1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/buffer_head.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/seq_file.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/mount.h>
18 #include <linux/mpage.h>
19 #include <linux/swap.h>
20 #include <linux/writeback.h>
21 #include <linux/statfs.h>
22 #include <linux/compat.h>
23 #include <linux/parser.h>
24 #include <linux/ctype.h>
25 #include <linux/namei.h>
26 #include <linux/miscdevice.h>
27 #include <linux/magic.h>
28 #include <linux/slab.h>
29 #include <linux/cleancache.h>
30 #include <linux/ratelimit.h>
31 #include <linux/crc32c.h>
32 #include <linux/btrfs.h>
33 #include "delayed-inode.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
43 #include "compression.h"
44 #include "rcu-string.h"
45 #include "dev-replace.h"
46 #include "free-space-cache.h"
48 #include "tests/btrfs-tests.h"
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/btrfs.h>
54 static const struct super_operations btrfs_super_ops
;
57 * Types for mounting the default subvolume and a subvolume explicitly
58 * requested by subvol=/path. That way the callchain is straightforward and we
59 * don't have to play tricks with the mount options and recursive calls to
62 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
64 static struct file_system_type btrfs_fs_type
;
65 static struct file_system_type btrfs_root_fs_type
;
67 static int btrfs_remount(struct super_block
*sb
, int *flags
, char *data
);
69 const char *btrfs_decode_error(int errno
)
71 char *errstr
= "unknown";
75 errstr
= "IO failure";
78 errstr
= "Out of memory";
81 errstr
= "Readonly filesystem";
84 errstr
= "Object already exists";
87 errstr
= "No space left";
90 errstr
= "No such entry";
98 * __btrfs_handle_fs_error decodes expected errors from the caller and
99 * invokes the approciate error response.
102 void __btrfs_handle_fs_error(struct btrfs_fs_info
*fs_info
, const char *function
,
103 unsigned int line
, int errno
, const char *fmt
, ...)
105 struct super_block
*sb
= fs_info
->sb
;
111 * Special case: if the error is EROFS, and we're already
112 * under SB_RDONLY, then it is safe here.
114 if (errno
== -EROFS
&& sb_rdonly(sb
))
118 errstr
= btrfs_decode_error(errno
);
120 struct va_format vaf
;
127 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
128 sb
->s_id
, function
, line
, errno
, errstr
, &vaf
);
131 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
132 sb
->s_id
, function
, line
, errno
, errstr
);
137 * Today we only save the error info to memory. Long term we'll
138 * also send it down to the disk
140 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
142 /* Don't go through full error handling during mount */
143 if (!(sb
->s_flags
& SB_BORN
))
149 /* btrfs handle error by forcing the filesystem readonly */
150 sb
->s_flags
|= SB_RDONLY
;
151 btrfs_info(fs_info
, "forced readonly");
153 * Note that a running device replace operation is not canceled here
154 * although there is no way to update the progress. It would add the
155 * risk of a deadlock, therefore the canceling is omitted. The only
156 * penalty is that some I/O remains active until the procedure
157 * completes. The next time when the filesystem is mounted writeable
158 * again, the device replace operation continues.
163 static const char * const logtypes
[] = {
176 * Use one ratelimit state per log level so that a flood of less important
177 * messages doesn't cause more important ones to be dropped.
179 static struct ratelimit_state printk_limits
[] = {
180 RATELIMIT_STATE_INIT(printk_limits
[0], DEFAULT_RATELIMIT_INTERVAL
, 100),
181 RATELIMIT_STATE_INIT(printk_limits
[1], DEFAULT_RATELIMIT_INTERVAL
, 100),
182 RATELIMIT_STATE_INIT(printk_limits
[2], DEFAULT_RATELIMIT_INTERVAL
, 100),
183 RATELIMIT_STATE_INIT(printk_limits
[3], DEFAULT_RATELIMIT_INTERVAL
, 100),
184 RATELIMIT_STATE_INIT(printk_limits
[4], DEFAULT_RATELIMIT_INTERVAL
, 100),
185 RATELIMIT_STATE_INIT(printk_limits
[5], DEFAULT_RATELIMIT_INTERVAL
, 100),
186 RATELIMIT_STATE_INIT(printk_limits
[6], DEFAULT_RATELIMIT_INTERVAL
, 100),
187 RATELIMIT_STATE_INIT(printk_limits
[7], DEFAULT_RATELIMIT_INTERVAL
, 100),
190 void btrfs_printk(const struct btrfs_fs_info
*fs_info
, const char *fmt
, ...)
192 char lvl
[PRINTK_MAX_SINGLE_HEADER_LEN
+ 1] = "\0";
193 struct va_format vaf
;
196 const char *type
= logtypes
[4];
197 struct ratelimit_state
*ratelimit
= &printk_limits
[4];
201 while ((kern_level
= printk_get_level(fmt
)) != 0) {
202 size_t size
= printk_skip_level(fmt
) - fmt
;
204 if (kern_level
>= '0' && kern_level
<= '7') {
205 memcpy(lvl
, fmt
, size
);
207 type
= logtypes
[kern_level
- '0'];
208 ratelimit
= &printk_limits
[kern_level
- '0'];
216 if (__ratelimit(ratelimit
))
217 printk("%sBTRFS %s (device %s): %pV\n", lvl
, type
,
218 fs_info
? fs_info
->sb
->s_id
: "<unknown>", &vaf
);
225 * We only mark the transaction aborted and then set the file system read-only.
226 * This will prevent new transactions from starting or trying to join this
229 * This means that error recovery at the call site is limited to freeing
230 * any local memory allocations and passing the error code up without
231 * further cleanup. The transaction should complete as it normally would
232 * in the call path but will return -EIO.
234 * We'll complete the cleanup in btrfs_end_transaction and
235 * btrfs_commit_transaction.
238 void __btrfs_abort_transaction(struct btrfs_trans_handle
*trans
,
239 const char *function
,
240 unsigned int line
, int errno
)
242 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
244 trans
->aborted
= errno
;
245 /* Nothing used. The other threads that have joined this
246 * transaction may be able to continue. */
247 if (!trans
->dirty
&& list_empty(&trans
->new_bgs
)) {
250 errstr
= btrfs_decode_error(errno
);
252 "%s:%d: Aborting unused transaction(%s).",
253 function
, line
, errstr
);
256 WRITE_ONCE(trans
->transaction
->aborted
, errno
);
257 /* Wake up anybody who may be waiting on this transaction */
258 wake_up(&fs_info
->transaction_wait
);
259 wake_up(&fs_info
->transaction_blocked_wait
);
260 __btrfs_handle_fs_error(fs_info
, function
, line
, errno
, NULL
);
263 * __btrfs_panic decodes unexpected, fatal errors from the caller,
264 * issues an alert, and either panics or BUGs, depending on mount options.
267 void __btrfs_panic(struct btrfs_fs_info
*fs_info
, const char *function
,
268 unsigned int line
, int errno
, const char *fmt
, ...)
270 char *s_id
= "<unknown>";
272 struct va_format vaf
= { .fmt
= fmt
};
276 s_id
= fs_info
->sb
->s_id
;
281 errstr
= btrfs_decode_error(errno
);
282 if (fs_info
&& (btrfs_test_opt(fs_info
, PANIC_ON_FATAL_ERROR
)))
283 panic(KERN_CRIT
"BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
284 s_id
, function
, line
, &vaf
, errno
, errstr
);
286 btrfs_crit(fs_info
, "panic in %s:%d: %pV (errno=%d %s)",
287 function
, line
, &vaf
, errno
, errstr
);
289 /* Caller calls BUG() */
292 static void btrfs_put_super(struct super_block
*sb
)
294 close_ctree(btrfs_sb(sb
));
303 Opt_compress_force_type
,
308 Opt_flushoncommit
, Opt_noflushoncommit
,
309 Opt_inode_cache
, Opt_noinode_cache
,
311 Opt_barrier
, Opt_nobarrier
,
312 Opt_datacow
, Opt_nodatacow
,
313 Opt_datasum
, Opt_nodatasum
,
314 Opt_defrag
, Opt_nodefrag
,
315 Opt_discard
, Opt_nodiscard
,
319 Opt_rescan_uuid_tree
,
321 Opt_space_cache
, Opt_no_space_cache
,
322 Opt_space_cache_version
,
324 Opt_ssd_spread
, Opt_nossd_spread
,
328 Opt_treelog
, Opt_notreelog
,
330 Opt_user_subvol_rm_allowed
,
332 /* Deprecated options */
337 /* Debugging options */
339 Opt_check_integrity_including_extent_data
,
340 Opt_check_integrity_print_mask
,
341 Opt_enospc_debug
, Opt_noenospc_debug
,
342 #ifdef CONFIG_BTRFS_DEBUG
343 Opt_fragment_data
, Opt_fragment_metadata
, Opt_fragment_all
,
345 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
351 static const match_table_t tokens
= {
353 {Opt_noacl
, "noacl"},
354 {Opt_clear_cache
, "clear_cache"},
355 {Opt_commit_interval
, "commit=%u"},
356 {Opt_compress
, "compress"},
357 {Opt_compress_type
, "compress=%s"},
358 {Opt_compress_force
, "compress-force"},
359 {Opt_compress_force_type
, "compress-force=%s"},
360 {Opt_degraded
, "degraded"},
361 {Opt_device
, "device=%s"},
362 {Opt_fatal_errors
, "fatal_errors=%s"},
363 {Opt_flushoncommit
, "flushoncommit"},
364 {Opt_noflushoncommit
, "noflushoncommit"},
365 {Opt_inode_cache
, "inode_cache"},
366 {Opt_noinode_cache
, "noinode_cache"},
367 {Opt_max_inline
, "max_inline=%s"},
368 {Opt_barrier
, "barrier"},
369 {Opt_nobarrier
, "nobarrier"},
370 {Opt_datacow
, "datacow"},
371 {Opt_nodatacow
, "nodatacow"},
372 {Opt_datasum
, "datasum"},
373 {Opt_nodatasum
, "nodatasum"},
374 {Opt_defrag
, "autodefrag"},
375 {Opt_nodefrag
, "noautodefrag"},
376 {Opt_discard
, "discard"},
377 {Opt_nodiscard
, "nodiscard"},
378 {Opt_nologreplay
, "nologreplay"},
379 {Opt_norecovery
, "norecovery"},
380 {Opt_ratio
, "metadata_ratio=%u"},
381 {Opt_rescan_uuid_tree
, "rescan_uuid_tree"},
382 {Opt_skip_balance
, "skip_balance"},
383 {Opt_space_cache
, "space_cache"},
384 {Opt_no_space_cache
, "nospace_cache"},
385 {Opt_space_cache_version
, "space_cache=%s"},
387 {Opt_nossd
, "nossd"},
388 {Opt_ssd_spread
, "ssd_spread"},
389 {Opt_nossd_spread
, "nossd_spread"},
390 {Opt_subvol
, "subvol=%s"},
391 {Opt_subvolid
, "subvolid=%s"},
392 {Opt_thread_pool
, "thread_pool=%u"},
393 {Opt_treelog
, "treelog"},
394 {Opt_notreelog
, "notreelog"},
395 {Opt_usebackuproot
, "usebackuproot"},
396 {Opt_user_subvol_rm_allowed
, "user_subvol_rm_allowed"},
398 /* Deprecated options */
399 {Opt_alloc_start
, "alloc_start=%s"},
400 {Opt_recovery
, "recovery"},
401 {Opt_subvolrootid
, "subvolrootid=%d"},
403 /* Debugging options */
404 {Opt_check_integrity
, "check_int"},
405 {Opt_check_integrity_including_extent_data
, "check_int_data"},
406 {Opt_check_integrity_print_mask
, "check_int_print_mask=%u"},
407 {Opt_enospc_debug
, "enospc_debug"},
408 {Opt_noenospc_debug
, "noenospc_debug"},
409 #ifdef CONFIG_BTRFS_DEBUG
410 {Opt_fragment_data
, "fragment=data"},
411 {Opt_fragment_metadata
, "fragment=metadata"},
412 {Opt_fragment_all
, "fragment=all"},
414 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
415 {Opt_ref_verify
, "ref_verify"},
421 * Regular mount options parser. Everything that is needed only when
422 * reading in a new superblock is parsed here.
423 * XXX JDM: This needs to be cleaned up for remount.
425 int btrfs_parse_options(struct btrfs_fs_info
*info
, char *options
,
426 unsigned long new_flags
)
428 substring_t args
[MAX_OPT_ARGS
];
434 bool compress_force
= false;
435 enum btrfs_compression_type saved_compress_type
;
436 bool saved_compress_force
;
439 cache_gen
= btrfs_super_cache_generation(info
->super_copy
);
440 if (btrfs_fs_compat_ro(info
, FREE_SPACE_TREE
))
441 btrfs_set_opt(info
->mount_opt
, FREE_SPACE_TREE
);
443 btrfs_set_opt(info
->mount_opt
, SPACE_CACHE
);
446 * Even the options are empty, we still need to do extra check
452 while ((p
= strsep(&options
, ",")) != NULL
) {
457 token
= match_token(p
, tokens
, args
);
460 btrfs_info(info
, "allowing degraded mounts");
461 btrfs_set_opt(info
->mount_opt
, DEGRADED
);
465 case Opt_subvolrootid
:
468 * These are parsed by btrfs_parse_subvol_options
469 * and btrfs_parse_early_options
470 * and can be happily ignored here.
474 btrfs_set_and_info(info
, NODATASUM
,
475 "setting nodatasum");
478 if (btrfs_test_opt(info
, NODATASUM
)) {
479 if (btrfs_test_opt(info
, NODATACOW
))
481 "setting datasum, datacow enabled");
483 btrfs_info(info
, "setting datasum");
485 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
486 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
489 if (!btrfs_test_opt(info
, NODATACOW
)) {
490 if (!btrfs_test_opt(info
, COMPRESS
) ||
491 !btrfs_test_opt(info
, FORCE_COMPRESS
)) {
493 "setting nodatacow, compression disabled");
495 btrfs_info(info
, "setting nodatacow");
498 btrfs_clear_opt(info
->mount_opt
, COMPRESS
);
499 btrfs_clear_opt(info
->mount_opt
, FORCE_COMPRESS
);
500 btrfs_set_opt(info
->mount_opt
, NODATACOW
);
501 btrfs_set_opt(info
->mount_opt
, NODATASUM
);
504 btrfs_clear_and_info(info
, NODATACOW
,
507 case Opt_compress_force
:
508 case Opt_compress_force_type
:
509 compress_force
= true;
512 case Opt_compress_type
:
513 saved_compress_type
= btrfs_test_opt(info
,
515 info
->compress_type
: BTRFS_COMPRESS_NONE
;
516 saved_compress_force
=
517 btrfs_test_opt(info
, FORCE_COMPRESS
);
518 if (token
== Opt_compress
||
519 token
== Opt_compress_force
||
520 strncmp(args
[0].from
, "zlib", 4) == 0) {
521 compress_type
= "zlib";
523 info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
524 info
->compress_level
= BTRFS_ZLIB_DEFAULT_LEVEL
;
526 * args[0] contains uninitialized data since
527 * for these tokens we don't expect any
530 if (token
!= Opt_compress
&&
531 token
!= Opt_compress_force
)
532 info
->compress_level
=
533 btrfs_compress_str2level(args
[0].from
);
534 btrfs_set_opt(info
->mount_opt
, COMPRESS
);
535 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
536 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
538 } else if (strncmp(args
[0].from
, "lzo", 3) == 0) {
539 compress_type
= "lzo";
540 info
->compress_type
= BTRFS_COMPRESS_LZO
;
541 btrfs_set_opt(info
->mount_opt
, COMPRESS
);
542 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
543 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
544 btrfs_set_fs_incompat(info
, COMPRESS_LZO
);
546 } else if (strcmp(args
[0].from
, "zstd") == 0) {
547 compress_type
= "zstd";
548 info
->compress_type
= BTRFS_COMPRESS_ZSTD
;
549 btrfs_set_opt(info
->mount_opt
, COMPRESS
);
550 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
551 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
552 btrfs_set_fs_incompat(info
, COMPRESS_ZSTD
);
554 } else if (strncmp(args
[0].from
, "no", 2) == 0) {
555 compress_type
= "no";
556 btrfs_clear_opt(info
->mount_opt
, COMPRESS
);
557 btrfs_clear_opt(info
->mount_opt
, FORCE_COMPRESS
);
558 compress_force
= false;
565 if (compress_force
) {
566 btrfs_set_opt(info
->mount_opt
, FORCE_COMPRESS
);
569 * If we remount from compress-force=xxx to
570 * compress=xxx, we need clear FORCE_COMPRESS
571 * flag, otherwise, there is no way for users
572 * to disable forcible compression separately.
574 btrfs_clear_opt(info
->mount_opt
, FORCE_COMPRESS
);
576 if ((btrfs_test_opt(info
, COMPRESS
) &&
577 (info
->compress_type
!= saved_compress_type
||
578 compress_force
!= saved_compress_force
)) ||
579 (!btrfs_test_opt(info
, COMPRESS
) &&
581 btrfs_info(info
, "%s %s compression, level %d",
582 (compress_force
) ? "force" : "use",
583 compress_type
, info
->compress_level
);
585 compress_force
= false;
588 btrfs_set_and_info(info
, SSD
,
589 "enabling ssd optimizations");
590 btrfs_clear_opt(info
->mount_opt
, NOSSD
);
593 btrfs_set_and_info(info
, SSD
,
594 "enabling ssd optimizations");
595 btrfs_set_and_info(info
, SSD_SPREAD
,
596 "using spread ssd allocation scheme");
597 btrfs_clear_opt(info
->mount_opt
, NOSSD
);
600 btrfs_set_opt(info
->mount_opt
, NOSSD
);
601 btrfs_clear_and_info(info
, SSD
,
602 "not using ssd optimizations");
604 case Opt_nossd_spread
:
605 btrfs_clear_and_info(info
, SSD_SPREAD
,
606 "not using spread ssd allocation scheme");
609 btrfs_clear_and_info(info
, NOBARRIER
,
610 "turning on barriers");
613 btrfs_set_and_info(info
, NOBARRIER
,
614 "turning off barriers");
616 case Opt_thread_pool
:
617 ret
= match_int(&args
[0], &intarg
);
620 } else if (intarg
== 0) {
624 info
->thread_pool_size
= intarg
;
627 num
= match_strdup(&args
[0]);
629 info
->max_inline
= memparse(num
, NULL
);
632 if (info
->max_inline
) {
633 info
->max_inline
= min_t(u64
,
637 btrfs_info(info
, "max_inline at %llu",
644 case Opt_alloc_start
:
646 "option alloc_start is obsolete, ignored");
649 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
650 info
->sb
->s_flags
|= SB_POSIXACL
;
653 btrfs_err(info
, "support for ACL not compiled in!");
658 info
->sb
->s_flags
&= ~SB_POSIXACL
;
661 btrfs_set_and_info(info
, NOTREELOG
,
662 "disabling tree log");
665 btrfs_clear_and_info(info
, NOTREELOG
,
666 "enabling tree log");
669 case Opt_nologreplay
:
670 btrfs_set_and_info(info
, NOLOGREPLAY
,
671 "disabling log replay at mount time");
673 case Opt_flushoncommit
:
674 btrfs_set_and_info(info
, FLUSHONCOMMIT
,
675 "turning on flush-on-commit");
677 case Opt_noflushoncommit
:
678 btrfs_clear_and_info(info
, FLUSHONCOMMIT
,
679 "turning off flush-on-commit");
682 ret
= match_int(&args
[0], &intarg
);
685 info
->metadata_ratio
= intarg
;
686 btrfs_info(info
, "metadata ratio %u",
687 info
->metadata_ratio
);
690 btrfs_set_and_info(info
, DISCARD
,
691 "turning on discard");
694 btrfs_clear_and_info(info
, DISCARD
,
695 "turning off discard");
697 case Opt_space_cache
:
698 case Opt_space_cache_version
:
699 if (token
== Opt_space_cache
||
700 strcmp(args
[0].from
, "v1") == 0) {
701 btrfs_clear_opt(info
->mount_opt
,
703 btrfs_set_and_info(info
, SPACE_CACHE
,
704 "enabling disk space caching");
705 } else if (strcmp(args
[0].from
, "v2") == 0) {
706 btrfs_clear_opt(info
->mount_opt
,
708 btrfs_set_and_info(info
, FREE_SPACE_TREE
,
709 "enabling free space tree");
715 case Opt_rescan_uuid_tree
:
716 btrfs_set_opt(info
->mount_opt
, RESCAN_UUID_TREE
);
718 case Opt_no_space_cache
:
719 if (btrfs_test_opt(info
, SPACE_CACHE
)) {
720 btrfs_clear_and_info(info
, SPACE_CACHE
,
721 "disabling disk space caching");
723 if (btrfs_test_opt(info
, FREE_SPACE_TREE
)) {
724 btrfs_clear_and_info(info
, FREE_SPACE_TREE
,
725 "disabling free space tree");
728 case Opt_inode_cache
:
729 btrfs_set_pending_and_info(info
, INODE_MAP_CACHE
,
730 "enabling inode map caching");
732 case Opt_noinode_cache
:
733 btrfs_clear_pending_and_info(info
, INODE_MAP_CACHE
,
734 "disabling inode map caching");
736 case Opt_clear_cache
:
737 btrfs_set_and_info(info
, CLEAR_CACHE
,
738 "force clearing of disk cache");
740 case Opt_user_subvol_rm_allowed
:
741 btrfs_set_opt(info
->mount_opt
, USER_SUBVOL_RM_ALLOWED
);
743 case Opt_enospc_debug
:
744 btrfs_set_opt(info
->mount_opt
, ENOSPC_DEBUG
);
746 case Opt_noenospc_debug
:
747 btrfs_clear_opt(info
->mount_opt
, ENOSPC_DEBUG
);
750 btrfs_set_and_info(info
, AUTO_DEFRAG
,
751 "enabling auto defrag");
754 btrfs_clear_and_info(info
, AUTO_DEFRAG
,
755 "disabling auto defrag");
759 "'recovery' is deprecated, use 'usebackuproot' instead");
760 case Opt_usebackuproot
:
762 "trying to use backup root at mount time");
763 btrfs_set_opt(info
->mount_opt
, USEBACKUPROOT
);
765 case Opt_skip_balance
:
766 btrfs_set_opt(info
->mount_opt
, SKIP_BALANCE
);
768 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
769 case Opt_check_integrity_including_extent_data
:
771 "enabling check integrity including extent data");
772 btrfs_set_opt(info
->mount_opt
,
773 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
);
774 btrfs_set_opt(info
->mount_opt
, CHECK_INTEGRITY
);
776 case Opt_check_integrity
:
777 btrfs_info(info
, "enabling check integrity");
778 btrfs_set_opt(info
->mount_opt
, CHECK_INTEGRITY
);
780 case Opt_check_integrity_print_mask
:
781 ret
= match_int(&args
[0], &intarg
);
784 info
->check_integrity_print_mask
= intarg
;
785 btrfs_info(info
, "check_integrity_print_mask 0x%x",
786 info
->check_integrity_print_mask
);
789 case Opt_check_integrity_including_extent_data
:
790 case Opt_check_integrity
:
791 case Opt_check_integrity_print_mask
:
793 "support for check_integrity* not compiled in!");
797 case Opt_fatal_errors
:
798 if (strcmp(args
[0].from
, "panic") == 0)
799 btrfs_set_opt(info
->mount_opt
,
800 PANIC_ON_FATAL_ERROR
);
801 else if (strcmp(args
[0].from
, "bug") == 0)
802 btrfs_clear_opt(info
->mount_opt
,
803 PANIC_ON_FATAL_ERROR
);
809 case Opt_commit_interval
:
811 ret
= match_int(&args
[0], &intarg
);
816 "using default commit interval %us",
817 BTRFS_DEFAULT_COMMIT_INTERVAL
);
818 intarg
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
819 } else if (intarg
> 300) {
820 btrfs_warn(info
, "excessive commit interval %d",
823 info
->commit_interval
= intarg
;
825 #ifdef CONFIG_BTRFS_DEBUG
826 case Opt_fragment_all
:
827 btrfs_info(info
, "fragmenting all space");
828 btrfs_set_opt(info
->mount_opt
, FRAGMENT_DATA
);
829 btrfs_set_opt(info
->mount_opt
, FRAGMENT_METADATA
);
831 case Opt_fragment_metadata
:
832 btrfs_info(info
, "fragmenting metadata");
833 btrfs_set_opt(info
->mount_opt
,
836 case Opt_fragment_data
:
837 btrfs_info(info
, "fragmenting data");
838 btrfs_set_opt(info
->mount_opt
, FRAGMENT_DATA
);
841 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
843 btrfs_info(info
, "doing ref verification");
844 btrfs_set_opt(info
->mount_opt
, REF_VERIFY
);
848 btrfs_info(info
, "unrecognized mount option '%s'", p
);
857 * Extra check for current option against current flag
859 if (btrfs_test_opt(info
, NOLOGREPLAY
) && !(new_flags
& SB_RDONLY
)) {
861 "nologreplay must be used with ro mount option");
865 if (btrfs_fs_compat_ro(info
, FREE_SPACE_TREE
) &&
866 !btrfs_test_opt(info
, FREE_SPACE_TREE
) &&
867 !btrfs_test_opt(info
, CLEAR_CACHE
)) {
868 btrfs_err(info
, "cannot disable free space tree");
872 if (!ret
&& btrfs_test_opt(info
, SPACE_CACHE
))
873 btrfs_info(info
, "disk space caching is enabled");
874 if (!ret
&& btrfs_test_opt(info
, FREE_SPACE_TREE
))
875 btrfs_info(info
, "using free space tree");
880 * Parse mount options that are required early in the mount process.
882 * All other options will be parsed on much later in the mount process and
883 * only when we need to allocate a new super block.
885 static int btrfs_parse_early_options(const char *options
, fmode_t flags
,
886 void *holder
, struct btrfs_fs_devices
**fs_devices
)
888 substring_t args
[MAX_OPT_ARGS
];
889 char *device_name
, *opts
, *orig
, *p
;
896 * strsep changes the string, duplicate it because btrfs_parse_options
899 opts
= kstrdup(options
, GFP_KERNEL
);
904 while ((p
= strsep(&opts
, ",")) != NULL
) {
910 token
= match_token(p
, tokens
, args
);
911 if (token
== Opt_device
) {
912 device_name
= match_strdup(&args
[0]);
917 error
= btrfs_scan_one_device(device_name
,
918 flags
, holder
, fs_devices
);
931 * Parse mount options that are related to subvolume id
933 * The value is later passed to mount_subvol()
935 static int btrfs_parse_subvol_options(const char *options
, fmode_t flags
,
936 char **subvol_name
, u64
*subvol_objectid
)
938 substring_t args
[MAX_OPT_ARGS
];
939 char *opts
, *orig
, *p
;
947 * strsep changes the string, duplicate it because
948 * btrfs_parse_early_options gets called later
950 opts
= kstrdup(options
, GFP_KERNEL
);
955 while ((p
= strsep(&opts
, ",")) != NULL
) {
960 token
= match_token(p
, tokens
, args
);
964 *subvol_name
= match_strdup(&args
[0]);
971 error
= match_u64(&args
[0], &subvolid
);
975 /* we want the original fs_tree */
977 subvolid
= BTRFS_FS_TREE_OBJECTID
;
979 *subvol_objectid
= subvolid
;
981 case Opt_subvolrootid
:
982 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
994 static char *get_subvol_name_from_objectid(struct btrfs_fs_info
*fs_info
,
997 struct btrfs_root
*root
= fs_info
->tree_root
;
998 struct btrfs_root
*fs_root
;
999 struct btrfs_root_ref
*root_ref
;
1000 struct btrfs_inode_ref
*inode_ref
;
1001 struct btrfs_key key
;
1002 struct btrfs_path
*path
= NULL
;
1003 char *name
= NULL
, *ptr
;
1008 path
= btrfs_alloc_path();
1013 path
->leave_spinning
= 1;
1015 name
= kmalloc(PATH_MAX
, GFP_KERNEL
);
1020 ptr
= name
+ PATH_MAX
- 1;
1024 * Walk up the subvolume trees in the tree of tree roots by root
1025 * backrefs until we hit the top-level subvolume.
1027 while (subvol_objectid
!= BTRFS_FS_TREE_OBJECTID
) {
1028 key
.objectid
= subvol_objectid
;
1029 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
1030 key
.offset
= (u64
)-1;
1032 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1035 } else if (ret
> 0) {
1036 ret
= btrfs_previous_item(root
, path
, subvol_objectid
,
1037 BTRFS_ROOT_BACKREF_KEY
);
1040 } else if (ret
> 0) {
1046 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1047 subvol_objectid
= key
.offset
;
1049 root_ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1050 struct btrfs_root_ref
);
1051 len
= btrfs_root_ref_name_len(path
->nodes
[0], root_ref
);
1054 ret
= -ENAMETOOLONG
;
1057 read_extent_buffer(path
->nodes
[0], ptr
+ 1,
1058 (unsigned long)(root_ref
+ 1), len
);
1060 dirid
= btrfs_root_ref_dirid(path
->nodes
[0], root_ref
);
1061 btrfs_release_path(path
);
1063 key
.objectid
= subvol_objectid
;
1064 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1065 key
.offset
= (u64
)-1;
1066 fs_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
1067 if (IS_ERR(fs_root
)) {
1068 ret
= PTR_ERR(fs_root
);
1073 * Walk up the filesystem tree by inode refs until we hit the
1076 while (dirid
!= BTRFS_FIRST_FREE_OBJECTID
) {
1077 key
.objectid
= dirid
;
1078 key
.type
= BTRFS_INODE_REF_KEY
;
1079 key
.offset
= (u64
)-1;
1081 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
1084 } else if (ret
> 0) {
1085 ret
= btrfs_previous_item(fs_root
, path
, dirid
,
1086 BTRFS_INODE_REF_KEY
);
1089 } else if (ret
> 0) {
1095 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1098 inode_ref
= btrfs_item_ptr(path
->nodes
[0],
1100 struct btrfs_inode_ref
);
1101 len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1105 ret
= -ENAMETOOLONG
;
1108 read_extent_buffer(path
->nodes
[0], ptr
+ 1,
1109 (unsigned long)(inode_ref
+ 1), len
);
1111 btrfs_release_path(path
);
1115 btrfs_free_path(path
);
1116 if (ptr
== name
+ PATH_MAX
- 1) {
1120 memmove(name
, ptr
, name
+ PATH_MAX
- ptr
);
1125 btrfs_free_path(path
);
1127 return ERR_PTR(ret
);
1130 static int get_default_subvol_objectid(struct btrfs_fs_info
*fs_info
, u64
*objectid
)
1132 struct btrfs_root
*root
= fs_info
->tree_root
;
1133 struct btrfs_dir_item
*di
;
1134 struct btrfs_path
*path
;
1135 struct btrfs_key location
;
1138 path
= btrfs_alloc_path();
1141 path
->leave_spinning
= 1;
1144 * Find the "default" dir item which points to the root item that we
1145 * will mount by default if we haven't been given a specific subvolume
1148 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
1149 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dir_id
, "default", 7, 0);
1151 btrfs_free_path(path
);
1156 * Ok the default dir item isn't there. This is weird since
1157 * it's always been there, but don't freak out, just try and
1158 * mount the top-level subvolume.
1160 btrfs_free_path(path
);
1161 *objectid
= BTRFS_FS_TREE_OBJECTID
;
1165 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
1166 btrfs_free_path(path
);
1167 *objectid
= location
.objectid
;
1171 static int btrfs_fill_super(struct super_block
*sb
,
1172 struct btrfs_fs_devices
*fs_devices
,
1175 struct inode
*inode
;
1176 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1177 struct btrfs_key key
;
1180 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
1181 sb
->s_magic
= BTRFS_SUPER_MAGIC
;
1182 sb
->s_op
= &btrfs_super_ops
;
1183 sb
->s_d_op
= &btrfs_dentry_operations
;
1184 sb
->s_export_op
= &btrfs_export_ops
;
1185 sb
->s_xattr
= btrfs_xattr_handlers
;
1186 sb
->s_time_gran
= 1;
1187 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1188 sb
->s_flags
|= SB_POSIXACL
;
1190 sb
->s_flags
|= SB_I_VERSION
;
1191 sb
->s_iflags
|= SB_I_CGROUPWB
;
1193 err
= super_setup_bdi(sb
);
1195 btrfs_err(fs_info
, "super_setup_bdi failed");
1199 err
= open_ctree(sb
, fs_devices
, (char *)data
);
1201 btrfs_err(fs_info
, "open_ctree failed");
1205 key
.objectid
= BTRFS_FIRST_FREE_OBJECTID
;
1206 key
.type
= BTRFS_INODE_ITEM_KEY
;
1208 inode
= btrfs_iget(sb
, &key
, fs_info
->fs_root
, NULL
);
1209 if (IS_ERR(inode
)) {
1210 err
= PTR_ERR(inode
);
1214 sb
->s_root
= d_make_root(inode
);
1220 cleancache_init_fs(sb
);
1221 sb
->s_flags
|= SB_ACTIVE
;
1225 close_ctree(fs_info
);
1229 int btrfs_sync_fs(struct super_block
*sb
, int wait
)
1231 struct btrfs_trans_handle
*trans
;
1232 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1233 struct btrfs_root
*root
= fs_info
->tree_root
;
1235 trace_btrfs_sync_fs(fs_info
, wait
);
1238 filemap_flush(fs_info
->btree_inode
->i_mapping
);
1242 btrfs_wait_ordered_roots(fs_info
, U64_MAX
, 0, (u64
)-1);
1244 trans
= btrfs_attach_transaction_barrier(root
);
1245 if (IS_ERR(trans
)) {
1246 /* no transaction, don't bother */
1247 if (PTR_ERR(trans
) == -ENOENT
) {
1249 * Exit unless we have some pending changes
1250 * that need to go through commit
1252 if (fs_info
->pending_changes
== 0)
1255 * A non-blocking test if the fs is frozen. We must not
1256 * start a new transaction here otherwise a deadlock
1257 * happens. The pending operations are delayed to the
1258 * next commit after thawing.
1260 if (sb_start_write_trylock(sb
))
1264 trans
= btrfs_start_transaction(root
, 0);
1267 return PTR_ERR(trans
);
1269 return btrfs_commit_transaction(trans
);
1272 static int btrfs_show_options(struct seq_file
*seq
, struct dentry
*dentry
)
1274 struct btrfs_fs_info
*info
= btrfs_sb(dentry
->d_sb
);
1275 const char *compress_type
;
1277 if (btrfs_test_opt(info
, DEGRADED
))
1278 seq_puts(seq
, ",degraded");
1279 if (btrfs_test_opt(info
, NODATASUM
))
1280 seq_puts(seq
, ",nodatasum");
1281 if (btrfs_test_opt(info
, NODATACOW
))
1282 seq_puts(seq
, ",nodatacow");
1283 if (btrfs_test_opt(info
, NOBARRIER
))
1284 seq_puts(seq
, ",nobarrier");
1285 if (info
->max_inline
!= BTRFS_DEFAULT_MAX_INLINE
)
1286 seq_printf(seq
, ",max_inline=%llu", info
->max_inline
);
1287 if (info
->thread_pool_size
!= min_t(unsigned long,
1288 num_online_cpus() + 2, 8))
1289 seq_printf(seq
, ",thread_pool=%u", info
->thread_pool_size
);
1290 if (btrfs_test_opt(info
, COMPRESS
)) {
1291 compress_type
= btrfs_compress_type2str(info
->compress_type
);
1292 if (btrfs_test_opt(info
, FORCE_COMPRESS
))
1293 seq_printf(seq
, ",compress-force=%s", compress_type
);
1295 seq_printf(seq
, ",compress=%s", compress_type
);
1296 if (info
->compress_level
)
1297 seq_printf(seq
, ":%d", info
->compress_level
);
1299 if (btrfs_test_opt(info
, NOSSD
))
1300 seq_puts(seq
, ",nossd");
1301 if (btrfs_test_opt(info
, SSD_SPREAD
))
1302 seq_puts(seq
, ",ssd_spread");
1303 else if (btrfs_test_opt(info
, SSD
))
1304 seq_puts(seq
, ",ssd");
1305 if (btrfs_test_opt(info
, NOTREELOG
))
1306 seq_puts(seq
, ",notreelog");
1307 if (btrfs_test_opt(info
, NOLOGREPLAY
))
1308 seq_puts(seq
, ",nologreplay");
1309 if (btrfs_test_opt(info
, FLUSHONCOMMIT
))
1310 seq_puts(seq
, ",flushoncommit");
1311 if (btrfs_test_opt(info
, DISCARD
))
1312 seq_puts(seq
, ",discard");
1313 if (!(info
->sb
->s_flags
& SB_POSIXACL
))
1314 seq_puts(seq
, ",noacl");
1315 if (btrfs_test_opt(info
, SPACE_CACHE
))
1316 seq_puts(seq
, ",space_cache");
1317 else if (btrfs_test_opt(info
, FREE_SPACE_TREE
))
1318 seq_puts(seq
, ",space_cache=v2");
1320 seq_puts(seq
, ",nospace_cache");
1321 if (btrfs_test_opt(info
, RESCAN_UUID_TREE
))
1322 seq_puts(seq
, ",rescan_uuid_tree");
1323 if (btrfs_test_opt(info
, CLEAR_CACHE
))
1324 seq_puts(seq
, ",clear_cache");
1325 if (btrfs_test_opt(info
, USER_SUBVOL_RM_ALLOWED
))
1326 seq_puts(seq
, ",user_subvol_rm_allowed");
1327 if (btrfs_test_opt(info
, ENOSPC_DEBUG
))
1328 seq_puts(seq
, ",enospc_debug");
1329 if (btrfs_test_opt(info
, AUTO_DEFRAG
))
1330 seq_puts(seq
, ",autodefrag");
1331 if (btrfs_test_opt(info
, INODE_MAP_CACHE
))
1332 seq_puts(seq
, ",inode_cache");
1333 if (btrfs_test_opt(info
, SKIP_BALANCE
))
1334 seq_puts(seq
, ",skip_balance");
1335 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1336 if (btrfs_test_opt(info
, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
))
1337 seq_puts(seq
, ",check_int_data");
1338 else if (btrfs_test_opt(info
, CHECK_INTEGRITY
))
1339 seq_puts(seq
, ",check_int");
1340 if (info
->check_integrity_print_mask
)
1341 seq_printf(seq
, ",check_int_print_mask=%d",
1342 info
->check_integrity_print_mask
);
1344 if (info
->metadata_ratio
)
1345 seq_printf(seq
, ",metadata_ratio=%u", info
->metadata_ratio
);
1346 if (btrfs_test_opt(info
, PANIC_ON_FATAL_ERROR
))
1347 seq_puts(seq
, ",fatal_errors=panic");
1348 if (info
->commit_interval
!= BTRFS_DEFAULT_COMMIT_INTERVAL
)
1349 seq_printf(seq
, ",commit=%u", info
->commit_interval
);
1350 #ifdef CONFIG_BTRFS_DEBUG
1351 if (btrfs_test_opt(info
, FRAGMENT_DATA
))
1352 seq_puts(seq
, ",fragment=data");
1353 if (btrfs_test_opt(info
, FRAGMENT_METADATA
))
1354 seq_puts(seq
, ",fragment=metadata");
1356 if (btrfs_test_opt(info
, REF_VERIFY
))
1357 seq_puts(seq
, ",ref_verify");
1358 seq_printf(seq
, ",subvolid=%llu",
1359 BTRFS_I(d_inode(dentry
))->root
->root_key
.objectid
);
1360 seq_puts(seq
, ",subvol=");
1361 seq_dentry(seq
, dentry
, " \t\n\\");
1365 static int btrfs_test_super(struct super_block
*s
, void *data
)
1367 struct btrfs_fs_info
*p
= data
;
1368 struct btrfs_fs_info
*fs_info
= btrfs_sb(s
);
1370 return fs_info
->fs_devices
== p
->fs_devices
;
1373 static int btrfs_set_super(struct super_block
*s
, void *data
)
1375 int err
= set_anon_super(s
, data
);
1377 s
->s_fs_info
= data
;
1382 * subvolumes are identified by ino 256
1384 static inline int is_subvolume_inode(struct inode
*inode
)
1386 if (inode
&& inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
1391 static struct dentry
*mount_subvol(const char *subvol_name
, u64 subvol_objectid
,
1392 const char *device_name
, struct vfsmount
*mnt
)
1394 struct dentry
*root
;
1398 if (!subvol_objectid
) {
1399 ret
= get_default_subvol_objectid(btrfs_sb(mnt
->mnt_sb
),
1402 root
= ERR_PTR(ret
);
1406 subvol_name
= get_subvol_name_from_objectid(btrfs_sb(mnt
->mnt_sb
),
1408 if (IS_ERR(subvol_name
)) {
1409 root
= ERR_CAST(subvol_name
);
1416 root
= mount_subtree(mnt
, subvol_name
);
1417 /* mount_subtree() drops our reference on the vfsmount. */
1420 if (!IS_ERR(root
)) {
1421 struct super_block
*s
= root
->d_sb
;
1422 struct btrfs_fs_info
*fs_info
= btrfs_sb(s
);
1423 struct inode
*root_inode
= d_inode(root
);
1424 u64 root_objectid
= BTRFS_I(root_inode
)->root
->root_key
.objectid
;
1427 if (!is_subvolume_inode(root_inode
)) {
1428 btrfs_err(fs_info
, "'%s' is not a valid subvolume",
1432 if (subvol_objectid
&& root_objectid
!= subvol_objectid
) {
1434 * This will also catch a race condition where a
1435 * subvolume which was passed by ID is renamed and
1436 * another subvolume is renamed over the old location.
1439 "subvol '%s' does not match subvolid %llu",
1440 subvol_name
, subvol_objectid
);
1445 root
= ERR_PTR(ret
);
1446 deactivate_locked_super(s
);
1456 static int parse_security_options(char *orig_opts
,
1457 struct security_mnt_opts
*sec_opts
)
1459 char *secdata
= NULL
;
1462 secdata
= alloc_secdata();
1465 ret
= security_sb_copy_data(orig_opts
, secdata
);
1467 free_secdata(secdata
);
1470 ret
= security_sb_parse_opts_str(secdata
, sec_opts
);
1471 free_secdata(secdata
);
1475 static int setup_security_options(struct btrfs_fs_info
*fs_info
,
1476 struct super_block
*sb
,
1477 struct security_mnt_opts
*sec_opts
)
1482 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1485 ret
= security_sb_set_mnt_opts(sb
, sec_opts
, 0, NULL
);
1489 #ifdef CONFIG_SECURITY
1490 if (!fs_info
->security_opts
.num_mnt_opts
) {
1491 /* first time security setup, copy sec_opts to fs_info */
1492 memcpy(&fs_info
->security_opts
, sec_opts
, sizeof(*sec_opts
));
1495 * Since SELinux (the only one supporting security_mnt_opts)
1496 * does NOT support changing context during remount/mount of
1497 * the same sb, this must be the same or part of the same
1498 * security options, just free it.
1500 security_free_mnt_opts(sec_opts
);
1507 * Find a superblock for the given device / mount point.
1509 * Note: This is based on mount_bdev from fs/super.c with a few additions
1510 * for multiple device setup. Make sure to keep it in sync.
1512 static struct dentry
*btrfs_mount_root(struct file_system_type
*fs_type
,
1513 int flags
, const char *device_name
, void *data
)
1515 struct block_device
*bdev
= NULL
;
1516 struct super_block
*s
;
1517 struct btrfs_fs_devices
*fs_devices
= NULL
;
1518 struct btrfs_fs_info
*fs_info
= NULL
;
1519 struct security_mnt_opts new_sec_opts
;
1520 fmode_t mode
= FMODE_READ
;
1523 if (!(flags
& SB_RDONLY
))
1524 mode
|= FMODE_WRITE
;
1526 error
= btrfs_parse_early_options(data
, mode
, fs_type
,
1529 return ERR_PTR(error
);
1532 security_init_mnt_opts(&new_sec_opts
);
1534 error
= parse_security_options(data
, &new_sec_opts
);
1536 return ERR_PTR(error
);
1539 error
= btrfs_scan_one_device(device_name
, mode
, fs_type
, &fs_devices
);
1541 goto error_sec_opts
;
1544 * Setup a dummy root and fs_info for test/set super. This is because
1545 * we don't actually fill this stuff out until open_ctree, but we need
1546 * it for searching for existing supers, so this lets us do that and
1547 * then open_ctree will properly initialize everything later.
1549 fs_info
= kvzalloc(sizeof(struct btrfs_fs_info
), GFP_KERNEL
);
1552 goto error_sec_opts
;
1555 fs_info
->fs_devices
= fs_devices
;
1557 fs_info
->super_copy
= kzalloc(BTRFS_SUPER_INFO_SIZE
, GFP_KERNEL
);
1558 fs_info
->super_for_commit
= kzalloc(BTRFS_SUPER_INFO_SIZE
, GFP_KERNEL
);
1559 security_init_mnt_opts(&fs_info
->security_opts
);
1560 if (!fs_info
->super_copy
|| !fs_info
->super_for_commit
) {
1565 error
= btrfs_open_devices(fs_devices
, mode
, fs_type
);
1569 if (!(flags
& SB_RDONLY
) && fs_devices
->rw_devices
== 0) {
1571 goto error_close_devices
;
1574 bdev
= fs_devices
->latest_bdev
;
1575 s
= sget(fs_type
, btrfs_test_super
, btrfs_set_super
, flags
| SB_NOSEC
,
1579 goto error_close_devices
;
1583 btrfs_close_devices(fs_devices
);
1584 free_fs_info(fs_info
);
1585 if ((flags
^ s
->s_flags
) & SB_RDONLY
)
1588 snprintf(s
->s_id
, sizeof(s
->s_id
), "%pg", bdev
);
1589 btrfs_sb(s
)->bdev_holder
= fs_type
;
1590 error
= btrfs_fill_super(s
, fs_devices
, data
);
1593 deactivate_locked_super(s
);
1594 goto error_sec_opts
;
1597 fs_info
= btrfs_sb(s
);
1598 error
= setup_security_options(fs_info
, s
, &new_sec_opts
);
1600 deactivate_locked_super(s
);
1601 goto error_sec_opts
;
1604 return dget(s
->s_root
);
1606 error_close_devices
:
1607 btrfs_close_devices(fs_devices
);
1609 free_fs_info(fs_info
);
1611 security_free_mnt_opts(&new_sec_opts
);
1612 return ERR_PTR(error
);
1616 * Mount function which is called by VFS layer.
1618 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1619 * which needs vfsmount* of device's root (/). This means device's root has to
1620 * be mounted internally in any case.
1623 * 1. Parse subvol id related options for later use in mount_subvol().
1625 * 2. Mount device's root (/) by calling vfs_kern_mount().
1627 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1628 * first place. In order to avoid calling btrfs_mount() again, we use
1629 * different file_system_type which is not registered to VFS by
1630 * register_filesystem() (btrfs_root_fs_type). As a result,
1631 * btrfs_mount_root() is called. The return value will be used by
1632 * mount_subtree() in mount_subvol().
1634 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is
1635 * "btrfs subvolume set-default", mount_subvol() is called always.
1637 static struct dentry
*btrfs_mount(struct file_system_type
*fs_type
, int flags
,
1638 const char *device_name
, void *data
)
1640 struct vfsmount
*mnt_root
;
1641 struct dentry
*root
;
1642 fmode_t mode
= FMODE_READ
;
1643 char *subvol_name
= NULL
;
1644 u64 subvol_objectid
= 0;
1647 if (!(flags
& SB_RDONLY
))
1648 mode
|= FMODE_WRITE
;
1650 error
= btrfs_parse_subvol_options(data
, mode
,
1651 &subvol_name
, &subvol_objectid
);
1654 return ERR_PTR(error
);
1657 /* mount device's root (/) */
1658 mnt_root
= vfs_kern_mount(&btrfs_root_fs_type
, flags
, device_name
, data
);
1659 if (PTR_ERR_OR_ZERO(mnt_root
) == -EBUSY
) {
1660 if (flags
& SB_RDONLY
) {
1661 mnt_root
= vfs_kern_mount(&btrfs_root_fs_type
,
1662 flags
& ~SB_RDONLY
, device_name
, data
);
1664 mnt_root
= vfs_kern_mount(&btrfs_root_fs_type
,
1665 flags
| SB_RDONLY
, device_name
, data
);
1666 if (IS_ERR(mnt_root
)) {
1667 root
= ERR_CAST(mnt_root
);
1671 down_write(&mnt_root
->mnt_sb
->s_umount
);
1672 error
= btrfs_remount(mnt_root
->mnt_sb
, &flags
, NULL
);
1673 up_write(&mnt_root
->mnt_sb
->s_umount
);
1675 root
= ERR_PTR(error
);
1681 if (IS_ERR(mnt_root
)) {
1682 root
= ERR_CAST(mnt_root
);
1686 /* mount_subvol() will free subvol_name and mnt_root */
1687 root
= mount_subvol(subvol_name
, subvol_objectid
, device_name
, mnt_root
);
1693 static void btrfs_resize_thread_pool(struct btrfs_fs_info
*fs_info
,
1694 u32 new_pool_size
, u32 old_pool_size
)
1696 if (new_pool_size
== old_pool_size
)
1699 fs_info
->thread_pool_size
= new_pool_size
;
1701 btrfs_info(fs_info
, "resize thread pool %d -> %d",
1702 old_pool_size
, new_pool_size
);
1704 btrfs_workqueue_set_max(fs_info
->workers
, new_pool_size
);
1705 btrfs_workqueue_set_max(fs_info
->delalloc_workers
, new_pool_size
);
1706 btrfs_workqueue_set_max(fs_info
->submit_workers
, new_pool_size
);
1707 btrfs_workqueue_set_max(fs_info
->caching_workers
, new_pool_size
);
1708 btrfs_workqueue_set_max(fs_info
->endio_workers
, new_pool_size
);
1709 btrfs_workqueue_set_max(fs_info
->endio_meta_workers
, new_pool_size
);
1710 btrfs_workqueue_set_max(fs_info
->endio_meta_write_workers
,
1712 btrfs_workqueue_set_max(fs_info
->endio_write_workers
, new_pool_size
);
1713 btrfs_workqueue_set_max(fs_info
->endio_freespace_worker
, new_pool_size
);
1714 btrfs_workqueue_set_max(fs_info
->delayed_workers
, new_pool_size
);
1715 btrfs_workqueue_set_max(fs_info
->readahead_workers
, new_pool_size
);
1716 btrfs_workqueue_set_max(fs_info
->scrub_wr_completion_workers
,
1720 static inline void btrfs_remount_prepare(struct btrfs_fs_info
*fs_info
)
1722 set_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
);
1725 static inline void btrfs_remount_begin(struct btrfs_fs_info
*fs_info
,
1726 unsigned long old_opts
, int flags
)
1728 if (btrfs_raw_test_opt(old_opts
, AUTO_DEFRAG
) &&
1729 (!btrfs_raw_test_opt(fs_info
->mount_opt
, AUTO_DEFRAG
) ||
1730 (flags
& SB_RDONLY
))) {
1731 /* wait for any defraggers to finish */
1732 wait_event(fs_info
->transaction_wait
,
1733 (atomic_read(&fs_info
->defrag_running
) == 0));
1734 if (flags
& SB_RDONLY
)
1735 sync_filesystem(fs_info
->sb
);
1739 static inline void btrfs_remount_cleanup(struct btrfs_fs_info
*fs_info
,
1740 unsigned long old_opts
)
1743 * We need to cleanup all defragable inodes if the autodefragment is
1744 * close or the filesystem is read only.
1746 if (btrfs_raw_test_opt(old_opts
, AUTO_DEFRAG
) &&
1747 (!btrfs_raw_test_opt(fs_info
->mount_opt
, AUTO_DEFRAG
) || sb_rdonly(fs_info
->sb
))) {
1748 btrfs_cleanup_defrag_inodes(fs_info
);
1751 clear_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
);
1754 static int btrfs_remount(struct super_block
*sb
, int *flags
, char *data
)
1756 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1757 struct btrfs_root
*root
= fs_info
->tree_root
;
1758 unsigned old_flags
= sb
->s_flags
;
1759 unsigned long old_opts
= fs_info
->mount_opt
;
1760 unsigned long old_compress_type
= fs_info
->compress_type
;
1761 u64 old_max_inline
= fs_info
->max_inline
;
1762 u32 old_thread_pool_size
= fs_info
->thread_pool_size
;
1763 u32 old_metadata_ratio
= fs_info
->metadata_ratio
;
1766 sync_filesystem(sb
);
1767 btrfs_remount_prepare(fs_info
);
1770 struct security_mnt_opts new_sec_opts
;
1772 security_init_mnt_opts(&new_sec_opts
);
1773 ret
= parse_security_options(data
, &new_sec_opts
);
1776 ret
= setup_security_options(fs_info
, sb
,
1779 security_free_mnt_opts(&new_sec_opts
);
1784 ret
= btrfs_parse_options(fs_info
, data
, *flags
);
1790 btrfs_remount_begin(fs_info
, old_opts
, *flags
);
1791 btrfs_resize_thread_pool(fs_info
,
1792 fs_info
->thread_pool_size
, old_thread_pool_size
);
1794 if ((bool)(*flags
& SB_RDONLY
) == sb_rdonly(sb
))
1797 if (*flags
& SB_RDONLY
) {
1799 * this also happens on 'umount -rf' or on shutdown, when
1800 * the filesystem is busy.
1802 cancel_work_sync(&fs_info
->async_reclaim_work
);
1804 /* wait for the uuid_scan task to finish */
1805 down(&fs_info
->uuid_tree_rescan_sem
);
1806 /* avoid complains from lockdep et al. */
1807 up(&fs_info
->uuid_tree_rescan_sem
);
1809 sb
->s_flags
|= SB_RDONLY
;
1812 * Setting SB_RDONLY will put the cleaner thread to
1813 * sleep at the next loop if it's already active.
1814 * If it's already asleep, we'll leave unused block
1815 * groups on disk until we're mounted read-write again
1816 * unless we clean them up here.
1818 btrfs_delete_unused_bgs(fs_info
);
1820 btrfs_dev_replace_suspend_for_unmount(fs_info
);
1821 btrfs_scrub_cancel(fs_info
);
1822 btrfs_pause_balance(fs_info
);
1824 ret
= btrfs_commit_super(fs_info
);
1828 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
1830 "Remounting read-write after error is not allowed");
1834 if (fs_info
->fs_devices
->rw_devices
== 0) {
1839 if (!btrfs_check_rw_degradable(fs_info
, NULL
)) {
1841 "too many missing devices, writeable remount is not allowed");
1846 if (btrfs_super_log_root(fs_info
->super_copy
) != 0) {
1851 ret
= btrfs_cleanup_fs_roots(fs_info
);
1855 /* recover relocation */
1856 mutex_lock(&fs_info
->cleaner_mutex
);
1857 ret
= btrfs_recover_relocation(root
);
1858 mutex_unlock(&fs_info
->cleaner_mutex
);
1862 ret
= btrfs_resume_balance_async(fs_info
);
1866 ret
= btrfs_resume_dev_replace_async(fs_info
);
1868 btrfs_warn(fs_info
, "failed to resume dev_replace");
1872 btrfs_qgroup_rescan_resume(fs_info
);
1874 if (!fs_info
->uuid_root
) {
1875 btrfs_info(fs_info
, "creating UUID tree");
1876 ret
= btrfs_create_uuid_tree(fs_info
);
1879 "failed to create the UUID tree %d",
1884 sb
->s_flags
&= ~SB_RDONLY
;
1886 set_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
1889 wake_up_process(fs_info
->transaction_kthread
);
1890 btrfs_remount_cleanup(fs_info
, old_opts
);
1894 /* We've hit an error - don't reset SB_RDONLY */
1896 old_flags
|= SB_RDONLY
;
1897 sb
->s_flags
= old_flags
;
1898 fs_info
->mount_opt
= old_opts
;
1899 fs_info
->compress_type
= old_compress_type
;
1900 fs_info
->max_inline
= old_max_inline
;
1901 btrfs_resize_thread_pool(fs_info
,
1902 old_thread_pool_size
, fs_info
->thread_pool_size
);
1903 fs_info
->metadata_ratio
= old_metadata_ratio
;
1904 btrfs_remount_cleanup(fs_info
, old_opts
);
1908 /* Used to sort the devices by max_avail(descending sort) */
1909 static int btrfs_cmp_device_free_bytes(const void *dev_info1
,
1910 const void *dev_info2
)
1912 if (((struct btrfs_device_info
*)dev_info1
)->max_avail
>
1913 ((struct btrfs_device_info
*)dev_info2
)->max_avail
)
1915 else if (((struct btrfs_device_info
*)dev_info1
)->max_avail
<
1916 ((struct btrfs_device_info
*)dev_info2
)->max_avail
)
1923 * sort the devices by max_avail, in which max free extent size of each device
1924 * is stored.(Descending Sort)
1926 static inline void btrfs_descending_sort_devices(
1927 struct btrfs_device_info
*devices
,
1930 sort(devices
, nr_devices
, sizeof(struct btrfs_device_info
),
1931 btrfs_cmp_device_free_bytes
, NULL
);
1935 * The helper to calc the free space on the devices that can be used to store
1938 static int btrfs_calc_avail_data_space(struct btrfs_fs_info
*fs_info
,
1941 struct btrfs_device_info
*devices_info
;
1942 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
1943 struct btrfs_device
*device
;
1947 u64 min_stripe_size
;
1948 int min_stripes
= 1, num_stripes
= 1;
1949 int i
= 0, nr_devices
;
1952 * We aren't under the device list lock, so this is racy-ish, but good
1953 * enough for our purposes.
1955 nr_devices
= fs_info
->fs_devices
->open_devices
;
1958 nr_devices
= fs_info
->fs_devices
->open_devices
;
1966 devices_info
= kmalloc_array(nr_devices
, sizeof(*devices_info
),
1971 /* calc min stripe number for data space allocation */
1972 type
= btrfs_data_alloc_profile(fs_info
);
1973 if (type
& BTRFS_BLOCK_GROUP_RAID0
) {
1975 num_stripes
= nr_devices
;
1976 } else if (type
& BTRFS_BLOCK_GROUP_RAID1
) {
1979 } else if (type
& BTRFS_BLOCK_GROUP_RAID10
) {
1984 if (type
& BTRFS_BLOCK_GROUP_DUP
)
1985 min_stripe_size
= 2 * BTRFS_STRIPE_LEN
;
1987 min_stripe_size
= BTRFS_STRIPE_LEN
;
1990 list_for_each_entry_rcu(device
, &fs_devices
->devices
, dev_list
) {
1991 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
1992 &device
->dev_state
) ||
1994 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
1997 if (i
>= nr_devices
)
2000 avail_space
= device
->total_bytes
- device
->bytes_used
;
2002 /* align with stripe_len */
2003 avail_space
= div_u64(avail_space
, BTRFS_STRIPE_LEN
);
2004 avail_space
*= BTRFS_STRIPE_LEN
;
2007 * In order to avoid overwriting the superblock on the drive,
2008 * btrfs starts at an offset of at least 1MB when doing chunk
2014 * we can use the free space in [0, skip_space - 1], subtract
2015 * it from the total.
2017 if (avail_space
&& avail_space
>= skip_space
)
2018 avail_space
-= skip_space
;
2022 if (avail_space
< min_stripe_size
)
2025 devices_info
[i
].dev
= device
;
2026 devices_info
[i
].max_avail
= avail_space
;
2034 btrfs_descending_sort_devices(devices_info
, nr_devices
);
2038 while (nr_devices
>= min_stripes
) {
2039 if (num_stripes
> nr_devices
)
2040 num_stripes
= nr_devices
;
2042 if (devices_info
[i
].max_avail
>= min_stripe_size
) {
2046 avail_space
+= devices_info
[i
].max_avail
* num_stripes
;
2047 alloc_size
= devices_info
[i
].max_avail
;
2048 for (j
= i
+ 1 - num_stripes
; j
<= i
; j
++)
2049 devices_info
[j
].max_avail
-= alloc_size
;
2055 kfree(devices_info
);
2056 *free_bytes
= avail_space
;
2061 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2063 * If there's a redundant raid level at DATA block groups, use the respective
2064 * multiplier to scale the sizes.
2066 * Unused device space usage is based on simulating the chunk allocator
2067 * algorithm that respects the device sizes and order of allocations. This is
2068 * a close approximation of the actual use but there are other factors that may
2069 * change the result (like a new metadata chunk).
2071 * If metadata is exhausted, f_bavail will be 0.
2073 static int btrfs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2075 struct btrfs_fs_info
*fs_info
= btrfs_sb(dentry
->d_sb
);
2076 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2077 struct list_head
*head
= &fs_info
->space_info
;
2078 struct btrfs_space_info
*found
;
2080 u64 total_free_data
= 0;
2081 u64 total_free_meta
= 0;
2082 int bits
= dentry
->d_sb
->s_blocksize_bits
;
2083 __be32
*fsid
= (__be32
*)fs_info
->fsid
;
2084 unsigned factor
= 1;
2085 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
2091 list_for_each_entry_rcu(found
, head
, list
) {
2092 if (found
->flags
& BTRFS_BLOCK_GROUP_DATA
) {
2095 total_free_data
+= found
->disk_total
- found
->disk_used
;
2097 btrfs_account_ro_block_groups_free_space(found
);
2099 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
2100 if (!list_empty(&found
->block_groups
[i
])) {
2102 case BTRFS_RAID_DUP
:
2103 case BTRFS_RAID_RAID1
:
2104 case BTRFS_RAID_RAID10
:
2112 * Metadata in mixed block goup profiles are accounted in data
2114 if (!mixed
&& found
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
2115 if (found
->flags
& BTRFS_BLOCK_GROUP_DATA
)
2118 total_free_meta
+= found
->disk_total
-
2122 total_used
+= found
->disk_used
;
2127 buf
->f_blocks
= div_u64(btrfs_super_total_bytes(disk_super
), factor
);
2128 buf
->f_blocks
>>= bits
;
2129 buf
->f_bfree
= buf
->f_blocks
- (div_u64(total_used
, factor
) >> bits
);
2131 /* Account global block reserve as used, it's in logical size already */
2132 spin_lock(&block_rsv
->lock
);
2133 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2134 if (buf
->f_bfree
>= block_rsv
->size
>> bits
)
2135 buf
->f_bfree
-= block_rsv
->size
>> bits
;
2138 spin_unlock(&block_rsv
->lock
);
2140 buf
->f_bavail
= div_u64(total_free_data
, factor
);
2141 ret
= btrfs_calc_avail_data_space(fs_info
, &total_free_data
);
2144 buf
->f_bavail
+= div_u64(total_free_data
, factor
);
2145 buf
->f_bavail
= buf
->f_bavail
>> bits
;
2148 * We calculate the remaining metadata space minus global reserve. If
2149 * this is (supposedly) smaller than zero, there's no space. But this
2150 * does not hold in practice, the exhausted state happens where's still
2151 * some positive delta. So we apply some guesswork and compare the
2152 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2154 * We probably cannot calculate the exact threshold value because this
2155 * depends on the internal reservations requested by various
2156 * operations, so some operations that consume a few metadata will
2157 * succeed even if the Avail is zero. But this is better than the other
2162 if (!mixed
&& total_free_meta
- thresh
< block_rsv
->size
)
2165 buf
->f_type
= BTRFS_SUPER_MAGIC
;
2166 buf
->f_bsize
= dentry
->d_sb
->s_blocksize
;
2167 buf
->f_namelen
= BTRFS_NAME_LEN
;
2169 /* We treat it as constant endianness (it doesn't matter _which_)
2170 because we want the fsid to come out the same whether mounted
2171 on a big-endian or little-endian host */
2172 buf
->f_fsid
.val
[0] = be32_to_cpu(fsid
[0]) ^ be32_to_cpu(fsid
[2]);
2173 buf
->f_fsid
.val
[1] = be32_to_cpu(fsid
[1]) ^ be32_to_cpu(fsid
[3]);
2174 /* Mask in the root object ID too, to disambiguate subvols */
2175 buf
->f_fsid
.val
[0] ^= BTRFS_I(d_inode(dentry
))->root
->objectid
>> 32;
2176 buf
->f_fsid
.val
[1] ^= BTRFS_I(d_inode(dentry
))->root
->objectid
;
2181 static void btrfs_kill_super(struct super_block
*sb
)
2183 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2184 kill_anon_super(sb
);
2185 free_fs_info(fs_info
);
2188 static struct file_system_type btrfs_fs_type
= {
2189 .owner
= THIS_MODULE
,
2191 .mount
= btrfs_mount
,
2192 .kill_sb
= btrfs_kill_super
,
2193 .fs_flags
= FS_REQUIRES_DEV
| FS_BINARY_MOUNTDATA
,
2196 static struct file_system_type btrfs_root_fs_type
= {
2197 .owner
= THIS_MODULE
,
2199 .mount
= btrfs_mount_root
,
2200 .kill_sb
= btrfs_kill_super
,
2201 .fs_flags
= FS_REQUIRES_DEV
| FS_BINARY_MOUNTDATA
,
2204 MODULE_ALIAS_FS("btrfs");
2206 static int btrfs_control_open(struct inode
*inode
, struct file
*file
)
2209 * The control file's private_data is used to hold the
2210 * transaction when it is started and is used to keep
2211 * track of whether a transaction is already in progress.
2213 file
->private_data
= NULL
;
2218 * used by btrfsctl to scan devices when no FS is mounted
2220 static long btrfs_control_ioctl(struct file
*file
, unsigned int cmd
,
2223 struct btrfs_ioctl_vol_args
*vol
;
2224 struct btrfs_fs_devices
*fs_devices
;
2227 if (!capable(CAP_SYS_ADMIN
))
2230 vol
= memdup_user((void __user
*)arg
, sizeof(*vol
));
2232 return PTR_ERR(vol
);
2235 case BTRFS_IOC_SCAN_DEV
:
2236 ret
= btrfs_scan_one_device(vol
->name
, FMODE_READ
,
2237 &btrfs_root_fs_type
, &fs_devices
);
2239 case BTRFS_IOC_DEVICES_READY
:
2240 ret
= btrfs_scan_one_device(vol
->name
, FMODE_READ
,
2241 &btrfs_root_fs_type
, &fs_devices
);
2244 ret
= !(fs_devices
->num_devices
== fs_devices
->total_devices
);
2246 case BTRFS_IOC_GET_SUPPORTED_FEATURES
:
2247 ret
= btrfs_ioctl_get_supported_features((void __user
*)arg
);
2255 static int btrfs_freeze(struct super_block
*sb
)
2257 struct btrfs_trans_handle
*trans
;
2258 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2259 struct btrfs_root
*root
= fs_info
->tree_root
;
2261 set_bit(BTRFS_FS_FROZEN
, &fs_info
->flags
);
2263 * We don't need a barrier here, we'll wait for any transaction that
2264 * could be in progress on other threads (and do delayed iputs that
2265 * we want to avoid on a frozen filesystem), or do the commit
2268 trans
= btrfs_attach_transaction_barrier(root
);
2269 if (IS_ERR(trans
)) {
2270 /* no transaction, don't bother */
2271 if (PTR_ERR(trans
) == -ENOENT
)
2273 return PTR_ERR(trans
);
2275 return btrfs_commit_transaction(trans
);
2278 static int btrfs_unfreeze(struct super_block
*sb
)
2280 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2282 clear_bit(BTRFS_FS_FROZEN
, &fs_info
->flags
);
2286 static int btrfs_show_devname(struct seq_file
*m
, struct dentry
*root
)
2288 struct btrfs_fs_info
*fs_info
= btrfs_sb(root
->d_sb
);
2289 struct btrfs_fs_devices
*cur_devices
;
2290 struct btrfs_device
*dev
, *first_dev
= NULL
;
2291 struct list_head
*head
;
2292 struct rcu_string
*name
;
2295 * Lightweight locking of the devices. We should not need
2296 * device_list_mutex here as we only read the device data and the list
2297 * is protected by RCU. Even if a device is deleted during the list
2298 * traversals, we'll get valid data, the freeing callback will wait at
2299 * least until until the rcu_read_unlock.
2302 cur_devices
= fs_info
->fs_devices
;
2303 while (cur_devices
) {
2304 head
= &cur_devices
->devices
;
2305 list_for_each_entry_rcu(dev
, head
, dev_list
) {
2306 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
2310 if (!first_dev
|| dev
->devid
< first_dev
->devid
)
2313 cur_devices
= cur_devices
->seed
;
2317 name
= rcu_dereference(first_dev
->name
);
2318 seq_escape(m
, name
->str
, " \t\n\\");
2326 static const struct super_operations btrfs_super_ops
= {
2327 .drop_inode
= btrfs_drop_inode
,
2328 .evict_inode
= btrfs_evict_inode
,
2329 .put_super
= btrfs_put_super
,
2330 .sync_fs
= btrfs_sync_fs
,
2331 .show_options
= btrfs_show_options
,
2332 .show_devname
= btrfs_show_devname
,
2333 .write_inode
= btrfs_write_inode
,
2334 .alloc_inode
= btrfs_alloc_inode
,
2335 .destroy_inode
= btrfs_destroy_inode
,
2336 .statfs
= btrfs_statfs
,
2337 .remount_fs
= btrfs_remount
,
2338 .freeze_fs
= btrfs_freeze
,
2339 .unfreeze_fs
= btrfs_unfreeze
,
2342 static const struct file_operations btrfs_ctl_fops
= {
2343 .open
= btrfs_control_open
,
2344 .unlocked_ioctl
= btrfs_control_ioctl
,
2345 .compat_ioctl
= btrfs_control_ioctl
,
2346 .owner
= THIS_MODULE
,
2347 .llseek
= noop_llseek
,
2350 static struct miscdevice btrfs_misc
= {
2351 .minor
= BTRFS_MINOR
,
2352 .name
= "btrfs-control",
2353 .fops
= &btrfs_ctl_fops
2356 MODULE_ALIAS_MISCDEV(BTRFS_MINOR
);
2357 MODULE_ALIAS("devname:btrfs-control");
2359 static int __init
btrfs_interface_init(void)
2361 return misc_register(&btrfs_misc
);
2364 static __cold
void btrfs_interface_exit(void)
2366 misc_deregister(&btrfs_misc
);
2369 static void __init
btrfs_print_mod_info(void)
2371 pr_info("Btrfs loaded, crc32c=%s"
2372 #ifdef CONFIG_BTRFS_DEBUG
2375 #ifdef CONFIG_BTRFS_ASSERT
2378 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2379 ", integrity-checker=on"
2381 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2388 static int __init
init_btrfs_fs(void)
2394 err
= btrfs_init_sysfs();
2398 btrfs_init_compress();
2400 err
= btrfs_init_cachep();
2404 err
= extent_io_init();
2408 err
= extent_map_init();
2410 goto free_extent_io
;
2412 err
= ordered_data_init();
2414 goto free_extent_map
;
2416 err
= btrfs_delayed_inode_init();
2418 goto free_ordered_data
;
2420 err
= btrfs_auto_defrag_init();
2422 goto free_delayed_inode
;
2424 err
= btrfs_delayed_ref_init();
2426 goto free_auto_defrag
;
2428 err
= btrfs_prelim_ref_init();
2430 goto free_delayed_ref
;
2432 err
= btrfs_end_io_wq_init();
2434 goto free_prelim_ref
;
2436 err
= btrfs_interface_init();
2438 goto free_end_io_wq
;
2440 btrfs_init_lockdep();
2442 btrfs_print_mod_info();
2444 err
= btrfs_run_sanity_tests();
2446 goto unregister_ioctl
;
2448 err
= register_filesystem(&btrfs_fs_type
);
2450 goto unregister_ioctl
;
2455 btrfs_interface_exit();
2457 btrfs_end_io_wq_exit();
2459 btrfs_prelim_ref_exit();
2461 btrfs_delayed_ref_exit();
2463 btrfs_auto_defrag_exit();
2465 btrfs_delayed_inode_exit();
2467 ordered_data_exit();
2473 btrfs_destroy_cachep();
2475 btrfs_exit_compress();
2481 static void __exit
exit_btrfs_fs(void)
2483 btrfs_destroy_cachep();
2484 btrfs_delayed_ref_exit();
2485 btrfs_auto_defrag_exit();
2486 btrfs_delayed_inode_exit();
2487 btrfs_prelim_ref_exit();
2488 ordered_data_exit();
2491 btrfs_interface_exit();
2492 btrfs_end_io_wq_exit();
2493 unregister_filesystem(&btrfs_fs_type
);
2495 btrfs_cleanup_fs_uuids();
2496 btrfs_exit_compress();
2499 late_initcall(init_btrfs_fs
);
2500 module_exit(exit_btrfs_fs
)
2502 MODULE_LICENSE("GPL");