3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <net/sock.h>
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
126 #include <trace/events/kmem.h>
128 #include "internal.h"
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 #ifdef CONFIG_DEBUG_SLAB
145 #define FORCED_DEBUG 1
149 #define FORCED_DEBUG 0
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t
;
166 typedef unsigned short freelist_idx_t
;
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
172 * true if a page was allocated from pfmemalloc reserves for network-based
175 static bool pfmemalloc_active __read_mostly
;
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
185 * The limit is stored in the per-cpu structure to reduce the data cache
192 unsigned int batchcount
;
193 unsigned int touched
;
195 * Must have this definition in here for the proper
196 * alignment of array_cache. Also simplifies accessing
199 * Entries should not be directly dereferenced as
200 * entries belonging to slabs marked pfmemalloc will
201 * have the lower bits set SLAB_OBJ_PFMEMALLOC
207 struct array_cache ac
;
210 #define SLAB_OBJ_PFMEMALLOC 1
211 static inline bool is_obj_pfmemalloc(void *objp
)
213 return (unsigned long)objp
& SLAB_OBJ_PFMEMALLOC
;
216 static inline void set_obj_pfmemalloc(void **objp
)
218 *objp
= (void *)((unsigned long)*objp
| SLAB_OBJ_PFMEMALLOC
);
222 static inline void clear_obj_pfmemalloc(void **objp
)
224 *objp
= (void *)((unsigned long)*objp
& ~SLAB_OBJ_PFMEMALLOC
);
228 * bootstrap: The caches do not work without cpuarrays anymore, but the
229 * cpuarrays are allocated from the generic caches...
231 #define BOOT_CPUCACHE_ENTRIES 1
232 struct arraycache_init
{
233 struct array_cache cache
;
234 void *entries
[BOOT_CPUCACHE_ENTRIES
];
238 * Need this for bootstrapping a per node allocator.
240 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241 static struct kmem_cache_node __initdata init_kmem_cache_node
[NUM_INIT_LISTS
];
242 #define CACHE_CACHE 0
243 #define SIZE_NODE (MAX_NUMNODES)
245 static int drain_freelist(struct kmem_cache
*cache
,
246 struct kmem_cache_node
*n
, int tofree
);
247 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
248 int node
, struct list_head
*list
);
249 static void slabs_destroy(struct kmem_cache
*cachep
, struct list_head
*list
);
250 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
);
251 static void cache_reap(struct work_struct
*unused
);
253 static int slab_early_init
= 1;
255 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
257 static void kmem_cache_node_init(struct kmem_cache_node
*parent
)
259 INIT_LIST_HEAD(&parent
->slabs_full
);
260 INIT_LIST_HEAD(&parent
->slabs_partial
);
261 INIT_LIST_HEAD(&parent
->slabs_free
);
262 parent
->shared
= NULL
;
263 parent
->alien
= NULL
;
264 parent
->colour_next
= 0;
265 spin_lock_init(&parent
->list_lock
);
266 parent
->free_objects
= 0;
267 parent
->free_touched
= 0;
270 #define MAKE_LIST(cachep, listp, slab, nodeid) \
272 INIT_LIST_HEAD(listp); \
273 list_splice(&get_node(cachep, nodeid)->slab, listp); \
276 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
278 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
279 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
280 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
283 #define CFLGS_OFF_SLAB (0x80000000UL)
284 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
286 #define BATCHREFILL_LIMIT 16
288 * Optimization question: fewer reaps means less probability for unnessary
289 * cpucache drain/refill cycles.
291 * OTOH the cpuarrays can contain lots of objects,
292 * which could lock up otherwise freeable slabs.
294 #define REAPTIMEOUT_AC (2*HZ)
295 #define REAPTIMEOUT_NODE (4*HZ)
298 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
299 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
300 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
301 #define STATS_INC_GROWN(x) ((x)->grown++)
302 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
303 #define STATS_SET_HIGH(x) \
305 if ((x)->num_active > (x)->high_mark) \
306 (x)->high_mark = (x)->num_active; \
308 #define STATS_INC_ERR(x) ((x)->errors++)
309 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
310 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
311 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
312 #define STATS_SET_FREEABLE(x, i) \
314 if ((x)->max_freeable < i) \
315 (x)->max_freeable = i; \
317 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
318 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
319 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
320 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
322 #define STATS_INC_ACTIVE(x) do { } while (0)
323 #define STATS_DEC_ACTIVE(x) do { } while (0)
324 #define STATS_INC_ALLOCED(x) do { } while (0)
325 #define STATS_INC_GROWN(x) do { } while (0)
326 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
327 #define STATS_SET_HIGH(x) do { } while (0)
328 #define STATS_INC_ERR(x) do { } while (0)
329 #define STATS_INC_NODEALLOCS(x) do { } while (0)
330 #define STATS_INC_NODEFREES(x) do { } while (0)
331 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
332 #define STATS_SET_FREEABLE(x, i) do { } while (0)
333 #define STATS_INC_ALLOCHIT(x) do { } while (0)
334 #define STATS_INC_ALLOCMISS(x) do { } while (0)
335 #define STATS_INC_FREEHIT(x) do { } while (0)
336 #define STATS_INC_FREEMISS(x) do { } while (0)
342 * memory layout of objects:
344 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
345 * the end of an object is aligned with the end of the real
346 * allocation. Catches writes behind the end of the allocation.
347 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
349 * cachep->obj_offset: The real object.
350 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
351 * cachep->size - 1* BYTES_PER_WORD: last caller address
352 * [BYTES_PER_WORD long]
354 static int obj_offset(struct kmem_cache
*cachep
)
356 return cachep
->obj_offset
;
359 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
361 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
362 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
363 sizeof(unsigned long long));
366 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
368 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
369 if (cachep
->flags
& SLAB_STORE_USER
)
370 return (unsigned long long *)(objp
+ cachep
->size
-
371 sizeof(unsigned long long) -
373 return (unsigned long long *) (objp
+ cachep
->size
-
374 sizeof(unsigned long long));
377 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
379 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
380 return (void **)(objp
+ cachep
->size
- BYTES_PER_WORD
);
385 #define obj_offset(x) 0
386 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
387 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
388 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
392 #define OBJECT_FREE (0)
393 #define OBJECT_ACTIVE (1)
395 #ifdef CONFIG_DEBUG_SLAB_LEAK
397 static void set_obj_status(struct page
*page
, int idx
, int val
)
401 struct kmem_cache
*cachep
= page
->slab_cache
;
403 freelist_size
= cachep
->num
* sizeof(freelist_idx_t
);
404 status
= (char *)page
->freelist
+ freelist_size
;
408 static inline unsigned int get_obj_status(struct page
*page
, int idx
)
412 struct kmem_cache
*cachep
= page
->slab_cache
;
414 freelist_size
= cachep
->num
* sizeof(freelist_idx_t
);
415 status
= (char *)page
->freelist
+ freelist_size
;
421 static inline void set_obj_status(struct page
*page
, int idx
, int val
) {}
426 * Do not go above this order unless 0 objects fit into the slab or
427 * overridden on the command line.
429 #define SLAB_MAX_ORDER_HI 1
430 #define SLAB_MAX_ORDER_LO 0
431 static int slab_max_order
= SLAB_MAX_ORDER_LO
;
432 static bool slab_max_order_set __initdata
;
434 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
436 struct page
*page
= virt_to_head_page(obj
);
437 return page
->slab_cache
;
440 static inline void *index_to_obj(struct kmem_cache
*cache
, struct page
*page
,
443 return page
->s_mem
+ cache
->size
* idx
;
447 * We want to avoid an expensive divide : (offset / cache->size)
448 * Using the fact that size is a constant for a particular cache,
449 * we can replace (offset / cache->size) by
450 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
452 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
453 const struct page
*page
, void *obj
)
455 u32 offset
= (obj
- page
->s_mem
);
456 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
459 /* internal cache of cache description objs */
460 static struct kmem_cache kmem_cache_boot
= {
462 .limit
= BOOT_CPUCACHE_ENTRIES
,
464 .size
= sizeof(struct kmem_cache
),
465 .name
= "kmem_cache",
468 #define BAD_ALIEN_MAGIC 0x01020304ul
470 static DEFINE_PER_CPU(struct delayed_work
, slab_reap_work
);
472 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
474 return this_cpu_ptr(cachep
->cpu_cache
);
477 static size_t calculate_freelist_size(int nr_objs
, size_t align
)
479 size_t freelist_size
;
481 freelist_size
= nr_objs
* sizeof(freelist_idx_t
);
482 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK
))
483 freelist_size
+= nr_objs
* sizeof(char);
486 freelist_size
= ALIGN(freelist_size
, align
);
488 return freelist_size
;
491 static int calculate_nr_objs(size_t slab_size
, size_t buffer_size
,
492 size_t idx_size
, size_t align
)
495 size_t remained_size
;
496 size_t freelist_size
;
499 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK
))
500 extra_space
= sizeof(char);
502 * Ignore padding for the initial guess. The padding
503 * is at most @align-1 bytes, and @buffer_size is at
504 * least @align. In the worst case, this result will
505 * be one greater than the number of objects that fit
506 * into the memory allocation when taking the padding
509 nr_objs
= slab_size
/ (buffer_size
+ idx_size
+ extra_space
);
512 * This calculated number will be either the right
513 * amount, or one greater than what we want.
515 remained_size
= slab_size
- nr_objs
* buffer_size
;
516 freelist_size
= calculate_freelist_size(nr_objs
, align
);
517 if (remained_size
< freelist_size
)
524 * Calculate the number of objects and left-over bytes for a given buffer size.
526 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
527 size_t align
, int flags
, size_t *left_over
,
532 size_t slab_size
= PAGE_SIZE
<< gfporder
;
535 * The slab management structure can be either off the slab or
536 * on it. For the latter case, the memory allocated for a
539 * - One unsigned int for each object
540 * - Padding to respect alignment of @align
541 * - @buffer_size bytes for each object
543 * If the slab management structure is off the slab, then the
544 * alignment will already be calculated into the size. Because
545 * the slabs are all pages aligned, the objects will be at the
546 * correct alignment when allocated.
548 if (flags
& CFLGS_OFF_SLAB
) {
550 nr_objs
= slab_size
/ buffer_size
;
553 nr_objs
= calculate_nr_objs(slab_size
, buffer_size
,
554 sizeof(freelist_idx_t
), align
);
555 mgmt_size
= calculate_freelist_size(nr_objs
, align
);
558 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
562 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
564 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
567 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
568 function
, cachep
->name
, msg
);
570 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
575 * By default on NUMA we use alien caches to stage the freeing of
576 * objects allocated from other nodes. This causes massive memory
577 * inefficiencies when using fake NUMA setup to split memory into a
578 * large number of small nodes, so it can be disabled on the command
582 static int use_alien_caches __read_mostly
= 1;
583 static int __init
noaliencache_setup(char *s
)
585 use_alien_caches
= 0;
588 __setup("noaliencache", noaliencache_setup
);
590 static int __init
slab_max_order_setup(char *str
)
592 get_option(&str
, &slab_max_order
);
593 slab_max_order
= slab_max_order
< 0 ? 0 :
594 min(slab_max_order
, MAX_ORDER
- 1);
595 slab_max_order_set
= true;
599 __setup("slab_max_order=", slab_max_order_setup
);
603 * Special reaping functions for NUMA systems called from cache_reap().
604 * These take care of doing round robin flushing of alien caches (containing
605 * objects freed on different nodes from which they were allocated) and the
606 * flushing of remote pcps by calling drain_node_pages.
608 static DEFINE_PER_CPU(unsigned long, slab_reap_node
);
610 static void init_reap_node(int cpu
)
614 node
= next_node(cpu_to_mem(cpu
), node_online_map
);
615 if (node
== MAX_NUMNODES
)
616 node
= first_node(node_online_map
);
618 per_cpu(slab_reap_node
, cpu
) = node
;
621 static void next_reap_node(void)
623 int node
= __this_cpu_read(slab_reap_node
);
625 node
= next_node(node
, node_online_map
);
626 if (unlikely(node
>= MAX_NUMNODES
))
627 node
= first_node(node_online_map
);
628 __this_cpu_write(slab_reap_node
, node
);
632 #define init_reap_node(cpu) do { } while (0)
633 #define next_reap_node(void) do { } while (0)
637 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
638 * via the workqueue/eventd.
639 * Add the CPU number into the expiration time to minimize the possibility of
640 * the CPUs getting into lockstep and contending for the global cache chain
643 static void start_cpu_timer(int cpu
)
645 struct delayed_work
*reap_work
= &per_cpu(slab_reap_work
, cpu
);
648 * When this gets called from do_initcalls via cpucache_init(),
649 * init_workqueues() has already run, so keventd will be setup
652 if (keventd_up() && reap_work
->work
.func
== NULL
) {
654 INIT_DEFERRABLE_WORK(reap_work
, cache_reap
);
655 schedule_delayed_work_on(cpu
, reap_work
,
656 __round_jiffies_relative(HZ
, cpu
));
660 static void init_arraycache(struct array_cache
*ac
, int limit
, int batch
)
663 * The array_cache structures contain pointers to free object.
664 * However, when such objects are allocated or transferred to another
665 * cache the pointers are not cleared and they could be counted as
666 * valid references during a kmemleak scan. Therefore, kmemleak must
667 * not scan such objects.
669 kmemleak_no_scan(ac
);
673 ac
->batchcount
= batch
;
678 static struct array_cache
*alloc_arraycache(int node
, int entries
,
679 int batchcount
, gfp_t gfp
)
681 size_t memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
682 struct array_cache
*ac
= NULL
;
684 ac
= kmalloc_node(memsize
, gfp
, node
);
685 init_arraycache(ac
, entries
, batchcount
);
689 static inline bool is_slab_pfmemalloc(struct page
*page
)
691 return PageSlabPfmemalloc(page
);
694 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
695 static void recheck_pfmemalloc_active(struct kmem_cache
*cachep
,
696 struct array_cache
*ac
)
698 struct kmem_cache_node
*n
= get_node(cachep
, numa_mem_id());
702 if (!pfmemalloc_active
)
705 spin_lock_irqsave(&n
->list_lock
, flags
);
706 list_for_each_entry(page
, &n
->slabs_full
, lru
)
707 if (is_slab_pfmemalloc(page
))
710 list_for_each_entry(page
, &n
->slabs_partial
, lru
)
711 if (is_slab_pfmemalloc(page
))
714 list_for_each_entry(page
, &n
->slabs_free
, lru
)
715 if (is_slab_pfmemalloc(page
))
718 pfmemalloc_active
= false;
720 spin_unlock_irqrestore(&n
->list_lock
, flags
);
723 static void *__ac_get_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
724 gfp_t flags
, bool force_refill
)
727 void *objp
= ac
->entry
[--ac
->avail
];
729 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
730 if (unlikely(is_obj_pfmemalloc(objp
))) {
731 struct kmem_cache_node
*n
;
733 if (gfp_pfmemalloc_allowed(flags
)) {
734 clear_obj_pfmemalloc(&objp
);
738 /* The caller cannot use PFMEMALLOC objects, find another one */
739 for (i
= 0; i
< ac
->avail
; i
++) {
740 /* If a !PFMEMALLOC object is found, swap them */
741 if (!is_obj_pfmemalloc(ac
->entry
[i
])) {
743 ac
->entry
[i
] = ac
->entry
[ac
->avail
];
744 ac
->entry
[ac
->avail
] = objp
;
750 * If there are empty slabs on the slabs_free list and we are
751 * being forced to refill the cache, mark this one !pfmemalloc.
753 n
= get_node(cachep
, numa_mem_id());
754 if (!list_empty(&n
->slabs_free
) && force_refill
) {
755 struct page
*page
= virt_to_head_page(objp
);
756 ClearPageSlabPfmemalloc(page
);
757 clear_obj_pfmemalloc(&objp
);
758 recheck_pfmemalloc_active(cachep
, ac
);
762 /* No !PFMEMALLOC objects available */
770 static inline void *ac_get_obj(struct kmem_cache
*cachep
,
771 struct array_cache
*ac
, gfp_t flags
, bool force_refill
)
775 if (unlikely(sk_memalloc_socks()))
776 objp
= __ac_get_obj(cachep
, ac
, flags
, force_refill
);
778 objp
= ac
->entry
[--ac
->avail
];
783 static noinline
void *__ac_put_obj(struct kmem_cache
*cachep
,
784 struct array_cache
*ac
, void *objp
)
786 if (unlikely(pfmemalloc_active
)) {
787 /* Some pfmemalloc slabs exist, check if this is one */
788 struct page
*page
= virt_to_head_page(objp
);
789 if (PageSlabPfmemalloc(page
))
790 set_obj_pfmemalloc(&objp
);
796 static inline void ac_put_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
799 if (unlikely(sk_memalloc_socks()))
800 objp
= __ac_put_obj(cachep
, ac
, objp
);
802 ac
->entry
[ac
->avail
++] = objp
;
806 * Transfer objects in one arraycache to another.
807 * Locking must be handled by the caller.
809 * Return the number of entries transferred.
811 static int transfer_objects(struct array_cache
*to
,
812 struct array_cache
*from
, unsigned int max
)
814 /* Figure out how many entries to transfer */
815 int nr
= min3(from
->avail
, max
, to
->limit
- to
->avail
);
820 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
830 #define drain_alien_cache(cachep, alien) do { } while (0)
831 #define reap_alien(cachep, n) do { } while (0)
833 static inline struct alien_cache
**alloc_alien_cache(int node
,
834 int limit
, gfp_t gfp
)
836 return (struct alien_cache
**)BAD_ALIEN_MAGIC
;
839 static inline void free_alien_cache(struct alien_cache
**ac_ptr
)
843 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
848 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
854 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
855 gfp_t flags
, int nodeid
)
860 static inline gfp_t
gfp_exact_node(gfp_t flags
)
865 #else /* CONFIG_NUMA */
867 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
868 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
870 static struct alien_cache
*__alloc_alien_cache(int node
, int entries
,
871 int batch
, gfp_t gfp
)
873 size_t memsize
= sizeof(void *) * entries
+ sizeof(struct alien_cache
);
874 struct alien_cache
*alc
= NULL
;
876 alc
= kmalloc_node(memsize
, gfp
, node
);
877 init_arraycache(&alc
->ac
, entries
, batch
);
878 spin_lock_init(&alc
->lock
);
882 static struct alien_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
884 struct alien_cache
**alc_ptr
;
885 size_t memsize
= sizeof(void *) * nr_node_ids
;
890 alc_ptr
= kzalloc_node(memsize
, gfp
, node
);
895 if (i
== node
|| !node_online(i
))
897 alc_ptr
[i
] = __alloc_alien_cache(node
, limit
, 0xbaadf00d, gfp
);
899 for (i
--; i
>= 0; i
--)
908 static void free_alien_cache(struct alien_cache
**alc_ptr
)
919 static void __drain_alien_cache(struct kmem_cache
*cachep
,
920 struct array_cache
*ac
, int node
,
921 struct list_head
*list
)
923 struct kmem_cache_node
*n
= get_node(cachep
, node
);
926 spin_lock(&n
->list_lock
);
928 * Stuff objects into the remote nodes shared array first.
929 * That way we could avoid the overhead of putting the objects
930 * into the free lists and getting them back later.
933 transfer_objects(n
->shared
, ac
, ac
->limit
);
935 free_block(cachep
, ac
->entry
, ac
->avail
, node
, list
);
937 spin_unlock(&n
->list_lock
);
942 * Called from cache_reap() to regularly drain alien caches round robin.
944 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
)
946 int node
= __this_cpu_read(slab_reap_node
);
949 struct alien_cache
*alc
= n
->alien
[node
];
950 struct array_cache
*ac
;
954 if (ac
->avail
&& spin_trylock_irq(&alc
->lock
)) {
957 __drain_alien_cache(cachep
, ac
, node
, &list
);
958 spin_unlock_irq(&alc
->lock
);
959 slabs_destroy(cachep
, &list
);
965 static void drain_alien_cache(struct kmem_cache
*cachep
,
966 struct alien_cache
**alien
)
969 struct alien_cache
*alc
;
970 struct array_cache
*ac
;
973 for_each_online_node(i
) {
979 spin_lock_irqsave(&alc
->lock
, flags
);
980 __drain_alien_cache(cachep
, ac
, i
, &list
);
981 spin_unlock_irqrestore(&alc
->lock
, flags
);
982 slabs_destroy(cachep
, &list
);
987 static int __cache_free_alien(struct kmem_cache
*cachep
, void *objp
,
988 int node
, int page_node
)
990 struct kmem_cache_node
*n
;
991 struct alien_cache
*alien
= NULL
;
992 struct array_cache
*ac
;
995 n
= get_node(cachep
, node
);
996 STATS_INC_NODEFREES(cachep
);
997 if (n
->alien
&& n
->alien
[page_node
]) {
998 alien
= n
->alien
[page_node
];
1000 spin_lock(&alien
->lock
);
1001 if (unlikely(ac
->avail
== ac
->limit
)) {
1002 STATS_INC_ACOVERFLOW(cachep
);
1003 __drain_alien_cache(cachep
, ac
, page_node
, &list
);
1005 ac_put_obj(cachep
, ac
, objp
);
1006 spin_unlock(&alien
->lock
);
1007 slabs_destroy(cachep
, &list
);
1009 n
= get_node(cachep
, page_node
);
1010 spin_lock(&n
->list_lock
);
1011 free_block(cachep
, &objp
, 1, page_node
, &list
);
1012 spin_unlock(&n
->list_lock
);
1013 slabs_destroy(cachep
, &list
);
1018 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1020 int page_node
= page_to_nid(virt_to_page(objp
));
1021 int node
= numa_mem_id();
1023 * Make sure we are not freeing a object from another node to the array
1024 * cache on this cpu.
1026 if (likely(node
== page_node
))
1029 return __cache_free_alien(cachep
, objp
, node
, page_node
);
1033 * Construct gfp mask to allocate from a specific node but do not invoke reclaim
1034 * or warn about failures.
1036 static inline gfp_t
gfp_exact_node(gfp_t flags
)
1038 return (flags
| __GFP_THISNODE
| __GFP_NOWARN
) & ~__GFP_WAIT
;
1043 * Allocates and initializes node for a node on each slab cache, used for
1044 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1045 * will be allocated off-node since memory is not yet online for the new node.
1046 * When hotplugging memory or a cpu, existing node are not replaced if
1049 * Must hold slab_mutex.
1051 static int init_cache_node_node(int node
)
1053 struct kmem_cache
*cachep
;
1054 struct kmem_cache_node
*n
;
1055 const size_t memsize
= sizeof(struct kmem_cache_node
);
1057 list_for_each_entry(cachep
, &slab_caches
, list
) {
1059 * Set up the kmem_cache_node for cpu before we can
1060 * begin anything. Make sure some other cpu on this
1061 * node has not already allocated this
1063 n
= get_node(cachep
, node
);
1065 n
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1068 kmem_cache_node_init(n
);
1069 n
->next_reap
= jiffies
+ REAPTIMEOUT_NODE
+
1070 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
1073 * The kmem_cache_nodes don't come and go as CPUs
1074 * come and go. slab_mutex is sufficient
1077 cachep
->node
[node
] = n
;
1080 spin_lock_irq(&n
->list_lock
);
1082 (1 + nr_cpus_node(node
)) *
1083 cachep
->batchcount
+ cachep
->num
;
1084 spin_unlock_irq(&n
->list_lock
);
1089 static inline int slabs_tofree(struct kmem_cache
*cachep
,
1090 struct kmem_cache_node
*n
)
1092 return (n
->free_objects
+ cachep
->num
- 1) / cachep
->num
;
1095 static void cpuup_canceled(long cpu
)
1097 struct kmem_cache
*cachep
;
1098 struct kmem_cache_node
*n
= NULL
;
1099 int node
= cpu_to_mem(cpu
);
1100 const struct cpumask
*mask
= cpumask_of_node(node
);
1102 list_for_each_entry(cachep
, &slab_caches
, list
) {
1103 struct array_cache
*nc
;
1104 struct array_cache
*shared
;
1105 struct alien_cache
**alien
;
1108 n
= get_node(cachep
, node
);
1112 spin_lock_irq(&n
->list_lock
);
1114 /* Free limit for this kmem_cache_node */
1115 n
->free_limit
-= cachep
->batchcount
;
1117 /* cpu is dead; no one can alloc from it. */
1118 nc
= per_cpu_ptr(cachep
->cpu_cache
, cpu
);
1120 free_block(cachep
, nc
->entry
, nc
->avail
, node
, &list
);
1124 if (!cpumask_empty(mask
)) {
1125 spin_unlock_irq(&n
->list_lock
);
1131 free_block(cachep
, shared
->entry
,
1132 shared
->avail
, node
, &list
);
1139 spin_unlock_irq(&n
->list_lock
);
1143 drain_alien_cache(cachep
, alien
);
1144 free_alien_cache(alien
);
1148 slabs_destroy(cachep
, &list
);
1151 * In the previous loop, all the objects were freed to
1152 * the respective cache's slabs, now we can go ahead and
1153 * shrink each nodelist to its limit.
1155 list_for_each_entry(cachep
, &slab_caches
, list
) {
1156 n
= get_node(cachep
, node
);
1159 drain_freelist(cachep
, n
, slabs_tofree(cachep
, n
));
1163 static int cpuup_prepare(long cpu
)
1165 struct kmem_cache
*cachep
;
1166 struct kmem_cache_node
*n
= NULL
;
1167 int node
= cpu_to_mem(cpu
);
1171 * We need to do this right in the beginning since
1172 * alloc_arraycache's are going to use this list.
1173 * kmalloc_node allows us to add the slab to the right
1174 * kmem_cache_node and not this cpu's kmem_cache_node
1176 err
= init_cache_node_node(node
);
1181 * Now we can go ahead with allocating the shared arrays and
1184 list_for_each_entry(cachep
, &slab_caches
, list
) {
1185 struct array_cache
*shared
= NULL
;
1186 struct alien_cache
**alien
= NULL
;
1188 if (cachep
->shared
) {
1189 shared
= alloc_arraycache(node
,
1190 cachep
->shared
* cachep
->batchcount
,
1191 0xbaadf00d, GFP_KERNEL
);
1195 if (use_alien_caches
) {
1196 alien
= alloc_alien_cache(node
, cachep
->limit
, GFP_KERNEL
);
1202 n
= get_node(cachep
, node
);
1205 spin_lock_irq(&n
->list_lock
);
1208 * We are serialised from CPU_DEAD or
1209 * CPU_UP_CANCELLED by the cpucontrol lock
1220 spin_unlock_irq(&n
->list_lock
);
1222 free_alien_cache(alien
);
1227 cpuup_canceled(cpu
);
1231 static int cpuup_callback(struct notifier_block
*nfb
,
1232 unsigned long action
, void *hcpu
)
1234 long cpu
= (long)hcpu
;
1238 case CPU_UP_PREPARE
:
1239 case CPU_UP_PREPARE_FROZEN
:
1240 mutex_lock(&slab_mutex
);
1241 err
= cpuup_prepare(cpu
);
1242 mutex_unlock(&slab_mutex
);
1245 case CPU_ONLINE_FROZEN
:
1246 start_cpu_timer(cpu
);
1248 #ifdef CONFIG_HOTPLUG_CPU
1249 case CPU_DOWN_PREPARE
:
1250 case CPU_DOWN_PREPARE_FROZEN
:
1252 * Shutdown cache reaper. Note that the slab_mutex is
1253 * held so that if cache_reap() is invoked it cannot do
1254 * anything expensive but will only modify reap_work
1255 * and reschedule the timer.
1257 cancel_delayed_work_sync(&per_cpu(slab_reap_work
, cpu
));
1258 /* Now the cache_reaper is guaranteed to be not running. */
1259 per_cpu(slab_reap_work
, cpu
).work
.func
= NULL
;
1261 case CPU_DOWN_FAILED
:
1262 case CPU_DOWN_FAILED_FROZEN
:
1263 start_cpu_timer(cpu
);
1266 case CPU_DEAD_FROZEN
:
1268 * Even if all the cpus of a node are down, we don't free the
1269 * kmem_cache_node of any cache. This to avoid a race between
1270 * cpu_down, and a kmalloc allocation from another cpu for
1271 * memory from the node of the cpu going down. The node
1272 * structure is usually allocated from kmem_cache_create() and
1273 * gets destroyed at kmem_cache_destroy().
1277 case CPU_UP_CANCELED
:
1278 case CPU_UP_CANCELED_FROZEN
:
1279 mutex_lock(&slab_mutex
);
1280 cpuup_canceled(cpu
);
1281 mutex_unlock(&slab_mutex
);
1284 return notifier_from_errno(err
);
1287 static struct notifier_block cpucache_notifier
= {
1288 &cpuup_callback
, NULL
, 0
1291 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1293 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1294 * Returns -EBUSY if all objects cannot be drained so that the node is not
1297 * Must hold slab_mutex.
1299 static int __meminit
drain_cache_node_node(int node
)
1301 struct kmem_cache
*cachep
;
1304 list_for_each_entry(cachep
, &slab_caches
, list
) {
1305 struct kmem_cache_node
*n
;
1307 n
= get_node(cachep
, node
);
1311 drain_freelist(cachep
, n
, slabs_tofree(cachep
, n
));
1313 if (!list_empty(&n
->slabs_full
) ||
1314 !list_empty(&n
->slabs_partial
)) {
1322 static int __meminit
slab_memory_callback(struct notifier_block
*self
,
1323 unsigned long action
, void *arg
)
1325 struct memory_notify
*mnb
= arg
;
1329 nid
= mnb
->status_change_nid
;
1334 case MEM_GOING_ONLINE
:
1335 mutex_lock(&slab_mutex
);
1336 ret
= init_cache_node_node(nid
);
1337 mutex_unlock(&slab_mutex
);
1339 case MEM_GOING_OFFLINE
:
1340 mutex_lock(&slab_mutex
);
1341 ret
= drain_cache_node_node(nid
);
1342 mutex_unlock(&slab_mutex
);
1346 case MEM_CANCEL_ONLINE
:
1347 case MEM_CANCEL_OFFLINE
:
1351 return notifier_from_errno(ret
);
1353 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1356 * swap the static kmem_cache_node with kmalloced memory
1358 static void __init
init_list(struct kmem_cache
*cachep
, struct kmem_cache_node
*list
,
1361 struct kmem_cache_node
*ptr
;
1363 ptr
= kmalloc_node(sizeof(struct kmem_cache_node
), GFP_NOWAIT
, nodeid
);
1366 memcpy(ptr
, list
, sizeof(struct kmem_cache_node
));
1368 * Do not assume that spinlocks can be initialized via memcpy:
1370 spin_lock_init(&ptr
->list_lock
);
1372 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1373 cachep
->node
[nodeid
] = ptr
;
1377 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1378 * size of kmem_cache_node.
1380 static void __init
set_up_node(struct kmem_cache
*cachep
, int index
)
1384 for_each_online_node(node
) {
1385 cachep
->node
[node
] = &init_kmem_cache_node
[index
+ node
];
1386 cachep
->node
[node
]->next_reap
= jiffies
+
1388 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
1393 * Initialisation. Called after the page allocator have been initialised and
1394 * before smp_init().
1396 void __init
kmem_cache_init(void)
1400 BUILD_BUG_ON(sizeof(((struct page
*)NULL
)->lru
) <
1401 sizeof(struct rcu_head
));
1402 kmem_cache
= &kmem_cache_boot
;
1404 if (num_possible_nodes() == 1)
1405 use_alien_caches
= 0;
1407 for (i
= 0; i
< NUM_INIT_LISTS
; i
++)
1408 kmem_cache_node_init(&init_kmem_cache_node
[i
]);
1411 * Fragmentation resistance on low memory - only use bigger
1412 * page orders on machines with more than 32MB of memory if
1413 * not overridden on the command line.
1415 if (!slab_max_order_set
&& totalram_pages
> (32 << 20) >> PAGE_SHIFT
)
1416 slab_max_order
= SLAB_MAX_ORDER_HI
;
1418 /* Bootstrap is tricky, because several objects are allocated
1419 * from caches that do not exist yet:
1420 * 1) initialize the kmem_cache cache: it contains the struct
1421 * kmem_cache structures of all caches, except kmem_cache itself:
1422 * kmem_cache is statically allocated.
1423 * Initially an __init data area is used for the head array and the
1424 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1425 * array at the end of the bootstrap.
1426 * 2) Create the first kmalloc cache.
1427 * The struct kmem_cache for the new cache is allocated normally.
1428 * An __init data area is used for the head array.
1429 * 3) Create the remaining kmalloc caches, with minimally sized
1431 * 4) Replace the __init data head arrays for kmem_cache and the first
1432 * kmalloc cache with kmalloc allocated arrays.
1433 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1434 * the other cache's with kmalloc allocated memory.
1435 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1438 /* 1) create the kmem_cache */
1441 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1443 create_boot_cache(kmem_cache
, "kmem_cache",
1444 offsetof(struct kmem_cache
, node
) +
1445 nr_node_ids
* sizeof(struct kmem_cache_node
*),
1446 SLAB_HWCACHE_ALIGN
);
1447 list_add(&kmem_cache
->list
, &slab_caches
);
1448 slab_state
= PARTIAL
;
1451 * Initialize the caches that provide memory for the kmem_cache_node
1452 * structures first. Without this, further allocations will bug.
1454 kmalloc_caches
[INDEX_NODE
] = create_kmalloc_cache("kmalloc-node",
1455 kmalloc_size(INDEX_NODE
), ARCH_KMALLOC_FLAGS
);
1456 slab_state
= PARTIAL_NODE
;
1458 slab_early_init
= 0;
1460 /* 5) Replace the bootstrap kmem_cache_node */
1464 for_each_online_node(nid
) {
1465 init_list(kmem_cache
, &init_kmem_cache_node
[CACHE_CACHE
+ nid
], nid
);
1467 init_list(kmalloc_caches
[INDEX_NODE
],
1468 &init_kmem_cache_node
[SIZE_NODE
+ nid
], nid
);
1472 create_kmalloc_caches(ARCH_KMALLOC_FLAGS
);
1475 void __init
kmem_cache_init_late(void)
1477 struct kmem_cache
*cachep
;
1481 /* 6) resize the head arrays to their final sizes */
1482 mutex_lock(&slab_mutex
);
1483 list_for_each_entry(cachep
, &slab_caches
, list
)
1484 if (enable_cpucache(cachep
, GFP_NOWAIT
))
1486 mutex_unlock(&slab_mutex
);
1492 * Register a cpu startup notifier callback that initializes
1493 * cpu_cache_get for all new cpus
1495 register_cpu_notifier(&cpucache_notifier
);
1499 * Register a memory hotplug callback that initializes and frees
1502 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
1506 * The reap timers are started later, with a module init call: That part
1507 * of the kernel is not yet operational.
1511 static int __init
cpucache_init(void)
1516 * Register the timers that return unneeded pages to the page allocator
1518 for_each_online_cpu(cpu
)
1519 start_cpu_timer(cpu
);
1525 __initcall(cpucache_init
);
1527 static noinline
void
1528 slab_out_of_memory(struct kmem_cache
*cachep
, gfp_t gfpflags
, int nodeid
)
1531 struct kmem_cache_node
*n
;
1533 unsigned long flags
;
1535 static DEFINE_RATELIMIT_STATE(slab_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
1536 DEFAULT_RATELIMIT_BURST
);
1538 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slab_oom_rs
))
1542 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1544 printk(KERN_WARNING
" cache: %s, object size: %d, order: %d\n",
1545 cachep
->name
, cachep
->size
, cachep
->gfporder
);
1547 for_each_kmem_cache_node(cachep
, node
, n
) {
1548 unsigned long active_objs
= 0, num_objs
= 0, free_objects
= 0;
1549 unsigned long active_slabs
= 0, num_slabs
= 0;
1551 spin_lock_irqsave(&n
->list_lock
, flags
);
1552 list_for_each_entry(page
, &n
->slabs_full
, lru
) {
1553 active_objs
+= cachep
->num
;
1556 list_for_each_entry(page
, &n
->slabs_partial
, lru
) {
1557 active_objs
+= page
->active
;
1560 list_for_each_entry(page
, &n
->slabs_free
, lru
)
1563 free_objects
+= n
->free_objects
;
1564 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1566 num_slabs
+= active_slabs
;
1567 num_objs
= num_slabs
* cachep
->num
;
1569 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1570 node
, active_slabs
, num_slabs
, active_objs
, num_objs
,
1577 * Interface to system's page allocator. No need to hold the
1578 * kmem_cache_node ->list_lock.
1580 * If we requested dmaable memory, we will get it. Even if we
1581 * did not request dmaable memory, we might get it, but that
1582 * would be relatively rare and ignorable.
1584 static struct page
*kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
,
1590 flags
|= cachep
->allocflags
;
1591 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1592 flags
|= __GFP_RECLAIMABLE
;
1594 if (memcg_charge_slab(cachep
, flags
, cachep
->gfporder
))
1597 page
= alloc_pages_exact_node(nodeid
, flags
| __GFP_NOTRACK
, cachep
->gfporder
);
1599 memcg_uncharge_slab(cachep
, cachep
->gfporder
);
1600 slab_out_of_memory(cachep
, flags
, nodeid
);
1604 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1605 if (unlikely(page
->pfmemalloc
))
1606 pfmemalloc_active
= true;
1608 nr_pages
= (1 << cachep
->gfporder
);
1609 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1610 add_zone_page_state(page_zone(page
),
1611 NR_SLAB_RECLAIMABLE
, nr_pages
);
1613 add_zone_page_state(page_zone(page
),
1614 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1615 __SetPageSlab(page
);
1616 if (page
->pfmemalloc
)
1617 SetPageSlabPfmemalloc(page
);
1619 if (kmemcheck_enabled
&& !(cachep
->flags
& SLAB_NOTRACK
)) {
1620 kmemcheck_alloc_shadow(page
, cachep
->gfporder
, flags
, nodeid
);
1623 kmemcheck_mark_uninitialized_pages(page
, nr_pages
);
1625 kmemcheck_mark_unallocated_pages(page
, nr_pages
);
1632 * Interface to system's page release.
1634 static void kmem_freepages(struct kmem_cache
*cachep
, struct page
*page
)
1636 const unsigned long nr_freed
= (1 << cachep
->gfporder
);
1638 kmemcheck_free_shadow(page
, cachep
->gfporder
);
1640 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1641 sub_zone_page_state(page_zone(page
),
1642 NR_SLAB_RECLAIMABLE
, nr_freed
);
1644 sub_zone_page_state(page_zone(page
),
1645 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1647 BUG_ON(!PageSlab(page
));
1648 __ClearPageSlabPfmemalloc(page
);
1649 __ClearPageSlab(page
);
1650 page_mapcount_reset(page
);
1651 page
->mapping
= NULL
;
1653 if (current
->reclaim_state
)
1654 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1655 __free_pages(page
, cachep
->gfporder
);
1656 memcg_uncharge_slab(cachep
, cachep
->gfporder
);
1659 static void kmem_rcu_free(struct rcu_head
*head
)
1661 struct kmem_cache
*cachep
;
1664 page
= container_of(head
, struct page
, rcu_head
);
1665 cachep
= page
->slab_cache
;
1667 kmem_freepages(cachep
, page
);
1672 #ifdef CONFIG_DEBUG_PAGEALLOC
1673 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1674 unsigned long caller
)
1676 int size
= cachep
->object_size
;
1678 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1680 if (size
< 5 * sizeof(unsigned long))
1683 *addr
++ = 0x12345678;
1685 *addr
++ = smp_processor_id();
1686 size
-= 3 * sizeof(unsigned long);
1688 unsigned long *sptr
= &caller
;
1689 unsigned long svalue
;
1691 while (!kstack_end(sptr
)) {
1693 if (kernel_text_address(svalue
)) {
1695 size
-= sizeof(unsigned long);
1696 if (size
<= sizeof(unsigned long))
1702 *addr
++ = 0x87654321;
1706 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1708 int size
= cachep
->object_size
;
1709 addr
= &((char *)addr
)[obj_offset(cachep
)];
1711 memset(addr
, val
, size
);
1712 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1715 static void dump_line(char *data
, int offset
, int limit
)
1718 unsigned char error
= 0;
1721 printk(KERN_ERR
"%03x: ", offset
);
1722 for (i
= 0; i
< limit
; i
++) {
1723 if (data
[offset
+ i
] != POISON_FREE
) {
1724 error
= data
[offset
+ i
];
1728 print_hex_dump(KERN_CONT
, "", 0, 16, 1,
1729 &data
[offset
], limit
, 1);
1731 if (bad_count
== 1) {
1732 error
^= POISON_FREE
;
1733 if (!(error
& (error
- 1))) {
1734 printk(KERN_ERR
"Single bit error detected. Probably "
1737 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1740 printk(KERN_ERR
"Run a memory test tool.\n");
1749 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1754 if (cachep
->flags
& SLAB_RED_ZONE
) {
1755 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1756 *dbg_redzone1(cachep
, objp
),
1757 *dbg_redzone2(cachep
, objp
));
1760 if (cachep
->flags
& SLAB_STORE_USER
) {
1761 printk(KERN_ERR
"Last user: [<%p>](%pSR)\n",
1762 *dbg_userword(cachep
, objp
),
1763 *dbg_userword(cachep
, objp
));
1765 realobj
= (char *)objp
+ obj_offset(cachep
);
1766 size
= cachep
->object_size
;
1767 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1770 if (i
+ limit
> size
)
1772 dump_line(realobj
, i
, limit
);
1776 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1782 realobj
= (char *)objp
+ obj_offset(cachep
);
1783 size
= cachep
->object_size
;
1785 for (i
= 0; i
< size
; i
++) {
1786 char exp
= POISON_FREE
;
1789 if (realobj
[i
] != exp
) {
1795 "Slab corruption (%s): %s start=%p, len=%d\n",
1796 print_tainted(), cachep
->name
, realobj
, size
);
1797 print_objinfo(cachep
, objp
, 0);
1799 /* Hexdump the affected line */
1802 if (i
+ limit
> size
)
1804 dump_line(realobj
, i
, limit
);
1807 /* Limit to 5 lines */
1813 /* Print some data about the neighboring objects, if they
1816 struct page
*page
= virt_to_head_page(objp
);
1819 objnr
= obj_to_index(cachep
, page
, objp
);
1821 objp
= index_to_obj(cachep
, page
, objnr
- 1);
1822 realobj
= (char *)objp
+ obj_offset(cachep
);
1823 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1825 print_objinfo(cachep
, objp
, 2);
1827 if (objnr
+ 1 < cachep
->num
) {
1828 objp
= index_to_obj(cachep
, page
, objnr
+ 1);
1829 realobj
= (char *)objp
+ obj_offset(cachep
);
1830 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1832 print_objinfo(cachep
, objp
, 2);
1839 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
,
1843 for (i
= 0; i
< cachep
->num
; i
++) {
1844 void *objp
= index_to_obj(cachep
, page
, i
);
1846 if (cachep
->flags
& SLAB_POISON
) {
1847 #ifdef CONFIG_DEBUG_PAGEALLOC
1848 if (cachep
->size
% PAGE_SIZE
== 0 &&
1850 kernel_map_pages(virt_to_page(objp
),
1851 cachep
->size
/ PAGE_SIZE
, 1);
1853 check_poison_obj(cachep
, objp
);
1855 check_poison_obj(cachep
, objp
);
1858 if (cachep
->flags
& SLAB_RED_ZONE
) {
1859 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1860 slab_error(cachep
, "start of a freed object "
1862 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1863 slab_error(cachep
, "end of a freed object "
1869 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
,
1876 * slab_destroy - destroy and release all objects in a slab
1877 * @cachep: cache pointer being destroyed
1878 * @page: page pointer being destroyed
1880 * Destroy all the objs in a slab page, and release the mem back to the system.
1881 * Before calling the slab page must have been unlinked from the cache. The
1882 * kmem_cache_node ->list_lock is not held/needed.
1884 static void slab_destroy(struct kmem_cache
*cachep
, struct page
*page
)
1888 freelist
= page
->freelist
;
1889 slab_destroy_debugcheck(cachep
, page
);
1890 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1891 struct rcu_head
*head
;
1894 * RCU free overloads the RCU head over the LRU.
1895 * slab_page has been overloeaded over the LRU,
1896 * however it is not used from now on so that
1897 * we can use it safely.
1899 head
= (void *)&page
->rcu_head
;
1900 call_rcu(head
, kmem_rcu_free
);
1903 kmem_freepages(cachep
, page
);
1907 * From now on, we don't use freelist
1908 * although actual page can be freed in rcu context
1910 if (OFF_SLAB(cachep
))
1911 kmem_cache_free(cachep
->freelist_cache
, freelist
);
1914 static void slabs_destroy(struct kmem_cache
*cachep
, struct list_head
*list
)
1916 struct page
*page
, *n
;
1918 list_for_each_entry_safe(page
, n
, list
, lru
) {
1919 list_del(&page
->lru
);
1920 slab_destroy(cachep
, page
);
1925 * calculate_slab_order - calculate size (page order) of slabs
1926 * @cachep: pointer to the cache that is being created
1927 * @size: size of objects to be created in this cache.
1928 * @align: required alignment for the objects.
1929 * @flags: slab allocation flags
1931 * Also calculates the number of objects per slab.
1933 * This could be made much more intelligent. For now, try to avoid using
1934 * high order pages for slabs. When the gfp() functions are more friendly
1935 * towards high-order requests, this should be changed.
1937 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
1938 size_t size
, size_t align
, unsigned long flags
)
1940 unsigned long offslab_limit
;
1941 size_t left_over
= 0;
1944 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
1948 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
1952 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1953 if (num
> SLAB_OBJ_MAX_NUM
)
1956 if (flags
& CFLGS_OFF_SLAB
) {
1957 size_t freelist_size_per_obj
= sizeof(freelist_idx_t
);
1959 * Max number of objs-per-slab for caches which
1960 * use off-slab slabs. Needed to avoid a possible
1961 * looping condition in cache_grow().
1963 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK
))
1964 freelist_size_per_obj
+= sizeof(char);
1965 offslab_limit
= size
;
1966 offslab_limit
/= freelist_size_per_obj
;
1968 if (num
> offslab_limit
)
1972 /* Found something acceptable - save it away */
1974 cachep
->gfporder
= gfporder
;
1975 left_over
= remainder
;
1978 * A VFS-reclaimable slab tends to have most allocations
1979 * as GFP_NOFS and we really don't want to have to be allocating
1980 * higher-order pages when we are unable to shrink dcache.
1982 if (flags
& SLAB_RECLAIM_ACCOUNT
)
1986 * Large number of objects is good, but very large slabs are
1987 * currently bad for the gfp()s.
1989 if (gfporder
>= slab_max_order
)
1993 * Acceptable internal fragmentation?
1995 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2001 static struct array_cache __percpu
*alloc_kmem_cache_cpus(
2002 struct kmem_cache
*cachep
, int entries
, int batchcount
)
2006 struct array_cache __percpu
*cpu_cache
;
2008 size
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
2009 cpu_cache
= __alloc_percpu(size
, sizeof(void *));
2014 for_each_possible_cpu(cpu
) {
2015 init_arraycache(per_cpu_ptr(cpu_cache
, cpu
),
2016 entries
, batchcount
);
2022 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
2024 if (slab_state
>= FULL
)
2025 return enable_cpucache(cachep
, gfp
);
2027 cachep
->cpu_cache
= alloc_kmem_cache_cpus(cachep
, 1, 1);
2028 if (!cachep
->cpu_cache
)
2031 if (slab_state
== DOWN
) {
2032 /* Creation of first cache (kmem_cache). */
2033 set_up_node(kmem_cache
, CACHE_CACHE
);
2034 } else if (slab_state
== PARTIAL
) {
2035 /* For kmem_cache_node */
2036 set_up_node(cachep
, SIZE_NODE
);
2040 for_each_online_node(node
) {
2041 cachep
->node
[node
] = kmalloc_node(
2042 sizeof(struct kmem_cache_node
), gfp
, node
);
2043 BUG_ON(!cachep
->node
[node
]);
2044 kmem_cache_node_init(cachep
->node
[node
]);
2048 cachep
->node
[numa_mem_id()]->next_reap
=
2049 jiffies
+ REAPTIMEOUT_NODE
+
2050 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
2052 cpu_cache_get(cachep
)->avail
= 0;
2053 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2054 cpu_cache_get(cachep
)->batchcount
= 1;
2055 cpu_cache_get(cachep
)->touched
= 0;
2056 cachep
->batchcount
= 1;
2057 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2061 unsigned long kmem_cache_flags(unsigned long object_size
,
2062 unsigned long flags
, const char *name
,
2063 void (*ctor
)(void *))
2069 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
2070 unsigned long flags
, void (*ctor
)(void *))
2072 struct kmem_cache
*cachep
;
2074 cachep
= find_mergeable(size
, align
, flags
, name
, ctor
);
2079 * Adjust the object sizes so that we clear
2080 * the complete object on kzalloc.
2082 cachep
->object_size
= max_t(int, cachep
->object_size
, size
);
2088 * __kmem_cache_create - Create a cache.
2089 * @cachep: cache management descriptor
2090 * @flags: SLAB flags
2092 * Returns a ptr to the cache on success, NULL on failure.
2093 * Cannot be called within a int, but can be interrupted.
2094 * The @ctor is run when new pages are allocated by the cache.
2098 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2099 * to catch references to uninitialised memory.
2101 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2102 * for buffer overruns.
2104 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2105 * cacheline. This can be beneficial if you're counting cycles as closely
2109 __kmem_cache_create (struct kmem_cache
*cachep
, unsigned long flags
)
2111 size_t left_over
, freelist_size
;
2112 size_t ralign
= BYTES_PER_WORD
;
2115 size_t size
= cachep
->size
;
2120 * Enable redzoning and last user accounting, except for caches with
2121 * large objects, if the increased size would increase the object size
2122 * above the next power of two: caches with object sizes just above a
2123 * power of two have a significant amount of internal fragmentation.
2125 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2126 2 * sizeof(unsigned long long)))
2127 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2128 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2129 flags
|= SLAB_POISON
;
2131 if (flags
& SLAB_DESTROY_BY_RCU
)
2132 BUG_ON(flags
& SLAB_POISON
);
2136 * Check that size is in terms of words. This is needed to avoid
2137 * unaligned accesses for some archs when redzoning is used, and makes
2138 * sure any on-slab bufctl's are also correctly aligned.
2140 if (size
& (BYTES_PER_WORD
- 1)) {
2141 size
+= (BYTES_PER_WORD
- 1);
2142 size
&= ~(BYTES_PER_WORD
- 1);
2145 if (flags
& SLAB_RED_ZONE
) {
2146 ralign
= REDZONE_ALIGN
;
2147 /* If redzoning, ensure that the second redzone is suitably
2148 * aligned, by adjusting the object size accordingly. */
2149 size
+= REDZONE_ALIGN
- 1;
2150 size
&= ~(REDZONE_ALIGN
- 1);
2153 /* 3) caller mandated alignment */
2154 if (ralign
< cachep
->align
) {
2155 ralign
= cachep
->align
;
2157 /* disable debug if necessary */
2158 if (ralign
> __alignof__(unsigned long long))
2159 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2163 cachep
->align
= ralign
;
2165 if (slab_is_available())
2173 * Both debugging options require word-alignment which is calculated
2176 if (flags
& SLAB_RED_ZONE
) {
2177 /* add space for red zone words */
2178 cachep
->obj_offset
+= sizeof(unsigned long long);
2179 size
+= 2 * sizeof(unsigned long long);
2181 if (flags
& SLAB_STORE_USER
) {
2182 /* user store requires one word storage behind the end of
2183 * the real object. But if the second red zone needs to be
2184 * aligned to 64 bits, we must allow that much space.
2186 if (flags
& SLAB_RED_ZONE
)
2187 size
+= REDZONE_ALIGN
;
2189 size
+= BYTES_PER_WORD
;
2191 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2192 if (size
>= kmalloc_size(INDEX_NODE
+ 1)
2193 && cachep
->object_size
> cache_line_size()
2194 && ALIGN(size
, cachep
->align
) < PAGE_SIZE
) {
2195 cachep
->obj_offset
+= PAGE_SIZE
- ALIGN(size
, cachep
->align
);
2202 * Determine if the slab management is 'on' or 'off' slab.
2203 * (bootstrapping cannot cope with offslab caches so don't do
2204 * it too early on. Always use on-slab management when
2205 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2207 if ((size
>= (PAGE_SIZE
>> 5)) && !slab_early_init
&&
2208 !(flags
& SLAB_NOLEAKTRACE
))
2210 * Size is large, assume best to place the slab management obj
2211 * off-slab (should allow better packing of objs).
2213 flags
|= CFLGS_OFF_SLAB
;
2215 size
= ALIGN(size
, cachep
->align
);
2217 * We should restrict the number of objects in a slab to implement
2218 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2220 if (FREELIST_BYTE_INDEX
&& size
< SLAB_OBJ_MIN_SIZE
)
2221 size
= ALIGN(SLAB_OBJ_MIN_SIZE
, cachep
->align
);
2223 left_over
= calculate_slab_order(cachep
, size
, cachep
->align
, flags
);
2228 freelist_size
= calculate_freelist_size(cachep
->num
, cachep
->align
);
2231 * If the slab has been placed off-slab, and we have enough space then
2232 * move it on-slab. This is at the expense of any extra colouring.
2234 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= freelist_size
) {
2235 flags
&= ~CFLGS_OFF_SLAB
;
2236 left_over
-= freelist_size
;
2239 if (flags
& CFLGS_OFF_SLAB
) {
2240 /* really off slab. No need for manual alignment */
2241 freelist_size
= calculate_freelist_size(cachep
->num
, 0);
2243 #ifdef CONFIG_PAGE_POISONING
2244 /* If we're going to use the generic kernel_map_pages()
2245 * poisoning, then it's going to smash the contents of
2246 * the redzone and userword anyhow, so switch them off.
2248 if (size
% PAGE_SIZE
== 0 && flags
& SLAB_POISON
)
2249 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2253 cachep
->colour_off
= cache_line_size();
2254 /* Offset must be a multiple of the alignment. */
2255 if (cachep
->colour_off
< cachep
->align
)
2256 cachep
->colour_off
= cachep
->align
;
2257 cachep
->colour
= left_over
/ cachep
->colour_off
;
2258 cachep
->freelist_size
= freelist_size
;
2259 cachep
->flags
= flags
;
2260 cachep
->allocflags
= __GFP_COMP
;
2261 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2262 cachep
->allocflags
|= GFP_DMA
;
2263 cachep
->size
= size
;
2264 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2266 if (flags
& CFLGS_OFF_SLAB
) {
2267 cachep
->freelist_cache
= kmalloc_slab(freelist_size
, 0u);
2269 * This is a possibility for one of the kmalloc_{dma,}_caches.
2270 * But since we go off slab only for object size greater than
2271 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2272 * in ascending order,this should not happen at all.
2273 * But leave a BUG_ON for some lucky dude.
2275 BUG_ON(ZERO_OR_NULL_PTR(cachep
->freelist_cache
));
2278 err
= setup_cpu_cache(cachep
, gfp
);
2280 __kmem_cache_shutdown(cachep
);
2288 static void check_irq_off(void)
2290 BUG_ON(!irqs_disabled());
2293 static void check_irq_on(void)
2295 BUG_ON(irqs_disabled());
2298 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2302 assert_spin_locked(&get_node(cachep
, numa_mem_id())->list_lock
);
2306 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2310 assert_spin_locked(&get_node(cachep
, node
)->list_lock
);
2315 #define check_irq_off() do { } while(0)
2316 #define check_irq_on() do { } while(0)
2317 #define check_spinlock_acquired(x) do { } while(0)
2318 #define check_spinlock_acquired_node(x, y) do { } while(0)
2321 static void drain_array(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
,
2322 struct array_cache
*ac
,
2323 int force
, int node
);
2325 static void do_drain(void *arg
)
2327 struct kmem_cache
*cachep
= arg
;
2328 struct array_cache
*ac
;
2329 int node
= numa_mem_id();
2330 struct kmem_cache_node
*n
;
2334 ac
= cpu_cache_get(cachep
);
2335 n
= get_node(cachep
, node
);
2336 spin_lock(&n
->list_lock
);
2337 free_block(cachep
, ac
->entry
, ac
->avail
, node
, &list
);
2338 spin_unlock(&n
->list_lock
);
2339 slabs_destroy(cachep
, &list
);
2343 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2345 struct kmem_cache_node
*n
;
2348 on_each_cpu(do_drain
, cachep
, 1);
2350 for_each_kmem_cache_node(cachep
, node
, n
)
2352 drain_alien_cache(cachep
, n
->alien
);
2354 for_each_kmem_cache_node(cachep
, node
, n
)
2355 drain_array(cachep
, n
, n
->shared
, 1, node
);
2359 * Remove slabs from the list of free slabs.
2360 * Specify the number of slabs to drain in tofree.
2362 * Returns the actual number of slabs released.
2364 static int drain_freelist(struct kmem_cache
*cache
,
2365 struct kmem_cache_node
*n
, int tofree
)
2367 struct list_head
*p
;
2372 while (nr_freed
< tofree
&& !list_empty(&n
->slabs_free
)) {
2374 spin_lock_irq(&n
->list_lock
);
2375 p
= n
->slabs_free
.prev
;
2376 if (p
== &n
->slabs_free
) {
2377 spin_unlock_irq(&n
->list_lock
);
2381 page
= list_entry(p
, struct page
, lru
);
2383 BUG_ON(page
->active
);
2385 list_del(&page
->lru
);
2387 * Safe to drop the lock. The slab is no longer linked
2390 n
->free_objects
-= cache
->num
;
2391 spin_unlock_irq(&n
->list_lock
);
2392 slab_destroy(cache
, page
);
2399 int __kmem_cache_shrink(struct kmem_cache
*cachep
, bool deactivate
)
2403 struct kmem_cache_node
*n
;
2405 drain_cpu_caches(cachep
);
2408 for_each_kmem_cache_node(cachep
, node
, n
) {
2409 drain_freelist(cachep
, n
, slabs_tofree(cachep
, n
));
2411 ret
+= !list_empty(&n
->slabs_full
) ||
2412 !list_empty(&n
->slabs_partial
);
2414 return (ret
? 1 : 0);
2417 int __kmem_cache_shutdown(struct kmem_cache
*cachep
)
2420 struct kmem_cache_node
*n
;
2421 int rc
= __kmem_cache_shrink(cachep
, false);
2426 free_percpu(cachep
->cpu_cache
);
2428 /* NUMA: free the node structures */
2429 for_each_kmem_cache_node(cachep
, i
, n
) {
2431 free_alien_cache(n
->alien
);
2433 cachep
->node
[i
] = NULL
;
2439 * Get the memory for a slab management obj.
2441 * For a slab cache when the slab descriptor is off-slab, the
2442 * slab descriptor can't come from the same cache which is being created,
2443 * Because if it is the case, that means we defer the creation of
2444 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2445 * And we eventually call down to __kmem_cache_create(), which
2446 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2447 * This is a "chicken-and-egg" problem.
2449 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2450 * which are all initialized during kmem_cache_init().
2452 static void *alloc_slabmgmt(struct kmem_cache
*cachep
,
2453 struct page
*page
, int colour_off
,
2454 gfp_t local_flags
, int nodeid
)
2457 void *addr
= page_address(page
);
2459 if (OFF_SLAB(cachep
)) {
2460 /* Slab management obj is off-slab. */
2461 freelist
= kmem_cache_alloc_node(cachep
->freelist_cache
,
2462 local_flags
, nodeid
);
2466 freelist
= addr
+ colour_off
;
2467 colour_off
+= cachep
->freelist_size
;
2470 page
->s_mem
= addr
+ colour_off
;
2474 static inline freelist_idx_t
get_free_obj(struct page
*page
, unsigned int idx
)
2476 return ((freelist_idx_t
*)page
->freelist
)[idx
];
2479 static inline void set_free_obj(struct page
*page
,
2480 unsigned int idx
, freelist_idx_t val
)
2482 ((freelist_idx_t
*)(page
->freelist
))[idx
] = val
;
2485 static void cache_init_objs(struct kmem_cache
*cachep
,
2490 for (i
= 0; i
< cachep
->num
; i
++) {
2491 void *objp
= index_to_obj(cachep
, page
, i
);
2493 /* need to poison the objs? */
2494 if (cachep
->flags
& SLAB_POISON
)
2495 poison_obj(cachep
, objp
, POISON_FREE
);
2496 if (cachep
->flags
& SLAB_STORE_USER
)
2497 *dbg_userword(cachep
, objp
) = NULL
;
2499 if (cachep
->flags
& SLAB_RED_ZONE
) {
2500 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2501 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2504 * Constructors are not allowed to allocate memory from the same
2505 * cache which they are a constructor for. Otherwise, deadlock.
2506 * They must also be threaded.
2508 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2509 cachep
->ctor(objp
+ obj_offset(cachep
));
2511 if (cachep
->flags
& SLAB_RED_ZONE
) {
2512 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2513 slab_error(cachep
, "constructor overwrote the"
2514 " end of an object");
2515 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2516 slab_error(cachep
, "constructor overwrote the"
2517 " start of an object");
2519 if ((cachep
->size
% PAGE_SIZE
) == 0 &&
2520 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2521 kernel_map_pages(virt_to_page(objp
),
2522 cachep
->size
/ PAGE_SIZE
, 0);
2527 set_obj_status(page
, i
, OBJECT_FREE
);
2528 set_free_obj(page
, i
, i
);
2532 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2534 if (CONFIG_ZONE_DMA_FLAG
) {
2535 if (flags
& GFP_DMA
)
2536 BUG_ON(!(cachep
->allocflags
& GFP_DMA
));
2538 BUG_ON(cachep
->allocflags
& GFP_DMA
);
2542 static void *slab_get_obj(struct kmem_cache
*cachep
, struct page
*page
,
2547 objp
= index_to_obj(cachep
, page
, get_free_obj(page
, page
->active
));
2550 WARN_ON(page_to_nid(virt_to_page(objp
)) != nodeid
);
2556 static void slab_put_obj(struct kmem_cache
*cachep
, struct page
*page
,
2557 void *objp
, int nodeid
)
2559 unsigned int objnr
= obj_to_index(cachep
, page
, objp
);
2563 /* Verify that the slab belongs to the intended node */
2564 WARN_ON(page_to_nid(virt_to_page(objp
)) != nodeid
);
2566 /* Verify double free bug */
2567 for (i
= page
->active
; i
< cachep
->num
; i
++) {
2568 if (get_free_obj(page
, i
) == objnr
) {
2569 printk(KERN_ERR
"slab: double free detected in cache "
2570 "'%s', objp %p\n", cachep
->name
, objp
);
2576 set_free_obj(page
, page
->active
, objnr
);
2580 * Map pages beginning at addr to the given cache and slab. This is required
2581 * for the slab allocator to be able to lookup the cache and slab of a
2582 * virtual address for kfree, ksize, and slab debugging.
2584 static void slab_map_pages(struct kmem_cache
*cache
, struct page
*page
,
2587 page
->slab_cache
= cache
;
2588 page
->freelist
= freelist
;
2592 * Grow (by 1) the number of slabs within a cache. This is called by
2593 * kmem_cache_alloc() when there are no active objs left in a cache.
2595 static int cache_grow(struct kmem_cache
*cachep
,
2596 gfp_t flags
, int nodeid
, struct page
*page
)
2601 struct kmem_cache_node
*n
;
2604 * Be lazy and only check for valid flags here, keeping it out of the
2605 * critical path in kmem_cache_alloc().
2607 if (unlikely(flags
& GFP_SLAB_BUG_MASK
)) {
2608 pr_emerg("gfp: %u\n", flags
& GFP_SLAB_BUG_MASK
);
2611 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2613 /* Take the node list lock to change the colour_next on this node */
2615 n
= get_node(cachep
, nodeid
);
2616 spin_lock(&n
->list_lock
);
2618 /* Get colour for the slab, and cal the next value. */
2619 offset
= n
->colour_next
;
2621 if (n
->colour_next
>= cachep
->colour
)
2623 spin_unlock(&n
->list_lock
);
2625 offset
*= cachep
->colour_off
;
2627 if (local_flags
& __GFP_WAIT
)
2631 * The test for missing atomic flag is performed here, rather than
2632 * the more obvious place, simply to reduce the critical path length
2633 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2634 * will eventually be caught here (where it matters).
2636 kmem_flagcheck(cachep
, flags
);
2639 * Get mem for the objs. Attempt to allocate a physical page from
2643 page
= kmem_getpages(cachep
, local_flags
, nodeid
);
2647 /* Get slab management. */
2648 freelist
= alloc_slabmgmt(cachep
, page
, offset
,
2649 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2653 slab_map_pages(cachep
, page
, freelist
);
2655 cache_init_objs(cachep
, page
);
2657 if (local_flags
& __GFP_WAIT
)
2658 local_irq_disable();
2660 spin_lock(&n
->list_lock
);
2662 /* Make slab active. */
2663 list_add_tail(&page
->lru
, &(n
->slabs_free
));
2664 STATS_INC_GROWN(cachep
);
2665 n
->free_objects
+= cachep
->num
;
2666 spin_unlock(&n
->list_lock
);
2669 kmem_freepages(cachep
, page
);
2671 if (local_flags
& __GFP_WAIT
)
2672 local_irq_disable();
2679 * Perform extra freeing checks:
2680 * - detect bad pointers.
2681 * - POISON/RED_ZONE checking
2683 static void kfree_debugcheck(const void *objp
)
2685 if (!virt_addr_valid(objp
)) {
2686 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2687 (unsigned long)objp
);
2692 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2694 unsigned long long redzone1
, redzone2
;
2696 redzone1
= *dbg_redzone1(cache
, obj
);
2697 redzone2
= *dbg_redzone2(cache
, obj
);
2702 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2705 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2706 slab_error(cache
, "double free detected");
2708 slab_error(cache
, "memory outside object was overwritten");
2710 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2711 obj
, redzone1
, redzone2
);
2714 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2715 unsigned long caller
)
2720 BUG_ON(virt_to_cache(objp
) != cachep
);
2722 objp
-= obj_offset(cachep
);
2723 kfree_debugcheck(objp
);
2724 page
= virt_to_head_page(objp
);
2726 if (cachep
->flags
& SLAB_RED_ZONE
) {
2727 verify_redzone_free(cachep
, objp
);
2728 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2729 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2731 if (cachep
->flags
& SLAB_STORE_USER
)
2732 *dbg_userword(cachep
, objp
) = (void *)caller
;
2734 objnr
= obj_to_index(cachep
, page
, objp
);
2736 BUG_ON(objnr
>= cachep
->num
);
2737 BUG_ON(objp
!= index_to_obj(cachep
, page
, objnr
));
2739 set_obj_status(page
, objnr
, OBJECT_FREE
);
2740 if (cachep
->flags
& SLAB_POISON
) {
2741 #ifdef CONFIG_DEBUG_PAGEALLOC
2742 if ((cachep
->size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2743 store_stackinfo(cachep
, objp
, caller
);
2744 kernel_map_pages(virt_to_page(objp
),
2745 cachep
->size
/ PAGE_SIZE
, 0);
2747 poison_obj(cachep
, objp
, POISON_FREE
);
2750 poison_obj(cachep
, objp
, POISON_FREE
);
2757 #define kfree_debugcheck(x) do { } while(0)
2758 #define cache_free_debugcheck(x,objp,z) (objp)
2761 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
,
2765 struct kmem_cache_node
*n
;
2766 struct array_cache
*ac
;
2770 node
= numa_mem_id();
2771 if (unlikely(force_refill
))
2774 ac
= cpu_cache_get(cachep
);
2775 batchcount
= ac
->batchcount
;
2776 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2778 * If there was little recent activity on this cache, then
2779 * perform only a partial refill. Otherwise we could generate
2782 batchcount
= BATCHREFILL_LIMIT
;
2784 n
= get_node(cachep
, node
);
2786 BUG_ON(ac
->avail
> 0 || !n
);
2787 spin_lock(&n
->list_lock
);
2789 /* See if we can refill from the shared array */
2790 if (n
->shared
&& transfer_objects(ac
, n
->shared
, batchcount
)) {
2791 n
->shared
->touched
= 1;
2795 while (batchcount
> 0) {
2796 struct list_head
*entry
;
2798 /* Get slab alloc is to come from. */
2799 entry
= n
->slabs_partial
.next
;
2800 if (entry
== &n
->slabs_partial
) {
2801 n
->free_touched
= 1;
2802 entry
= n
->slabs_free
.next
;
2803 if (entry
== &n
->slabs_free
)
2807 page
= list_entry(entry
, struct page
, lru
);
2808 check_spinlock_acquired(cachep
);
2811 * The slab was either on partial or free list so
2812 * there must be at least one object available for
2815 BUG_ON(page
->active
>= cachep
->num
);
2817 while (page
->active
< cachep
->num
&& batchcount
--) {
2818 STATS_INC_ALLOCED(cachep
);
2819 STATS_INC_ACTIVE(cachep
);
2820 STATS_SET_HIGH(cachep
);
2822 ac_put_obj(cachep
, ac
, slab_get_obj(cachep
, page
,
2826 /* move slabp to correct slabp list: */
2827 list_del(&page
->lru
);
2828 if (page
->active
== cachep
->num
)
2829 list_add(&page
->lru
, &n
->slabs_full
);
2831 list_add(&page
->lru
, &n
->slabs_partial
);
2835 n
->free_objects
-= ac
->avail
;
2837 spin_unlock(&n
->list_lock
);
2839 if (unlikely(!ac
->avail
)) {
2842 x
= cache_grow(cachep
, gfp_exact_node(flags
), node
, NULL
);
2844 /* cache_grow can reenable interrupts, then ac could change. */
2845 ac
= cpu_cache_get(cachep
);
2846 node
= numa_mem_id();
2848 /* no objects in sight? abort */
2849 if (!x
&& (ac
->avail
== 0 || force_refill
))
2852 if (!ac
->avail
) /* objects refilled by interrupt? */
2857 return ac_get_obj(cachep
, ac
, flags
, force_refill
);
2860 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
2863 might_sleep_if(flags
& __GFP_WAIT
);
2865 kmem_flagcheck(cachep
, flags
);
2870 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
2871 gfp_t flags
, void *objp
, unsigned long caller
)
2877 if (cachep
->flags
& SLAB_POISON
) {
2878 #ifdef CONFIG_DEBUG_PAGEALLOC
2879 if ((cachep
->size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
2880 kernel_map_pages(virt_to_page(objp
),
2881 cachep
->size
/ PAGE_SIZE
, 1);
2883 check_poison_obj(cachep
, objp
);
2885 check_poison_obj(cachep
, objp
);
2887 poison_obj(cachep
, objp
, POISON_INUSE
);
2889 if (cachep
->flags
& SLAB_STORE_USER
)
2890 *dbg_userword(cachep
, objp
) = (void *)caller
;
2892 if (cachep
->flags
& SLAB_RED_ZONE
) {
2893 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
2894 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
2895 slab_error(cachep
, "double free, or memory outside"
2896 " object was overwritten");
2898 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2899 objp
, *dbg_redzone1(cachep
, objp
),
2900 *dbg_redzone2(cachep
, objp
));
2902 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
2903 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
2906 page
= virt_to_head_page(objp
);
2907 set_obj_status(page
, obj_to_index(cachep
, page
, objp
), OBJECT_ACTIVE
);
2908 objp
+= obj_offset(cachep
);
2909 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
2911 if (ARCH_SLAB_MINALIGN
&&
2912 ((unsigned long)objp
& (ARCH_SLAB_MINALIGN
-1))) {
2913 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2914 objp
, (int)ARCH_SLAB_MINALIGN
);
2919 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2922 static bool slab_should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
2924 if (unlikely(cachep
== kmem_cache
))
2927 return should_failslab(cachep
->object_size
, flags
, cachep
->flags
);
2930 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
2933 struct array_cache
*ac
;
2934 bool force_refill
= false;
2938 ac
= cpu_cache_get(cachep
);
2939 if (likely(ac
->avail
)) {
2941 objp
= ac_get_obj(cachep
, ac
, flags
, false);
2944 * Allow for the possibility all avail objects are not allowed
2945 * by the current flags
2948 STATS_INC_ALLOCHIT(cachep
);
2951 force_refill
= true;
2954 STATS_INC_ALLOCMISS(cachep
);
2955 objp
= cache_alloc_refill(cachep
, flags
, force_refill
);
2957 * the 'ac' may be updated by cache_alloc_refill(),
2958 * and kmemleak_erase() requires its correct value.
2960 ac
= cpu_cache_get(cachep
);
2964 * To avoid a false negative, if an object that is in one of the
2965 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2966 * treat the array pointers as a reference to the object.
2969 kmemleak_erase(&ac
->entry
[ac
->avail
]);
2975 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2977 * If we are in_interrupt, then process context, including cpusets and
2978 * mempolicy, may not apply and should not be used for allocation policy.
2980 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
2982 int nid_alloc
, nid_here
;
2984 if (in_interrupt() || (flags
& __GFP_THISNODE
))
2986 nid_alloc
= nid_here
= numa_mem_id();
2987 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
2988 nid_alloc
= cpuset_slab_spread_node();
2989 else if (current
->mempolicy
)
2990 nid_alloc
= mempolicy_slab_node();
2991 if (nid_alloc
!= nid_here
)
2992 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
2997 * Fallback function if there was no memory available and no objects on a
2998 * certain node and fall back is permitted. First we scan all the
2999 * available node for available objects. If that fails then we
3000 * perform an allocation without specifying a node. This allows the page
3001 * allocator to do its reclaim / fallback magic. We then insert the
3002 * slab into the proper nodelist and then allocate from it.
3004 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3006 struct zonelist
*zonelist
;
3010 enum zone_type high_zoneidx
= gfp_zone(flags
);
3013 unsigned int cpuset_mems_cookie
;
3015 if (flags
& __GFP_THISNODE
)
3018 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3021 cpuset_mems_cookie
= read_mems_allowed_begin();
3022 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
3026 * Look through allowed nodes for objects available
3027 * from existing per node queues.
3029 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3030 nid
= zone_to_nid(zone
);
3032 if (cpuset_zone_allowed(zone
, flags
) &&
3033 get_node(cache
, nid
) &&
3034 get_node(cache
, nid
)->free_objects
) {
3035 obj
= ____cache_alloc_node(cache
,
3036 gfp_exact_node(flags
), nid
);
3044 * This allocation will be performed within the constraints
3045 * of the current cpuset / memory policy requirements.
3046 * We may trigger various forms of reclaim on the allowed
3047 * set and go into memory reserves if necessary.
3051 if (local_flags
& __GFP_WAIT
)
3053 kmem_flagcheck(cache
, flags
);
3054 page
= kmem_getpages(cache
, local_flags
, numa_mem_id());
3055 if (local_flags
& __GFP_WAIT
)
3056 local_irq_disable();
3059 * Insert into the appropriate per node queues
3061 nid
= page_to_nid(page
);
3062 if (cache_grow(cache
, flags
, nid
, page
)) {
3063 obj
= ____cache_alloc_node(cache
,
3064 gfp_exact_node(flags
), nid
);
3067 * Another processor may allocate the
3068 * objects in the slab since we are
3069 * not holding any locks.
3073 /* cache_grow already freed obj */
3079 if (unlikely(!obj
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
3085 * A interface to enable slab creation on nodeid
3087 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3090 struct list_head
*entry
;
3092 struct kmem_cache_node
*n
;
3096 VM_BUG_ON(nodeid
< 0 || nodeid
>= MAX_NUMNODES
);
3097 n
= get_node(cachep
, nodeid
);
3102 spin_lock(&n
->list_lock
);
3103 entry
= n
->slabs_partial
.next
;
3104 if (entry
== &n
->slabs_partial
) {
3105 n
->free_touched
= 1;
3106 entry
= n
->slabs_free
.next
;
3107 if (entry
== &n
->slabs_free
)
3111 page
= list_entry(entry
, struct page
, lru
);
3112 check_spinlock_acquired_node(cachep
, nodeid
);
3114 STATS_INC_NODEALLOCS(cachep
);
3115 STATS_INC_ACTIVE(cachep
);
3116 STATS_SET_HIGH(cachep
);
3118 BUG_ON(page
->active
== cachep
->num
);
3120 obj
= slab_get_obj(cachep
, page
, nodeid
);
3122 /* move slabp to correct slabp list: */
3123 list_del(&page
->lru
);
3125 if (page
->active
== cachep
->num
)
3126 list_add(&page
->lru
, &n
->slabs_full
);
3128 list_add(&page
->lru
, &n
->slabs_partial
);
3130 spin_unlock(&n
->list_lock
);
3134 spin_unlock(&n
->list_lock
);
3135 x
= cache_grow(cachep
, gfp_exact_node(flags
), nodeid
, NULL
);
3139 return fallback_alloc(cachep
, flags
);
3145 static __always_inline
void *
3146 slab_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3147 unsigned long caller
)
3149 unsigned long save_flags
;
3151 int slab_node
= numa_mem_id();
3153 flags
&= gfp_allowed_mask
;
3155 lockdep_trace_alloc(flags
);
3157 if (slab_should_failslab(cachep
, flags
))
3160 cachep
= memcg_kmem_get_cache(cachep
, flags
);
3162 cache_alloc_debugcheck_before(cachep
, flags
);
3163 local_irq_save(save_flags
);
3165 if (nodeid
== NUMA_NO_NODE
)
3168 if (unlikely(!get_node(cachep
, nodeid
))) {
3169 /* Node not bootstrapped yet */
3170 ptr
= fallback_alloc(cachep
, flags
);
3174 if (nodeid
== slab_node
) {
3176 * Use the locally cached objects if possible.
3177 * However ____cache_alloc does not allow fallback
3178 * to other nodes. It may fail while we still have
3179 * objects on other nodes available.
3181 ptr
= ____cache_alloc(cachep
, flags
);
3185 /* ___cache_alloc_node can fall back to other nodes */
3186 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3188 local_irq_restore(save_flags
);
3189 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3190 kmemleak_alloc_recursive(ptr
, cachep
->object_size
, 1, cachep
->flags
,
3194 kmemcheck_slab_alloc(cachep
, flags
, ptr
, cachep
->object_size
);
3195 if (unlikely(flags
& __GFP_ZERO
))
3196 memset(ptr
, 0, cachep
->object_size
);
3199 memcg_kmem_put_cache(cachep
);
3203 static __always_inline
void *
3204 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3208 if (current
->mempolicy
|| cpuset_do_slab_mem_spread()) {
3209 objp
= alternate_node_alloc(cache
, flags
);
3213 objp
= ____cache_alloc(cache
, flags
);
3216 * We may just have run out of memory on the local node.
3217 * ____cache_alloc_node() knows how to locate memory on other nodes
3220 objp
= ____cache_alloc_node(cache
, flags
, numa_mem_id());
3227 static __always_inline
void *
3228 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3230 return ____cache_alloc(cachep
, flags
);
3233 #endif /* CONFIG_NUMA */
3235 static __always_inline
void *
3236 slab_alloc(struct kmem_cache
*cachep
, gfp_t flags
, unsigned long caller
)
3238 unsigned long save_flags
;
3241 flags
&= gfp_allowed_mask
;
3243 lockdep_trace_alloc(flags
);
3245 if (slab_should_failslab(cachep
, flags
))
3248 cachep
= memcg_kmem_get_cache(cachep
, flags
);
3250 cache_alloc_debugcheck_before(cachep
, flags
);
3251 local_irq_save(save_flags
);
3252 objp
= __do_cache_alloc(cachep
, flags
);
3253 local_irq_restore(save_flags
);
3254 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3255 kmemleak_alloc_recursive(objp
, cachep
->object_size
, 1, cachep
->flags
,
3260 kmemcheck_slab_alloc(cachep
, flags
, objp
, cachep
->object_size
);
3261 if (unlikely(flags
& __GFP_ZERO
))
3262 memset(objp
, 0, cachep
->object_size
);
3265 memcg_kmem_put_cache(cachep
);
3270 * Caller needs to acquire correct kmem_cache_node's list_lock
3271 * @list: List of detached free slabs should be freed by caller
3273 static void free_block(struct kmem_cache
*cachep
, void **objpp
,
3274 int nr_objects
, int node
, struct list_head
*list
)
3277 struct kmem_cache_node
*n
= get_node(cachep
, node
);
3279 for (i
= 0; i
< nr_objects
; i
++) {
3283 clear_obj_pfmemalloc(&objpp
[i
]);
3286 page
= virt_to_head_page(objp
);
3287 list_del(&page
->lru
);
3288 check_spinlock_acquired_node(cachep
, node
);
3289 slab_put_obj(cachep
, page
, objp
, node
);
3290 STATS_DEC_ACTIVE(cachep
);
3293 /* fixup slab chains */
3294 if (page
->active
== 0) {
3295 if (n
->free_objects
> n
->free_limit
) {
3296 n
->free_objects
-= cachep
->num
;
3297 list_add_tail(&page
->lru
, list
);
3299 list_add(&page
->lru
, &n
->slabs_free
);
3302 /* Unconditionally move a slab to the end of the
3303 * partial list on free - maximum time for the
3304 * other objects to be freed, too.
3306 list_add_tail(&page
->lru
, &n
->slabs_partial
);
3311 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3314 struct kmem_cache_node
*n
;
3315 int node
= numa_mem_id();
3318 batchcount
= ac
->batchcount
;
3320 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3323 n
= get_node(cachep
, node
);
3324 spin_lock(&n
->list_lock
);
3326 struct array_cache
*shared_array
= n
->shared
;
3327 int max
= shared_array
->limit
- shared_array
->avail
;
3329 if (batchcount
> max
)
3331 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3332 ac
->entry
, sizeof(void *) * batchcount
);
3333 shared_array
->avail
+= batchcount
;
3338 free_block(cachep
, ac
->entry
, batchcount
, node
, &list
);
3343 struct list_head
*p
;
3345 p
= n
->slabs_free
.next
;
3346 while (p
!= &(n
->slabs_free
)) {
3349 page
= list_entry(p
, struct page
, lru
);
3350 BUG_ON(page
->active
);
3355 STATS_SET_FREEABLE(cachep
, i
);
3358 spin_unlock(&n
->list_lock
);
3359 slabs_destroy(cachep
, &list
);
3360 ac
->avail
-= batchcount
;
3361 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3365 * Release an obj back to its cache. If the obj has a constructed state, it must
3366 * be in this state _before_ it is released. Called with disabled ints.
3368 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
,
3369 unsigned long caller
)
3371 struct array_cache
*ac
= cpu_cache_get(cachep
);
3374 kmemleak_free_recursive(objp
, cachep
->flags
);
3375 objp
= cache_free_debugcheck(cachep
, objp
, caller
);
3377 kmemcheck_slab_free(cachep
, objp
, cachep
->object_size
);
3380 * Skip calling cache_free_alien() when the platform is not numa.
3381 * This will avoid cache misses that happen while accessing slabp (which
3382 * is per page memory reference) to get nodeid. Instead use a global
3383 * variable to skip the call, which is mostly likely to be present in
3386 if (nr_online_nodes
> 1 && cache_free_alien(cachep
, objp
))
3389 if (ac
->avail
< ac
->limit
) {
3390 STATS_INC_FREEHIT(cachep
);
3392 STATS_INC_FREEMISS(cachep
);
3393 cache_flusharray(cachep
, ac
);
3396 ac_put_obj(cachep
, ac
, objp
);
3400 * kmem_cache_alloc - Allocate an object
3401 * @cachep: The cache to allocate from.
3402 * @flags: See kmalloc().
3404 * Allocate an object from this cache. The flags are only relevant
3405 * if the cache has no available objects.
3407 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3409 void *ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3411 trace_kmem_cache_alloc(_RET_IP_
, ret
,
3412 cachep
->object_size
, cachep
->size
, flags
);
3416 EXPORT_SYMBOL(kmem_cache_alloc
);
3418 #ifdef CONFIG_TRACING
3420 kmem_cache_alloc_trace(struct kmem_cache
*cachep
, gfp_t flags
, size_t size
)
3424 ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3426 trace_kmalloc(_RET_IP_
, ret
,
3427 size
, cachep
->size
, flags
);
3430 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
3435 * kmem_cache_alloc_node - Allocate an object on the specified node
3436 * @cachep: The cache to allocate from.
3437 * @flags: See kmalloc().
3438 * @nodeid: node number of the target node.
3440 * Identical to kmem_cache_alloc but it will allocate memory on the given
3441 * node, which can improve the performance for cpu bound structures.
3443 * Fallback to other node is possible if __GFP_THISNODE is not set.
3445 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3447 void *ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3449 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
3450 cachep
->object_size
, cachep
->size
,
3455 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3457 #ifdef CONFIG_TRACING
3458 void *kmem_cache_alloc_node_trace(struct kmem_cache
*cachep
,
3465 ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3467 trace_kmalloc_node(_RET_IP_
, ret
,
3472 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
3475 static __always_inline
void *
3476 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, unsigned long caller
)
3478 struct kmem_cache
*cachep
;
3480 cachep
= kmalloc_slab(size
, flags
);
3481 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3483 return kmem_cache_alloc_node_trace(cachep
, flags
, node
, size
);
3486 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3488 return __do_kmalloc_node(size
, flags
, node
, _RET_IP_
);
3490 EXPORT_SYMBOL(__kmalloc_node
);
3492 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3493 int node
, unsigned long caller
)
3495 return __do_kmalloc_node(size
, flags
, node
, caller
);
3497 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3498 #endif /* CONFIG_NUMA */
3501 * __do_kmalloc - allocate memory
3502 * @size: how many bytes of memory are required.
3503 * @flags: the type of memory to allocate (see kmalloc).
3504 * @caller: function caller for debug tracking of the caller
3506 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3507 unsigned long caller
)
3509 struct kmem_cache
*cachep
;
3512 cachep
= kmalloc_slab(size
, flags
);
3513 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3515 ret
= slab_alloc(cachep
, flags
, caller
);
3517 trace_kmalloc(caller
, ret
,
3518 size
, cachep
->size
, flags
);
3523 void *__kmalloc(size_t size
, gfp_t flags
)
3525 return __do_kmalloc(size
, flags
, _RET_IP_
);
3527 EXPORT_SYMBOL(__kmalloc
);
3529 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3531 return __do_kmalloc(size
, flags
, caller
);
3533 EXPORT_SYMBOL(__kmalloc_track_caller
);
3536 * kmem_cache_free - Deallocate an object
3537 * @cachep: The cache the allocation was from.
3538 * @objp: The previously allocated object.
3540 * Free an object which was previously allocated from this
3543 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3545 unsigned long flags
;
3546 cachep
= cache_from_obj(cachep
, objp
);
3550 local_irq_save(flags
);
3551 debug_check_no_locks_freed(objp
, cachep
->object_size
);
3552 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3553 debug_check_no_obj_freed(objp
, cachep
->object_size
);
3554 __cache_free(cachep
, objp
, _RET_IP_
);
3555 local_irq_restore(flags
);
3557 trace_kmem_cache_free(_RET_IP_
, objp
);
3559 EXPORT_SYMBOL(kmem_cache_free
);
3562 * kfree - free previously allocated memory
3563 * @objp: pointer returned by kmalloc.
3565 * If @objp is NULL, no operation is performed.
3567 * Don't free memory not originally allocated by kmalloc()
3568 * or you will run into trouble.
3570 void kfree(const void *objp
)
3572 struct kmem_cache
*c
;
3573 unsigned long flags
;
3575 trace_kfree(_RET_IP_
, objp
);
3577 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3579 local_irq_save(flags
);
3580 kfree_debugcheck(objp
);
3581 c
= virt_to_cache(objp
);
3582 debug_check_no_locks_freed(objp
, c
->object_size
);
3584 debug_check_no_obj_freed(objp
, c
->object_size
);
3585 __cache_free(c
, (void *)objp
, _RET_IP_
);
3586 local_irq_restore(flags
);
3588 EXPORT_SYMBOL(kfree
);
3591 * This initializes kmem_cache_node or resizes various caches for all nodes.
3593 static int alloc_kmem_cache_node(struct kmem_cache
*cachep
, gfp_t gfp
)
3596 struct kmem_cache_node
*n
;
3597 struct array_cache
*new_shared
;
3598 struct alien_cache
**new_alien
= NULL
;
3600 for_each_online_node(node
) {
3602 if (use_alien_caches
) {
3603 new_alien
= alloc_alien_cache(node
, cachep
->limit
, gfp
);
3609 if (cachep
->shared
) {
3610 new_shared
= alloc_arraycache(node
,
3611 cachep
->shared
*cachep
->batchcount
,
3614 free_alien_cache(new_alien
);
3619 n
= get_node(cachep
, node
);
3621 struct array_cache
*shared
= n
->shared
;
3624 spin_lock_irq(&n
->list_lock
);
3627 free_block(cachep
, shared
->entry
,
3628 shared
->avail
, node
, &list
);
3630 n
->shared
= new_shared
;
3632 n
->alien
= new_alien
;
3635 n
->free_limit
= (1 + nr_cpus_node(node
)) *
3636 cachep
->batchcount
+ cachep
->num
;
3637 spin_unlock_irq(&n
->list_lock
);
3638 slabs_destroy(cachep
, &list
);
3640 free_alien_cache(new_alien
);
3643 n
= kmalloc_node(sizeof(struct kmem_cache_node
), gfp
, node
);
3645 free_alien_cache(new_alien
);
3650 kmem_cache_node_init(n
);
3651 n
->next_reap
= jiffies
+ REAPTIMEOUT_NODE
+
3652 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
3653 n
->shared
= new_shared
;
3654 n
->alien
= new_alien
;
3655 n
->free_limit
= (1 + nr_cpus_node(node
)) *
3656 cachep
->batchcount
+ cachep
->num
;
3657 cachep
->node
[node
] = n
;
3662 if (!cachep
->list
.next
) {
3663 /* Cache is not active yet. Roll back what we did */
3666 n
= get_node(cachep
, node
);
3669 free_alien_cache(n
->alien
);
3671 cachep
->node
[node
] = NULL
;
3679 /* Always called with the slab_mutex held */
3680 static int __do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3681 int batchcount
, int shared
, gfp_t gfp
)
3683 struct array_cache __percpu
*cpu_cache
, *prev
;
3686 cpu_cache
= alloc_kmem_cache_cpus(cachep
, limit
, batchcount
);
3690 prev
= cachep
->cpu_cache
;
3691 cachep
->cpu_cache
= cpu_cache
;
3692 kick_all_cpus_sync();
3695 cachep
->batchcount
= batchcount
;
3696 cachep
->limit
= limit
;
3697 cachep
->shared
= shared
;
3702 for_each_online_cpu(cpu
) {
3705 struct kmem_cache_node
*n
;
3706 struct array_cache
*ac
= per_cpu_ptr(prev
, cpu
);
3708 node
= cpu_to_mem(cpu
);
3709 n
= get_node(cachep
, node
);
3710 spin_lock_irq(&n
->list_lock
);
3711 free_block(cachep
, ac
->entry
, ac
->avail
, node
, &list
);
3712 spin_unlock_irq(&n
->list_lock
);
3713 slabs_destroy(cachep
, &list
);
3718 return alloc_kmem_cache_node(cachep
, gfp
);
3721 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3722 int batchcount
, int shared
, gfp_t gfp
)
3725 struct kmem_cache
*c
;
3727 ret
= __do_tune_cpucache(cachep
, limit
, batchcount
, shared
, gfp
);
3729 if (slab_state
< FULL
)
3732 if ((ret
< 0) || !is_root_cache(cachep
))
3735 lockdep_assert_held(&slab_mutex
);
3736 for_each_memcg_cache(c
, cachep
) {
3737 /* return value determined by the root cache only */
3738 __do_tune_cpucache(c
, limit
, batchcount
, shared
, gfp
);
3744 /* Called with slab_mutex held always */
3745 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
)
3752 if (!is_root_cache(cachep
)) {
3753 struct kmem_cache
*root
= memcg_root_cache(cachep
);
3754 limit
= root
->limit
;
3755 shared
= root
->shared
;
3756 batchcount
= root
->batchcount
;
3759 if (limit
&& shared
&& batchcount
)
3762 * The head array serves three purposes:
3763 * - create a LIFO ordering, i.e. return objects that are cache-warm
3764 * - reduce the number of spinlock operations.
3765 * - reduce the number of linked list operations on the slab and
3766 * bufctl chains: array operations are cheaper.
3767 * The numbers are guessed, we should auto-tune as described by
3770 if (cachep
->size
> 131072)
3772 else if (cachep
->size
> PAGE_SIZE
)
3774 else if (cachep
->size
> 1024)
3776 else if (cachep
->size
> 256)
3782 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3783 * allocation behaviour: Most allocs on one cpu, most free operations
3784 * on another cpu. For these cases, an efficient object passing between
3785 * cpus is necessary. This is provided by a shared array. The array
3786 * replaces Bonwick's magazine layer.
3787 * On uniprocessor, it's functionally equivalent (but less efficient)
3788 * to a larger limit. Thus disabled by default.
3791 if (cachep
->size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
3796 * With debugging enabled, large batchcount lead to excessively long
3797 * periods with disabled local interrupts. Limit the batchcount
3802 batchcount
= (limit
+ 1) / 2;
3804 err
= do_tune_cpucache(cachep
, limit
, batchcount
, shared
, gfp
);
3806 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
3807 cachep
->name
, -err
);
3812 * Drain an array if it contains any elements taking the node lock only if
3813 * necessary. Note that the node listlock also protects the array_cache
3814 * if drain_array() is used on the shared array.
3816 static void drain_array(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
,
3817 struct array_cache
*ac
, int force
, int node
)
3822 if (!ac
|| !ac
->avail
)
3824 if (ac
->touched
&& !force
) {
3827 spin_lock_irq(&n
->list_lock
);
3829 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
3830 if (tofree
> ac
->avail
)
3831 tofree
= (ac
->avail
+ 1) / 2;
3832 free_block(cachep
, ac
->entry
, tofree
, node
, &list
);
3833 ac
->avail
-= tofree
;
3834 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
3835 sizeof(void *) * ac
->avail
);
3837 spin_unlock_irq(&n
->list_lock
);
3838 slabs_destroy(cachep
, &list
);
3843 * cache_reap - Reclaim memory from caches.
3844 * @w: work descriptor
3846 * Called from workqueue/eventd every few seconds.
3848 * - clear the per-cpu caches for this CPU.
3849 * - return freeable pages to the main free memory pool.
3851 * If we cannot acquire the cache chain mutex then just give up - we'll try
3852 * again on the next iteration.
3854 static void cache_reap(struct work_struct
*w
)
3856 struct kmem_cache
*searchp
;
3857 struct kmem_cache_node
*n
;
3858 int node
= numa_mem_id();
3859 struct delayed_work
*work
= to_delayed_work(w
);
3861 if (!mutex_trylock(&slab_mutex
))
3862 /* Give up. Setup the next iteration. */
3865 list_for_each_entry(searchp
, &slab_caches
, list
) {
3869 * We only take the node lock if absolutely necessary and we
3870 * have established with reasonable certainty that
3871 * we can do some work if the lock was obtained.
3873 n
= get_node(searchp
, node
);
3875 reap_alien(searchp
, n
);
3877 drain_array(searchp
, n
, cpu_cache_get(searchp
), 0, node
);
3880 * These are racy checks but it does not matter
3881 * if we skip one check or scan twice.
3883 if (time_after(n
->next_reap
, jiffies
))
3886 n
->next_reap
= jiffies
+ REAPTIMEOUT_NODE
;
3888 drain_array(searchp
, n
, n
->shared
, 0, node
);
3890 if (n
->free_touched
)
3891 n
->free_touched
= 0;
3895 freed
= drain_freelist(searchp
, n
, (n
->free_limit
+
3896 5 * searchp
->num
- 1) / (5 * searchp
->num
));
3897 STATS_ADD_REAPED(searchp
, freed
);
3903 mutex_unlock(&slab_mutex
);
3906 /* Set up the next iteration */
3907 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_AC
));
3910 #ifdef CONFIG_SLABINFO
3911 void get_slabinfo(struct kmem_cache
*cachep
, struct slabinfo
*sinfo
)
3914 unsigned long active_objs
;
3915 unsigned long num_objs
;
3916 unsigned long active_slabs
= 0;
3917 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
3921 struct kmem_cache_node
*n
;
3925 for_each_kmem_cache_node(cachep
, node
, n
) {
3928 spin_lock_irq(&n
->list_lock
);
3930 list_for_each_entry(page
, &n
->slabs_full
, lru
) {
3931 if (page
->active
!= cachep
->num
&& !error
)
3932 error
= "slabs_full accounting error";
3933 active_objs
+= cachep
->num
;
3936 list_for_each_entry(page
, &n
->slabs_partial
, lru
) {
3937 if (page
->active
== cachep
->num
&& !error
)
3938 error
= "slabs_partial accounting error";
3939 if (!page
->active
&& !error
)
3940 error
= "slabs_partial accounting error";
3941 active_objs
+= page
->active
;
3944 list_for_each_entry(page
, &n
->slabs_free
, lru
) {
3945 if (page
->active
&& !error
)
3946 error
= "slabs_free accounting error";
3949 free_objects
+= n
->free_objects
;
3951 shared_avail
+= n
->shared
->avail
;
3953 spin_unlock_irq(&n
->list_lock
);
3955 num_slabs
+= active_slabs
;
3956 num_objs
= num_slabs
* cachep
->num
;
3957 if (num_objs
- active_objs
!= free_objects
&& !error
)
3958 error
= "free_objects accounting error";
3960 name
= cachep
->name
;
3962 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
3964 sinfo
->active_objs
= active_objs
;
3965 sinfo
->num_objs
= num_objs
;
3966 sinfo
->active_slabs
= active_slabs
;
3967 sinfo
->num_slabs
= num_slabs
;
3968 sinfo
->shared_avail
= shared_avail
;
3969 sinfo
->limit
= cachep
->limit
;
3970 sinfo
->batchcount
= cachep
->batchcount
;
3971 sinfo
->shared
= cachep
->shared
;
3972 sinfo
->objects_per_slab
= cachep
->num
;
3973 sinfo
->cache_order
= cachep
->gfporder
;
3976 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*cachep
)
3980 unsigned long high
= cachep
->high_mark
;
3981 unsigned long allocs
= cachep
->num_allocations
;
3982 unsigned long grown
= cachep
->grown
;
3983 unsigned long reaped
= cachep
->reaped
;
3984 unsigned long errors
= cachep
->errors
;
3985 unsigned long max_freeable
= cachep
->max_freeable
;
3986 unsigned long node_allocs
= cachep
->node_allocs
;
3987 unsigned long node_frees
= cachep
->node_frees
;
3988 unsigned long overflows
= cachep
->node_overflow
;
3990 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu "
3991 "%4lu %4lu %4lu %4lu %4lu",
3992 allocs
, high
, grown
,
3993 reaped
, errors
, max_freeable
, node_allocs
,
3994 node_frees
, overflows
);
3998 unsigned long allochit
= atomic_read(&cachep
->allochit
);
3999 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4000 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4001 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4003 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4004 allochit
, allocmiss
, freehit
, freemiss
);
4009 #define MAX_SLABINFO_WRITE 128
4011 * slabinfo_write - Tuning for the slab allocator
4013 * @buffer: user buffer
4014 * @count: data length
4017 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
4018 size_t count
, loff_t
*ppos
)
4020 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4021 int limit
, batchcount
, shared
, res
;
4022 struct kmem_cache
*cachep
;
4024 if (count
> MAX_SLABINFO_WRITE
)
4026 if (copy_from_user(&kbuf
, buffer
, count
))
4028 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4030 tmp
= strchr(kbuf
, ' ');
4035 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4038 /* Find the cache in the chain of caches. */
4039 mutex_lock(&slab_mutex
);
4041 list_for_each_entry(cachep
, &slab_caches
, list
) {
4042 if (!strcmp(cachep
->name
, kbuf
)) {
4043 if (limit
< 1 || batchcount
< 1 ||
4044 batchcount
> limit
|| shared
< 0) {
4047 res
= do_tune_cpucache(cachep
, limit
,
4054 mutex_unlock(&slab_mutex
);
4060 #ifdef CONFIG_DEBUG_SLAB_LEAK
4062 static inline int add_caller(unsigned long *n
, unsigned long v
)
4072 unsigned long *q
= p
+ 2 * i
;
4086 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4092 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
,
4100 for (i
= 0, p
= page
->s_mem
; i
< c
->num
; i
++, p
+= c
->size
) {
4101 if (get_obj_status(page
, i
) != OBJECT_ACTIVE
)
4104 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4109 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4111 #ifdef CONFIG_KALLSYMS
4112 unsigned long offset
, size
;
4113 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4115 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4116 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4118 seq_printf(m
, " [%s]", modname
);
4122 seq_printf(m
, "%p", (void *)address
);
4125 static int leaks_show(struct seq_file
*m
, void *p
)
4127 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, list
);
4129 struct kmem_cache_node
*n
;
4131 unsigned long *x
= m
->private;
4135 if (!(cachep
->flags
& SLAB_STORE_USER
))
4137 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4140 /* OK, we can do it */
4144 for_each_kmem_cache_node(cachep
, node
, n
) {
4147 spin_lock_irq(&n
->list_lock
);
4149 list_for_each_entry(page
, &n
->slabs_full
, lru
)
4150 handle_slab(x
, cachep
, page
);
4151 list_for_each_entry(page
, &n
->slabs_partial
, lru
)
4152 handle_slab(x
, cachep
, page
);
4153 spin_unlock_irq(&n
->list_lock
);
4155 name
= cachep
->name
;
4157 /* Increase the buffer size */
4158 mutex_unlock(&slab_mutex
);
4159 m
->private = kzalloc(x
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4161 /* Too bad, we are really out */
4163 mutex_lock(&slab_mutex
);
4166 *(unsigned long *)m
->private = x
[0] * 2;
4168 mutex_lock(&slab_mutex
);
4169 /* Now make sure this entry will be retried */
4173 for (i
= 0; i
< x
[1]; i
++) {
4174 seq_printf(m
, "%s: %lu ", name
, x
[2*i
+3]);
4175 show_symbol(m
, x
[2*i
+2]);
4182 static const struct seq_operations slabstats_op
= {
4183 .start
= slab_start
,
4189 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4193 n
= __seq_open_private(file
, &slabstats_op
, PAGE_SIZE
);
4197 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4202 static const struct file_operations proc_slabstats_operations
= {
4203 .open
= slabstats_open
,
4205 .llseek
= seq_lseek
,
4206 .release
= seq_release_private
,
4210 static int __init
slab_proc_init(void)
4212 #ifdef CONFIG_DEBUG_SLAB_LEAK
4213 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4217 module_init(slab_proc_init
);
4221 * ksize - get the actual amount of memory allocated for a given object
4222 * @objp: Pointer to the object
4224 * kmalloc may internally round up allocations and return more memory
4225 * than requested. ksize() can be used to determine the actual amount of
4226 * memory allocated. The caller may use this additional memory, even though
4227 * a smaller amount of memory was initially specified with the kmalloc call.
4228 * The caller must guarantee that objp points to a valid object previously
4229 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4230 * must not be freed during the duration of the call.
4232 size_t ksize(const void *objp
)
4235 if (unlikely(objp
== ZERO_SIZE_PTR
))
4238 return virt_to_cache(objp
)->object_size
;
4240 EXPORT_SYMBOL(ksize
);