707 btrfs_set_file_extent_disk_bytenr(leaf
, item
, new->bytenr
);
2708 btrfs_set_file_extent_disk_num_bytes(leaf
, item
, new->disk_len
);
2709 btrfs_set_file_extent_offset(leaf
, item
, start
- new->file_pos
);
2710 btrfs_set_file_extent_num_bytes(leaf
, item
, len
);
2711 btrfs_set_file_extent_ram_bytes(leaf
, item
, new->len
);
2712 btrfs_set_file_extent_generation(leaf
, item
, trans
->transid
);
2713 btrfs_set_file_extent_type(leaf
, item
, BTRFS_FILE_EXTENT_REG
);
2714 btrfs_set_file_extent_compression(leaf
, item
, new->compress_type
);
2715 btrfs_set_file_extent_encryption(leaf
, item
, 0);
2716 btrfs_set_file_extent_other_encoding(leaf
, item
, 0);
2718 btrfs_mark_buffer_dirty(leaf
);
2719 inode_add_bytes(inode
, len
);
2720 btrfs_release_path(path
);
2722 ret
= btrfs_inc_extent_ref(trans
, root
, new->bytenr
,
2724 backref
->root_id
, backref
->inum
,
2725 new->file_pos
); /* start - extent_offset */
2727 btrfs_abort_transaction(trans
, ret
);
2733 btrfs_release_path(path
);
2734 path
->leave_spinning
= 0;
2735 btrfs_end_transaction(trans
);
2737 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2743 static void free_sa_defrag_extent(struct new_sa_defrag_extent
*new)
2745 struct old_sa_defrag_extent
*old
, *tmp
;
2750 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2756 static void relink_file_extents(struct new_sa_defrag_extent
*new)
2758 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2759 struct btrfs_path
*path
;
2760 struct sa_defrag_extent_backref
*backref
;
2761 struct sa_defrag_extent_backref
*prev
= NULL
;
2762 struct inode
*inode
;
2763 struct rb_node
*node
;
2768 path
= btrfs_alloc_path();
2772 if (!record_extent_backrefs(path
, new)) {
2773 btrfs_free_path(path
);
2776 btrfs_release_path(path
);
2779 node
= rb_first(&new->root
);
2782 rb_erase(node
, &new->root
);
2784 backref
= rb_entry(node
, struct sa_defrag_extent_backref
, node
);
2786 ret
= relink_extent_backref(path
, prev
, backref
);
2799 btrfs_free_path(path
);
2801 free_sa_defrag_extent(new);
2803 atomic_dec(&fs_info
->defrag_running
);
2804 wake_up(&fs_info
->transaction_wait
);
2807 static struct new_sa_defrag_extent
*
2808 record_old_file_extents(struct inode
*inode
,
2809 struct btrfs_ordered_extent
*ordered
)
2811 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2812 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2813 struct btrfs_path
*path
;
2814 struct btrfs_key key
;
2815 struct old_sa_defrag_extent
*old
;
2816 struct new_sa_defrag_extent
*new;
2819 new = kmalloc(sizeof(*new), GFP_NOFS
);
2824 new->file_pos
= ordered
->file_offset
;
2825 new->len
= ordered
->len
;
2826 new->bytenr
= ordered
->start
;
2827 new->disk_len
= ordered
->disk_len
;
2828 new->compress_type
= ordered
->compress_type
;
2829 new->root
= RB_ROOT
;
2830 INIT_LIST_HEAD(&new->head
);
2832 path
= btrfs_alloc_path();
2836 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
2837 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2838 key
.offset
= new->file_pos
;
2840 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2843 if (ret
> 0 && path
->slots
[0] > 0)
2846 /* find out all the old extents for the file range */
2848 struct btrfs_file_extent_item
*extent
;
2849 struct extent_buffer
*l
;
2858 slot
= path
->slots
[0];
2860 if (slot
>= btrfs_header_nritems(l
)) {
2861 ret
= btrfs_next_leaf(root
, path
);
2869 btrfs_item_key_to_cpu(l
, &key
, slot
);
2871 if (key
.objectid
!= btrfs_ino(BTRFS_I(inode
)))
2873 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2875 if (key
.offset
>= new->file_pos
+ new->len
)
2878 extent
= btrfs_item_ptr(l
, slot
, struct btrfs_file_extent_item
);
2880 num_bytes
= btrfs_file_extent_num_bytes(l
, extent
);
2881 if (key
.offset
+ num_bytes
< new->file_pos
)
2884 disk_bytenr
= btrfs_file_extent_disk_bytenr(l
, extent
);
2888 extent_offset
= btrfs_file_extent_offset(l
, extent
);
2890 old
= kmalloc(sizeof(*old
), GFP_NOFS
);
2894 offset
= max(new->file_pos
, key
.offset
);
2895 end
= min(new->file_pos
+ new->len
, key
.offset
+ num_bytes
);
2897 old
->bytenr
= disk_bytenr
;
2898 old
->extent_offset
= extent_offset
;
2899 old
->offset
= offset
- key
.offset
;
2900 old
->len
= end
- offset
;
2903 list_add_tail(&old
->list
, &new->head
);
2909 btrfs_free_path(path
);
2910 atomic_inc(&fs_info
->defrag_running
);
2915 btrfs_free_path(path
);
2917 free_sa_defrag_extent(new);
2921 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info
*fs_info
,
2924 struct btrfs_block_group_cache
*cache
;
2926 cache
= btrfs_lookup_block_group(fs_info
, start
);
2929 spin_lock(&cache
->lock
);
2930 cache
->delalloc_bytes
-= len
;
2931 spin_unlock(&cache
->lock
);
2933 btrfs_put_block_group(cache
);
2936 /* as ordered data IO finishes, this gets called so we can finish
2937 * an ordered extent if the range of bytes in the file it covers are
2940 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
2942 struct inode
*inode
= ordered_extent
->inode
;
2943 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2944 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2945 struct btrfs_trans_handle
*trans
= NULL
;
2946 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2947 struct extent_state
*cached_state
= NULL
;
2948 struct new_sa_defrag_extent
*new = NULL
;
2949 int compress_type
= 0;
2951 u64 logical_len
= ordered_extent
->len
;
2953 bool truncated
= false;
2954 bool range_locked
= false;
2955 bool clear_new_delalloc_bytes
= false;
2957 if (!test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
2958 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
) &&
2959 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered_extent
->flags
))
2960 clear_new_delalloc_bytes
= true;
2962 nolock
= btrfs_is_free_space_inode(BTRFS_I(inode
));
2964 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
2969 btrfs_free_io_failure_record(BTRFS_I(inode
),
2970 ordered_extent
->file_offset
,
2971 ordered_extent
->file_offset
+
2972 ordered_extent
->len
- 1);
2974 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered_extent
->flags
)) {
2976 logical_len
= ordered_extent
->truncated_len
;
2977 /* Truncated the entire extent, don't bother adding */
2982 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
2983 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
2986 * For mwrite(mmap + memset to write) case, we still reserve
2987 * space for NOCOW range.
2988 * As NOCOW won't cause a new delayed ref, just free the space
2990 btrfs_qgroup_free_data(inode
, NULL
, ordered_extent
->file_offset
,
2991 ordered_extent
->len
);
2992 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2994 trans
= btrfs_join_transaction_nolock(root
);
2996 trans
= btrfs_join_transaction(root
);
2997 if (IS_ERR(trans
)) {
2998 ret
= PTR_ERR(trans
);
3002 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
3003 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
3004 if (ret
) /* -ENOMEM or corruption */
3005 btrfs_abort_transaction(trans
, ret
);
3009 range_locked
= true;
3010 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
3011 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
3014 ret
= test_range_bit(io_tree
, ordered_extent
->file_offset
,
3015 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
3016 EXTENT_DEFRAG
, 0, cached_state
);
3018 u64 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
3019 if (0 && last_snapshot
>= BTRFS_I(inode
)->generation
)
3020 /* the inode is shared */
3021 new = record_old_file_extents(inode
, ordered_extent
);
3023 clear_extent_bit(io_tree
, ordered_extent
->file_offset
,
3024 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
3025 EXTENT_DEFRAG
, 0, 0, &cached_state
);
3029 trans
= btrfs_join_transaction_nolock(root
);
3031 trans
= btrfs_join_transaction(root
);
3032 if (IS_ERR(trans
)) {
3033 ret
= PTR_ERR(trans
);
3038 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
3040 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
3041 compress_type
= ordered_extent
->compress_type
;
3042 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
3043 BUG_ON(compress_type
);
3044 btrfs_qgroup_free_data(inode
, NULL
, ordered_extent
->file_offset
,
3045 ordered_extent
->len
);
3046 ret
= btrfs_mark_extent_written(trans
, BTRFS_I(inode
),
3047 ordered_extent
->file_offset
,
3048 ordered_extent
->file_offset
+
3051 BUG_ON(root
== fs_info
->tree_root
);
3052 ret
= insert_reserved_file_extent(trans
, inode
,
3053 ordered_extent
->file_offset
,
3054 ordered_extent
->start
,
3055 ordered_extent
->disk_len
,
3056 logical_len
, logical_len
,
3057 compress_type
, 0, 0,
3058 BTRFS_FILE_EXTENT_REG
);
3060 btrfs_release_delalloc_bytes(fs_info
,
3061 ordered_extent
->start
,
3062 ordered_extent
->disk_len
);
3064 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
3065 ordered_extent
->file_offset
, ordered_extent
->len
,
3068 btrfs_abort_transaction(trans
, ret
);
3072 ret
= add_pending_csums(trans
, inode
, &ordered_extent
->list
);
3074 btrfs_abort_transaction(trans
, ret
);
3078 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
3079 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
3080 if (ret
) { /* -ENOMEM or corruption */
3081 btrfs_abort_transaction(trans
, ret
);
3086 if (range_locked
|| clear_new_delalloc_bytes
) {
3087 unsigned int clear_bits
= 0;
3090 clear_bits
|= EXTENT_LOCKED
;
3091 if (clear_new_delalloc_bytes
)
3092 clear_bits
|= EXTENT_DELALLOC_NEW
;
3093 clear_extent_bit(&BTRFS_I(inode
)->io_tree
,
3094 ordered_extent
->file_offset
,
3095 ordered_extent
->file_offset
+
3096 ordered_extent
->len
- 1,
3098 (clear_bits
& EXTENT_LOCKED
) ? 1 : 0,
3103 btrfs_end_transaction(trans
);
3105 if (ret
|| truncated
) {
3109 start
= ordered_extent
->file_offset
+ logical_len
;
3111 start
= ordered_extent
->file_offset
;
3112 end
= ordered_extent
->file_offset
+ ordered_extent
->len
- 1;
3113 clear_extent_uptodate(io_tree
, start
, end
, NULL
);
3115 /* Drop the cache for the part of the extent we didn't write. */
3116 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, end
, 0);
3119 * If the ordered extent had an IOERR or something else went
3120 * wrong we need to return the space for this ordered extent
3121 * back to the allocator. We only free the extent in the
3122 * truncated case if we didn't write out the extent at all.
3124 if ((ret
|| !logical_len
) &&
3125 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
3126 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
))
3127 btrfs_free_reserved_extent(fs_info
,
3128 ordered_extent
->start
,
3129 ordered_extent
->disk_len
, 1);
3134 * This needs to be done to make sure anybody waiting knows we are done
3135 * updating everything for this ordered extent.
3137 btrfs_remove_ordered_extent(inode
, ordered_extent
);
3139 /* for snapshot-aware defrag */
3142 free_sa_defrag_extent(new);
3143 atomic_dec(&fs_info
->defrag_running
);
3145 relink_file_extents(new);
3150 btrfs_put_ordered_extent(ordered_extent
);
3151 /* once for the tree */
3152 btrfs_put_ordered_extent(ordered_extent
);
3157 static void finish_ordered_fn(struct btrfs_work
*work
)
3159 struct btrfs_ordered_extent
*ordered_extent
;
3160 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
3161 btrfs_finish_ordered_io(ordered_extent
);
3164 static void btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
3165 struct extent_state
*state
, int uptodate
)
3167 struct inode
*inode
= page
->mapping
->host
;
3168 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3169 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
3170 struct btrfs_workqueue
*wq
;
3171 btrfs_work_func_t func
;
3173 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
3175 ClearPagePrivate2(page
);
3176 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
3177 end
- start
+ 1, uptodate
))
3180 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
3181 wq
= fs_info
->endio_freespace_worker
;
3182 func
= btrfs_freespace_write_helper
;
3184 wq
= fs_info
->endio_write_workers
;
3185 func
= btrfs_endio_write_helper
;
3188 btrfs_init_work(&ordered_extent
->work
, func
, finish_ordered_fn
, NULL
,
3190 btrfs_queue_work(wq
, &ordered_extent
->work
);
3193 static int __readpage_endio_check(struct inode
*inode
,
3194 struct btrfs_io_bio
*io_bio
,
3195 int icsum
, struct page
*page
,
3196 int pgoff
, u64 start
, size_t len
)
3202 csum_expected
= *(((u32
*)io_bio
->csum
) + icsum
);
3204 kaddr
= kmap_atomic(page
);
3205 csum
= btrfs_csum_data(kaddr
+ pgoff
, csum
, len
);
3206 btrfs_csum_final(csum
, (u8
*)&csum
);
3207 if (csum
!= csum_expected
)
3210 kunmap_atomic(kaddr
);
3213 btrfs_print_data_csum_error(BTRFS_I(inode
), start
, csum
, csum_expected
,
3214 io_bio
->mirror_num
);
3215 memset(kaddr
+ pgoff
, 1, len
);
3216 flush_dcache_page(page
);
3217 kunmap_atomic(kaddr
);
3222 * when reads are done, we need to check csums to verify the data is correct
3223 * if there's a match, we allow the bio to finish. If not, the code in
3224 * extent_io.c will try to find good copies for us.
3226 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
3227 u64 phy_offset
, struct page
*page
,
3228 u64 start
, u64 end
, int mirror
)
3230 size_t offset
= start
- page_offset(page
);
3231 struct inode
*inode
= page
->mapping
->host
;
3232 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3233 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3235 if (PageChecked(page
)) {
3236 ClearPageChecked(page
);
3240 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
3243 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
3244 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
3245 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
);
3249 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
3250 return __readpage_endio_check(inode
, io_bio
, phy_offset
, page
, offset
,
3251 start
, (size_t)(end
- start
+ 1));
3255 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3257 * @inode: The inode we want to perform iput on
3259 * This function uses the generic vfs_inode::i_count to track whether we should
3260 * just decrement it (in case it's > 1) or if this is the last iput then link
3261 * the inode to the delayed iput machinery. Delayed iputs are processed at
3262 * transaction commit time/superblock commit/cleaner kthread.
3264 void btrfs_add_delayed_iput(struct inode
*inode
)
3266 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3267 struct btrfs_inode
*binode
= BTRFS_I(inode
);
3269 if (atomic_add_unless(&inode
->i_count
, -1, 1))
3272 spin_lock(&fs_info
->delayed_iput_lock
);
3273 ASSERT(list_empty(&binode
->delayed_iput
));
3274 list_add_tail(&binode
->delayed_iput
, &fs_info
->delayed_iputs
);
3275 spin_unlock(&fs_info
->delayed_iput_lock
);
3278 void btrfs_run_delayed_iputs(struct btrfs_fs_info
*fs_info
)
3281 spin_lock(&fs_info
->delayed_iput_lock
);
3282 while (!list_empty(&fs_info
->delayed_iputs
)) {
3283 struct btrfs_inode
*inode
;
3285 inode
= list_first_entry(&fs_info
->delayed_iputs
,
3286 struct btrfs_inode
, delayed_iput
);
3287 list_del_init(&inode
->delayed_iput
);
3288 spin_unlock(&fs_info
->delayed_iput_lock
);
3289 iput(&inode
->vfs_inode
);
3290 spin_lock(&fs_info
->delayed_iput_lock
);
3292 spin_unlock(&fs_info
->delayed_iput_lock
);
3296 * This is called in transaction commit time. If there are no orphan
3297 * files in the subvolume, it removes orphan item and frees block_rsv
3300 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
3301 struct btrfs_root
*root
)
3303 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3304 struct btrfs_block_rsv
*block_rsv
;
3307 if (atomic_read(&root
->orphan_inodes
) ||
3308 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
3311 spin_lock(&root
->orphan_lock
);
3312 if (atomic_read(&root
->orphan_inodes
)) {
3313 spin_unlock(&root
->orphan_lock
);
3317 if (root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
) {
3318 spin_unlock(&root
->orphan_lock
);
3322 block_rsv
= root
->orphan_block_rsv
;
3323 root
->orphan_block_rsv
= NULL
;
3324 spin_unlock(&root
->orphan_lock
);
3326 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
) &&
3327 btrfs_root_refs(&root
->root_item
) > 0) {
3328 ret
= btrfs_del_orphan_item(trans
, fs_info
->tree_root
,
3329 root
->root_key
.objectid
);
3331 btrfs_abort_transaction(trans
, ret
);
3333 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
,
3338 WARN_ON(block_rsv
->size
> 0);
3339 btrfs_free_block_rsv(fs_info
, block_rsv
);
3344 * This creates an orphan entry for the given inode in case something goes
3345 * wrong in the middle of an unlink/truncate.
3347 * NOTE: caller of this function should reserve 5 units of metadata for
3350 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
,
3351 struct btrfs_inode
*inode
)
3353 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
3354 struct btrfs_root
*root
= inode
->root
;
3355 struct btrfs_block_rsv
*block_rsv
= NULL
;
3357 bool insert
= false;
3360 if (!root
->orphan_block_rsv
) {
3361 block_rsv
= btrfs_alloc_block_rsv(fs_info
,
3362 BTRFS_BLOCK_RSV_TEMP
);
3367 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3368 &inode
->runtime_flags
))
3371 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3372 &inode
->runtime_flags
))
3375 spin_lock(&root
->orphan_lock
);
3376 /* If someone has created ->orphan_block_rsv, be happy to use it. */
3377 if (!root
->orphan_block_rsv
) {
3378 root
->orphan_block_rsv
= block_rsv
;
3379 } else if (block_rsv
) {
3380 btrfs_free_block_rsv(fs_info
, block_rsv
);
3385 atomic_inc(&root
->orphan_inodes
);
3386 spin_unlock(&root
->orphan_lock
);
3388 /* grab metadata reservation from transaction handle */
3390 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
3394 * dec doesn't need spin_lock as ->orphan_block_rsv
3395 * would be released only if ->orphan_inodes is
3398 atomic_dec(&root
->orphan_inodes
);
3399 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3400 &inode
->runtime_flags
);
3402 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3403 &inode
->runtime_flags
);
3408 /* insert an orphan item to track this unlinked/truncated file */
3410 ret
= btrfs_insert_orphan_item(trans
, root
, btrfs_ino(inode
));
3413 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3414 &inode
->runtime_flags
);
3415 btrfs_orphan_release_metadata(inode
);
3418 * btrfs_orphan_commit_root may race with us and set
3419 * ->orphan_block_rsv to zero, in order to avoid that,
3420 * decrease ->orphan_inodes after everything is done.
3422 atomic_dec(&root
->orphan_inodes
);
3423 if (ret
!= -EEXIST
) {
3424 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3425 &inode
->runtime_flags
);
3426 btrfs_abort_transaction(trans
, ret
);
3437 * We have done the truncate/delete so we can go ahead and remove the orphan
3438 * item for this particular inode.
3440 static int btrfs_orphan_del(struct btrfs_trans_handle
*trans
,
3441 struct btrfs_inode
*inode
)
3443 struct btrfs_root
*root
= inode
->root
;
3444 int delete_item
= 0;
3447 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3448 &inode
->runtime_flags
))
3451 if (delete_item
&& trans
)
3452 ret
= btrfs_del_orphan_item(trans
, root
, btrfs_ino(inode
));
3454 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3455 &inode
->runtime_flags
))
3456 btrfs_orphan_release_metadata(inode
);
3459 * btrfs_orphan_commit_root may race with us and set ->orphan_block_rsv
3460 * to zero, in order to avoid that, decrease ->orphan_inodes after
3461 * everything is done.
3464 atomic_dec(&root
->orphan_inodes
);
3470 * this cleans up any orphans that may be left on the list from the last use
3473 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
3475 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3476 struct btrfs_path
*path
;
3477 struct extent_buffer
*leaf
;
3478 struct btrfs_key key
, found_key
;
3479 struct btrfs_trans_handle
*trans
;
3480 struct inode
*inode
;
3481 u64 last_objectid
= 0;
3482 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
3484 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
3487 path
= btrfs_alloc_path();
3492 path
->reada
= READA_BACK
;
3494 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
3495 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
3496 key
.offset
= (u64
)-1;
3499 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3504 * if ret == 0 means we found what we were searching for, which
3505 * is weird, but possible, so only screw with path if we didn't
3506 * find the key and see if we have stuff that matches
3510 if (path
->slots
[0] == 0)
3515 /* pull out the item */
3516 leaf
= path
->nodes
[0];
3517 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3519 /* make sure the item matches what we want */
3520 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
3522 if (found_key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
3525 /* release the path since we're done with it */
3526 btrfs_release_path(path
);
3529 * this is where we are basically btrfs_lookup, without the
3530 * crossing root thing. we store the inode number in the
3531 * offset of the orphan item.
3534 if (found_key
.offset
== last_objectid
) {
3536 "Error removing orphan entry, stopping orphan cleanup");
3541 last_objectid
= found_key
.offset
;
3543 found_key
.objectid
= found_key
.offset
;
3544 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
3545 found_key
.offset
= 0;
3546 inode
= btrfs_iget(fs_info
->sb
, &found_key
, root
, NULL
);
3547 ret
= PTR_ERR_OR_ZERO(inode
);
3548 if (ret
&& ret
!= -ENOENT
)
3551 if (ret
== -ENOENT
&& root
== fs_info
->tree_root
) {
3552 struct btrfs_root
*dead_root
;
3553 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3554 int is_dead_root
= 0;
3557 * this is an orphan in the tree root. Currently these
3558 * could come from 2 sources:
3559 * a) a snapshot deletion in progress
3560 * b) a free space cache inode
3561 * We need to distinguish those two, as the snapshot
3562 * orphan must not get deleted.
3563 * find_dead_roots already ran before us, so if this
3564 * is a snapshot deletion, we should find the root
3565 * in the dead_roots list
3567 spin_lock(&fs_info
->trans_lock
);
3568 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
3570 if (dead_root
->root_key
.objectid
==
3571 found_key
.objectid
) {
3576 spin_unlock(&fs_info
->trans_lock
);
3578 /* prevent this orphan from being found again */
3579 key
.offset
= found_key
.objectid
- 1;
3584 * Inode is already gone but the orphan item is still there,
3585 * kill the orphan item.
3587 if (ret
== -ENOENT
) {
3588 trans
= btrfs_start_transaction(root
, 1);
3589 if (IS_ERR(trans
)) {
3590 ret
= PTR_ERR(trans
);
3593 btrfs_debug(fs_info
, "auto deleting %Lu",
3594 found_key
.objectid
);
3595 ret
= btrfs_del_orphan_item(trans
, root
,
3596 found_key
.objectid
);
3597 btrfs_end_transaction(trans
);
3604 * add this inode to the orphan list so btrfs_orphan_del does
3605 * the proper thing when we hit it
3607 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3608 &BTRFS_I(inode
)->runtime_flags
);
3609 atomic_inc(&root
->orphan_inodes
);
3611 /* if we have links, this was a truncate, lets do that */
3612 if (inode
->i_nlink
) {
3613 if (WARN_ON(!S_ISREG(inode
->i_mode
))) {
3619 /* 1 for the orphan item deletion. */
3620 trans
= btrfs_start_transaction(root
, 1);
3621 if (IS_ERR(trans
)) {
3623 ret
= PTR_ERR(trans
);
3626 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
3627 btrfs_end_transaction(trans
);
3633 ret
= btrfs_truncate(inode
, false);
3635 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
3640 /* this will do delete_inode and everything for us */
3645 /* release the path since we're done with it */
3646 btrfs_release_path(path
);
3648 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
3650 if (root
->orphan_block_rsv
)
3651 btrfs_block_rsv_release(fs_info
, root
->orphan_block_rsv
,
3654 if (root
->orphan_block_rsv
||
3655 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
)) {
3656 trans
= btrfs_join_transaction(root
);
3658 btrfs_end_transaction(trans
);
3662 btrfs_debug(fs_info
, "unlinked %d orphans", nr_unlink
);
3664 btrfs_debug(fs_info
, "truncated %d orphans", nr_truncate
);
3668 btrfs_err(fs_info
, "could not do orphan cleanup %d", ret
);
3669 btrfs_free_path(path
);
3674 * very simple check to peek ahead in the leaf looking for xattrs. If we
3675 * don't find any xattrs, we know there can't be any acls.
3677 * slot is the slot the inode is in, objectid is the objectid of the inode
3679 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
3680 int slot
, u64 objectid
,
3681 int *first_xattr_slot
)
3683 u32 nritems
= btrfs_header_nritems(leaf
);
3684 struct btrfs_key found_key
;
3685 static u64 xattr_access
= 0;
3686 static u64 xattr_default
= 0;
3689 if (!xattr_access
) {
3690 xattr_access
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS
,
3691 strlen(XATTR_NAME_POSIX_ACL_ACCESS
));
3692 xattr_default
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT
,
3693 strlen(XATTR_NAME_POSIX_ACL_DEFAULT
));
3697 *first_xattr_slot
= -1;
3698 while (slot
< nritems
) {
3699 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3701 /* we found a different objectid, there must not be acls */
3702 if (found_key
.objectid
!= objectid
)
3705 /* we found an xattr, assume we've got an acl */
3706 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
3707 if (*first_xattr_slot
== -1)
3708 *first_xattr_slot
= slot
;
3709 if (found_key
.offset
== xattr_access
||
3710 found_key
.offset
== xattr_default
)
3715 * we found a key greater than an xattr key, there can't
3716 * be any acls later on
3718 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
3725 * it goes inode, inode backrefs, xattrs, extents,
3726 * so if there are a ton of hard links to an inode there can
3727 * be a lot of backrefs. Don't waste time searching too hard,
3728 * this is just an optimization
3733 /* we hit the end of the leaf before we found an xattr or
3734 * something larger than an xattr. We have to assume the inode
3737 if (*first_xattr_slot
== -1)
3738 *first_xattr_slot
= slot
;
3743 * read an inode from the btree into the in-memory inode
3745 static int btrfs_read_locked_inode(struct inode
*inode
)
3747 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3748 struct btrfs_path
*path
;
3749 struct extent_buffer
*leaf
;
3750 struct btrfs_inode_item
*inode_item
;
3751 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3752 struct btrfs_key location
;
3757 bool filled
= false;
3758 int first_xattr_slot
;
3760 ret
= btrfs_fill_inode(inode
, &rdev
);
3764 path
= btrfs_alloc_path();
3770 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
3772 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
3779 leaf
= path
->nodes
[0];
3784 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3785 struct btrfs_inode_item
);
3786 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
3787 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
3788 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
3789 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
3790 btrfs_i_size_write(BTRFS_I(inode
), btrfs_inode_size(leaf
, inode_item
));
3792 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->atime
);
3793 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->atime
);
3795 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->mtime
);
3796 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->mtime
);
3798 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->ctime
);
3799 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->ctime
);
3801 BTRFS_I(inode
)->i_otime
.tv_sec
=
3802 btrfs_timespec_sec(leaf
, &inode_item
->otime
);
3803 BTRFS_I(inode
)->i_otime
.tv_nsec
=
3804 btrfs_timespec_nsec(leaf
, &inode_item
->otime
);
3806 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
3807 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
3808 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
3810 inode_set_iversion_queried(inode
,
3811 btrfs_inode_sequence(leaf
, inode_item
));
3812 inode
->i_generation
= BTRFS_I(inode
)->generation
;
3814 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
3816 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
3817 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
3821 * If we were modified in the current generation and evicted from memory
3822 * and then re-read we need to do a full sync since we don't have any
3823 * idea about which extents were modified before we were evicted from
3826 * This is required for both inode re-read from disk and delayed inode
3827 * in delayed_nodes_tree.
3829 if (BTRFS_I(inode
)->last_trans
== fs_info
->generation
)
3830 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3831 &BTRFS_I(inode
)->runtime_flags
);
3834 * We don't persist the id of the transaction where an unlink operation
3835 * against the inode was last made. So here we assume the inode might
3836 * have been evicted, and therefore the exact value of last_unlink_trans
3837 * lost, and set it to last_trans to avoid metadata inconsistencies
3838 * between the inode and its parent if the inode is fsync'ed and the log
3839 * replayed. For example, in the scenario:
3842 * ln mydir/foo mydir/bar
3845 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3846 * xfs_io -c fsync mydir/foo
3848 * mount fs, triggers fsync log replay
3850 * We must make sure that when we fsync our inode foo we also log its
3851 * parent inode, otherwise after log replay the parent still has the
3852 * dentry with the "bar" name but our inode foo has a link count of 1
3853 * and doesn't have an inode ref with the name "bar" anymore.
3855 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3856 * but it guarantees correctness at the expense of occasional full
3857 * transaction commits on fsync if our inode is a directory, or if our
3858 * inode is not a directory, logging its parent unnecessarily.
3860 BTRFS_I(inode
)->last_unlink_trans
= BTRFS_I(inode
)->last_trans
;
3863 if (inode
->i_nlink
!= 1 ||
3864 path
->slots
[0] >= btrfs_header_nritems(leaf
))
3867 btrfs_item_key_to_cpu(leaf
, &location
, path
->slots
[0]);
3868 if (location
.objectid
!= btrfs_ino(BTRFS_I(inode
)))
3871 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3872 if (location
.type
== BTRFS_INODE_REF_KEY
) {
3873 struct btrfs_inode_ref
*ref
;
3875 ref
= (struct btrfs_inode_ref
*)ptr
;
3876 BTRFS_I(inode
)->dir_index
= btrfs_inode_ref_index(leaf
, ref
);
3877 } else if (location
.type
== BTRFS_INODE_EXTREF_KEY
) {
3878 struct btrfs_inode_extref
*extref
;
3880 extref
= (struct btrfs_inode_extref
*)ptr
;
3881 BTRFS_I(inode
)->dir_index
= btrfs_inode_extref_index(leaf
,
3886 * try to precache a NULL acl entry for files that don't have
3887 * any xattrs or acls
3889 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
3890 btrfs_ino(BTRFS_I(inode
)), &first_xattr_slot
);
3891 if (first_xattr_slot
!= -1) {
3892 path
->slots
[0] = first_xattr_slot
;
3893 ret
= btrfs_load_inode_props(inode
, path
);
3896 "error loading props for ino %llu (root %llu): %d",
3897 btrfs_ino(BTRFS_I(inode
)),
3898 root
->root_key
.objectid
, ret
);
3900 btrfs_free_path(path
);
3903 cache_no_acl(inode
);
3905 switch (inode
->i_mode
& S_IFMT
) {
3907 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3908 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3909 inode
->i_fop
= &btrfs_file_operations
;
3910 inode
->i_op
= &btrfs_file_inode_operations
;
3913 inode
->i_fop
= &btrfs_dir_file_operations
;
3914 inode
->i_op
= &btrfs_dir_inode_operations
;
3917 inode
->i_op
= &btrfs_symlink_inode_operations
;
3918 inode_nohighmem(inode
);
3919 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
3922 inode
->i_op
= &btrfs_special_inode_operations
;
3923 init_special_inode(inode
, inode
->i_mode
, rdev
);
3927 btrfs_update_iflags(inode
);
3931 btrfs_free_path(path
);
3932 make_bad_inode(inode
);
3937 * given a leaf and an inode, copy the inode fields into the leaf
3939 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3940 struct extent_buffer
*leaf
,
3941 struct btrfs_inode_item
*item
,
3942 struct inode
*inode
)
3944 struct btrfs_map_token token
;
3946 btrfs_init_map_token(&token
);
3948 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3949 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3950 btrfs_set_token_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
,
3952 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3953 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3955 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3956 inode
->i_atime
.tv_sec
, &token
);
3957 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3958 inode
->i_atime
.tv_nsec
, &token
);
3960 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3961 inode
->i_mtime
.tv_sec
, &token
);
3962 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3963 inode
->i_mtime
.tv_nsec
, &token
);
3965 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3966 inode
->i_ctime
.tv_sec
, &token
);
3967 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3968 inode
->i_ctime
.tv_nsec
, &token
);
3970 btrfs_set_token_timespec_sec(leaf
, &item
->otime
,
3971 BTRFS_I(inode
)->i_otime
.tv_sec
, &token
);
3972 btrfs_set_token_timespec_nsec(leaf
, &item
->otime
,
3973 BTRFS_I(inode
)->i_otime
.tv_nsec
, &token
);
3975 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3977 btrfs_set_token_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
,
3979 btrfs_set_token_inode_sequence(leaf
, item
, inode_peek_iversion(inode
),
3981 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3982 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3983 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3984 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3988 * copy everything in the in-memory inode into the btree.
3990 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
3991 struct btrfs_root
*root
, struct inode
*inode
)
3993 struct btrfs_inode_item
*inode_item
;
3994 struct btrfs_path
*path
;
3995 struct extent_buffer
*leaf
;
3998 path
= btrfs_alloc_path();
4002 path
->leave_spinning
= 1;
4003 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
4011 leaf
= path
->nodes
[0];
4012 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4013 struct btrfs_inode_item
);
4015 fill_inode_item(trans
, leaf
, inode_item
, inode
);
4016 btrfs_mark_buffer_dirty(leaf
);
4017 btrfs_set_inode_last_trans(trans
, inode
);
4020 btrfs_free_path(path
);
4025 * copy everything in the in-memory inode into the btree.
4027 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
4028 struct btrfs_root
*root
, struct inode
*inode
)
4030 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4034 * If the inode is a free space inode, we can deadlock during commit
4035 * if we put it into the delayed code.
4037 * The data relocation inode should also be directly updated
4040 if (!btrfs_is_free_space_inode(BTRFS_I(inode
))
4041 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
4042 && !test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
)) {
4043 btrfs_update_root_times(trans
, root
);
4045 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
4047 btrfs_set_inode_last_trans(trans
, inode
);
4051 return btrfs_update_inode_item(trans
, root
, inode
);
4054 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
4055 struct btrfs_root
*root
,
4056 struct inode
*inode
)
4060 ret
= btrfs_update_inode(trans
, root
, inode
);
4062 return btrfs_update_inode_item(trans
, root
, inode
);
4067 * unlink helper that gets used here in inode.c and in the tree logging
4068 * recovery code. It remove a link in a directory with a given name, and
4069 * also drops the back refs in the inode to the directory
4071 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
4072 struct btrfs_root
*root
,
4073 struct btrfs_inode
*dir
,
4074 struct btrfs_inode
*inode
,
4075 const char *name
, int name_len
)
4077 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4078 struct btrfs_path
*path
;
4080 struct extent_buffer
*leaf
;
4081 struct btrfs_dir_item
*di
;
4082 struct btrfs_key key
;
4084 u64 ino
= btrfs_ino(inode
);
4085 u64 dir_ino
= btrfs_ino(dir
);
4087 path
= btrfs_alloc_path();
4093 path
->leave_spinning
= 1;
4094 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
4095 name
, name_len
, -1);
4104 leaf
= path
->nodes
[0];
4105 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
4106 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
4109 btrfs_release_path(path
);
4112 * If we don't have dir index, we have to get it by looking up
4113 * the inode ref, since we get the inode ref, remove it directly,
4114 * it is unnecessary to do delayed deletion.
4116 * But if we have dir index, needn't search inode ref to get it.
4117 * Since the inode ref is close to the inode item, it is better
4118 * that we delay to delete it, and just do this deletion when
4119 * we update the inode item.
4121 if (inode
->dir_index
) {
4122 ret
= btrfs_delayed_delete_inode_ref(inode
);
4124 index
= inode
->dir_index
;
4129 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
4133 "failed to delete reference to %.*s, inode %llu parent %llu",
4134 name_len
, name
, ino
, dir_ino
);
4135 btrfs_abort_transaction(trans
, ret
);
4139 ret
= btrfs_delete_delayed_dir_index(trans
, fs_info
, dir
, index
);
4141 btrfs_abort_transaction(trans
, ret
);
4145 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
, inode
,
4147 if (ret
!= 0 && ret
!= -ENOENT
) {
4148 btrfs_abort_transaction(trans
, ret
);
4152 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
, dir
,
4157 btrfs_abort_transaction(trans
, ret
);
4159 btrfs_free_path(path
);
4163 btrfs_i_size_write(dir
, dir
->vfs_inode
.i_size
- name_len
* 2);
4164 inode_inc_iversion(&inode
->vfs_inode
);
4165 inode_inc_iversion(&dir
->vfs_inode
);
4166 inode
->vfs_inode
.i_ctime
= dir
->vfs_inode
.i_mtime
=
4167 dir
->vfs_inode
.i_ctime
= current_time(&inode
->vfs_inode
);
4168 ret
= btrfs_update_inode(trans
, root
, &dir
->vfs_inode
);
4173 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
4174 struct btrfs_root
*root
,
4175 struct btrfs_inode
*dir
, struct btrfs_inode
*inode
,
4176 const char *name
, int name_len
)
4179 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
4181 drop_nlink(&inode
->vfs_inode
);
4182 ret
= btrfs_update_inode(trans
, root
, &inode
->vfs_inode
);
4188 * helper to start transaction for unlink and rmdir.
4190 * unlink and rmdir are special in btrfs, they do not always free space, so
4191 * if we cannot make our reservations the normal way try and see if there is
4192 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4193 * allow the unlink to occur.
4195 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
)
4197 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4200 * 1 for the possible orphan item
4201 * 1 for the dir item
4202 * 1 for the dir index
4203 * 1 for the inode ref
4206 return btrfs_start_transaction_fallback_global_rsv(root
, 5, 5);
4209 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
4211 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4212 struct btrfs_trans_handle
*trans
;
4213 struct inode
*inode
= d_inode(dentry
);
4216 trans
= __unlink_start_trans(dir
);
4218 return PTR_ERR(trans
);
4220 btrfs_record_unlink_dir(trans
, BTRFS_I(dir
), BTRFS_I(d_inode(dentry
)),
4223 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
4224 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
4225 dentry
->d_name
.len
);
4229 if (inode
->i_nlink
== 0) {
4230 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
4236 btrfs_end_transaction(trans
);
4237 btrfs_btree_balance_dirty(root
->fs_info
);
4241 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
4242 struct btrfs_root
*root
,
4243 struct inode
*dir
, u64 objectid
,
4244 const char *name
, int name_len
)
4246 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4247 struct btrfs_path
*path
;
4248 struct extent_buffer
*leaf
;
4249 struct btrfs_dir_item
*di
;
4250 struct btrfs_key key
;
4253 u64 dir_ino
= btrfs_ino(BTRFS_I(dir
));
4255 path
= btrfs_alloc_path();
4259 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
4260 name
, name_len
, -1);
4261 if (IS_ERR_OR_NULL(di
)) {
4269 leaf
= path
->nodes
[0];
4270 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
4271 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
4272 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
4274 btrfs_abort_transaction(trans
, ret
);
4277 btrfs_release_path(path
);
4279 ret
= btrfs_del_root_ref(trans
, fs_info
, objectid
,
4280 root
->root_key
.objectid
, dir_ino
,
4281 &index
, name
, name_len
);
4283 if (ret
!= -ENOENT
) {
4284 btrfs_abort_transaction(trans
, ret
);
4287 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
4289 if (IS_ERR_OR_NULL(di
)) {
4294 btrfs_abort_transaction(trans
, ret
);
4298 leaf
= path
->nodes
[0];
4299 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4300 btrfs_release_path(path
);
4303 btrfs_release_path(path
);
4305 ret
= btrfs_delete_delayed_dir_index(trans
, fs_info
, BTRFS_I(dir
), index
);
4307 btrfs_abort_transaction(trans
, ret
);
4311 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
- name_len
* 2);
4312 inode_inc_iversion(dir
);
4313 dir
->i_mtime
= dir
->i_ctime
= current_time(dir
);
4314 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
4316 btrfs_abort_transaction(trans
, ret
);
4318 btrfs_free_path(path
);
4322 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
4324 struct inode
*inode
= d_inode(dentry
);
4326 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4327 struct btrfs_trans_handle
*trans
;
4328 u64 last_unlink_trans
;
4330 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
4332 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_FIRST_FREE_OBJECTID
)
4335 trans
= __unlink_start_trans(dir
);
4337 return PTR_ERR(trans
);
4339 if (unlikely(btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
4340 err
= btrfs_unlink_subvol(trans
, root
, dir
,
4341 BTRFS_I(inode
)->location
.objectid
,
4342 dentry
->d_name
.name
,
4343 dentry
->d_name
.len
);
4347 err
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
4351 last_unlink_trans
= BTRFS_I(inode
)->last_unlink_trans
;
4353 /* now the directory is empty */
4354 err
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
4355 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
4356 dentry
->d_name
.len
);
4358 btrfs_i_size_write(BTRFS_I(inode
), 0);
4360 * Propagate the last_unlink_trans value of the deleted dir to
4361 * its parent directory. This is to prevent an unrecoverable
4362 * log tree in the case we do something like this:
4364 * 2) create snapshot under dir foo
4365 * 3) delete the snapshot
4368 * 6) fsync foo or some file inside foo
4370 if (last_unlink_trans
>= trans
->transid
)
4371 BTRFS_I(dir
)->last_unlink_trans
= last_unlink_trans
;
4374 btrfs_end_transaction(trans
);
4375 btrfs_btree_balance_dirty(root
->fs_info
);
4380 static int truncate_space_check(struct btrfs_trans_handle
*trans
,
4381 struct btrfs_root
*root
,
4384 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4388 * This is only used to apply pressure to the enospc system, we don't
4389 * intend to use this reservation at all.
4391 bytes_deleted
= btrfs_csum_bytes_to_leaves(fs_info
, bytes_deleted
);
4392 bytes_deleted
*= fs_info
->nodesize
;
4393 ret
= btrfs_block_rsv_add(root
, &fs_info
->trans_block_rsv
,
4394 bytes_deleted
, BTRFS_RESERVE_NO_FLUSH
);
4396 trace_btrfs_space_reservation(fs_info
, "transaction",
4399 trans
->bytes_reserved
+= bytes_deleted
;
4406 * Return this if we need to call truncate_block for the last bit of the
4409 #define NEED_TRUNCATE_BLOCK 1
4412 * this can truncate away extent items, csum items and directory items.
4413 * It starts at a high offset and removes keys until it can't find
4414 * any higher than new_size
4416 * csum items that cross the new i_size are truncated to the new size
4419 * min_type is the minimum key type to truncate down to. If set to 0, this
4420 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4422 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
4423 struct btrfs_root
*root
,
4424 struct inode
*inode
,
4425 u64 new_size
, u32 min_type
)
4427 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4428 struct btrfs_path
*path
;
4429 struct extent_buffer
*leaf
;
4430 struct btrfs_file_extent_item
*fi
;
4431 struct btrfs_key key
;
4432 struct btrfs_key found_key
;
4433 u64 extent_start
= 0;
4434 u64 extent_num_bytes
= 0;
4435 u64 extent_offset
= 0;
4437 u64 last_size
= new_size
;
4438 u32 found_type
= (u8
)-1;
4441 int pending_del_nr
= 0;
4442 int pending_del_slot
= 0;
4443 int extent_type
= -1;
4446 u64 ino
= btrfs_ino(BTRFS_I(inode
));
4447 u64 bytes_deleted
= 0;
4448 bool be_nice
= false;
4449 bool should_throttle
= false;
4450 bool should_end
= false;
4452 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
4455 * for non-free space inodes and ref cows, we want to back off from
4458 if (!btrfs_is_free_space_inode(BTRFS_I(inode
)) &&
4459 test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4462 path
= btrfs_alloc_path();
4465 path
->reada
= READA_BACK
;
4468 * We want to drop from the next block forward in case this new size is
4469 * not block aligned since we will be keeping the last block of the
4470 * extent just the way it is.
4472 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4473 root
== fs_info
->tree_root
)
4474 btrfs_drop_extent_cache(BTRFS_I(inode
), ALIGN(new_size
,
4475 fs_info
->sectorsize
),
4479 * This function is also used to drop the items in the log tree before
4480 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4481 * it is used to drop the loged items. So we shouldn't kill the delayed
4484 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
4485 btrfs_kill_delayed_inode_items(BTRFS_I(inode
));
4488 key
.offset
= (u64
)-1;
4493 * with a 16K leaf size and 128MB extents, you can actually queue
4494 * up a huge file in a single leaf. Most of the time that
4495 * bytes_deleted is > 0, it will be huge by the time we get here
4497 if (be_nice
&& bytes_deleted
> SZ_32M
) {
4498 if (btrfs_should_end_transaction(trans
)) {
4505 path
->leave_spinning
= 1;
4506 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
4513 /* there are no items in the tree for us to truncate, we're
4516 if (path
->slots
[0] == 0)
4523 leaf
= path
->nodes
[0];
4524 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4525 found_type
= found_key
.type
;
4527 if (found_key
.objectid
!= ino
)
4530 if (found_type
< min_type
)
4533 item_end
= found_key
.offset
;
4534 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
4535 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4536 struct btrfs_file_extent_item
);
4537 extent_type
= btrfs_file_extent_type(leaf
, fi
);
4538 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4540 btrfs_file_extent_num_bytes(leaf
, fi
);
4542 trace_btrfs_truncate_show_fi_regular(
4543 BTRFS_I(inode
), leaf
, fi
,
4545 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4546 item_end
+= btrfs_file_extent_inline_len(leaf
,
4547 path
->slots
[0], fi
);
4549 trace_btrfs_truncate_show_fi_inline(
4550 BTRFS_I(inode
), leaf
, fi
, path
->slots
[0],
4555 if (found_type
> min_type
) {
4558 if (item_end
< new_size
)
4560 if (found_key
.offset
>= new_size
)
4566 /* FIXME, shrink the extent if the ref count is only 1 */
4567 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
4570 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4572 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
4574 u64 orig_num_bytes
=
4575 btrfs_file_extent_num_bytes(leaf
, fi
);
4576 extent_num_bytes
= ALIGN(new_size
-
4578 fs_info
->sectorsize
);
4579 btrfs_set_file_extent_num_bytes(leaf
, fi
,
4581 num_dec
= (orig_num_bytes
-
4583 if (test_bit(BTRFS_ROOT_REF_COWS
,
4586 inode_sub_bytes(inode
, num_dec
);
4587 btrfs_mark_buffer_dirty(leaf
);
4590 btrfs_file_extent_disk_num_bytes(leaf
,
4592 extent_offset
= found_key
.offset
-
4593 btrfs_file_extent_offset(leaf
, fi
);
4595 /* FIXME blocksize != 4096 */
4596 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
4597 if (extent_start
!= 0) {
4599 if (test_bit(BTRFS_ROOT_REF_COWS
,
4601 inode_sub_bytes(inode
, num_dec
);
4604 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4606 * we can't truncate inline items that have had
4610 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
4611 btrfs_file_extent_other_encoding(leaf
, fi
) == 0 &&
4612 btrfs_file_extent_compression(leaf
, fi
) == 0) {
4613 u32 size
= (u32
)(new_size
- found_key
.offset
);
4615 btrfs_set_file_extent_ram_bytes(leaf
, fi
, size
);
4616 size
= btrfs_file_extent_calc_inline_size(size
);
4617 btrfs_truncate_item(root
->fs_info
, path
, size
, 1);
4618 } else if (!del_item
) {
4620 * We have to bail so the last_size is set to
4621 * just before this extent.
4623 err
= NEED_TRUNCATE_BLOCK
;
4627 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4628 inode_sub_bytes(inode
, item_end
+ 1 - new_size
);
4632 last_size
= found_key
.offset
;
4634 last_size
= new_size
;
4636 if (!pending_del_nr
) {
4637 /* no pending yet, add ourselves */
4638 pending_del_slot
= path
->slots
[0];
4640 } else if (pending_del_nr
&&
4641 path
->slots
[0] + 1 == pending_del_slot
) {
4642 /* hop on the pending chunk */
4644 pending_del_slot
= path
->slots
[0];
4651 should_throttle
= false;
4654 (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4655 root
== fs_info
->tree_root
)) {
4656 btrfs_set_path_blocking(path
);
4657 bytes_deleted
+= extent_num_bytes
;
4658 ret
= btrfs_free_extent(trans
, root
, extent_start
,
4659 extent_num_bytes
, 0,
4660 btrfs_header_owner(leaf
),
4661 ino
, extent_offset
);
4663 if (btrfs_should_throttle_delayed_refs(trans
, fs_info
))
4664 btrfs_async_run_delayed_refs(fs_info
,
4665 trans
->delayed_ref_updates
* 2,
4668 if (truncate_space_check(trans
, root
,
4669 extent_num_bytes
)) {
4672 if (btrfs_should_throttle_delayed_refs(trans
,
4674 should_throttle
= true;
4678 if (found_type
== BTRFS_INODE_ITEM_KEY
)
4681 if (path
->slots
[0] == 0 ||
4682 path
->slots
[0] != pending_del_slot
||
4683 should_throttle
|| should_end
) {
4684 if (pending_del_nr
) {
4685 ret
= btrfs_del_items(trans
, root
, path
,
4689 btrfs_abort_transaction(trans
, ret
);
4694 btrfs_release_path(path
);
4695 if (should_throttle
) {
4696 unsigned long updates
= trans
->delayed_ref_updates
;
4698 trans
->delayed_ref_updates
= 0;
4699 ret
= btrfs_run_delayed_refs(trans
,
4706 * if we failed to refill our space rsv, bail out
4707 * and let the transaction restart
4719 if (pending_del_nr
) {
4720 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
4723 btrfs_abort_transaction(trans
, ret
);
4726 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4727 ASSERT(last_size
>= new_size
);
4728 if (!err
&& last_size
> new_size
)
4729 last_size
= new_size
;
4730 btrfs_ordered_update_i_size(inode
, last_size
, NULL
);
4733 btrfs_free_path(path
);
4735 if (be_nice
&& bytes_deleted
> SZ_32M
) {
4736 unsigned long updates
= trans
->delayed_ref_updates
;
4738 trans
->delayed_ref_updates
= 0;
4739 ret
= btrfs_run_delayed_refs(trans
, updates
* 2);
4748 * btrfs_truncate_block - read, zero a chunk and write a block
4749 * @inode - inode that we're zeroing
4750 * @from - the offset to start zeroing
4751 * @len - the length to zero, 0 to zero the entire range respective to the
4753 * @front - zero up to the offset instead of from the offset on
4755 * This will find the block for the "from" offset and cow the block and zero the
4756 * part we want to zero. This is used with truncate and hole punching.
4758 int btrfs_truncate_block(struct inode
*inode
, loff_t from
, loff_t len
,
4761 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4762 struct address_space
*mapping
= inode
->i_mapping
;
4763 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4764 struct btrfs_ordered_extent
*ordered
;
4765 struct extent_state
*cached_state
= NULL
;
4766 struct extent_changeset
*data_reserved
= NULL
;
4768 u32 blocksize
= fs_info
->sectorsize
;
4769 pgoff_t index
= from
>> PAGE_SHIFT
;
4770 unsigned offset
= from
& (blocksize
- 1);
4772 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
4777 if (IS_ALIGNED(offset
, blocksize
) &&
4778 (!len
|| IS_ALIGNED(len
, blocksize
)))
4781 block_start
= round_down(from
, blocksize
);
4782 block_end
= block_start
+ blocksize
- 1;
4784 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
4785 block_start
, blocksize
);
4790 page
= find_or_create_page(mapping
, index
, mask
);
4792 btrfs_delalloc_release_space(inode
, data_reserved
,
4793 block_start
, blocksize
, true);
4794 btrfs_delalloc_release_extents(BTRFS_I(inode
), blocksize
, true);
4799 if (!PageUptodate(page
)) {
4800 ret
= btrfs_readpage(NULL
, page
);
4802 if (page
->mapping
!= mapping
) {
4807 if (!PageUptodate(page
)) {
4812 wait_on_page_writeback(page
);
4814 lock_extent_bits(io_tree
, block_start
, block_end
, &cached_state
);
4815 set_page_extent_mapped(page
);
4817 ordered
= btrfs_lookup_ordered_extent(inode
, block_start
);
4819 unlock_extent_cached(io_tree
, block_start
, block_end
,
4823 btrfs_start_ordered_extent(inode
, ordered
, 1);
4824 btrfs_put_ordered_extent(ordered
);
4828 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, block_start
, block_end
,
4829 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4830 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
4831 0, 0, &cached_state
);
4833 ret
= btrfs_set_extent_delalloc(inode
, block_start
, block_end
, 0,
4836 unlock_extent_cached(io_tree
, block_start
, block_end
,
4841 if (offset
!= blocksize
) {
4843 len
= blocksize
- offset
;
4846 memset(kaddr
+ (block_start
- page_offset(page
)),
4849 memset(kaddr
+ (block_start
- page_offset(page
)) + offset
,
4851 flush_dcache_page(page
);
4854 ClearPageChecked(page
);
4855 set_page_dirty(page
);
4856 unlock_extent_cached(io_tree
, block_start
, block_end
, &cached_state
);
4860 btrfs_delalloc_release_space(inode
, data_reserved
, block_start
,
4862 btrfs_delalloc_release_extents(BTRFS_I(inode
), blocksize
, (ret
!= 0));
4866 extent_changeset_free(data_reserved
);
4870 static int maybe_insert_hole(struct btrfs_root
*root
, struct inode
*inode
,
4871 u64 offset
, u64 len
)
4873 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4874 struct btrfs_trans_handle
*trans
;
4878 * Still need to make sure the inode looks like it's been updated so
4879 * that any holes get logged if we fsync.
4881 if (btrfs_fs_incompat(fs_info
, NO_HOLES
)) {
4882 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
4883 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
4884 BTRFS_I(inode
)->last_log_commit
= root
->last_log_commit
;
4889 * 1 - for the one we're dropping
4890 * 1 - for the one we're adding
4891 * 1 - for updating the inode.
4893 trans
= btrfs_start_transaction(root
, 3);
4895 return PTR_ERR(trans
);
4897 ret
= btrfs_drop_extents(trans
, root
, inode
, offset
, offset
+ len
, 1);
4899 btrfs_abort_transaction(trans
, ret
);
4900 btrfs_end_transaction(trans
);
4904 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(BTRFS_I(inode
)),
4905 offset
, 0, 0, len
, 0, len
, 0, 0, 0);
4907 btrfs_abort_transaction(trans
, ret
);
4909 btrfs_update_inode(trans
, root
, inode
);
4910 btrfs_end_transaction(trans
);
4915 * This function puts in dummy file extents for the area we're creating a hole
4916 * for. So if we are truncating this file to a larger size we need to insert
4917 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4918 * the range between oldsize and size
4920 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
4922 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4923 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4924 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4925 struct extent_map
*em
= NULL
;
4926 struct extent_state
*cached_state
= NULL
;
4927 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4928 u64 hole_start
= ALIGN(oldsize
, fs_info
->sectorsize
);
4929 u64 block_end
= ALIGN(size
, fs_info
->sectorsize
);
4936 * If our size started in the middle of a block we need to zero out the
4937 * rest of the block before we expand the i_size, otherwise we could
4938 * expose stale data.
4940 err
= btrfs_truncate_block(inode
, oldsize
, 0, 0);
4944 if (size
<= hole_start
)
4948 struct btrfs_ordered_extent
*ordered
;
4950 lock_extent_bits(io_tree
, hole_start
, block_end
- 1,
4952 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), hole_start
,
4953 block_end
- hole_start
);
4956 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
4958 btrfs_start_ordered_extent(inode
, ordered
, 1);
4959 btrfs_put_ordered_extent(ordered
);
4962 cur_offset
= hole_start
;
4964 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, cur_offset
,
4965 block_end
- cur_offset
, 0);
4971 last_byte
= min(extent_map_end(em
), block_end
);
4972 last_byte
= ALIGN(last_byte
, fs_info
->sectorsize
);
4973 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
4974 struct extent_map
*hole_em
;
4975 hole_size
= last_byte
- cur_offset
;
4977 err
= maybe_insert_hole(root
, inode
, cur_offset
,
4981 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
4982 cur_offset
+ hole_size
- 1, 0);
4983 hole_em
= alloc_extent_map();
4985 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4986 &BTRFS_I(inode
)->runtime_flags
);
4989 hole_em
->start
= cur_offset
;
4990 hole_em
->len
= hole_size
;
4991 hole_em
->orig_start
= cur_offset
;
4993 hole_em
->block_start
= EXTENT_MAP_HOLE
;
4994 hole_em
->block_len
= 0;
4995 hole_em
->orig_block_len
= 0;
4996 hole_em
->ram_bytes
= hole_size
;
4997 hole_em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
4998 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
4999 hole_em
->generation
= fs_info
->generation
;
5002 write_lock(&em_tree
->lock
);
5003 err
= add_extent_mapping(em_tree
, hole_em
, 1);
5004 write_unlock(&em_tree
->lock
);
5007 btrfs_drop_extent_cache(BTRFS_I(inode
),
5012 free_extent_map(hole_em
);
5015 free_extent_map(em
);
5017 cur_offset
= last_byte
;
5018 if (cur_offset
>= block_end
)
5021 free_extent_map(em
);
5022 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
);
5026 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
)
5028 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5029 struct btrfs_trans_handle
*trans
;
5030 loff_t oldsize
= i_size_read(inode
);
5031 loff_t newsize
= attr
->ia_size
;
5032 int mask
= attr
->ia_valid
;
5036 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5037 * special case where we need to update the times despite not having
5038 * these flags set. For all other operations the VFS set these flags
5039 * explicitly if it wants a timestamp update.
5041 if (newsize
!= oldsize
) {
5042 inode_inc_iversion(inode
);
5043 if (!(mask
& (ATTR_CTIME
| ATTR_MTIME
)))
5044 inode
->i_ctime
= inode
->i_mtime
=
5045 current_time(inode
);
5048 if (newsize
> oldsize
) {
5050 * Don't do an expanding truncate while snapshotting is ongoing.
5051 * This is to ensure the snapshot captures a fully consistent
5052 * state of this file - if the snapshot captures this expanding
5053 * truncation, it must capture all writes that happened before
5056 btrfs_wait_for_snapshot_creation(root
);
5057 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
5059 btrfs_end_write_no_snapshotting(root
);
5063 trans
= btrfs_start_transaction(root
, 1);
5064 if (IS_ERR(trans
)) {
5065 btrfs_end_write_no_snapshotting(root
);
5066 return PTR_ERR(trans
);
5069 i_size_write(inode
, newsize
);
5070 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
5071 pagecache_isize_extended(inode
, oldsize
, newsize
);
5072 ret
= btrfs_update_inode(trans
, root
, inode
);
5073 btrfs_end_write_no_snapshotting(root
);
5074 btrfs_end_transaction(trans
);
5078 * We're truncating a file that used to have good data down to
5079 * zero. Make sure it gets into the ordered flush list so that
5080 * any new writes get down to disk quickly.
5083 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
5084 &BTRFS_I(inode
)->runtime_flags
);
5087 * 1 for the orphan item we're going to add
5088 * 1 for the orphan item deletion.
5090 trans
= btrfs_start_transaction(root
, 2);
5092 return PTR_ERR(trans
);
5095 * We need to do this in case we fail at _any_ point during the
5096 * actual truncate. Once we do the truncate_setsize we could
5097 * invalidate pages which forces any outstanding ordered io to
5098 * be instantly completed which will give us extents that need
5099 * to be truncated. If we fail to get an orphan inode down we
5100 * could have left over extents that were never meant to live,
5101 * so we need to guarantee from this point on that everything
5102 * will be consistent.
5104 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
5105 btrfs_end_transaction(trans
);
5109 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5110 truncate_setsize(inode
, newsize
);
5112 /* Disable nonlocked read DIO to avoid the end less truncate */
5113 btrfs_inode_block_unlocked_dio(BTRFS_I(inode
));
5114 inode_dio_wait(inode
);
5115 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode
));
5117 ret
= btrfs_truncate(inode
, newsize
== oldsize
);
5118 if (ret
&& inode
->i_nlink
) {
5121 /* To get a stable disk_i_size */
5122 err
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
5124 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5129 * failed to truncate, disk_i_size is only adjusted down
5130 * as we remove extents, so it should represent the true
5131 * size of the inode, so reset the in memory size and
5132 * delete our orphan entry.
5134 trans
= btrfs_join_transaction(root
);
5135 if (IS_ERR(trans
)) {
5136 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5139 i_size_write(inode
, BTRFS_I(inode
)->disk_i_size
);
5140 err
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
5142 btrfs_abort_transaction(trans
, err
);
5143 btrfs_end_transaction(trans
);
5150 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5152 struct inode
*inode
= d_inode(dentry
);
5153 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5156 if (btrfs_root_readonly(root
))
5159 err
= setattr_prepare(dentry
, attr
);
5163 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
5164 err
= btrfs_setsize(inode
, attr
);
5169 if (attr
->ia_valid
) {
5170 setattr_copy(inode
, attr
);
5171 inode_inc_iversion(inode
);
5172 err
= btrfs_dirty_inode(inode
);
5174 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
5175 err
= posix_acl_chmod(inode
, inode
->i_mode
);
5182 * While truncating the inode pages during eviction, we get the VFS calling
5183 * btrfs_invalidatepage() against each page of the inode. This is slow because
5184 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5185 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5186 * extent_state structures over and over, wasting lots of time.
5188 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5189 * those expensive operations on a per page basis and do only the ordered io
5190 * finishing, while we release here the extent_map and extent_state structures,
5191 * without the excessive merging and splitting.
5193 static void evict_inode_truncate_pages(struct inode
*inode
)
5195 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5196 struct extent_map_tree
*map_tree
= &BTRFS_I(inode
)->extent_tree
;
5197 struct rb_node
*node
;
5199 ASSERT(inode
->i_state
& I_FREEING
);
5200 truncate_inode_pages_final(&inode
->i_data
);
5202 write_lock(&map_tree
->lock
);
5203 while (!RB_EMPTY_ROOT(&map_tree
->map
)) {
5204 struct extent_map
*em
;
5206 node
= rb_first(&map_tree
->map
);
5207 em
= rb_entry(node
, struct extent_map
, rb_node
);
5208 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5209 clear_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
5210 remove_extent_mapping(map_tree
, em
);
5211 free_extent_map(em
);
5212 if (need_resched()) {
5213 write_unlock(&map_tree
->lock
);
5215 write_lock(&map_tree
->lock
);
5218 write_unlock(&map_tree
->lock
);
5221 * Keep looping until we have no more ranges in the io tree.
5222 * We can have ongoing bios started by readpages (called from readahead)
5223 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5224 * still in progress (unlocked the pages in the bio but did not yet
5225 * unlocked the ranges in the io tree). Therefore this means some
5226 * ranges can still be locked and eviction started because before
5227 * submitting those bios, which are executed by a separate task (work
5228 * queue kthread), inode references (inode->i_count) were not taken
5229 * (which would be dropped in the end io callback of each bio).
5230 * Therefore here we effectively end up waiting for those bios and
5231 * anyone else holding locked ranges without having bumped the inode's
5232 * reference count - if we don't do it, when they access the inode's
5233 * io_tree to unlock a range it may be too late, leading to an
5234 * use-after-free issue.
5236 spin_lock(&io_tree
->lock
);
5237 while (!RB_EMPTY_ROOT(&io_tree
->state
)) {
5238 struct extent_state
*state
;
5239 struct extent_state
*cached_state
= NULL
;
5243 node
= rb_first(&io_tree
->state
);
5244 state
= rb_entry(node
, struct extent_state
, rb_node
);
5245 start
= state
->start
;
5247 spin_unlock(&io_tree
->lock
);
5249 lock_extent_bits(io_tree
, start
, end
, &cached_state
);
5252 * If still has DELALLOC flag, the extent didn't reach disk,
5253 * and its reserved space won't be freed by delayed_ref.
5254 * So we need to free its reserved space here.
5255 * (Refer to comment in btrfs_invalidatepage, case 2)
5257 * Note, end is the bytenr of last byte, so we need + 1 here.
5259 if (state
->state
& EXTENT_DELALLOC
)
5260 btrfs_qgroup_free_data(inode
, NULL
, start
, end
- start
+ 1);
5262 clear_extent_bit(io_tree
, start
, end
,
5263 EXTENT_LOCKED
| EXTENT_DIRTY
|
5264 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
5265 EXTENT_DEFRAG
, 1, 1, &cached_state
);
5268 spin_lock(&io_tree
->lock
);
5270 spin_unlock(&io_tree
->lock
);
5273 void btrfs_evict_inode(struct inode
*inode
)
5275 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5276 struct btrfs_trans_handle
*trans
;
5277 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5278 struct btrfs_block_rsv
*rsv
, *global_rsv
;
5279 int steal_from_global
= 0;
5283 trace_btrfs_inode_evict(inode
);
5290 min_size
= btrfs_calc_trunc_metadata_size(fs_info
, 1);
5292 evict_inode_truncate_pages(inode
);
5294 if (inode
->i_nlink
&&
5295 ((btrfs_root_refs(&root
->root_item
) != 0 &&
5296 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
) ||
5297 btrfs_is_free_space_inode(BTRFS_I(inode
))))
5300 if (is_bad_inode(inode
)) {
5301 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5304 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5305 if (!special_file(inode
->i_mode
))
5306 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
5308 btrfs_free_io_failure_record(BTRFS_I(inode
), 0, (u64
)-1);
5310 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
)) {
5311 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
5312 &BTRFS_I(inode
)->runtime_flags
));
5316 if (inode
->i_nlink
> 0) {
5317 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0 &&
5318 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
);
5322 ret
= btrfs_commit_inode_delayed_inode(BTRFS_I(inode
));
5324 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5328 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
5330 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5333 rsv
->size
= min_size
;
5335 global_rsv
= &fs_info
->global_block_rsv
;
5337 btrfs_i_size_write(BTRFS_I(inode
), 0);
5340 * This is a bit simpler than btrfs_truncate since we've already
5341 * reserved our space for our orphan item in the unlink, so we just
5342 * need to reserve some slack space in case we add bytes and update
5343 * inode item when doing the truncate.
5346 ret
= btrfs_block_rsv_refill(root
, rsv
, min_size
,
5347 BTRFS_RESERVE_FLUSH_LIMIT
);
5350 * Try and steal from the global reserve since we will
5351 * likely not use this space anyway, we want to try as
5352 * hard as possible to get this to work.
5355 steal_from_global
++;
5357 steal_from_global
= 0;
5361 * steal_from_global == 0: we reserved stuff, hooray!
5362 * steal_from_global == 1: we didn't reserve stuff, boo!
5363 * steal_from_global == 2: we've committed, still not a lot of
5364 * room but maybe we'll have room in the global reserve this
5366 * steal_from_global == 3: abandon all hope!
5368 if (steal_from_global
> 2) {
5370 "Could not get space for a delete, will truncate on mount %d",
5372 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5373 btrfs_free_block_rsv(fs_info
, rsv
);
5377 trans
= btrfs_join_transaction(root
);
5378 if (IS_ERR(trans
)) {
5379 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5380 btrfs_free_block_rsv(fs_info
, rsv
);
5385 * We can't just steal from the global reserve, we need to make
5386 * sure there is room to do it, if not we need to commit and try
5389 if (steal_from_global
) {
5390 if (!btrfs_check_space_for_delayed_refs(trans
, fs_info
))
5391 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
,
5398 * Couldn't steal from the global reserve, we have too much
5399 * pending stuff built up, commit the transaction and try it
5403 ret
= btrfs_commit_transaction(trans
);
5405 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5406 btrfs_free_block_rsv(fs_info
, rsv
);
5411 steal_from_global
= 0;
5414 trans
->block_rsv
= rsv
;
5416 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
5417 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
5420 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5421 btrfs_end_transaction(trans
);
5423 btrfs_btree_balance_dirty(fs_info
);
5426 btrfs_free_block_rsv(fs_info
, rsv
);
5429 * Errors here aren't a big deal, it just means we leave orphan items
5430 * in the tree. They will be cleaned up on the next mount.
5433 trans
->block_rsv
= root
->orphan_block_rsv
;
5434 btrfs_orphan_del(trans
, BTRFS_I(inode
));
5436 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5439 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5440 if (!(root
== fs_info
->tree_root
||
5441 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
5442 btrfs_return_ino(root
, btrfs_ino(BTRFS_I(inode
)));
5444 btrfs_end_transaction(trans
);
5445 btrfs_btree_balance_dirty(fs_info
);
5447 btrfs_remove_delayed_node(BTRFS_I(inode
));
5452 * this returns the key found in the dir entry in the location pointer.
5453 * If no dir entries were found, returns -ENOENT.
5454 * If found a corrupted location in dir entry, returns -EUCLEAN.
5456 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
5457 struct btrfs_key
*location
)
5459 const char *name
= dentry
->d_name
.name
;
5460 int namelen
= dentry
->d_name
.len
;
5461 struct btrfs_dir_item
*di
;
5462 struct btrfs_path
*path
;
5463 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5466 path
= btrfs_alloc_path();
5470 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(BTRFS_I(dir
)),
5481 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
5482 if (location
->type
!= BTRFS_INODE_ITEM_KEY
&&
5483 location
->type
!= BTRFS_ROOT_ITEM_KEY
) {
5485 btrfs_warn(root
->fs_info
,
5486 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5487 __func__
, name
, btrfs_ino(BTRFS_I(dir
)),
5488 location
->objectid
, location
->type
, location
->offset
);
5491 btrfs_free_path(path
);
5496 * when we hit a tree root in a directory, the btrfs part of the inode
5497 * needs to be changed to reflect the root directory of the tree root. This
5498 * is kind of like crossing a mount point.
5500 static int fixup_tree_root_location(struct btrfs_fs_info
*fs_info
,
5502 struct dentry
*dentry
,
5503 struct btrfs_key
*location
,
5504 struct btrfs_root
**sub_root
)
5506 struct btrfs_path
*path
;
5507 struct btrfs_root
*new_root
;
5508 struct btrfs_root_ref
*ref
;
5509 struct extent_buffer
*leaf
;
5510 struct btrfs_key key
;
5514 path
= btrfs_alloc_path();
5521 key
.objectid
= BTRFS_I(dir
)->root
->root_key
.objectid
;
5522 key
.type
= BTRFS_ROOT_REF_KEY
;
5523 key
.offset
= location
->objectid
;
5525 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
5532 leaf
= path
->nodes
[0];
5533 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
5534 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(BTRFS_I(dir
)) ||
5535 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
5538 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
5539 (unsigned long)(ref
+ 1),
5540 dentry
->d_name
.len
);
5544 btrfs_release_path(path
);
5546 new_root
= btrfs_read_fs_root_no_name(fs_info
, location
);
5547 if (IS_ERR(new_root
)) {
5548 err
= PTR_ERR(new_root
);
5552 *sub_root
= new_root
;
5553 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
5554 location
->type
= BTRFS_INODE_ITEM_KEY
;
5555 location
->offset
= 0;
5558 btrfs_free_path(path
);
5562 static void inode_tree_add(struct inode
*inode
)
5564 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5565 struct btrfs_inode
*entry
;
5567 struct rb_node
*parent
;
5568 struct rb_node
*new = &BTRFS_I(inode
)->rb_node
;
5569 u64 ino
= btrfs_ino(BTRFS_I(inode
));
5571 if (inode_unhashed(inode
))
5574 spin_lock(&root
->inode_lock
);
5575 p
= &root
->inode_tree
.rb_node
;
5578 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
5580 if (ino
< btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
5581 p
= &parent
->rb_left
;
5582 else if (ino
> btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
5583 p
= &parent
->rb_right
;
5585 WARN_ON(!(entry
->vfs_inode
.i_state
&
5586 (I_WILL_FREE
| I_FREEING
)));
5587 rb_replace_node(parent
, new, &root
->inode_tree
);
5588 RB_CLEAR_NODE(parent
);
5589 spin_unlock(&root
->inode_lock
);
5593 rb_link_node(new, parent
, p
);
5594 rb_insert_color(new, &root
->inode_tree
);
5595 spin_unlock(&root
->inode_lock
);
5598 static void inode_tree_del(struct inode
*inode
)
5600 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5601 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5604 spin_lock(&root
->inode_lock
);
5605 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
5606 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
5607 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
5608 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5610 spin_unlock(&root
->inode_lock
);
5612 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
5613 synchronize_srcu(&fs_info
->subvol_srcu
);
5614 spin_lock(&root
->inode_lock
);
5615 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5616 spin_unlock(&root
->inode_lock
);
5618 btrfs_add_dead_root(root
);
5622 void btrfs_invalidate_inodes(struct btrfs_root
*root
)
5624 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5625 struct rb_node
*node
;
5626 struct rb_node
*prev
;
5627 struct btrfs_inode
*entry
;
5628 struct inode
*inode
;
5631 if (!test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
5632 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
5634 spin_lock(&root
->inode_lock
);
5636 node
= root
->inode_tree
.rb_node
;
5640 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
5642 if (objectid
< btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
5643 node
= node
->rb_left
;
5644 else if (objectid
> btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
5645 node
= node
->rb_right
;
5651 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
5652 if (objectid
<= btrfs_ino(BTRFS_I(&entry
->vfs_inode
))) {
5656 prev
= rb_next(prev
);
5660 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
5661 objectid
= btrfs_ino(BTRFS_I(&entry
->vfs_inode
)) + 1;
5662 inode
= igrab(&entry
->vfs_inode
);
5664 spin_unlock(&root
->inode_lock
);
5665 if (atomic_read(&inode
->i_count
) > 1)
5666 d_prune_aliases(inode
);
5668 * btrfs_drop_inode will have it removed from
5669 * the inode cache when its usage count
5674 spin_lock(&root
->inode_lock
);
5678 if (cond_resched_lock(&root
->inode_lock
))
5681 node
= rb_next(node
);
5683 spin_unlock(&root
->inode_lock
);
5686 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
5688 struct btrfs_iget_args
*args
= p
;
5689 inode
->i_ino
= args
->location
->objectid
;
5690 memcpy(&BTRFS_I(inode
)->location
, args
->location
,
5691 sizeof(*args
->location
));
5692 BTRFS_I(inode
)->root
= args
->root
;
5696 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
5698 struct btrfs_iget_args
*args
= opaque
;
5699 return args
->location
->objectid
== BTRFS_I(inode
)->location
.objectid
&&
5700 args
->root
== BTRFS_I(inode
)->root
;
5703 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
5704 struct btrfs_key
*location
,
5705 struct btrfs_root
*root
)
5707 struct inode
*inode
;
5708 struct btrfs_iget_args args
;
5709 unsigned long hashval
= btrfs_inode_hash(location
->objectid
, root
);
5711 args
.location
= location
;
5714 inode
= iget5_locked(s
, hashval
, btrfs_find_actor
,
5715 btrfs_init_locked_inode
,
5720 /* Get an inode object given its location and corresponding root.
5721 * Returns in *is_new if the inode was read from disk
5723 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
5724 struct btrfs_root
*root
, int *new)
5726 struct inode
*inode
;
5728 inode
= btrfs_iget_locked(s
, location
, root
);
5730 return ERR_PTR(-ENOMEM
);
5732 if (inode
->i_state
& I_NEW
) {
5735 ret
= btrfs_read_locked_inode(inode
);
5736 if (!is_bad_inode(inode
)) {
5737 inode_tree_add(inode
);
5738 unlock_new_inode(inode
);
5742 unlock_new_inode(inode
);
5745 inode
= ERR_PTR(ret
< 0 ? ret
: -ESTALE
);
5752 static struct inode
*new_simple_dir(struct super_block
*s
,
5753 struct btrfs_key
*key
,
5754 struct btrfs_root
*root
)
5756 struct inode
*inode
= new_inode(s
);
5759 return ERR_PTR(-ENOMEM
);
5761 BTRFS_I(inode
)->root
= root
;
5762 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
5763 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
5765 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
5766 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
5767 inode
->i_opflags
&= ~IOP_XATTR
;
5768 inode
->i_fop
= &simple_dir_operations
;
5769 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
5770 inode
->i_mtime
= current_time(inode
);
5771 inode
->i_atime
= inode
->i_mtime
;
5772 inode
->i_ctime
= inode
->i_mtime
;
5773 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
5778 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
5780 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
5781 struct inode
*inode
;
5782 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5783 struct btrfs_root
*sub_root
= root
;
5784 struct btrfs_key location
;
5788 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
5789 return ERR_PTR(-ENAMETOOLONG
);
5791 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
5793 return ERR_PTR(ret
);
5795 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
5796 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
5800 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
5801 ret
= fixup_tree_root_location(fs_info
, dir
, dentry
,
5802 &location
, &sub_root
);
5805 inode
= ERR_PTR(ret
);
5807 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
5809 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
5811 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
5813 if (!IS_ERR(inode
) && root
!= sub_root
) {
5814 down_read(&fs_info
->cleanup_work_sem
);
5815 if (!sb_rdonly(inode
->i_sb
))
5816 ret
= btrfs_orphan_cleanup(sub_root
);
5817 up_read(&fs_info
->cleanup_work_sem
);
5820 inode
= ERR_PTR(ret
);
5827 static int btrfs_dentry_delete(const struct dentry
*dentry
)
5829 struct btrfs_root
*root
;
5830 struct inode
*inode
= d_inode(dentry
);
5832 if (!inode
&& !IS_ROOT(dentry
))
5833 inode
= d_inode(dentry
->d_parent
);
5836 root
= BTRFS_I(inode
)->root
;
5837 if (btrfs_root_refs(&root
->root_item
) == 0)
5840 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5846 static void btrfs_dentry_release(struct dentry
*dentry
)
5848 kfree(dentry
->d_fsdata
);
5851 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
5854 struct inode
*inode
;
5856 inode
= btrfs_lookup_dentry(dir
, dentry
);
5857 if (IS_ERR(inode
)) {
5858 if (PTR_ERR(inode
) == -ENOENT
)
5861 return ERR_CAST(inode
);
5864 return d_splice_alias(inode
, dentry
);
5867 unsigned char btrfs_filetype_table
[] = {
5868 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
5872 * All this infrastructure exists because dir_emit can fault, and we are holding
5873 * the tree lock when doing readdir. For now just allocate a buffer and copy
5874 * our information into that, and then dir_emit from the buffer. This is
5875 * similar to what NFS does, only we don't keep the buffer around in pagecache
5876 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5877 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5880 static int btrfs_opendir(struct inode
*inode
, struct file
*file
)
5882 struct btrfs_file_private
*private;
5884 private = kzalloc(sizeof(struct btrfs_file_private
), GFP_KERNEL
);
5887 private->filldir_buf
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
5888 if (!private->filldir_buf
) {
5892 file
->private_data
= private;
5903 static int btrfs_filldir(void *addr
, int entries
, struct dir_context
*ctx
)
5906 struct dir_entry
*entry
= addr
;
5907 char *name
= (char *)(entry
+ 1);
5909 ctx
->pos
= get_unaligned(&entry
->offset
);
5910 if (!dir_emit(ctx
, name
, get_unaligned(&entry
->name_len
),
5911 get_unaligned(&entry
->ino
),
5912 get_unaligned(&entry
->type
)))
5914 addr
+= sizeof(struct dir_entry
) +
5915 get_unaligned(&entry
->name_len
);
5921 static int btrfs_real_readdir(struct file
*file
, struct dir_context
*ctx
)
5923 struct inode
*inode
= file_inode(file
);
5924 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5925 struct btrfs_file_private
*private = file
->private_data
;
5926 struct btrfs_dir_item
*di
;
5927 struct btrfs_key key
;
5928 struct btrfs_key found_key
;
5929 struct btrfs_path
*path
;
5931 struct list_head ins_list
;
5932 struct list_head del_list
;
5934 struct extent_buffer
*leaf
;
5941 struct btrfs_key location
;
5943 if (!dir_emit_dots(file
, ctx
))
5946 path
= btrfs_alloc_path();
5950 addr
= private->filldir_buf
;
5951 path
->reada
= READA_FORWARD
;
5953 INIT_LIST_HEAD(&ins_list
);
5954 INIT_LIST_HEAD(&del_list
);
5955 put
= btrfs_readdir_get_delayed_items(inode
, &ins_list
, &del_list
);
5958 key
.type
= BTRFS_DIR_INDEX_KEY
;
5959 key
.offset
= ctx
->pos
;
5960 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
5962 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5967 struct dir_entry
*entry
;
5969 leaf
= path
->nodes
[0];
5970 slot
= path
->slots
[0];
5971 if (slot
>= btrfs_header_nritems(leaf
)) {
5972 ret
= btrfs_next_leaf(root
, path
);
5980 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5982 if (found_key
.objectid
!= key
.objectid
)
5984 if (found_key
.type
!= BTRFS_DIR_INDEX_KEY
)
5986 if (found_key
.offset
< ctx
->pos
)
5988 if (btrfs_should_delete_dir_index(&del_list
, found_key
.offset
))
5990 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
5991 name_len
= btrfs_dir_name_len(leaf
, di
);
5992 if ((total_len
+ sizeof(struct dir_entry
) + name_len
) >=
5994 btrfs_release_path(path
);
5995 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
5998 addr
= private->filldir_buf
;
6005 put_unaligned(name_len
, &entry
->name_len
);
6006 name_ptr
= (char *)(entry
+ 1);
6007 read_extent_buffer(leaf
, name_ptr
, (unsigned long)(di
+ 1),
6009 put_unaligned(btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)],
6011 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
6012 put_unaligned(location
.objectid
, &entry
->ino
);
6013 put_unaligned(found_key
.offset
, &entry
->offset
);
6015 addr
+= sizeof(struct dir_entry
) + name_len
;
6016 total_len
+= sizeof(struct dir_entry
) + name_len
;
6020 btrfs_release_path(path
);
6022 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
6026 ret
= btrfs_readdir_delayed_dir_index(ctx
, &ins_list
);
6031 * Stop new entries from being returned after we return the last
6034 * New directory entries are assigned a strictly increasing
6035 * offset. This means that new entries created during readdir
6036 * are *guaranteed* to be seen in the future by that readdir.
6037 * This has broken buggy programs which operate on names as
6038 * they're returned by readdir. Until we re-use freed offsets
6039 * we have this hack to stop new entries from being returned
6040 * under the assumption that they'll never reach this huge
6043 * This is being careful not to overflow 32bit loff_t unless the
6044 * last entry requires it because doing so has broken 32bit apps
6047 if (ctx
->pos
>= INT_MAX
)
6048 ctx
->pos
= LLONG_MAX
;
6055 btrfs_readdir_put_delayed_items(inode
, &ins_list
, &del_list
);
6056 btrfs_free_path(path
);
6060 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
6062 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6063 struct btrfs_trans_handle
*trans
;
6065 bool nolock
= false;
6067 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
6070 if (btrfs_fs_closing(root
->fs_info
) &&
6071 btrfs_is_free_space_inode(BTRFS_I(inode
)))
6074 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
6076 trans
= btrfs_join_transaction_nolock(root
);
6078 trans
= btrfs_join_transaction(root
);
6080 return PTR_ERR(trans
);
6081 ret
= btrfs_commit_transaction(trans
);
6087 * This is somewhat expensive, updating the tree every time the
6088 * inode changes. But, it is most likely to find the inode in cache.
6089 * FIXME, needs more benchmarking...there are no reasons other than performance
6090 * to keep or drop this code.
6092 static int btrfs_dirty_inode(struct inode
*inode
)
6094 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6095 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6096 struct btrfs_trans_handle
*trans
;
6099 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
6102 trans
= btrfs_join_transaction(root
);
6104 return PTR_ERR(trans
);
6106 ret
= btrfs_update_inode(trans
, root
, inode
);
6107 if (ret
&& ret
== -ENOSPC
) {
6108 /* whoops, lets try again with the full transaction */
6109 btrfs_end_transaction(trans
);
6110 trans
= btrfs_start_transaction(root
, 1);
6112 return PTR_ERR(trans
);
6114 ret
= btrfs_update_inode(trans
, root
, inode
);
6116 btrfs_end_transaction(trans
);
6117 if (BTRFS_I(inode
)->delayed_node
)
6118 btrfs_balance_delayed_items(fs_info
);
6124 * This is a copy of file_update_time. We need this so we can return error on
6125 * ENOSPC for updating the inode in the case of file write and mmap writes.
6127 static int btrfs_update_time(struct inode
*inode
, struct timespec
*now
,
6130 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6131 bool dirty
= flags
& ~S_VERSION
;
6133 if (btrfs_root_readonly(root
))
6136 if (flags
& S_VERSION
)
6137 dirty
|= inode_maybe_inc_iversion(inode
, dirty
);
6138 if (flags
& S_CTIME
)
6139 inode
->i_ctime
= *now
;
6140 if (flags
& S_MTIME
)
6141 inode
->i_mtime
= *now
;
6142 if (flags
& S_ATIME
)
6143 inode
->i_atime
= *now
;
6144 return dirty
? btrfs_dirty_inode(inode
) : 0;
6148 * find the highest existing sequence number in a directory
6149 * and then set the in-memory index_cnt variable to reflect
6150 * free sequence numbers
6152 static int btrfs_set_inode_index_count(struct btrfs_inode
*inode
)
6154 struct btrfs_root
*root
= inode
->root
;
6155 struct btrfs_key key
, found_key
;
6156 struct btrfs_path
*path
;
6157 struct extent_buffer
*leaf
;
6160 key
.objectid
= btrfs_ino(inode
);
6161 key
.type
= BTRFS_DIR_INDEX_KEY
;
6162 key
.offset
= (u64
)-1;
6164 path
= btrfs_alloc_path();
6168 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6171 /* FIXME: we should be able to handle this */
6177 * MAGIC NUMBER EXPLANATION:
6178 * since we search a directory based on f_pos we have to start at 2
6179 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6180 * else has to start at 2
6182 if (path
->slots
[0] == 0) {
6183 inode
->index_cnt
= 2;
6189 leaf
= path
->nodes
[0];
6190 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6192 if (found_key
.objectid
!= btrfs_ino(inode
) ||
6193 found_key
.type
!= BTRFS_DIR_INDEX_KEY
) {
6194 inode
->index_cnt
= 2;
6198 inode
->index_cnt
= found_key
.offset
+ 1;
6200 btrfs_free_path(path
);
6205 * helper to find a free sequence number in a given directory. This current
6206 * code is very simple, later versions will do smarter things in the btree
6208 int btrfs_set_inode_index(struct btrfs_inode
*dir
, u64
*index
)
6212 if (dir
->index_cnt
== (u64
)-1) {
6213 ret
= btrfs_inode_delayed_dir_index_count(dir
);
6215 ret
= btrfs_set_inode_index_count(dir
);
6221 *index
= dir
->index_cnt
;
6227 static int btrfs_insert_inode_locked(struct inode
*inode
)
6229 struct btrfs_iget_args args
;
6230 args
.location
= &BTRFS_I(inode
)->location
;
6231 args
.root
= BTRFS_I(inode
)->root
;
6233 return insert_inode_locked4(inode
,
6234 btrfs_inode_hash(inode
->i_ino
, BTRFS_I(inode
)->root
),
6235 btrfs_find_actor
, &args
);
6239 * Inherit flags from the parent inode.
6241 * Currently only the compression flags and the cow flags are inherited.
6243 static void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
6250 flags
= BTRFS_I(dir
)->flags
;
6252 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
6253 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
6254 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
6255 } else if (flags
& BTRFS_INODE_COMPRESS
) {
6256 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
6257 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
6260 if (flags
& BTRFS_INODE_NODATACOW
) {
6261 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
6262 if (S_ISREG(inode
->i_mode
))
6263 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6266 btrfs_update_iflags(inode
);
6269 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
6270 struct btrfs_root
*root
,
6272 const char *name
, int name_len
,
6273 u64 ref_objectid
, u64 objectid
,
6274 umode_t mode
, u64
*index
)
6276 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6277 struct inode
*inode
;
6278 struct btrfs_inode_item
*inode_item
;
6279 struct btrfs_key
*location
;
6280 struct btrfs_path
*path
;
6281 struct btrfs_inode_ref
*ref
;
6282 struct btrfs_key key
[2];
6284 int nitems
= name
? 2 : 1;
6288 path
= btrfs_alloc_path();
6290 return ERR_PTR(-ENOMEM
);
6292 inode
= new_inode(fs_info
->sb
);
6294 btrfs_free_path(path
);
6295 return ERR_PTR(-ENOMEM
);
6299 * O_TMPFILE, set link count to 0, so that after this point,
6300 * we fill in an inode item with the correct link count.
6303 set_nlink(inode
, 0);
6306 * we have to initialize this early, so we can reclaim the inode
6307 * number if we fail afterwards in this function.
6309 inode
->i_ino
= objectid
;
6312 trace_btrfs_inode_request(dir
);
6314 ret
= btrfs_set_inode_index(BTRFS_I(dir
), index
);
6316 btrfs_free_path(path
);
6318 return ERR_PTR(ret
);
6324 * index_cnt is ignored for everything but a dir,
6325 * btrfs_set_inode_index_count has an explanation for the magic
6328 BTRFS_I(inode
)->index_cnt
= 2;
6329 BTRFS_I(inode
)->dir_index
= *index
;
6330 BTRFS_I(inode
)->root
= root
;
6331 BTRFS_I(inode
)->generation
= trans
->transid
;
6332 inode
->i_generation
= BTRFS_I(inode
)->generation
;
6335 * We could have gotten an inode number from somebody who was fsynced
6336 * and then removed in this same transaction, so let's just set full
6337 * sync since it will be a full sync anyway and this will blow away the
6338 * old info in the log.
6340 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
6342 key
[0].objectid
= objectid
;
6343 key
[0].type
= BTRFS_INODE_ITEM_KEY
;
6346 sizes
[0] = sizeof(struct btrfs_inode_item
);
6350 * Start new inodes with an inode_ref. This is slightly more
6351 * efficient for small numbers of hard links since they will
6352 * be packed into one item. Extended refs will kick in if we
6353 * add more hard links than can fit in the ref item.
6355 key
[1].objectid
= objectid
;
6356 key
[1].type
= BTRFS_INODE_REF_KEY
;
6357 key
[1].offset
= ref_objectid
;
6359 sizes
[1] = name_len
+ sizeof(*ref
);
6362 location
= &BTRFS_I(inode
)->location
;
6363 location
->objectid
= objectid
;
6364 location
->offset
= 0;
6365 location
->type
= BTRFS_INODE_ITEM_KEY
;
6367 ret
= btrfs_insert_inode_locked(inode
);
6371 path
->leave_spinning
= 1;
6372 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, nitems
);
6376 inode_init_owner(inode
, dir
, mode
);
6377 inode_set_bytes(inode
, 0);
6379 inode
->i_mtime
= current_time(inode
);
6380 inode
->i_atime
= inode
->i_mtime
;
6381 inode
->i_ctime
= inode
->i_mtime
;
6382 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
6384 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
6385 struct btrfs_inode_item
);
6386 memzero_extent_buffer(path
->nodes
[0], (unsigned long)inode_item
,
6387 sizeof(*inode_item
));
6388 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
6391 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
6392 struct btrfs_inode_ref
);
6393 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
6394 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
6395 ptr
= (unsigned long)(ref
+ 1);
6396 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
6399 btrfs_mark_buffer_dirty(path
->nodes
[0]);
6400 btrfs_free_path(path
);
6402 btrfs_inherit_iflags(inode
, dir
);
6404 if (S_ISREG(mode
)) {
6405 if (btrfs_test_opt(fs_info
, NODATASUM
))
6406 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6407 if (btrfs_test_opt(fs_info
, NODATACOW
))
6408 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
|
6409 BTRFS_INODE_NODATASUM
;
6412 inode_tree_add(inode
);
6414 trace_btrfs_inode_new(inode
);
6415 btrfs_set_inode_last_trans(trans
, inode
);
6417 btrfs_update_root_times(trans
, root
);
6419 ret
= btrfs_inode_inherit_props(trans
, inode
, dir
);
6422 "error inheriting props for ino %llu (root %llu): %d",
6423 btrfs_ino(BTRFS_I(inode
)), root
->root_key
.objectid
, ret
);
6428 unlock_new_inode(inode
);
6431 BTRFS_I(dir
)->index_cnt
--;
6432 btrfs_free_path(path
);
6434 return ERR_PTR(ret
);
6437 static inline u8
btrfs_inode_type(struct inode
*inode
)
6439 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
6443 * utility function to add 'inode' into 'parent_inode' with
6444 * a give name and a given sequence number.
6445 * if 'add_backref' is true, also insert a backref from the
6446 * inode to the parent directory.
6448 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
6449 struct btrfs_inode
*parent_inode
, struct btrfs_inode
*inode
,
6450 const char *name
, int name_len
, int add_backref
, u64 index
)
6452 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6454 struct btrfs_key key
;
6455 struct btrfs_root
*root
= parent_inode
->root
;
6456 u64 ino
= btrfs_ino(inode
);
6457 u64 parent_ino
= btrfs_ino(parent_inode
);
6459 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6460 memcpy(&key
, &inode
->root
->root_key
, sizeof(key
));
6463 key
.type
= BTRFS_INODE_ITEM_KEY
;
6467 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6468 ret
= btrfs_add_root_ref(trans
, fs_info
, key
.objectid
,
6469 root
->root_key
.objectid
, parent_ino
,
6470 index
, name
, name_len
);
6471 } else if (add_backref
) {
6472 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
6476 /* Nothing to clean up yet */
6480 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
6482 btrfs_inode_type(&inode
->vfs_inode
), index
);
6483 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
6486 btrfs_abort_transaction(trans
, ret
);
6490 btrfs_i_size_write(parent_inode
, parent_inode
->vfs_inode
.i_size
+
6492 inode_inc_iversion(&parent_inode
->vfs_inode
);
6493 parent_inode
->vfs_inode
.i_mtime
= parent_inode
->vfs_inode
.i_ctime
=
6494 current_time(&parent_inode
->vfs_inode
);
6495 ret
= btrfs_update_inode(trans
, root
, &parent_inode
->vfs_inode
);
6497 btrfs_abort_transaction(trans
, ret
);
6501 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6504 err
= btrfs_del_root_ref(trans
, fs_info
, key
.objectid
,
6505 root
->root_key
.objectid
, parent_ino
,
6506 &local_index
, name
, name_len
);
6508 } else if (add_backref
) {
6512 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
6513 ino
, parent_ino
, &local_index
);
6518 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
6519 struct btrfs_inode
*dir
, struct dentry
*dentry
,
6520 struct btrfs_inode
*inode
, int backref
, u64 index
)
6522 int err
= btrfs_add_link(trans
, dir
, inode
,
6523 dentry
->d_name
.name
, dentry
->d_name
.len
,
6530 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
6531 umode_t mode
, dev_t rdev
)
6533 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6534 struct btrfs_trans_handle
*trans
;
6535 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6536 struct inode
*inode
= NULL
;
6543 * 2 for inode item and ref
6545 * 1 for xattr if selinux is on
6547 trans
= btrfs_start_transaction(root
, 5);
6549 return PTR_ERR(trans
);
6551 err
= btrfs_find_free_ino(root
, &objectid
);
6555 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6556 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6558 if (IS_ERR(inode
)) {
6559 err
= PTR_ERR(inode
);
6564 * If the active LSM wants to access the inode during
6565 * d_instantiate it needs these. Smack checks to see
6566 * if the filesystem supports xattrs by looking at the
6569 inode
->i_op
= &btrfs_special_inode_operations
;
6570 init_special_inode(inode
, inode
->i_mode
, rdev
);
6572 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6574 goto out_unlock_inode
;
6576 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6579 goto out_unlock_inode
;
6581 btrfs_update_inode(trans
, root
, inode
);
6582 unlock_new_inode(inode
);
6583 d_instantiate(dentry
, inode
);
6587 btrfs_end_transaction(trans
);
6588 btrfs_btree_balance_dirty(fs_info
);
6590 inode_dec_link_count(inode
);
6597 unlock_new_inode(inode
);
6602 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
6603 umode_t mode
, bool excl
)
6605 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6606 struct btrfs_trans_handle
*trans
;
6607 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6608 struct inode
*inode
= NULL
;
6609 int drop_inode_on_err
= 0;
6615 * 2 for inode item and ref
6617 * 1 for xattr if selinux is on
6619 trans
= btrfs_start_transaction(root
, 5);
6621 return PTR_ERR(trans
);
6623 err
= btrfs_find_free_ino(root
, &objectid
);
6627 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6628 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6630 if (IS_ERR(inode
)) {
6631 err
= PTR_ERR(inode
);
6634 drop_inode_on_err
= 1;
6636 * If the active LSM wants to access the inode during
6637 * d_instantiate it needs these. Smack checks to see
6638 * if the filesystem supports xattrs by looking at the
6641 inode
->i_fop
= &btrfs_file_operations
;
6642 inode
->i_op
= &btrfs_file_inode_operations
;
6643 inode
->i_mapping
->a_ops
= &btrfs_aops
;
6645 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6647 goto out_unlock_inode
;
6649 err
= btrfs_update_inode(trans
, root
, inode
);
6651 goto out_unlock_inode
;
6653 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6656 goto out_unlock_inode
;
6658 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
6659 unlock_new_inode(inode
);
6660 d_instantiate(dentry
, inode
);
6663 btrfs_end_transaction(trans
);
6664 if (err
&& drop_inode_on_err
) {
6665 inode_dec_link_count(inode
);
6668 btrfs_btree_balance_dirty(fs_info
);
6672 unlock_new_inode(inode
);
6677 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
6678 struct dentry
*dentry
)
6680 struct btrfs_trans_handle
*trans
= NULL
;
6681 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6682 struct inode
*inode
= d_inode(old_dentry
);
6683 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6688 /* do not allow sys_link's with other subvols of the same device */
6689 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
6692 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
6695 err
= btrfs_set_inode_index(BTRFS_I(dir
), &index
);
6700 * 2 items for inode and inode ref
6701 * 2 items for dir items
6702 * 1 item for parent inode
6704 trans
= btrfs_start_transaction(root
, 5);
6705 if (IS_ERR(trans
)) {
6706 err
= PTR_ERR(trans
);
6711 /* There are several dir indexes for this inode, clear the cache. */
6712 BTRFS_I(inode
)->dir_index
= 0ULL;
6714 inode_inc_iversion(inode
);
6715 inode
->i_ctime
= current_time(inode
);
6717 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
6719 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6725 struct dentry
*parent
= dentry
->d_parent
;
6726 err
= btrfs_update_inode(trans
, root
, inode
);
6729 if (inode
->i_nlink
== 1) {
6731 * If new hard link count is 1, it's a file created
6732 * with open(2) O_TMPFILE flag.
6734 err
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
6738 d_instantiate(dentry
, inode
);
6739 btrfs_log_new_name(trans
, BTRFS_I(inode
), NULL
, parent
);
6744 btrfs_end_transaction(trans
);
6746 inode_dec_link_count(inode
);
6749 btrfs_btree_balance_dirty(fs_info
);
6753 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
6755 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6756 struct inode
*inode
= NULL
;
6757 struct btrfs_trans_handle
*trans
;
6758 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6760 int drop_on_err
= 0;
6765 * 2 items for inode and ref
6766 * 2 items for dir items
6767 * 1 for xattr if selinux is on
6769 trans
= btrfs_start_transaction(root
, 5);
6771 return PTR_ERR(trans
);
6773 err
= btrfs_find_free_ino(root
, &objectid
);
6777 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6778 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6779 S_IFDIR
| mode
, &index
);
6780 if (IS_ERR(inode
)) {
6781 err
= PTR_ERR(inode
);
6786 /* these must be set before we unlock the inode */
6787 inode
->i_op
= &btrfs_dir_inode_operations
;
6788 inode
->i_fop
= &btrfs_dir_file_operations
;
6790 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6792 goto out_fail_inode
;
6794 btrfs_i_size_write(BTRFS_I(inode
), 0);
6795 err
= btrfs_update_inode(trans
, root
, inode
);
6797 goto out_fail_inode
;
6799 err
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
),
6800 dentry
->d_name
.name
,
6801 dentry
->d_name
.len
, 0, index
);
6803 goto out_fail_inode
;
6805 d_instantiate(dentry
, inode
);
6807 * mkdir is special. We're unlocking after we call d_instantiate
6808 * to avoid a race with nfsd calling d_instantiate.
6810 unlock_new_inode(inode
);
6814 btrfs_end_transaction(trans
);
6816 inode_dec_link_count(inode
);
6819 btrfs_btree_balance_dirty(fs_info
);
6823 unlock_new_inode(inode
);
6827 static noinline
int uncompress_inline(struct btrfs_path
*path
,
6829 size_t pg_offset
, u64 extent_offset
,
6830 struct btrfs_file_extent_item
*item
)
6833 struct extent_buffer
*leaf
= path
->nodes
[0];
6836 unsigned long inline_size
;
6840 WARN_ON(pg_offset
!= 0);
6841 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6842 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6843 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
6844 btrfs_item_nr(path
->slots
[0]));
6845 tmp
= kmalloc(inline_size
, GFP_NOFS
);
6848 ptr
= btrfs_file_extent_inline_start(item
);
6850 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
6852 max_size
= min_t(unsigned long, PAGE_SIZE
, max_size
);
6853 ret
= btrfs_decompress(compress_type
, tmp
, page
,
6854 extent_offset
, inline_size
, max_size
);
6857 * decompression code contains a memset to fill in any space between the end
6858 * of the uncompressed data and the end of max_size in case the decompressed
6859 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6860 * the end of an inline extent and the beginning of the next block, so we
6861 * cover that region here.
6864 if (max_size
+ pg_offset
< PAGE_SIZE
) {
6865 char *map
= kmap(page
);
6866 memset(map
+ pg_offset
+ max_size
, 0, PAGE_SIZE
- max_size
- pg_offset
);
6874 * a bit scary, this does extent mapping from logical file offset to the disk.
6875 * the ugly parts come from merging extents from the disk with the in-ram
6876 * representation. This gets more complex because of the data=ordered code,
6877 * where the in-ram extents might be locked pending data=ordered completion.
6879 * This also copies inline extents directly into the page.
6881 struct extent_map
*btrfs_get_extent(struct btrfs_inode
*inode
,
6883 size_t pg_offset
, u64 start
, u64 len
,
6886 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6889 u64 extent_start
= 0;
6891 u64 objectid
= btrfs_ino(inode
);
6893 struct btrfs_path
*path
= NULL
;
6894 struct btrfs_root
*root
= inode
->root
;
6895 struct btrfs_file_extent_item
*item
;
6896 struct extent_buffer
*leaf
;
6897 struct btrfs_key found_key
;
6898 struct extent_map
*em
= NULL
;
6899 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
6900 struct extent_io_tree
*io_tree
= &inode
->io_tree
;
6901 const bool new_inline
= !page
|| create
;
6903 read_lock(&em_tree
->lock
);
6904 em
= lookup_extent_mapping(em_tree
, start
, len
);
6906 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
6907 read_unlock(&em_tree
->lock
);
6910 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
6911 free_extent_map(em
);
6912 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
6913 free_extent_map(em
);
6917 em
= alloc_extent_map();
6922 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
6923 em
->start
= EXTENT_MAP_HOLE
;
6924 em
->orig_start
= EXTENT_MAP_HOLE
;
6926 em
->block_len
= (u64
)-1;
6929 path
= btrfs_alloc_path();
6935 * Chances are we'll be called again, so go ahead and do
6938 path
->reada
= READA_FORWARD
;
6941 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, objectid
, start
, 0);
6948 if (path
->slots
[0] == 0)
6953 leaf
= path
->nodes
[0];
6954 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6955 struct btrfs_file_extent_item
);
6956 /* are we inside the extent that was found? */
6957 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6958 found_type
= found_key
.type
;
6959 if (found_key
.objectid
!= objectid
||
6960 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
6962 * If we backup past the first extent we want to move forward
6963 * and see if there is an extent in front of us, otherwise we'll
6964 * say there is a hole for our whole search range which can
6971 found_type
= btrfs_file_extent_type(leaf
, item
);
6972 extent_start
= found_key
.offset
;
6973 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6974 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6975 extent_end
= extent_start
+
6976 btrfs_file_extent_num_bytes(leaf
, item
);
6978 trace_btrfs_get_extent_show_fi_regular(inode
, leaf
, item
,
6980 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6982 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
6983 extent_end
= ALIGN(extent_start
+ size
,
6984 fs_info
->sectorsize
);
6986 trace_btrfs_get_extent_show_fi_inline(inode
, leaf
, item
,
6991 if (start
>= extent_end
) {
6993 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
6994 ret
= btrfs_next_leaf(root
, path
);
7001 leaf
= path
->nodes
[0];
7003 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
7004 if (found_key
.objectid
!= objectid
||
7005 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
7007 if (start
+ len
<= found_key
.offset
)
7009 if (start
> found_key
.offset
)
7012 em
->orig_start
= start
;
7013 em
->len
= found_key
.offset
- start
;
7017 btrfs_extent_item_to_extent_map(inode
, path
, item
,
7020 if (found_type
== BTRFS_FILE_EXTENT_REG
||
7021 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7023 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
7027 size_t extent_offset
;
7033 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
7034 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
7035 copy_size
= min_t(u64
, PAGE_SIZE
- pg_offset
,
7036 size
- extent_offset
);
7037 em
->start
= extent_start
+ extent_offset
;
7038 em
->len
= ALIGN(copy_size
, fs_info
->sectorsize
);
7039 em
->orig_block_len
= em
->len
;
7040 em
->orig_start
= em
->start
;
7041 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
7042 if (!PageUptodate(page
)) {
7043 if (btrfs_file_extent_compression(leaf
, item
) !=
7044 BTRFS_COMPRESS_NONE
) {
7045 ret
= uncompress_inline(path
, page
, pg_offset
,
7046 extent_offset
, item
);
7053 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
7055 if (pg_offset
+ copy_size
< PAGE_SIZE
) {
7056 memset(map
+ pg_offset
+ copy_size
, 0,
7057 PAGE_SIZE
- pg_offset
-
7062 flush_dcache_page(page
);
7064 set_extent_uptodate(io_tree
, em
->start
,
7065 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
7070 em
->orig_start
= start
;
7073 em
->block_start
= EXTENT_MAP_HOLE
;
7075 btrfs_release_path(path
);
7076 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
7078 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7079 em
->start
, em
->len
, start
, len
);
7085 write_lock(&em_tree
->lock
);
7086 err
= btrfs_add_extent_mapping(em_tree
, &em
, start
, len
);
7087 write_unlock(&em_tree
->lock
);
7090 trace_btrfs_get_extent(root
, inode
, em
);
7092 btrfs_free_path(path
);
7094 free_extent_map(em
);
7095 return ERR_PTR(err
);
7097 BUG_ON(!em
); /* Error is always set */
7101 struct extent_map
*btrfs_get_extent_fiemap(struct btrfs_inode
*inode
,
7103 size_t pg_offset
, u64 start
, u64 len
,
7106 struct extent_map
*em
;
7107 struct extent_map
*hole_em
= NULL
;
7108 u64 range_start
= start
;
7114 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
7118 * If our em maps to:
7120 * - a pre-alloc extent,
7121 * there might actually be delalloc bytes behind it.
7123 if (em
->block_start
!= EXTENT_MAP_HOLE
&&
7124 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7129 /* check to see if we've wrapped (len == -1 or similar) */
7138 /* ok, we didn't find anything, lets look for delalloc */
7139 found
= count_range_bits(&inode
->io_tree
, &range_start
,
7140 end
, len
, EXTENT_DELALLOC
, 1);
7141 found_end
= range_start
+ found
;
7142 if (found_end
< range_start
)
7143 found_end
= (u64
)-1;
7146 * we didn't find anything useful, return
7147 * the original results from get_extent()
7149 if (range_start
> end
|| found_end
<= start
) {
7155 /* adjust the range_start to make sure it doesn't
7156 * go backwards from the start they passed in
7158 range_start
= max(start
, range_start
);
7159 found
= found_end
- range_start
;
7162 u64 hole_start
= start
;
7165 em
= alloc_extent_map();
7171 * when btrfs_get_extent can't find anything it
7172 * returns one huge hole
7174 * make sure what it found really fits our range, and
7175 * adjust to make sure it is based on the start from
7179 u64 calc_end
= extent_map_end(hole_em
);
7181 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
7182 free_extent_map(hole_em
);
7185 hole_start
= max(hole_em
->start
, start
);
7186 hole_len
= calc_end
- hole_start
;
7190 if (hole_em
&& range_start
> hole_start
) {
7191 /* our hole starts before our delalloc, so we
7192 * have to return just the parts of the hole
7193 * that go until the delalloc starts
7195 em
->len
= min(hole_len
,
7196 range_start
- hole_start
);
7197 em
->start
= hole_start
;
7198 em
->orig_start
= hole_start
;
7200 * don't adjust block start at all,
7201 * it is fixed at EXTENT_MAP_HOLE
7203 em
->block_start
= hole_em
->block_start
;
7204 em
->block_len
= hole_len
;
7205 if (test_bit(EXTENT_FLAG_PREALLOC
, &hole_em
->flags
))
7206 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
7208 em
->start
= range_start
;
7210 em
->orig_start
= range_start
;
7211 em
->block_start
= EXTENT_MAP_DELALLOC
;
7212 em
->block_len
= found
;
7219 free_extent_map(hole_em
);
7221 free_extent_map(em
);
7222 return ERR_PTR(err
);
7227 static struct extent_map
*btrfs_create_dio_extent(struct inode
*inode
,
7230 const u64 orig_start
,
7231 const u64 block_start
,
7232 const u64 block_len
,
7233 const u64 orig_block_len
,
7234 const u64 ram_bytes
,
7237 struct extent_map
*em
= NULL
;
7240 if (type
!= BTRFS_ORDERED_NOCOW
) {
7241 em
= create_io_em(inode
, start
, len
, orig_start
,
7242 block_start
, block_len
, orig_block_len
,
7244 BTRFS_COMPRESS_NONE
, /* compress_type */
7249 ret
= btrfs_add_ordered_extent_dio(inode
, start
, block_start
,
7250 len
, block_len
, type
);
7253 free_extent_map(em
);
7254 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
7255 start
+ len
- 1, 0);
7264 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
7267 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7268 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7269 struct extent_map
*em
;
7270 struct btrfs_key ins
;
7274 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
7275 ret
= btrfs_reserve_extent(root
, len
, len
, fs_info
->sectorsize
,
7276 0, alloc_hint
, &ins
, 1, 1);
7278 return ERR_PTR(ret
);
7280 em
= btrfs_create_dio_extent(inode
, start
, ins
.offset
, start
,
7281 ins
.objectid
, ins
.offset
, ins
.offset
,
7282 ins
.offset
, BTRFS_ORDERED_REGULAR
);
7283 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
7285 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
7292 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7293 * block must be cow'd
7295 noinline
int can_nocow_extent(struct inode
*inode
, u64 offset
, u64
*len
,
7296 u64
*orig_start
, u64
*orig_block_len
,
7299 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7300 struct btrfs_path
*path
;
7302 struct extent_buffer
*leaf
;
7303 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7304 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7305 struct btrfs_file_extent_item
*fi
;
7306 struct btrfs_key key
;
7313 bool nocow
= (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
);
7315 path
= btrfs_alloc_path();
7319 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
7320 btrfs_ino(BTRFS_I(inode
)), offset
, 0);
7324 slot
= path
->slots
[0];
7327 /* can't find the item, must cow */
7334 leaf
= path
->nodes
[0];
7335 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
7336 if (key
.objectid
!= btrfs_ino(BTRFS_I(inode
)) ||
7337 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
7338 /* not our file or wrong item type, must cow */
7342 if (key
.offset
> offset
) {
7343 /* Wrong offset, must cow */
7347 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
7348 found_type
= btrfs_file_extent_type(leaf
, fi
);
7349 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
7350 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
7351 /* not a regular extent, must cow */
7355 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_REG
)
7358 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
7359 if (extent_end
<= offset
)
7362 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
7363 if (disk_bytenr
== 0)
7366 if (btrfs_file_extent_compression(leaf
, fi
) ||
7367 btrfs_file_extent_encryption(leaf
, fi
) ||
7368 btrfs_file_extent_other_encoding(leaf
, fi
))
7371 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
7374 *orig_start
= key
.offset
- backref_offset
;
7375 *orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
7376 *ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
7379 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
7382 num_bytes
= min(offset
+ *len
, extent_end
) - offset
;
7383 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7386 range_end
= round_up(offset
+ num_bytes
,
7387 root
->fs_info
->sectorsize
) - 1;
7388 ret
= test_range_bit(io_tree
, offset
, range_end
,
7389 EXTENT_DELALLOC
, 0, NULL
);
7396 btrfs_release_path(path
);
7399 * look for other files referencing this extent, if we
7400 * find any we must cow
7403 ret
= btrfs_cross_ref_exist(root
, btrfs_ino(BTRFS_I(inode
)),
7404 key
.offset
- backref_offset
, disk_bytenr
);
7411 * adjust disk_bytenr and num_bytes to cover just the bytes
7412 * in this extent we are about to write. If there
7413 * are any csums in that range we have to cow in order
7414 * to keep the csums correct
7416 disk_bytenr
+= backref_offset
;
7417 disk_bytenr
+= offset
- key
.offset
;
7418 if (csum_exist_in_range(fs_info
, disk_bytenr
, num_bytes
))
7421 * all of the above have passed, it is safe to overwrite this extent
7427 btrfs_free_path(path
);
7431 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
7432 struct extent_state
**cached_state
, int writing
)
7434 struct btrfs_ordered_extent
*ordered
;
7438 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7441 * We're concerned with the entire range that we're going to be
7442 * doing DIO to, so we need to make sure there's no ordered
7443 * extents in this range.
7445 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), lockstart
,
7446 lockend
- lockstart
+ 1);
7449 * We need to make sure there are no buffered pages in this
7450 * range either, we could have raced between the invalidate in
7451 * generic_file_direct_write and locking the extent. The
7452 * invalidate needs to happen so that reads after a write do not
7456 (!writing
|| !filemap_range_has_page(inode
->i_mapping
,
7457 lockstart
, lockend
)))
7460 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7465 * If we are doing a DIO read and the ordered extent we
7466 * found is for a buffered write, we can not wait for it
7467 * to complete and retry, because if we do so we can
7468 * deadlock with concurrent buffered writes on page
7469 * locks. This happens only if our DIO read covers more
7470 * than one extent map, if at this point has already
7471 * created an ordered extent for a previous extent map
7472 * and locked its range in the inode's io tree, and a
7473 * concurrent write against that previous extent map's
7474 * range and this range started (we unlock the ranges
7475 * in the io tree only when the bios complete and
7476 * buffered writes always lock pages before attempting
7477 * to lock range in the io tree).
7480 test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
))
7481 btrfs_start_ordered_extent(inode
, ordered
, 1);
7484 btrfs_put_ordered_extent(ordered
);
7487 * We could trigger writeback for this range (and wait
7488 * for it to complete) and then invalidate the pages for
7489 * this range (through invalidate_inode_pages2_range()),
7490 * but that can lead us to a deadlock with a concurrent
7491 * call to readpages() (a buffered read or a defrag call
7492 * triggered a readahead) on a page lock due to an
7493 * ordered dio extent we created before but did not have
7494 * yet a corresponding bio submitted (whence it can not
7495 * complete), which makes readpages() wait for that
7496 * ordered extent to complete while holding a lock on
7511 /* The callers of this must take lock_extent() */
7512 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
7513 u64 orig_start
, u64 block_start
,
7514 u64 block_len
, u64 orig_block_len
,
7515 u64 ram_bytes
, int compress_type
,
7518 struct extent_map_tree
*em_tree
;
7519 struct extent_map
*em
;
7520 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7523 ASSERT(type
== BTRFS_ORDERED_PREALLOC
||
7524 type
== BTRFS_ORDERED_COMPRESSED
||
7525 type
== BTRFS_ORDERED_NOCOW
||
7526 type
== BTRFS_ORDERED_REGULAR
);
7528 em_tree
= &BTRFS_I(inode
)->extent_tree
;
7529 em
= alloc_extent_map();
7531 return ERR_PTR(-ENOMEM
);
7534 em
->orig_start
= orig_start
;
7536 em
->block_len
= block_len
;
7537 em
->block_start
= block_start
;
7538 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
7539 em
->orig_block_len
= orig_block_len
;
7540 em
->ram_bytes
= ram_bytes
;
7541 em
->generation
= -1;
7542 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
7543 if (type
== BTRFS_ORDERED_PREALLOC
) {
7544 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
7545 } else if (type
== BTRFS_ORDERED_COMPRESSED
) {
7546 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
7547 em
->compress_type
= compress_type
;
7551 btrfs_drop_extent_cache(BTRFS_I(inode
), em
->start
,
7552 em
->start
+ em
->len
- 1, 0);
7553 write_lock(&em_tree
->lock
);
7554 ret
= add_extent_mapping(em_tree
, em
, 1);
7555 write_unlock(&em_tree
->lock
);
7557 * The caller has taken lock_extent(), who could race with us
7560 } while (ret
== -EEXIST
);
7563 free_extent_map(em
);
7564 return ERR_PTR(ret
);
7567 /* em got 2 refs now, callers needs to do free_extent_map once. */
7571 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
7572 struct buffer_head
*bh_result
, int create
)
7574 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7575 struct extent_map
*em
;
7576 struct extent_state
*cached_state
= NULL
;
7577 struct btrfs_dio_data
*dio_data
= NULL
;
7578 u64 start
= iblock
<< inode
->i_blkbits
;
7579 u64 lockstart
, lockend
;
7580 u64 len
= bh_result
->b_size
;
7581 int unlock_bits
= EXTENT_LOCKED
;
7585 unlock_bits
|= EXTENT_DIRTY
;
7587 len
= min_t(u64
, len
, fs_info
->sectorsize
);
7590 lockend
= start
+ len
- 1;
7592 if (current
->journal_info
) {
7594 * Need to pull our outstanding extents and set journal_info to NULL so
7595 * that anything that needs to check if there's a transaction doesn't get
7598 dio_data
= current
->journal_info
;
7599 current
->journal_info
= NULL
;
7603 * If this errors out it's because we couldn't invalidate pagecache for
7604 * this range and we need to fallback to buffered.
7606 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
,
7612 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
, 0);
7619 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7620 * io. INLINE is special, and we could probably kludge it in here, but
7621 * it's still buffered so for safety lets just fall back to the generic
7624 * For COMPRESSED we _have_ to read the entire extent in so we can
7625 * decompress it, so there will be buffering required no matter what we
7626 * do, so go ahead and fallback to buffered.
7628 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7629 * to buffered IO. Don't blame me, this is the price we pay for using
7632 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
7633 em
->block_start
== EXTENT_MAP_INLINE
) {
7634 free_extent_map(em
);
7639 /* Just a good old fashioned hole, return */
7640 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
7641 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
7642 free_extent_map(em
);
7647 * We don't allocate a new extent in the following cases
7649 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7651 * 2) The extent is marked as PREALLOC. We're good to go here and can
7652 * just use the extent.
7656 len
= min(len
, em
->len
- (start
- em
->start
));
7657 lockstart
= start
+ len
;
7661 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
7662 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
7663 em
->block_start
!= EXTENT_MAP_HOLE
)) {
7665 u64 block_start
, orig_start
, orig_block_len
, ram_bytes
;
7667 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7668 type
= BTRFS_ORDERED_PREALLOC
;
7670 type
= BTRFS_ORDERED_NOCOW
;
7671 len
= min(len
, em
->len
- (start
- em
->start
));
7672 block_start
= em
->block_start
+ (start
- em
->start
);
7674 if (can_nocow_extent(inode
, start
, &len
, &orig_start
,
7675 &orig_block_len
, &ram_bytes
) == 1 &&
7676 btrfs_inc_nocow_writers(fs_info
, block_start
)) {
7677 struct extent_map
*em2
;
7679 em2
= btrfs_create_dio_extent(inode
, start
, len
,
7680 orig_start
, block_start
,
7681 len
, orig_block_len
,
7683 btrfs_dec_nocow_writers(fs_info
, block_start
);
7684 if (type
== BTRFS_ORDERED_PREALLOC
) {
7685 free_extent_map(em
);
7688 if (em2
&& IS_ERR(em2
)) {
7693 * For inode marked NODATACOW or extent marked PREALLOC,
7694 * use the existing or preallocated extent, so does not
7695 * need to adjust btrfs_space_info's bytes_may_use.
7697 btrfs_free_reserved_data_space_noquota(inode
,
7704 * this will cow the extent, reset the len in case we changed
7707 len
= bh_result
->b_size
;
7708 free_extent_map(em
);
7709 em
= btrfs_new_extent_direct(inode
, start
, len
);
7714 len
= min(len
, em
->len
- (start
- em
->start
));
7716 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7718 bh_result
->b_size
= len
;
7719 bh_result
->b_bdev
= em
->bdev
;
7720 set_buffer_mapped(bh_result
);
7722 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7723 set_buffer_new(bh_result
);
7726 * Need to update the i_size under the extent lock so buffered
7727 * readers will get the updated i_size when we unlock.
7729 if (!dio_data
->overwrite
&& start
+ len
> i_size_read(inode
))
7730 i_size_write(inode
, start
+ len
);
7732 WARN_ON(dio_data
->reserve
< len
);
7733 dio_data
->reserve
-= len
;
7734 dio_data
->unsubmitted_oe_range_end
= start
+ len
;
7735 current
->journal_info
= dio_data
;
7739 * In the case of write we need to clear and unlock the entire range,
7740 * in the case of read we need to unlock only the end area that we
7741 * aren't using if there is any left over space.
7743 if (lockstart
< lockend
) {
7744 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
7745 lockend
, unlock_bits
, 1, 0,
7748 free_extent_state(cached_state
);
7751 free_extent_map(em
);
7756 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7757 unlock_bits
, 1, 0, &cached_state
);
7760 current
->journal_info
= dio_data
;
7764 static inline blk_status_t
submit_dio_repair_bio(struct inode
*inode
,
7768 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7771 BUG_ON(bio_op(bio
) == REQ_OP_WRITE
);
7773 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DIO_REPAIR
);
7777 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
7782 static int btrfs_check_dio_repairable(struct inode
*inode
,
7783 struct bio
*failed_bio
,
7784 struct io_failure_record
*failrec
,
7787 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7790 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
, failrec
->len
);
7791 if (num_copies
== 1) {
7793 * we only have a single copy of the data, so don't bother with
7794 * all the retry and error correction code that follows. no
7795 * matter what the error is, it is very likely to persist.
7797 btrfs_debug(fs_info
,
7798 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7799 num_copies
, failrec
->this_mirror
, failed_mirror
);
7803 failrec
->failed_mirror
= failed_mirror
;
7804 failrec
->this_mirror
++;
7805 if (failrec
->this_mirror
== failed_mirror
)
7806 failrec
->this_mirror
++;
7808 if (failrec
->this_mirror
> num_copies
) {
7809 btrfs_debug(fs_info
,
7810 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7811 num_copies
, failrec
->this_mirror
, failed_mirror
);
7818 static blk_status_t
dio_read_error(struct inode
*inode
, struct bio
*failed_bio
,
7819 struct page
*page
, unsigned int pgoff
,
7820 u64 start
, u64 end
, int failed_mirror
,
7821 bio_end_io_t
*repair_endio
, void *repair_arg
)
7823 struct io_failure_record
*failrec
;
7824 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7825 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7828 unsigned int read_mode
= 0;
7831 blk_status_t status
;
7832 struct bio_vec bvec
;
7834 BUG_ON(bio_op(failed_bio
) == REQ_OP_WRITE
);
7836 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
7838 return errno_to_blk_status(ret
);
7840 ret
= btrfs_check_dio_repairable(inode
, failed_bio
, failrec
,
7843 free_io_failure(failure_tree
, io_tree
, failrec
);
7844 return BLK_STS_IOERR
;
7847 segs
= bio_segments(failed_bio
);
7848 bio_get_first_bvec(failed_bio
, &bvec
);
7850 (bvec
.bv_len
> btrfs_inode_sectorsize(inode
)))
7851 read_mode
|= REQ_FAILFAST_DEV
;
7853 isector
= start
- btrfs_io_bio(failed_bio
)->logical
;
7854 isector
>>= inode
->i_sb
->s_blocksize_bits
;
7855 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
7856 pgoff
, isector
, repair_endio
, repair_arg
);
7857 bio_set_op_attrs(bio
, REQ_OP_READ
, read_mode
);
7859 btrfs_debug(BTRFS_I(inode
)->root
->fs_info
,
7860 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7861 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
7863 status
= submit_dio_repair_bio(inode
, bio
, failrec
->this_mirror
);
7865 free_io_failure(failure_tree
, io_tree
, failrec
);
7872 struct btrfs_retry_complete
{
7873 struct completion done
;
7874 struct inode
*inode
;
7879 static void btrfs_retry_endio_nocsum(struct bio
*bio
)
7881 struct btrfs_retry_complete
*done
= bio
->bi_private
;
7882 struct inode
*inode
= done
->inode
;
7883 struct bio_vec
*bvec
;
7884 struct extent_io_tree
*io_tree
, *failure_tree
;
7890 ASSERT(bio
->bi_vcnt
== 1);
7891 io_tree
= &BTRFS_I(inode
)->io_tree
;
7892 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7893 ASSERT(bio_first_bvec_all(bio
)->bv_len
== btrfs_inode_sectorsize(inode
));
7896 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
7897 bio_for_each_segment_all(bvec
, bio
, i
)
7898 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
, failure_tree
,
7899 io_tree
, done
->start
, bvec
->bv_page
,
7900 btrfs_ino(BTRFS_I(inode
)), 0);
7902 complete(&done
->done
);
7906 static blk_status_t
__btrfs_correct_data_nocsum(struct inode
*inode
,
7907 struct btrfs_io_bio
*io_bio
)
7909 struct btrfs_fs_info
*fs_info
;
7910 struct bio_vec bvec
;
7911 struct bvec_iter iter
;
7912 struct btrfs_retry_complete done
;
7918 blk_status_t err
= BLK_STS_OK
;
7920 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
7921 sectorsize
= fs_info
->sectorsize
;
7923 start
= io_bio
->logical
;
7925 io_bio
->bio
.bi_iter
= io_bio
->iter
;
7927 bio_for_each_segment(bvec
, &io_bio
->bio
, iter
) {
7928 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
7929 pgoff
= bvec
.bv_offset
;
7931 next_block_or_try_again
:
7934 init_completion(&done
.done
);
7936 ret
= dio_read_error(inode
, &io_bio
->bio
, bvec
.bv_page
,
7937 pgoff
, start
, start
+ sectorsize
- 1,
7939 btrfs_retry_endio_nocsum
, &done
);
7945 wait_for_completion_io(&done
.done
);
7947 if (!done
.uptodate
) {
7948 /* We might have another mirror, so try again */
7949 goto next_block_or_try_again
;
7953 start
+= sectorsize
;
7957 pgoff
+= sectorsize
;
7958 ASSERT(pgoff
< PAGE_SIZE
);
7959 goto next_block_or_try_again
;
7966 static void btrfs_retry_endio(struct bio
*bio
)
7968 struct btrfs_retry_complete
*done
= bio
->bi_private
;
7969 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
7970 struct extent_io_tree
*io_tree
, *failure_tree
;
7971 struct inode
*inode
= done
->inode
;
7972 struct bio_vec
*bvec
;
7982 ASSERT(bio
->bi_vcnt
== 1);
7983 ASSERT(bio_first_bvec_all(bio
)->bv_len
== btrfs_inode_sectorsize(done
->inode
));
7985 io_tree
= &BTRFS_I(inode
)->io_tree
;
7986 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7988 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
7989 bio_for_each_segment_all(bvec
, bio
, i
) {
7990 ret
= __readpage_endio_check(inode
, io_bio
, i
, bvec
->bv_page
,
7991 bvec
->bv_offset
, done
->start
,
7994 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
,
7995 failure_tree
, io_tree
, done
->start
,
7997 btrfs_ino(BTRFS_I(inode
)),
8003 done
->uptodate
= uptodate
;
8005 complete(&done
->done
);
8009 static blk_status_t
__btrfs_subio_endio_read(struct inode
*inode
,
8010 struct btrfs_io_bio
*io_bio
, blk_status_t err
)
8012 struct btrfs_fs_info
*fs_info
;
8013 struct bio_vec bvec
;
8014 struct bvec_iter iter
;
8015 struct btrfs_retry_complete done
;
8022 bool uptodate
= (err
== 0);
8024 blk_status_t status
;
8026 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
8027 sectorsize
= fs_info
->sectorsize
;
8030 start
= io_bio
->logical
;
8032 io_bio
->bio
.bi_iter
= io_bio
->iter
;
8034 bio_for_each_segment(bvec
, &io_bio
->bio
, iter
) {
8035 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
8037 pgoff
= bvec
.bv_offset
;
8040 csum_pos
= BTRFS_BYTES_TO_BLKS(fs_info
, offset
);
8041 ret
= __readpage_endio_check(inode
, io_bio
, csum_pos
,
8042 bvec
.bv_page
, pgoff
, start
, sectorsize
);
8049 init_completion(&done
.done
);
8051 status
= dio_read_error(inode
, &io_bio
->bio
, bvec
.bv_page
,
8052 pgoff
, start
, start
+ sectorsize
- 1,
8053 io_bio
->mirror_num
, btrfs_retry_endio
,
8060 wait_for_completion_io(&done
.done
);
8062 if (!done
.uptodate
) {
8063 /* We might have another mirror, so try again */
8067 offset
+= sectorsize
;
8068 start
+= sectorsize
;
8074 pgoff
+= sectorsize
;
8075 ASSERT(pgoff
< PAGE_SIZE
);
8083 static blk_status_t
btrfs_subio_endio_read(struct inode
*inode
,
8084 struct btrfs_io_bio
*io_bio
, blk_status_t err
)
8086 bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
8090 return __btrfs_correct_data_nocsum(inode
, io_bio
);
8094 return __btrfs_subio_endio_read(inode
, io_bio
, err
);
8098 static void btrfs_endio_direct_read(struct bio
*bio
)
8100 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8101 struct inode
*inode
= dip
->inode
;
8102 struct bio
*dio_bio
;
8103 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8104 blk_status_t err
= bio
->bi_status
;
8106 if (dip
->flags
& BTRFS_DIO_ORIG_BIO_SUBMITTED
)
8107 err
= btrfs_subio_endio_read(inode
, io_bio
, err
);
8109 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
8110 dip
->logical_offset
+ dip
->bytes
- 1);
8111 dio_bio
= dip
->dio_bio
;
8115 dio_bio
->bi_status
= err
;
8116 dio_end_io(dio_bio
);
8119 io_bio
->end_io(io_bio
, blk_status_to_errno(err
));
8123 static void __endio_write_update_ordered(struct inode
*inode
,
8124 const u64 offset
, const u64 bytes
,
8125 const bool uptodate
)
8127 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8128 struct btrfs_ordered_extent
*ordered
= NULL
;
8129 struct btrfs_workqueue
*wq
;
8130 btrfs_work_func_t func
;
8131 u64 ordered_offset
= offset
;
8132 u64 ordered_bytes
= bytes
;
8136 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
8137 wq
= fs_info
->endio_freespace_worker
;
8138 func
= btrfs_freespace_write_helper
;
8140 wq
= fs_info
->endio_write_workers
;
8141 func
= btrfs_endio_write_helper
;
8145 last_offset
= ordered_offset
;
8146 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
8153 btrfs_init_work(&ordered
->work
, func
, finish_ordered_fn
, NULL
, NULL
);
8154 btrfs_queue_work(wq
, &ordered
->work
);
8157 * If btrfs_dec_test_ordered_pending does not find any ordered extent
8158 * in the range, we can exit.
8160 if (ordered_offset
== last_offset
)
8163 * our bio might span multiple ordered extents. If we haven't
8164 * completed the accounting for the whole dio, go back and try again
8166 if (ordered_offset
< offset
+ bytes
) {
8167 ordered_bytes
= offset
+ bytes
- ordered_offset
;
8173 static void btrfs_endio_direct_write(struct bio
*bio
)
8175 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8176 struct bio
*dio_bio
= dip
->dio_bio
;
8178 __endio_write_update_ordered(dip
->inode
, dip
->logical_offset
,
8179 dip
->bytes
, !bio
->bi_status
);
8183 dio_bio
->bi_status
= bio
->bi_status
;
8184 dio_end_io(dio_bio
);
8188 static blk_status_t
btrfs_submit_bio_start_direct_io(void *private_data
,
8189 struct bio
*bio
, u64 offset
)
8191 struct inode
*inode
= private_data
;
8193 ret
= btrfs_csum_one_bio(inode
, bio
, offset
, 1);
8194 BUG_ON(ret
); /* -ENOMEM */
8198 static void btrfs_end_dio_bio(struct bio
*bio
)
8200 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8201 blk_status_t err
= bio
->bi_status
;
8204 btrfs_warn(BTRFS_I(dip
->inode
)->root
->fs_info
,
8205 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8206 btrfs_ino(BTRFS_I(dip
->inode
)), bio_op(bio
),
8208 (unsigned long long)bio
->bi_iter
.bi_sector
,
8209 bio
->bi_iter
.bi_size
, err
);
8211 if (dip
->subio_endio
)
8212 err
= dip
->subio_endio(dip
->inode
, btrfs_io_bio(bio
), err
);
8216 * We want to perceive the errors flag being set before
8217 * decrementing the reference count. We don't need a barrier
8218 * since atomic operations with a return value are fully
8219 * ordered as per atomic_t.txt
8224 /* if there are more bios still pending for this dio, just exit */
8225 if (!atomic_dec_and_test(&dip
->pending_bios
))
8229 bio_io_error(dip
->orig_bio
);
8231 dip
->dio_bio
->bi_status
= BLK_STS_OK
;
8232 bio_endio(dip
->orig_bio
);
8238 static inline blk_status_t
btrfs_lookup_and_bind_dio_csum(struct inode
*inode
,
8239 struct btrfs_dio_private
*dip
,
8243 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8244 struct btrfs_io_bio
*orig_io_bio
= btrfs_io_bio(dip
->orig_bio
);
8248 * We load all the csum data we need when we submit
8249 * the first bio to reduce the csum tree search and
8252 if (dip
->logical_offset
== file_offset
) {
8253 ret
= btrfs_lookup_bio_sums_dio(inode
, dip
->orig_bio
,
8259 if (bio
== dip
->orig_bio
)
8262 file_offset
-= dip
->logical_offset
;
8263 file_offset
>>= inode
->i_sb
->s_blocksize_bits
;
8264 io_bio
->csum
= (u8
*)(((u32
*)orig_io_bio
->csum
) + file_offset
);
8269 static inline blk_status_t
btrfs_submit_dio_bio(struct bio
*bio
,
8270 struct inode
*inode
, u64 file_offset
, int async_submit
)
8272 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8273 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8274 bool write
= bio_op(bio
) == REQ_OP_WRITE
;
8277 /* Check btrfs_submit_bio_hook() for rules about async submit. */
8279 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
8282 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
8287 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
8290 if (write
&& async_submit
) {
8291 ret
= btrfs_wq_submit_bio(fs_info
, bio
, 0, 0,
8293 btrfs_submit_bio_start_direct_io
,
8294 btrfs_submit_bio_done
);
8298 * If we aren't doing async submit, calculate the csum of the
8301 ret
= btrfs_csum_one_bio(inode
, bio
, file_offset
, 1);
8305 ret
= btrfs_lookup_and_bind_dio_csum(inode
, dip
, bio
,
8311 ret
= btrfs_map_bio(fs_info
, bio
, 0, 0);
8316 static int btrfs_submit_direct_hook(struct btrfs_dio_private
*dip
)
8318 struct inode
*inode
= dip
->inode
;
8319 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8321 struct bio
*orig_bio
= dip
->orig_bio
;
8322 u64 start_sector
= orig_bio
->bi_iter
.bi_sector
;
8323 u64 file_offset
= dip
->logical_offset
;
8325 int async_submit
= 0;
8327 int clone_offset
= 0;
8330 blk_status_t status
;
8332 map_length
= orig_bio
->bi_iter
.bi_size
;
8333 submit_len
= map_length
;
8334 ret
= btrfs_map_block(fs_info
, btrfs_op(orig_bio
), start_sector
<< 9,
8335 &map_length
, NULL
, 0);
8339 if (map_length
>= submit_len
) {
8341 dip
->flags
|= BTRFS_DIO_ORIG_BIO_SUBMITTED
;
8345 /* async crcs make it difficult to collect full stripe writes. */
8346 if (btrfs_data_alloc_profile(fs_info
) & BTRFS_BLOCK_GROUP_RAID56_MASK
)
8352 ASSERT(map_length
<= INT_MAX
);
8353 atomic_inc(&dip
->pending_bios
);
8355 clone_len
= min_t(int, submit_len
, map_length
);
8358 * This will never fail as it's passing GPF_NOFS and
8359 * the allocation is backed by btrfs_bioset.
8361 bio
= btrfs_bio_clone_partial(orig_bio
, clone_offset
,
8363 bio
->bi_private
= dip
;
8364 bio
->bi_end_io
= btrfs_end_dio_bio
;
8365 btrfs_io_bio(bio
)->logical
= file_offset
;
8367 ASSERT(submit_len
>= clone_len
);
8368 submit_len
-= clone_len
;
8369 if (submit_len
== 0)
8373 * Increase the count before we submit the bio so we know
8374 * the end IO handler won't happen before we increase the
8375 * count. Otherwise, the dip might get freed before we're
8376 * done setting it up.
8378 atomic_inc(&dip
->pending_bios
);
8380 status
= btrfs_submit_dio_bio(bio
, inode
, file_offset
,
8384 atomic_dec(&dip
->pending_bios
);
8388 clone_offset
+= clone_len
;
8389 start_sector
+= clone_len
>> 9;
8390 file_offset
+= clone_len
;
8392 map_length
= submit_len
;
8393 ret
= btrfs_map_block(fs_info
, btrfs_op(orig_bio
),
8394 start_sector
<< 9, &map_length
, NULL
, 0);
8397 } while (submit_len
> 0);
8400 status
= btrfs_submit_dio_bio(bio
, inode
, file_offset
, async_submit
);
8408 * Before atomic variable goto zero, we must make sure dip->errors is
8409 * perceived to be set. This ordering is ensured by the fact that an
8410 * atomic operations with a return value are fully ordered as per
8413 if (atomic_dec_and_test(&dip
->pending_bios
))
8414 bio_io_error(dip
->orig_bio
);
8416 /* bio_end_io() will handle error, so we needn't return it */
8420 static void btrfs_submit_direct(struct bio
*dio_bio
, struct inode
*inode
,
8423 struct btrfs_dio_private
*dip
= NULL
;
8424 struct bio
*bio
= NULL
;
8425 struct btrfs_io_bio
*io_bio
;
8426 bool write
= (bio_op(dio_bio
) == REQ_OP_WRITE
);
8429 bio
= btrfs_bio_clone(dio_bio
);
8431 dip
= kzalloc(sizeof(*dip
), GFP_NOFS
);
8437 dip
->private = dio_bio
->bi_private
;
8439 dip
->logical_offset
= file_offset
;
8440 dip
->bytes
= dio_bio
->bi_iter
.bi_size
;
8441 dip
->disk_bytenr
= (u64
)dio_bio
->bi_iter
.bi_sector
<< 9;
8442 bio
->bi_private
= dip
;
8443 dip
->orig_bio
= bio
;
8444 dip
->dio_bio
= dio_bio
;
8445 atomic_set(&dip
->pending_bios
, 0);
8446 io_bio
= btrfs_io_bio(bio
);
8447 io_bio
->logical
= file_offset
;
8450 bio
->bi_end_io
= btrfs_endio_direct_write
;
8452 bio
->bi_end_io
= btrfs_endio_direct_read
;
8453 dip
->subio_endio
= btrfs_subio_endio_read
;
8457 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8458 * even if we fail to submit a bio, because in such case we do the
8459 * corresponding error handling below and it must not be done a second
8460 * time by btrfs_direct_IO().
8463 struct btrfs_dio_data
*dio_data
= current
->journal_info
;
8465 dio_data
->unsubmitted_oe_range_end
= dip
->logical_offset
+
8467 dio_data
->unsubmitted_oe_range_start
=
8468 dio_data
->unsubmitted_oe_range_end
;
8471 ret
= btrfs_submit_direct_hook(dip
);
8476 io_bio
->end_io(io_bio
, ret
);
8480 * If we arrived here it means either we failed to submit the dip
8481 * or we either failed to clone the dio_bio or failed to allocate the
8482 * dip. If we cloned the dio_bio and allocated the dip, we can just
8483 * call bio_endio against our io_bio so that we get proper resource
8484 * cleanup if we fail to submit the dip, otherwise, we must do the
8485 * same as btrfs_endio_direct_[write|read] because we can't call these
8486 * callbacks - they require an allocated dip and a clone of dio_bio.
8491 * The end io callbacks free our dip, do the final put on bio
8492 * and all the cleanup and final put for dio_bio (through
8499 __endio_write_update_ordered(inode
,
8501 dio_bio
->bi_iter
.bi_size
,
8504 unlock_extent(&BTRFS_I(inode
)->io_tree
, file_offset
,
8505 file_offset
+ dio_bio
->bi_iter
.bi_size
- 1);
8507 dio_bio
->bi_status
= BLK_STS_IOERR
;
8509 * Releases and cleans up our dio_bio, no need to bio_put()
8510 * nor bio_endio()/bio_io_error() against dio_bio.
8512 dio_end_io(dio_bio
);
8519 static ssize_t
check_direct_IO(struct btrfs_fs_info
*fs_info
,
8520 const struct iov_iter
*iter
, loff_t offset
)
8524 unsigned int blocksize_mask
= fs_info
->sectorsize
- 1;
8525 ssize_t retval
= -EINVAL
;
8527 if (offset
& blocksize_mask
)
8530 if (iov_iter_alignment(iter
) & blocksize_mask
)
8533 /* If this is a write we don't need to check anymore */
8534 if (iov_iter_rw(iter
) != READ
|| !iter_is_iovec(iter
))
8537 * Check to make sure we don't have duplicate iov_base's in this
8538 * iovec, if so return EINVAL, otherwise we'll get csum errors
8539 * when reading back.
8541 for (seg
= 0; seg
< iter
->nr_segs
; seg
++) {
8542 for (i
= seg
+ 1; i
< iter
->nr_segs
; i
++) {
8543 if (iter
->iov
[seg
].iov_base
== iter
->iov
[i
].iov_base
)
8552 static ssize_t
btrfs_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
8554 struct file
*file
= iocb
->ki_filp
;
8555 struct inode
*inode
= file
->f_mapping
->host
;
8556 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8557 struct btrfs_dio_data dio_data
= { 0 };
8558 struct extent_changeset
*data_reserved
= NULL
;
8559 loff_t offset
= iocb
->ki_pos
;
8563 bool relock
= false;
8566 if (check_direct_IO(fs_info
, iter
, offset
))
8569 inode_dio_begin(inode
);
8572 * The generic stuff only does filemap_write_and_wait_range, which
8573 * isn't enough if we've written compressed pages to this area, so
8574 * we need to flush the dirty pages again to make absolutely sure
8575 * that any outstanding dirty pages are on disk.
8577 count
= iov_iter_count(iter
);
8578 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
8579 &BTRFS_I(inode
)->runtime_flags
))
8580 filemap_fdatawrite_range(inode
->i_mapping
, offset
,
8581 offset
+ count
- 1);
8583 if (iov_iter_rw(iter
) == WRITE
) {
8585 * If the write DIO is beyond the EOF, we need update
8586 * the isize, but it is protected by i_mutex. So we can
8587 * not unlock the i_mutex at this case.
8589 if (offset
+ count
<= inode
->i_size
) {
8590 dio_data
.overwrite
= 1;
8591 inode_unlock(inode
);
8593 } else if (iocb
->ki_flags
& IOCB_NOWAIT
) {
8597 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
8603 * We need to know how many extents we reserved so that we can
8604 * do the accounting properly if we go over the number we
8605 * originally calculated. Abuse current->journal_info for this.
8607 dio_data
.reserve
= round_up(count
,
8608 fs_info
->sectorsize
);
8609 dio_data
.unsubmitted_oe_range_start
= (u64
)offset
;
8610 dio_data
.unsubmitted_oe_range_end
= (u64
)offset
;
8611 current
->journal_info
= &dio_data
;
8612 down_read(&BTRFS_I(inode
)->dio_sem
);
8613 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK
,
8614 &BTRFS_I(inode
)->runtime_flags
)) {
8615 inode_dio_end(inode
);
8616 flags
= DIO_LOCKING
| DIO_SKIP_HOLES
;
8620 ret
= __blockdev_direct_IO(iocb
, inode
,
8621 fs_info
->fs_devices
->latest_bdev
,
8622 iter
, btrfs_get_blocks_direct
, NULL
,
8623 btrfs_submit_direct
, flags
);
8624 if (iov_iter_rw(iter
) == WRITE
) {
8625 up_read(&BTRFS_I(inode
)->dio_sem
);
8626 current
->journal_info
= NULL
;
8627 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
8628 if (dio_data
.reserve
)
8629 btrfs_delalloc_release_space(inode
, data_reserved
,
8630 offset
, dio_data
.reserve
, true);
8632 * On error we might have left some ordered extents
8633 * without submitting corresponding bios for them, so
8634 * cleanup them up to avoid other tasks getting them
8635 * and waiting for them to complete forever.
8637 if (dio_data
.unsubmitted_oe_range_start
<
8638 dio_data
.unsubmitted_oe_range_end
)
8639 __endio_write_update_ordered(inode
,
8640 dio_data
.unsubmitted_oe_range_start
,
8641 dio_data
.unsubmitted_oe_range_end
-
8642 dio_data
.unsubmitted_oe_range_start
,
8644 } else if (ret
>= 0 && (size_t)ret
< count
)
8645 btrfs_delalloc_release_space(inode
, data_reserved
,
8646 offset
, count
- (size_t)ret
, true);
8647 btrfs_delalloc_release_extents(BTRFS_I(inode
), count
, false);
8651 inode_dio_end(inode
);
8655 extent_changeset_free(data_reserved
);
8659 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8661 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
8662 __u64 start
, __u64 len
)
8666 ret
= fiemap_check_flags(fieinfo
, BTRFS_FIEMAP_FLAGS
);
8670 return extent_fiemap(inode
, fieinfo
, start
, len
);
8673 int btrfs_readpage(struct file
*file
, struct page
*page
)
8675 struct extent_io_tree
*tree
;
8676 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8677 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
8680 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
8682 struct inode
*inode
= page
->mapping
->host
;
8685 if (current
->flags
& PF_MEMALLOC
) {
8686 redirty_page_for_writepage(wbc
, page
);
8692 * If we are under memory pressure we will call this directly from the
8693 * VM, we need to make sure we have the inode referenced for the ordered
8694 * extent. If not just return like we didn't do anything.
8696 if (!igrab(inode
)) {
8697 redirty_page_for_writepage(wbc
, page
);
8698 return AOP_WRITEPAGE_ACTIVATE
;
8700 ret
= extent_write_full_page(page
, wbc
);
8701 btrfs_add_delayed_iput(inode
);
8705 static int btrfs_writepages(struct address_space
*mapping
,
8706 struct writeback_control
*wbc
)
8708 struct extent_io_tree
*tree
;
8710 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
8711 return extent_writepages(tree
, mapping
, wbc
);
8715 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
8716 struct list_head
*pages
, unsigned nr_pages
)
8718 struct extent_io_tree
*tree
;
8719 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
8720 return extent_readpages(tree
, mapping
, pages
, nr_pages
);
8722 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8724 struct extent_io_tree
*tree
;
8725 struct extent_map_tree
*map
;
8728 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8729 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
8730 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
8732 ClearPagePrivate(page
);
8733 set_page_private(page
, 0);
8739 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8741 if (PageWriteback(page
) || PageDirty(page
))
8743 return __btrfs_releasepage(page
, gfp_flags
);
8746 static void btrfs_invalidatepage(struct page
*page
, unsigned int offset
,
8747 unsigned int length
)
8749 struct inode
*inode
= page
->mapping
->host
;
8750 struct extent_io_tree
*tree
;
8751 struct btrfs_ordered_extent
*ordered
;
8752 struct extent_state
*cached_state
= NULL
;
8753 u64 page_start
= page_offset(page
);
8754 u64 page_end
= page_start
+ PAGE_SIZE
- 1;
8757 int inode_evicting
= inode
->i_state
& I_FREEING
;
8760 * we have the page locked, so new writeback can't start,
8761 * and the dirty bit won't be cleared while we are here.
8763 * Wait for IO on this page so that we can safely clear
8764 * the PagePrivate2 bit and do ordered accounting
8766 wait_on_page_writeback(page
);
8768 tree
= &BTRFS_I(inode
)->io_tree
;
8770 btrfs_releasepage(page
, GFP_NOFS
);
8774 if (!inode_evicting
)
8775 lock_extent_bits(tree
, page_start
, page_end
, &cached_state
);
8778 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), start
,
8779 page_end
- start
+ 1);
8781 end
= min(page_end
, ordered
->file_offset
+ ordered
->len
- 1);
8783 * IO on this page will never be started, so we need
8784 * to account for any ordered extents now
8786 if (!inode_evicting
)
8787 clear_extent_bit(tree
, start
, end
,
8788 EXTENT_DIRTY
| EXTENT_DELALLOC
|
8789 EXTENT_DELALLOC_NEW
|
8790 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
8791 EXTENT_DEFRAG
, 1, 0, &cached_state
);
8793 * whoever cleared the private bit is responsible
8794 * for the finish_ordered_io
8796 if (TestClearPagePrivate2(page
)) {
8797 struct btrfs_ordered_inode_tree
*tree
;
8800 tree
= &BTRFS_I(inode
)->ordered_tree
;
8802 spin_lock_irq(&tree
->lock
);
8803 set_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
);
8804 new_len
= start
- ordered
->file_offset
;
8805 if (new_len
< ordered
->truncated_len
)
8806 ordered
->truncated_len
= new_len
;
8807 spin_unlock_irq(&tree
->lock
);
8809 if (btrfs_dec_test_ordered_pending(inode
, &ordered
,
8811 end
- start
+ 1, 1))
8812 btrfs_finish_ordered_io(ordered
);
8814 btrfs_put_ordered_extent(ordered
);
8815 if (!inode_evicting
) {
8816 cached_state
= NULL
;
8817 lock_extent_bits(tree
, start
, end
,
8822 if (start
< page_end
)
8827 * Qgroup reserved space handler
8828 * Page here will be either
8829 * 1) Already written to disk
8830 * In this case, its reserved space is released from data rsv map
8831 * and will be freed by delayed_ref handler finally.
8832 * So even we call qgroup_free_data(), it won't decrease reserved
8834 * 2) Not written to disk
8835 * This means the reserved space should be freed here. However,
8836 * if a truncate invalidates the page (by clearing PageDirty)
8837 * and the page is accounted for while allocating extent
8838 * in btrfs_check_data_free_space() we let delayed_ref to
8839 * free the entire extent.
8841 if (PageDirty(page
))
8842 btrfs_qgroup_free_data(inode
, NULL
, page_start
, PAGE_SIZE
);
8843 if (!inode_evicting
) {
8844 clear_extent_bit(tree
, page_start
, page_end
,
8845 EXTENT_LOCKED
| EXTENT_DIRTY
|
8846 EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
8847 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 1, 1,
8850 __btrfs_releasepage(page
, GFP_NOFS
);
8853 ClearPageChecked(page
);
8854 if (PagePrivate(page
)) {
8855 ClearPagePrivate(page
);
8856 set_page_private(page
, 0);
8862 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8863 * called from a page fault handler when a page is first dirtied. Hence we must
8864 * be careful to check for EOF conditions here. We set the page up correctly
8865 * for a written page which means we get ENOSPC checking when writing into
8866 * holes and correct delalloc and unwritten extent mapping on filesystems that
8867 * support these features.
8869 * We are not allowed to take the i_mutex here so we have to play games to
8870 * protect against truncate races as the page could now be beyond EOF. Because
8871 * vmtruncate() writes the inode size before removing pages, once we have the
8872 * page lock we can determine safely if the page is beyond EOF. If it is not
8873 * beyond EOF, then the page is guaranteed safe against truncation until we
8876 int btrfs_page_mkwrite(struct vm_fault
*vmf
)
8878 struct page
*page
= vmf
->page
;
8879 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
8880 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8881 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
8882 struct btrfs_ordered_extent
*ordered
;
8883 struct extent_state
*cached_state
= NULL
;
8884 struct extent_changeset
*data_reserved
= NULL
;
8886 unsigned long zero_start
;
8895 reserved_space
= PAGE_SIZE
;
8897 sb_start_pagefault(inode
->i_sb
);
8898 page_start
= page_offset(page
);
8899 page_end
= page_start
+ PAGE_SIZE
- 1;
8903 * Reserving delalloc space after obtaining the page lock can lead to
8904 * deadlock. For example, if a dirty page is locked by this function
8905 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8906 * dirty page write out, then the btrfs_writepage() function could
8907 * end up waiting indefinitely to get a lock on the page currently
8908 * being processed by btrfs_page_mkwrite() function.
8910 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
8913 ret
= file_update_time(vmf
->vma
->vm_file
);
8919 else /* -ENOSPC, -EIO, etc */
8920 ret
= VM_FAULT_SIGBUS
;
8926 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
8929 size
= i_size_read(inode
);
8931 if ((page
->mapping
!= inode
->i_mapping
) ||
8932 (page_start
>= size
)) {
8933 /* page got truncated out from underneath us */
8936 wait_on_page_writeback(page
);
8938 lock_extent_bits(io_tree
, page_start
, page_end
, &cached_state
);
8939 set_page_extent_mapped(page
);
8942 * we can't set the delalloc bits if there are pending ordered
8943 * extents. Drop our locks and wait for them to finish
8945 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
8948 unlock_extent_cached(io_tree
, page_start
, page_end
,
8951 btrfs_start_ordered_extent(inode
, ordered
, 1);
8952 btrfs_put_ordered_extent(ordered
);
8956 if (page
->index
== ((size
- 1) >> PAGE_SHIFT
)) {
8957 reserved_space
= round_up(size
- page_start
,
8958 fs_info
->sectorsize
);
8959 if (reserved_space
< PAGE_SIZE
) {
8960 end
= page_start
+ reserved_space
- 1;
8961 btrfs_delalloc_release_space(inode
, data_reserved
,
8962 page_start
, PAGE_SIZE
- reserved_space
,
8968 * page_mkwrite gets called when the page is firstly dirtied after it's
8969 * faulted in, but write(2) could also dirty a page and set delalloc
8970 * bits, thus in this case for space account reason, we still need to
8971 * clear any delalloc bits within this page range since we have to
8972 * reserve data&meta space before lock_page() (see above comments).
8974 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, end
,
8975 EXTENT_DIRTY
| EXTENT_DELALLOC
|
8976 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
8977 0, 0, &cached_state
);
8979 ret
= btrfs_set_extent_delalloc(inode
, page_start
, end
, 0,
8982 unlock_extent_cached(io_tree
, page_start
, page_end
,
8984 ret
= VM_FAULT_SIGBUS
;
8989 /* page is wholly or partially inside EOF */
8990 if (page_start
+ PAGE_SIZE
> size
)
8991 zero_start
= size
& ~PAGE_MASK
;
8993 zero_start
= PAGE_SIZE
;
8995 if (zero_start
!= PAGE_SIZE
) {
8997 memset(kaddr
+ zero_start
, 0, PAGE_SIZE
- zero_start
);
8998 flush_dcache_page(page
);
9001 ClearPageChecked(page
);
9002 set_page_dirty(page
);
9003 SetPageUptodate(page
);
9005 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
9006 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
9007 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
9009 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
);
9013 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
, true);
9014 sb_end_pagefault(inode
->i_sb
);
9015 extent_changeset_free(data_reserved
);
9016 return VM_FAULT_LOCKED
;
9020 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
, (ret
!= 0));
9021 btrfs_delalloc_release_space(inode
, data_reserved
, page_start
,
9022 reserved_space
, (ret
!= 0));
9024 sb_end_pagefault(inode
->i_sb
);
9025 extent_changeset_free(data_reserved
);
9029 static int btrfs_truncate(struct inode
*inode
, bool skip_writeback
)
9031 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9032 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9033 struct btrfs_block_rsv
*rsv
;
9036 struct btrfs_trans_handle
*trans
;
9037 u64 mask
= fs_info
->sectorsize
- 1;
9038 u64 min_size
= btrfs_calc_trunc_metadata_size(fs_info
, 1);
9040 if (!skip_writeback
) {
9041 ret
= btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
),
9048 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
9049 * 3 things going on here
9051 * 1) We need to reserve space for our orphan item and the space to
9052 * delete our orphan item. Lord knows we don't want to have a dangling
9053 * orphan item because we didn't reserve space to remove it.
9055 * 2) We need to reserve space to update our inode.
9057 * 3) We need to have something to cache all the space that is going to
9058 * be free'd up by the truncate operation, but also have some slack
9059 * space reserved in case it uses space during the truncate (thank you
9060 * very much snapshotting).
9062 * And we need these to all be separate. The fact is we can use a lot of
9063 * space doing the truncate, and we have no earthly idea how much space
9064 * we will use, so we need the truncate reservation to be separate so it
9065 * doesn't end up using space reserved for updating the inode or
9066 * removing the orphan item. We also need to be able to stop the
9067 * transaction and start a new one, which means we need to be able to
9068 * update the inode several times, and we have no idea of knowing how
9069 * many times that will be, so we can't just reserve 1 item for the
9070 * entirety of the operation, so that has to be done separately as well.
9071 * Then there is the orphan item, which does indeed need to be held on
9072 * to for the whole operation, and we need nobody to touch this reserved
9073 * space except the orphan code.
9075 * So that leaves us with
9077 * 1) root->orphan_block_rsv - for the orphan deletion.
9078 * 2) rsv - for the truncate reservation, which we will steal from the
9079 * transaction reservation.
9080 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9081 * updating the inode.
9083 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
9086 rsv
->size
= min_size
;
9090 * 1 for the truncate slack space
9091 * 1 for updating the inode.
9093 trans
= btrfs_start_transaction(root
, 2);
9094 if (IS_ERR(trans
)) {
9095 err
= PTR_ERR(trans
);
9099 /* Migrate the slack space for the truncate to our reserve */
9100 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
, rsv
,
9105 * So if we truncate and then write and fsync we normally would just
9106 * write the extents that changed, which is a problem if we need to
9107 * first truncate that entire inode. So set this flag so we write out
9108 * all of the extents in the inode to the sync log so we're completely
9111 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
9112 trans
->block_rsv
= rsv
;
9115 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
9117 BTRFS_EXTENT_DATA_KEY
);
9118 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
9119 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
) {
9124 ret
= btrfs_update_inode(trans
, root
, inode
);
9130 btrfs_end_transaction(trans
);
9131 btrfs_btree_balance_dirty(fs_info
);
9133 trans
= btrfs_start_transaction(root
, 2);
9134 if (IS_ERR(trans
)) {
9135 ret
= err
= PTR_ERR(trans
);
9140 btrfs_block_rsv_release(fs_info
, rsv
, -1);
9141 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
,
9143 BUG_ON(ret
); /* shouldn't happen */
9144 trans
->block_rsv
= rsv
;
9148 * We can't call btrfs_truncate_block inside a trans handle as we could
9149 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9150 * we've truncated everything except the last little bit, and can do
9151 * btrfs_truncate_block and then update the disk_i_size.
9153 if (ret
== NEED_TRUNCATE_BLOCK
) {
9154 btrfs_end_transaction(trans
);
9155 btrfs_btree_balance_dirty(fs_info
);
9157 ret
= btrfs_truncate_block(inode
, inode
->i_size
, 0, 0);
9160 trans
= btrfs_start_transaction(root
, 1);
9161 if (IS_ERR(trans
)) {
9162 ret
= PTR_ERR(trans
);
9165 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
9168 if (ret
== 0 && inode
->i_nlink
> 0) {
9169 trans
->block_rsv
= root
->orphan_block_rsv
;
9170 ret
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
9176 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
9177 ret
= btrfs_update_inode(trans
, root
, inode
);
9181 ret
= btrfs_end_transaction(trans
);
9182 btrfs_btree_balance_dirty(fs_info
);
9185 btrfs_free_block_rsv(fs_info
, rsv
);
9194 * create a new subvolume directory/inode (helper for the ioctl).
9196 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
9197 struct btrfs_root
*new_root
,
9198 struct btrfs_root
*parent_root
,
9201 struct inode
*inode
;
9205 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
9206 new_dirid
, new_dirid
,
9207 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
9210 return PTR_ERR(inode
);
9211 inode
->i_op
= &btrfs_dir_inode_operations
;
9212 inode
->i_fop
= &btrfs_dir_file_operations
;
9214 set_nlink(inode
, 1);
9215 btrfs_i_size_write(BTRFS_I(inode
), 0);
9216 unlock_new_inode(inode
);
9218 err
= btrfs_subvol_inherit_props(trans
, new_root
, parent_root
);
9220 btrfs_err(new_root
->fs_info
,
9221 "error inheriting subvolume %llu properties: %d",
9222 new_root
->root_key
.objectid
, err
);
9224 err
= btrfs_update_inode(trans
, new_root
, inode
);
9230 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
9232 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
9233 struct btrfs_inode
*ei
;
9234 struct inode
*inode
;
9236 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_KERNEL
);
9243 ei
->last_sub_trans
= 0;
9244 ei
->logged_trans
= 0;
9245 ei
->delalloc_bytes
= 0;
9246 ei
->new_delalloc_bytes
= 0;
9247 ei
->defrag_bytes
= 0;
9248 ei
->disk_i_size
= 0;
9251 ei
->index_cnt
= (u64
)-1;
9253 ei
->last_unlink_trans
= 0;
9254 ei
->last_log_commit
= 0;
9256 spin_lock_init(&ei
->lock
);
9257 ei
->outstanding_extents
= 0;
9258 if (sb
->s_magic
!= BTRFS_TEST_MAGIC
)
9259 btrfs_init_metadata_block_rsv(fs_info
, &ei
->block_rsv
,
9260 BTRFS_BLOCK_RSV_DELALLOC
);
9261 ei
->runtime_flags
= 0;
9262 ei
->prop_compress
= BTRFS_COMPRESS_NONE
;
9263 ei
->defrag_compress
= BTRFS_COMPRESS_NONE
;
9265 ei
->delayed_node
= NULL
;
9267 ei
->i_otime
.tv_sec
= 0;
9268 ei
->i_otime
.tv_nsec
= 0;
9270 inode
= &ei
->vfs_inode
;
9271 extent_map_tree_init(&ei
->extent_tree
);
9272 extent_io_tree_init(&ei
->io_tree
, inode
);
9273 extent_io_tree_init(&ei
->io_failure_tree
, inode
);
9274 ei
->io_tree
.track_uptodate
= 1;
9275 ei
->io_failure_tree
.track_uptodate
= 1;
9276 atomic_set(&ei
->sync_writers
, 0);
9277 mutex_init(&ei
->log_mutex
);
9278 mutex_init(&ei
->delalloc_mutex
);
9279 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
9280 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
9281 INIT_LIST_HEAD(&ei
->delayed_iput
);
9282 RB_CLEAR_NODE(&ei
->rb_node
);
9283 init_rwsem(&ei
->dio_sem
);
9288 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9289 void btrfs_test_destroy_inode(struct inode
*inode
)
9291 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
9292 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9296 static void btrfs_i_callback(struct rcu_head
*head
)
9298 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
9299 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9302 void btrfs_destroy_inode(struct inode
*inode
)
9304 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9305 struct btrfs_ordered_extent
*ordered
;
9306 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9308 WARN_ON(!hlist_empty(&inode
->i_dentry
));
9309 WARN_ON(inode
->i_data
.nrpages
);
9310 WARN_ON(BTRFS_I(inode
)->block_rsv
.reserved
);
9311 WARN_ON(BTRFS_I(inode
)->block_rsv
.size
);
9312 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
9313 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
9314 WARN_ON(BTRFS_I(inode
)->new_delalloc_bytes
);
9315 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
9316 WARN_ON(BTRFS_I(inode
)->defrag_bytes
);
9319 * This can happen where we create an inode, but somebody else also
9320 * created the same inode and we need to destroy the one we already
9326 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
9327 &BTRFS_I(inode
)->runtime_flags
)) {
9328 btrfs_info(fs_info
, "inode %llu still on the orphan list",
9329 btrfs_ino(BTRFS_I(inode
)));
9330 atomic_dec(&root
->orphan_inodes
);
9334 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
9339 "found ordered extent %llu %llu on inode cleanup",
9340 ordered
->file_offset
, ordered
->len
);
9341 btrfs_remove_ordered_extent(inode
, ordered
);
9342 btrfs_put_ordered_extent(ordered
);
9343 btrfs_put_ordered_extent(ordered
);
9346 btrfs_qgroup_check_reserved_leak(inode
);
9347 inode_tree_del(inode
);
9348 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
9350 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
9353 int btrfs_drop_inode(struct inode
*inode
)
9355 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9360 /* the snap/subvol tree is on deleting */
9361 if (btrfs_root_refs(&root
->root_item
) == 0)
9364 return generic_drop_inode(inode
);
9367 static void init_once(void *foo
)
9369 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
9371 inode_init_once(&ei
->vfs_inode
);
9374 void __cold
btrfs_destroy_cachep(void)
9377 * Make sure all delayed rcu free inodes are flushed before we
9381 kmem_cache_destroy(btrfs_inode_cachep
);
9382 kmem_cache_destroy(btrfs_trans_handle_cachep
);
9383 kmem_cache_destroy(btrfs_path_cachep
);
9384 kmem_cache_destroy(btrfs_free_space_cachep
);
9387 int __init
btrfs_init_cachep(void)
9389 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
9390 sizeof(struct btrfs_inode
), 0,
9391 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
| SLAB_ACCOUNT
,
9393 if (!btrfs_inode_cachep
)
9396 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
9397 sizeof(struct btrfs_trans_handle
), 0,
9398 SLAB_TEMPORARY
| SLAB_MEM_SPREAD
, NULL
);
9399 if (!btrfs_trans_handle_cachep
)
9402 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
9403 sizeof(struct btrfs_path
), 0,
9404 SLAB_MEM_SPREAD
, NULL
);
9405 if (!btrfs_path_cachep
)
9408 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
9409 sizeof(struct btrfs_free_space
), 0,
9410 SLAB_MEM_SPREAD
, NULL
);
9411 if (!btrfs_free_space_cachep
)
9416 btrfs_destroy_cachep();
9420 static int btrfs_getattr(const struct path
*path
, struct kstat
*stat
,
9421 u32 request_mask
, unsigned int flags
)
9424 struct inode
*inode
= d_inode(path
->dentry
);
9425 u32 blocksize
= inode
->i_sb
->s_blocksize
;
9426 u32 bi_flags
= BTRFS_I(inode
)->flags
;
9428 stat
->result_mask
|= STATX_BTIME
;
9429 stat
->btime
.tv_sec
= BTRFS_I(inode
)->i_otime
.tv_sec
;
9430 stat
->btime
.tv_nsec
= BTRFS_I(inode
)->i_otime
.tv_nsec
;
9431 if (bi_flags
& BTRFS_INODE_APPEND
)
9432 stat
->attributes
|= STATX_ATTR_APPEND
;
9433 if (bi_flags
& BTRFS_INODE_COMPRESS
)
9434 stat
->attributes
|= STATX_ATTR_COMPRESSED
;
9435 if (bi_flags
& BTRFS_INODE_IMMUTABLE
)
9436 stat
->attributes
|= STATX_ATTR_IMMUTABLE
;
9437 if (bi_flags
& BTRFS_INODE_NODUMP
)
9438 stat
->attributes
|= STATX_ATTR_NODUMP
;
9440 stat
->attributes_mask
|= (STATX_ATTR_APPEND
|
9441 STATX_ATTR_COMPRESSED
|
9442 STATX_ATTR_IMMUTABLE
|
9445 generic_fillattr(inode
, stat
);
9446 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
9448 spin_lock(&BTRFS_I(inode
)->lock
);
9449 delalloc_bytes
= BTRFS_I(inode
)->new_delalloc_bytes
;
9450 spin_unlock(&BTRFS_I(inode
)->lock
);
9451 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
9452 ALIGN(delalloc_bytes
, blocksize
)) >> 9;
9456 static int btrfs_rename_exchange(struct inode
*old_dir
,
9457 struct dentry
*old_dentry
,
9458 struct inode
*new_dir
,
9459 struct dentry
*new_dentry
)
9461 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9462 struct btrfs_trans_handle
*trans
;
9463 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9464 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9465 struct inode
*new_inode
= new_dentry
->d_inode
;
9466 struct inode
*old_inode
= old_dentry
->d_inode
;
9467 struct timespec ctime
= current_time(old_inode
);
9468 struct dentry
*parent
;
9469 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9470 u64 new_ino
= btrfs_ino(BTRFS_I(new_inode
));
9475 bool root_log_pinned
= false;
9476 bool dest_log_pinned
= false;
9478 /* we only allow rename subvolume link between subvolumes */
9479 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9482 /* close the race window with snapshot create/destroy ioctl */
9483 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9484 down_read(&fs_info
->subvol_sem
);
9485 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9486 down_read(&fs_info
->subvol_sem
);
9489 * We want to reserve the absolute worst case amount of items. So if
9490 * both inodes are subvols and we need to unlink them then that would
9491 * require 4 item modifications, but if they are both normal inodes it
9492 * would require 5 item modifications, so we'll assume their normal
9493 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9494 * should cover the worst case number of items we'll modify.
9496 trans
= btrfs_start_transaction(root
, 12);
9497 if (IS_ERR(trans
)) {
9498 ret
= PTR_ERR(trans
);
9503 * We need to find a free sequence number both in the source and
9504 * in the destination directory for the exchange.
9506 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &old_idx
);
9509 ret
= btrfs_set_inode_index(BTRFS_I(old_dir
), &new_idx
);
9513 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9514 BTRFS_I(new_inode
)->dir_index
= 0ULL;
9516 /* Reference for the source. */
9517 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9518 /* force full log commit if subvolume involved. */
9519 btrfs_set_log_full_commit(fs_info
, trans
);
9521 btrfs_pin_log_trans(root
);
9522 root_log_pinned
= true;
9523 ret
= btrfs_insert_inode_ref(trans
, dest
,
9524 new_dentry
->d_name
.name
,
9525 new_dentry
->d_name
.len
,
9527 btrfs_ino(BTRFS_I(new_dir
)),
9533 /* And now for the dest. */
9534 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9535 /* force full log commit if subvolume involved. */
9536 btrfs_set_log_full_commit(fs_info
, trans
);
9538 btrfs_pin_log_trans(dest
);
9539 dest_log_pinned
= true;
9540 ret
= btrfs_insert_inode_ref(trans
, root
,
9541 old_dentry
->d_name
.name
,
9542 old_dentry
->d_name
.len
,
9544 btrfs_ino(BTRFS_I(old_dir
)),
9550 /* Update inode version and ctime/mtime. */
9551 inode_inc_iversion(old_dir
);
9552 inode_inc_iversion(new_dir
);
9553 inode_inc_iversion(old_inode
);
9554 inode_inc_iversion(new_inode
);
9555 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
9556 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
9557 old_inode
->i_ctime
= ctime
;
9558 new_inode
->i_ctime
= ctime
;
9560 if (old_dentry
->d_parent
!= new_dentry
->d_parent
) {
9561 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
9562 BTRFS_I(old_inode
), 1);
9563 btrfs_record_unlink_dir(trans
, BTRFS_I(new_dir
),
9564 BTRFS_I(new_inode
), 1);
9567 /* src is a subvolume */
9568 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9569 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
9570 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
,
9572 old_dentry
->d_name
.name
,
9573 old_dentry
->d_name
.len
);
9574 } else { /* src is an inode */
9575 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
9576 BTRFS_I(old_dentry
->d_inode
),
9577 old_dentry
->d_name
.name
,
9578 old_dentry
->d_name
.len
);
9580 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9583 btrfs_abort_transaction(trans
, ret
);
9587 /* dest is a subvolume */
9588 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9589 root_objectid
= BTRFS_I(new_inode
)->root
->root_key
.objectid
;
9590 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
9592 new_dentry
->d_name
.name
,
9593 new_dentry
->d_name
.len
);
9594 } else { /* dest is an inode */
9595 ret
= __btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
9596 BTRFS_I(new_dentry
->d_inode
),
9597 new_dentry
->d_name
.name
,
9598 new_dentry
->d_name
.len
);
9600 ret
= btrfs_update_inode(trans
, dest
, new_inode
);
9603 btrfs_abort_transaction(trans
, ret
);
9607 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
9608 new_dentry
->d_name
.name
,
9609 new_dentry
->d_name
.len
, 0, old_idx
);
9611 btrfs_abort_transaction(trans
, ret
);
9615 ret
= btrfs_add_link(trans
, BTRFS_I(old_dir
), BTRFS_I(new_inode
),
9616 old_dentry
->d_name
.name
,
9617 old_dentry
->d_name
.len
, 0, new_idx
);
9619 btrfs_abort_transaction(trans
, ret
);
9623 if (old_inode
->i_nlink
== 1)
9624 BTRFS_I(old_inode
)->dir_index
= old_idx
;
9625 if (new_inode
->i_nlink
== 1)
9626 BTRFS_I(new_inode
)->dir_index
= new_idx
;
9628 if (root_log_pinned
) {
9629 parent
= new_dentry
->d_parent
;
9630 btrfs_log_new_name(trans
, BTRFS_I(old_inode
), BTRFS_I(old_dir
),
9632 btrfs_end_log_trans(root
);
9633 root_log_pinned
= false;
9635 if (dest_log_pinned
) {
9636 parent
= old_dentry
->d_parent
;
9637 btrfs_log_new_name(trans
, BTRFS_I(new_inode
), BTRFS_I(new_dir
),
9639 btrfs_end_log_trans(dest
);
9640 dest_log_pinned
= false;
9644 * If we have pinned a log and an error happened, we unpin tasks
9645 * trying to sync the log and force them to fallback to a transaction
9646 * commit if the log currently contains any of the inodes involved in
9647 * this rename operation (to ensure we do not persist a log with an
9648 * inconsistent state for any of these inodes or leading to any
9649 * inconsistencies when replayed). If the transaction was aborted, the
9650 * abortion reason is propagated to userspace when attempting to commit
9651 * the transaction. If the log does not contain any of these inodes, we
9652 * allow the tasks to sync it.
9654 if (ret
&& (root_log_pinned
|| dest_log_pinned
)) {
9655 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
9656 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
9657 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
9659 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
9660 btrfs_set_log_full_commit(fs_info
, trans
);
9662 if (root_log_pinned
) {
9663 btrfs_end_log_trans(root
);
9664 root_log_pinned
= false;
9666 if (dest_log_pinned
) {
9667 btrfs_end_log_trans(dest
);
9668 dest_log_pinned
= false;
9671 ret
= btrfs_end_transaction(trans
);
9673 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9674 up_read(&fs_info
->subvol_sem
);
9675 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9676 up_read(&fs_info
->subvol_sem
);
9681 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle
*trans
,
9682 struct btrfs_root
*root
,
9684 struct dentry
*dentry
)
9687 struct inode
*inode
;
9691 ret
= btrfs_find_free_ino(root
, &objectid
);
9695 inode
= btrfs_new_inode(trans
, root
, dir
,
9696 dentry
->d_name
.name
,
9698 btrfs_ino(BTRFS_I(dir
)),
9700 S_IFCHR
| WHITEOUT_MODE
,
9703 if (IS_ERR(inode
)) {
9704 ret
= PTR_ERR(inode
);
9708 inode
->i_op
= &btrfs_special_inode_operations
;
9709 init_special_inode(inode
, inode
->i_mode
,
9712 ret
= btrfs_init_inode_security(trans
, inode
, dir
,
9717 ret
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
9718 BTRFS_I(inode
), 0, index
);
9722 ret
= btrfs_update_inode(trans
, root
, inode
);
9724 unlock_new_inode(inode
);
9726 inode_dec_link_count(inode
);
9732 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
9733 struct inode
*new_dir
, struct dentry
*new_dentry
,
9736 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9737 struct btrfs_trans_handle
*trans
;
9738 unsigned int trans_num_items
;
9739 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9740 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9741 struct inode
*new_inode
= d_inode(new_dentry
);
9742 struct inode
*old_inode
= d_inode(old_dentry
);
9746 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9747 bool log_pinned
= false;
9749 if (btrfs_ino(BTRFS_I(new_dir
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
9752 /* we only allow rename subvolume link between subvolumes */
9753 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9756 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
9757 (new_inode
&& btrfs_ino(BTRFS_I(new_inode
)) == BTRFS_FIRST_FREE_OBJECTID
))
9760 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
9761 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
9765 /* check for collisions, even if the name isn't there */
9766 ret
= btrfs_check_dir_item_collision(dest
, new_dir
->i_ino
,
9767 new_dentry
->d_name
.name
,
9768 new_dentry
->d_name
.len
);
9771 if (ret
== -EEXIST
) {
9773 * eexist without a new_inode */
9774 if (WARN_ON(!new_inode
)) {
9778 /* maybe -EOVERFLOW */
9785 * we're using rename to replace one file with another. Start IO on it
9786 * now so we don't add too much work to the end of the transaction
9788 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
)
9789 filemap_flush(old_inode
->i_mapping
);
9791 /* close the racy window with snapshot create/destroy ioctl */
9792 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9793 down_read(&fs_info
->subvol_sem
);
9795 * We want to reserve the absolute worst case amount of items. So if
9796 * both inodes are subvols and we need to unlink them then that would
9797 * require 4 item modifications, but if they are both normal inodes it
9798 * would require 5 item modifications, so we'll assume they are normal
9799 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9800 * should cover the worst case number of items we'll modify.
9801 * If our rename has the whiteout flag, we need more 5 units for the
9802 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9803 * when selinux is enabled).
9805 trans_num_items
= 11;
9806 if (flags
& RENAME_WHITEOUT
)
9807 trans_num_items
+= 5;
9808 trans
= btrfs_start_transaction(root
, trans_num_items
);
9809 if (IS_ERR(trans
)) {
9810 ret
= PTR_ERR(trans
);
9815 btrfs_record_root_in_trans(trans
, dest
);
9817 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &index
);
9821 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9822 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9823 /* force full log commit if subvolume involved. */
9824 btrfs_set_log_full_commit(fs_info
, trans
);
9826 btrfs_pin_log_trans(root
);
9828 ret
= btrfs_insert_inode_ref(trans
, dest
,
9829 new_dentry
->d_name
.name
,
9830 new_dentry
->d_name
.len
,
9832 btrfs_ino(BTRFS_I(new_dir
)), index
);
9837 inode_inc_iversion(old_dir
);
9838 inode_inc_iversion(new_dir
);
9839 inode_inc_iversion(old_inode
);
9840 old_dir
->i_ctime
= old_dir
->i_mtime
=
9841 new_dir
->i_ctime
= new_dir
->i_mtime
=
9842 old_inode
->i_ctime
= current_time(old_dir
);
9844 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
9845 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
9846 BTRFS_I(old_inode
), 1);
9848 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9849 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
9850 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
9851 old_dentry
->d_name
.name
,
9852 old_dentry
->d_name
.len
);
9854 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
9855 BTRFS_I(d_inode(old_dentry
)),
9856 old_dentry
->d_name
.name
,
9857 old_dentry
->d_name
.len
);
9859 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9862 btrfs_abort_transaction(trans
, ret
);
9867 inode_inc_iversion(new_inode
);
9868 new_inode
->i_ctime
= current_time(new_inode
);
9869 if (unlikely(btrfs_ino(BTRFS_I(new_inode
)) ==
9870 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
9871 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
9872 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
9874 new_dentry
->d_name
.name
,
9875 new_dentry
->d_name
.len
);
9876 BUG_ON(new_inode
->i_nlink
== 0);
9878 ret
= btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
9879 BTRFS_I(d_inode(new_dentry
)),
9880 new_dentry
->d_name
.name
,
9881 new_dentry
->d_name
.len
);
9883 if (!ret
&& new_inode
->i_nlink
== 0)
9884 ret
= btrfs_orphan_add(trans
,
9885 BTRFS_I(d_inode(new_dentry
)));
9887 btrfs_abort_transaction(trans
, ret
);
9892 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
9893 new_dentry
->d_name
.name
,
9894 new_dentry
->d_name
.len
, 0, index
);
9896 btrfs_abort_transaction(trans
, ret
);
9900 if (old_inode
->i_nlink
== 1)
9901 BTRFS_I(old_inode
)->dir_index
= index
;
9904 struct dentry
*parent
= new_dentry
->d_parent
;
9906 btrfs_log_new_name(trans
, BTRFS_I(old_inode
), BTRFS_I(old_dir
),
9908 btrfs_end_log_trans(root
);
9912 if (flags
& RENAME_WHITEOUT
) {
9913 ret
= btrfs_whiteout_for_rename(trans
, root
, old_dir
,
9917 btrfs_abort_transaction(trans
, ret
);
9923 * If we have pinned the log and an error happened, we unpin tasks
9924 * trying to sync the log and force them to fallback to a transaction
9925 * commit if the log currently contains any of the inodes involved in
9926 * this rename operation (to ensure we do not persist a log with an
9927 * inconsistent state for any of these inodes or leading to any
9928 * inconsistencies when replayed). If the transaction was aborted, the
9929 * abortion reason is propagated to userspace when attempting to commit
9930 * the transaction. If the log does not contain any of these inodes, we
9931 * allow the tasks to sync it.
9933 if (ret
&& log_pinned
) {
9934 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
9935 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
9936 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
9938 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
9939 btrfs_set_log_full_commit(fs_info
, trans
);
9941 btrfs_end_log_trans(root
);
9944 btrfs_end_transaction(trans
);
9946 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9947 up_read(&fs_info
->subvol_sem
);
9952 static int btrfs_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
,
9953 struct inode
*new_dir
, struct dentry
*new_dentry
,
9956 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
9959 if (flags
& RENAME_EXCHANGE
)
9960 return btrfs_rename_exchange(old_dir
, old_dentry
, new_dir
,
9963 return btrfs_rename(old_dir
, old_dentry
, new_dir
, new_dentry
, flags
);
9966 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
9968 struct btrfs_delalloc_work
*delalloc_work
;
9969 struct inode
*inode
;
9971 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
9973 inode
= delalloc_work
->inode
;
9974 filemap_flush(inode
->i_mapping
);
9975 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
9976 &BTRFS_I(inode
)->runtime_flags
))
9977 filemap_flush(inode
->i_mapping
);
9979 if (delalloc_work
->delay_iput
)
9980 btrfs_add_delayed_iput(inode
);
9983 complete(&delalloc_work
->completion
);
9986 struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
,
9989 struct btrfs_delalloc_work
*work
;
9991 work
= kmalloc(sizeof(*work
), GFP_NOFS
);
9995 init_completion(&work
->completion
);
9996 INIT_LIST_HEAD(&work
->list
);
9997 work
->inode
= inode
;
9998 work
->delay_iput
= delay_iput
;
9999 WARN_ON_ONCE(!inode
);
10000 btrfs_init_work(&work
->work
, btrfs_flush_delalloc_helper
,
10001 btrfs_run_delalloc_work
, NULL
, NULL
);
10006 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work
*work
)
10008 wait_for_completion(&work
->completion
);
10013 * some fairly slow code that needs optimization. This walks the list
10014 * of all the inodes with pending delalloc and forces them to disk.
10016 static int __start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
,
10019 struct btrfs_inode
*binode
;
10020 struct inode
*inode
;
10021 struct btrfs_delalloc_work
*work
, *next
;
10022 struct list_head works
;
10023 struct list_head splice
;
10026 INIT_LIST_HEAD(&works
);
10027 INIT_LIST_HEAD(&splice
);
10029 mutex_lock(&root
->delalloc_mutex
);
10030 spin_lock(&root
->delalloc_lock
);
10031 list_splice_init(&root
->delalloc_inodes
, &splice
);
10032 while (!list_empty(&splice
)) {
10033 binode
= list_entry(splice
.next
, struct btrfs_inode
,
10036 list_move_tail(&binode
->delalloc_inodes
,
10037 &root
->delalloc_inodes
);
10038 inode
= igrab(&binode
->vfs_inode
);
10040 cond_resched_lock(&root
->delalloc_lock
);
10043 spin_unlock(&root
->delalloc_lock
);
10045 work
= btrfs_alloc_delalloc_work(inode
, delay_iput
);
10048 btrfs_add_delayed_iput(inode
);
10054 list_add_tail(&work
->list
, &works
);
10055 btrfs_queue_work(root
->fs_info
->flush_workers
,
10058 if (nr
!= -1 && ret
>= nr
)
10061 spin_lock(&root
->delalloc_lock
);
10063 spin_unlock(&root
->delalloc_lock
);
10066 list_for_each_entry_safe(work
, next
, &works
, list
) {
10067 list_del_init(&work
->list
);
10068 btrfs_wait_and_free_delalloc_work(work
);
10071 if (!list_empty_careful(&splice
)) {
10072 spin_lock(&root
->delalloc_lock
);
10073 list_splice_tail(&splice
, &root
->delalloc_inodes
);
10074 spin_unlock(&root
->delalloc_lock
);
10076 mutex_unlock(&root
->delalloc_mutex
);
10080 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
10082 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
10085 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
10088 ret
= __start_delalloc_inodes(root
, delay_iput
, -1);
10094 int btrfs_start_delalloc_roots(struct btrfs_fs_info
*fs_info
, int delay_iput
,
10097 struct btrfs_root
*root
;
10098 struct list_head splice
;
10101 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
10104 INIT_LIST_HEAD(&splice
);
10106 mutex_lock(&fs_info
->delalloc_root_mutex
);
10107 spin_lock(&fs_info
->delalloc_root_lock
);
10108 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
10109 while (!list_empty(&splice
) && nr
) {
10110 root
= list_first_entry(&splice
, struct btrfs_root
,
10112 root
= btrfs_grab_fs_root(root
);
10114 list_move_tail(&root
->delalloc_root
,
10115 &fs_info
->delalloc_roots
);
10116 spin_unlock(&fs_info
->delalloc_root_lock
);
10118 ret
= __start_delalloc_inodes(root
, delay_iput
, nr
);
10119 btrfs_put_fs_root(root
);
10127 spin_lock(&fs_info
->delalloc_root_lock
);
10129 spin_unlock(&fs_info
->delalloc_root_lock
);
10133 if (!list_empty_careful(&splice
)) {
10134 spin_lock(&fs_info
->delalloc_root_lock
);
10135 list_splice_tail(&splice
, &fs_info
->delalloc_roots
);
10136 spin_unlock(&fs_info
->delalloc_root_lock
);
10138 mutex_unlock(&fs_info
->delalloc_root_mutex
);
10142 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
10143 const char *symname
)
10145 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
10146 struct btrfs_trans_handle
*trans
;
10147 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10148 struct btrfs_path
*path
;
10149 struct btrfs_key key
;
10150 struct inode
*inode
= NULL
;
10152 int drop_inode
= 0;
10158 struct btrfs_file_extent_item
*ei
;
10159 struct extent_buffer
*leaf
;
10161 name_len
= strlen(symname
);
10162 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
))
10163 return -ENAMETOOLONG
;
10166 * 2 items for inode item and ref
10167 * 2 items for dir items
10168 * 1 item for updating parent inode item
10169 * 1 item for the inline extent item
10170 * 1 item for xattr if selinux is on
10172 trans
= btrfs_start_transaction(root
, 7);
10174 return PTR_ERR(trans
);
10176 err
= btrfs_find_free_ino(root
, &objectid
);
10180 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
10181 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)),
10182 objectid
, S_IFLNK
|S_IRWXUGO
, &index
);
10183 if (IS_ERR(inode
)) {
10184 err
= PTR_ERR(inode
);
10189 * If the active LSM wants to access the inode during
10190 * d_instantiate it needs these. Smack checks to see
10191 * if the filesystem supports xattrs by looking at the
10194 inode
->i_fop
= &btrfs_file_operations
;
10195 inode
->i_op
= &btrfs_file_inode_operations
;
10196 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10197 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10199 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
10201 goto out_unlock_inode
;
10203 path
= btrfs_alloc_path();
10206 goto out_unlock_inode
;
10208 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
10210 key
.type
= BTRFS_EXTENT_DATA_KEY
;
10211 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
10212 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
10215 btrfs_free_path(path
);
10216 goto out_unlock_inode
;
10218 leaf
= path
->nodes
[0];
10219 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
10220 struct btrfs_file_extent_item
);
10221 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
10222 btrfs_set_file_extent_type(leaf
, ei
,
10223 BTRFS_FILE_EXTENT_INLINE
);
10224 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
10225 btrfs_set_file_extent_compression(leaf
, ei
, 0);
10226 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
10227 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
10229 ptr
= btrfs_file_extent_inline_start(ei
);
10230 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
10231 btrfs_mark_buffer_dirty(leaf
);
10232 btrfs_free_path(path
);
10234 inode
->i_op
= &btrfs_symlink_inode_operations
;
10235 inode_nohighmem(inode
);
10236 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
10237 inode_set_bytes(inode
, name_len
);
10238 btrfs_i_size_write(BTRFS_I(inode
), name_len
);
10239 err
= btrfs_update_inode(trans
, root
, inode
);
10241 * Last step, add directory indexes for our symlink inode. This is the
10242 * last step to avoid extra cleanup of these indexes if an error happens
10246 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
10247 BTRFS_I(inode
), 0, index
);
10250 goto out_unlock_inode
;
10253 unlock_new_inode(inode
);
10254 d_instantiate(dentry
, inode
);
10257 btrfs_end_transaction(trans
);
10259 inode_dec_link_count(inode
);
10262 btrfs_btree_balance_dirty(fs_info
);
10267 unlock_new_inode(inode
);
10271 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10272 u64 start
, u64 num_bytes
, u64 min_size
,
10273 loff_t actual_len
, u64
*alloc_hint
,
10274 struct btrfs_trans_handle
*trans
)
10276 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
10277 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
10278 struct extent_map
*em
;
10279 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10280 struct btrfs_key ins
;
10281 u64 cur_offset
= start
;
10284 u64 last_alloc
= (u64
)-1;
10286 bool own_trans
= true;
10287 u64 end
= start
+ num_bytes
- 1;
10291 while (num_bytes
> 0) {
10293 trans
= btrfs_start_transaction(root
, 3);
10294 if (IS_ERR(trans
)) {
10295 ret
= PTR_ERR(trans
);
10300 cur_bytes
= min_t(u64
, num_bytes
, SZ_256M
);
10301 cur_bytes
= max(cur_bytes
, min_size
);
10303 * If we are severely fragmented we could end up with really
10304 * small allocations, so if the allocator is returning small
10305 * chunks lets make its job easier by only searching for those
10308 cur_bytes
= min(cur_bytes
, last_alloc
);
10309 ret
= btrfs_reserve_extent(root
, cur_bytes
, cur_bytes
,
10310 min_size
, 0, *alloc_hint
, &ins
, 1, 0);
10313 btrfs_end_transaction(trans
);
10316 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
10318 last_alloc
= ins
.offset
;
10319 ret
= insert_reserved_file_extent(trans
, inode
,
10320 cur_offset
, ins
.objectid
,
10321 ins
.offset
, ins
.offset
,
10322 ins
.offset
, 0, 0, 0,
10323 BTRFS_FILE_EXTENT_PREALLOC
);
10325 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
10327 btrfs_abort_transaction(trans
, ret
);
10329 btrfs_end_transaction(trans
);
10333 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
10334 cur_offset
+ ins
.offset
-1, 0);
10336 em
= alloc_extent_map();
10338 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
10339 &BTRFS_I(inode
)->runtime_flags
);
10343 em
->start
= cur_offset
;
10344 em
->orig_start
= cur_offset
;
10345 em
->len
= ins
.offset
;
10346 em
->block_start
= ins
.objectid
;
10347 em
->block_len
= ins
.offset
;
10348 em
->orig_block_len
= ins
.offset
;
10349 em
->ram_bytes
= ins
.offset
;
10350 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
10351 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
10352 em
->generation
= trans
->transid
;
10355 write_lock(&em_tree
->lock
);
10356 ret
= add_extent_mapping(em_tree
, em
, 1);
10357 write_unlock(&em_tree
->lock
);
10358 if (ret
!= -EEXIST
)
10360 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
10361 cur_offset
+ ins
.offset
- 1,
10364 free_extent_map(em
);
10366 num_bytes
-= ins
.offset
;
10367 cur_offset
+= ins
.offset
;
10368 *alloc_hint
= ins
.objectid
+ ins
.offset
;
10370 inode_inc_iversion(inode
);
10371 inode
->i_ctime
= current_time(inode
);
10372 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
10373 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
10374 (actual_len
> inode
->i_size
) &&
10375 (cur_offset
> inode
->i_size
)) {
10376 if (cur_offset
> actual_len
)
10377 i_size
= actual_len
;
10379 i_size
= cur_offset
;
10380 i_size_write(inode
, i_size
);
10381 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
10384 ret
= btrfs_update_inode(trans
, root
, inode
);
10387 btrfs_abort_transaction(trans
, ret
);
10389 btrfs_end_transaction(trans
);
10394 btrfs_end_transaction(trans
);
10396 if (cur_offset
< end
)
10397 btrfs_free_reserved_data_space(inode
, NULL
, cur_offset
,
10398 end
- cur_offset
+ 1);
10402 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10403 u64 start
, u64 num_bytes
, u64 min_size
,
10404 loff_t actual_len
, u64
*alloc_hint
)
10406 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10407 min_size
, actual_len
, alloc_hint
,
10411 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
10412 struct btrfs_trans_handle
*trans
, int mode
,
10413 u64 start
, u64 num_bytes
, u64 min_size
,
10414 loff_t actual_len
, u64
*alloc_hint
)
10416 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10417 min_size
, actual_len
, alloc_hint
, trans
);
10420 static int btrfs_set_page_dirty(struct page
*page
)
10422 return __set_page_dirty_nobuffers(page
);
10425 static int btrfs_permission(struct inode
*inode
, int mask
)
10427 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10428 umode_t mode
= inode
->i_mode
;
10430 if (mask
& MAY_WRITE
&&
10431 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
10432 if (btrfs_root_readonly(root
))
10434 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
10437 return generic_permission(inode
, mask
);
10440 static int btrfs_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
10442 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
10443 struct btrfs_trans_handle
*trans
;
10444 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10445 struct inode
*inode
= NULL
;
10451 * 5 units required for adding orphan entry
10453 trans
= btrfs_start_transaction(root
, 5);
10455 return PTR_ERR(trans
);
10457 ret
= btrfs_find_free_ino(root
, &objectid
);
10461 inode
= btrfs_new_inode(trans
, root
, dir
, NULL
, 0,
10462 btrfs_ino(BTRFS_I(dir
)), objectid
, mode
, &index
);
10463 if (IS_ERR(inode
)) {
10464 ret
= PTR_ERR(inode
);
10469 inode
->i_fop
= &btrfs_file_operations
;
10470 inode
->i_op
= &btrfs_file_inode_operations
;
10472 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10473 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10475 ret
= btrfs_init_inode_security(trans
, inode
, dir
, NULL
);
10479 ret
= btrfs_update_inode(trans
, root
, inode
);
10482 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
10487 * We set number of links to 0 in btrfs_new_inode(), and here we set
10488 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10491 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10493 set_nlink(inode
, 1);
10494 unlock_new_inode(inode
);
10495 d_tmpfile(dentry
, inode
);
10496 mark_inode_dirty(inode
);
10499 btrfs_end_transaction(trans
);
10502 btrfs_btree_balance_dirty(fs_info
);
10506 unlock_new_inode(inode
);
10511 __attribute__((const))
10512 static int btrfs_readpage_io_failed_hook(struct page
*page
, int failed_mirror
)
10517 static struct btrfs_fs_info
*iotree_fs_info(void *private_data
)
10519 struct inode
*inode
= private_data
;
10520 return btrfs_sb(inode
->i_sb
);
10523 static void btrfs_check_extent_io_range(void *private_data
, const char *caller
,
10524 u64 start
, u64 end
)
10526 struct inode
*inode
= private_data
;
10529 isize
= i_size_read(inode
);
10530 if (end
>= PAGE_SIZE
&& (end
% 2) == 0 && end
!= isize
- 1) {
10531 btrfs_debug_rl(BTRFS_I(inode
)->root
->fs_info
,
10532 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10533 caller
, btrfs_ino(BTRFS_I(inode
)), isize
, start
, end
);
10537 void btrfs_set_range_writeback(void *private_data
, u64 start
, u64 end
)
10539 struct inode
*inode
= private_data
;
10540 unsigned long index
= start
>> PAGE_SHIFT
;
10541 unsigned long end_index
= end
>> PAGE_SHIFT
;
10544 while (index
<= end_index
) {
10545 page
= find_get_page(inode
->i_mapping
, index
);
10546 ASSERT(page
); /* Pages should be in the extent_io_tree */
10547 set_page_writeback(page
);
10553 static const struct inode_operations btrfs_dir_inode_operations
= {
10554 .getattr
= btrfs_getattr
,
10555 .lookup
= btrfs_lookup
,
10556 .create
= btrfs_create
,
10557 .unlink
= btrfs_unlink
,
10558 .link
= btrfs_link
,
10559 .mkdir
= btrfs_mkdir
,
10560 .rmdir
= btrfs_rmdir
,
10561 .rename
= btrfs_rename2
,
10562 .symlink
= btrfs_symlink
,
10563 .setattr
= btrfs_setattr
,
10564 .mknod
= btrfs_mknod
,
10565 .listxattr
= btrfs_listxattr
,
10566 .permission
= btrfs_permission
,
10567 .get_acl
= btrfs_get_acl
,
10568 .set_acl
= btrfs_set_acl
,
10569 .update_time
= btrfs_update_time
,
10570 .tmpfile
= btrfs_tmpfile
,
10572 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
10573 .lookup
= btrfs_lookup
,
10574 .permission
= btrfs_permission
,
10575 .update_time
= btrfs_update_time
,
10578 static const struct file_operations btrfs_dir_file_operations
= {
10579 .llseek
= generic_file_llseek
,
10580 .read
= generic_read_dir
,
10581 .iterate_shared
= btrfs_real_readdir
,
10582 .open
= btrfs_opendir
,
10583 .unlocked_ioctl
= btrfs_ioctl
,
10584 #ifdef CONFIG_COMPAT
10585 .compat_ioctl
= btrfs_compat_ioctl
,
10587 .release
= btrfs_release_file
,
10588 .fsync
= btrfs_sync_file
,
10591 static const struct extent_io_ops btrfs_extent_io_ops
= {
10592 /* mandatory callbacks */
10593 .submit_bio_hook
= btrfs_submit_bio_hook
,
10594 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
10595 .merge_bio_hook
= btrfs_merge_bio_hook
,
10596 .readpage_io_failed_hook
= btrfs_readpage_io_failed_hook
,
10597 .tree_fs_info
= iotree_fs_info
,
10598 .set_range_writeback
= btrfs_set_range_writeback
,
10600 /* optional callbacks */
10601 .fill_delalloc
= run_delalloc_range
,
10602 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
10603 .writepage_start_hook
= btrfs_writepage_start_hook
,
10604 .set_bit_hook
= btrfs_set_bit_hook
,
10605 .clear_bit_hook
= btrfs_clear_bit_hook
,
10606 .merge_extent_hook
= btrfs_merge_extent_hook
,
10607 .split_extent_hook
= btrfs_split_extent_hook
,
10608 .check_extent_io_range
= btrfs_check_extent_io_range
,
10612 * btrfs doesn't support the bmap operation because swapfiles
10613 * use bmap to make a mapping of extents in the file. They assume
10614 * these extents won't change over the life of the file and they
10615 * use the bmap result to do IO directly to the drive.
10617 * the btrfs bmap call would return logical addresses that aren't
10618 * suitable for IO and they also will change frequently as COW
10619 * operations happen. So, swapfile + btrfs == corruption.
10621 * For now we're avoiding this by dropping bmap.
10623 static const struct address_space_operations btrfs_aops
= {
10624 .readpage
= btrfs_readpage
,
10625 .writepage
= btrfs_writepage
,
10626 .writepages
= btrfs_writepages
,
10627 .readpages
= btrfs_readpages
,
10628 .direct_IO
= btrfs_direct_IO
,
10629 .invalidatepage
= btrfs_invalidatepage
,
10630 .releasepage
= btrfs_releasepage
,
10631 .set_page_dirty
= btrfs_set_page_dirty
,
10632 .error_remove_page
= generic_error_remove_page
,
10635 static const struct address_space_operations btrfs_symlink_aops
= {
10636 .readpage
= btrfs_readpage
,
10637 .writepage
= btrfs_writepage
,
10638 .invalidatepage
= btrfs_invalidatepage
,
10639 .releasepage
= btrfs_releasepage
,
10642 static const struct inode_operations btrfs_file_inode_operations
= {
10643 .getattr
= btrfs_getattr
,
10644 .setattr
= btrfs_setattr
,
10645 .listxattr
= btrfs_listxattr
,
10646 .permission
= btrfs_permission
,
10647 .fiemap
= btrfs_fiemap
,
10648 .get_acl
= btrfs_get_acl
,
10649 .set_acl
= btrfs_set_acl
,
10650 .update_time
= btrfs_update_time
,
10652 static const struct inode_operations btrfs_special_inode_operations
= {
10653 .getattr
= btrfs_getattr
,
10654 .setattr
= btrfs_setattr
,
10655 .permission
= btrfs_permission
,
10656 .listxattr
= btrfs_listxattr
,
10657 .get_acl
= btrfs_get_acl
,
10658 .set_acl
= btrfs_set_acl
,
10659 .update_time
= btrfs_update_time
,
10661 static const struct inode_operations btrfs_symlink_inode_operations
= {
10662 .get_link
= page_get_link
,
10663 .getattr
= btrfs_getattr
,
10664 .setattr
= btrfs_setattr
,
10665 .permission
= btrfs_permission
,
10666 .listxattr
= btrfs_listxattr
,
10667 .update_time
= btrfs_update_time
,
10670 const struct dentry_operations btrfs_dentry_operations
= {
10671 .d_delete
= btrfs_dentry_delete
,
10672 .d_release
= btrfs_dentry_release
,