jbd: Journal block numbers can ever be only 32-bit use unsigned int for them
[linux/fpc-iii.git] / fs / ubifs / super.c
blobc4af069df1adbc30e05798815ddfdc5a2395a92c
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include <linux/smp_lock.h>
40 #include "ubifs.h"
43 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
44 * allocating too much.
46 #define UBIFS_KMALLOC_OK (128*1024)
48 /* Slab cache for UBIFS inodes */
49 struct kmem_cache *ubifs_inode_slab;
51 /* UBIFS TNC shrinker description */
52 static struct shrinker ubifs_shrinker_info = {
53 .shrink = ubifs_shrinker,
54 .seeks = DEFAULT_SEEKS,
57 /**
58 * validate_inode - validate inode.
59 * @c: UBIFS file-system description object
60 * @inode: the inode to validate
62 * This is a helper function for 'ubifs_iget()' which validates various fields
63 * of a newly built inode to make sure they contain sane values and prevent
64 * possible vulnerabilities. Returns zero if the inode is all right and
65 * a non-zero error code if not.
67 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
69 int err;
70 const struct ubifs_inode *ui = ubifs_inode(inode);
72 if (inode->i_size > c->max_inode_sz) {
73 ubifs_err("inode is too large (%lld)",
74 (long long)inode->i_size);
75 return 1;
78 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
79 ubifs_err("unknown compression type %d", ui->compr_type);
80 return 2;
83 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
84 return 3;
86 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
87 return 4;
89 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
90 return 5;
92 if (!ubifs_compr_present(ui->compr_type)) {
93 ubifs_warn("inode %lu uses '%s' compression, but it was not "
94 "compiled in", inode->i_ino,
95 ubifs_compr_name(ui->compr_type));
98 err = dbg_check_dir_size(c, inode);
99 return err;
102 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
104 int err;
105 union ubifs_key key;
106 struct ubifs_ino_node *ino;
107 struct ubifs_info *c = sb->s_fs_info;
108 struct inode *inode;
109 struct ubifs_inode *ui;
111 dbg_gen("inode %lu", inum);
113 inode = iget_locked(sb, inum);
114 if (!inode)
115 return ERR_PTR(-ENOMEM);
116 if (!(inode->i_state & I_NEW))
117 return inode;
118 ui = ubifs_inode(inode);
120 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
121 if (!ino) {
122 err = -ENOMEM;
123 goto out;
126 ino_key_init(c, &key, inode->i_ino);
128 err = ubifs_tnc_lookup(c, &key, ino);
129 if (err)
130 goto out_ino;
132 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
133 inode->i_nlink = le32_to_cpu(ino->nlink);
134 inode->i_uid = le32_to_cpu(ino->uid);
135 inode->i_gid = le32_to_cpu(ino->gid);
136 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
137 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
138 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
139 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
140 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
141 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
142 inode->i_mode = le32_to_cpu(ino->mode);
143 inode->i_size = le64_to_cpu(ino->size);
145 ui->data_len = le32_to_cpu(ino->data_len);
146 ui->flags = le32_to_cpu(ino->flags);
147 ui->compr_type = le16_to_cpu(ino->compr_type);
148 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
149 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
150 ui->xattr_size = le32_to_cpu(ino->xattr_size);
151 ui->xattr_names = le32_to_cpu(ino->xattr_names);
152 ui->synced_i_size = ui->ui_size = inode->i_size;
154 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
156 err = validate_inode(c, inode);
157 if (err)
158 goto out_invalid;
160 /* Disable read-ahead */
161 inode->i_mapping->backing_dev_info = &c->bdi;
163 switch (inode->i_mode & S_IFMT) {
164 case S_IFREG:
165 inode->i_mapping->a_ops = &ubifs_file_address_operations;
166 inode->i_op = &ubifs_file_inode_operations;
167 inode->i_fop = &ubifs_file_operations;
168 if (ui->xattr) {
169 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
170 if (!ui->data) {
171 err = -ENOMEM;
172 goto out_ino;
174 memcpy(ui->data, ino->data, ui->data_len);
175 ((char *)ui->data)[ui->data_len] = '\0';
176 } else if (ui->data_len != 0) {
177 err = 10;
178 goto out_invalid;
180 break;
181 case S_IFDIR:
182 inode->i_op = &ubifs_dir_inode_operations;
183 inode->i_fop = &ubifs_dir_operations;
184 if (ui->data_len != 0) {
185 err = 11;
186 goto out_invalid;
188 break;
189 case S_IFLNK:
190 inode->i_op = &ubifs_symlink_inode_operations;
191 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
192 err = 12;
193 goto out_invalid;
195 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
196 if (!ui->data) {
197 err = -ENOMEM;
198 goto out_ino;
200 memcpy(ui->data, ino->data, ui->data_len);
201 ((char *)ui->data)[ui->data_len] = '\0';
202 break;
203 case S_IFBLK:
204 case S_IFCHR:
206 dev_t rdev;
207 union ubifs_dev_desc *dev;
209 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
210 if (!ui->data) {
211 err = -ENOMEM;
212 goto out_ino;
215 dev = (union ubifs_dev_desc *)ino->data;
216 if (ui->data_len == sizeof(dev->new))
217 rdev = new_decode_dev(le32_to_cpu(dev->new));
218 else if (ui->data_len == sizeof(dev->huge))
219 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
220 else {
221 err = 13;
222 goto out_invalid;
224 memcpy(ui->data, ino->data, ui->data_len);
225 inode->i_op = &ubifs_file_inode_operations;
226 init_special_inode(inode, inode->i_mode, rdev);
227 break;
229 case S_IFSOCK:
230 case S_IFIFO:
231 inode->i_op = &ubifs_file_inode_operations;
232 init_special_inode(inode, inode->i_mode, 0);
233 if (ui->data_len != 0) {
234 err = 14;
235 goto out_invalid;
237 break;
238 default:
239 err = 15;
240 goto out_invalid;
243 kfree(ino);
244 ubifs_set_inode_flags(inode);
245 unlock_new_inode(inode);
246 return inode;
248 out_invalid:
249 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
250 dbg_dump_node(c, ino);
251 dbg_dump_inode(c, inode);
252 err = -EINVAL;
253 out_ino:
254 kfree(ino);
255 out:
256 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
257 iget_failed(inode);
258 return ERR_PTR(err);
261 static struct inode *ubifs_alloc_inode(struct super_block *sb)
263 struct ubifs_inode *ui;
265 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
266 if (!ui)
267 return NULL;
269 memset((void *)ui + sizeof(struct inode), 0,
270 sizeof(struct ubifs_inode) - sizeof(struct inode));
271 mutex_init(&ui->ui_mutex);
272 spin_lock_init(&ui->ui_lock);
273 return &ui->vfs_inode;
276 static void ubifs_destroy_inode(struct inode *inode)
278 struct ubifs_inode *ui = ubifs_inode(inode);
280 kfree(ui->data);
281 kmem_cache_free(ubifs_inode_slab, inode);
285 * Note, Linux write-back code calls this without 'i_mutex'.
287 static int ubifs_write_inode(struct inode *inode, int wait)
289 int err = 0;
290 struct ubifs_info *c = inode->i_sb->s_fs_info;
291 struct ubifs_inode *ui = ubifs_inode(inode);
293 ubifs_assert(!ui->xattr);
294 if (is_bad_inode(inode))
295 return 0;
297 mutex_lock(&ui->ui_mutex);
299 * Due to races between write-back forced by budgeting
300 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
301 * have already been synchronized, do not do this again. This might
302 * also happen if it was synchronized in an VFS operation, e.g.
303 * 'ubifs_link()'.
305 if (!ui->dirty) {
306 mutex_unlock(&ui->ui_mutex);
307 return 0;
311 * As an optimization, do not write orphan inodes to the media just
312 * because this is not needed.
314 dbg_gen("inode %lu, mode %#x, nlink %u",
315 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
316 if (inode->i_nlink) {
317 err = ubifs_jnl_write_inode(c, inode);
318 if (err)
319 ubifs_err("can't write inode %lu, error %d",
320 inode->i_ino, err);
323 ui->dirty = 0;
324 mutex_unlock(&ui->ui_mutex);
325 ubifs_release_dirty_inode_budget(c, ui);
326 return err;
329 static void ubifs_delete_inode(struct inode *inode)
331 int err;
332 struct ubifs_info *c = inode->i_sb->s_fs_info;
333 struct ubifs_inode *ui = ubifs_inode(inode);
335 if (ui->xattr)
337 * Extended attribute inode deletions are fully handled in
338 * 'ubifs_removexattr()'. These inodes are special and have
339 * limited usage, so there is nothing to do here.
341 goto out;
343 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
344 ubifs_assert(!atomic_read(&inode->i_count));
345 ubifs_assert(inode->i_nlink == 0);
347 truncate_inode_pages(&inode->i_data, 0);
348 if (is_bad_inode(inode))
349 goto out;
351 ui->ui_size = inode->i_size = 0;
352 err = ubifs_jnl_delete_inode(c, inode);
353 if (err)
355 * Worst case we have a lost orphan inode wasting space, so a
356 * simple error message is OK here.
358 ubifs_err("can't delete inode %lu, error %d",
359 inode->i_ino, err);
361 out:
362 if (ui->dirty)
363 ubifs_release_dirty_inode_budget(c, ui);
364 else {
365 /* We've deleted something - clean the "no space" flags */
366 c->nospace = c->nospace_rp = 0;
367 smp_wmb();
369 clear_inode(inode);
372 static void ubifs_dirty_inode(struct inode *inode)
374 struct ubifs_inode *ui = ubifs_inode(inode);
376 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
377 if (!ui->dirty) {
378 ui->dirty = 1;
379 dbg_gen("inode %lu", inode->i_ino);
383 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
385 struct ubifs_info *c = dentry->d_sb->s_fs_info;
386 unsigned long long free;
387 __le32 *uuid = (__le32 *)c->uuid;
389 free = ubifs_get_free_space(c);
390 dbg_gen("free space %lld bytes (%lld blocks)",
391 free, free >> UBIFS_BLOCK_SHIFT);
393 buf->f_type = UBIFS_SUPER_MAGIC;
394 buf->f_bsize = UBIFS_BLOCK_SIZE;
395 buf->f_blocks = c->block_cnt;
396 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
397 if (free > c->report_rp_size)
398 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
399 else
400 buf->f_bavail = 0;
401 buf->f_files = 0;
402 buf->f_ffree = 0;
403 buf->f_namelen = UBIFS_MAX_NLEN;
404 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
405 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
406 ubifs_assert(buf->f_bfree <= c->block_cnt);
407 return 0;
410 static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
412 struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
414 if (c->mount_opts.unmount_mode == 2)
415 seq_printf(s, ",fast_unmount");
416 else if (c->mount_opts.unmount_mode == 1)
417 seq_printf(s, ",norm_unmount");
419 if (c->mount_opts.bulk_read == 2)
420 seq_printf(s, ",bulk_read");
421 else if (c->mount_opts.bulk_read == 1)
422 seq_printf(s, ",no_bulk_read");
424 if (c->mount_opts.chk_data_crc == 2)
425 seq_printf(s, ",chk_data_crc");
426 else if (c->mount_opts.chk_data_crc == 1)
427 seq_printf(s, ",no_chk_data_crc");
429 if (c->mount_opts.override_compr) {
430 seq_printf(s, ",compr=%s",
431 ubifs_compr_name(c->mount_opts.compr_type));
434 return 0;
437 static int ubifs_sync_fs(struct super_block *sb, int wait)
439 int i, err;
440 struct ubifs_info *c = sb->s_fs_info;
443 * Zero @wait is just an advisory thing to help the file system shove
444 * lots of data into the queues, and there will be the second
445 * '->sync_fs()' call, with non-zero @wait.
447 if (!wait)
448 return 0;
451 * VFS calls '->sync_fs()' before synchronizing all dirty inodes and
452 * pages, so synchronize them first, then commit the journal. Strictly
453 * speaking, it is not necessary to commit the journal here,
454 * synchronizing write-buffers would be enough. But committing makes
455 * UBIFS free space predictions much more accurate, so we want to let
456 * the user be able to get more accurate results of 'statfs()' after
457 * they synchronize the file system.
459 sync_inodes_sb(sb);
462 * Synchronize write buffers, because 'ubifs_run_commit()' does not
463 * do this if it waits for an already running commit.
465 for (i = 0; i < c->jhead_cnt; i++) {
466 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
467 if (err)
468 return err;
471 err = ubifs_run_commit(c);
472 if (err)
473 return err;
475 return ubi_sync(c->vi.ubi_num);
479 * init_constants_early - initialize UBIFS constants.
480 * @c: UBIFS file-system description object
482 * This function initialize UBIFS constants which do not need the superblock to
483 * be read. It also checks that the UBI volume satisfies basic UBIFS
484 * requirements. Returns zero in case of success and a negative error code in
485 * case of failure.
487 static int init_constants_early(struct ubifs_info *c)
489 if (c->vi.corrupted) {
490 ubifs_warn("UBI volume is corrupted - read-only mode");
491 c->ro_media = 1;
494 if (c->di.ro_mode) {
495 ubifs_msg("read-only UBI device");
496 c->ro_media = 1;
499 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
500 ubifs_msg("static UBI volume - read-only mode");
501 c->ro_media = 1;
504 c->leb_cnt = c->vi.size;
505 c->leb_size = c->vi.usable_leb_size;
506 c->half_leb_size = c->leb_size / 2;
507 c->min_io_size = c->di.min_io_size;
508 c->min_io_shift = fls(c->min_io_size) - 1;
510 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
511 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
512 c->leb_size, UBIFS_MIN_LEB_SZ);
513 return -EINVAL;
516 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
517 ubifs_err("too few LEBs (%d), min. is %d",
518 c->leb_cnt, UBIFS_MIN_LEB_CNT);
519 return -EINVAL;
522 if (!is_power_of_2(c->min_io_size)) {
523 ubifs_err("bad min. I/O size %d", c->min_io_size);
524 return -EINVAL;
528 * UBIFS aligns all node to 8-byte boundary, so to make function in
529 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
530 * less than 8.
532 if (c->min_io_size < 8) {
533 c->min_io_size = 8;
534 c->min_io_shift = 3;
537 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
538 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
541 * Initialize node length ranges which are mostly needed for node
542 * length validation.
544 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
545 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
546 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
547 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
548 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
549 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
551 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
552 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
553 c->ranges[UBIFS_ORPH_NODE].min_len =
554 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
555 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
556 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
557 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
558 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
559 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
560 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
561 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
563 * Minimum indexing node size is amended later when superblock is
564 * read and the key length is known.
566 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
568 * Maximum indexing node size is amended later when superblock is
569 * read and the fanout is known.
571 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
574 * Initialize dead and dark LEB space watermarks. See gc.c for comments
575 * about these values.
577 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
578 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
581 * Calculate how many bytes would be wasted at the end of LEB if it was
582 * fully filled with data nodes of maximum size. This is used in
583 * calculations when reporting free space.
585 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
587 /* Buffer size for bulk-reads */
588 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
589 if (c->max_bu_buf_len > c->leb_size)
590 c->max_bu_buf_len = c->leb_size;
591 return 0;
595 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
596 * @c: UBIFS file-system description object
597 * @lnum: LEB the write-buffer was synchronized to
598 * @free: how many free bytes left in this LEB
599 * @pad: how many bytes were padded
601 * This is a callback function which is called by the I/O unit when the
602 * write-buffer is synchronized. We need this to correctly maintain space
603 * accounting in bud logical eraseblocks. This function returns zero in case of
604 * success and a negative error code in case of failure.
606 * This function actually belongs to the journal, but we keep it here because
607 * we want to keep it static.
609 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
611 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
615 * init_constants_sb - initialize UBIFS constants.
616 * @c: UBIFS file-system description object
618 * This is a helper function which initializes various UBIFS constants after
619 * the superblock has been read. It also checks various UBIFS parameters and
620 * makes sure they are all right. Returns zero in case of success and a
621 * negative error code in case of failure.
623 static int init_constants_sb(struct ubifs_info *c)
625 int tmp, err;
626 long long tmp64;
628 c->main_bytes = (long long)c->main_lebs * c->leb_size;
629 c->max_znode_sz = sizeof(struct ubifs_znode) +
630 c->fanout * sizeof(struct ubifs_zbranch);
632 tmp = ubifs_idx_node_sz(c, 1);
633 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
634 c->min_idx_node_sz = ALIGN(tmp, 8);
636 tmp = ubifs_idx_node_sz(c, c->fanout);
637 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
638 c->max_idx_node_sz = ALIGN(tmp, 8);
640 /* Make sure LEB size is large enough to fit full commit */
641 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
642 tmp = ALIGN(tmp, c->min_io_size);
643 if (tmp > c->leb_size) {
644 dbg_err("too small LEB size %d, at least %d needed",
645 c->leb_size, tmp);
646 return -EINVAL;
650 * Make sure that the log is large enough to fit reference nodes for
651 * all buds plus one reserved LEB.
653 tmp64 = c->max_bud_bytes + c->leb_size - 1;
654 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
655 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
656 tmp /= c->leb_size;
657 tmp += 1;
658 if (c->log_lebs < tmp) {
659 dbg_err("too small log %d LEBs, required min. %d LEBs",
660 c->log_lebs, tmp);
661 return -EINVAL;
665 * When budgeting we assume worst-case scenarios when the pages are not
666 * be compressed and direntries are of the maximum size.
668 * Note, data, which may be stored in inodes is budgeted separately, so
669 * it is not included into 'c->inode_budget'.
671 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
672 c->inode_budget = UBIFS_INO_NODE_SZ;
673 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
676 * When the amount of flash space used by buds becomes
677 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
678 * The writers are unblocked when the commit is finished. To avoid
679 * writers to be blocked UBIFS initiates background commit in advance,
680 * when number of bud bytes becomes above the limit defined below.
682 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
685 * Ensure minimum journal size. All the bytes in the journal heads are
686 * considered to be used, when calculating the current journal usage.
687 * Consequently, if the journal is too small, UBIFS will treat it as
688 * always full.
690 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
691 if (c->bg_bud_bytes < tmp64)
692 c->bg_bud_bytes = tmp64;
693 if (c->max_bud_bytes < tmp64 + c->leb_size)
694 c->max_bud_bytes = tmp64 + c->leb_size;
696 err = ubifs_calc_lpt_geom(c);
697 if (err)
698 return err;
700 /* Initialize effective LEB size used in budgeting calculations */
701 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
702 return 0;
706 * init_constants_master - initialize UBIFS constants.
707 * @c: UBIFS file-system description object
709 * This is a helper function which initializes various UBIFS constants after
710 * the master node has been read. It also checks various UBIFS parameters and
711 * makes sure they are all right.
713 static void init_constants_master(struct ubifs_info *c)
715 long long tmp64;
717 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
718 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
721 * Calculate total amount of FS blocks. This number is not used
722 * internally because it does not make much sense for UBIFS, but it is
723 * necessary to report something for the 'statfs()' call.
725 * Subtract the LEB reserved for GC, the LEB which is reserved for
726 * deletions, minimum LEBs for the index, and assume only one journal
727 * head is available.
729 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
730 tmp64 *= (long long)c->leb_size - c->leb_overhead;
731 tmp64 = ubifs_reported_space(c, tmp64);
732 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
736 * take_gc_lnum - reserve GC LEB.
737 * @c: UBIFS file-system description object
739 * This function ensures that the LEB reserved for garbage collection is marked
740 * as "taken" in lprops. We also have to set free space to LEB size and dirty
741 * space to zero, because lprops may contain out-of-date information if the
742 * file-system was un-mounted before it has been committed. This function
743 * returns zero in case of success and a negative error code in case of
744 * failure.
746 static int take_gc_lnum(struct ubifs_info *c)
748 int err;
750 if (c->gc_lnum == -1) {
751 ubifs_err("no LEB for GC");
752 return -EINVAL;
755 /* And we have to tell lprops that this LEB is taken */
756 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
757 LPROPS_TAKEN, 0, 0);
758 return err;
762 * alloc_wbufs - allocate write-buffers.
763 * @c: UBIFS file-system description object
765 * This helper function allocates and initializes UBIFS write-buffers. Returns
766 * zero in case of success and %-ENOMEM in case of failure.
768 static int alloc_wbufs(struct ubifs_info *c)
770 int i, err;
772 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
773 GFP_KERNEL);
774 if (!c->jheads)
775 return -ENOMEM;
777 /* Initialize journal heads */
778 for (i = 0; i < c->jhead_cnt; i++) {
779 INIT_LIST_HEAD(&c->jheads[i].buds_list);
780 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
781 if (err)
782 return err;
784 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
785 c->jheads[i].wbuf.jhead = i;
788 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
790 * Garbage Collector head likely contains long-term data and
791 * does not need to be synchronized by timer.
793 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
794 c->jheads[GCHD].wbuf.no_timer = 1;
796 return 0;
800 * free_wbufs - free write-buffers.
801 * @c: UBIFS file-system description object
803 static void free_wbufs(struct ubifs_info *c)
805 int i;
807 if (c->jheads) {
808 for (i = 0; i < c->jhead_cnt; i++) {
809 kfree(c->jheads[i].wbuf.buf);
810 kfree(c->jheads[i].wbuf.inodes);
812 kfree(c->jheads);
813 c->jheads = NULL;
818 * free_orphans - free orphans.
819 * @c: UBIFS file-system description object
821 static void free_orphans(struct ubifs_info *c)
823 struct ubifs_orphan *orph;
825 while (c->orph_dnext) {
826 orph = c->orph_dnext;
827 c->orph_dnext = orph->dnext;
828 list_del(&orph->list);
829 kfree(orph);
832 while (!list_empty(&c->orph_list)) {
833 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
834 list_del(&orph->list);
835 kfree(orph);
836 dbg_err("orphan list not empty at unmount");
839 vfree(c->orph_buf);
840 c->orph_buf = NULL;
844 * free_buds - free per-bud objects.
845 * @c: UBIFS file-system description object
847 static void free_buds(struct ubifs_info *c)
849 struct rb_node *this = c->buds.rb_node;
850 struct ubifs_bud *bud;
852 while (this) {
853 if (this->rb_left)
854 this = this->rb_left;
855 else if (this->rb_right)
856 this = this->rb_right;
857 else {
858 bud = rb_entry(this, struct ubifs_bud, rb);
859 this = rb_parent(this);
860 if (this) {
861 if (this->rb_left == &bud->rb)
862 this->rb_left = NULL;
863 else
864 this->rb_right = NULL;
866 kfree(bud);
872 * check_volume_empty - check if the UBI volume is empty.
873 * @c: UBIFS file-system description object
875 * This function checks if the UBIFS volume is empty by looking if its LEBs are
876 * mapped or not. The result of checking is stored in the @c->empty variable.
877 * Returns zero in case of success and a negative error code in case of
878 * failure.
880 static int check_volume_empty(struct ubifs_info *c)
882 int lnum, err;
884 c->empty = 1;
885 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
886 err = ubi_is_mapped(c->ubi, lnum);
887 if (unlikely(err < 0))
888 return err;
889 if (err == 1) {
890 c->empty = 0;
891 break;
894 cond_resched();
897 return 0;
901 * UBIFS mount options.
903 * Opt_fast_unmount: do not run a journal commit before un-mounting
904 * Opt_norm_unmount: run a journal commit before un-mounting
905 * Opt_bulk_read: enable bulk-reads
906 * Opt_no_bulk_read: disable bulk-reads
907 * Opt_chk_data_crc: check CRCs when reading data nodes
908 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
909 * Opt_override_compr: override default compressor
910 * Opt_err: just end of array marker
912 enum {
913 Opt_fast_unmount,
914 Opt_norm_unmount,
915 Opt_bulk_read,
916 Opt_no_bulk_read,
917 Opt_chk_data_crc,
918 Opt_no_chk_data_crc,
919 Opt_override_compr,
920 Opt_err,
923 static const match_table_t tokens = {
924 {Opt_fast_unmount, "fast_unmount"},
925 {Opt_norm_unmount, "norm_unmount"},
926 {Opt_bulk_read, "bulk_read"},
927 {Opt_no_bulk_read, "no_bulk_read"},
928 {Opt_chk_data_crc, "chk_data_crc"},
929 {Opt_no_chk_data_crc, "no_chk_data_crc"},
930 {Opt_override_compr, "compr=%s"},
931 {Opt_err, NULL},
935 * parse_standard_option - parse a standard mount option.
936 * @option: the option to parse
938 * Normally, standard mount options like "sync" are passed to file-systems as
939 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
940 * be present in the options string. This function tries to deal with this
941 * situation and parse standard options. Returns 0 if the option was not
942 * recognized, and the corresponding integer flag if it was.
944 * UBIFS is only interested in the "sync" option, so do not check for anything
945 * else.
947 static int parse_standard_option(const char *option)
949 ubifs_msg("parse %s", option);
950 if (!strcmp(option, "sync"))
951 return MS_SYNCHRONOUS;
952 return 0;
956 * ubifs_parse_options - parse mount parameters.
957 * @c: UBIFS file-system description object
958 * @options: parameters to parse
959 * @is_remount: non-zero if this is FS re-mount
961 * This function parses UBIFS mount options and returns zero in case success
962 * and a negative error code in case of failure.
964 static int ubifs_parse_options(struct ubifs_info *c, char *options,
965 int is_remount)
967 char *p;
968 substring_t args[MAX_OPT_ARGS];
970 if (!options)
971 return 0;
973 while ((p = strsep(&options, ","))) {
974 int token;
976 if (!*p)
977 continue;
979 token = match_token(p, tokens, args);
980 switch (token) {
982 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
983 * We accept them in order to be backward-compatible. But this
984 * should be removed at some point.
986 case Opt_fast_unmount:
987 c->mount_opts.unmount_mode = 2;
988 break;
989 case Opt_norm_unmount:
990 c->mount_opts.unmount_mode = 1;
991 break;
992 case Opt_bulk_read:
993 c->mount_opts.bulk_read = 2;
994 c->bulk_read = 1;
995 break;
996 case Opt_no_bulk_read:
997 c->mount_opts.bulk_read = 1;
998 c->bulk_read = 0;
999 break;
1000 case Opt_chk_data_crc:
1001 c->mount_opts.chk_data_crc = 2;
1002 c->no_chk_data_crc = 0;
1003 break;
1004 case Opt_no_chk_data_crc:
1005 c->mount_opts.chk_data_crc = 1;
1006 c->no_chk_data_crc = 1;
1007 break;
1008 case Opt_override_compr:
1010 char *name = match_strdup(&args[0]);
1012 if (!name)
1013 return -ENOMEM;
1014 if (!strcmp(name, "none"))
1015 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1016 else if (!strcmp(name, "lzo"))
1017 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1018 else if (!strcmp(name, "zlib"))
1019 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1020 else {
1021 ubifs_err("unknown compressor \"%s\"", name);
1022 kfree(name);
1023 return -EINVAL;
1025 kfree(name);
1026 c->mount_opts.override_compr = 1;
1027 c->default_compr = c->mount_opts.compr_type;
1028 break;
1030 default:
1032 unsigned long flag;
1033 struct super_block *sb = c->vfs_sb;
1035 flag = parse_standard_option(p);
1036 if (!flag) {
1037 ubifs_err("unrecognized mount option \"%s\" "
1038 "or missing value", p);
1039 return -EINVAL;
1041 sb->s_flags |= flag;
1042 break;
1047 return 0;
1051 * destroy_journal - destroy journal data structures.
1052 * @c: UBIFS file-system description object
1054 * This function destroys journal data structures including those that may have
1055 * been created by recovery functions.
1057 static void destroy_journal(struct ubifs_info *c)
1059 while (!list_empty(&c->unclean_leb_list)) {
1060 struct ubifs_unclean_leb *ucleb;
1062 ucleb = list_entry(c->unclean_leb_list.next,
1063 struct ubifs_unclean_leb, list);
1064 list_del(&ucleb->list);
1065 kfree(ucleb);
1067 while (!list_empty(&c->old_buds)) {
1068 struct ubifs_bud *bud;
1070 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1071 list_del(&bud->list);
1072 kfree(bud);
1074 ubifs_destroy_idx_gc(c);
1075 ubifs_destroy_size_tree(c);
1076 ubifs_tnc_close(c);
1077 free_buds(c);
1081 * bu_init - initialize bulk-read information.
1082 * @c: UBIFS file-system description object
1084 static void bu_init(struct ubifs_info *c)
1086 ubifs_assert(c->bulk_read == 1);
1088 if (c->bu.buf)
1089 return; /* Already initialized */
1091 again:
1092 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1093 if (!c->bu.buf) {
1094 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1095 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1096 goto again;
1099 /* Just disable bulk-read */
1100 ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, "
1101 "disabling it", c->max_bu_buf_len);
1102 c->mount_opts.bulk_read = 1;
1103 c->bulk_read = 0;
1104 return;
1109 * check_free_space - check if there is enough free space to mount.
1110 * @c: UBIFS file-system description object
1112 * This function makes sure UBIFS has enough free space to be mounted in
1113 * read/write mode. UBIFS must always have some free space to allow deletions.
1115 static int check_free_space(struct ubifs_info *c)
1117 ubifs_assert(c->dark_wm > 0);
1118 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1119 ubifs_err("insufficient free space to mount in read/write mode");
1120 dbg_dump_budg(c);
1121 dbg_dump_lprops(c);
1122 return -ENOSPC;
1124 return 0;
1128 * mount_ubifs - mount UBIFS file-system.
1129 * @c: UBIFS file-system description object
1131 * This function mounts UBIFS file system. Returns zero in case of success and
1132 * a negative error code in case of failure.
1134 * Note, the function does not de-allocate resources it it fails half way
1135 * through, and the caller has to do this instead.
1137 static int mount_ubifs(struct ubifs_info *c)
1139 struct super_block *sb = c->vfs_sb;
1140 int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
1141 long long x;
1142 size_t sz;
1144 err = init_constants_early(c);
1145 if (err)
1146 return err;
1148 err = ubifs_debugging_init(c);
1149 if (err)
1150 return err;
1152 err = check_volume_empty(c);
1153 if (err)
1154 goto out_free;
1156 if (c->empty && (mounted_read_only || c->ro_media)) {
1158 * This UBI volume is empty, and read-only, or the file system
1159 * is mounted read-only - we cannot format it.
1161 ubifs_err("can't format empty UBI volume: read-only %s",
1162 c->ro_media ? "UBI volume" : "mount");
1163 err = -EROFS;
1164 goto out_free;
1167 if (c->ro_media && !mounted_read_only) {
1168 ubifs_err("cannot mount read-write - read-only media");
1169 err = -EROFS;
1170 goto out_free;
1174 * The requirement for the buffer is that it should fit indexing B-tree
1175 * height amount of integers. We assume the height if the TNC tree will
1176 * never exceed 64.
1178 err = -ENOMEM;
1179 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1180 if (!c->bottom_up_buf)
1181 goto out_free;
1183 c->sbuf = vmalloc(c->leb_size);
1184 if (!c->sbuf)
1185 goto out_free;
1187 if (!mounted_read_only) {
1188 c->ileb_buf = vmalloc(c->leb_size);
1189 if (!c->ileb_buf)
1190 goto out_free;
1193 if (c->bulk_read == 1)
1194 bu_init(c);
1197 * We have to check all CRCs, even for data nodes, when we mount the FS
1198 * (specifically, when we are replaying).
1200 c->always_chk_crc = 1;
1202 err = ubifs_read_superblock(c);
1203 if (err)
1204 goto out_free;
1207 * Make sure the compressor which is set as default in the superblock
1208 * or overridden by mount options is actually compiled in.
1210 if (!ubifs_compr_present(c->default_compr)) {
1211 ubifs_err("'compressor \"%s\" is not compiled in",
1212 ubifs_compr_name(c->default_compr));
1213 err = -ENOTSUPP;
1214 goto out_free;
1217 err = init_constants_sb(c);
1218 if (err)
1219 goto out_free;
1221 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1222 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1223 c->cbuf = kmalloc(sz, GFP_NOFS);
1224 if (!c->cbuf) {
1225 err = -ENOMEM;
1226 goto out_free;
1229 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1230 if (!mounted_read_only) {
1231 err = alloc_wbufs(c);
1232 if (err)
1233 goto out_cbuf;
1235 /* Create background thread */
1236 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1237 if (IS_ERR(c->bgt)) {
1238 err = PTR_ERR(c->bgt);
1239 c->bgt = NULL;
1240 ubifs_err("cannot spawn \"%s\", error %d",
1241 c->bgt_name, err);
1242 goto out_wbufs;
1244 wake_up_process(c->bgt);
1247 err = ubifs_read_master(c);
1248 if (err)
1249 goto out_master;
1251 init_constants_master(c);
1253 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1254 ubifs_msg("recovery needed");
1255 c->need_recovery = 1;
1256 if (!mounted_read_only) {
1257 err = ubifs_recover_inl_heads(c, c->sbuf);
1258 if (err)
1259 goto out_master;
1261 } else if (!mounted_read_only) {
1263 * Set the "dirty" flag so that if we reboot uncleanly we
1264 * will notice this immediately on the next mount.
1266 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1267 err = ubifs_write_master(c);
1268 if (err)
1269 goto out_master;
1272 err = ubifs_lpt_init(c, 1, !mounted_read_only);
1273 if (err)
1274 goto out_lpt;
1276 err = dbg_check_idx_size(c, c->old_idx_sz);
1277 if (err)
1278 goto out_lpt;
1280 err = ubifs_replay_journal(c);
1281 if (err)
1282 goto out_journal;
1284 /* Calculate 'min_idx_lebs' after journal replay */
1285 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1287 err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
1288 if (err)
1289 goto out_orphans;
1291 if (!mounted_read_only) {
1292 int lnum;
1294 err = check_free_space(c);
1295 if (err)
1296 goto out_orphans;
1298 /* Check for enough log space */
1299 lnum = c->lhead_lnum + 1;
1300 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1301 lnum = UBIFS_LOG_LNUM;
1302 if (lnum == c->ltail_lnum) {
1303 err = ubifs_consolidate_log(c);
1304 if (err)
1305 goto out_orphans;
1308 if (c->need_recovery) {
1309 err = ubifs_recover_size(c);
1310 if (err)
1311 goto out_orphans;
1312 err = ubifs_rcvry_gc_commit(c);
1313 } else {
1314 err = take_gc_lnum(c);
1315 if (err)
1316 goto out_orphans;
1319 * GC LEB may contain garbage if there was an unclean
1320 * reboot, and it should be un-mapped.
1322 err = ubifs_leb_unmap(c, c->gc_lnum);
1323 if (err)
1324 return err;
1327 err = dbg_check_lprops(c);
1328 if (err)
1329 goto out_orphans;
1330 } else if (c->need_recovery) {
1331 err = ubifs_recover_size(c);
1332 if (err)
1333 goto out_orphans;
1334 } else {
1336 * Even if we mount read-only, we have to set space in GC LEB
1337 * to proper value because this affects UBIFS free space
1338 * reporting. We do not want to have a situation when
1339 * re-mounting from R/O to R/W changes amount of free space.
1341 err = take_gc_lnum(c);
1342 if (err)
1343 goto out_orphans;
1346 spin_lock(&ubifs_infos_lock);
1347 list_add_tail(&c->infos_list, &ubifs_infos);
1348 spin_unlock(&ubifs_infos_lock);
1350 if (c->need_recovery) {
1351 if (mounted_read_only)
1352 ubifs_msg("recovery deferred");
1353 else {
1354 c->need_recovery = 0;
1355 ubifs_msg("recovery completed");
1357 * GC LEB has to be empty and taken at this point. But
1358 * the journal head LEBs may also be accounted as
1359 * "empty taken" if they are empty.
1361 ubifs_assert(c->lst.taken_empty_lebs > 0);
1363 } else
1364 ubifs_assert(c->lst.taken_empty_lebs > 0);
1366 err = dbg_check_filesystem(c);
1367 if (err)
1368 goto out_infos;
1370 err = dbg_debugfs_init_fs(c);
1371 if (err)
1372 goto out_infos;
1374 c->always_chk_crc = 0;
1376 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1377 c->vi.ubi_num, c->vi.vol_id, c->vi.name);
1378 if (mounted_read_only)
1379 ubifs_msg("mounted read-only");
1380 x = (long long)c->main_lebs * c->leb_size;
1381 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d "
1382 "LEBs)", x, x >> 10, x >> 20, c->main_lebs);
1383 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1384 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d "
1385 "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1386 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d)",
1387 c->fmt_version, c->ro_compat_version,
1388 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1389 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
1390 ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1391 c->report_rp_size, c->report_rp_size >> 10);
1393 dbg_msg("compiled on: " __DATE__ " at " __TIME__);
1394 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size);
1395 dbg_msg("LEB size: %d bytes (%d KiB)",
1396 c->leb_size, c->leb_size >> 10);
1397 dbg_msg("data journal heads: %d",
1398 c->jhead_cnt - NONDATA_JHEADS_CNT);
1399 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
1400 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1401 c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3],
1402 c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7],
1403 c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11],
1404 c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]);
1405 dbg_msg("big_lpt %d", c->big_lpt);
1406 dbg_msg("log LEBs: %d (%d - %d)",
1407 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1408 dbg_msg("LPT area LEBs: %d (%d - %d)",
1409 c->lpt_lebs, c->lpt_first, c->lpt_last);
1410 dbg_msg("orphan area LEBs: %d (%d - %d)",
1411 c->orph_lebs, c->orph_first, c->orph_last);
1412 dbg_msg("main area LEBs: %d (%d - %d)",
1413 c->main_lebs, c->main_first, c->leb_cnt - 1);
1414 dbg_msg("index LEBs: %d", c->lst.idx_lebs);
1415 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
1416 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1417 dbg_msg("key hash type: %d", c->key_hash_type);
1418 dbg_msg("tree fanout: %d", c->fanout);
1419 dbg_msg("reserved GC LEB: %d", c->gc_lnum);
1420 dbg_msg("first main LEB: %d", c->main_first);
1421 dbg_msg("max. znode size %d", c->max_znode_sz);
1422 dbg_msg("max. index node size %d", c->max_idx_node_sz);
1423 dbg_msg("node sizes: data %zu, inode %zu, dentry %zu",
1424 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1425 dbg_msg("node sizes: trun %zu, sb %zu, master %zu",
1426 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1427 dbg_msg("node sizes: ref %zu, cmt. start %zu, orph %zu",
1428 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1429 dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu",
1430 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1431 UBIFS_MAX_DENT_NODE_SZ);
1432 dbg_msg("dead watermark: %d", c->dead_wm);
1433 dbg_msg("dark watermark: %d", c->dark_wm);
1434 dbg_msg("LEB overhead: %d", c->leb_overhead);
1435 x = (long long)c->main_lebs * c->dark_wm;
1436 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
1437 x, x >> 10, x >> 20);
1438 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1439 c->max_bud_bytes, c->max_bud_bytes >> 10,
1440 c->max_bud_bytes >> 20);
1441 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1442 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1443 c->bg_bud_bytes >> 20);
1444 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
1445 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1446 dbg_msg("max. seq. number: %llu", c->max_sqnum);
1447 dbg_msg("commit number: %llu", c->cmt_no);
1449 return 0;
1451 out_infos:
1452 spin_lock(&ubifs_infos_lock);
1453 list_del(&c->infos_list);
1454 spin_unlock(&ubifs_infos_lock);
1455 out_orphans:
1456 free_orphans(c);
1457 out_journal:
1458 destroy_journal(c);
1459 out_lpt:
1460 ubifs_lpt_free(c, 0);
1461 out_master:
1462 kfree(c->mst_node);
1463 kfree(c->rcvrd_mst_node);
1464 if (c->bgt)
1465 kthread_stop(c->bgt);
1466 out_wbufs:
1467 free_wbufs(c);
1468 out_cbuf:
1469 kfree(c->cbuf);
1470 out_free:
1471 kfree(c->bu.buf);
1472 vfree(c->ileb_buf);
1473 vfree(c->sbuf);
1474 kfree(c->bottom_up_buf);
1475 ubifs_debugging_exit(c);
1476 return err;
1480 * ubifs_umount - un-mount UBIFS file-system.
1481 * @c: UBIFS file-system description object
1483 * Note, this function is called to free allocated resourced when un-mounting,
1484 * as well as free resources when an error occurred while we were half way
1485 * through mounting (error path cleanup function). So it has to make sure the
1486 * resource was actually allocated before freeing it.
1488 static void ubifs_umount(struct ubifs_info *c)
1490 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1491 c->vi.vol_id);
1493 dbg_debugfs_exit_fs(c);
1494 spin_lock(&ubifs_infos_lock);
1495 list_del(&c->infos_list);
1496 spin_unlock(&ubifs_infos_lock);
1498 if (c->bgt)
1499 kthread_stop(c->bgt);
1501 destroy_journal(c);
1502 free_wbufs(c);
1503 free_orphans(c);
1504 ubifs_lpt_free(c, 0);
1506 kfree(c->cbuf);
1507 kfree(c->rcvrd_mst_node);
1508 kfree(c->mst_node);
1509 kfree(c->bu.buf);
1510 vfree(c->ileb_buf);
1511 vfree(c->sbuf);
1512 kfree(c->bottom_up_buf);
1513 ubifs_debugging_exit(c);
1517 * ubifs_remount_rw - re-mount in read-write mode.
1518 * @c: UBIFS file-system description object
1520 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1521 * mode. This function allocates the needed resources and re-mounts UBIFS in
1522 * read-write mode.
1524 static int ubifs_remount_rw(struct ubifs_info *c)
1526 int err, lnum;
1528 if (c->rw_incompat) {
1529 ubifs_err("the file-system is not R/W-compatible");
1530 ubifs_msg("on-flash format version is w%d/r%d, but software "
1531 "only supports up to version w%d/r%d", c->fmt_version,
1532 c->ro_compat_version, UBIFS_FORMAT_VERSION,
1533 UBIFS_RO_COMPAT_VERSION);
1534 return -EROFS;
1537 mutex_lock(&c->umount_mutex);
1538 dbg_save_space_info(c);
1539 c->remounting_rw = 1;
1540 c->always_chk_crc = 1;
1542 err = check_free_space(c);
1543 if (err)
1544 goto out;
1546 if (c->old_leb_cnt != c->leb_cnt) {
1547 struct ubifs_sb_node *sup;
1549 sup = ubifs_read_sb_node(c);
1550 if (IS_ERR(sup)) {
1551 err = PTR_ERR(sup);
1552 goto out;
1554 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1555 err = ubifs_write_sb_node(c, sup);
1556 if (err)
1557 goto out;
1560 if (c->need_recovery) {
1561 ubifs_msg("completing deferred recovery");
1562 err = ubifs_write_rcvrd_mst_node(c);
1563 if (err)
1564 goto out;
1565 err = ubifs_recover_size(c);
1566 if (err)
1567 goto out;
1568 err = ubifs_clean_lebs(c, c->sbuf);
1569 if (err)
1570 goto out;
1571 err = ubifs_recover_inl_heads(c, c->sbuf);
1572 if (err)
1573 goto out;
1574 } else {
1575 /* A readonly mount is not allowed to have orphans */
1576 ubifs_assert(c->tot_orphans == 0);
1577 err = ubifs_clear_orphans(c);
1578 if (err)
1579 goto out;
1582 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1583 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1584 err = ubifs_write_master(c);
1585 if (err)
1586 goto out;
1589 c->ileb_buf = vmalloc(c->leb_size);
1590 if (!c->ileb_buf) {
1591 err = -ENOMEM;
1592 goto out;
1595 err = ubifs_lpt_init(c, 0, 1);
1596 if (err)
1597 goto out;
1599 err = alloc_wbufs(c);
1600 if (err)
1601 goto out;
1603 ubifs_create_buds_lists(c);
1605 /* Create background thread */
1606 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1607 if (IS_ERR(c->bgt)) {
1608 err = PTR_ERR(c->bgt);
1609 c->bgt = NULL;
1610 ubifs_err("cannot spawn \"%s\", error %d",
1611 c->bgt_name, err);
1612 goto out;
1614 wake_up_process(c->bgt);
1616 c->orph_buf = vmalloc(c->leb_size);
1617 if (!c->orph_buf) {
1618 err = -ENOMEM;
1619 goto out;
1622 /* Check for enough log space */
1623 lnum = c->lhead_lnum + 1;
1624 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1625 lnum = UBIFS_LOG_LNUM;
1626 if (lnum == c->ltail_lnum) {
1627 err = ubifs_consolidate_log(c);
1628 if (err)
1629 goto out;
1632 if (c->need_recovery)
1633 err = ubifs_rcvry_gc_commit(c);
1634 else
1635 err = ubifs_leb_unmap(c, c->gc_lnum);
1636 if (err)
1637 goto out;
1639 if (c->need_recovery) {
1640 c->need_recovery = 0;
1641 ubifs_msg("deferred recovery completed");
1644 dbg_gen("re-mounted read-write");
1645 c->vfs_sb->s_flags &= ~MS_RDONLY;
1646 c->remounting_rw = 0;
1647 c->always_chk_crc = 0;
1648 err = dbg_check_space_info(c);
1649 mutex_unlock(&c->umount_mutex);
1650 return err;
1652 out:
1653 vfree(c->orph_buf);
1654 c->orph_buf = NULL;
1655 if (c->bgt) {
1656 kthread_stop(c->bgt);
1657 c->bgt = NULL;
1659 free_wbufs(c);
1660 vfree(c->ileb_buf);
1661 c->ileb_buf = NULL;
1662 ubifs_lpt_free(c, 1);
1663 c->remounting_rw = 0;
1664 c->always_chk_crc = 0;
1665 mutex_unlock(&c->umount_mutex);
1666 return err;
1670 * ubifs_remount_ro - re-mount in read-only mode.
1671 * @c: UBIFS file-system description object
1673 * We assume VFS has stopped writing. Possibly the background thread could be
1674 * running a commit, however kthread_stop will wait in that case.
1676 static void ubifs_remount_ro(struct ubifs_info *c)
1678 int i, err;
1680 ubifs_assert(!c->need_recovery);
1681 ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY));
1683 mutex_lock(&c->umount_mutex);
1684 if (c->bgt) {
1685 kthread_stop(c->bgt);
1686 c->bgt = NULL;
1689 dbg_save_space_info(c);
1691 for (i = 0; i < c->jhead_cnt; i++) {
1692 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1693 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1696 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1697 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1698 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1699 err = ubifs_write_master(c);
1700 if (err)
1701 ubifs_ro_mode(c, err);
1703 free_wbufs(c);
1704 vfree(c->orph_buf);
1705 c->orph_buf = NULL;
1706 vfree(c->ileb_buf);
1707 c->ileb_buf = NULL;
1708 ubifs_lpt_free(c, 1);
1709 err = dbg_check_space_info(c);
1710 if (err)
1711 ubifs_ro_mode(c, err);
1712 mutex_unlock(&c->umount_mutex);
1715 static void ubifs_put_super(struct super_block *sb)
1717 int i;
1718 struct ubifs_info *c = sb->s_fs_info;
1720 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1721 c->vi.vol_id);
1723 lock_kernel();
1726 * The following asserts are only valid if there has not been a failure
1727 * of the media. For example, there will be dirty inodes if we failed
1728 * to write them back because of I/O errors.
1730 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1731 ubifs_assert(c->budg_idx_growth == 0);
1732 ubifs_assert(c->budg_dd_growth == 0);
1733 ubifs_assert(c->budg_data_growth == 0);
1736 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1737 * and file system un-mount. Namely, it prevents the shrinker from
1738 * picking this superblock for shrinking - it will be just skipped if
1739 * the mutex is locked.
1741 mutex_lock(&c->umount_mutex);
1742 if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
1744 * First of all kill the background thread to make sure it does
1745 * not interfere with un-mounting and freeing resources.
1747 if (c->bgt) {
1748 kthread_stop(c->bgt);
1749 c->bgt = NULL;
1752 /* Synchronize write-buffers */
1753 if (c->jheads)
1754 for (i = 0; i < c->jhead_cnt; i++)
1755 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1758 * On fatal errors c->ro_media is set to 1, in which case we do
1759 * not write the master node.
1761 if (!c->ro_media) {
1763 * We are being cleanly unmounted which means the
1764 * orphans were killed - indicate this in the master
1765 * node. Also save the reserved GC LEB number.
1767 int err;
1769 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1770 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1771 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1772 err = ubifs_write_master(c);
1773 if (err)
1775 * Recovery will attempt to fix the master area
1776 * next mount, so we just print a message and
1777 * continue to unmount normally.
1779 ubifs_err("failed to write master node, "
1780 "error %d", err);
1784 ubifs_umount(c);
1785 bdi_destroy(&c->bdi);
1786 ubi_close_volume(c->ubi);
1787 mutex_unlock(&c->umount_mutex);
1788 kfree(c);
1790 unlock_kernel();
1793 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1795 int err;
1796 struct ubifs_info *c = sb->s_fs_info;
1798 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1800 err = ubifs_parse_options(c, data, 1);
1801 if (err) {
1802 ubifs_err("invalid or unknown remount parameter");
1803 return err;
1806 lock_kernel();
1807 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
1808 if (c->ro_media) {
1809 ubifs_msg("cannot re-mount due to prior errors");
1810 unlock_kernel();
1811 return -EROFS;
1813 err = ubifs_remount_rw(c);
1814 if (err) {
1815 unlock_kernel();
1816 return err;
1818 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
1819 if (c->ro_media) {
1820 ubifs_msg("cannot re-mount due to prior errors");
1821 unlock_kernel();
1822 return -EROFS;
1824 ubifs_remount_ro(c);
1827 if (c->bulk_read == 1)
1828 bu_init(c);
1829 else {
1830 dbg_gen("disable bulk-read");
1831 kfree(c->bu.buf);
1832 c->bu.buf = NULL;
1835 ubifs_assert(c->lst.taken_empty_lebs > 0);
1836 unlock_kernel();
1837 return 0;
1840 const struct super_operations ubifs_super_operations = {
1841 .alloc_inode = ubifs_alloc_inode,
1842 .destroy_inode = ubifs_destroy_inode,
1843 .put_super = ubifs_put_super,
1844 .write_inode = ubifs_write_inode,
1845 .delete_inode = ubifs_delete_inode,
1846 .statfs = ubifs_statfs,
1847 .dirty_inode = ubifs_dirty_inode,
1848 .remount_fs = ubifs_remount_fs,
1849 .show_options = ubifs_show_options,
1850 .sync_fs = ubifs_sync_fs,
1854 * open_ubi - parse UBI device name string and open the UBI device.
1855 * @name: UBI volume name
1856 * @mode: UBI volume open mode
1858 * There are several ways to specify UBI volumes when mounting UBIFS:
1859 * o ubiX_Y - UBI device number X, volume Y;
1860 * o ubiY - UBI device number 0, volume Y;
1861 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1862 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1864 * Alternative '!' separator may be used instead of ':' (because some shells
1865 * like busybox may interpret ':' as an NFS host name separator). This function
1866 * returns ubi volume object in case of success and a negative error code in
1867 * case of failure.
1869 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1871 int dev, vol;
1872 char *endptr;
1874 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1875 return ERR_PTR(-EINVAL);
1877 /* ubi:NAME method */
1878 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1879 return ubi_open_volume_nm(0, name + 4, mode);
1881 if (!isdigit(name[3]))
1882 return ERR_PTR(-EINVAL);
1884 dev = simple_strtoul(name + 3, &endptr, 0);
1886 /* ubiY method */
1887 if (*endptr == '\0')
1888 return ubi_open_volume(0, dev, mode);
1890 /* ubiX_Y method */
1891 if (*endptr == '_' && isdigit(endptr[1])) {
1892 vol = simple_strtoul(endptr + 1, &endptr, 0);
1893 if (*endptr != '\0')
1894 return ERR_PTR(-EINVAL);
1895 return ubi_open_volume(dev, vol, mode);
1898 /* ubiX:NAME method */
1899 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1900 return ubi_open_volume_nm(dev, ++endptr, mode);
1902 return ERR_PTR(-EINVAL);
1905 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1907 struct ubi_volume_desc *ubi = sb->s_fs_info;
1908 struct ubifs_info *c;
1909 struct inode *root;
1910 int err;
1912 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1913 if (!c)
1914 return -ENOMEM;
1916 spin_lock_init(&c->cnt_lock);
1917 spin_lock_init(&c->cs_lock);
1918 spin_lock_init(&c->buds_lock);
1919 spin_lock_init(&c->space_lock);
1920 spin_lock_init(&c->orphan_lock);
1921 init_rwsem(&c->commit_sem);
1922 mutex_init(&c->lp_mutex);
1923 mutex_init(&c->tnc_mutex);
1924 mutex_init(&c->log_mutex);
1925 mutex_init(&c->mst_mutex);
1926 mutex_init(&c->umount_mutex);
1927 mutex_init(&c->bu_mutex);
1928 init_waitqueue_head(&c->cmt_wq);
1929 c->buds = RB_ROOT;
1930 c->old_idx = RB_ROOT;
1931 c->size_tree = RB_ROOT;
1932 c->orph_tree = RB_ROOT;
1933 INIT_LIST_HEAD(&c->infos_list);
1934 INIT_LIST_HEAD(&c->idx_gc);
1935 INIT_LIST_HEAD(&c->replay_list);
1936 INIT_LIST_HEAD(&c->replay_buds);
1937 INIT_LIST_HEAD(&c->uncat_list);
1938 INIT_LIST_HEAD(&c->empty_list);
1939 INIT_LIST_HEAD(&c->freeable_list);
1940 INIT_LIST_HEAD(&c->frdi_idx_list);
1941 INIT_LIST_HEAD(&c->unclean_leb_list);
1942 INIT_LIST_HEAD(&c->old_buds);
1943 INIT_LIST_HEAD(&c->orph_list);
1944 INIT_LIST_HEAD(&c->orph_new);
1946 c->vfs_sb = sb;
1947 c->highest_inum = UBIFS_FIRST_INO;
1948 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1950 ubi_get_volume_info(ubi, &c->vi);
1951 ubi_get_device_info(c->vi.ubi_num, &c->di);
1953 /* Re-open the UBI device in read-write mode */
1954 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1955 if (IS_ERR(c->ubi)) {
1956 err = PTR_ERR(c->ubi);
1957 goto out_free;
1961 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1962 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1963 * which means the user would have to wait not just for their own I/O
1964 * but the read-ahead I/O as well i.e. completely pointless.
1966 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1968 c->bdi.name = "ubifs",
1969 c->bdi.capabilities = BDI_CAP_MAP_COPY;
1970 c->bdi.unplug_io_fn = default_unplug_io_fn;
1971 err = bdi_init(&c->bdi);
1972 if (err)
1973 goto out_close;
1974 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
1975 c->vi.ubi_num, c->vi.vol_id);
1976 if (err)
1977 goto out_bdi;
1979 err = ubifs_parse_options(c, data, 0);
1980 if (err)
1981 goto out_bdi;
1983 sb->s_bdi = &c->bdi;
1984 sb->s_fs_info = c;
1985 sb->s_magic = UBIFS_SUPER_MAGIC;
1986 sb->s_blocksize = UBIFS_BLOCK_SIZE;
1987 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
1988 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
1989 if (c->max_inode_sz > MAX_LFS_FILESIZE)
1990 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
1991 sb->s_op = &ubifs_super_operations;
1993 mutex_lock(&c->umount_mutex);
1994 err = mount_ubifs(c);
1995 if (err) {
1996 ubifs_assert(err < 0);
1997 goto out_unlock;
2000 /* Read the root inode */
2001 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2002 if (IS_ERR(root)) {
2003 err = PTR_ERR(root);
2004 goto out_umount;
2007 sb->s_root = d_alloc_root(root);
2008 if (!sb->s_root)
2009 goto out_iput;
2011 mutex_unlock(&c->umount_mutex);
2012 return 0;
2014 out_iput:
2015 iput(root);
2016 out_umount:
2017 ubifs_umount(c);
2018 out_unlock:
2019 mutex_unlock(&c->umount_mutex);
2020 out_bdi:
2021 bdi_destroy(&c->bdi);
2022 out_close:
2023 ubi_close_volume(c->ubi);
2024 out_free:
2025 kfree(c);
2026 return err;
2029 static int sb_test(struct super_block *sb, void *data)
2031 dev_t *dev = data;
2032 struct ubifs_info *c = sb->s_fs_info;
2034 return c->vi.cdev == *dev;
2037 static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
2038 const char *name, void *data, struct vfsmount *mnt)
2040 struct ubi_volume_desc *ubi;
2041 struct ubi_volume_info vi;
2042 struct super_block *sb;
2043 int err;
2045 dbg_gen("name %s, flags %#x", name, flags);
2048 * Get UBI device number and volume ID. Mount it read-only so far
2049 * because this might be a new mount point, and UBI allows only one
2050 * read-write user at a time.
2052 ubi = open_ubi(name, UBI_READONLY);
2053 if (IS_ERR(ubi)) {
2054 ubifs_err("cannot open \"%s\", error %d",
2055 name, (int)PTR_ERR(ubi));
2056 return PTR_ERR(ubi);
2058 ubi_get_volume_info(ubi, &vi);
2060 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
2062 sb = sget(fs_type, &sb_test, &set_anon_super, &vi.cdev);
2063 if (IS_ERR(sb)) {
2064 err = PTR_ERR(sb);
2065 goto out_close;
2068 if (sb->s_root) {
2069 /* A new mount point for already mounted UBIFS */
2070 dbg_gen("this ubi volume is already mounted");
2071 if ((flags ^ sb->s_flags) & MS_RDONLY) {
2072 err = -EBUSY;
2073 goto out_deact;
2075 } else {
2076 sb->s_flags = flags;
2078 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
2079 * replaced by 'c'.
2081 sb->s_fs_info = ubi;
2082 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2083 if (err)
2084 goto out_deact;
2085 /* We do not support atime */
2086 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2089 /* 'fill_super()' opens ubi again so we must close it here */
2090 ubi_close_volume(ubi);
2092 simple_set_mnt(mnt, sb);
2093 return 0;
2095 out_deact:
2096 deactivate_locked_super(sb);
2097 out_close:
2098 ubi_close_volume(ubi);
2099 return err;
2102 static struct file_system_type ubifs_fs_type = {
2103 .name = "ubifs",
2104 .owner = THIS_MODULE,
2105 .get_sb = ubifs_get_sb,
2106 .kill_sb = kill_anon_super,
2110 * Inode slab cache constructor.
2112 static void inode_slab_ctor(void *obj)
2114 struct ubifs_inode *ui = obj;
2115 inode_init_once(&ui->vfs_inode);
2118 static int __init ubifs_init(void)
2120 int err;
2122 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2124 /* Make sure node sizes are 8-byte aligned */
2125 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2126 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2127 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2128 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2129 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2130 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2131 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2132 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2133 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2134 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2135 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2137 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2138 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2139 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2140 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2141 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2142 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2144 /* Check min. node size */
2145 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2146 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2147 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2148 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2150 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2151 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2152 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2153 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2155 /* Defined node sizes */
2156 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2157 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2158 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2159 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2162 * We use 2 bit wide bit-fields to store compression type, which should
2163 * be amended if more compressors are added. The bit-fields are:
2164 * @compr_type in 'struct ubifs_inode', @default_compr in
2165 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2167 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2170 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2171 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2173 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2174 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
2175 " at least 4096 bytes",
2176 (unsigned int)PAGE_CACHE_SIZE);
2177 return -EINVAL;
2180 err = register_filesystem(&ubifs_fs_type);
2181 if (err) {
2182 ubifs_err("cannot register file system, error %d", err);
2183 return err;
2186 err = -ENOMEM;
2187 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2188 sizeof(struct ubifs_inode), 0,
2189 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2190 &inode_slab_ctor);
2191 if (!ubifs_inode_slab)
2192 goto out_reg;
2194 register_shrinker(&ubifs_shrinker_info);
2196 err = ubifs_compressors_init();
2197 if (err)
2198 goto out_shrinker;
2200 err = dbg_debugfs_init();
2201 if (err)
2202 goto out_compr;
2204 return 0;
2206 out_compr:
2207 ubifs_compressors_exit();
2208 out_shrinker:
2209 unregister_shrinker(&ubifs_shrinker_info);
2210 kmem_cache_destroy(ubifs_inode_slab);
2211 out_reg:
2212 unregister_filesystem(&ubifs_fs_type);
2213 return err;
2215 /* late_initcall to let compressors initialize first */
2216 late_initcall(ubifs_init);
2218 static void __exit ubifs_exit(void)
2220 ubifs_assert(list_empty(&ubifs_infos));
2221 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2223 dbg_debugfs_exit();
2224 ubifs_compressors_exit();
2225 unregister_shrinker(&ubifs_shrinker_info);
2226 kmem_cache_destroy(ubifs_inode_slab);
2227 unregister_filesystem(&ubifs_fs_type);
2229 module_exit(ubifs_exit);
2231 MODULE_LICENSE("GPL");
2232 MODULE_VERSION(__stringify(UBIFS_VERSION));
2233 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2234 MODULE_DESCRIPTION("UBIFS - UBI File System");