2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
41 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43 static struct vfsmount
*shm_mnt
;
47 * This virtual memory filesystem is heavily based on the ramfs. It
48 * extends ramfs by the ability to use swap and honor resource limits
49 * which makes it a completely usable filesystem.
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/blkdev.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
83 #include <linux/uaccess.h>
84 #include <asm/pgtable.h>
88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
102 struct shmem_falloc
{
103 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
104 pgoff_t start
; /* start of range currently being fallocated */
105 pgoff_t next
; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
111 static unsigned long shmem_default_max_blocks(void)
113 return totalram_pages() / 2;
116 static unsigned long shmem_default_max_inodes(void)
118 unsigned long nr_pages
= totalram_pages();
120 return min(nr_pages
- totalhigh_pages(), nr_pages
/ 2);
124 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
125 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
126 struct shmem_inode_info
*info
, pgoff_t index
);
127 static int shmem_swapin_page(struct inode
*inode
, pgoff_t index
,
128 struct page
**pagep
, enum sgp_type sgp
,
129 gfp_t gfp
, struct vm_area_struct
*vma
,
130 vm_fault_t
*fault_type
);
131 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
132 struct page
**pagep
, enum sgp_type sgp
,
133 gfp_t gfp
, struct vm_area_struct
*vma
,
134 struct vm_fault
*vmf
, vm_fault_t
*fault_type
);
136 int shmem_getpage(struct inode
*inode
, pgoff_t index
,
137 struct page
**pagep
, enum sgp_type sgp
)
139 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
140 mapping_gfp_mask(inode
->i_mapping
), NULL
, NULL
, NULL
);
143 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
145 return sb
->s_fs_info
;
149 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
150 * for shared memory and for shared anonymous (/dev/zero) mappings
151 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
152 * consistent with the pre-accounting of private mappings ...
154 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
156 return (flags
& VM_NORESERVE
) ?
157 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
160 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
162 if (!(flags
& VM_NORESERVE
))
163 vm_unacct_memory(VM_ACCT(size
));
166 static inline int shmem_reacct_size(unsigned long flags
,
167 loff_t oldsize
, loff_t newsize
)
169 if (!(flags
& VM_NORESERVE
)) {
170 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
171 return security_vm_enough_memory_mm(current
->mm
,
172 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
173 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
174 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
180 * ... whereas tmpfs objects are accounted incrementally as
181 * pages are allocated, in order to allow large sparse files.
182 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
183 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
185 static inline int shmem_acct_block(unsigned long flags
, long pages
)
187 if (!(flags
& VM_NORESERVE
))
190 return security_vm_enough_memory_mm(current
->mm
,
191 pages
* VM_ACCT(PAGE_SIZE
));
194 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
196 if (flags
& VM_NORESERVE
)
197 vm_unacct_memory(pages
* VM_ACCT(PAGE_SIZE
));
200 static inline bool shmem_inode_acct_block(struct inode
*inode
, long pages
)
202 struct shmem_inode_info
*info
= SHMEM_I(inode
);
203 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
205 if (shmem_acct_block(info
->flags
, pages
))
208 if (sbinfo
->max_blocks
) {
209 if (percpu_counter_compare(&sbinfo
->used_blocks
,
210 sbinfo
->max_blocks
- pages
) > 0)
212 percpu_counter_add(&sbinfo
->used_blocks
, pages
);
218 shmem_unacct_blocks(info
->flags
, pages
);
222 static inline void shmem_inode_unacct_blocks(struct inode
*inode
, long pages
)
224 struct shmem_inode_info
*info
= SHMEM_I(inode
);
225 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
227 if (sbinfo
->max_blocks
)
228 percpu_counter_sub(&sbinfo
->used_blocks
, pages
);
229 shmem_unacct_blocks(info
->flags
, pages
);
232 static const struct super_operations shmem_ops
;
233 static const struct address_space_operations shmem_aops
;
234 static const struct file_operations shmem_file_operations
;
235 static const struct inode_operations shmem_inode_operations
;
236 static const struct inode_operations shmem_dir_inode_operations
;
237 static const struct inode_operations shmem_special_inode_operations
;
238 static const struct vm_operations_struct shmem_vm_ops
;
239 static struct file_system_type shmem_fs_type
;
241 bool vma_is_shmem(struct vm_area_struct
*vma
)
243 return vma
->vm_ops
== &shmem_vm_ops
;
246 static LIST_HEAD(shmem_swaplist
);
247 static DEFINE_MUTEX(shmem_swaplist_mutex
);
249 static int shmem_reserve_inode(struct super_block
*sb
)
251 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
252 if (sbinfo
->max_inodes
) {
253 spin_lock(&sbinfo
->stat_lock
);
254 if (!sbinfo
->free_inodes
) {
255 spin_unlock(&sbinfo
->stat_lock
);
258 sbinfo
->free_inodes
--;
259 spin_unlock(&sbinfo
->stat_lock
);
264 static void shmem_free_inode(struct super_block
*sb
)
266 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
267 if (sbinfo
->max_inodes
) {
268 spin_lock(&sbinfo
->stat_lock
);
269 sbinfo
->free_inodes
++;
270 spin_unlock(&sbinfo
->stat_lock
);
275 * shmem_recalc_inode - recalculate the block usage of an inode
276 * @inode: inode to recalc
278 * We have to calculate the free blocks since the mm can drop
279 * undirtied hole pages behind our back.
281 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
282 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
284 * It has to be called with the spinlock held.
286 static void shmem_recalc_inode(struct inode
*inode
)
288 struct shmem_inode_info
*info
= SHMEM_I(inode
);
291 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
293 info
->alloced
-= freed
;
294 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
295 shmem_inode_unacct_blocks(inode
, freed
);
299 bool shmem_charge(struct inode
*inode
, long pages
)
301 struct shmem_inode_info
*info
= SHMEM_I(inode
);
304 if (!shmem_inode_acct_block(inode
, pages
))
307 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
308 inode
->i_mapping
->nrpages
+= pages
;
310 spin_lock_irqsave(&info
->lock
, flags
);
311 info
->alloced
+= pages
;
312 inode
->i_blocks
+= pages
* BLOCKS_PER_PAGE
;
313 shmem_recalc_inode(inode
);
314 spin_unlock_irqrestore(&info
->lock
, flags
);
319 void shmem_uncharge(struct inode
*inode
, long pages
)
321 struct shmem_inode_info
*info
= SHMEM_I(inode
);
324 /* nrpages adjustment done by __delete_from_page_cache() or caller */
326 spin_lock_irqsave(&info
->lock
, flags
);
327 info
->alloced
-= pages
;
328 inode
->i_blocks
-= pages
* BLOCKS_PER_PAGE
;
329 shmem_recalc_inode(inode
);
330 spin_unlock_irqrestore(&info
->lock
, flags
);
332 shmem_inode_unacct_blocks(inode
, pages
);
336 * Replace item expected in xarray by a new item, while holding xa_lock.
338 static int shmem_replace_entry(struct address_space
*mapping
,
339 pgoff_t index
, void *expected
, void *replacement
)
341 XA_STATE(xas
, &mapping
->i_pages
, index
);
344 VM_BUG_ON(!expected
);
345 VM_BUG_ON(!replacement
);
346 item
= xas_load(&xas
);
347 if (item
!= expected
)
349 xas_store(&xas
, replacement
);
354 * Sometimes, before we decide whether to proceed or to fail, we must check
355 * that an entry was not already brought back from swap by a racing thread.
357 * Checking page is not enough: by the time a SwapCache page is locked, it
358 * might be reused, and again be SwapCache, using the same swap as before.
360 static bool shmem_confirm_swap(struct address_space
*mapping
,
361 pgoff_t index
, swp_entry_t swap
)
363 return xa_load(&mapping
->i_pages
, index
) == swp_to_radix_entry(swap
);
367 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
370 * disables huge pages for the mount;
372 * enables huge pages for the mount;
373 * SHMEM_HUGE_WITHIN_SIZE:
374 * only allocate huge pages if the page will be fully within i_size,
375 * also respect fadvise()/madvise() hints;
377 * only allocate huge pages if requested with fadvise()/madvise();
380 #define SHMEM_HUGE_NEVER 0
381 #define SHMEM_HUGE_ALWAYS 1
382 #define SHMEM_HUGE_WITHIN_SIZE 2
383 #define SHMEM_HUGE_ADVISE 3
387 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
390 * disables huge on shm_mnt and all mounts, for emergency use;
392 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
395 #define SHMEM_HUGE_DENY (-1)
396 #define SHMEM_HUGE_FORCE (-2)
398 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
399 /* ifdef here to avoid bloating shmem.o when not necessary */
401 static int shmem_huge __read_mostly
;
403 #if defined(CONFIG_SYSFS)
404 static int shmem_parse_huge(const char *str
)
406 if (!strcmp(str
, "never"))
407 return SHMEM_HUGE_NEVER
;
408 if (!strcmp(str
, "always"))
409 return SHMEM_HUGE_ALWAYS
;
410 if (!strcmp(str
, "within_size"))
411 return SHMEM_HUGE_WITHIN_SIZE
;
412 if (!strcmp(str
, "advise"))
413 return SHMEM_HUGE_ADVISE
;
414 if (!strcmp(str
, "deny"))
415 return SHMEM_HUGE_DENY
;
416 if (!strcmp(str
, "force"))
417 return SHMEM_HUGE_FORCE
;
422 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
423 static const char *shmem_format_huge(int huge
)
426 case SHMEM_HUGE_NEVER
:
428 case SHMEM_HUGE_ALWAYS
:
430 case SHMEM_HUGE_WITHIN_SIZE
:
431 return "within_size";
432 case SHMEM_HUGE_ADVISE
:
434 case SHMEM_HUGE_DENY
:
436 case SHMEM_HUGE_FORCE
:
445 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
446 struct shrink_control
*sc
, unsigned long nr_to_split
)
448 LIST_HEAD(list
), *pos
, *next
;
449 LIST_HEAD(to_remove
);
451 struct shmem_inode_info
*info
;
453 unsigned long batch
= sc
? sc
->nr_to_scan
: 128;
454 int removed
= 0, split
= 0;
456 if (list_empty(&sbinfo
->shrinklist
))
459 spin_lock(&sbinfo
->shrinklist_lock
);
460 list_for_each_safe(pos
, next
, &sbinfo
->shrinklist
) {
461 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
464 inode
= igrab(&info
->vfs_inode
);
466 /* inode is about to be evicted */
468 list_del_init(&info
->shrinklist
);
473 /* Check if there's anything to gain */
474 if (round_up(inode
->i_size
, PAGE_SIZE
) ==
475 round_up(inode
->i_size
, HPAGE_PMD_SIZE
)) {
476 list_move(&info
->shrinklist
, &to_remove
);
481 list_move(&info
->shrinklist
, &list
);
486 spin_unlock(&sbinfo
->shrinklist_lock
);
488 list_for_each_safe(pos
, next
, &to_remove
) {
489 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
490 inode
= &info
->vfs_inode
;
491 list_del_init(&info
->shrinklist
);
495 list_for_each_safe(pos
, next
, &list
) {
498 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
499 inode
= &info
->vfs_inode
;
501 if (nr_to_split
&& split
>= nr_to_split
)
504 page
= find_get_page(inode
->i_mapping
,
505 (inode
->i_size
& HPAGE_PMD_MASK
) >> PAGE_SHIFT
);
509 /* No huge page at the end of the file: nothing to split */
510 if (!PageTransHuge(page
)) {
516 * Leave the inode on the list if we failed to lock
517 * the page at this time.
519 * Waiting for the lock may lead to deadlock in the
522 if (!trylock_page(page
)) {
527 ret
= split_huge_page(page
);
531 /* If split failed leave the inode on the list */
537 list_del_init(&info
->shrinklist
);
543 spin_lock(&sbinfo
->shrinklist_lock
);
544 list_splice_tail(&list
, &sbinfo
->shrinklist
);
545 sbinfo
->shrinklist_len
-= removed
;
546 spin_unlock(&sbinfo
->shrinklist_lock
);
551 static long shmem_unused_huge_scan(struct super_block
*sb
,
552 struct shrink_control
*sc
)
554 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
556 if (!READ_ONCE(sbinfo
->shrinklist_len
))
559 return shmem_unused_huge_shrink(sbinfo
, sc
, 0);
562 static long shmem_unused_huge_count(struct super_block
*sb
,
563 struct shrink_control
*sc
)
565 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
566 return READ_ONCE(sbinfo
->shrinklist_len
);
568 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
570 #define shmem_huge SHMEM_HUGE_DENY
572 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
573 struct shrink_control
*sc
, unsigned long nr_to_split
)
577 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
579 static inline bool is_huge_enabled(struct shmem_sb_info
*sbinfo
)
581 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
582 (shmem_huge
== SHMEM_HUGE_FORCE
|| sbinfo
->huge
) &&
583 shmem_huge
!= SHMEM_HUGE_DENY
)
589 * Like add_to_page_cache_locked, but error if expected item has gone.
591 static int shmem_add_to_page_cache(struct page
*page
,
592 struct address_space
*mapping
,
593 pgoff_t index
, void *expected
, gfp_t gfp
)
595 XA_STATE_ORDER(xas
, &mapping
->i_pages
, index
, compound_order(page
));
597 unsigned long nr
= 1UL << compound_order(page
);
599 VM_BUG_ON_PAGE(PageTail(page
), page
);
600 VM_BUG_ON_PAGE(index
!= round_down(index
, nr
), page
);
601 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
602 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
603 VM_BUG_ON(expected
&& PageTransHuge(page
));
605 page_ref_add(page
, nr
);
606 page
->mapping
= mapping
;
612 entry
= xas_find_conflict(&xas
);
613 if (entry
!= expected
)
614 xas_set_err(&xas
, -EEXIST
);
615 xas_create_range(&xas
);
619 xas_store(&xas
, page
+ i
);
624 if (PageTransHuge(page
)) {
625 count_vm_event(THP_FILE_ALLOC
);
626 __inc_node_page_state(page
, NR_SHMEM_THPS
);
628 mapping
->nrpages
+= nr
;
629 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, nr
);
630 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, nr
);
632 xas_unlock_irq(&xas
);
633 } while (xas_nomem(&xas
, gfp
));
635 if (xas_error(&xas
)) {
636 page
->mapping
= NULL
;
637 page_ref_sub(page
, nr
);
638 return xas_error(&xas
);
645 * Like delete_from_page_cache, but substitutes swap for page.
647 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
649 struct address_space
*mapping
= page
->mapping
;
652 VM_BUG_ON_PAGE(PageCompound(page
), page
);
654 xa_lock_irq(&mapping
->i_pages
);
655 error
= shmem_replace_entry(mapping
, page
->index
, page
, radswap
);
656 page
->mapping
= NULL
;
658 __dec_node_page_state(page
, NR_FILE_PAGES
);
659 __dec_node_page_state(page
, NR_SHMEM
);
660 xa_unlock_irq(&mapping
->i_pages
);
666 * Remove swap entry from page cache, free the swap and its page cache.
668 static int shmem_free_swap(struct address_space
*mapping
,
669 pgoff_t index
, void *radswap
)
673 old
= xa_cmpxchg_irq(&mapping
->i_pages
, index
, radswap
, NULL
, 0);
676 free_swap_and_cache(radix_to_swp_entry(radswap
));
681 * Determine (in bytes) how many of the shmem object's pages mapped by the
682 * given offsets are swapped out.
684 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
685 * as long as the inode doesn't go away and racy results are not a problem.
687 unsigned long shmem_partial_swap_usage(struct address_space
*mapping
,
688 pgoff_t start
, pgoff_t end
)
690 XA_STATE(xas
, &mapping
->i_pages
, start
);
692 unsigned long swapped
= 0;
695 xas_for_each(&xas
, page
, end
- 1) {
696 if (xas_retry(&xas
, page
))
698 if (xa_is_value(page
))
701 if (need_resched()) {
709 return swapped
<< PAGE_SHIFT
;
713 * Determine (in bytes) how many of the shmem object's pages mapped by the
714 * given vma is swapped out.
716 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
717 * as long as the inode doesn't go away and racy results are not a problem.
719 unsigned long shmem_swap_usage(struct vm_area_struct
*vma
)
721 struct inode
*inode
= file_inode(vma
->vm_file
);
722 struct shmem_inode_info
*info
= SHMEM_I(inode
);
723 struct address_space
*mapping
= inode
->i_mapping
;
724 unsigned long swapped
;
726 /* Be careful as we don't hold info->lock */
727 swapped
= READ_ONCE(info
->swapped
);
730 * The easier cases are when the shmem object has nothing in swap, or
731 * the vma maps it whole. Then we can simply use the stats that we
737 if (!vma
->vm_pgoff
&& vma
->vm_end
- vma
->vm_start
>= inode
->i_size
)
738 return swapped
<< PAGE_SHIFT
;
740 /* Here comes the more involved part */
741 return shmem_partial_swap_usage(mapping
,
742 linear_page_index(vma
, vma
->vm_start
),
743 linear_page_index(vma
, vma
->vm_end
));
747 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
749 void shmem_unlock_mapping(struct address_space
*mapping
)
752 pgoff_t indices
[PAGEVEC_SIZE
];
757 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
759 while (!mapping_unevictable(mapping
)) {
761 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
762 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
764 pvec
.nr
= find_get_entries(mapping
, index
,
765 PAGEVEC_SIZE
, pvec
.pages
, indices
);
768 index
= indices
[pvec
.nr
- 1] + 1;
769 pagevec_remove_exceptionals(&pvec
);
770 check_move_unevictable_pages(&pvec
);
771 pagevec_release(&pvec
);
777 * Remove range of pages and swap entries from page cache, and free them.
778 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
780 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
783 struct address_space
*mapping
= inode
->i_mapping
;
784 struct shmem_inode_info
*info
= SHMEM_I(inode
);
785 pgoff_t start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
786 pgoff_t end
= (lend
+ 1) >> PAGE_SHIFT
;
787 unsigned int partial_start
= lstart
& (PAGE_SIZE
- 1);
788 unsigned int partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
790 pgoff_t indices
[PAGEVEC_SIZE
];
791 long nr_swaps_freed
= 0;
796 end
= -1; /* unsigned, so actually very big */
800 while (index
< end
) {
801 pvec
.nr
= find_get_entries(mapping
, index
,
802 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
803 pvec
.pages
, indices
);
806 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
807 struct page
*page
= pvec
.pages
[i
];
813 if (xa_is_value(page
)) {
816 nr_swaps_freed
+= !shmem_free_swap(mapping
,
821 VM_BUG_ON_PAGE(page_to_pgoff(page
) != index
, page
);
823 if (!trylock_page(page
))
826 if (PageTransTail(page
)) {
827 /* Middle of THP: zero out the page */
828 clear_highpage(page
);
831 } else if (PageTransHuge(page
)) {
832 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
834 * Range ends in the middle of THP:
837 clear_highpage(page
);
841 index
+= HPAGE_PMD_NR
- 1;
842 i
+= HPAGE_PMD_NR
- 1;
845 if (!unfalloc
|| !PageUptodate(page
)) {
846 VM_BUG_ON_PAGE(PageTail(page
), page
);
847 if (page_mapping(page
) == mapping
) {
848 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
849 truncate_inode_page(mapping
, page
);
854 pagevec_remove_exceptionals(&pvec
);
855 pagevec_release(&pvec
);
861 struct page
*page
= NULL
;
862 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
);
864 unsigned int top
= PAGE_SIZE
;
869 zero_user_segment(page
, partial_start
, top
);
870 set_page_dirty(page
);
876 struct page
*page
= NULL
;
877 shmem_getpage(inode
, end
, &page
, SGP_READ
);
879 zero_user_segment(page
, 0, partial_end
);
880 set_page_dirty(page
);
889 while (index
< end
) {
892 pvec
.nr
= find_get_entries(mapping
, index
,
893 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
894 pvec
.pages
, indices
);
896 /* If all gone or hole-punch or unfalloc, we're done */
897 if (index
== start
|| end
!= -1)
899 /* But if truncating, restart to make sure all gone */
903 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
904 struct page
*page
= pvec
.pages
[i
];
910 if (xa_is_value(page
)) {
913 if (shmem_free_swap(mapping
, index
, page
)) {
914 /* Swap was replaced by page: retry */
924 if (PageTransTail(page
)) {
925 /* Middle of THP: zero out the page */
926 clear_highpage(page
);
929 * Partial thp truncate due 'start' in middle
930 * of THP: don't need to look on these pages
931 * again on !pvec.nr restart.
933 if (index
!= round_down(end
, HPAGE_PMD_NR
))
936 } else if (PageTransHuge(page
)) {
937 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
939 * Range ends in the middle of THP:
942 clear_highpage(page
);
946 index
+= HPAGE_PMD_NR
- 1;
947 i
+= HPAGE_PMD_NR
- 1;
950 if (!unfalloc
|| !PageUptodate(page
)) {
951 VM_BUG_ON_PAGE(PageTail(page
), page
);
952 if (page_mapping(page
) == mapping
) {
953 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
954 truncate_inode_page(mapping
, page
);
956 /* Page was replaced by swap: retry */
964 pagevec_remove_exceptionals(&pvec
);
965 pagevec_release(&pvec
);
969 spin_lock_irq(&info
->lock
);
970 info
->swapped
-= nr_swaps_freed
;
971 shmem_recalc_inode(inode
);
972 spin_unlock_irq(&info
->lock
);
975 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
977 shmem_undo_range(inode
, lstart
, lend
, false);
978 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
980 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
982 static int shmem_getattr(const struct path
*path
, struct kstat
*stat
,
983 u32 request_mask
, unsigned int query_flags
)
985 struct inode
*inode
= path
->dentry
->d_inode
;
986 struct shmem_inode_info
*info
= SHMEM_I(inode
);
987 struct shmem_sb_info
*sb_info
= SHMEM_SB(inode
->i_sb
);
989 if (info
->alloced
- info
->swapped
!= inode
->i_mapping
->nrpages
) {
990 spin_lock_irq(&info
->lock
);
991 shmem_recalc_inode(inode
);
992 spin_unlock_irq(&info
->lock
);
994 generic_fillattr(inode
, stat
);
996 if (is_huge_enabled(sb_info
))
997 stat
->blksize
= HPAGE_PMD_SIZE
;
1002 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1004 struct inode
*inode
= d_inode(dentry
);
1005 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1006 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1009 error
= setattr_prepare(dentry
, attr
);
1013 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
1014 loff_t oldsize
= inode
->i_size
;
1015 loff_t newsize
= attr
->ia_size
;
1017 /* protected by i_mutex */
1018 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
1019 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
1022 if (newsize
!= oldsize
) {
1023 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
1027 i_size_write(inode
, newsize
);
1028 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
1030 if (newsize
<= oldsize
) {
1031 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
1032 if (oldsize
> holebegin
)
1033 unmap_mapping_range(inode
->i_mapping
,
1036 shmem_truncate_range(inode
,
1037 newsize
, (loff_t
)-1);
1038 /* unmap again to remove racily COWed private pages */
1039 if (oldsize
> holebegin
)
1040 unmap_mapping_range(inode
->i_mapping
,
1044 * Part of the huge page can be beyond i_size: subject
1045 * to shrink under memory pressure.
1047 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
1048 spin_lock(&sbinfo
->shrinklist_lock
);
1050 * _careful to defend against unlocked access to
1051 * ->shrink_list in shmem_unused_huge_shrink()
1053 if (list_empty_careful(&info
->shrinklist
)) {
1054 list_add_tail(&info
->shrinklist
,
1055 &sbinfo
->shrinklist
);
1056 sbinfo
->shrinklist_len
++;
1058 spin_unlock(&sbinfo
->shrinklist_lock
);
1063 setattr_copy(inode
, attr
);
1064 if (attr
->ia_valid
& ATTR_MODE
)
1065 error
= posix_acl_chmod(inode
, inode
->i_mode
);
1069 static void shmem_evict_inode(struct inode
*inode
)
1071 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1072 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1074 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
1075 shmem_unacct_size(info
->flags
, inode
->i_size
);
1077 shmem_truncate_range(inode
, 0, (loff_t
)-1);
1078 if (!list_empty(&info
->shrinklist
)) {
1079 spin_lock(&sbinfo
->shrinklist_lock
);
1080 if (!list_empty(&info
->shrinklist
)) {
1081 list_del_init(&info
->shrinklist
);
1082 sbinfo
->shrinklist_len
--;
1084 spin_unlock(&sbinfo
->shrinklist_lock
);
1086 while (!list_empty(&info
->swaplist
)) {
1087 /* Wait while shmem_unuse() is scanning this inode... */
1088 wait_var_event(&info
->stop_eviction
,
1089 !atomic_read(&info
->stop_eviction
));
1090 mutex_lock(&shmem_swaplist_mutex
);
1091 /* ...but beware of the race if we peeked too early */
1092 if (!atomic_read(&info
->stop_eviction
))
1093 list_del_init(&info
->swaplist
);
1094 mutex_unlock(&shmem_swaplist_mutex
);
1098 simple_xattrs_free(&info
->xattrs
);
1099 WARN_ON(inode
->i_blocks
);
1100 shmem_free_inode(inode
->i_sb
);
1104 extern struct swap_info_struct
*swap_info
[];
1106 static int shmem_find_swap_entries(struct address_space
*mapping
,
1107 pgoff_t start
, unsigned int nr_entries
,
1108 struct page
**entries
, pgoff_t
*indices
,
1109 unsigned int type
, bool frontswap
)
1111 XA_STATE(xas
, &mapping
->i_pages
, start
);
1114 unsigned int ret
= 0;
1120 xas_for_each(&xas
, page
, ULONG_MAX
) {
1121 if (xas_retry(&xas
, page
))
1124 if (!xa_is_value(page
))
1127 entry
= radix_to_swp_entry(page
);
1128 if (swp_type(entry
) != type
)
1131 !frontswap_test(swap_info
[type
], swp_offset(entry
)))
1134 indices
[ret
] = xas
.xa_index
;
1135 entries
[ret
] = page
;
1137 if (need_resched()) {
1141 if (++ret
== nr_entries
)
1150 * Move the swapped pages for an inode to page cache. Returns the count
1151 * of pages swapped in, or the error in case of failure.
1153 static int shmem_unuse_swap_entries(struct inode
*inode
, struct pagevec pvec
,
1159 struct address_space
*mapping
= inode
->i_mapping
;
1161 for (i
= 0; i
< pvec
.nr
; i
++) {
1162 struct page
*page
= pvec
.pages
[i
];
1164 if (!xa_is_value(page
))
1166 error
= shmem_swapin_page(inode
, indices
[i
],
1168 mapping_gfp_mask(mapping
),
1175 if (error
== -ENOMEM
)
1179 return error
? error
: ret
;
1183 * If swap found in inode, free it and move page from swapcache to filecache.
1185 static int shmem_unuse_inode(struct inode
*inode
, unsigned int type
,
1186 bool frontswap
, unsigned long *fs_pages_to_unuse
)
1188 struct address_space
*mapping
= inode
->i_mapping
;
1190 struct pagevec pvec
;
1191 pgoff_t indices
[PAGEVEC_SIZE
];
1192 bool frontswap_partial
= (frontswap
&& *fs_pages_to_unuse
> 0);
1195 pagevec_init(&pvec
);
1197 unsigned int nr_entries
= PAGEVEC_SIZE
;
1199 if (frontswap_partial
&& *fs_pages_to_unuse
< PAGEVEC_SIZE
)
1200 nr_entries
= *fs_pages_to_unuse
;
1202 pvec
.nr
= shmem_find_swap_entries(mapping
, start
, nr_entries
,
1203 pvec
.pages
, indices
,
1210 ret
= shmem_unuse_swap_entries(inode
, pvec
, indices
);
1214 if (frontswap_partial
) {
1215 *fs_pages_to_unuse
-= ret
;
1216 if (*fs_pages_to_unuse
== 0) {
1217 ret
= FRONTSWAP_PAGES_UNUSED
;
1222 start
= indices
[pvec
.nr
- 1];
1229 * Read all the shared memory data that resides in the swap
1230 * device 'type' back into memory, so the swap device can be
1233 int shmem_unuse(unsigned int type
, bool frontswap
,
1234 unsigned long *fs_pages_to_unuse
)
1236 struct shmem_inode_info
*info
, *next
;
1239 if (list_empty(&shmem_swaplist
))
1242 mutex_lock(&shmem_swaplist_mutex
);
1243 list_for_each_entry_safe(info
, next
, &shmem_swaplist
, swaplist
) {
1244 if (!info
->swapped
) {
1245 list_del_init(&info
->swaplist
);
1249 * Drop the swaplist mutex while searching the inode for swap;
1250 * but before doing so, make sure shmem_evict_inode() will not
1251 * remove placeholder inode from swaplist, nor let it be freed
1252 * (igrab() would protect from unlink, but not from unmount).
1254 atomic_inc(&info
->stop_eviction
);
1255 mutex_unlock(&shmem_swaplist_mutex
);
1257 error
= shmem_unuse_inode(&info
->vfs_inode
, type
, frontswap
,
1261 mutex_lock(&shmem_swaplist_mutex
);
1262 next
= list_next_entry(info
, swaplist
);
1264 list_del_init(&info
->swaplist
);
1265 if (atomic_dec_and_test(&info
->stop_eviction
))
1266 wake_up_var(&info
->stop_eviction
);
1270 mutex_unlock(&shmem_swaplist_mutex
);
1276 * Move the page from the page cache to the swap cache.
1278 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1280 struct shmem_inode_info
*info
;
1281 struct address_space
*mapping
;
1282 struct inode
*inode
;
1286 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1287 BUG_ON(!PageLocked(page
));
1288 mapping
= page
->mapping
;
1289 index
= page
->index
;
1290 inode
= mapping
->host
;
1291 info
= SHMEM_I(inode
);
1292 if (info
->flags
& VM_LOCKED
)
1294 if (!total_swap_pages
)
1298 * Our capabilities prevent regular writeback or sync from ever calling
1299 * shmem_writepage; but a stacking filesystem might use ->writepage of
1300 * its underlying filesystem, in which case tmpfs should write out to
1301 * swap only in response to memory pressure, and not for the writeback
1304 if (!wbc
->for_reclaim
) {
1305 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1310 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1311 * value into swapfile.c, the only way we can correctly account for a
1312 * fallocated page arriving here is now to initialize it and write it.
1314 * That's okay for a page already fallocated earlier, but if we have
1315 * not yet completed the fallocation, then (a) we want to keep track
1316 * of this page in case we have to undo it, and (b) it may not be a
1317 * good idea to continue anyway, once we're pushing into swap. So
1318 * reactivate the page, and let shmem_fallocate() quit when too many.
1320 if (!PageUptodate(page
)) {
1321 if (inode
->i_private
) {
1322 struct shmem_falloc
*shmem_falloc
;
1323 spin_lock(&inode
->i_lock
);
1324 shmem_falloc
= inode
->i_private
;
1326 !shmem_falloc
->waitq
&&
1327 index
>= shmem_falloc
->start
&&
1328 index
< shmem_falloc
->next
)
1329 shmem_falloc
->nr_unswapped
++;
1331 shmem_falloc
= NULL
;
1332 spin_unlock(&inode
->i_lock
);
1336 clear_highpage(page
);
1337 flush_dcache_page(page
);
1338 SetPageUptodate(page
);
1341 swap
= get_swap_page(page
);
1346 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1347 * if it's not already there. Do it now before the page is
1348 * moved to swap cache, when its pagelock no longer protects
1349 * the inode from eviction. But don't unlock the mutex until
1350 * we've incremented swapped, because shmem_unuse_inode() will
1351 * prune a !swapped inode from the swaplist under this mutex.
1353 mutex_lock(&shmem_swaplist_mutex
);
1354 if (list_empty(&info
->swaplist
))
1355 list_add(&info
->swaplist
, &shmem_swaplist
);
1357 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1358 spin_lock_irq(&info
->lock
);
1359 shmem_recalc_inode(inode
);
1361 spin_unlock_irq(&info
->lock
);
1363 swap_shmem_alloc(swap
);
1364 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
1366 mutex_unlock(&shmem_swaplist_mutex
);
1367 BUG_ON(page_mapped(page
));
1368 swap_writepage(page
, wbc
);
1372 mutex_unlock(&shmem_swaplist_mutex
);
1373 put_swap_page(page
, swap
);
1375 set_page_dirty(page
);
1376 if (wbc
->for_reclaim
)
1377 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1382 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1383 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1387 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1388 return; /* show nothing */
1390 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
1392 seq_printf(seq
, ",mpol=%s", buffer
);
1395 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1397 struct mempolicy
*mpol
= NULL
;
1399 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1400 mpol
= sbinfo
->mpol
;
1402 spin_unlock(&sbinfo
->stat_lock
);
1406 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1407 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1410 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1414 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1416 #define vm_policy vm_private_data
1419 static void shmem_pseudo_vma_init(struct vm_area_struct
*vma
,
1420 struct shmem_inode_info
*info
, pgoff_t index
)
1422 /* Create a pseudo vma that just contains the policy */
1423 vma_init(vma
, NULL
);
1424 /* Bias interleave by inode number to distribute better across nodes */
1425 vma
->vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
1426 vma
->vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
1429 static void shmem_pseudo_vma_destroy(struct vm_area_struct
*vma
)
1431 /* Drop reference taken by mpol_shared_policy_lookup() */
1432 mpol_cond_put(vma
->vm_policy
);
1435 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
1436 struct shmem_inode_info
*info
, pgoff_t index
)
1438 struct vm_area_struct pvma
;
1440 struct vm_fault vmf
;
1442 shmem_pseudo_vma_init(&pvma
, info
, index
);
1445 page
= swap_cluster_readahead(swap
, gfp
, &vmf
);
1446 shmem_pseudo_vma_destroy(&pvma
);
1451 static struct page
*shmem_alloc_hugepage(gfp_t gfp
,
1452 struct shmem_inode_info
*info
, pgoff_t index
)
1454 struct vm_area_struct pvma
;
1455 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
1459 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1462 hindex
= round_down(index
, HPAGE_PMD_NR
);
1463 if (xa_find(&mapping
->i_pages
, &hindex
, hindex
+ HPAGE_PMD_NR
- 1,
1467 shmem_pseudo_vma_init(&pvma
, info
, hindex
);
1468 page
= alloc_pages_vma(gfp
| __GFP_COMP
| __GFP_NORETRY
| __GFP_NOWARN
,
1469 HPAGE_PMD_ORDER
, &pvma
, 0, numa_node_id(), true);
1470 shmem_pseudo_vma_destroy(&pvma
);
1472 prep_transhuge_page(page
);
1476 static struct page
*shmem_alloc_page(gfp_t gfp
,
1477 struct shmem_inode_info
*info
, pgoff_t index
)
1479 struct vm_area_struct pvma
;
1482 shmem_pseudo_vma_init(&pvma
, info
, index
);
1483 page
= alloc_page_vma(gfp
, &pvma
, 0);
1484 shmem_pseudo_vma_destroy(&pvma
);
1489 static struct page
*shmem_alloc_and_acct_page(gfp_t gfp
,
1490 struct inode
*inode
,
1491 pgoff_t index
, bool huge
)
1493 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1498 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1500 nr
= huge
? HPAGE_PMD_NR
: 1;
1502 if (!shmem_inode_acct_block(inode
, nr
))
1506 page
= shmem_alloc_hugepage(gfp
, info
, index
);
1508 page
= shmem_alloc_page(gfp
, info
, index
);
1510 __SetPageLocked(page
);
1511 __SetPageSwapBacked(page
);
1516 shmem_inode_unacct_blocks(inode
, nr
);
1518 return ERR_PTR(err
);
1522 * When a page is moved from swapcache to shmem filecache (either by the
1523 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1524 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1525 * ignorance of the mapping it belongs to. If that mapping has special
1526 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1527 * we may need to copy to a suitable page before moving to filecache.
1529 * In a future release, this may well be extended to respect cpuset and
1530 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1531 * but for now it is a simple matter of zone.
1533 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
1535 return page_zonenum(page
) > gfp_zone(gfp
);
1538 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
1539 struct shmem_inode_info
*info
, pgoff_t index
)
1541 struct page
*oldpage
, *newpage
;
1542 struct address_space
*swap_mapping
;
1548 entry
.val
= page_private(oldpage
);
1549 swap_index
= swp_offset(entry
);
1550 swap_mapping
= page_mapping(oldpage
);
1553 * We have arrived here because our zones are constrained, so don't
1554 * limit chance of success by further cpuset and node constraints.
1556 gfp
&= ~GFP_CONSTRAINT_MASK
;
1557 newpage
= shmem_alloc_page(gfp
, info
, index
);
1562 copy_highpage(newpage
, oldpage
);
1563 flush_dcache_page(newpage
);
1565 __SetPageLocked(newpage
);
1566 __SetPageSwapBacked(newpage
);
1567 SetPageUptodate(newpage
);
1568 set_page_private(newpage
, entry
.val
);
1569 SetPageSwapCache(newpage
);
1572 * Our caller will very soon move newpage out of swapcache, but it's
1573 * a nice clean interface for us to replace oldpage by newpage there.
1575 xa_lock_irq(&swap_mapping
->i_pages
);
1576 error
= shmem_replace_entry(swap_mapping
, swap_index
, oldpage
, newpage
);
1578 __inc_node_page_state(newpage
, NR_FILE_PAGES
);
1579 __dec_node_page_state(oldpage
, NR_FILE_PAGES
);
1581 xa_unlock_irq(&swap_mapping
->i_pages
);
1583 if (unlikely(error
)) {
1585 * Is this possible? I think not, now that our callers check
1586 * both PageSwapCache and page_private after getting page lock;
1587 * but be defensive. Reverse old to newpage for clear and free.
1591 mem_cgroup_migrate(oldpage
, newpage
);
1592 lru_cache_add_anon(newpage
);
1596 ClearPageSwapCache(oldpage
);
1597 set_page_private(oldpage
, 0);
1599 unlock_page(oldpage
);
1606 * Swap in the page pointed to by *pagep.
1607 * Caller has to make sure that *pagep contains a valid swapped page.
1608 * Returns 0 and the page in pagep if success. On failure, returns the
1609 * the error code and NULL in *pagep.
1611 static int shmem_swapin_page(struct inode
*inode
, pgoff_t index
,
1612 struct page
**pagep
, enum sgp_type sgp
,
1613 gfp_t gfp
, struct vm_area_struct
*vma
,
1614 vm_fault_t
*fault_type
)
1616 struct address_space
*mapping
= inode
->i_mapping
;
1617 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1618 struct mm_struct
*charge_mm
= vma
? vma
->vm_mm
: current
->mm
;
1619 struct mem_cgroup
*memcg
;
1624 VM_BUG_ON(!*pagep
|| !xa_is_value(*pagep
));
1625 swap
= radix_to_swp_entry(*pagep
);
1628 /* Look it up and read it in.. */
1629 page
= lookup_swap_cache(swap
, NULL
, 0);
1631 /* Or update major stats only when swapin succeeds?? */
1633 *fault_type
|= VM_FAULT_MAJOR
;
1634 count_vm_event(PGMAJFAULT
);
1635 count_memcg_event_mm(charge_mm
, PGMAJFAULT
);
1637 /* Here we actually start the io */
1638 page
= shmem_swapin(swap
, gfp
, info
, index
);
1645 /* We have to do this with page locked to prevent races */
1647 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1648 !shmem_confirm_swap(mapping
, index
, swap
)) {
1652 if (!PageUptodate(page
)) {
1656 wait_on_page_writeback(page
);
1658 if (shmem_should_replace_page(page
, gfp
)) {
1659 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1664 error
= mem_cgroup_try_charge_delay(page
, charge_mm
, gfp
, &memcg
,
1667 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1668 swp_to_radix_entry(swap
), gfp
);
1670 * We already confirmed swap under page lock, and make
1671 * no memory allocation here, so usually no possibility
1672 * of error; but free_swap_and_cache() only trylocks a
1673 * page, so it is just possible that the entry has been
1674 * truncated or holepunched since swap was confirmed.
1675 * shmem_undo_range() will have done some of the
1676 * unaccounting, now delete_from_swap_cache() will do
1680 mem_cgroup_cancel_charge(page
, memcg
, false);
1681 delete_from_swap_cache(page
);
1687 mem_cgroup_commit_charge(page
, memcg
, true, false);
1689 spin_lock_irq(&info
->lock
);
1691 shmem_recalc_inode(inode
);
1692 spin_unlock_irq(&info
->lock
);
1694 if (sgp
== SGP_WRITE
)
1695 mark_page_accessed(page
);
1697 delete_from_swap_cache(page
);
1698 set_page_dirty(page
);
1704 if (!shmem_confirm_swap(mapping
, index
, swap
))
1716 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1718 * If we allocate a new one we do not mark it dirty. That's up to the
1719 * vm. If we swap it in we mark it dirty since we also free the swap
1720 * entry since a page cannot live in both the swap and page cache.
1722 * fault_mm and fault_type are only supplied by shmem_fault:
1723 * otherwise they are NULL.
1725 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1726 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
,
1727 struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
1728 vm_fault_t
*fault_type
)
1730 struct address_space
*mapping
= inode
->i_mapping
;
1731 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1732 struct shmem_sb_info
*sbinfo
;
1733 struct mm_struct
*charge_mm
;
1734 struct mem_cgroup
*memcg
;
1736 enum sgp_type sgp_huge
= sgp
;
1737 pgoff_t hindex
= index
;
1742 if (index
> (MAX_LFS_FILESIZE
>> PAGE_SHIFT
))
1744 if (sgp
== SGP_NOHUGE
|| sgp
== SGP_HUGE
)
1747 if (sgp
<= SGP_CACHE
&&
1748 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1752 sbinfo
= SHMEM_SB(inode
->i_sb
);
1753 charge_mm
= vma
? vma
->vm_mm
: current
->mm
;
1755 page
= find_lock_entry(mapping
, index
);
1756 if (xa_is_value(page
)) {
1757 error
= shmem_swapin_page(inode
, index
, &page
,
1758 sgp
, gfp
, vma
, fault_type
);
1759 if (error
== -EEXIST
)
1766 if (page
&& sgp
== SGP_WRITE
)
1767 mark_page_accessed(page
);
1769 /* fallocated page? */
1770 if (page
&& !PageUptodate(page
)) {
1771 if (sgp
!= SGP_READ
)
1777 if (page
|| sgp
== SGP_READ
) {
1783 * Fast cache lookup did not find it:
1784 * bring it back from swap or allocate.
1787 if (vma
&& userfaultfd_missing(vma
)) {
1788 *fault_type
= handle_userfault(vmf
, VM_UFFD_MISSING
);
1792 /* shmem_symlink() */
1793 if (mapping
->a_ops
!= &shmem_aops
)
1795 if (shmem_huge
== SHMEM_HUGE_DENY
|| sgp_huge
== SGP_NOHUGE
)
1797 if (shmem_huge
== SHMEM_HUGE_FORCE
)
1799 switch (sbinfo
->huge
) {
1802 case SHMEM_HUGE_NEVER
:
1804 case SHMEM_HUGE_WITHIN_SIZE
:
1805 off
= round_up(index
, HPAGE_PMD_NR
);
1806 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
1807 if (i_size
>= HPAGE_PMD_SIZE
&&
1808 i_size
>> PAGE_SHIFT
>= off
)
1811 case SHMEM_HUGE_ADVISE
:
1812 if (sgp_huge
== SGP_HUGE
)
1814 /* TODO: implement fadvise() hints */
1819 page
= shmem_alloc_and_acct_page(gfp
, inode
, index
, true);
1822 page
= shmem_alloc_and_acct_page(gfp
, inode
,
1828 error
= PTR_ERR(page
);
1830 if (error
!= -ENOSPC
)
1833 * Try to reclaim some space by splitting a huge page
1834 * beyond i_size on the filesystem.
1839 ret
= shmem_unused_huge_shrink(sbinfo
, NULL
, 1);
1840 if (ret
== SHRINK_STOP
)
1848 if (PageTransHuge(page
))
1849 hindex
= round_down(index
, HPAGE_PMD_NR
);
1853 if (sgp
== SGP_WRITE
)
1854 __SetPageReferenced(page
);
1856 error
= mem_cgroup_try_charge_delay(page
, charge_mm
, gfp
, &memcg
,
1857 PageTransHuge(page
));
1860 error
= shmem_add_to_page_cache(page
, mapping
, hindex
,
1861 NULL
, gfp
& GFP_RECLAIM_MASK
);
1863 mem_cgroup_cancel_charge(page
, memcg
,
1864 PageTransHuge(page
));
1867 mem_cgroup_commit_charge(page
, memcg
, false,
1868 PageTransHuge(page
));
1869 lru_cache_add_anon(page
);
1871 spin_lock_irq(&info
->lock
);
1872 info
->alloced
+= 1 << compound_order(page
);
1873 inode
->i_blocks
+= BLOCKS_PER_PAGE
<< compound_order(page
);
1874 shmem_recalc_inode(inode
);
1875 spin_unlock_irq(&info
->lock
);
1878 if (PageTransHuge(page
) &&
1879 DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
) <
1880 hindex
+ HPAGE_PMD_NR
- 1) {
1882 * Part of the huge page is beyond i_size: subject
1883 * to shrink under memory pressure.
1885 spin_lock(&sbinfo
->shrinklist_lock
);
1887 * _careful to defend against unlocked access to
1888 * ->shrink_list in shmem_unused_huge_shrink()
1890 if (list_empty_careful(&info
->shrinklist
)) {
1891 list_add_tail(&info
->shrinklist
,
1892 &sbinfo
->shrinklist
);
1893 sbinfo
->shrinklist_len
++;
1895 spin_unlock(&sbinfo
->shrinklist_lock
);
1899 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1901 if (sgp
== SGP_FALLOC
)
1905 * Let SGP_WRITE caller clear ends if write does not fill page;
1906 * but SGP_FALLOC on a page fallocated earlier must initialize
1907 * it now, lest undo on failure cancel our earlier guarantee.
1909 if (sgp
!= SGP_WRITE
&& !PageUptodate(page
)) {
1910 struct page
*head
= compound_head(page
);
1913 for (i
= 0; i
< (1 << compound_order(head
)); i
++) {
1914 clear_highpage(head
+ i
);
1915 flush_dcache_page(head
+ i
);
1917 SetPageUptodate(head
);
1920 /* Perhaps the file has been truncated since we checked */
1921 if (sgp
<= SGP_CACHE
&&
1922 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1924 ClearPageDirty(page
);
1925 delete_from_page_cache(page
);
1926 spin_lock_irq(&info
->lock
);
1927 shmem_recalc_inode(inode
);
1928 spin_unlock_irq(&info
->lock
);
1933 *pagep
= page
+ index
- hindex
;
1940 shmem_inode_unacct_blocks(inode
, 1 << compound_order(page
));
1942 if (PageTransHuge(page
)) {
1952 if (error
== -ENOSPC
&& !once
++) {
1953 spin_lock_irq(&info
->lock
);
1954 shmem_recalc_inode(inode
);
1955 spin_unlock_irq(&info
->lock
);
1958 if (error
== -EEXIST
)
1964 * This is like autoremove_wake_function, but it removes the wait queue
1965 * entry unconditionally - even if something else had already woken the
1968 static int synchronous_wake_function(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *key
)
1970 int ret
= default_wake_function(wait
, mode
, sync
, key
);
1971 list_del_init(&wait
->entry
);
1975 static vm_fault_t
shmem_fault(struct vm_fault
*vmf
)
1977 struct vm_area_struct
*vma
= vmf
->vma
;
1978 struct inode
*inode
= file_inode(vma
->vm_file
);
1979 gfp_t gfp
= mapping_gfp_mask(inode
->i_mapping
);
1982 vm_fault_t ret
= VM_FAULT_LOCKED
;
1985 * Trinity finds that probing a hole which tmpfs is punching can
1986 * prevent the hole-punch from ever completing: which in turn
1987 * locks writers out with its hold on i_mutex. So refrain from
1988 * faulting pages into the hole while it's being punched. Although
1989 * shmem_undo_range() does remove the additions, it may be unable to
1990 * keep up, as each new page needs its own unmap_mapping_range() call,
1991 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1993 * It does not matter if we sometimes reach this check just before the
1994 * hole-punch begins, so that one fault then races with the punch:
1995 * we just need to make racing faults a rare case.
1997 * The implementation below would be much simpler if we just used a
1998 * standard mutex or completion: but we cannot take i_mutex in fault,
1999 * and bloating every shmem inode for this unlikely case would be sad.
2001 if (unlikely(inode
->i_private
)) {
2002 struct shmem_falloc
*shmem_falloc
;
2004 spin_lock(&inode
->i_lock
);
2005 shmem_falloc
= inode
->i_private
;
2007 shmem_falloc
->waitq
&&
2008 vmf
->pgoff
>= shmem_falloc
->start
&&
2009 vmf
->pgoff
< shmem_falloc
->next
) {
2010 wait_queue_head_t
*shmem_falloc_waitq
;
2011 DEFINE_WAIT_FUNC(shmem_fault_wait
, synchronous_wake_function
);
2013 ret
= VM_FAULT_NOPAGE
;
2014 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
2015 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
2016 /* It's polite to up mmap_sem if we can */
2017 up_read(&vma
->vm_mm
->mmap_sem
);
2018 ret
= VM_FAULT_RETRY
;
2021 shmem_falloc_waitq
= shmem_falloc
->waitq
;
2022 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
2023 TASK_UNINTERRUPTIBLE
);
2024 spin_unlock(&inode
->i_lock
);
2028 * shmem_falloc_waitq points into the shmem_fallocate()
2029 * stack of the hole-punching task: shmem_falloc_waitq
2030 * is usually invalid by the time we reach here, but
2031 * finish_wait() does not dereference it in that case;
2032 * though i_lock needed lest racing with wake_up_all().
2034 spin_lock(&inode
->i_lock
);
2035 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
2036 spin_unlock(&inode
->i_lock
);
2039 spin_unlock(&inode
->i_lock
);
2044 if ((vma
->vm_flags
& VM_NOHUGEPAGE
) ||
2045 test_bit(MMF_DISABLE_THP
, &vma
->vm_mm
->flags
))
2047 else if (vma
->vm_flags
& VM_HUGEPAGE
)
2050 err
= shmem_getpage_gfp(inode
, vmf
->pgoff
, &vmf
->page
, sgp
,
2051 gfp
, vma
, vmf
, &ret
);
2053 return vmf_error(err
);
2057 unsigned long shmem_get_unmapped_area(struct file
*file
,
2058 unsigned long uaddr
, unsigned long len
,
2059 unsigned long pgoff
, unsigned long flags
)
2061 unsigned long (*get_area
)(struct file
*,
2062 unsigned long, unsigned long, unsigned long, unsigned long);
2064 unsigned long offset
;
2065 unsigned long inflated_len
;
2066 unsigned long inflated_addr
;
2067 unsigned long inflated_offset
;
2069 if (len
> TASK_SIZE
)
2072 get_area
= current
->mm
->get_unmapped_area
;
2073 addr
= get_area(file
, uaddr
, len
, pgoff
, flags
);
2075 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
2077 if (IS_ERR_VALUE(addr
))
2079 if (addr
& ~PAGE_MASK
)
2081 if (addr
> TASK_SIZE
- len
)
2084 if (shmem_huge
== SHMEM_HUGE_DENY
)
2086 if (len
< HPAGE_PMD_SIZE
)
2088 if (flags
& MAP_FIXED
)
2091 * Our priority is to support MAP_SHARED mapped hugely;
2092 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2093 * But if caller specified an address hint, respect that as before.
2098 if (shmem_huge
!= SHMEM_HUGE_FORCE
) {
2099 struct super_block
*sb
;
2102 VM_BUG_ON(file
->f_op
!= &shmem_file_operations
);
2103 sb
= file_inode(file
)->i_sb
;
2106 * Called directly from mm/mmap.c, or drivers/char/mem.c
2107 * for "/dev/zero", to create a shared anonymous object.
2109 if (IS_ERR(shm_mnt
))
2111 sb
= shm_mnt
->mnt_sb
;
2113 if (SHMEM_SB(sb
)->huge
== SHMEM_HUGE_NEVER
)
2117 offset
= (pgoff
<< PAGE_SHIFT
) & (HPAGE_PMD_SIZE
-1);
2118 if (offset
&& offset
+ len
< 2 * HPAGE_PMD_SIZE
)
2120 if ((addr
& (HPAGE_PMD_SIZE
-1)) == offset
)
2123 inflated_len
= len
+ HPAGE_PMD_SIZE
- PAGE_SIZE
;
2124 if (inflated_len
> TASK_SIZE
)
2126 if (inflated_len
< len
)
2129 inflated_addr
= get_area(NULL
, 0, inflated_len
, 0, flags
);
2130 if (IS_ERR_VALUE(inflated_addr
))
2132 if (inflated_addr
& ~PAGE_MASK
)
2135 inflated_offset
= inflated_addr
& (HPAGE_PMD_SIZE
-1);
2136 inflated_addr
+= offset
- inflated_offset
;
2137 if (inflated_offset
> offset
)
2138 inflated_addr
+= HPAGE_PMD_SIZE
;
2140 if (inflated_addr
> TASK_SIZE
- len
)
2142 return inflated_addr
;
2146 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
2148 struct inode
*inode
= file_inode(vma
->vm_file
);
2149 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
2152 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
2155 struct inode
*inode
= file_inode(vma
->vm_file
);
2158 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2159 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
2163 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2165 struct inode
*inode
= file_inode(file
);
2166 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2167 int retval
= -ENOMEM
;
2169 spin_lock_irq(&info
->lock
);
2170 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
2171 if (!user_shm_lock(inode
->i_size
, user
))
2173 info
->flags
|= VM_LOCKED
;
2174 mapping_set_unevictable(file
->f_mapping
);
2176 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
2177 user_shm_unlock(inode
->i_size
, user
);
2178 info
->flags
&= ~VM_LOCKED
;
2179 mapping_clear_unevictable(file
->f_mapping
);
2184 spin_unlock_irq(&info
->lock
);
2188 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2190 struct shmem_inode_info
*info
= SHMEM_I(file_inode(file
));
2192 if (info
->seals
& F_SEAL_FUTURE_WRITE
) {
2194 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2195 * "future write" seal active.
2197 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_WRITE
))
2201 * Since the F_SEAL_FUTURE_WRITE seals allow for a MAP_SHARED
2202 * read-only mapping, take care to not allow mprotect to revert
2205 vma
->vm_flags
&= ~(VM_MAYWRITE
);
2208 file_accessed(file
);
2209 vma
->vm_ops
= &shmem_vm_ops
;
2210 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
2211 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
2212 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
2213 khugepaged_enter(vma
, vma
->vm_flags
);
2218 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
2219 umode_t mode
, dev_t dev
, unsigned long flags
)
2221 struct inode
*inode
;
2222 struct shmem_inode_info
*info
;
2223 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2225 if (shmem_reserve_inode(sb
))
2228 inode
= new_inode(sb
);
2230 inode
->i_ino
= get_next_ino();
2231 inode_init_owner(inode
, dir
, mode
);
2232 inode
->i_blocks
= 0;
2233 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2234 inode
->i_generation
= prandom_u32();
2235 info
= SHMEM_I(inode
);
2236 memset(info
, 0, (char *)inode
- (char *)info
);
2237 spin_lock_init(&info
->lock
);
2238 atomic_set(&info
->stop_eviction
, 0);
2239 info
->seals
= F_SEAL_SEAL
;
2240 info
->flags
= flags
& VM_NORESERVE
;
2241 INIT_LIST_HEAD(&info
->shrinklist
);
2242 INIT_LIST_HEAD(&info
->swaplist
);
2243 simple_xattrs_init(&info
->xattrs
);
2244 cache_no_acl(inode
);
2246 switch (mode
& S_IFMT
) {
2248 inode
->i_op
= &shmem_special_inode_operations
;
2249 init_special_inode(inode
, mode
, dev
);
2252 inode
->i_mapping
->a_ops
= &shmem_aops
;
2253 inode
->i_op
= &shmem_inode_operations
;
2254 inode
->i_fop
= &shmem_file_operations
;
2255 mpol_shared_policy_init(&info
->policy
,
2256 shmem_get_sbmpol(sbinfo
));
2260 /* Some things misbehave if size == 0 on a directory */
2261 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
2262 inode
->i_op
= &shmem_dir_inode_operations
;
2263 inode
->i_fop
= &simple_dir_operations
;
2267 * Must not load anything in the rbtree,
2268 * mpol_free_shared_policy will not be called.
2270 mpol_shared_policy_init(&info
->policy
, NULL
);
2274 lockdep_annotate_inode_mutex_key(inode
);
2276 shmem_free_inode(sb
);
2280 bool shmem_mapping(struct address_space
*mapping
)
2282 return mapping
->a_ops
== &shmem_aops
;
2285 static int shmem_mfill_atomic_pte(struct mm_struct
*dst_mm
,
2287 struct vm_area_struct
*dst_vma
,
2288 unsigned long dst_addr
,
2289 unsigned long src_addr
,
2291 struct page
**pagep
)
2293 struct inode
*inode
= file_inode(dst_vma
->vm_file
);
2294 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2295 struct address_space
*mapping
= inode
->i_mapping
;
2296 gfp_t gfp
= mapping_gfp_mask(mapping
);
2297 pgoff_t pgoff
= linear_page_index(dst_vma
, dst_addr
);
2298 struct mem_cgroup
*memcg
;
2302 pte_t _dst_pte
, *dst_pte
;
2304 pgoff_t offset
, max_off
;
2307 if (!shmem_inode_acct_block(inode
, 1))
2311 page
= shmem_alloc_page(gfp
, info
, pgoff
);
2313 goto out_unacct_blocks
;
2315 if (!zeropage
) { /* mcopy_atomic */
2316 page_kaddr
= kmap_atomic(page
);
2317 ret
= copy_from_user(page_kaddr
,
2318 (const void __user
*)src_addr
,
2320 kunmap_atomic(page_kaddr
);
2322 /* fallback to copy_from_user outside mmap_sem */
2323 if (unlikely(ret
)) {
2325 shmem_inode_unacct_blocks(inode
, 1);
2326 /* don't free the page */
2329 } else { /* mfill_zeropage_atomic */
2330 clear_highpage(page
);
2337 VM_BUG_ON(PageLocked(page
) || PageSwapBacked(page
));
2338 __SetPageLocked(page
);
2339 __SetPageSwapBacked(page
);
2340 __SetPageUptodate(page
);
2343 offset
= linear_page_index(dst_vma
, dst_addr
);
2344 max_off
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
2345 if (unlikely(offset
>= max_off
))
2348 ret
= mem_cgroup_try_charge_delay(page
, dst_mm
, gfp
, &memcg
, false);
2352 ret
= shmem_add_to_page_cache(page
, mapping
, pgoff
, NULL
,
2353 gfp
& GFP_RECLAIM_MASK
);
2355 goto out_release_uncharge
;
2357 mem_cgroup_commit_charge(page
, memcg
, false, false);
2359 _dst_pte
= mk_pte(page
, dst_vma
->vm_page_prot
);
2360 if (dst_vma
->vm_flags
& VM_WRITE
)
2361 _dst_pte
= pte_mkwrite(pte_mkdirty(_dst_pte
));
2364 * We don't set the pte dirty if the vma has no
2365 * VM_WRITE permission, so mark the page dirty or it
2366 * could be freed from under us. We could do it
2367 * unconditionally before unlock_page(), but doing it
2368 * only if VM_WRITE is not set is faster.
2370 set_page_dirty(page
);
2373 dst_pte
= pte_offset_map_lock(dst_mm
, dst_pmd
, dst_addr
, &ptl
);
2376 max_off
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
2377 if (unlikely(offset
>= max_off
))
2378 goto out_release_uncharge_unlock
;
2381 if (!pte_none(*dst_pte
))
2382 goto out_release_uncharge_unlock
;
2384 lru_cache_add_anon(page
);
2386 spin_lock(&info
->lock
);
2388 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
2389 shmem_recalc_inode(inode
);
2390 spin_unlock(&info
->lock
);
2392 inc_mm_counter(dst_mm
, mm_counter_file(page
));
2393 page_add_file_rmap(page
, false);
2394 set_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
2396 /* No need to invalidate - it was non-present before */
2397 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
2398 pte_unmap_unlock(dst_pte
, ptl
);
2403 out_release_uncharge_unlock
:
2404 pte_unmap_unlock(dst_pte
, ptl
);
2405 ClearPageDirty(page
);
2406 delete_from_page_cache(page
);
2407 out_release_uncharge
:
2408 mem_cgroup_cancel_charge(page
, memcg
, false);
2413 shmem_inode_unacct_blocks(inode
, 1);
2417 int shmem_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
2419 struct vm_area_struct
*dst_vma
,
2420 unsigned long dst_addr
,
2421 unsigned long src_addr
,
2422 struct page
**pagep
)
2424 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2425 dst_addr
, src_addr
, false, pagep
);
2428 int shmem_mfill_zeropage_pte(struct mm_struct
*dst_mm
,
2430 struct vm_area_struct
*dst_vma
,
2431 unsigned long dst_addr
)
2433 struct page
*page
= NULL
;
2435 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2436 dst_addr
, 0, true, &page
);
2440 static const struct inode_operations shmem_symlink_inode_operations
;
2441 static const struct inode_operations shmem_short_symlink_operations
;
2443 #ifdef CONFIG_TMPFS_XATTR
2444 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
2446 #define shmem_initxattrs NULL
2450 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
2451 loff_t pos
, unsigned len
, unsigned flags
,
2452 struct page
**pagep
, void **fsdata
)
2454 struct inode
*inode
= mapping
->host
;
2455 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2456 pgoff_t index
= pos
>> PAGE_SHIFT
;
2458 /* i_mutex is held by caller */
2459 if (unlikely(info
->seals
& (F_SEAL_GROW
|
2460 F_SEAL_WRITE
| F_SEAL_FUTURE_WRITE
))) {
2461 if (info
->seals
& (F_SEAL_WRITE
| F_SEAL_FUTURE_WRITE
))
2463 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
2467 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
);
2471 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
2472 loff_t pos
, unsigned len
, unsigned copied
,
2473 struct page
*page
, void *fsdata
)
2475 struct inode
*inode
= mapping
->host
;
2477 if (pos
+ copied
> inode
->i_size
)
2478 i_size_write(inode
, pos
+ copied
);
2480 if (!PageUptodate(page
)) {
2481 struct page
*head
= compound_head(page
);
2482 if (PageTransCompound(page
)) {
2485 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2486 if (head
+ i
== page
)
2488 clear_highpage(head
+ i
);
2489 flush_dcache_page(head
+ i
);
2492 if (copied
< PAGE_SIZE
) {
2493 unsigned from
= pos
& (PAGE_SIZE
- 1);
2494 zero_user_segments(page
, 0, from
,
2495 from
+ copied
, PAGE_SIZE
);
2497 SetPageUptodate(head
);
2499 set_page_dirty(page
);
2506 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
2508 struct file
*file
= iocb
->ki_filp
;
2509 struct inode
*inode
= file_inode(file
);
2510 struct address_space
*mapping
= inode
->i_mapping
;
2512 unsigned long offset
;
2513 enum sgp_type sgp
= SGP_READ
;
2516 loff_t
*ppos
= &iocb
->ki_pos
;
2519 * Might this read be for a stacking filesystem? Then when reading
2520 * holes of a sparse file, we actually need to allocate those pages,
2521 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2523 if (!iter_is_iovec(to
))
2526 index
= *ppos
>> PAGE_SHIFT
;
2527 offset
= *ppos
& ~PAGE_MASK
;
2530 struct page
*page
= NULL
;
2532 unsigned long nr
, ret
;
2533 loff_t i_size
= i_size_read(inode
);
2535 end_index
= i_size
>> PAGE_SHIFT
;
2536 if (index
> end_index
)
2538 if (index
== end_index
) {
2539 nr
= i_size
& ~PAGE_MASK
;
2544 error
= shmem_getpage(inode
, index
, &page
, sgp
);
2546 if (error
== -EINVAL
)
2551 if (sgp
== SGP_CACHE
)
2552 set_page_dirty(page
);
2557 * We must evaluate after, since reads (unlike writes)
2558 * are called without i_mutex protection against truncate
2561 i_size
= i_size_read(inode
);
2562 end_index
= i_size
>> PAGE_SHIFT
;
2563 if (index
== end_index
) {
2564 nr
= i_size
& ~PAGE_MASK
;
2575 * If users can be writing to this page using arbitrary
2576 * virtual addresses, take care about potential aliasing
2577 * before reading the page on the kernel side.
2579 if (mapping_writably_mapped(mapping
))
2580 flush_dcache_page(page
);
2582 * Mark the page accessed if we read the beginning.
2585 mark_page_accessed(page
);
2587 page
= ZERO_PAGE(0);
2592 * Ok, we have the page, and it's up-to-date, so
2593 * now we can copy it to user space...
2595 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
2598 index
+= offset
>> PAGE_SHIFT
;
2599 offset
&= ~PAGE_MASK
;
2602 if (!iov_iter_count(to
))
2611 *ppos
= ((loff_t
) index
<< PAGE_SHIFT
) + offset
;
2612 file_accessed(file
);
2613 return retval
? retval
: error
;
2617 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2619 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
2620 pgoff_t index
, pgoff_t end
, int whence
)
2623 struct pagevec pvec
;
2624 pgoff_t indices
[PAGEVEC_SIZE
];
2628 pagevec_init(&pvec
);
2629 pvec
.nr
= 1; /* start small: we may be there already */
2631 pvec
.nr
= find_get_entries(mapping
, index
,
2632 pvec
.nr
, pvec
.pages
, indices
);
2634 if (whence
== SEEK_DATA
)
2638 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
2639 if (index
< indices
[i
]) {
2640 if (whence
== SEEK_HOLE
) {
2646 page
= pvec
.pages
[i
];
2647 if (page
&& !xa_is_value(page
)) {
2648 if (!PageUptodate(page
))
2652 (page
&& whence
== SEEK_DATA
) ||
2653 (!page
&& whence
== SEEK_HOLE
)) {
2658 pagevec_remove_exceptionals(&pvec
);
2659 pagevec_release(&pvec
);
2660 pvec
.nr
= PAGEVEC_SIZE
;
2666 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2668 struct address_space
*mapping
= file
->f_mapping
;
2669 struct inode
*inode
= mapping
->host
;
2673 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
2674 return generic_file_llseek_size(file
, offset
, whence
,
2675 MAX_LFS_FILESIZE
, i_size_read(inode
));
2677 /* We're holding i_mutex so we can access i_size directly */
2679 if (offset
< 0 || offset
>= inode
->i_size
)
2682 start
= offset
>> PAGE_SHIFT
;
2683 end
= (inode
->i_size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2684 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
2685 new_offset
<<= PAGE_SHIFT
;
2686 if (new_offset
> offset
) {
2687 if (new_offset
< inode
->i_size
)
2688 offset
= new_offset
;
2689 else if (whence
== SEEK_DATA
)
2692 offset
= inode
->i_size
;
2697 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
2698 inode_unlock(inode
);
2702 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2705 struct inode
*inode
= file_inode(file
);
2706 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2707 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2708 struct shmem_falloc shmem_falloc
;
2709 pgoff_t start
, index
, end
;
2712 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2717 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2718 struct address_space
*mapping
= file
->f_mapping
;
2719 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2720 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2721 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2723 /* protected by i_mutex */
2724 if (info
->seals
& (F_SEAL_WRITE
| F_SEAL_FUTURE_WRITE
)) {
2729 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2730 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2731 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2732 spin_lock(&inode
->i_lock
);
2733 inode
->i_private
= &shmem_falloc
;
2734 spin_unlock(&inode
->i_lock
);
2736 if ((u64
)unmap_end
> (u64
)unmap_start
)
2737 unmap_mapping_range(mapping
, unmap_start
,
2738 1 + unmap_end
- unmap_start
, 0);
2739 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2740 /* No need to unmap again: hole-punching leaves COWed pages */
2742 spin_lock(&inode
->i_lock
);
2743 inode
->i_private
= NULL
;
2744 wake_up_all(&shmem_falloc_waitq
);
2745 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq
.head
));
2746 spin_unlock(&inode
->i_lock
);
2751 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2752 error
= inode_newsize_ok(inode
, offset
+ len
);
2756 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2761 start
= offset
>> PAGE_SHIFT
;
2762 end
= (offset
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2763 /* Try to avoid a swapstorm if len is impossible to satisfy */
2764 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2769 shmem_falloc
.waitq
= NULL
;
2770 shmem_falloc
.start
= start
;
2771 shmem_falloc
.next
= start
;
2772 shmem_falloc
.nr_falloced
= 0;
2773 shmem_falloc
.nr_unswapped
= 0;
2774 spin_lock(&inode
->i_lock
);
2775 inode
->i_private
= &shmem_falloc
;
2776 spin_unlock(&inode
->i_lock
);
2778 for (index
= start
; index
< end
; index
++) {
2782 * Good, the fallocate(2) manpage permits EINTR: we may have
2783 * been interrupted because we are using up too much memory.
2785 if (signal_pending(current
))
2787 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2790 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
);
2792 /* Remove the !PageUptodate pages we added */
2793 if (index
> start
) {
2794 shmem_undo_range(inode
,
2795 (loff_t
)start
<< PAGE_SHIFT
,
2796 ((loff_t
)index
<< PAGE_SHIFT
) - 1, true);
2802 * Inform shmem_writepage() how far we have reached.
2803 * No need for lock or barrier: we have the page lock.
2805 shmem_falloc
.next
++;
2806 if (!PageUptodate(page
))
2807 shmem_falloc
.nr_falloced
++;
2810 * If !PageUptodate, leave it that way so that freeable pages
2811 * can be recognized if we need to rollback on error later.
2812 * But set_page_dirty so that memory pressure will swap rather
2813 * than free the pages we are allocating (and SGP_CACHE pages
2814 * might still be clean: we now need to mark those dirty too).
2816 set_page_dirty(page
);
2822 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2823 i_size_write(inode
, offset
+ len
);
2824 inode
->i_ctime
= current_time(inode
);
2826 spin_lock(&inode
->i_lock
);
2827 inode
->i_private
= NULL
;
2828 spin_unlock(&inode
->i_lock
);
2830 inode_unlock(inode
);
2834 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2836 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2838 buf
->f_type
= TMPFS_MAGIC
;
2839 buf
->f_bsize
= PAGE_SIZE
;
2840 buf
->f_namelen
= NAME_MAX
;
2841 if (sbinfo
->max_blocks
) {
2842 buf
->f_blocks
= sbinfo
->max_blocks
;
2844 buf
->f_bfree
= sbinfo
->max_blocks
-
2845 percpu_counter_sum(&sbinfo
->used_blocks
);
2847 if (sbinfo
->max_inodes
) {
2848 buf
->f_files
= sbinfo
->max_inodes
;
2849 buf
->f_ffree
= sbinfo
->free_inodes
;
2851 /* else leave those fields 0 like simple_statfs */
2856 * File creation. Allocate an inode, and we're done..
2859 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2861 struct inode
*inode
;
2862 int error
= -ENOSPC
;
2864 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2866 error
= simple_acl_create(dir
, inode
);
2869 error
= security_inode_init_security(inode
, dir
,
2871 shmem_initxattrs
, NULL
);
2872 if (error
&& error
!= -EOPNOTSUPP
)
2876 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2877 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
2878 d_instantiate(dentry
, inode
);
2879 dget(dentry
); /* Extra count - pin the dentry in core */
2888 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2890 struct inode
*inode
;
2891 int error
= -ENOSPC
;
2893 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2895 error
= security_inode_init_security(inode
, dir
,
2897 shmem_initxattrs
, NULL
);
2898 if (error
&& error
!= -EOPNOTSUPP
)
2900 error
= simple_acl_create(dir
, inode
);
2903 d_tmpfile(dentry
, inode
);
2911 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2915 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
2921 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
2924 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
2930 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2932 struct inode
*inode
= d_inode(old_dentry
);
2936 * No ordinary (disk based) filesystem counts links as inodes;
2937 * but each new link needs a new dentry, pinning lowmem, and
2938 * tmpfs dentries cannot be pruned until they are unlinked.
2939 * But if an O_TMPFILE file is linked into the tmpfs, the
2940 * first link must skip that, to get the accounting right.
2942 if (inode
->i_nlink
) {
2943 ret
= shmem_reserve_inode(inode
->i_sb
);
2948 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2949 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2951 ihold(inode
); /* New dentry reference */
2952 dget(dentry
); /* Extra pinning count for the created dentry */
2953 d_instantiate(dentry
, inode
);
2958 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2960 struct inode
*inode
= d_inode(dentry
);
2962 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2963 shmem_free_inode(inode
->i_sb
);
2965 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2966 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2968 dput(dentry
); /* Undo the count from "create" - this does all the work */
2972 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2974 if (!simple_empty(dentry
))
2977 drop_nlink(d_inode(dentry
));
2979 return shmem_unlink(dir
, dentry
);
2982 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2984 bool old_is_dir
= d_is_dir(old_dentry
);
2985 bool new_is_dir
= d_is_dir(new_dentry
);
2987 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
2989 drop_nlink(old_dir
);
2992 drop_nlink(new_dir
);
2996 old_dir
->i_ctime
= old_dir
->i_mtime
=
2997 new_dir
->i_ctime
= new_dir
->i_mtime
=
2998 d_inode(old_dentry
)->i_ctime
=
2999 d_inode(new_dentry
)->i_ctime
= current_time(old_dir
);
3004 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
3006 struct dentry
*whiteout
;
3009 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
3013 error
= shmem_mknod(old_dir
, whiteout
,
3014 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
3020 * Cheat and hash the whiteout while the old dentry is still in
3021 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3023 * d_lookup() will consistently find one of them at this point,
3024 * not sure which one, but that isn't even important.
3031 * The VFS layer already does all the dentry stuff for rename,
3032 * we just have to decrement the usage count for the target if
3033 * it exists so that the VFS layer correctly free's it when it
3036 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
3038 struct inode
*inode
= d_inode(old_dentry
);
3039 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
3041 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
3044 if (flags
& RENAME_EXCHANGE
)
3045 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
3047 if (!simple_empty(new_dentry
))
3050 if (flags
& RENAME_WHITEOUT
) {
3053 error
= shmem_whiteout(old_dir
, old_dentry
);
3058 if (d_really_is_positive(new_dentry
)) {
3059 (void) shmem_unlink(new_dir
, new_dentry
);
3060 if (they_are_dirs
) {
3061 drop_nlink(d_inode(new_dentry
));
3062 drop_nlink(old_dir
);
3064 } else if (they_are_dirs
) {
3065 drop_nlink(old_dir
);
3069 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
3070 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
3071 old_dir
->i_ctime
= old_dir
->i_mtime
=
3072 new_dir
->i_ctime
= new_dir
->i_mtime
=
3073 inode
->i_ctime
= current_time(old_dir
);
3077 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
3081 struct inode
*inode
;
3084 len
= strlen(symname
) + 1;
3085 if (len
> PAGE_SIZE
)
3086 return -ENAMETOOLONG
;
3088 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
| 0777, 0,
3093 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
3094 shmem_initxattrs
, NULL
);
3096 if (error
!= -EOPNOTSUPP
) {
3103 inode
->i_size
= len
-1;
3104 if (len
<= SHORT_SYMLINK_LEN
) {
3105 inode
->i_link
= kmemdup(symname
, len
, GFP_KERNEL
);
3106 if (!inode
->i_link
) {
3110 inode
->i_op
= &shmem_short_symlink_operations
;
3112 inode_nohighmem(inode
);
3113 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
);
3118 inode
->i_mapping
->a_ops
= &shmem_aops
;
3119 inode
->i_op
= &shmem_symlink_inode_operations
;
3120 memcpy(page_address(page
), symname
, len
);
3121 SetPageUptodate(page
);
3122 set_page_dirty(page
);
3126 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3127 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3128 d_instantiate(dentry
, inode
);
3133 static void shmem_put_link(void *arg
)
3135 mark_page_accessed(arg
);
3139 static const char *shmem_get_link(struct dentry
*dentry
,
3140 struct inode
*inode
,
3141 struct delayed_call
*done
)
3143 struct page
*page
= NULL
;
3146 page
= find_get_page(inode
->i_mapping
, 0);
3148 return ERR_PTR(-ECHILD
);
3149 if (!PageUptodate(page
)) {
3151 return ERR_PTR(-ECHILD
);
3154 error
= shmem_getpage(inode
, 0, &page
, SGP_READ
);
3156 return ERR_PTR(error
);
3159 set_delayed_call(done
, shmem_put_link
, page
);
3160 return page_address(page
);
3163 #ifdef CONFIG_TMPFS_XATTR
3165 * Superblocks without xattr inode operations may get some security.* xattr
3166 * support from the LSM "for free". As soon as we have any other xattrs
3167 * like ACLs, we also need to implement the security.* handlers at
3168 * filesystem level, though.
3172 * Callback for security_inode_init_security() for acquiring xattrs.
3174 static int shmem_initxattrs(struct inode
*inode
,
3175 const struct xattr
*xattr_array
,
3178 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3179 const struct xattr
*xattr
;
3180 struct simple_xattr
*new_xattr
;
3183 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
3184 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
3188 len
= strlen(xattr
->name
) + 1;
3189 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
3191 if (!new_xattr
->name
) {
3196 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
3197 XATTR_SECURITY_PREFIX_LEN
);
3198 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
3201 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
3207 static int shmem_xattr_handler_get(const struct xattr_handler
*handler
,
3208 struct dentry
*unused
, struct inode
*inode
,
3209 const char *name
, void *buffer
, size_t size
)
3211 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3213 name
= xattr_full_name(handler
, name
);
3214 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
3217 static int shmem_xattr_handler_set(const struct xattr_handler
*handler
,
3218 struct dentry
*unused
, struct inode
*inode
,
3219 const char *name
, const void *value
,
3220 size_t size
, int flags
)
3222 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3224 name
= xattr_full_name(handler
, name
);
3225 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
3228 static const struct xattr_handler shmem_security_xattr_handler
= {
3229 .prefix
= XATTR_SECURITY_PREFIX
,
3230 .get
= shmem_xattr_handler_get
,
3231 .set
= shmem_xattr_handler_set
,
3234 static const struct xattr_handler shmem_trusted_xattr_handler
= {
3235 .prefix
= XATTR_TRUSTED_PREFIX
,
3236 .get
= shmem_xattr_handler_get
,
3237 .set
= shmem_xattr_handler_set
,
3240 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
3241 #ifdef CONFIG_TMPFS_POSIX_ACL
3242 &posix_acl_access_xattr_handler
,
3243 &posix_acl_default_xattr_handler
,
3245 &shmem_security_xattr_handler
,
3246 &shmem_trusted_xattr_handler
,
3250 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
3252 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
3253 return simple_xattr_list(d_inode(dentry
), &info
->xattrs
, buffer
, size
);
3255 #endif /* CONFIG_TMPFS_XATTR */
3257 static const struct inode_operations shmem_short_symlink_operations
= {
3258 .get_link
= simple_get_link
,
3259 #ifdef CONFIG_TMPFS_XATTR
3260 .listxattr
= shmem_listxattr
,
3264 static const struct inode_operations shmem_symlink_inode_operations
= {
3265 .get_link
= shmem_get_link
,
3266 #ifdef CONFIG_TMPFS_XATTR
3267 .listxattr
= shmem_listxattr
,
3271 static struct dentry
*shmem_get_parent(struct dentry
*child
)
3273 return ERR_PTR(-ESTALE
);
3276 static int shmem_match(struct inode
*ino
, void *vfh
)
3280 inum
= (inum
<< 32) | fh
[1];
3281 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
3284 /* Find any alias of inode, but prefer a hashed alias */
3285 static struct dentry
*shmem_find_alias(struct inode
*inode
)
3287 struct dentry
*alias
= d_find_alias(inode
);
3289 return alias
?: d_find_any_alias(inode
);
3293 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
3294 struct fid
*fid
, int fh_len
, int fh_type
)
3296 struct inode
*inode
;
3297 struct dentry
*dentry
= NULL
;
3304 inum
= (inum
<< 32) | fid
->raw
[1];
3306 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
3307 shmem_match
, fid
->raw
);
3309 dentry
= shmem_find_alias(inode
);
3316 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
3317 struct inode
*parent
)
3321 return FILEID_INVALID
;
3324 if (inode_unhashed(inode
)) {
3325 /* Unfortunately insert_inode_hash is not idempotent,
3326 * so as we hash inodes here rather than at creation
3327 * time, we need a lock to ensure we only try
3330 static DEFINE_SPINLOCK(lock
);
3332 if (inode_unhashed(inode
))
3333 __insert_inode_hash(inode
,
3334 inode
->i_ino
+ inode
->i_generation
);
3338 fh
[0] = inode
->i_generation
;
3339 fh
[1] = inode
->i_ino
;
3340 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
3346 static const struct export_operations shmem_export_ops
= {
3347 .get_parent
= shmem_get_parent
,
3348 .encode_fh
= shmem_encode_fh
,
3349 .fh_to_dentry
= shmem_fh_to_dentry
,
3352 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
3355 char *this_char
, *value
, *rest
;
3356 struct mempolicy
*mpol
= NULL
;
3360 while (options
!= NULL
) {
3361 this_char
= options
;
3364 * NUL-terminate this option: unfortunately,
3365 * mount options form a comma-separated list,
3366 * but mpol's nodelist may also contain commas.
3368 options
= strchr(options
, ',');
3369 if (options
== NULL
)
3372 if (!isdigit(*options
)) {
3379 if ((value
= strchr(this_char
,'=')) != NULL
) {
3382 pr_err("tmpfs: No value for mount option '%s'\n",
3387 if (!strcmp(this_char
,"size")) {
3388 unsigned long long size
;
3389 size
= memparse(value
,&rest
);
3391 size
<<= PAGE_SHIFT
;
3392 size
*= totalram_pages();
3398 sbinfo
->max_blocks
=
3399 DIV_ROUND_UP(size
, PAGE_SIZE
);
3400 } else if (!strcmp(this_char
,"nr_blocks")) {
3401 sbinfo
->max_blocks
= memparse(value
, &rest
);
3404 } else if (!strcmp(this_char
,"nr_inodes")) {
3405 sbinfo
->max_inodes
= memparse(value
, &rest
);
3408 } else if (!strcmp(this_char
,"mode")) {
3411 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
3414 } else if (!strcmp(this_char
,"uid")) {
3417 uid
= simple_strtoul(value
, &rest
, 0);
3420 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
3421 if (!uid_valid(sbinfo
->uid
))
3423 } else if (!strcmp(this_char
,"gid")) {
3426 gid
= simple_strtoul(value
, &rest
, 0);
3429 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
3430 if (!gid_valid(sbinfo
->gid
))
3432 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3433 } else if (!strcmp(this_char
, "huge")) {
3435 huge
= shmem_parse_huge(value
);
3438 if (!has_transparent_hugepage() &&
3439 huge
!= SHMEM_HUGE_NEVER
)
3441 sbinfo
->huge
= huge
;
3444 } else if (!strcmp(this_char
,"mpol")) {
3447 if (mpol_parse_str(value
, &mpol
))
3451 pr_err("tmpfs: Bad mount option %s\n", this_char
);
3455 sbinfo
->mpol
= mpol
;
3459 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3467 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
3469 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3470 struct shmem_sb_info config
= *sbinfo
;
3471 unsigned long inodes
;
3472 int error
= -EINVAL
;
3475 if (shmem_parse_options(data
, &config
, true))
3478 spin_lock(&sbinfo
->stat_lock
);
3479 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
3480 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
3482 if (config
.max_inodes
< inodes
)
3485 * Those tests disallow limited->unlimited while any are in use;
3486 * but we must separately disallow unlimited->limited, because
3487 * in that case we have no record of how much is already in use.
3489 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
3491 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
3495 sbinfo
->huge
= config
.huge
;
3496 sbinfo
->max_blocks
= config
.max_blocks
;
3497 sbinfo
->max_inodes
= config
.max_inodes
;
3498 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
3501 * Preserve previous mempolicy unless mpol remount option was specified.
3504 mpol_put(sbinfo
->mpol
);
3505 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
3508 spin_unlock(&sbinfo
->stat_lock
);
3512 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
3514 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
3516 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
3517 seq_printf(seq
, ",size=%luk",
3518 sbinfo
->max_blocks
<< (PAGE_SHIFT
- 10));
3519 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
3520 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
3521 if (sbinfo
->mode
!= (0777 | S_ISVTX
))
3522 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
3523 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
3524 seq_printf(seq
, ",uid=%u",
3525 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
3526 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
3527 seq_printf(seq
, ",gid=%u",
3528 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
3529 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3530 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3532 seq_printf(seq
, ",huge=%s", shmem_format_huge(sbinfo
->huge
));
3534 shmem_show_mpol(seq
, sbinfo
->mpol
);
3538 #endif /* CONFIG_TMPFS */
3540 static void shmem_put_super(struct super_block
*sb
)
3542 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3544 percpu_counter_destroy(&sbinfo
->used_blocks
);
3545 mpol_put(sbinfo
->mpol
);
3547 sb
->s_fs_info
= NULL
;
3550 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
3552 struct inode
*inode
;
3553 struct shmem_sb_info
*sbinfo
;
3556 /* Round up to L1_CACHE_BYTES to resist false sharing */
3557 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3558 L1_CACHE_BYTES
), GFP_KERNEL
);
3562 sbinfo
->mode
= 0777 | S_ISVTX
;
3563 sbinfo
->uid
= current_fsuid();
3564 sbinfo
->gid
= current_fsgid();
3565 sb
->s_fs_info
= sbinfo
;
3569 * Per default we only allow half of the physical ram per
3570 * tmpfs instance, limiting inodes to one per page of lowmem;
3571 * but the internal instance is left unlimited.
3573 if (!(sb
->s_flags
& SB_KERNMOUNT
)) {
3574 sbinfo
->max_blocks
= shmem_default_max_blocks();
3575 sbinfo
->max_inodes
= shmem_default_max_inodes();
3576 if (shmem_parse_options(data
, sbinfo
, false)) {
3581 sb
->s_flags
|= SB_NOUSER
;
3583 sb
->s_export_op
= &shmem_export_ops
;
3584 sb
->s_flags
|= SB_NOSEC
;
3586 sb
->s_flags
|= SB_NOUSER
;
3589 spin_lock_init(&sbinfo
->stat_lock
);
3590 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3592 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3593 spin_lock_init(&sbinfo
->shrinklist_lock
);
3594 INIT_LIST_HEAD(&sbinfo
->shrinklist
);
3596 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3597 sb
->s_blocksize
= PAGE_SIZE
;
3598 sb
->s_blocksize_bits
= PAGE_SHIFT
;
3599 sb
->s_magic
= TMPFS_MAGIC
;
3600 sb
->s_op
= &shmem_ops
;
3601 sb
->s_time_gran
= 1;
3602 #ifdef CONFIG_TMPFS_XATTR
3603 sb
->s_xattr
= shmem_xattr_handlers
;
3605 #ifdef CONFIG_TMPFS_POSIX_ACL
3606 sb
->s_flags
|= SB_POSIXACL
;
3608 uuid_gen(&sb
->s_uuid
);
3610 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3613 inode
->i_uid
= sbinfo
->uid
;
3614 inode
->i_gid
= sbinfo
->gid
;
3615 sb
->s_root
= d_make_root(inode
);
3621 shmem_put_super(sb
);
3625 static struct kmem_cache
*shmem_inode_cachep
;
3627 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3629 struct shmem_inode_info
*info
;
3630 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3633 return &info
->vfs_inode
;
3636 static void shmem_free_in_core_inode(struct inode
*inode
)
3638 if (S_ISLNK(inode
->i_mode
))
3639 kfree(inode
->i_link
);
3640 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3643 static void shmem_destroy_inode(struct inode
*inode
)
3645 if (S_ISREG(inode
->i_mode
))
3646 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3649 static void shmem_init_inode(void *foo
)
3651 struct shmem_inode_info
*info
= foo
;
3652 inode_init_once(&info
->vfs_inode
);
3655 static void shmem_init_inodecache(void)
3657 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3658 sizeof(struct shmem_inode_info
),
3659 0, SLAB_PANIC
|SLAB_ACCOUNT
, shmem_init_inode
);
3662 static void shmem_destroy_inodecache(void)
3664 kmem_cache_destroy(shmem_inode_cachep
);
3667 static const struct address_space_operations shmem_aops
= {
3668 .writepage
= shmem_writepage
,
3669 .set_page_dirty
= __set_page_dirty_no_writeback
,
3671 .write_begin
= shmem_write_begin
,
3672 .write_end
= shmem_write_end
,
3674 #ifdef CONFIG_MIGRATION
3675 .migratepage
= migrate_page
,
3677 .error_remove_page
= generic_error_remove_page
,
3680 static const struct file_operations shmem_file_operations
= {
3682 .get_unmapped_area
= shmem_get_unmapped_area
,
3684 .llseek
= shmem_file_llseek
,
3685 .read_iter
= shmem_file_read_iter
,
3686 .write_iter
= generic_file_write_iter
,
3687 .fsync
= noop_fsync
,
3688 .splice_read
= generic_file_splice_read
,
3689 .splice_write
= iter_file_splice_write
,
3690 .fallocate
= shmem_fallocate
,
3694 static const struct inode_operations shmem_inode_operations
= {
3695 .getattr
= shmem_getattr
,
3696 .setattr
= shmem_setattr
,
3697 #ifdef CONFIG_TMPFS_XATTR
3698 .listxattr
= shmem_listxattr
,
3699 .set_acl
= simple_set_acl
,
3703 static const struct inode_operations shmem_dir_inode_operations
= {
3705 .create
= shmem_create
,
3706 .lookup
= simple_lookup
,
3708 .unlink
= shmem_unlink
,
3709 .symlink
= shmem_symlink
,
3710 .mkdir
= shmem_mkdir
,
3711 .rmdir
= shmem_rmdir
,
3712 .mknod
= shmem_mknod
,
3713 .rename
= shmem_rename2
,
3714 .tmpfile
= shmem_tmpfile
,
3716 #ifdef CONFIG_TMPFS_XATTR
3717 .listxattr
= shmem_listxattr
,
3719 #ifdef CONFIG_TMPFS_POSIX_ACL
3720 .setattr
= shmem_setattr
,
3721 .set_acl
= simple_set_acl
,
3725 static const struct inode_operations shmem_special_inode_operations
= {
3726 #ifdef CONFIG_TMPFS_XATTR
3727 .listxattr
= shmem_listxattr
,
3729 #ifdef CONFIG_TMPFS_POSIX_ACL
3730 .setattr
= shmem_setattr
,
3731 .set_acl
= simple_set_acl
,
3735 static const struct super_operations shmem_ops
= {
3736 .alloc_inode
= shmem_alloc_inode
,
3737 .free_inode
= shmem_free_in_core_inode
,
3738 .destroy_inode
= shmem_destroy_inode
,
3740 .statfs
= shmem_statfs
,
3741 .remount_fs
= shmem_remount_fs
,
3742 .show_options
= shmem_show_options
,
3744 .evict_inode
= shmem_evict_inode
,
3745 .drop_inode
= generic_delete_inode
,
3746 .put_super
= shmem_put_super
,
3747 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3748 .nr_cached_objects
= shmem_unused_huge_count
,
3749 .free_cached_objects
= shmem_unused_huge_scan
,
3753 static const struct vm_operations_struct shmem_vm_ops
= {
3754 .fault
= shmem_fault
,
3755 .map_pages
= filemap_map_pages
,
3757 .set_policy
= shmem_set_policy
,
3758 .get_policy
= shmem_get_policy
,
3762 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
3763 int flags
, const char *dev_name
, void *data
)
3765 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
3768 static struct file_system_type shmem_fs_type
= {
3769 .owner
= THIS_MODULE
,
3771 .mount
= shmem_mount
,
3772 .kill_sb
= kill_litter_super
,
3773 .fs_flags
= FS_USERNS_MOUNT
,
3776 int __init
shmem_init(void)
3780 shmem_init_inodecache();
3782 error
= register_filesystem(&shmem_fs_type
);
3784 pr_err("Could not register tmpfs\n");
3788 shm_mnt
= kern_mount(&shmem_fs_type
);
3789 if (IS_ERR(shm_mnt
)) {
3790 error
= PTR_ERR(shm_mnt
);
3791 pr_err("Could not kern_mount tmpfs\n");
3795 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3796 if (has_transparent_hugepage() && shmem_huge
> SHMEM_HUGE_DENY
)
3797 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3799 shmem_huge
= 0; /* just in case it was patched */
3804 unregister_filesystem(&shmem_fs_type
);
3806 shmem_destroy_inodecache();
3807 shm_mnt
= ERR_PTR(error
);
3811 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3812 static ssize_t
shmem_enabled_show(struct kobject
*kobj
,
3813 struct kobj_attribute
*attr
, char *buf
)
3817 SHMEM_HUGE_WITHIN_SIZE
,
3825 for (i
= 0, count
= 0; i
< ARRAY_SIZE(values
); i
++) {
3826 const char *fmt
= shmem_huge
== values
[i
] ? "[%s] " : "%s ";
3828 count
+= sprintf(buf
+ count
, fmt
,
3829 shmem_format_huge(values
[i
]));
3831 buf
[count
- 1] = '\n';
3835 static ssize_t
shmem_enabled_store(struct kobject
*kobj
,
3836 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
3841 if (count
+ 1 > sizeof(tmp
))
3843 memcpy(tmp
, buf
, count
);
3845 if (count
&& tmp
[count
- 1] == '\n')
3846 tmp
[count
- 1] = '\0';
3848 huge
= shmem_parse_huge(tmp
);
3849 if (huge
== -EINVAL
)
3851 if (!has_transparent_hugepage() &&
3852 huge
!= SHMEM_HUGE_NEVER
&& huge
!= SHMEM_HUGE_DENY
)
3856 if (shmem_huge
> SHMEM_HUGE_DENY
)
3857 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3861 struct kobj_attribute shmem_enabled_attr
=
3862 __ATTR(shmem_enabled
, 0644, shmem_enabled_show
, shmem_enabled_store
);
3863 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3865 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3866 bool shmem_huge_enabled(struct vm_area_struct
*vma
)
3868 struct inode
*inode
= file_inode(vma
->vm_file
);
3869 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
3873 if ((vma
->vm_flags
& VM_NOHUGEPAGE
) ||
3874 test_bit(MMF_DISABLE_THP
, &vma
->vm_mm
->flags
))
3876 if (shmem_huge
== SHMEM_HUGE_FORCE
)
3878 if (shmem_huge
== SHMEM_HUGE_DENY
)
3880 switch (sbinfo
->huge
) {
3881 case SHMEM_HUGE_NEVER
:
3883 case SHMEM_HUGE_ALWAYS
:
3885 case SHMEM_HUGE_WITHIN_SIZE
:
3886 off
= round_up(vma
->vm_pgoff
, HPAGE_PMD_NR
);
3887 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
3888 if (i_size
>= HPAGE_PMD_SIZE
&&
3889 i_size
>> PAGE_SHIFT
>= off
)
3892 case SHMEM_HUGE_ADVISE
:
3893 /* TODO: implement fadvise() hints */
3894 return (vma
->vm_flags
& VM_HUGEPAGE
);
3900 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3902 #else /* !CONFIG_SHMEM */
3905 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3907 * This is intended for small system where the benefits of the full
3908 * shmem code (swap-backed and resource-limited) are outweighed by
3909 * their complexity. On systems without swap this code should be
3910 * effectively equivalent, but much lighter weight.
3913 static struct file_system_type shmem_fs_type
= {
3915 .mount
= ramfs_mount
,
3916 .kill_sb
= kill_litter_super
,
3917 .fs_flags
= FS_USERNS_MOUNT
,
3920 int __init
shmem_init(void)
3922 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
3924 shm_mnt
= kern_mount(&shmem_fs_type
);
3925 BUG_ON(IS_ERR(shm_mnt
));
3930 int shmem_unuse(unsigned int type
, bool frontswap
,
3931 unsigned long *fs_pages_to_unuse
)
3936 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
3941 void shmem_unlock_mapping(struct address_space
*mapping
)
3946 unsigned long shmem_get_unmapped_area(struct file
*file
,
3947 unsigned long addr
, unsigned long len
,
3948 unsigned long pgoff
, unsigned long flags
)
3950 return current
->mm
->get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
3954 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
3956 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
3958 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
3960 #define shmem_vm_ops generic_file_vm_ops
3961 #define shmem_file_operations ramfs_file_operations
3962 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3963 #define shmem_acct_size(flags, size) 0
3964 #define shmem_unacct_size(flags, size) do {} while (0)
3966 #endif /* CONFIG_SHMEM */
3970 static struct file
*__shmem_file_setup(struct vfsmount
*mnt
, const char *name
, loff_t size
,
3971 unsigned long flags
, unsigned int i_flags
)
3973 struct inode
*inode
;
3977 return ERR_CAST(mnt
);
3979 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
3980 return ERR_PTR(-EINVAL
);
3982 if (shmem_acct_size(flags
, size
))
3983 return ERR_PTR(-ENOMEM
);
3985 inode
= shmem_get_inode(mnt
->mnt_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0,
3987 if (unlikely(!inode
)) {
3988 shmem_unacct_size(flags
, size
);
3989 return ERR_PTR(-ENOSPC
);
3991 inode
->i_flags
|= i_flags
;
3992 inode
->i_size
= size
;
3993 clear_nlink(inode
); /* It is unlinked */
3994 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
3996 res
= alloc_file_pseudo(inode
, mnt
, name
, O_RDWR
,
3997 &shmem_file_operations
);
4004 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4005 * kernel internal. There will be NO LSM permission checks against the
4006 * underlying inode. So users of this interface must do LSM checks at a
4007 * higher layer. The users are the big_key and shm implementations. LSM
4008 * checks are provided at the key or shm level rather than the inode.
4009 * @name: name for dentry (to be seen in /proc/<pid>/maps
4010 * @size: size to be set for the file
4011 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4013 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4015 return __shmem_file_setup(shm_mnt
, name
, size
, flags
, S_PRIVATE
);
4019 * shmem_file_setup - get an unlinked file living in tmpfs
4020 * @name: name for dentry (to be seen in /proc/<pid>/maps
4021 * @size: size to be set for the file
4022 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4024 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4026 return __shmem_file_setup(shm_mnt
, name
, size
, flags
, 0);
4028 EXPORT_SYMBOL_GPL(shmem_file_setup
);
4031 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4032 * @mnt: the tmpfs mount where the file will be created
4033 * @name: name for dentry (to be seen in /proc/<pid>/maps
4034 * @size: size to be set for the file
4035 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4037 struct file
*shmem_file_setup_with_mnt(struct vfsmount
*mnt
, const char *name
,
4038 loff_t size
, unsigned long flags
)
4040 return __shmem_file_setup(mnt
, name
, size
, flags
, 0);
4042 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt
);
4045 * shmem_zero_setup - setup a shared anonymous mapping
4046 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4048 int shmem_zero_setup(struct vm_area_struct
*vma
)
4051 loff_t size
= vma
->vm_end
- vma
->vm_start
;
4054 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4055 * between XFS directory reading and selinux: since this file is only
4056 * accessible to the user through its mapping, use S_PRIVATE flag to
4057 * bypass file security, in the same way as shmem_kernel_file_setup().
4059 file
= shmem_kernel_file_setup("dev/zero", size
, vma
->vm_flags
);
4061 return PTR_ERR(file
);
4065 vma
->vm_file
= file
;
4066 vma
->vm_ops
= &shmem_vm_ops
;
4068 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
4069 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
4070 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
4071 khugepaged_enter(vma
, vma
->vm_flags
);
4078 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4079 * @mapping: the page's address_space
4080 * @index: the page index
4081 * @gfp: the page allocator flags to use if allocating
4083 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4084 * with any new page allocations done using the specified allocation flags.
4085 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4086 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4087 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4089 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4090 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4092 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
4093 pgoff_t index
, gfp_t gfp
)
4096 struct inode
*inode
= mapping
->host
;
4100 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
4101 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
,
4102 gfp
, NULL
, NULL
, NULL
);
4104 page
= ERR_PTR(error
);
4110 * The tiny !SHMEM case uses ramfs without swap
4112 return read_cache_page_gfp(mapping
, index
, gfp
);
4115 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);