2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "print-tree.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
52 #include "compression.h"
53 #include "tree-checker.h"
56 #include <asm/cpufeature.h>
59 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
60 BTRFS_HEADER_FLAG_RELOC |\
61 BTRFS_SUPER_FLAG_ERROR |\
62 BTRFS_SUPER_FLAG_SEEDING |\
63 BTRFS_SUPER_FLAG_METADUMP |\
64 BTRFS_SUPER_FLAG_METADUMP_V2)
66 static const struct extent_io_ops btree_extent_io_ops
;
67 static void end_workqueue_fn(struct btrfs_work
*work
);
68 static void free_fs_root(struct btrfs_root
*root
);
69 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
71 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
72 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
73 struct btrfs_root
*root
);
74 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
75 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
76 struct extent_io_tree
*dirty_pages
,
78 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
79 struct extent_io_tree
*pinned_extents
);
80 static int btrfs_cleanup_transaction(struct btrfs_root
*root
);
81 static void btrfs_error_commit_super(struct btrfs_root
*root
);
84 * btrfs_end_io_wq structs are used to do processing in task context when an IO
85 * is complete. This is used during reads to verify checksums, and it is used
86 * by writes to insert metadata for new file extents after IO is complete.
88 struct btrfs_end_io_wq
{
92 struct btrfs_fs_info
*info
;
94 enum btrfs_wq_endio_type metadata
;
95 struct list_head list
;
96 struct btrfs_work work
;
99 static struct kmem_cache
*btrfs_end_io_wq_cache
;
101 int __init
btrfs_end_io_wq_init(void)
103 btrfs_end_io_wq_cache
= kmem_cache_create("btrfs_end_io_wq",
104 sizeof(struct btrfs_end_io_wq
),
108 if (!btrfs_end_io_wq_cache
)
113 void btrfs_end_io_wq_exit(void)
115 kmem_cache_destroy(btrfs_end_io_wq_cache
);
119 * async submit bios are used to offload expensive checksumming
120 * onto the worker threads. They checksum file and metadata bios
121 * just before they are sent down the IO stack.
123 struct async_submit_bio
{
126 struct list_head list
;
127 extent_submit_bio_hook_t
*submit_bio_start
;
128 extent_submit_bio_hook_t
*submit_bio_done
;
130 unsigned long bio_flags
;
132 * bio_offset is optional, can be used if the pages in the bio
133 * can't tell us where in the file the bio should go
136 struct btrfs_work work
;
141 * Lockdep class keys for extent_buffer->lock's in this root. For a given
142 * eb, the lockdep key is determined by the btrfs_root it belongs to and
143 * the level the eb occupies in the tree.
145 * Different roots are used for different purposes and may nest inside each
146 * other and they require separate keysets. As lockdep keys should be
147 * static, assign keysets according to the purpose of the root as indicated
148 * by btrfs_root->objectid. This ensures that all special purpose roots
149 * have separate keysets.
151 * Lock-nesting across peer nodes is always done with the immediate parent
152 * node locked thus preventing deadlock. As lockdep doesn't know this, use
153 * subclass to avoid triggering lockdep warning in such cases.
155 * The key is set by the readpage_end_io_hook after the buffer has passed
156 * csum validation but before the pages are unlocked. It is also set by
157 * btrfs_init_new_buffer on freshly allocated blocks.
159 * We also add a check to make sure the highest level of the tree is the
160 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
161 * needs update as well.
163 #ifdef CONFIG_DEBUG_LOCK_ALLOC
164 # if BTRFS_MAX_LEVEL != 8
168 static struct btrfs_lockdep_keyset
{
169 u64 id
; /* root objectid */
170 const char *name_stem
; /* lock name stem */
171 char names
[BTRFS_MAX_LEVEL
+ 1][20];
172 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
173 } btrfs_lockdep_keysets
[] = {
174 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
175 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
176 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
177 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
178 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
179 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
180 { .id
= BTRFS_QUOTA_TREE_OBJECTID
, .name_stem
= "quota" },
181 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
182 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
183 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
184 { .id
= BTRFS_UUID_TREE_OBJECTID
, .name_stem
= "uuid" },
185 { .id
= BTRFS_FREE_SPACE_TREE_OBJECTID
, .name_stem
= "free-space" },
186 { .id
= 0, .name_stem
= "tree" },
189 void __init
btrfs_init_lockdep(void)
193 /* initialize lockdep class names */
194 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
195 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
197 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
198 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
199 "btrfs-%s-%02d", ks
->name_stem
, j
);
203 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
206 struct btrfs_lockdep_keyset
*ks
;
208 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
210 /* find the matching keyset, id 0 is the default entry */
211 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
212 if (ks
->id
== objectid
)
215 lockdep_set_class_and_name(&eb
->lock
,
216 &ks
->keys
[level
], ks
->names
[level
]);
222 * extents on the btree inode are pretty simple, there's one extent
223 * that covers the entire device
225 static struct extent_map
*btree_get_extent(struct inode
*inode
,
226 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
229 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
230 struct extent_map
*em
;
233 read_lock(&em_tree
->lock
);
234 em
= lookup_extent_mapping(em_tree
, start
, len
);
237 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
238 read_unlock(&em_tree
->lock
);
241 read_unlock(&em_tree
->lock
);
243 em
= alloc_extent_map();
245 em
= ERR_PTR(-ENOMEM
);
250 em
->block_len
= (u64
)-1;
252 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
254 write_lock(&em_tree
->lock
);
255 ret
= add_extent_mapping(em_tree
, em
, 0);
256 if (ret
== -EEXIST
) {
258 em
= lookup_extent_mapping(em_tree
, start
, len
);
265 write_unlock(&em_tree
->lock
);
271 u32
btrfs_csum_data(char *data
, u32 seed
, size_t len
)
273 return btrfs_crc32c(seed
, data
, len
);
276 void btrfs_csum_final(u32 crc
, char *result
)
278 put_unaligned_le32(~crc
, result
);
282 * compute the csum for a btree block, and either verify it or write it
283 * into the csum field of the block.
285 static int csum_tree_block(struct btrfs_fs_info
*fs_info
,
286 struct extent_buffer
*buf
,
289 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
292 unsigned long cur_len
;
293 unsigned long offset
= BTRFS_CSUM_SIZE
;
295 unsigned long map_start
;
296 unsigned long map_len
;
299 unsigned long inline_result
;
301 len
= buf
->len
- offset
;
303 err
= map_private_extent_buffer(buf
, offset
, 32,
304 &kaddr
, &map_start
, &map_len
);
307 cur_len
= min(len
, map_len
- (offset
- map_start
));
308 crc
= btrfs_csum_data(kaddr
+ offset
- map_start
,
313 if (csum_size
> sizeof(inline_result
)) {
314 result
= kzalloc(csum_size
, GFP_NOFS
);
318 result
= (char *)&inline_result
;
321 btrfs_csum_final(crc
, result
);
324 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
327 memcpy(&found
, result
, csum_size
);
329 read_extent_buffer(buf
, &val
, 0, csum_size
);
330 btrfs_warn_rl(fs_info
,
331 "%s checksum verify failed on %llu wanted %X found %X level %d",
332 fs_info
->sb
->s_id
, buf
->start
,
333 val
, found
, btrfs_header_level(buf
));
334 if (result
!= (char *)&inline_result
)
339 write_extent_buffer(buf
, result
, 0, csum_size
);
341 if (result
!= (char *)&inline_result
)
347 * we can't consider a given block up to date unless the transid of the
348 * block matches the transid in the parent node's pointer. This is how we
349 * detect blocks that either didn't get written at all or got written
350 * in the wrong place.
352 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
353 struct extent_buffer
*eb
, u64 parent_transid
,
356 struct extent_state
*cached_state
= NULL
;
358 bool need_lock
= (current
->journal_info
== BTRFS_SEND_TRANS_STUB
);
360 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
367 btrfs_tree_read_lock(eb
);
368 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
371 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
373 if (extent_buffer_uptodate(eb
) &&
374 btrfs_header_generation(eb
) == parent_transid
) {
378 btrfs_err_rl(eb
->fs_info
,
379 "parent transid verify failed on %llu wanted %llu found %llu",
381 parent_transid
, btrfs_header_generation(eb
));
385 * Things reading via commit roots that don't have normal protection,
386 * like send, can have a really old block in cache that may point at a
387 * block that has been freed and re-allocated. So don't clear uptodate
388 * if we find an eb that is under IO (dirty/writeback) because we could
389 * end up reading in the stale data and then writing it back out and
390 * making everybody very sad.
392 if (!extent_buffer_under_io(eb
))
393 clear_extent_buffer_uptodate(eb
);
395 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
396 &cached_state
, GFP_NOFS
);
398 btrfs_tree_read_unlock_blocking(eb
);
403 * Return 0 if the superblock checksum type matches the checksum value of that
404 * algorithm. Pass the raw disk superblock data.
406 static int btrfs_check_super_csum(struct btrfs_fs_info
*fs_info
,
409 struct btrfs_super_block
*disk_sb
=
410 (struct btrfs_super_block
*)raw_disk_sb
;
411 u16 csum_type
= btrfs_super_csum_type(disk_sb
);
414 if (csum_type
== BTRFS_CSUM_TYPE_CRC32
) {
416 const int csum_size
= sizeof(crc
);
417 char result
[csum_size
];
420 * The super_block structure does not span the whole
421 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
422 * is filled with zeros and is included in the checksum.
424 crc
= btrfs_csum_data(raw_disk_sb
+ BTRFS_CSUM_SIZE
,
425 crc
, BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
426 btrfs_csum_final(crc
, result
);
428 if (memcmp(raw_disk_sb
, result
, csum_size
))
432 if (csum_type
>= ARRAY_SIZE(btrfs_csum_sizes
)) {
433 btrfs_err(fs_info
, "unsupported checksum algorithm %u",
442 * helper to read a given tree block, doing retries as required when
443 * the checksums don't match and we have alternate mirrors to try.
445 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
446 struct extent_buffer
*eb
,
449 struct extent_io_tree
*io_tree
;
454 int failed_mirror
= 0;
456 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
458 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
459 ret
= read_extent_buffer_pages(io_tree
, eb
, WAIT_COMPLETE
,
460 btree_get_extent
, mirror_num
);
462 if (!verify_parent_transid(io_tree
, eb
,
469 num_copies
= btrfs_num_copies(root
->fs_info
,
474 if (!failed_mirror
) {
476 failed_mirror
= eb
->read_mirror
;
480 if (mirror_num
== failed_mirror
)
483 if (mirror_num
> num_copies
)
487 if (failed
&& !ret
&& failed_mirror
)
488 repair_eb_io_failure(root
, eb
, failed_mirror
);
494 * checksum a dirty tree block before IO. This has extra checks to make sure
495 * we only fill in the checksum field in the first page of a multi-page block
498 static int csum_dirty_buffer(struct btrfs_fs_info
*fs_info
, struct page
*page
)
500 u64 start
= page_offset(page
);
502 struct extent_buffer
*eb
;
504 eb
= (struct extent_buffer
*)page
->private;
505 if (page
!= eb
->pages
[0])
508 found_start
= btrfs_header_bytenr(eb
);
510 * Please do not consolidate these warnings into a single if.
511 * It is useful to know what went wrong.
513 if (WARN_ON(found_start
!= start
))
515 if (WARN_ON(!PageUptodate(page
)))
518 ASSERT(memcmp_extent_buffer(eb
, fs_info
->fsid
,
519 btrfs_header_fsid(), BTRFS_FSID_SIZE
) == 0);
521 return csum_tree_block(fs_info
, eb
, 0);
524 static int check_tree_block_fsid(struct btrfs_fs_info
*fs_info
,
525 struct extent_buffer
*eb
)
527 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
528 u8 fsid
[BTRFS_UUID_SIZE
];
531 read_extent_buffer(eb
, fsid
, btrfs_header_fsid(), BTRFS_FSID_SIZE
);
533 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
537 fs_devices
= fs_devices
->seed
;
542 static int btree_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
543 u64 phy_offset
, struct page
*page
,
544 u64 start
, u64 end
, int mirror
)
548 struct extent_buffer
*eb
;
549 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
550 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
557 eb
= (struct extent_buffer
*)page
->private;
559 /* the pending IO might have been the only thing that kept this buffer
560 * in memory. Make sure we have a ref for all this other checks
562 extent_buffer_get(eb
);
564 reads_done
= atomic_dec_and_test(&eb
->io_pages
);
568 eb
->read_mirror
= mirror
;
569 if (test_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
)) {
574 found_start
= btrfs_header_bytenr(eb
);
575 if (found_start
!= eb
->start
) {
576 btrfs_err_rl(fs_info
, "bad tree block start %llu %llu",
577 found_start
, eb
->start
);
581 if (check_tree_block_fsid(fs_info
, eb
)) {
582 btrfs_err_rl(fs_info
, "bad fsid on block %llu",
587 found_level
= btrfs_header_level(eb
);
588 if (found_level
>= BTRFS_MAX_LEVEL
) {
589 btrfs_err(fs_info
, "bad tree block level %d",
590 (int)btrfs_header_level(eb
));
595 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
598 ret
= csum_tree_block(fs_info
, eb
, 1);
603 * If this is a leaf block and it is corrupt, set the corrupt bit so
604 * that we don't try and read the other copies of this block, just
607 if (found_level
== 0 && btrfs_check_leaf_full(root
, eb
)) {
608 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
612 if (found_level
> 0 && btrfs_check_node(root
, eb
))
616 set_extent_buffer_uptodate(eb
);
619 test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
620 btree_readahead_hook(fs_info
, eb
, eb
->start
, ret
);
624 * our io error hook is going to dec the io pages
625 * again, we have to make sure it has something
628 atomic_inc(&eb
->io_pages
);
629 clear_extent_buffer_uptodate(eb
);
631 free_extent_buffer(eb
);
636 static int btree_io_failed_hook(struct page
*page
, int failed_mirror
)
638 struct extent_buffer
*eb
;
640 eb
= (struct extent_buffer
*)page
->private;
641 set_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
642 eb
->read_mirror
= failed_mirror
;
643 atomic_dec(&eb
->io_pages
);
644 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
645 btree_readahead_hook(eb
->fs_info
, eb
, eb
->start
, -EIO
);
646 return -EIO
; /* we fixed nothing */
649 static void end_workqueue_bio(struct bio
*bio
)
651 struct btrfs_end_io_wq
*end_io_wq
= bio
->bi_private
;
652 struct btrfs_fs_info
*fs_info
;
653 struct btrfs_workqueue
*wq
;
654 btrfs_work_func_t func
;
656 fs_info
= end_io_wq
->info
;
657 end_io_wq
->error
= bio
->bi_error
;
659 if (bio_op(bio
) == REQ_OP_WRITE
) {
660 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_METADATA
) {
661 wq
= fs_info
->endio_meta_write_workers
;
662 func
= btrfs_endio_meta_write_helper
;
663 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_FREE_SPACE
) {
664 wq
= fs_info
->endio_freespace_worker
;
665 func
= btrfs_freespace_write_helper
;
666 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
667 wq
= fs_info
->endio_raid56_workers
;
668 func
= btrfs_endio_raid56_helper
;
670 wq
= fs_info
->endio_write_workers
;
671 func
= btrfs_endio_write_helper
;
674 if (unlikely(end_io_wq
->metadata
==
675 BTRFS_WQ_ENDIO_DIO_REPAIR
)) {
676 wq
= fs_info
->endio_repair_workers
;
677 func
= btrfs_endio_repair_helper
;
678 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
679 wq
= fs_info
->endio_raid56_workers
;
680 func
= btrfs_endio_raid56_helper
;
681 } else if (end_io_wq
->metadata
) {
682 wq
= fs_info
->endio_meta_workers
;
683 func
= btrfs_endio_meta_helper
;
685 wq
= fs_info
->endio_workers
;
686 func
= btrfs_endio_helper
;
690 btrfs_init_work(&end_io_wq
->work
, func
, end_workqueue_fn
, NULL
, NULL
);
691 btrfs_queue_work(wq
, &end_io_wq
->work
);
694 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
695 enum btrfs_wq_endio_type metadata
)
697 struct btrfs_end_io_wq
*end_io_wq
;
699 end_io_wq
= kmem_cache_alloc(btrfs_end_io_wq_cache
, GFP_NOFS
);
703 end_io_wq
->private = bio
->bi_private
;
704 end_io_wq
->end_io
= bio
->bi_end_io
;
705 end_io_wq
->info
= info
;
706 end_io_wq
->error
= 0;
707 end_io_wq
->bio
= bio
;
708 end_io_wq
->metadata
= metadata
;
710 bio
->bi_private
= end_io_wq
;
711 bio
->bi_end_io
= end_workqueue_bio
;
715 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
717 unsigned long limit
= min_t(unsigned long,
718 info
->thread_pool_size
,
719 info
->fs_devices
->open_devices
);
723 static void run_one_async_start(struct btrfs_work
*work
)
725 struct async_submit_bio
*async
;
728 async
= container_of(work
, struct async_submit_bio
, work
);
729 ret
= async
->submit_bio_start(async
->inode
, async
->bio
,
730 async
->mirror_num
, async
->bio_flags
,
736 static void run_one_async_done(struct btrfs_work
*work
)
738 struct btrfs_fs_info
*fs_info
;
739 struct async_submit_bio
*async
;
742 async
= container_of(work
, struct async_submit_bio
, work
);
743 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
745 limit
= btrfs_async_submit_limit(fs_info
);
746 limit
= limit
* 2 / 3;
749 * atomic_dec_return implies a barrier for waitqueue_active
751 if (atomic_dec_return(&fs_info
->nr_async_submits
) < limit
&&
752 waitqueue_active(&fs_info
->async_submit_wait
))
753 wake_up(&fs_info
->async_submit_wait
);
755 /* If an error occurred we just want to clean up the bio and move on */
757 async
->bio
->bi_error
= async
->error
;
758 bio_endio(async
->bio
);
762 async
->submit_bio_done(async
->inode
, async
->bio
, async
->mirror_num
,
763 async
->bio_flags
, async
->bio_offset
);
766 static void run_one_async_free(struct btrfs_work
*work
)
768 struct async_submit_bio
*async
;
770 async
= container_of(work
, struct async_submit_bio
, work
);
774 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
775 struct bio
*bio
, int mirror_num
,
776 unsigned long bio_flags
,
778 extent_submit_bio_hook_t
*submit_bio_start
,
779 extent_submit_bio_hook_t
*submit_bio_done
)
781 struct async_submit_bio
*async
;
783 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
787 async
->inode
= inode
;
789 async
->mirror_num
= mirror_num
;
790 async
->submit_bio_start
= submit_bio_start
;
791 async
->submit_bio_done
= submit_bio_done
;
793 btrfs_init_work(&async
->work
, btrfs_worker_helper
, run_one_async_start
,
794 run_one_async_done
, run_one_async_free
);
796 async
->bio_flags
= bio_flags
;
797 async
->bio_offset
= bio_offset
;
801 atomic_inc(&fs_info
->nr_async_submits
);
803 if (bio
->bi_opf
& REQ_SYNC
)
804 btrfs_set_work_high_priority(&async
->work
);
806 btrfs_queue_work(fs_info
->workers
, &async
->work
);
808 while (atomic_read(&fs_info
->async_submit_draining
) &&
809 atomic_read(&fs_info
->nr_async_submits
)) {
810 wait_event(fs_info
->async_submit_wait
,
811 (atomic_read(&fs_info
->nr_async_submits
) == 0));
817 static int btree_csum_one_bio(struct bio
*bio
)
819 struct bio_vec
*bvec
;
820 struct btrfs_root
*root
;
823 bio_for_each_segment_all(bvec
, bio
, i
) {
824 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
825 ret
= csum_dirty_buffer(root
->fs_info
, bvec
->bv_page
);
833 static int __btree_submit_bio_start(struct inode
*inode
, struct bio
*bio
,
834 int mirror_num
, unsigned long bio_flags
,
838 * when we're called for a write, we're already in the async
839 * submission context. Just jump into btrfs_map_bio
841 return btree_csum_one_bio(bio
);
844 static int __btree_submit_bio_done(struct inode
*inode
, struct bio
*bio
,
845 int mirror_num
, unsigned long bio_flags
,
851 * when we're called for a write, we're already in the async
852 * submission context. Just jump into btrfs_map_bio
854 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, bio
, mirror_num
, 1);
862 static int check_async_write(struct inode
*inode
, unsigned long bio_flags
)
864 if (bio_flags
& EXTENT_BIO_TREE_LOG
)
867 if (static_cpu_has(X86_FEATURE_XMM4_2
))
873 static int btree_submit_bio_hook(struct inode
*inode
, struct bio
*bio
,
874 int mirror_num
, unsigned long bio_flags
,
877 int async
= check_async_write(inode
, bio_flags
);
880 if (bio_op(bio
) != REQ_OP_WRITE
) {
882 * called for a read, do the setup so that checksum validation
883 * can happen in the async kernel threads
885 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
886 bio
, BTRFS_WQ_ENDIO_METADATA
);
889 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, bio
, mirror_num
, 0);
891 ret
= btree_csum_one_bio(bio
);
894 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, bio
, mirror_num
, 0);
897 * kthread helpers are used to submit writes so that
898 * checksumming can happen in parallel across all CPUs
900 ret
= btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
901 inode
, bio
, mirror_num
, 0,
903 __btree_submit_bio_start
,
904 __btree_submit_bio_done
);
917 #ifdef CONFIG_MIGRATION
918 static int btree_migratepage(struct address_space
*mapping
,
919 struct page
*newpage
, struct page
*page
,
920 enum migrate_mode mode
)
923 * we can't safely write a btree page from here,
924 * we haven't done the locking hook
929 * Buffers may be managed in a filesystem specific way.
930 * We must have no buffers or drop them.
932 if (page_has_private(page
) &&
933 !try_to_release_page(page
, GFP_KERNEL
))
935 return migrate_page(mapping
, newpage
, page
, mode
);
940 static int btree_writepages(struct address_space
*mapping
,
941 struct writeback_control
*wbc
)
943 struct btrfs_fs_info
*fs_info
;
946 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
948 if (wbc
->for_kupdate
)
951 fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
952 /* this is a bit racy, but that's ok */
953 ret
= __percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
954 BTRFS_DIRTY_METADATA_THRESH
,
955 fs_info
->dirty_metadata_batch
);
959 return btree_write_cache_pages(mapping
, wbc
);
962 static int btree_readpage(struct file
*file
, struct page
*page
)
964 struct extent_io_tree
*tree
;
965 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
966 return extent_read_full_page(tree
, page
, btree_get_extent
, 0);
969 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
971 if (PageWriteback(page
) || PageDirty(page
))
974 return try_release_extent_buffer(page
);
977 static void btree_invalidatepage(struct page
*page
, unsigned int offset
,
980 struct extent_io_tree
*tree
;
981 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
982 extent_invalidatepage(tree
, page
, offset
);
983 btree_releasepage(page
, GFP_NOFS
);
984 if (PagePrivate(page
)) {
985 btrfs_warn(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
986 "page private not zero on page %llu",
987 (unsigned long long)page_offset(page
));
988 ClearPagePrivate(page
);
989 set_page_private(page
, 0);
994 static int btree_set_page_dirty(struct page
*page
)
997 struct extent_buffer
*eb
;
999 BUG_ON(!PagePrivate(page
));
1000 eb
= (struct extent_buffer
*)page
->private;
1002 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
1003 BUG_ON(!atomic_read(&eb
->refs
));
1004 btrfs_assert_tree_locked(eb
);
1006 return __set_page_dirty_nobuffers(page
);
1009 static const struct address_space_operations btree_aops
= {
1010 .readpage
= btree_readpage
,
1011 .writepages
= btree_writepages
,
1012 .releasepage
= btree_releasepage
,
1013 .invalidatepage
= btree_invalidatepage
,
1014 #ifdef CONFIG_MIGRATION
1015 .migratepage
= btree_migratepage
,
1017 .set_page_dirty
= btree_set_page_dirty
,
1020 void readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
)
1022 struct extent_buffer
*buf
= NULL
;
1023 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1025 buf
= btrfs_find_create_tree_block(root
, bytenr
);
1028 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
1029 buf
, WAIT_NONE
, btree_get_extent
, 0);
1030 free_extent_buffer(buf
);
1033 int reada_tree_block_flagged(struct btrfs_root
*root
, u64 bytenr
,
1034 int mirror_num
, struct extent_buffer
**eb
)
1036 struct extent_buffer
*buf
= NULL
;
1037 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1038 struct extent_io_tree
*io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
1041 buf
= btrfs_find_create_tree_block(root
, bytenr
);
1045 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
1047 ret
= read_extent_buffer_pages(io_tree
, buf
, WAIT_PAGE_LOCK
,
1048 btree_get_extent
, mirror_num
);
1050 free_extent_buffer(buf
);
1054 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
1055 free_extent_buffer(buf
);
1057 } else if (extent_buffer_uptodate(buf
)) {
1060 free_extent_buffer(buf
);
1065 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_fs_info
*fs_info
,
1068 return find_extent_buffer(fs_info
, bytenr
);
1071 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
1074 if (btrfs_is_testing(root
->fs_info
))
1075 return alloc_test_extent_buffer(root
->fs_info
, bytenr
,
1077 return alloc_extent_buffer(root
->fs_info
, bytenr
);
1081 int btrfs_write_tree_block(struct extent_buffer
*buf
)
1083 return filemap_fdatawrite_range(buf
->pages
[0]->mapping
, buf
->start
,
1084 buf
->start
+ buf
->len
- 1);
1087 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
1089 return filemap_fdatawait_range(buf
->pages
[0]->mapping
,
1090 buf
->start
, buf
->start
+ buf
->len
- 1);
1093 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
1096 struct extent_buffer
*buf
= NULL
;
1099 buf
= btrfs_find_create_tree_block(root
, bytenr
);
1103 ret
= btree_read_extent_buffer_pages(root
, buf
, parent_transid
);
1105 free_extent_buffer(buf
);
1106 return ERR_PTR(ret
);
1112 void clean_tree_block(struct btrfs_trans_handle
*trans
,
1113 struct btrfs_fs_info
*fs_info
,
1114 struct extent_buffer
*buf
)
1116 if (btrfs_header_generation(buf
) ==
1117 fs_info
->running_transaction
->transid
) {
1118 btrfs_assert_tree_locked(buf
);
1120 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1121 __percpu_counter_add(&fs_info
->dirty_metadata_bytes
,
1123 fs_info
->dirty_metadata_batch
);
1124 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1125 btrfs_set_lock_blocking(buf
);
1126 clear_extent_buffer_dirty(buf
);
1131 static struct btrfs_subvolume_writers
*btrfs_alloc_subvolume_writers(void)
1133 struct btrfs_subvolume_writers
*writers
;
1136 writers
= kmalloc(sizeof(*writers
), GFP_NOFS
);
1138 return ERR_PTR(-ENOMEM
);
1140 ret
= percpu_counter_init(&writers
->counter
, 0, GFP_NOFS
);
1143 return ERR_PTR(ret
);
1146 init_waitqueue_head(&writers
->wait
);
1151 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers
*writers
)
1153 percpu_counter_destroy(&writers
->counter
);
1157 static void __setup_root(u32 nodesize
, u32 sectorsize
, u32 stripesize
,
1158 struct btrfs_root
*root
, struct btrfs_fs_info
*fs_info
,
1161 bool dummy
= test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO
, &fs_info
->fs_state
);
1163 root
->commit_root
= NULL
;
1164 root
->sectorsize
= sectorsize
;
1165 root
->nodesize
= nodesize
;
1166 root
->stripesize
= stripesize
;
1168 root
->orphan_cleanup_state
= 0;
1170 root
->objectid
= objectid
;
1171 root
->last_trans
= 0;
1172 root
->highest_objectid
= 0;
1173 root
->nr_delalloc_inodes
= 0;
1174 root
->nr_ordered_extents
= 0;
1176 root
->inode_tree
= RB_ROOT
;
1177 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1178 root
->block_rsv
= NULL
;
1179 root
->orphan_block_rsv
= NULL
;
1181 INIT_LIST_HEAD(&root
->dirty_list
);
1182 INIT_LIST_HEAD(&root
->root_list
);
1183 INIT_LIST_HEAD(&root
->delalloc_inodes
);
1184 INIT_LIST_HEAD(&root
->delalloc_root
);
1185 INIT_LIST_HEAD(&root
->ordered_extents
);
1186 INIT_LIST_HEAD(&root
->ordered_root
);
1187 INIT_LIST_HEAD(&root
->logged_list
[0]);
1188 INIT_LIST_HEAD(&root
->logged_list
[1]);
1189 spin_lock_init(&root
->orphan_lock
);
1190 spin_lock_init(&root
->inode_lock
);
1191 spin_lock_init(&root
->delalloc_lock
);
1192 spin_lock_init(&root
->ordered_extent_lock
);
1193 spin_lock_init(&root
->accounting_lock
);
1194 spin_lock_init(&root
->log_extents_lock
[0]);
1195 spin_lock_init(&root
->log_extents_lock
[1]);
1196 mutex_init(&root
->objectid_mutex
);
1197 mutex_init(&root
->log_mutex
);
1198 mutex_init(&root
->ordered_extent_mutex
);
1199 mutex_init(&root
->delalloc_mutex
);
1200 init_waitqueue_head(&root
->log_writer_wait
);
1201 init_waitqueue_head(&root
->log_commit_wait
[0]);
1202 init_waitqueue_head(&root
->log_commit_wait
[1]);
1203 INIT_LIST_HEAD(&root
->log_ctxs
[0]);
1204 INIT_LIST_HEAD(&root
->log_ctxs
[1]);
1205 atomic_set(&root
->log_commit
[0], 0);
1206 atomic_set(&root
->log_commit
[1], 0);
1207 atomic_set(&root
->log_writers
, 0);
1208 atomic_set(&root
->log_batch
, 0);
1209 atomic_set(&root
->orphan_inodes
, 0);
1210 atomic_set(&root
->refs
, 1);
1211 atomic_set(&root
->will_be_snapshoted
, 0);
1212 atomic_set(&root
->qgroup_meta_rsv
, 0);
1213 root
->log_transid
= 0;
1214 root
->log_transid_committed
= -1;
1215 root
->last_log_commit
= 0;
1217 extent_io_tree_init(&root
->dirty_log_pages
,
1218 fs_info
->btree_inode
->i_mapping
);
1220 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1221 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1222 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1224 root
->defrag_trans_start
= fs_info
->generation
;
1226 root
->defrag_trans_start
= 0;
1227 root
->root_key
.objectid
= objectid
;
1230 spin_lock_init(&root
->root_item_lock
);
1233 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
,
1236 struct btrfs_root
*root
= kzalloc(sizeof(*root
), flags
);
1238 root
->fs_info
= fs_info
;
1242 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1243 /* Should only be used by the testing infrastructure */
1244 struct btrfs_root
*btrfs_alloc_dummy_root(struct btrfs_fs_info
*fs_info
,
1245 u32 sectorsize
, u32 nodesize
)
1247 struct btrfs_root
*root
;
1250 return ERR_PTR(-EINVAL
);
1252 root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
1254 return ERR_PTR(-ENOMEM
);
1255 /* We don't use the stripesize in selftest, set it as sectorsize */
1256 __setup_root(nodesize
, sectorsize
, sectorsize
, root
, fs_info
,
1257 BTRFS_ROOT_TREE_OBJECTID
);
1258 root
->alloc_bytenr
= 0;
1264 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
1265 struct btrfs_fs_info
*fs_info
,
1268 struct extent_buffer
*leaf
;
1269 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1270 struct btrfs_root
*root
;
1271 struct btrfs_key key
;
1275 root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
1277 return ERR_PTR(-ENOMEM
);
1279 __setup_root(tree_root
->nodesize
, tree_root
->sectorsize
,
1280 tree_root
->stripesize
, root
, fs_info
, objectid
);
1281 root
->root_key
.objectid
= objectid
;
1282 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1283 root
->root_key
.offset
= 0;
1285 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
1287 ret
= PTR_ERR(leaf
);
1292 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1293 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1294 btrfs_set_header_generation(leaf
, trans
->transid
);
1295 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1296 btrfs_set_header_owner(leaf
, objectid
);
1299 write_extent_buffer(leaf
, fs_info
->fsid
, btrfs_header_fsid(),
1301 write_extent_buffer(leaf
, fs_info
->chunk_tree_uuid
,
1302 btrfs_header_chunk_tree_uuid(leaf
),
1304 btrfs_mark_buffer_dirty(leaf
);
1306 root
->commit_root
= btrfs_root_node(root
);
1307 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
1309 root
->root_item
.flags
= 0;
1310 root
->root_item
.byte_limit
= 0;
1311 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
1312 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
1313 btrfs_set_root_level(&root
->root_item
, 0);
1314 btrfs_set_root_refs(&root
->root_item
, 1);
1315 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
1316 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
1317 btrfs_set_root_dirid(&root
->root_item
, 0);
1319 memcpy(root
->root_item
.uuid
, uuid
.b
, BTRFS_UUID_SIZE
);
1320 root
->root_item
.drop_level
= 0;
1322 key
.objectid
= objectid
;
1323 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1325 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
1329 btrfs_tree_unlock(leaf
);
1335 btrfs_tree_unlock(leaf
);
1336 free_extent_buffer(root
->commit_root
);
1337 free_extent_buffer(leaf
);
1341 return ERR_PTR(ret
);
1344 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1345 struct btrfs_fs_info
*fs_info
)
1347 struct btrfs_root
*root
;
1348 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1349 struct extent_buffer
*leaf
;
1351 root
= btrfs_alloc_root(fs_info
, GFP_NOFS
);
1353 return ERR_PTR(-ENOMEM
);
1355 __setup_root(tree_root
->nodesize
, tree_root
->sectorsize
,
1356 tree_root
->stripesize
, root
, fs_info
,
1357 BTRFS_TREE_LOG_OBJECTID
);
1359 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1360 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1361 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1364 * DON'T set REF_COWS for log trees
1366 * log trees do not get reference counted because they go away
1367 * before a real commit is actually done. They do store pointers
1368 * to file data extents, and those reference counts still get
1369 * updated (along with back refs to the log tree).
1372 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, BTRFS_TREE_LOG_OBJECTID
,
1376 return ERR_CAST(leaf
);
1379 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1380 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1381 btrfs_set_header_generation(leaf
, trans
->transid
);
1382 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1383 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1386 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1387 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
1388 btrfs_mark_buffer_dirty(root
->node
);
1389 btrfs_tree_unlock(root
->node
);
1393 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1394 struct btrfs_fs_info
*fs_info
)
1396 struct btrfs_root
*log_root
;
1398 log_root
= alloc_log_tree(trans
, fs_info
);
1399 if (IS_ERR(log_root
))
1400 return PTR_ERR(log_root
);
1401 WARN_ON(fs_info
->log_root_tree
);
1402 fs_info
->log_root_tree
= log_root
;
1406 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1407 struct btrfs_root
*root
)
1409 struct btrfs_root
*log_root
;
1410 struct btrfs_inode_item
*inode_item
;
1412 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1413 if (IS_ERR(log_root
))
1414 return PTR_ERR(log_root
);
1416 log_root
->last_trans
= trans
->transid
;
1417 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1419 inode_item
= &log_root
->root_item
.inode
;
1420 btrfs_set_stack_inode_generation(inode_item
, 1);
1421 btrfs_set_stack_inode_size(inode_item
, 3);
1422 btrfs_set_stack_inode_nlink(inode_item
, 1);
1423 btrfs_set_stack_inode_nbytes(inode_item
, root
->nodesize
);
1424 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
1426 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1428 WARN_ON(root
->log_root
);
1429 root
->log_root
= log_root
;
1430 root
->log_transid
= 0;
1431 root
->log_transid_committed
= -1;
1432 root
->last_log_commit
= 0;
1436 static struct btrfs_root
*btrfs_read_tree_root(struct btrfs_root
*tree_root
,
1437 struct btrfs_key
*key
)
1439 struct btrfs_root
*root
;
1440 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1441 struct btrfs_path
*path
;
1445 path
= btrfs_alloc_path();
1447 return ERR_PTR(-ENOMEM
);
1449 root
= btrfs_alloc_root(fs_info
, GFP_NOFS
);
1455 __setup_root(tree_root
->nodesize
, tree_root
->sectorsize
,
1456 tree_root
->stripesize
, root
, fs_info
, key
->objectid
);
1458 ret
= btrfs_find_root(tree_root
, key
, path
,
1459 &root
->root_item
, &root
->root_key
);
1466 generation
= btrfs_root_generation(&root
->root_item
);
1467 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1469 if (IS_ERR(root
->node
)) {
1470 ret
= PTR_ERR(root
->node
);
1472 } else if (!btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1474 free_extent_buffer(root
->node
);
1477 root
->commit_root
= btrfs_root_node(root
);
1479 btrfs_free_path(path
);
1485 root
= ERR_PTR(ret
);
1489 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_root
*tree_root
,
1490 struct btrfs_key
*location
)
1492 struct btrfs_root
*root
;
1494 root
= btrfs_read_tree_root(tree_root
, location
);
1498 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1499 set_bit(BTRFS_ROOT_REF_COWS
, &root
->state
);
1500 btrfs_check_and_init_root_item(&root
->root_item
);
1506 int btrfs_init_fs_root(struct btrfs_root
*root
)
1509 struct btrfs_subvolume_writers
*writers
;
1511 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1512 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1514 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1519 writers
= btrfs_alloc_subvolume_writers();
1520 if (IS_ERR(writers
)) {
1521 ret
= PTR_ERR(writers
);
1524 root
->subv_writers
= writers
;
1526 btrfs_init_free_ino_ctl(root
);
1527 spin_lock_init(&root
->ino_cache_lock
);
1528 init_waitqueue_head(&root
->ino_cache_wait
);
1530 ret
= get_anon_bdev(&root
->anon_dev
);
1534 mutex_lock(&root
->objectid_mutex
);
1535 ret
= btrfs_find_highest_objectid(root
,
1536 &root
->highest_objectid
);
1538 mutex_unlock(&root
->objectid_mutex
);
1542 ASSERT(root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
1544 mutex_unlock(&root
->objectid_mutex
);
1548 /* the caller is responsible to call free_fs_root */
1552 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1555 struct btrfs_root
*root
;
1557 spin_lock(&fs_info
->fs_roots_radix_lock
);
1558 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1559 (unsigned long)root_id
);
1560 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1564 int btrfs_insert_fs_root(struct btrfs_fs_info
*fs_info
,
1565 struct btrfs_root
*root
)
1569 ret
= radix_tree_preload(GFP_NOFS
);
1573 spin_lock(&fs_info
->fs_roots_radix_lock
);
1574 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1575 (unsigned long)root
->root_key
.objectid
,
1578 set_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
);
1579 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1580 radix_tree_preload_end();
1585 struct btrfs_root
*btrfs_get_fs_root(struct btrfs_fs_info
*fs_info
,
1586 struct btrfs_key
*location
,
1589 struct btrfs_root
*root
;
1590 struct btrfs_path
*path
;
1591 struct btrfs_key key
;
1594 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1595 return fs_info
->tree_root
;
1596 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1597 return fs_info
->extent_root
;
1598 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1599 return fs_info
->chunk_root
;
1600 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1601 return fs_info
->dev_root
;
1602 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1603 return fs_info
->csum_root
;
1604 if (location
->objectid
== BTRFS_QUOTA_TREE_OBJECTID
)
1605 return fs_info
->quota_root
? fs_info
->quota_root
:
1607 if (location
->objectid
== BTRFS_UUID_TREE_OBJECTID
)
1608 return fs_info
->uuid_root
? fs_info
->uuid_root
:
1610 if (location
->objectid
== BTRFS_FREE_SPACE_TREE_OBJECTID
)
1611 return fs_info
->free_space_root
? fs_info
->free_space_root
:
1614 root
= btrfs_lookup_fs_root(fs_info
, location
->objectid
);
1616 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0)
1617 return ERR_PTR(-ENOENT
);
1621 root
= btrfs_read_fs_root(fs_info
->tree_root
, location
);
1625 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1630 ret
= btrfs_init_fs_root(root
);
1634 path
= btrfs_alloc_path();
1639 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1640 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1641 key
.offset
= location
->objectid
;
1643 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
1644 btrfs_free_path(path
);
1648 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
);
1650 ret
= btrfs_insert_fs_root(fs_info
, root
);
1652 if (ret
== -EEXIST
) {
1661 return ERR_PTR(ret
);
1664 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1666 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1668 struct btrfs_device
*device
;
1669 struct backing_dev_info
*bdi
;
1672 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1675 bdi
= blk_get_backing_dev_info(device
->bdev
);
1676 if (bdi_congested(bdi
, bdi_bits
)) {
1685 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1689 err
= bdi_setup_and_register(bdi
, "btrfs");
1693 bdi
->ra_pages
= VM_MAX_READAHEAD
* 1024 / PAGE_SIZE
;
1694 bdi
->congested_fn
= btrfs_congested_fn
;
1695 bdi
->congested_data
= info
;
1696 bdi
->capabilities
|= BDI_CAP_CGROUP_WRITEBACK
;
1701 * called by the kthread helper functions to finally call the bio end_io
1702 * functions. This is where read checksum verification actually happens
1704 static void end_workqueue_fn(struct btrfs_work
*work
)
1707 struct btrfs_end_io_wq
*end_io_wq
;
1709 end_io_wq
= container_of(work
, struct btrfs_end_io_wq
, work
);
1710 bio
= end_io_wq
->bio
;
1712 bio
->bi_error
= end_io_wq
->error
;
1713 bio
->bi_private
= end_io_wq
->private;
1714 bio
->bi_end_io
= end_io_wq
->end_io
;
1715 kmem_cache_free(btrfs_end_io_wq_cache
, end_io_wq
);
1719 static int cleaner_kthread(void *arg
)
1721 struct btrfs_root
*root
= arg
;
1723 struct btrfs_trans_handle
*trans
;
1728 /* Make the cleaner go to sleep early. */
1729 if (btrfs_need_cleaner_sleep(root
))
1733 * Do not do anything if we might cause open_ctree() to block
1734 * before we have finished mounting the filesystem.
1736 if (!test_bit(BTRFS_FS_OPEN
, &root
->fs_info
->flags
))
1739 if (!mutex_trylock(&root
->fs_info
->cleaner_mutex
))
1743 * Avoid the problem that we change the status of the fs
1744 * during the above check and trylock.
1746 if (btrfs_need_cleaner_sleep(root
)) {
1747 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1751 mutex_lock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
1752 btrfs_run_delayed_iputs(root
);
1753 mutex_unlock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
1755 again
= btrfs_clean_one_deleted_snapshot(root
);
1756 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1759 * The defragger has dealt with the R/O remount and umount,
1760 * needn't do anything special here.
1762 btrfs_run_defrag_inodes(root
->fs_info
);
1765 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1766 * with relocation (btrfs_relocate_chunk) and relocation
1767 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1768 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1769 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1770 * unused block groups.
1772 btrfs_delete_unused_bgs(root
->fs_info
);
1775 set_current_state(TASK_INTERRUPTIBLE
);
1776 if (!kthread_should_stop())
1778 __set_current_state(TASK_RUNNING
);
1780 } while (!kthread_should_stop());
1783 * Transaction kthread is stopped before us and wakes us up.
1784 * However we might have started a new transaction and COWed some
1785 * tree blocks when deleting unused block groups for example. So
1786 * make sure we commit the transaction we started to have a clean
1787 * shutdown when evicting the btree inode - if it has dirty pages
1788 * when we do the final iput() on it, eviction will trigger a
1789 * writeback for it which will fail with null pointer dereferences
1790 * since work queues and other resources were already released and
1791 * destroyed by the time the iput/eviction/writeback is made.
1793 trans
= btrfs_attach_transaction(root
);
1794 if (IS_ERR(trans
)) {
1795 if (PTR_ERR(trans
) != -ENOENT
)
1796 btrfs_err(root
->fs_info
,
1797 "cleaner transaction attach returned %ld",
1802 ret
= btrfs_commit_transaction(trans
, root
);
1804 btrfs_err(root
->fs_info
,
1805 "cleaner open transaction commit returned %d",
1812 static int transaction_kthread(void *arg
)
1814 struct btrfs_root
*root
= arg
;
1815 struct btrfs_trans_handle
*trans
;
1816 struct btrfs_transaction
*cur
;
1819 unsigned long delay
;
1823 cannot_commit
= false;
1824 delay
= HZ
* root
->fs_info
->commit_interval
;
1825 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1827 spin_lock(&root
->fs_info
->trans_lock
);
1828 cur
= root
->fs_info
->running_transaction
;
1830 spin_unlock(&root
->fs_info
->trans_lock
);
1834 now
= get_seconds();
1835 if (cur
->state
< TRANS_STATE_BLOCKED
&&
1836 (now
< cur
->start_time
||
1837 now
- cur
->start_time
< root
->fs_info
->commit_interval
)) {
1838 spin_unlock(&root
->fs_info
->trans_lock
);
1842 transid
= cur
->transid
;
1843 spin_unlock(&root
->fs_info
->trans_lock
);
1845 /* If the file system is aborted, this will always fail. */
1846 trans
= btrfs_attach_transaction(root
);
1847 if (IS_ERR(trans
)) {
1848 if (PTR_ERR(trans
) != -ENOENT
)
1849 cannot_commit
= true;
1852 if (transid
== trans
->transid
) {
1853 btrfs_commit_transaction(trans
, root
);
1855 btrfs_end_transaction(trans
, root
);
1858 wake_up_process(root
->fs_info
->cleaner_kthread
);
1859 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1861 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR
,
1862 &root
->fs_info
->fs_state
)))
1863 btrfs_cleanup_transaction(root
);
1864 set_current_state(TASK_INTERRUPTIBLE
);
1865 if (!kthread_should_stop() &&
1866 (!btrfs_transaction_blocked(root
->fs_info
) ||
1868 schedule_timeout(delay
);
1869 __set_current_state(TASK_RUNNING
);
1870 } while (!kthread_should_stop());
1875 * this will find the highest generation in the array of
1876 * root backups. The index of the highest array is returned,
1877 * or -1 if we can't find anything.
1879 * We check to make sure the array is valid by comparing the
1880 * generation of the latest root in the array with the generation
1881 * in the super block. If they don't match we pitch it.
1883 static int find_newest_super_backup(struct btrfs_fs_info
*info
, u64 newest_gen
)
1886 int newest_index
= -1;
1887 struct btrfs_root_backup
*root_backup
;
1890 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1891 root_backup
= info
->super_copy
->super_roots
+ i
;
1892 cur
= btrfs_backup_tree_root_gen(root_backup
);
1893 if (cur
== newest_gen
)
1897 /* check to see if we actually wrapped around */
1898 if (newest_index
== BTRFS_NUM_BACKUP_ROOTS
- 1) {
1899 root_backup
= info
->super_copy
->super_roots
;
1900 cur
= btrfs_backup_tree_root_gen(root_backup
);
1901 if (cur
== newest_gen
)
1904 return newest_index
;
1909 * find the oldest backup so we know where to store new entries
1910 * in the backup array. This will set the backup_root_index
1911 * field in the fs_info struct
1913 static void find_oldest_super_backup(struct btrfs_fs_info
*info
,
1916 int newest_index
= -1;
1918 newest_index
= find_newest_super_backup(info
, newest_gen
);
1919 /* if there was garbage in there, just move along */
1920 if (newest_index
== -1) {
1921 info
->backup_root_index
= 0;
1923 info
->backup_root_index
= (newest_index
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1928 * copy all the root pointers into the super backup array.
1929 * this will bump the backup pointer by one when it is
1932 static void backup_super_roots(struct btrfs_fs_info
*info
)
1935 struct btrfs_root_backup
*root_backup
;
1938 next_backup
= info
->backup_root_index
;
1939 last_backup
= (next_backup
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1940 BTRFS_NUM_BACKUP_ROOTS
;
1943 * just overwrite the last backup if we're at the same generation
1944 * this happens only at umount
1946 root_backup
= info
->super_for_commit
->super_roots
+ last_backup
;
1947 if (btrfs_backup_tree_root_gen(root_backup
) ==
1948 btrfs_header_generation(info
->tree_root
->node
))
1949 next_backup
= last_backup
;
1951 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
1954 * make sure all of our padding and empty slots get zero filled
1955 * regardless of which ones we use today
1957 memset(root_backup
, 0, sizeof(*root_backup
));
1959 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1961 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
1962 btrfs_set_backup_tree_root_gen(root_backup
,
1963 btrfs_header_generation(info
->tree_root
->node
));
1965 btrfs_set_backup_tree_root_level(root_backup
,
1966 btrfs_header_level(info
->tree_root
->node
));
1968 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
1969 btrfs_set_backup_chunk_root_gen(root_backup
,
1970 btrfs_header_generation(info
->chunk_root
->node
));
1971 btrfs_set_backup_chunk_root_level(root_backup
,
1972 btrfs_header_level(info
->chunk_root
->node
));
1974 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
1975 btrfs_set_backup_extent_root_gen(root_backup
,
1976 btrfs_header_generation(info
->extent_root
->node
));
1977 btrfs_set_backup_extent_root_level(root_backup
,
1978 btrfs_header_level(info
->extent_root
->node
));
1981 * we might commit during log recovery, which happens before we set
1982 * the fs_root. Make sure it is valid before we fill it in.
1984 if (info
->fs_root
&& info
->fs_root
->node
) {
1985 btrfs_set_backup_fs_root(root_backup
,
1986 info
->fs_root
->node
->start
);
1987 btrfs_set_backup_fs_root_gen(root_backup
,
1988 btrfs_header_generation(info
->fs_root
->node
));
1989 btrfs_set_backup_fs_root_level(root_backup
,
1990 btrfs_header_level(info
->fs_root
->node
));
1993 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
1994 btrfs_set_backup_dev_root_gen(root_backup
,
1995 btrfs_header_generation(info
->dev_root
->node
));
1996 btrfs_set_backup_dev_root_level(root_backup
,
1997 btrfs_header_level(info
->dev_root
->node
));
1999 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
2000 btrfs_set_backup_csum_root_gen(root_backup
,
2001 btrfs_header_generation(info
->csum_root
->node
));
2002 btrfs_set_backup_csum_root_level(root_backup
,
2003 btrfs_header_level(info
->csum_root
->node
));
2005 btrfs_set_backup_total_bytes(root_backup
,
2006 btrfs_super_total_bytes(info
->super_copy
));
2007 btrfs_set_backup_bytes_used(root_backup
,
2008 btrfs_super_bytes_used(info
->super_copy
));
2009 btrfs_set_backup_num_devices(root_backup
,
2010 btrfs_super_num_devices(info
->super_copy
));
2013 * if we don't copy this out to the super_copy, it won't get remembered
2014 * for the next commit
2016 memcpy(&info
->super_copy
->super_roots
,
2017 &info
->super_for_commit
->super_roots
,
2018 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
2022 * this copies info out of the root backup array and back into
2023 * the in-memory super block. It is meant to help iterate through
2024 * the array, so you send it the number of backups you've already
2025 * tried and the last backup index you used.
2027 * this returns -1 when it has tried all the backups
2029 static noinline
int next_root_backup(struct btrfs_fs_info
*info
,
2030 struct btrfs_super_block
*super
,
2031 int *num_backups_tried
, int *backup_index
)
2033 struct btrfs_root_backup
*root_backup
;
2034 int newest
= *backup_index
;
2036 if (*num_backups_tried
== 0) {
2037 u64 gen
= btrfs_super_generation(super
);
2039 newest
= find_newest_super_backup(info
, gen
);
2043 *backup_index
= newest
;
2044 *num_backups_tried
= 1;
2045 } else if (*num_backups_tried
== BTRFS_NUM_BACKUP_ROOTS
) {
2046 /* we've tried all the backups, all done */
2049 /* jump to the next oldest backup */
2050 newest
= (*backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
2051 BTRFS_NUM_BACKUP_ROOTS
;
2052 *backup_index
= newest
;
2053 *num_backups_tried
+= 1;
2055 root_backup
= super
->super_roots
+ newest
;
2057 btrfs_set_super_generation(super
,
2058 btrfs_backup_tree_root_gen(root_backup
));
2059 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
2060 btrfs_set_super_root_level(super
,
2061 btrfs_backup_tree_root_level(root_backup
));
2062 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
2065 * fixme: the total bytes and num_devices need to match or we should
2068 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
2069 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
2073 /* helper to cleanup workers */
2074 static void btrfs_stop_all_workers(struct btrfs_fs_info
*fs_info
)
2076 btrfs_destroy_workqueue(fs_info
->fixup_workers
);
2077 btrfs_destroy_workqueue(fs_info
->delalloc_workers
);
2078 btrfs_destroy_workqueue(fs_info
->workers
);
2079 btrfs_destroy_workqueue(fs_info
->endio_workers
);
2080 btrfs_destroy_workqueue(fs_info
->endio_meta_workers
);
2081 btrfs_destroy_workqueue(fs_info
->endio_raid56_workers
);
2082 btrfs_destroy_workqueue(fs_info
->endio_repair_workers
);
2083 btrfs_destroy_workqueue(fs_info
->rmw_workers
);
2084 btrfs_destroy_workqueue(fs_info
->endio_meta_write_workers
);
2085 btrfs_destroy_workqueue(fs_info
->endio_write_workers
);
2086 btrfs_destroy_workqueue(fs_info
->endio_freespace_worker
);
2087 btrfs_destroy_workqueue(fs_info
->submit_workers
);
2088 btrfs_destroy_workqueue(fs_info
->delayed_workers
);
2089 btrfs_destroy_workqueue(fs_info
->caching_workers
);
2090 btrfs_destroy_workqueue(fs_info
->readahead_workers
);
2091 btrfs_destroy_workqueue(fs_info
->flush_workers
);
2092 btrfs_destroy_workqueue(fs_info
->qgroup_rescan_workers
);
2093 btrfs_destroy_workqueue(fs_info
->extent_workers
);
2096 static void free_root_extent_buffers(struct btrfs_root
*root
)
2099 free_extent_buffer(root
->node
);
2100 free_extent_buffer(root
->commit_root
);
2102 root
->commit_root
= NULL
;
2106 /* helper to cleanup tree roots */
2107 static void free_root_pointers(struct btrfs_fs_info
*info
, int chunk_root
)
2109 free_root_extent_buffers(info
->tree_root
);
2111 free_root_extent_buffers(info
->dev_root
);
2112 free_root_extent_buffers(info
->extent_root
);
2113 free_root_extent_buffers(info
->csum_root
);
2114 free_root_extent_buffers(info
->quota_root
);
2115 free_root_extent_buffers(info
->uuid_root
);
2117 free_root_extent_buffers(info
->chunk_root
);
2118 free_root_extent_buffers(info
->free_space_root
);
2121 void btrfs_free_fs_roots(struct btrfs_fs_info
*fs_info
)
2124 struct btrfs_root
*gang
[8];
2127 while (!list_empty(&fs_info
->dead_roots
)) {
2128 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2129 struct btrfs_root
, root_list
);
2130 list_del(&gang
[0]->root_list
);
2132 if (test_bit(BTRFS_ROOT_IN_RADIX
, &gang
[0]->state
)) {
2133 btrfs_drop_and_free_fs_root(fs_info
, gang
[0]);
2135 free_extent_buffer(gang
[0]->node
);
2136 free_extent_buffer(gang
[0]->commit_root
);
2137 btrfs_put_fs_root(gang
[0]);
2142 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2147 for (i
= 0; i
< ret
; i
++)
2148 btrfs_drop_and_free_fs_root(fs_info
, gang
[i
]);
2151 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
2152 btrfs_free_log_root_tree(NULL
, fs_info
);
2153 btrfs_destroy_pinned_extent(fs_info
->tree_root
,
2154 fs_info
->pinned_extents
);
2158 static void btrfs_init_scrub(struct btrfs_fs_info
*fs_info
)
2160 mutex_init(&fs_info
->scrub_lock
);
2161 atomic_set(&fs_info
->scrubs_running
, 0);
2162 atomic_set(&fs_info
->scrub_pause_req
, 0);
2163 atomic_set(&fs_info
->scrubs_paused
, 0);
2164 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2165 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2166 fs_info
->scrub_workers_refcnt
= 0;
2169 static void btrfs_init_balance(struct btrfs_fs_info
*fs_info
)
2171 spin_lock_init(&fs_info
->balance_lock
);
2172 mutex_init(&fs_info
->balance_mutex
);
2173 atomic_set(&fs_info
->balance_running
, 0);
2174 atomic_set(&fs_info
->balance_pause_req
, 0);
2175 atomic_set(&fs_info
->balance_cancel_req
, 0);
2176 fs_info
->balance_ctl
= NULL
;
2177 init_waitqueue_head(&fs_info
->balance_wait_q
);
2180 static void btrfs_init_btree_inode(struct btrfs_fs_info
*fs_info
,
2181 struct btrfs_root
*tree_root
)
2183 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2184 set_nlink(fs_info
->btree_inode
, 1);
2186 * we set the i_size on the btree inode to the max possible int.
2187 * the real end of the address space is determined by all of
2188 * the devices in the system
2190 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
2191 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
2193 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
2194 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
2195 fs_info
->btree_inode
->i_mapping
);
2196 BTRFS_I(fs_info
->btree_inode
)->io_tree
.track_uptodate
= 0;
2197 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
);
2199 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2201 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
2202 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
2203 sizeof(struct btrfs_key
));
2204 set_bit(BTRFS_INODE_DUMMY
,
2205 &BTRFS_I(fs_info
->btree_inode
)->runtime_flags
);
2206 btrfs_insert_inode_hash(fs_info
->btree_inode
);
2209 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info
*fs_info
)
2211 fs_info
->dev_replace
.lock_owner
= 0;
2212 atomic_set(&fs_info
->dev_replace
.nesting_level
, 0);
2213 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
2214 rwlock_init(&fs_info
->dev_replace
.lock
);
2215 atomic_set(&fs_info
->dev_replace
.read_locks
, 0);
2216 atomic_set(&fs_info
->dev_replace
.blocking_readers
, 0);
2217 init_waitqueue_head(&fs_info
->replace_wait
);
2218 init_waitqueue_head(&fs_info
->dev_replace
.read_lock_wq
);
2221 static void btrfs_init_qgroup(struct btrfs_fs_info
*fs_info
)
2223 spin_lock_init(&fs_info
->qgroup_lock
);
2224 mutex_init(&fs_info
->qgroup_ioctl_lock
);
2225 fs_info
->qgroup_tree
= RB_ROOT
;
2226 fs_info
->qgroup_op_tree
= RB_ROOT
;
2227 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
2228 fs_info
->qgroup_seq
= 1;
2229 fs_info
->qgroup_ulist
= NULL
;
2230 fs_info
->qgroup_rescan_running
= false;
2231 mutex_init(&fs_info
->qgroup_rescan_lock
);
2234 static int btrfs_init_workqueues(struct btrfs_fs_info
*fs_info
,
2235 struct btrfs_fs_devices
*fs_devices
)
2237 int max_active
= fs_info
->thread_pool_size
;
2238 unsigned int flags
= WQ_MEM_RECLAIM
| WQ_FREEZABLE
| WQ_UNBOUND
;
2241 btrfs_alloc_workqueue(fs_info
, "worker",
2242 flags
| WQ_HIGHPRI
, max_active
, 16);
2244 fs_info
->delalloc_workers
=
2245 btrfs_alloc_workqueue(fs_info
, "delalloc",
2246 flags
, max_active
, 2);
2248 fs_info
->flush_workers
=
2249 btrfs_alloc_workqueue(fs_info
, "flush_delalloc",
2250 flags
, max_active
, 0);
2252 fs_info
->caching_workers
=
2253 btrfs_alloc_workqueue(fs_info
, "cache", flags
, max_active
, 0);
2256 * a higher idle thresh on the submit workers makes it much more
2257 * likely that bios will be send down in a sane order to the
2260 fs_info
->submit_workers
=
2261 btrfs_alloc_workqueue(fs_info
, "submit", flags
,
2262 min_t(u64
, fs_devices
->num_devices
,
2265 fs_info
->fixup_workers
=
2266 btrfs_alloc_workqueue(fs_info
, "fixup", flags
, 1, 0);
2269 * endios are largely parallel and should have a very
2272 fs_info
->endio_workers
=
2273 btrfs_alloc_workqueue(fs_info
, "endio", flags
, max_active
, 4);
2274 fs_info
->endio_meta_workers
=
2275 btrfs_alloc_workqueue(fs_info
, "endio-meta", flags
,
2277 fs_info
->endio_meta_write_workers
=
2278 btrfs_alloc_workqueue(fs_info
, "endio-meta-write", flags
,
2280 fs_info
->endio_raid56_workers
=
2281 btrfs_alloc_workqueue(fs_info
, "endio-raid56", flags
,
2283 fs_info
->endio_repair_workers
=
2284 btrfs_alloc_workqueue(fs_info
, "endio-repair", flags
, 1, 0);
2285 fs_info
->rmw_workers
=
2286 btrfs_alloc_workqueue(fs_info
, "rmw", flags
, max_active
, 2);
2287 fs_info
->endio_write_workers
=
2288 btrfs_alloc_workqueue(fs_info
, "endio-write", flags
,
2290 fs_info
->endio_freespace_worker
=
2291 btrfs_alloc_workqueue(fs_info
, "freespace-write", flags
,
2293 fs_info
->delayed_workers
=
2294 btrfs_alloc_workqueue(fs_info
, "delayed-meta", flags
,
2296 fs_info
->readahead_workers
=
2297 btrfs_alloc_workqueue(fs_info
, "readahead", flags
,
2299 fs_info
->qgroup_rescan_workers
=
2300 btrfs_alloc_workqueue(fs_info
, "qgroup-rescan", flags
, 1, 0);
2301 fs_info
->extent_workers
=
2302 btrfs_alloc_workqueue(fs_info
, "extent-refs", flags
,
2303 min_t(u64
, fs_devices
->num_devices
,
2306 if (!(fs_info
->workers
&& fs_info
->delalloc_workers
&&
2307 fs_info
->submit_workers
&& fs_info
->flush_workers
&&
2308 fs_info
->endio_workers
&& fs_info
->endio_meta_workers
&&
2309 fs_info
->endio_meta_write_workers
&&
2310 fs_info
->endio_repair_workers
&&
2311 fs_info
->endio_write_workers
&& fs_info
->endio_raid56_workers
&&
2312 fs_info
->endio_freespace_worker
&& fs_info
->rmw_workers
&&
2313 fs_info
->caching_workers
&& fs_info
->readahead_workers
&&
2314 fs_info
->fixup_workers
&& fs_info
->delayed_workers
&&
2315 fs_info
->extent_workers
&&
2316 fs_info
->qgroup_rescan_workers
)) {
2323 static int btrfs_replay_log(struct btrfs_fs_info
*fs_info
,
2324 struct btrfs_fs_devices
*fs_devices
)
2327 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
2328 struct btrfs_root
*log_tree_root
;
2329 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2330 u64 bytenr
= btrfs_super_log_root(disk_super
);
2332 if (fs_devices
->rw_devices
== 0) {
2333 btrfs_warn(fs_info
, "log replay required on RO media");
2337 log_tree_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2341 __setup_root(tree_root
->nodesize
, tree_root
->sectorsize
,
2342 tree_root
->stripesize
, log_tree_root
, fs_info
,
2343 BTRFS_TREE_LOG_OBJECTID
);
2345 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
2346 fs_info
->generation
+ 1);
2347 if (IS_ERR(log_tree_root
->node
)) {
2348 btrfs_warn(fs_info
, "failed to read log tree");
2349 ret
= PTR_ERR(log_tree_root
->node
);
2350 kfree(log_tree_root
);
2352 } else if (!extent_buffer_uptodate(log_tree_root
->node
)) {
2353 btrfs_err(fs_info
, "failed to read log tree");
2354 free_extent_buffer(log_tree_root
->node
);
2355 kfree(log_tree_root
);
2358 /* returns with log_tree_root freed on success */
2359 ret
= btrfs_recover_log_trees(log_tree_root
);
2361 btrfs_handle_fs_error(tree_root
->fs_info
, ret
,
2362 "Failed to recover log tree");
2363 free_extent_buffer(log_tree_root
->node
);
2364 kfree(log_tree_root
);
2368 if (fs_info
->sb
->s_flags
& MS_RDONLY
) {
2369 ret
= btrfs_commit_super(tree_root
);
2377 static int btrfs_read_roots(struct btrfs_fs_info
*fs_info
,
2378 struct btrfs_root
*tree_root
)
2380 struct btrfs_root
*root
;
2381 struct btrfs_key location
;
2384 location
.objectid
= BTRFS_EXTENT_TREE_OBJECTID
;
2385 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2386 location
.offset
= 0;
2388 root
= btrfs_read_tree_root(tree_root
, &location
);
2390 return PTR_ERR(root
);
2391 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2392 fs_info
->extent_root
= root
;
2394 location
.objectid
= BTRFS_DEV_TREE_OBJECTID
;
2395 root
= btrfs_read_tree_root(tree_root
, &location
);
2397 return PTR_ERR(root
);
2398 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2399 fs_info
->dev_root
= root
;
2400 btrfs_init_devices_late(fs_info
);
2402 location
.objectid
= BTRFS_CSUM_TREE_OBJECTID
;
2403 root
= btrfs_read_tree_root(tree_root
, &location
);
2405 return PTR_ERR(root
);
2406 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2407 fs_info
->csum_root
= root
;
2409 location
.objectid
= BTRFS_QUOTA_TREE_OBJECTID
;
2410 root
= btrfs_read_tree_root(tree_root
, &location
);
2411 if (!IS_ERR(root
)) {
2412 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2413 set_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
);
2414 fs_info
->quota_root
= root
;
2417 location
.objectid
= BTRFS_UUID_TREE_OBJECTID
;
2418 root
= btrfs_read_tree_root(tree_root
, &location
);
2420 ret
= PTR_ERR(root
);
2424 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2425 fs_info
->uuid_root
= root
;
2428 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
2429 location
.objectid
= BTRFS_FREE_SPACE_TREE_OBJECTID
;
2430 root
= btrfs_read_tree_root(tree_root
, &location
);
2432 return PTR_ERR(root
);
2433 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2434 fs_info
->free_space_root
= root
;
2440 int open_ctree(struct super_block
*sb
,
2441 struct btrfs_fs_devices
*fs_devices
,
2449 struct btrfs_key location
;
2450 struct buffer_head
*bh
;
2451 struct btrfs_super_block
*disk_super
;
2452 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2453 struct btrfs_root
*tree_root
;
2454 struct btrfs_root
*chunk_root
;
2457 int num_backups_tried
= 0;
2458 int backup_index
= 0;
2460 int clear_free_space_tree
= 0;
2462 tree_root
= fs_info
->tree_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2463 chunk_root
= fs_info
->chunk_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2464 if (!tree_root
|| !chunk_root
) {
2469 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
2475 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
2481 ret
= percpu_counter_init(&fs_info
->dirty_metadata_bytes
, 0, GFP_KERNEL
);
2486 fs_info
->dirty_metadata_batch
= PAGE_SIZE
*
2487 (1 + ilog2(nr_cpu_ids
));
2489 ret
= percpu_counter_init(&fs_info
->delalloc_bytes
, 0, GFP_KERNEL
);
2492 goto fail_dirty_metadata_bytes
;
2495 ret
= percpu_counter_init(&fs_info
->bio_counter
, 0, GFP_KERNEL
);
2498 goto fail_delalloc_bytes
;
2501 fs_info
->btree_inode
= new_inode(sb
);
2502 if (!fs_info
->btree_inode
) {
2504 goto fail_bio_counter
;
2507 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
2509 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2510 INIT_RADIX_TREE(&fs_info
->buffer_radix
, GFP_ATOMIC
);
2511 INIT_LIST_HEAD(&fs_info
->trans_list
);
2512 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2513 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2514 INIT_LIST_HEAD(&fs_info
->delalloc_roots
);
2515 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2516 spin_lock_init(&fs_info
->delalloc_root_lock
);
2517 spin_lock_init(&fs_info
->trans_lock
);
2518 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2519 spin_lock_init(&fs_info
->delayed_iput_lock
);
2520 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2521 spin_lock_init(&fs_info
->free_chunk_lock
);
2522 spin_lock_init(&fs_info
->tree_mod_seq_lock
);
2523 spin_lock_init(&fs_info
->super_lock
);
2524 spin_lock_init(&fs_info
->qgroup_op_lock
);
2525 spin_lock_init(&fs_info
->buffer_lock
);
2526 spin_lock_init(&fs_info
->unused_bgs_lock
);
2527 rwlock_init(&fs_info
->tree_mod_log_lock
);
2528 mutex_init(&fs_info
->unused_bg_unpin_mutex
);
2529 mutex_init(&fs_info
->delete_unused_bgs_mutex
);
2530 mutex_init(&fs_info
->reloc_mutex
);
2531 mutex_init(&fs_info
->delalloc_root_mutex
);
2532 mutex_init(&fs_info
->cleaner_delayed_iput_mutex
);
2533 seqlock_init(&fs_info
->profiles_lock
);
2535 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2536 INIT_LIST_HEAD(&fs_info
->space_info
);
2537 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2538 INIT_LIST_HEAD(&fs_info
->unused_bgs
);
2539 btrfs_mapping_init(&fs_info
->mapping_tree
);
2540 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2541 BTRFS_BLOCK_RSV_GLOBAL
);
2542 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
,
2543 BTRFS_BLOCK_RSV_DELALLOC
);
2544 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2545 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2546 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2547 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2548 BTRFS_BLOCK_RSV_DELOPS
);
2549 atomic_set(&fs_info
->nr_async_submits
, 0);
2550 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2551 atomic_set(&fs_info
->async_submit_draining
, 0);
2552 atomic_set(&fs_info
->nr_async_bios
, 0);
2553 atomic_set(&fs_info
->defrag_running
, 0);
2554 atomic_set(&fs_info
->qgroup_op_seq
, 0);
2555 atomic_set(&fs_info
->reada_works_cnt
, 0);
2556 atomic64_set(&fs_info
->tree_mod_seq
, 0);
2557 fs_info
->fs_frozen
= 0;
2559 fs_info
->max_inline
= BTRFS_DEFAULT_MAX_INLINE
;
2560 fs_info
->metadata_ratio
= 0;
2561 fs_info
->defrag_inodes
= RB_ROOT
;
2562 fs_info
->free_chunk_space
= 0;
2563 fs_info
->tree_mod_log
= RB_ROOT
;
2564 fs_info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
2565 fs_info
->avg_delayed_ref_runtime
= NSEC_PER_SEC
>> 6; /* div by 64 */
2566 /* readahead state */
2567 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
2568 spin_lock_init(&fs_info
->reada_lock
);
2570 fs_info
->thread_pool_size
= min_t(unsigned long,
2571 num_online_cpus() + 2, 8);
2573 INIT_LIST_HEAD(&fs_info
->ordered_roots
);
2574 spin_lock_init(&fs_info
->ordered_root_lock
);
2575 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2577 if (!fs_info
->delayed_root
) {
2581 btrfs_init_delayed_root(fs_info
->delayed_root
);
2583 btrfs_init_scrub(fs_info
);
2584 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2585 fs_info
->check_integrity_print_mask
= 0;
2587 btrfs_init_balance(fs_info
);
2588 btrfs_init_async_reclaim_work(&fs_info
->async_reclaim_work
);
2590 sb
->s_blocksize
= 4096;
2591 sb
->s_blocksize_bits
= blksize_bits(4096);
2592 sb
->s_bdi
= &fs_info
->bdi
;
2594 btrfs_init_btree_inode(fs_info
, tree_root
);
2596 spin_lock_init(&fs_info
->block_group_cache_lock
);
2597 fs_info
->block_group_cache_tree
= RB_ROOT
;
2598 fs_info
->first_logical_byte
= (u64
)-1;
2600 extent_io_tree_init(&fs_info
->freed_extents
[0],
2601 fs_info
->btree_inode
->i_mapping
);
2602 extent_io_tree_init(&fs_info
->freed_extents
[1],
2603 fs_info
->btree_inode
->i_mapping
);
2604 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
2605 set_bit(BTRFS_FS_BARRIER
, &fs_info
->flags
);
2607 mutex_init(&fs_info
->ordered_operations_mutex
);
2608 mutex_init(&fs_info
->tree_log_mutex
);
2609 mutex_init(&fs_info
->chunk_mutex
);
2610 mutex_init(&fs_info
->transaction_kthread_mutex
);
2611 mutex_init(&fs_info
->cleaner_mutex
);
2612 mutex_init(&fs_info
->volume_mutex
);
2613 mutex_init(&fs_info
->ro_block_group_mutex
);
2614 init_rwsem(&fs_info
->commit_root_sem
);
2615 init_rwsem(&fs_info
->cleanup_work_sem
);
2616 init_rwsem(&fs_info
->subvol_sem
);
2617 sema_init(&fs_info
->uuid_tree_rescan_sem
, 1);
2619 btrfs_init_dev_replace_locks(fs_info
);
2620 btrfs_init_qgroup(fs_info
);
2622 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2623 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2625 init_waitqueue_head(&fs_info
->transaction_throttle
);
2626 init_waitqueue_head(&fs_info
->transaction_wait
);
2627 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2628 init_waitqueue_head(&fs_info
->async_submit_wait
);
2630 INIT_LIST_HEAD(&fs_info
->pinned_chunks
);
2632 ret
= btrfs_alloc_stripe_hash_table(fs_info
);
2638 __setup_root(4096, 4096, 4096, tree_root
,
2639 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
2641 invalidate_bdev(fs_devices
->latest_bdev
);
2644 * Read super block and check the signature bytes only
2646 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2653 * We want to check superblock checksum, the type is stored inside.
2654 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2656 if (btrfs_check_super_csum(fs_info
, bh
->b_data
)) {
2657 btrfs_err(fs_info
, "superblock checksum mismatch");
2664 * super_copy is zeroed at allocation time and we never touch the
2665 * following bytes up to INFO_SIZE, the checksum is calculated from
2666 * the whole block of INFO_SIZE
2668 memcpy(fs_info
->super_copy
, bh
->b_data
, sizeof(*fs_info
->super_copy
));
2669 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2670 sizeof(*fs_info
->super_for_commit
));
2673 memcpy(fs_info
->fsid
, fs_info
->super_copy
->fsid
, BTRFS_FSID_SIZE
);
2675 ret
= btrfs_check_super_valid(fs_info
, sb
->s_flags
& MS_RDONLY
);
2677 btrfs_err(fs_info
, "superblock contains fatal errors");
2682 disk_super
= fs_info
->super_copy
;
2683 if (!btrfs_super_root(disk_super
))
2686 /* check FS state, whether FS is broken. */
2687 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_ERROR
)
2688 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
2691 * run through our array of backup supers and setup
2692 * our ring pointer to the oldest one
2694 generation
= btrfs_super_generation(disk_super
);
2695 find_oldest_super_backup(fs_info
, generation
);
2698 * In the long term, we'll store the compression type in the super
2699 * block, and it'll be used for per file compression control.
2701 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2703 ret
= btrfs_parse_options(tree_root
, options
, sb
->s_flags
);
2709 features
= btrfs_super_incompat_flags(disk_super
) &
2710 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2713 "cannot mount because of unsupported optional features (%llx)",
2719 features
= btrfs_super_incompat_flags(disk_super
);
2720 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2721 if (tree_root
->fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
2722 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2724 if (features
& BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA
)
2725 btrfs_info(fs_info
, "has skinny extents");
2728 * flag our filesystem as having big metadata blocks if
2729 * they are bigger than the page size
2731 if (btrfs_super_nodesize(disk_super
) > PAGE_SIZE
) {
2732 if (!(features
& BTRFS_FEATURE_INCOMPAT_BIG_METADATA
))
2734 "flagging fs with big metadata feature");
2735 features
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
2738 nodesize
= btrfs_super_nodesize(disk_super
);
2739 sectorsize
= btrfs_super_sectorsize(disk_super
);
2740 stripesize
= sectorsize
;
2741 fs_info
->dirty_metadata_batch
= nodesize
* (1 + ilog2(nr_cpu_ids
));
2742 fs_info
->delalloc_batch
= sectorsize
* 512 * (1 + ilog2(nr_cpu_ids
));
2745 * mixed block groups end up with duplicate but slightly offset
2746 * extent buffers for the same range. It leads to corruptions
2748 if ((features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
2749 (sectorsize
!= nodesize
)) {
2751 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2752 nodesize
, sectorsize
);
2757 * Needn't use the lock because there is no other task which will
2760 btrfs_set_super_incompat_flags(disk_super
, features
);
2762 features
= btrfs_super_compat_ro_flags(disk_super
) &
2763 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
2764 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
2766 "cannot mount read-write because of unsupported optional features (%llx)",
2772 max_active
= fs_info
->thread_pool_size
;
2774 ret
= btrfs_init_workqueues(fs_info
, fs_devices
);
2777 goto fail_sb_buffer
;
2780 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
2781 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
2784 tree_root
->nodesize
= nodesize
;
2785 tree_root
->sectorsize
= sectorsize
;
2786 tree_root
->stripesize
= stripesize
;
2788 sb
->s_blocksize
= sectorsize
;
2789 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
2791 mutex_lock(&fs_info
->chunk_mutex
);
2792 ret
= btrfs_read_sys_array(tree_root
);
2793 mutex_unlock(&fs_info
->chunk_mutex
);
2795 btrfs_err(fs_info
, "failed to read the system array: %d", ret
);
2796 goto fail_sb_buffer
;
2799 generation
= btrfs_super_chunk_root_generation(disk_super
);
2801 __setup_root(nodesize
, sectorsize
, stripesize
, chunk_root
,
2802 fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
2804 chunk_root
->node
= read_tree_block(chunk_root
,
2805 btrfs_super_chunk_root(disk_super
),
2807 if (IS_ERR(chunk_root
->node
) ||
2808 !extent_buffer_uptodate(chunk_root
->node
)) {
2809 btrfs_err(fs_info
, "failed to read chunk root");
2810 if (!IS_ERR(chunk_root
->node
))
2811 free_extent_buffer(chunk_root
->node
);
2812 chunk_root
->node
= NULL
;
2813 goto fail_tree_roots
;
2815 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
2816 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
2818 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
2819 btrfs_header_chunk_tree_uuid(chunk_root
->node
), BTRFS_UUID_SIZE
);
2821 ret
= btrfs_read_chunk_tree(chunk_root
);
2823 btrfs_err(fs_info
, "failed to read chunk tree: %d", ret
);
2824 goto fail_tree_roots
;
2828 * keep the device that is marked to be the target device for the
2829 * dev_replace procedure
2831 btrfs_close_extra_devices(fs_devices
, 0);
2833 if (!fs_devices
->latest_bdev
) {
2834 btrfs_err(fs_info
, "failed to read devices");
2835 goto fail_tree_roots
;
2839 generation
= btrfs_super_generation(disk_super
);
2841 tree_root
->node
= read_tree_block(tree_root
,
2842 btrfs_super_root(disk_super
),
2844 if (IS_ERR(tree_root
->node
) ||
2845 !extent_buffer_uptodate(tree_root
->node
)) {
2846 btrfs_warn(fs_info
, "failed to read tree root");
2847 if (!IS_ERR(tree_root
->node
))
2848 free_extent_buffer(tree_root
->node
);
2849 tree_root
->node
= NULL
;
2850 goto recovery_tree_root
;
2853 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2854 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2855 btrfs_set_root_refs(&tree_root
->root_item
, 1);
2857 mutex_lock(&tree_root
->objectid_mutex
);
2858 ret
= btrfs_find_highest_objectid(tree_root
,
2859 &tree_root
->highest_objectid
);
2861 mutex_unlock(&tree_root
->objectid_mutex
);
2862 goto recovery_tree_root
;
2865 ASSERT(tree_root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
2867 mutex_unlock(&tree_root
->objectid_mutex
);
2869 ret
= btrfs_read_roots(fs_info
, tree_root
);
2871 goto recovery_tree_root
;
2873 fs_info
->generation
= generation
;
2874 fs_info
->last_trans_committed
= generation
;
2876 ret
= btrfs_recover_balance(fs_info
);
2878 btrfs_err(fs_info
, "failed to recover balance: %d", ret
);
2879 goto fail_block_groups
;
2882 ret
= btrfs_init_dev_stats(fs_info
);
2884 btrfs_err(fs_info
, "failed to init dev_stats: %d", ret
);
2885 goto fail_block_groups
;
2888 ret
= btrfs_init_dev_replace(fs_info
);
2890 btrfs_err(fs_info
, "failed to init dev_replace: %d", ret
);
2891 goto fail_block_groups
;
2894 btrfs_close_extra_devices(fs_devices
, 1);
2896 ret
= btrfs_sysfs_add_fsid(fs_devices
, NULL
);
2898 btrfs_err(fs_info
, "failed to init sysfs fsid interface: %d",
2900 goto fail_block_groups
;
2903 ret
= btrfs_sysfs_add_device(fs_devices
);
2905 btrfs_err(fs_info
, "failed to init sysfs device interface: %d",
2907 goto fail_fsdev_sysfs
;
2910 ret
= btrfs_sysfs_add_mounted(fs_info
);
2912 btrfs_err(fs_info
, "failed to init sysfs interface: %d", ret
);
2913 goto fail_fsdev_sysfs
;
2916 ret
= btrfs_init_space_info(fs_info
);
2918 btrfs_err(fs_info
, "failed to initialize space info: %d", ret
);
2922 ret
= btrfs_read_block_groups(fs_info
->extent_root
);
2924 btrfs_err(fs_info
, "failed to read block groups: %d", ret
);
2927 fs_info
->num_tolerated_disk_barrier_failures
=
2928 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
2929 if (fs_info
->fs_devices
->missing_devices
>
2930 fs_info
->num_tolerated_disk_barrier_failures
&&
2931 !(sb
->s_flags
& MS_RDONLY
)) {
2933 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
2934 fs_info
->fs_devices
->missing_devices
,
2935 fs_info
->num_tolerated_disk_barrier_failures
);
2939 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
2941 if (IS_ERR(fs_info
->cleaner_kthread
))
2944 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
2946 "btrfs-transaction");
2947 if (IS_ERR(fs_info
->transaction_kthread
))
2950 if (!btrfs_test_opt(tree_root
->fs_info
, SSD
) &&
2951 !btrfs_test_opt(tree_root
->fs_info
, NOSSD
) &&
2952 !fs_info
->fs_devices
->rotating
) {
2953 btrfs_info(fs_info
, "detected SSD devices, enabling SSD mode");
2954 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
2958 * Mount does not set all options immediately, we can do it now and do
2959 * not have to wait for transaction commit
2961 btrfs_apply_pending_changes(fs_info
);
2963 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2964 if (btrfs_test_opt(tree_root
->fs_info
, CHECK_INTEGRITY
)) {
2965 ret
= btrfsic_mount(tree_root
, fs_devices
,
2966 btrfs_test_opt(tree_root
->fs_info
,
2967 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
2969 fs_info
->check_integrity_print_mask
);
2972 "failed to initialize integrity check module: %d",
2976 ret
= btrfs_read_qgroup_config(fs_info
);
2978 goto fail_trans_kthread
;
2980 /* do not make disk changes in broken FS or nologreplay is given */
2981 if (btrfs_super_log_root(disk_super
) != 0 &&
2982 !btrfs_test_opt(tree_root
->fs_info
, NOLOGREPLAY
)) {
2983 ret
= btrfs_replay_log(fs_info
, fs_devices
);
2990 ret
= btrfs_find_orphan_roots(tree_root
);
2994 if (!(sb
->s_flags
& MS_RDONLY
)) {
2995 ret
= btrfs_cleanup_fs_roots(fs_info
);
2999 mutex_lock(&fs_info
->cleaner_mutex
);
3000 ret
= btrfs_recover_relocation(tree_root
);
3001 mutex_unlock(&fs_info
->cleaner_mutex
);
3003 btrfs_warn(fs_info
, "failed to recover relocation: %d",
3010 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
3011 location
.type
= BTRFS_ROOT_ITEM_KEY
;
3012 location
.offset
= 0;
3014 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
3015 if (IS_ERR(fs_info
->fs_root
)) {
3016 err
= PTR_ERR(fs_info
->fs_root
);
3020 if (sb
->s_flags
& MS_RDONLY
)
3023 if (btrfs_test_opt(fs_info
, CLEAR_CACHE
) &&
3024 btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3025 clear_free_space_tree
= 1;
3026 } else if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
) &&
3027 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE_VALID
)) {
3028 btrfs_warn(fs_info
, "free space tree is invalid");
3029 clear_free_space_tree
= 1;
3032 if (clear_free_space_tree
) {
3033 btrfs_info(fs_info
, "clearing free space tree");
3034 ret
= btrfs_clear_free_space_tree(fs_info
);
3037 "failed to clear free space tree: %d", ret
);
3038 close_ctree(tree_root
);
3043 if (btrfs_test_opt(tree_root
->fs_info
, FREE_SPACE_TREE
) &&
3044 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3045 btrfs_info(fs_info
, "creating free space tree");
3046 ret
= btrfs_create_free_space_tree(fs_info
);
3049 "failed to create free space tree: %d", ret
);
3050 close_ctree(tree_root
);
3055 down_read(&fs_info
->cleanup_work_sem
);
3056 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
3057 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
3058 up_read(&fs_info
->cleanup_work_sem
);
3059 close_ctree(tree_root
);
3062 up_read(&fs_info
->cleanup_work_sem
);
3064 ret
= btrfs_resume_balance_async(fs_info
);
3066 btrfs_warn(fs_info
, "failed to resume balance: %d", ret
);
3067 close_ctree(tree_root
);
3071 ret
= btrfs_resume_dev_replace_async(fs_info
);
3073 btrfs_warn(fs_info
, "failed to resume device replace: %d", ret
);
3074 close_ctree(tree_root
);
3078 btrfs_qgroup_rescan_resume(fs_info
);
3080 if (!fs_info
->uuid_root
) {
3081 btrfs_info(fs_info
, "creating UUID tree");
3082 ret
= btrfs_create_uuid_tree(fs_info
);
3085 "failed to create the UUID tree: %d", ret
);
3086 close_ctree(tree_root
);
3089 } else if (btrfs_test_opt(tree_root
->fs_info
, RESCAN_UUID_TREE
) ||
3090 fs_info
->generation
!=
3091 btrfs_super_uuid_tree_generation(disk_super
)) {
3092 btrfs_info(fs_info
, "checking UUID tree");
3093 ret
= btrfs_check_uuid_tree(fs_info
);
3096 "failed to check the UUID tree: %d", ret
);
3097 close_ctree(tree_root
);
3101 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
3103 set_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
3106 * backuproot only affect mount behavior, and if open_ctree succeeded,
3107 * no need to keep the flag
3109 btrfs_clear_opt(fs_info
->mount_opt
, USEBACKUPROOT
);
3114 btrfs_free_qgroup_config(fs_info
);
3116 kthread_stop(fs_info
->transaction_kthread
);
3117 btrfs_cleanup_transaction(fs_info
->tree_root
);
3118 btrfs_free_fs_roots(fs_info
);
3120 kthread_stop(fs_info
->cleaner_kthread
);
3123 * make sure we're done with the btree inode before we stop our
3126 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
3129 btrfs_sysfs_remove_mounted(fs_info
);
3132 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3135 btrfs_put_block_group_cache(fs_info
);
3136 btrfs_free_block_groups(fs_info
);
3139 free_root_pointers(fs_info
, 1);
3140 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3143 btrfs_stop_all_workers(fs_info
);
3146 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3148 iput(fs_info
->btree_inode
);
3150 percpu_counter_destroy(&fs_info
->bio_counter
);
3151 fail_delalloc_bytes
:
3152 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3153 fail_dirty_metadata_bytes
:
3154 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3156 bdi_destroy(&fs_info
->bdi
);
3158 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3160 btrfs_free_stripe_hash_table(fs_info
);
3161 btrfs_close_devices(fs_info
->fs_devices
);
3165 if (!btrfs_test_opt(tree_root
->fs_info
, USEBACKUPROOT
))
3166 goto fail_tree_roots
;
3168 free_root_pointers(fs_info
, 0);
3170 /* don't use the log in recovery mode, it won't be valid */
3171 btrfs_set_super_log_root(disk_super
, 0);
3173 /* we can't trust the free space cache either */
3174 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
3176 ret
= next_root_backup(fs_info
, fs_info
->super_copy
,
3177 &num_backups_tried
, &backup_index
);
3179 goto fail_block_groups
;
3180 goto retry_root_backup
;
3183 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
3186 set_buffer_uptodate(bh
);
3188 struct btrfs_device
*device
= (struct btrfs_device
*)
3191 btrfs_warn_rl_in_rcu(device
->dev_root
->fs_info
,
3192 "lost page write due to IO error on %s",
3193 rcu_str_deref(device
->name
));
3194 /* note, we don't set_buffer_write_io_error because we have
3195 * our own ways of dealing with the IO errors
3197 clear_buffer_uptodate(bh
);
3198 btrfs_dev_stat_inc_and_print(device
, BTRFS_DEV_STAT_WRITE_ERRS
);
3204 int btrfs_read_dev_one_super(struct block_device
*bdev
, int copy_num
,
3205 struct buffer_head
**bh_ret
)
3207 struct buffer_head
*bh
;
3208 struct btrfs_super_block
*super
;
3211 bytenr
= btrfs_sb_offset(copy_num
);
3212 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= i_size_read(bdev
->bd_inode
))
3215 bh
= __bread(bdev
, bytenr
/ 4096, BTRFS_SUPER_INFO_SIZE
);
3217 * If we fail to read from the underlying devices, as of now
3218 * the best option we have is to mark it EIO.
3223 super
= (struct btrfs_super_block
*)bh
->b_data
;
3224 if (btrfs_super_bytenr(super
) != bytenr
||
3225 btrfs_super_magic(super
) != BTRFS_MAGIC
) {
3235 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
3237 struct buffer_head
*bh
;
3238 struct buffer_head
*latest
= NULL
;
3239 struct btrfs_super_block
*super
;
3244 /* we would like to check all the supers, but that would make
3245 * a btrfs mount succeed after a mkfs from a different FS.
3246 * So, we need to add a special mount option to scan for
3247 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3249 for (i
= 0; i
< 1; i
++) {
3250 ret
= btrfs_read_dev_one_super(bdev
, i
, &bh
);
3254 super
= (struct btrfs_super_block
*)bh
->b_data
;
3256 if (!latest
|| btrfs_super_generation(super
) > transid
) {
3259 transid
= btrfs_super_generation(super
);
3266 return ERR_PTR(ret
);
3272 * this should be called twice, once with wait == 0 and
3273 * once with wait == 1. When wait == 0 is done, all the buffer heads
3274 * we write are pinned.
3276 * They are released when wait == 1 is done.
3277 * max_mirrors must be the same for both runs, and it indicates how
3278 * many supers on this one device should be written.
3280 * max_mirrors == 0 means to write them all.
3282 static int write_dev_supers(struct btrfs_device
*device
,
3283 struct btrfs_super_block
*sb
,
3284 int do_barriers
, int wait
, int max_mirrors
)
3286 struct buffer_head
*bh
;
3293 if (max_mirrors
== 0)
3294 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3296 for (i
= 0; i
< max_mirrors
; i
++) {
3297 bytenr
= btrfs_sb_offset(i
);
3298 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3299 device
->commit_total_bytes
)
3303 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
3304 BTRFS_SUPER_INFO_SIZE
);
3310 if (!buffer_uptodate(bh
))
3313 /* drop our reference */
3316 /* drop the reference from the wait == 0 run */
3320 btrfs_set_super_bytenr(sb
, bytenr
);
3323 crc
= btrfs_csum_data((char *)sb
+
3324 BTRFS_CSUM_SIZE
, crc
,
3325 BTRFS_SUPER_INFO_SIZE
-
3327 btrfs_csum_final(crc
, sb
->csum
);
3330 * one reference for us, and we leave it for the
3333 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
3334 BTRFS_SUPER_INFO_SIZE
);
3336 btrfs_err(device
->dev_root
->fs_info
,
3337 "couldn't get super buffer head for bytenr %llu",
3343 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
3345 /* one reference for submit_bh */
3348 set_buffer_uptodate(bh
);
3350 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
3351 bh
->b_private
= device
;
3355 * we fua the first super. The others we allow
3359 ret
= btrfsic_submit_bh(REQ_OP_WRITE
, WRITE_FUA
, bh
);
3361 ret
= btrfsic_submit_bh(REQ_OP_WRITE
, WRITE_SYNC
, bh
);
3365 return errors
< i
? 0 : -1;
3369 * endio for the write_dev_flush, this will wake anyone waiting
3370 * for the barrier when it is done
3372 static void btrfs_end_empty_barrier(struct bio
*bio
)
3374 if (bio
->bi_private
)
3375 complete(bio
->bi_private
);
3380 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3381 * sent down. With wait == 1, it waits for the previous flush.
3383 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3386 static int write_dev_flush(struct btrfs_device
*device
, int wait
)
3391 if (device
->nobarriers
)
3395 bio
= device
->flush_bio
;
3399 wait_for_completion(&device
->flush_wait
);
3401 if (bio
->bi_error
) {
3402 ret
= bio
->bi_error
;
3403 btrfs_dev_stat_inc_and_print(device
,
3404 BTRFS_DEV_STAT_FLUSH_ERRS
);
3407 /* drop the reference from the wait == 0 run */
3409 device
->flush_bio
= NULL
;
3415 * one reference for us, and we leave it for the
3418 device
->flush_bio
= NULL
;
3419 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 0);
3423 bio
->bi_end_io
= btrfs_end_empty_barrier
;
3424 bio
->bi_bdev
= device
->bdev
;
3425 bio_set_op_attrs(bio
, REQ_OP_WRITE
, WRITE_FLUSH
);
3426 init_completion(&device
->flush_wait
);
3427 bio
->bi_private
= &device
->flush_wait
;
3428 device
->flush_bio
= bio
;
3431 btrfsic_submit_bio(bio
);
3437 * send an empty flush down to each device in parallel,
3438 * then wait for them
3440 static int barrier_all_devices(struct btrfs_fs_info
*info
)
3442 struct list_head
*head
;
3443 struct btrfs_device
*dev
;
3444 int errors_send
= 0;
3445 int errors_wait
= 0;
3448 /* send down all the barriers */
3449 head
= &info
->fs_devices
->devices
;
3450 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3457 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3460 ret
= write_dev_flush(dev
, 0);
3465 /* wait for all the barriers */
3466 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3473 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3476 ret
= write_dev_flush(dev
, 1);
3480 if (errors_send
> info
->num_tolerated_disk_barrier_failures
||
3481 errors_wait
> info
->num_tolerated_disk_barrier_failures
)
3486 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags
)
3489 int min_tolerated
= INT_MAX
;
3491 if ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 ||
3492 (flags
& BTRFS_AVAIL_ALLOC_BIT_SINGLE
))
3493 min_tolerated
= min(min_tolerated
,
3494 btrfs_raid_array
[BTRFS_RAID_SINGLE
].
3495 tolerated_failures
);
3497 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
3498 if (raid_type
== BTRFS_RAID_SINGLE
)
3500 if (!(flags
& btrfs_raid_group
[raid_type
]))
3502 min_tolerated
= min(min_tolerated
,
3503 btrfs_raid_array
[raid_type
].
3504 tolerated_failures
);
3507 if (min_tolerated
== INT_MAX
) {
3508 pr_warn("BTRFS: unknown raid flag: %llu", flags
);
3512 return min_tolerated
;
3515 int btrfs_calc_num_tolerated_disk_barrier_failures(
3516 struct btrfs_fs_info
*fs_info
)
3518 struct btrfs_ioctl_space_info space
;
3519 struct btrfs_space_info
*sinfo
;
3520 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
3521 BTRFS_BLOCK_GROUP_SYSTEM
,
3522 BTRFS_BLOCK_GROUP_METADATA
,
3523 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
3526 int num_tolerated_disk_barrier_failures
=
3527 (int)fs_info
->fs_devices
->num_devices
;
3529 for (i
= 0; i
< ARRAY_SIZE(types
); i
++) {
3530 struct btrfs_space_info
*tmp
;
3534 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
, list
) {
3535 if (tmp
->flags
== types
[i
]) {
3545 down_read(&sinfo
->groups_sem
);
3546 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3549 if (list_empty(&sinfo
->block_groups
[c
]))
3552 btrfs_get_block_group_info(&sinfo
->block_groups
[c
],
3554 if (space
.total_bytes
== 0 || space
.used_bytes
== 0)
3556 flags
= space
.flags
;
3558 num_tolerated_disk_barrier_failures
= min(
3559 num_tolerated_disk_barrier_failures
,
3560 btrfs_get_num_tolerated_disk_barrier_failures(
3563 up_read(&sinfo
->groups_sem
);
3566 return num_tolerated_disk_barrier_failures
;
3569 static int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
3571 struct list_head
*head
;
3572 struct btrfs_device
*dev
;
3573 struct btrfs_super_block
*sb
;
3574 struct btrfs_dev_item
*dev_item
;
3578 int total_errors
= 0;
3581 do_barriers
= !btrfs_test_opt(root
->fs_info
, NOBARRIER
);
3582 backup_super_roots(root
->fs_info
);
3584 sb
= root
->fs_info
->super_for_commit
;
3585 dev_item
= &sb
->dev_item
;
3587 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3588 head
= &root
->fs_info
->fs_devices
->devices
;
3589 max_errors
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
3592 ret
= barrier_all_devices(root
->fs_info
);
3595 &root
->fs_info
->fs_devices
->device_list_mutex
);
3596 btrfs_handle_fs_error(root
->fs_info
, ret
,
3597 "errors while submitting device barriers.");
3602 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3607 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3610 btrfs_set_stack_device_generation(dev_item
, 0);
3611 btrfs_set_stack_device_type(dev_item
, dev
->type
);
3612 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
3613 btrfs_set_stack_device_total_bytes(dev_item
,
3614 dev
->commit_total_bytes
);
3615 btrfs_set_stack_device_bytes_used(dev_item
,
3616 dev
->commit_bytes_used
);
3617 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
3618 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
3619 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
3620 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
3621 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
3623 flags
= btrfs_super_flags(sb
);
3624 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
3626 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
3630 if (total_errors
> max_errors
) {
3631 btrfs_err(root
->fs_info
, "%d errors while writing supers",
3633 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3635 /* FUA is masked off if unsupported and can't be the reason */
3636 btrfs_handle_fs_error(root
->fs_info
, -EIO
,
3637 "%d errors while writing supers", total_errors
);
3642 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3645 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3648 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
3652 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3653 if (total_errors
> max_errors
) {
3654 btrfs_handle_fs_error(root
->fs_info
, -EIO
,
3655 "%d errors while writing supers", total_errors
);
3661 int write_ctree_super(struct btrfs_trans_handle
*trans
,
3662 struct btrfs_root
*root
, int max_mirrors
)
3664 return write_all_supers(root
, max_mirrors
);
3667 /* Drop a fs root from the radix tree and free it. */
3668 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info
*fs_info
,
3669 struct btrfs_root
*root
)
3671 spin_lock(&fs_info
->fs_roots_radix_lock
);
3672 radix_tree_delete(&fs_info
->fs_roots_radix
,
3673 (unsigned long)root
->root_key
.objectid
);
3674 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3676 if (btrfs_root_refs(&root
->root_item
) == 0)
3677 synchronize_srcu(&fs_info
->subvol_srcu
);
3679 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
3680 btrfs_free_log(NULL
, root
);
3681 if (root
->reloc_root
) {
3682 free_extent_buffer(root
->reloc_root
->node
);
3683 free_extent_buffer(root
->reloc_root
->commit_root
);
3684 btrfs_put_fs_root(root
->reloc_root
);
3685 root
->reloc_root
= NULL
;
3689 if (root
->free_ino_pinned
)
3690 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
3691 if (root
->free_ino_ctl
)
3692 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
3696 static void free_fs_root(struct btrfs_root
*root
)
3698 iput(root
->ino_cache_inode
);
3699 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
3700 btrfs_free_block_rsv(root
, root
->orphan_block_rsv
);
3701 root
->orphan_block_rsv
= NULL
;
3703 free_anon_bdev(root
->anon_dev
);
3704 if (root
->subv_writers
)
3705 btrfs_free_subvolume_writers(root
->subv_writers
);
3706 free_extent_buffer(root
->node
);
3707 free_extent_buffer(root
->commit_root
);
3708 kfree(root
->free_ino_ctl
);
3709 kfree(root
->free_ino_pinned
);
3711 btrfs_put_fs_root(root
);
3714 void btrfs_free_fs_root(struct btrfs_root
*root
)
3719 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
3721 u64 root_objectid
= 0;
3722 struct btrfs_root
*gang
[8];
3725 unsigned int ret
= 0;
3729 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
3730 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
3731 (void **)gang
, root_objectid
,
3734 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3737 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
3739 for (i
= 0; i
< ret
; i
++) {
3740 /* Avoid to grab roots in dead_roots */
3741 if (btrfs_root_refs(&gang
[i
]->root_item
) == 0) {
3745 /* grab all the search result for later use */
3746 gang
[i
] = btrfs_grab_fs_root(gang
[i
]);
3748 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3750 for (i
= 0; i
< ret
; i
++) {
3753 root_objectid
= gang
[i
]->root_key
.objectid
;
3754 err
= btrfs_orphan_cleanup(gang
[i
]);
3757 btrfs_put_fs_root(gang
[i
]);
3762 /* release the uncleaned roots due to error */
3763 for (; i
< ret
; i
++) {
3765 btrfs_put_fs_root(gang
[i
]);
3770 int btrfs_commit_super(struct btrfs_root
*root
)
3772 struct btrfs_trans_handle
*trans
;
3774 mutex_lock(&root
->fs_info
->cleaner_mutex
);
3775 btrfs_run_delayed_iputs(root
);
3776 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
3777 wake_up_process(root
->fs_info
->cleaner_kthread
);
3779 /* wait until ongoing cleanup work done */
3780 down_write(&root
->fs_info
->cleanup_work_sem
);
3781 up_write(&root
->fs_info
->cleanup_work_sem
);
3783 trans
= btrfs_join_transaction(root
);
3785 return PTR_ERR(trans
);
3786 return btrfs_commit_transaction(trans
, root
);
3789 void close_ctree(struct btrfs_root
*root
)
3791 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3794 set_bit(BTRFS_FS_CLOSING_START
, &fs_info
->flags
);
3796 /* wait for the qgroup rescan worker to stop */
3797 btrfs_qgroup_wait_for_completion(fs_info
, false);
3799 /* wait for the uuid_scan task to finish */
3800 down(&fs_info
->uuid_tree_rescan_sem
);
3801 /* avoid complains from lockdep et al., set sem back to initial state */
3802 up(&fs_info
->uuid_tree_rescan_sem
);
3804 /* pause restriper - we want to resume on mount */
3805 btrfs_pause_balance(fs_info
);
3807 btrfs_dev_replace_suspend_for_unmount(fs_info
);
3809 btrfs_scrub_cancel(fs_info
);
3811 /* wait for any defraggers to finish */
3812 wait_event(fs_info
->transaction_wait
,
3813 (atomic_read(&fs_info
->defrag_running
) == 0));
3815 /* clear out the rbtree of defraggable inodes */
3816 btrfs_cleanup_defrag_inodes(fs_info
);
3818 cancel_work_sync(&fs_info
->async_reclaim_work
);
3820 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
3822 * If the cleaner thread is stopped and there are
3823 * block groups queued for removal, the deletion will be
3824 * skipped when we quit the cleaner thread.
3826 btrfs_delete_unused_bgs(root
->fs_info
);
3828 ret
= btrfs_commit_super(root
);
3830 btrfs_err(fs_info
, "commit super ret %d", ret
);
3833 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3834 btrfs_error_commit_super(root
);
3836 kthread_stop(fs_info
->transaction_kthread
);
3837 kthread_stop(fs_info
->cleaner_kthread
);
3839 set_bit(BTRFS_FS_CLOSING_DONE
, &fs_info
->flags
);
3841 btrfs_free_qgroup_config(fs_info
);
3843 if (percpu_counter_sum(&fs_info
->delalloc_bytes
)) {
3844 btrfs_info(fs_info
, "at unmount delalloc count %lld",
3845 percpu_counter_sum(&fs_info
->delalloc_bytes
));
3848 btrfs_sysfs_remove_mounted(fs_info
);
3849 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3851 btrfs_free_fs_roots(fs_info
);
3853 btrfs_put_block_group_cache(fs_info
);
3855 btrfs_free_block_groups(fs_info
);
3858 * we must make sure there is not any read request to
3859 * submit after we stopping all workers.
3861 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3862 btrfs_stop_all_workers(fs_info
);
3864 clear_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
3865 free_root_pointers(fs_info
, 1);
3867 iput(fs_info
->btree_inode
);
3869 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3870 if (btrfs_test_opt(root
->fs_info
, CHECK_INTEGRITY
))
3871 btrfsic_unmount(root
, fs_info
->fs_devices
);
3874 btrfs_close_devices(fs_info
->fs_devices
);
3875 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3877 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3878 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3879 percpu_counter_destroy(&fs_info
->bio_counter
);
3880 bdi_destroy(&fs_info
->bdi
);
3881 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3883 btrfs_free_stripe_hash_table(fs_info
);
3885 __btrfs_free_block_rsv(root
->orphan_block_rsv
);
3886 root
->orphan_block_rsv
= NULL
;
3889 while (!list_empty(&fs_info
->pinned_chunks
)) {
3890 struct extent_map
*em
;
3892 em
= list_first_entry(&fs_info
->pinned_chunks
,
3893 struct extent_map
, list
);
3894 list_del_init(&em
->list
);
3895 free_extent_map(em
);
3897 unlock_chunks(root
);
3900 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
,
3904 struct inode
*btree_inode
= buf
->pages
[0]->mapping
->host
;
3906 ret
= extent_buffer_uptodate(buf
);
3910 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
3911 parent_transid
, atomic
);
3917 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
3919 struct btrfs_root
*root
;
3920 u64 transid
= btrfs_header_generation(buf
);
3923 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3925 * This is a fast path so only do this check if we have sanity tests
3926 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3927 * outside of the sanity tests.
3929 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY
, &buf
->bflags
)))
3932 root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3933 btrfs_assert_tree_locked(buf
);
3934 if (transid
!= root
->fs_info
->generation
)
3935 WARN(1, KERN_CRIT
"btrfs transid mismatch buffer %llu, found %llu running %llu\n",
3936 buf
->start
, transid
, root
->fs_info
->generation
);
3937 was_dirty
= set_extent_buffer_dirty(buf
);
3939 __percpu_counter_add(&root
->fs_info
->dirty_metadata_bytes
,
3941 root
->fs_info
->dirty_metadata_batch
);
3942 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3944 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3945 * but item data not updated.
3946 * So here we should only check item pointers, not item data.
3948 if (btrfs_header_level(buf
) == 0 &&
3949 btrfs_check_leaf_relaxed(root
, buf
)) {
3950 btrfs_print_leaf(root
, buf
);
3956 static void __btrfs_btree_balance_dirty(struct btrfs_root
*root
,
3960 * looks as though older kernels can get into trouble with
3961 * this code, they end up stuck in balance_dirty_pages forever
3965 if (current
->flags
& PF_MEMALLOC
)
3969 btrfs_balance_delayed_items(root
);
3971 ret
= __percpu_counter_compare(&root
->fs_info
->dirty_metadata_bytes
,
3972 BTRFS_DIRTY_METADATA_THRESH
,
3973 root
->fs_info
->dirty_metadata_batch
);
3975 balance_dirty_pages_ratelimited(
3976 root
->fs_info
->btree_inode
->i_mapping
);
3980 void btrfs_btree_balance_dirty(struct btrfs_root
*root
)
3982 __btrfs_btree_balance_dirty(root
, 1);
3985 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root
*root
)
3987 __btrfs_btree_balance_dirty(root
, 0);
3990 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
3992 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3993 return btree_read_extent_buffer_pages(root
, buf
, parent_transid
);
3996 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
3999 struct btrfs_super_block
*sb
= fs_info
->super_copy
;
4000 u64 nodesize
= btrfs_super_nodesize(sb
);
4001 u64 sectorsize
= btrfs_super_sectorsize(sb
);
4004 if (btrfs_super_magic(sb
) != BTRFS_MAGIC
) {
4005 btrfs_err(fs_info
, "no valid FS found");
4008 if (btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
) {
4009 btrfs_err(fs_info
, "unrecognized or unsupported super flag: %llu",
4010 btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
);
4013 if (btrfs_super_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
4014 btrfs_err(fs_info
, "tree_root level too big: %d >= %d",
4015 btrfs_super_root_level(sb
), BTRFS_MAX_LEVEL
);
4018 if (btrfs_super_chunk_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
4019 btrfs_err(fs_info
, "chunk_root level too big: %d >= %d",
4020 btrfs_super_chunk_root_level(sb
), BTRFS_MAX_LEVEL
);
4023 if (btrfs_super_log_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
4024 btrfs_err(fs_info
, "log_root level too big: %d >= %d",
4025 btrfs_super_log_root_level(sb
), BTRFS_MAX_LEVEL
);
4030 * Check sectorsize and nodesize first, other check will need it.
4031 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4033 if (!is_power_of_2(sectorsize
) || sectorsize
< 4096 ||
4034 sectorsize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
4035 btrfs_err(fs_info
, "invalid sectorsize %llu", sectorsize
);
4038 /* Only PAGE SIZE is supported yet */
4039 if (sectorsize
!= PAGE_SIZE
) {
4041 "sectorsize %llu not supported yet, only support %lu",
4042 sectorsize
, PAGE_SIZE
);
4045 if (!is_power_of_2(nodesize
) || nodesize
< sectorsize
||
4046 nodesize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
4047 btrfs_err(fs_info
, "invalid nodesize %llu", nodesize
);
4050 if (nodesize
!= le32_to_cpu(sb
->__unused_leafsize
)) {
4051 btrfs_err(fs_info
, "invalid leafsize %u, should be %llu",
4052 le32_to_cpu(sb
->__unused_leafsize
), nodesize
);
4056 /* Root alignment check */
4057 if (!IS_ALIGNED(btrfs_super_root(sb
), sectorsize
)) {
4058 btrfs_warn(fs_info
, "tree_root block unaligned: %llu",
4059 btrfs_super_root(sb
));
4062 if (!IS_ALIGNED(btrfs_super_chunk_root(sb
), sectorsize
)) {
4063 btrfs_warn(fs_info
, "chunk_root block unaligned: %llu",
4064 btrfs_super_chunk_root(sb
));
4067 if (!IS_ALIGNED(btrfs_super_log_root(sb
), sectorsize
)) {
4068 btrfs_warn(fs_info
, "log_root block unaligned: %llu",
4069 btrfs_super_log_root(sb
));
4073 if (memcmp(fs_info
->fsid
, sb
->dev_item
.fsid
, BTRFS_UUID_SIZE
) != 0) {
4075 "dev_item UUID does not match fsid: %pU != %pU",
4076 fs_info
->fsid
, sb
->dev_item
.fsid
);
4081 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4084 if (btrfs_super_bytes_used(sb
) < 6 * btrfs_super_nodesize(sb
)) {
4085 btrfs_err(fs_info
, "bytes_used is too small %llu",
4086 btrfs_super_bytes_used(sb
));
4089 if (!is_power_of_2(btrfs_super_stripesize(sb
))) {
4090 btrfs_err(fs_info
, "invalid stripesize %u",
4091 btrfs_super_stripesize(sb
));
4094 if (btrfs_super_num_devices(sb
) > (1UL << 31))
4095 btrfs_warn(fs_info
, "suspicious number of devices: %llu",
4096 btrfs_super_num_devices(sb
));
4097 if (btrfs_super_num_devices(sb
) == 0) {
4098 btrfs_err(fs_info
, "number of devices is 0");
4102 if (btrfs_super_bytenr(sb
) != BTRFS_SUPER_INFO_OFFSET
) {
4103 btrfs_err(fs_info
, "super offset mismatch %llu != %u",
4104 btrfs_super_bytenr(sb
), BTRFS_SUPER_INFO_OFFSET
);
4109 * Obvious sys_chunk_array corruptions, it must hold at least one key
4112 if (btrfs_super_sys_array_size(sb
) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4113 btrfs_err(fs_info
, "system chunk array too big %u > %u",
4114 btrfs_super_sys_array_size(sb
),
4115 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
);
4118 if (btrfs_super_sys_array_size(sb
) < sizeof(struct btrfs_disk_key
)
4119 + sizeof(struct btrfs_chunk
)) {
4120 btrfs_err(fs_info
, "system chunk array too small %u < %zu",
4121 btrfs_super_sys_array_size(sb
),
4122 sizeof(struct btrfs_disk_key
)
4123 + sizeof(struct btrfs_chunk
));
4128 * The generation is a global counter, we'll trust it more than the others
4129 * but it's still possible that it's the one that's wrong.
4131 if (btrfs_super_generation(sb
) < btrfs_super_chunk_root_generation(sb
))
4133 "suspicious: generation < chunk_root_generation: %llu < %llu",
4134 btrfs_super_generation(sb
),
4135 btrfs_super_chunk_root_generation(sb
));
4136 if (btrfs_super_generation(sb
) < btrfs_super_cache_generation(sb
)
4137 && btrfs_super_cache_generation(sb
) != (u64
)-1)
4139 "suspicious: generation < cache_generation: %llu < %llu",
4140 btrfs_super_generation(sb
),
4141 btrfs_super_cache_generation(sb
));
4146 static void btrfs_error_commit_super(struct btrfs_root
*root
)
4148 mutex_lock(&root
->fs_info
->cleaner_mutex
);
4149 btrfs_run_delayed_iputs(root
);
4150 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
4152 down_write(&root
->fs_info
->cleanup_work_sem
);
4153 up_write(&root
->fs_info
->cleanup_work_sem
);
4155 /* cleanup FS via transaction */
4156 btrfs_cleanup_transaction(root
);
4159 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
4161 struct btrfs_ordered_extent
*ordered
;
4163 spin_lock(&root
->ordered_extent_lock
);
4165 * This will just short circuit the ordered completion stuff which will
4166 * make sure the ordered extent gets properly cleaned up.
4168 list_for_each_entry(ordered
, &root
->ordered_extents
,
4170 set_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
);
4171 spin_unlock(&root
->ordered_extent_lock
);
4174 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info
*fs_info
)
4176 struct btrfs_root
*root
;
4177 struct list_head splice
;
4179 INIT_LIST_HEAD(&splice
);
4181 spin_lock(&fs_info
->ordered_root_lock
);
4182 list_splice_init(&fs_info
->ordered_roots
, &splice
);
4183 while (!list_empty(&splice
)) {
4184 root
= list_first_entry(&splice
, struct btrfs_root
,
4186 list_move_tail(&root
->ordered_root
,
4187 &fs_info
->ordered_roots
);
4189 spin_unlock(&fs_info
->ordered_root_lock
);
4190 btrfs_destroy_ordered_extents(root
);
4193 spin_lock(&fs_info
->ordered_root_lock
);
4195 spin_unlock(&fs_info
->ordered_root_lock
);
4198 * We need this here because if we've been flipped read-only we won't
4199 * get sync() from the umount, so we need to make sure any ordered
4200 * extents that haven't had their dirty pages IO start writeout yet
4201 * actually get run and error out properly.
4203 btrfs_wait_ordered_roots(fs_info
, -1, 0, (u64
)-1);
4206 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
4207 struct btrfs_root
*root
)
4209 struct rb_node
*node
;
4210 struct btrfs_delayed_ref_root
*delayed_refs
;
4211 struct btrfs_delayed_ref_node
*ref
;
4214 delayed_refs
= &trans
->delayed_refs
;
4216 spin_lock(&delayed_refs
->lock
);
4217 if (atomic_read(&delayed_refs
->num_entries
) == 0) {
4218 spin_unlock(&delayed_refs
->lock
);
4219 btrfs_info(root
->fs_info
, "delayed_refs has NO entry");
4223 while ((node
= rb_first(&delayed_refs
->href_root
)) != NULL
) {
4224 struct btrfs_delayed_ref_head
*head
;
4225 struct btrfs_delayed_ref_node
*tmp
;
4226 bool pin_bytes
= false;
4228 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
4230 if (!mutex_trylock(&head
->mutex
)) {
4231 atomic_inc(&head
->node
.refs
);
4232 spin_unlock(&delayed_refs
->lock
);
4234 mutex_lock(&head
->mutex
);
4235 mutex_unlock(&head
->mutex
);
4236 btrfs_put_delayed_ref(&head
->node
);
4237 spin_lock(&delayed_refs
->lock
);
4240 spin_lock(&head
->lock
);
4241 list_for_each_entry_safe_reverse(ref
, tmp
, &head
->ref_list
,
4244 list_del(&ref
->list
);
4245 atomic_dec(&delayed_refs
->num_entries
);
4246 btrfs_put_delayed_ref(ref
);
4248 if (head
->must_insert_reserved
)
4250 btrfs_free_delayed_extent_op(head
->extent_op
);
4251 delayed_refs
->num_heads
--;
4252 if (head
->processing
== 0)
4253 delayed_refs
->num_heads_ready
--;
4254 atomic_dec(&delayed_refs
->num_entries
);
4255 head
->node
.in_tree
= 0;
4256 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
4257 spin_unlock(&head
->lock
);
4258 spin_unlock(&delayed_refs
->lock
);
4259 mutex_unlock(&head
->mutex
);
4262 btrfs_pin_extent(root
, head
->node
.bytenr
,
4263 head
->node
.num_bytes
, 1);
4264 btrfs_put_delayed_ref(&head
->node
);
4266 spin_lock(&delayed_refs
->lock
);
4269 spin_unlock(&delayed_refs
->lock
);
4274 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
4276 struct btrfs_inode
*btrfs_inode
;
4277 struct list_head splice
;
4279 INIT_LIST_HEAD(&splice
);
4281 spin_lock(&root
->delalloc_lock
);
4282 list_splice_init(&root
->delalloc_inodes
, &splice
);
4284 while (!list_empty(&splice
)) {
4285 btrfs_inode
= list_first_entry(&splice
, struct btrfs_inode
,
4288 list_del_init(&btrfs_inode
->delalloc_inodes
);
4289 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
4290 &btrfs_inode
->runtime_flags
);
4291 spin_unlock(&root
->delalloc_lock
);
4293 btrfs_invalidate_inodes(btrfs_inode
->root
);
4295 spin_lock(&root
->delalloc_lock
);
4298 spin_unlock(&root
->delalloc_lock
);
4301 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info
*fs_info
)
4303 struct btrfs_root
*root
;
4304 struct list_head splice
;
4306 INIT_LIST_HEAD(&splice
);
4308 spin_lock(&fs_info
->delalloc_root_lock
);
4309 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
4310 while (!list_empty(&splice
)) {
4311 root
= list_first_entry(&splice
, struct btrfs_root
,
4313 list_del_init(&root
->delalloc_root
);
4314 root
= btrfs_grab_fs_root(root
);
4316 spin_unlock(&fs_info
->delalloc_root_lock
);
4318 btrfs_destroy_delalloc_inodes(root
);
4319 btrfs_put_fs_root(root
);
4321 spin_lock(&fs_info
->delalloc_root_lock
);
4323 spin_unlock(&fs_info
->delalloc_root_lock
);
4326 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
4327 struct extent_io_tree
*dirty_pages
,
4331 struct extent_buffer
*eb
;
4336 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
4341 clear_extent_bits(dirty_pages
, start
, end
, mark
);
4342 while (start
<= end
) {
4343 eb
= btrfs_find_tree_block(root
->fs_info
, start
);
4344 start
+= root
->nodesize
;
4347 wait_on_extent_buffer_writeback(eb
);
4349 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
4351 clear_extent_buffer_dirty(eb
);
4352 free_extent_buffer_stale(eb
);
4359 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
4360 struct extent_io_tree
*pinned_extents
)
4362 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4363 struct extent_io_tree
*unpin
;
4369 unpin
= pinned_extents
;
4373 * The btrfs_finish_extent_commit() may get the same range as
4374 * ours between find_first_extent_bit and clear_extent_dirty.
4375 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4376 * the same extent range.
4378 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
4379 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4380 EXTENT_DIRTY
, NULL
);
4382 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
4386 clear_extent_dirty(unpin
, start
, end
);
4387 btrfs_error_unpin_extent_range(root
, start
, end
);
4388 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
4393 if (unpin
== &fs_info
->freed_extents
[0])
4394 unpin
= &fs_info
->freed_extents
[1];
4396 unpin
= &fs_info
->freed_extents
[0];
4404 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache
*cache
)
4406 struct inode
*inode
;
4408 inode
= cache
->io_ctl
.inode
;
4410 invalidate_inode_pages2(inode
->i_mapping
);
4411 BTRFS_I(inode
)->generation
= 0;
4412 cache
->io_ctl
.inode
= NULL
;
4415 btrfs_put_block_group(cache
);
4418 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction
*cur_trans
,
4419 struct btrfs_root
*root
)
4421 struct btrfs_block_group_cache
*cache
;
4423 spin_lock(&cur_trans
->dirty_bgs_lock
);
4424 while (!list_empty(&cur_trans
->dirty_bgs
)) {
4425 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
4426 struct btrfs_block_group_cache
,
4429 btrfs_err(root
->fs_info
,
4430 "orphan block group dirty_bgs list");
4431 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4435 if (!list_empty(&cache
->io_list
)) {
4436 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4437 list_del_init(&cache
->io_list
);
4438 btrfs_cleanup_bg_io(cache
);
4439 spin_lock(&cur_trans
->dirty_bgs_lock
);
4442 list_del_init(&cache
->dirty_list
);
4443 spin_lock(&cache
->lock
);
4444 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4445 spin_unlock(&cache
->lock
);
4447 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4448 btrfs_put_block_group(cache
);
4449 spin_lock(&cur_trans
->dirty_bgs_lock
);
4451 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4453 while (!list_empty(&cur_trans
->io_bgs
)) {
4454 cache
= list_first_entry(&cur_trans
->io_bgs
,
4455 struct btrfs_block_group_cache
,
4458 btrfs_err(root
->fs_info
,
4459 "orphan block group on io_bgs list");
4463 list_del_init(&cache
->io_list
);
4464 spin_lock(&cache
->lock
);
4465 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4466 spin_unlock(&cache
->lock
);
4467 btrfs_cleanup_bg_io(cache
);
4471 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
,
4472 struct btrfs_root
*root
)
4474 btrfs_cleanup_dirty_bgs(cur_trans
, root
);
4475 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
4476 ASSERT(list_empty(&cur_trans
->io_bgs
));
4478 btrfs_destroy_delayed_refs(cur_trans
, root
);
4480 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
4481 wake_up(&root
->fs_info
->transaction_blocked_wait
);
4483 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
4484 wake_up(&root
->fs_info
->transaction_wait
);
4486 btrfs_destroy_delayed_inodes(root
);
4487 btrfs_assert_delayed_root_empty(root
);
4489 btrfs_destroy_marked_extents(root
, &cur_trans
->dirty_pages
,
4491 btrfs_destroy_pinned_extent(root
,
4492 root
->fs_info
->pinned_extents
);
4494 cur_trans
->state
=TRANS_STATE_COMPLETED
;
4495 wake_up(&cur_trans
->commit_wait
);
4498 memset(cur_trans, 0, sizeof(*cur_trans));
4499 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4503 static int btrfs_cleanup_transaction(struct btrfs_root
*root
)
4505 struct btrfs_transaction
*t
;
4507 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
4509 spin_lock(&root
->fs_info
->trans_lock
);
4510 while (!list_empty(&root
->fs_info
->trans_list
)) {
4511 t
= list_first_entry(&root
->fs_info
->trans_list
,
4512 struct btrfs_transaction
, list
);
4513 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
4514 atomic_inc(&t
->use_count
);
4515 spin_unlock(&root
->fs_info
->trans_lock
);
4516 btrfs_wait_for_commit(root
, t
->transid
);
4517 btrfs_put_transaction(t
);
4518 spin_lock(&root
->fs_info
->trans_lock
);
4521 if (t
== root
->fs_info
->running_transaction
) {
4522 t
->state
= TRANS_STATE_COMMIT_DOING
;
4523 spin_unlock(&root
->fs_info
->trans_lock
);
4525 * We wait for 0 num_writers since we don't hold a trans
4526 * handle open currently for this transaction.
4528 wait_event(t
->writer_wait
,
4529 atomic_read(&t
->num_writers
) == 0);
4531 spin_unlock(&root
->fs_info
->trans_lock
);
4533 btrfs_cleanup_one_transaction(t
, root
);
4535 spin_lock(&root
->fs_info
->trans_lock
);
4536 if (t
== root
->fs_info
->running_transaction
)
4537 root
->fs_info
->running_transaction
= NULL
;
4538 list_del_init(&t
->list
);
4539 spin_unlock(&root
->fs_info
->trans_lock
);
4541 btrfs_put_transaction(t
);
4542 trace_btrfs_transaction_commit(root
);
4543 spin_lock(&root
->fs_info
->trans_lock
);
4545 spin_unlock(&root
->fs_info
->trans_lock
);
4546 btrfs_destroy_all_ordered_extents(root
->fs_info
);
4547 btrfs_destroy_delayed_inodes(root
);
4548 btrfs_assert_delayed_root_empty(root
);
4549 btrfs_destroy_pinned_extent(root
, root
->fs_info
->pinned_extents
);
4550 btrfs_destroy_all_delalloc_inodes(root
->fs_info
);
4551 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
4556 static const struct extent_io_ops btree_extent_io_ops
= {
4557 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
4558 .readpage_io_failed_hook
= btree_io_failed_hook
,
4559 .submit_bio_hook
= btree_submit_bio_hook
,
4560 /* note we're sharing with inode.c for the merge bio hook */
4561 .merge_bio_hook
= btrfs_merge_bio_hook
,