ARC: export "abort" for modules
[linux/fpc-iii.git] / fs / btrfs / disk-io.c
blob9d3352fe8dc92c698821bdd26972b4dfe0863c5f
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53 #include "tree-checker.h"
55 #ifdef CONFIG_X86
56 #include <asm/cpufeature.h>
57 #endif
59 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
60 BTRFS_HEADER_FLAG_RELOC |\
61 BTRFS_SUPER_FLAG_ERROR |\
62 BTRFS_SUPER_FLAG_SEEDING |\
63 BTRFS_SUPER_FLAG_METADUMP |\
64 BTRFS_SUPER_FLAG_METADUMP_V2)
66 static const struct extent_io_ops btree_extent_io_ops;
67 static void end_workqueue_fn(struct btrfs_work *work);
68 static void free_fs_root(struct btrfs_root *root);
69 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
70 int read_only);
71 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
72 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
73 struct btrfs_root *root);
74 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
75 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
76 struct extent_io_tree *dirty_pages,
77 int mark);
78 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
79 struct extent_io_tree *pinned_extents);
80 static int btrfs_cleanup_transaction(struct btrfs_root *root);
81 static void btrfs_error_commit_super(struct btrfs_root *root);
84 * btrfs_end_io_wq structs are used to do processing in task context when an IO
85 * is complete. This is used during reads to verify checksums, and it is used
86 * by writes to insert metadata for new file extents after IO is complete.
88 struct btrfs_end_io_wq {
89 struct bio *bio;
90 bio_end_io_t *end_io;
91 void *private;
92 struct btrfs_fs_info *info;
93 int error;
94 enum btrfs_wq_endio_type metadata;
95 struct list_head list;
96 struct btrfs_work work;
99 static struct kmem_cache *btrfs_end_io_wq_cache;
101 int __init btrfs_end_io_wq_init(void)
103 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
104 sizeof(struct btrfs_end_io_wq),
106 SLAB_MEM_SPREAD,
107 NULL);
108 if (!btrfs_end_io_wq_cache)
109 return -ENOMEM;
110 return 0;
113 void btrfs_end_io_wq_exit(void)
115 kmem_cache_destroy(btrfs_end_io_wq_cache);
119 * async submit bios are used to offload expensive checksumming
120 * onto the worker threads. They checksum file and metadata bios
121 * just before they are sent down the IO stack.
123 struct async_submit_bio {
124 struct inode *inode;
125 struct bio *bio;
126 struct list_head list;
127 extent_submit_bio_hook_t *submit_bio_start;
128 extent_submit_bio_hook_t *submit_bio_done;
129 int mirror_num;
130 unsigned long bio_flags;
132 * bio_offset is optional, can be used if the pages in the bio
133 * can't tell us where in the file the bio should go
135 u64 bio_offset;
136 struct btrfs_work work;
137 int error;
141 * Lockdep class keys for extent_buffer->lock's in this root. For a given
142 * eb, the lockdep key is determined by the btrfs_root it belongs to and
143 * the level the eb occupies in the tree.
145 * Different roots are used for different purposes and may nest inside each
146 * other and they require separate keysets. As lockdep keys should be
147 * static, assign keysets according to the purpose of the root as indicated
148 * by btrfs_root->objectid. This ensures that all special purpose roots
149 * have separate keysets.
151 * Lock-nesting across peer nodes is always done with the immediate parent
152 * node locked thus preventing deadlock. As lockdep doesn't know this, use
153 * subclass to avoid triggering lockdep warning in such cases.
155 * The key is set by the readpage_end_io_hook after the buffer has passed
156 * csum validation but before the pages are unlocked. It is also set by
157 * btrfs_init_new_buffer on freshly allocated blocks.
159 * We also add a check to make sure the highest level of the tree is the
160 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
161 * needs update as well.
163 #ifdef CONFIG_DEBUG_LOCK_ALLOC
164 # if BTRFS_MAX_LEVEL != 8
165 # error
166 # endif
168 static struct btrfs_lockdep_keyset {
169 u64 id; /* root objectid */
170 const char *name_stem; /* lock name stem */
171 char names[BTRFS_MAX_LEVEL + 1][20];
172 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
173 } btrfs_lockdep_keysets[] = {
174 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
175 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
176 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
177 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
178 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
179 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
180 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
181 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
182 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
183 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
184 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
185 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
186 { .id = 0, .name_stem = "tree" },
189 void __init btrfs_init_lockdep(void)
191 int i, j;
193 /* initialize lockdep class names */
194 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
195 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
197 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
198 snprintf(ks->names[j], sizeof(ks->names[j]),
199 "btrfs-%s-%02d", ks->name_stem, j);
203 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
204 int level)
206 struct btrfs_lockdep_keyset *ks;
208 BUG_ON(level >= ARRAY_SIZE(ks->keys));
210 /* find the matching keyset, id 0 is the default entry */
211 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
212 if (ks->id == objectid)
213 break;
215 lockdep_set_class_and_name(&eb->lock,
216 &ks->keys[level], ks->names[level]);
219 #endif
222 * extents on the btree inode are pretty simple, there's one extent
223 * that covers the entire device
225 static struct extent_map *btree_get_extent(struct inode *inode,
226 struct page *page, size_t pg_offset, u64 start, u64 len,
227 int create)
229 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
230 struct extent_map *em;
231 int ret;
233 read_lock(&em_tree->lock);
234 em = lookup_extent_mapping(em_tree, start, len);
235 if (em) {
236 em->bdev =
237 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
238 read_unlock(&em_tree->lock);
239 goto out;
241 read_unlock(&em_tree->lock);
243 em = alloc_extent_map();
244 if (!em) {
245 em = ERR_PTR(-ENOMEM);
246 goto out;
248 em->start = 0;
249 em->len = (u64)-1;
250 em->block_len = (u64)-1;
251 em->block_start = 0;
252 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
254 write_lock(&em_tree->lock);
255 ret = add_extent_mapping(em_tree, em, 0);
256 if (ret == -EEXIST) {
257 free_extent_map(em);
258 em = lookup_extent_mapping(em_tree, start, len);
259 if (!em)
260 em = ERR_PTR(-EIO);
261 } else if (ret) {
262 free_extent_map(em);
263 em = ERR_PTR(ret);
265 write_unlock(&em_tree->lock);
267 out:
268 return em;
271 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
273 return btrfs_crc32c(seed, data, len);
276 void btrfs_csum_final(u32 crc, char *result)
278 put_unaligned_le32(~crc, result);
282 * compute the csum for a btree block, and either verify it or write it
283 * into the csum field of the block.
285 static int csum_tree_block(struct btrfs_fs_info *fs_info,
286 struct extent_buffer *buf,
287 int verify)
289 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
290 char *result = NULL;
291 unsigned long len;
292 unsigned long cur_len;
293 unsigned long offset = BTRFS_CSUM_SIZE;
294 char *kaddr;
295 unsigned long map_start;
296 unsigned long map_len;
297 int err;
298 u32 crc = ~(u32)0;
299 unsigned long inline_result;
301 len = buf->len - offset;
302 while (len > 0) {
303 err = map_private_extent_buffer(buf, offset, 32,
304 &kaddr, &map_start, &map_len);
305 if (err)
306 return err;
307 cur_len = min(len, map_len - (offset - map_start));
308 crc = btrfs_csum_data(kaddr + offset - map_start,
309 crc, cur_len);
310 len -= cur_len;
311 offset += cur_len;
313 if (csum_size > sizeof(inline_result)) {
314 result = kzalloc(csum_size, GFP_NOFS);
315 if (!result)
316 return -ENOMEM;
317 } else {
318 result = (char *)&inline_result;
321 btrfs_csum_final(crc, result);
323 if (verify) {
324 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
325 u32 val;
326 u32 found = 0;
327 memcpy(&found, result, csum_size);
329 read_extent_buffer(buf, &val, 0, csum_size);
330 btrfs_warn_rl(fs_info,
331 "%s checksum verify failed on %llu wanted %X found %X level %d",
332 fs_info->sb->s_id, buf->start,
333 val, found, btrfs_header_level(buf));
334 if (result != (char *)&inline_result)
335 kfree(result);
336 return -EUCLEAN;
338 } else {
339 write_extent_buffer(buf, result, 0, csum_size);
341 if (result != (char *)&inline_result)
342 kfree(result);
343 return 0;
347 * we can't consider a given block up to date unless the transid of the
348 * block matches the transid in the parent node's pointer. This is how we
349 * detect blocks that either didn't get written at all or got written
350 * in the wrong place.
352 static int verify_parent_transid(struct extent_io_tree *io_tree,
353 struct extent_buffer *eb, u64 parent_transid,
354 int atomic)
356 struct extent_state *cached_state = NULL;
357 int ret;
358 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
360 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
361 return 0;
363 if (atomic)
364 return -EAGAIN;
366 if (need_lock) {
367 btrfs_tree_read_lock(eb);
368 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
371 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
372 &cached_state);
373 if (extent_buffer_uptodate(eb) &&
374 btrfs_header_generation(eb) == parent_transid) {
375 ret = 0;
376 goto out;
378 btrfs_err_rl(eb->fs_info,
379 "parent transid verify failed on %llu wanted %llu found %llu",
380 eb->start,
381 parent_transid, btrfs_header_generation(eb));
382 ret = 1;
385 * Things reading via commit roots that don't have normal protection,
386 * like send, can have a really old block in cache that may point at a
387 * block that has been freed and re-allocated. So don't clear uptodate
388 * if we find an eb that is under IO (dirty/writeback) because we could
389 * end up reading in the stale data and then writing it back out and
390 * making everybody very sad.
392 if (!extent_buffer_under_io(eb))
393 clear_extent_buffer_uptodate(eb);
394 out:
395 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
396 &cached_state, GFP_NOFS);
397 if (need_lock)
398 btrfs_tree_read_unlock_blocking(eb);
399 return ret;
403 * Return 0 if the superblock checksum type matches the checksum value of that
404 * algorithm. Pass the raw disk superblock data.
406 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
407 char *raw_disk_sb)
409 struct btrfs_super_block *disk_sb =
410 (struct btrfs_super_block *)raw_disk_sb;
411 u16 csum_type = btrfs_super_csum_type(disk_sb);
412 int ret = 0;
414 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
415 u32 crc = ~(u32)0;
416 const int csum_size = sizeof(crc);
417 char result[csum_size];
420 * The super_block structure does not span the whole
421 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
422 * is filled with zeros and is included in the checksum.
424 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
425 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
426 btrfs_csum_final(crc, result);
428 if (memcmp(raw_disk_sb, result, csum_size))
429 ret = 1;
432 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
433 btrfs_err(fs_info, "unsupported checksum algorithm %u",
434 csum_type);
435 ret = 1;
438 return ret;
442 * helper to read a given tree block, doing retries as required when
443 * the checksums don't match and we have alternate mirrors to try.
445 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
446 struct extent_buffer *eb,
447 u64 parent_transid)
449 struct extent_io_tree *io_tree;
450 int failed = 0;
451 int ret;
452 int num_copies = 0;
453 int mirror_num = 0;
454 int failed_mirror = 0;
456 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
457 while (1) {
458 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
459 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
460 btree_get_extent, mirror_num);
461 if (!ret) {
462 if (!verify_parent_transid(io_tree, eb,
463 parent_transid, 0))
464 break;
465 else
466 ret = -EIO;
469 num_copies = btrfs_num_copies(root->fs_info,
470 eb->start, eb->len);
471 if (num_copies == 1)
472 break;
474 if (!failed_mirror) {
475 failed = 1;
476 failed_mirror = eb->read_mirror;
479 mirror_num++;
480 if (mirror_num == failed_mirror)
481 mirror_num++;
483 if (mirror_num > num_copies)
484 break;
487 if (failed && !ret && failed_mirror)
488 repair_eb_io_failure(root, eb, failed_mirror);
490 return ret;
494 * checksum a dirty tree block before IO. This has extra checks to make sure
495 * we only fill in the checksum field in the first page of a multi-page block
498 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
500 u64 start = page_offset(page);
501 u64 found_start;
502 struct extent_buffer *eb;
504 eb = (struct extent_buffer *)page->private;
505 if (page != eb->pages[0])
506 return 0;
508 found_start = btrfs_header_bytenr(eb);
510 * Please do not consolidate these warnings into a single if.
511 * It is useful to know what went wrong.
513 if (WARN_ON(found_start != start))
514 return -EUCLEAN;
515 if (WARN_ON(!PageUptodate(page)))
516 return -EUCLEAN;
518 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
519 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
521 return csum_tree_block(fs_info, eb, 0);
524 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
525 struct extent_buffer *eb)
527 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
528 u8 fsid[BTRFS_UUID_SIZE];
529 int ret = 1;
531 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
532 while (fs_devices) {
533 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
534 ret = 0;
535 break;
537 fs_devices = fs_devices->seed;
539 return ret;
542 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
543 u64 phy_offset, struct page *page,
544 u64 start, u64 end, int mirror)
546 u64 found_start;
547 int found_level;
548 struct extent_buffer *eb;
549 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
550 struct btrfs_fs_info *fs_info = root->fs_info;
551 int ret = 0;
552 int reads_done;
554 if (!page->private)
555 goto out;
557 eb = (struct extent_buffer *)page->private;
559 /* the pending IO might have been the only thing that kept this buffer
560 * in memory. Make sure we have a ref for all this other checks
562 extent_buffer_get(eb);
564 reads_done = atomic_dec_and_test(&eb->io_pages);
565 if (!reads_done)
566 goto err;
568 eb->read_mirror = mirror;
569 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
570 ret = -EIO;
571 goto err;
574 found_start = btrfs_header_bytenr(eb);
575 if (found_start != eb->start) {
576 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
577 found_start, eb->start);
578 ret = -EIO;
579 goto err;
581 if (check_tree_block_fsid(fs_info, eb)) {
582 btrfs_err_rl(fs_info, "bad fsid on block %llu",
583 eb->start);
584 ret = -EIO;
585 goto err;
587 found_level = btrfs_header_level(eb);
588 if (found_level >= BTRFS_MAX_LEVEL) {
589 btrfs_err(fs_info, "bad tree block level %d",
590 (int)btrfs_header_level(eb));
591 ret = -EIO;
592 goto err;
595 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
596 eb, found_level);
598 ret = csum_tree_block(fs_info, eb, 1);
599 if (ret)
600 goto err;
603 * If this is a leaf block and it is corrupt, set the corrupt bit so
604 * that we don't try and read the other copies of this block, just
605 * return -EIO.
607 if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
608 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
609 ret = -EIO;
612 if (found_level > 0 && btrfs_check_node(root, eb))
613 ret = -EIO;
615 if (!ret)
616 set_extent_buffer_uptodate(eb);
617 err:
618 if (reads_done &&
619 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
620 btree_readahead_hook(fs_info, eb, eb->start, ret);
622 if (ret) {
624 * our io error hook is going to dec the io pages
625 * again, we have to make sure it has something
626 * to decrement
628 atomic_inc(&eb->io_pages);
629 clear_extent_buffer_uptodate(eb);
631 free_extent_buffer(eb);
632 out:
633 return ret;
636 static int btree_io_failed_hook(struct page *page, int failed_mirror)
638 struct extent_buffer *eb;
640 eb = (struct extent_buffer *)page->private;
641 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
642 eb->read_mirror = failed_mirror;
643 atomic_dec(&eb->io_pages);
644 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
645 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
646 return -EIO; /* we fixed nothing */
649 static void end_workqueue_bio(struct bio *bio)
651 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
652 struct btrfs_fs_info *fs_info;
653 struct btrfs_workqueue *wq;
654 btrfs_work_func_t func;
656 fs_info = end_io_wq->info;
657 end_io_wq->error = bio->bi_error;
659 if (bio_op(bio) == REQ_OP_WRITE) {
660 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
661 wq = fs_info->endio_meta_write_workers;
662 func = btrfs_endio_meta_write_helper;
663 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
664 wq = fs_info->endio_freespace_worker;
665 func = btrfs_freespace_write_helper;
666 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
667 wq = fs_info->endio_raid56_workers;
668 func = btrfs_endio_raid56_helper;
669 } else {
670 wq = fs_info->endio_write_workers;
671 func = btrfs_endio_write_helper;
673 } else {
674 if (unlikely(end_io_wq->metadata ==
675 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
676 wq = fs_info->endio_repair_workers;
677 func = btrfs_endio_repair_helper;
678 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
679 wq = fs_info->endio_raid56_workers;
680 func = btrfs_endio_raid56_helper;
681 } else if (end_io_wq->metadata) {
682 wq = fs_info->endio_meta_workers;
683 func = btrfs_endio_meta_helper;
684 } else {
685 wq = fs_info->endio_workers;
686 func = btrfs_endio_helper;
690 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
691 btrfs_queue_work(wq, &end_io_wq->work);
694 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
695 enum btrfs_wq_endio_type metadata)
697 struct btrfs_end_io_wq *end_io_wq;
699 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
700 if (!end_io_wq)
701 return -ENOMEM;
703 end_io_wq->private = bio->bi_private;
704 end_io_wq->end_io = bio->bi_end_io;
705 end_io_wq->info = info;
706 end_io_wq->error = 0;
707 end_io_wq->bio = bio;
708 end_io_wq->metadata = metadata;
710 bio->bi_private = end_io_wq;
711 bio->bi_end_io = end_workqueue_bio;
712 return 0;
715 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
717 unsigned long limit = min_t(unsigned long,
718 info->thread_pool_size,
719 info->fs_devices->open_devices);
720 return 256 * limit;
723 static void run_one_async_start(struct btrfs_work *work)
725 struct async_submit_bio *async;
726 int ret;
728 async = container_of(work, struct async_submit_bio, work);
729 ret = async->submit_bio_start(async->inode, async->bio,
730 async->mirror_num, async->bio_flags,
731 async->bio_offset);
732 if (ret)
733 async->error = ret;
736 static void run_one_async_done(struct btrfs_work *work)
738 struct btrfs_fs_info *fs_info;
739 struct async_submit_bio *async;
740 int limit;
742 async = container_of(work, struct async_submit_bio, work);
743 fs_info = BTRFS_I(async->inode)->root->fs_info;
745 limit = btrfs_async_submit_limit(fs_info);
746 limit = limit * 2 / 3;
749 * atomic_dec_return implies a barrier for waitqueue_active
751 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
752 waitqueue_active(&fs_info->async_submit_wait))
753 wake_up(&fs_info->async_submit_wait);
755 /* If an error occurred we just want to clean up the bio and move on */
756 if (async->error) {
757 async->bio->bi_error = async->error;
758 bio_endio(async->bio);
759 return;
762 async->submit_bio_done(async->inode, async->bio, async->mirror_num,
763 async->bio_flags, async->bio_offset);
766 static void run_one_async_free(struct btrfs_work *work)
768 struct async_submit_bio *async;
770 async = container_of(work, struct async_submit_bio, work);
771 kfree(async);
774 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
775 struct bio *bio, int mirror_num,
776 unsigned long bio_flags,
777 u64 bio_offset,
778 extent_submit_bio_hook_t *submit_bio_start,
779 extent_submit_bio_hook_t *submit_bio_done)
781 struct async_submit_bio *async;
783 async = kmalloc(sizeof(*async), GFP_NOFS);
784 if (!async)
785 return -ENOMEM;
787 async->inode = inode;
788 async->bio = bio;
789 async->mirror_num = mirror_num;
790 async->submit_bio_start = submit_bio_start;
791 async->submit_bio_done = submit_bio_done;
793 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
794 run_one_async_done, run_one_async_free);
796 async->bio_flags = bio_flags;
797 async->bio_offset = bio_offset;
799 async->error = 0;
801 atomic_inc(&fs_info->nr_async_submits);
803 if (bio->bi_opf & REQ_SYNC)
804 btrfs_set_work_high_priority(&async->work);
806 btrfs_queue_work(fs_info->workers, &async->work);
808 while (atomic_read(&fs_info->async_submit_draining) &&
809 atomic_read(&fs_info->nr_async_submits)) {
810 wait_event(fs_info->async_submit_wait,
811 (atomic_read(&fs_info->nr_async_submits) == 0));
814 return 0;
817 static int btree_csum_one_bio(struct bio *bio)
819 struct bio_vec *bvec;
820 struct btrfs_root *root;
821 int i, ret = 0;
823 bio_for_each_segment_all(bvec, bio, i) {
824 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
825 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
826 if (ret)
827 break;
830 return ret;
833 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
834 int mirror_num, unsigned long bio_flags,
835 u64 bio_offset)
838 * when we're called for a write, we're already in the async
839 * submission context. Just jump into btrfs_map_bio
841 return btree_csum_one_bio(bio);
844 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
845 int mirror_num, unsigned long bio_flags,
846 u64 bio_offset)
848 int ret;
851 * when we're called for a write, we're already in the async
852 * submission context. Just jump into btrfs_map_bio
854 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
855 if (ret) {
856 bio->bi_error = ret;
857 bio_endio(bio);
859 return ret;
862 static int check_async_write(struct inode *inode, unsigned long bio_flags)
864 if (bio_flags & EXTENT_BIO_TREE_LOG)
865 return 0;
866 #ifdef CONFIG_X86
867 if (static_cpu_has(X86_FEATURE_XMM4_2))
868 return 0;
869 #endif
870 return 1;
873 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
874 int mirror_num, unsigned long bio_flags,
875 u64 bio_offset)
877 int async = check_async_write(inode, bio_flags);
878 int ret;
880 if (bio_op(bio) != REQ_OP_WRITE) {
882 * called for a read, do the setup so that checksum validation
883 * can happen in the async kernel threads
885 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
886 bio, BTRFS_WQ_ENDIO_METADATA);
887 if (ret)
888 goto out_w_error;
889 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
890 } else if (!async) {
891 ret = btree_csum_one_bio(bio);
892 if (ret)
893 goto out_w_error;
894 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
895 } else {
897 * kthread helpers are used to submit writes so that
898 * checksumming can happen in parallel across all CPUs
900 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
901 inode, bio, mirror_num, 0,
902 bio_offset,
903 __btree_submit_bio_start,
904 __btree_submit_bio_done);
907 if (ret)
908 goto out_w_error;
909 return 0;
911 out_w_error:
912 bio->bi_error = ret;
913 bio_endio(bio);
914 return ret;
917 #ifdef CONFIG_MIGRATION
918 static int btree_migratepage(struct address_space *mapping,
919 struct page *newpage, struct page *page,
920 enum migrate_mode mode)
923 * we can't safely write a btree page from here,
924 * we haven't done the locking hook
926 if (PageDirty(page))
927 return -EAGAIN;
929 * Buffers may be managed in a filesystem specific way.
930 * We must have no buffers or drop them.
932 if (page_has_private(page) &&
933 !try_to_release_page(page, GFP_KERNEL))
934 return -EAGAIN;
935 return migrate_page(mapping, newpage, page, mode);
937 #endif
940 static int btree_writepages(struct address_space *mapping,
941 struct writeback_control *wbc)
943 struct btrfs_fs_info *fs_info;
944 int ret;
946 if (wbc->sync_mode == WB_SYNC_NONE) {
948 if (wbc->for_kupdate)
949 return 0;
951 fs_info = BTRFS_I(mapping->host)->root->fs_info;
952 /* this is a bit racy, but that's ok */
953 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
954 BTRFS_DIRTY_METADATA_THRESH,
955 fs_info->dirty_metadata_batch);
956 if (ret < 0)
957 return 0;
959 return btree_write_cache_pages(mapping, wbc);
962 static int btree_readpage(struct file *file, struct page *page)
964 struct extent_io_tree *tree;
965 tree = &BTRFS_I(page->mapping->host)->io_tree;
966 return extent_read_full_page(tree, page, btree_get_extent, 0);
969 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
971 if (PageWriteback(page) || PageDirty(page))
972 return 0;
974 return try_release_extent_buffer(page);
977 static void btree_invalidatepage(struct page *page, unsigned int offset,
978 unsigned int length)
980 struct extent_io_tree *tree;
981 tree = &BTRFS_I(page->mapping->host)->io_tree;
982 extent_invalidatepage(tree, page, offset);
983 btree_releasepage(page, GFP_NOFS);
984 if (PagePrivate(page)) {
985 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
986 "page private not zero on page %llu",
987 (unsigned long long)page_offset(page));
988 ClearPagePrivate(page);
989 set_page_private(page, 0);
990 put_page(page);
994 static int btree_set_page_dirty(struct page *page)
996 #ifdef DEBUG
997 struct extent_buffer *eb;
999 BUG_ON(!PagePrivate(page));
1000 eb = (struct extent_buffer *)page->private;
1001 BUG_ON(!eb);
1002 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1003 BUG_ON(!atomic_read(&eb->refs));
1004 btrfs_assert_tree_locked(eb);
1005 #endif
1006 return __set_page_dirty_nobuffers(page);
1009 static const struct address_space_operations btree_aops = {
1010 .readpage = btree_readpage,
1011 .writepages = btree_writepages,
1012 .releasepage = btree_releasepage,
1013 .invalidatepage = btree_invalidatepage,
1014 #ifdef CONFIG_MIGRATION
1015 .migratepage = btree_migratepage,
1016 #endif
1017 .set_page_dirty = btree_set_page_dirty,
1020 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1022 struct extent_buffer *buf = NULL;
1023 struct inode *btree_inode = root->fs_info->btree_inode;
1025 buf = btrfs_find_create_tree_block(root, bytenr);
1026 if (IS_ERR(buf))
1027 return;
1028 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1029 buf, WAIT_NONE, btree_get_extent, 0);
1030 free_extent_buffer(buf);
1033 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1034 int mirror_num, struct extent_buffer **eb)
1036 struct extent_buffer *buf = NULL;
1037 struct inode *btree_inode = root->fs_info->btree_inode;
1038 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1039 int ret;
1041 buf = btrfs_find_create_tree_block(root, bytenr);
1042 if (IS_ERR(buf))
1043 return 0;
1045 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1047 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1048 btree_get_extent, mirror_num);
1049 if (ret) {
1050 free_extent_buffer(buf);
1051 return ret;
1054 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1055 free_extent_buffer(buf);
1056 return -EIO;
1057 } else if (extent_buffer_uptodate(buf)) {
1058 *eb = buf;
1059 } else {
1060 free_extent_buffer(buf);
1062 return 0;
1065 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1066 u64 bytenr)
1068 return find_extent_buffer(fs_info, bytenr);
1071 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1072 u64 bytenr)
1074 if (btrfs_is_testing(root->fs_info))
1075 return alloc_test_extent_buffer(root->fs_info, bytenr,
1076 root->nodesize);
1077 return alloc_extent_buffer(root->fs_info, bytenr);
1081 int btrfs_write_tree_block(struct extent_buffer *buf)
1083 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1084 buf->start + buf->len - 1);
1087 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1089 return filemap_fdatawait_range(buf->pages[0]->mapping,
1090 buf->start, buf->start + buf->len - 1);
1093 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1094 u64 parent_transid)
1096 struct extent_buffer *buf = NULL;
1097 int ret;
1099 buf = btrfs_find_create_tree_block(root, bytenr);
1100 if (IS_ERR(buf))
1101 return buf;
1103 ret = btree_read_extent_buffer_pages(root, buf, parent_transid);
1104 if (ret) {
1105 free_extent_buffer(buf);
1106 return ERR_PTR(ret);
1108 return buf;
1112 void clean_tree_block(struct btrfs_trans_handle *trans,
1113 struct btrfs_fs_info *fs_info,
1114 struct extent_buffer *buf)
1116 if (btrfs_header_generation(buf) ==
1117 fs_info->running_transaction->transid) {
1118 btrfs_assert_tree_locked(buf);
1120 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1121 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1122 -buf->len,
1123 fs_info->dirty_metadata_batch);
1124 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1125 btrfs_set_lock_blocking(buf);
1126 clear_extent_buffer_dirty(buf);
1131 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1133 struct btrfs_subvolume_writers *writers;
1134 int ret;
1136 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1137 if (!writers)
1138 return ERR_PTR(-ENOMEM);
1140 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1141 if (ret < 0) {
1142 kfree(writers);
1143 return ERR_PTR(ret);
1146 init_waitqueue_head(&writers->wait);
1147 return writers;
1150 static void
1151 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1153 percpu_counter_destroy(&writers->counter);
1154 kfree(writers);
1157 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1158 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1159 u64 objectid)
1161 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1162 root->node = NULL;
1163 root->commit_root = NULL;
1164 root->sectorsize = sectorsize;
1165 root->nodesize = nodesize;
1166 root->stripesize = stripesize;
1167 root->state = 0;
1168 root->orphan_cleanup_state = 0;
1170 root->objectid = objectid;
1171 root->last_trans = 0;
1172 root->highest_objectid = 0;
1173 root->nr_delalloc_inodes = 0;
1174 root->nr_ordered_extents = 0;
1175 root->name = NULL;
1176 root->inode_tree = RB_ROOT;
1177 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1178 root->block_rsv = NULL;
1179 root->orphan_block_rsv = NULL;
1181 INIT_LIST_HEAD(&root->dirty_list);
1182 INIT_LIST_HEAD(&root->root_list);
1183 INIT_LIST_HEAD(&root->delalloc_inodes);
1184 INIT_LIST_HEAD(&root->delalloc_root);
1185 INIT_LIST_HEAD(&root->ordered_extents);
1186 INIT_LIST_HEAD(&root->ordered_root);
1187 INIT_LIST_HEAD(&root->logged_list[0]);
1188 INIT_LIST_HEAD(&root->logged_list[1]);
1189 spin_lock_init(&root->orphan_lock);
1190 spin_lock_init(&root->inode_lock);
1191 spin_lock_init(&root->delalloc_lock);
1192 spin_lock_init(&root->ordered_extent_lock);
1193 spin_lock_init(&root->accounting_lock);
1194 spin_lock_init(&root->log_extents_lock[0]);
1195 spin_lock_init(&root->log_extents_lock[1]);
1196 mutex_init(&root->objectid_mutex);
1197 mutex_init(&root->log_mutex);
1198 mutex_init(&root->ordered_extent_mutex);
1199 mutex_init(&root->delalloc_mutex);
1200 init_waitqueue_head(&root->log_writer_wait);
1201 init_waitqueue_head(&root->log_commit_wait[0]);
1202 init_waitqueue_head(&root->log_commit_wait[1]);
1203 INIT_LIST_HEAD(&root->log_ctxs[0]);
1204 INIT_LIST_HEAD(&root->log_ctxs[1]);
1205 atomic_set(&root->log_commit[0], 0);
1206 atomic_set(&root->log_commit[1], 0);
1207 atomic_set(&root->log_writers, 0);
1208 atomic_set(&root->log_batch, 0);
1209 atomic_set(&root->orphan_inodes, 0);
1210 atomic_set(&root->refs, 1);
1211 atomic_set(&root->will_be_snapshoted, 0);
1212 atomic_set(&root->qgroup_meta_rsv, 0);
1213 root->log_transid = 0;
1214 root->log_transid_committed = -1;
1215 root->last_log_commit = 0;
1216 if (!dummy)
1217 extent_io_tree_init(&root->dirty_log_pages,
1218 fs_info->btree_inode->i_mapping);
1220 memset(&root->root_key, 0, sizeof(root->root_key));
1221 memset(&root->root_item, 0, sizeof(root->root_item));
1222 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1223 if (!dummy)
1224 root->defrag_trans_start = fs_info->generation;
1225 else
1226 root->defrag_trans_start = 0;
1227 root->root_key.objectid = objectid;
1228 root->anon_dev = 0;
1230 spin_lock_init(&root->root_item_lock);
1233 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1234 gfp_t flags)
1236 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1237 if (root)
1238 root->fs_info = fs_info;
1239 return root;
1242 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1243 /* Should only be used by the testing infrastructure */
1244 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
1245 u32 sectorsize, u32 nodesize)
1247 struct btrfs_root *root;
1249 if (!fs_info)
1250 return ERR_PTR(-EINVAL);
1252 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1253 if (!root)
1254 return ERR_PTR(-ENOMEM);
1255 /* We don't use the stripesize in selftest, set it as sectorsize */
1256 __setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
1257 BTRFS_ROOT_TREE_OBJECTID);
1258 root->alloc_bytenr = 0;
1260 return root;
1262 #endif
1264 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1265 struct btrfs_fs_info *fs_info,
1266 u64 objectid)
1268 struct extent_buffer *leaf;
1269 struct btrfs_root *tree_root = fs_info->tree_root;
1270 struct btrfs_root *root;
1271 struct btrfs_key key;
1272 int ret = 0;
1273 uuid_le uuid;
1275 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1276 if (!root)
1277 return ERR_PTR(-ENOMEM);
1279 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1280 tree_root->stripesize, root, fs_info, objectid);
1281 root->root_key.objectid = objectid;
1282 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1283 root->root_key.offset = 0;
1285 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1286 if (IS_ERR(leaf)) {
1287 ret = PTR_ERR(leaf);
1288 leaf = NULL;
1289 goto fail;
1292 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1293 btrfs_set_header_bytenr(leaf, leaf->start);
1294 btrfs_set_header_generation(leaf, trans->transid);
1295 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1296 btrfs_set_header_owner(leaf, objectid);
1297 root->node = leaf;
1299 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1300 BTRFS_FSID_SIZE);
1301 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1302 btrfs_header_chunk_tree_uuid(leaf),
1303 BTRFS_UUID_SIZE);
1304 btrfs_mark_buffer_dirty(leaf);
1306 root->commit_root = btrfs_root_node(root);
1307 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1309 root->root_item.flags = 0;
1310 root->root_item.byte_limit = 0;
1311 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1312 btrfs_set_root_generation(&root->root_item, trans->transid);
1313 btrfs_set_root_level(&root->root_item, 0);
1314 btrfs_set_root_refs(&root->root_item, 1);
1315 btrfs_set_root_used(&root->root_item, leaf->len);
1316 btrfs_set_root_last_snapshot(&root->root_item, 0);
1317 btrfs_set_root_dirid(&root->root_item, 0);
1318 uuid_le_gen(&uuid);
1319 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1320 root->root_item.drop_level = 0;
1322 key.objectid = objectid;
1323 key.type = BTRFS_ROOT_ITEM_KEY;
1324 key.offset = 0;
1325 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1326 if (ret)
1327 goto fail;
1329 btrfs_tree_unlock(leaf);
1331 return root;
1333 fail:
1334 if (leaf) {
1335 btrfs_tree_unlock(leaf);
1336 free_extent_buffer(root->commit_root);
1337 free_extent_buffer(leaf);
1339 kfree(root);
1341 return ERR_PTR(ret);
1344 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1345 struct btrfs_fs_info *fs_info)
1347 struct btrfs_root *root;
1348 struct btrfs_root *tree_root = fs_info->tree_root;
1349 struct extent_buffer *leaf;
1351 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1352 if (!root)
1353 return ERR_PTR(-ENOMEM);
1355 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1356 tree_root->stripesize, root, fs_info,
1357 BTRFS_TREE_LOG_OBJECTID);
1359 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1360 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1361 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1364 * DON'T set REF_COWS for log trees
1366 * log trees do not get reference counted because they go away
1367 * before a real commit is actually done. They do store pointers
1368 * to file data extents, and those reference counts still get
1369 * updated (along with back refs to the log tree).
1372 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1373 NULL, 0, 0, 0);
1374 if (IS_ERR(leaf)) {
1375 kfree(root);
1376 return ERR_CAST(leaf);
1379 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1380 btrfs_set_header_bytenr(leaf, leaf->start);
1381 btrfs_set_header_generation(leaf, trans->transid);
1382 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1383 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1384 root->node = leaf;
1386 write_extent_buffer(root->node, root->fs_info->fsid,
1387 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1388 btrfs_mark_buffer_dirty(root->node);
1389 btrfs_tree_unlock(root->node);
1390 return root;
1393 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1394 struct btrfs_fs_info *fs_info)
1396 struct btrfs_root *log_root;
1398 log_root = alloc_log_tree(trans, fs_info);
1399 if (IS_ERR(log_root))
1400 return PTR_ERR(log_root);
1401 WARN_ON(fs_info->log_root_tree);
1402 fs_info->log_root_tree = log_root;
1403 return 0;
1406 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1407 struct btrfs_root *root)
1409 struct btrfs_root *log_root;
1410 struct btrfs_inode_item *inode_item;
1412 log_root = alloc_log_tree(trans, root->fs_info);
1413 if (IS_ERR(log_root))
1414 return PTR_ERR(log_root);
1416 log_root->last_trans = trans->transid;
1417 log_root->root_key.offset = root->root_key.objectid;
1419 inode_item = &log_root->root_item.inode;
1420 btrfs_set_stack_inode_generation(inode_item, 1);
1421 btrfs_set_stack_inode_size(inode_item, 3);
1422 btrfs_set_stack_inode_nlink(inode_item, 1);
1423 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1424 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1426 btrfs_set_root_node(&log_root->root_item, log_root->node);
1428 WARN_ON(root->log_root);
1429 root->log_root = log_root;
1430 root->log_transid = 0;
1431 root->log_transid_committed = -1;
1432 root->last_log_commit = 0;
1433 return 0;
1436 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1437 struct btrfs_key *key)
1439 struct btrfs_root *root;
1440 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1441 struct btrfs_path *path;
1442 u64 generation;
1443 int ret;
1445 path = btrfs_alloc_path();
1446 if (!path)
1447 return ERR_PTR(-ENOMEM);
1449 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1450 if (!root) {
1451 ret = -ENOMEM;
1452 goto alloc_fail;
1455 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1456 tree_root->stripesize, root, fs_info, key->objectid);
1458 ret = btrfs_find_root(tree_root, key, path,
1459 &root->root_item, &root->root_key);
1460 if (ret) {
1461 if (ret > 0)
1462 ret = -ENOENT;
1463 goto find_fail;
1466 generation = btrfs_root_generation(&root->root_item);
1467 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1468 generation);
1469 if (IS_ERR(root->node)) {
1470 ret = PTR_ERR(root->node);
1471 goto find_fail;
1472 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1473 ret = -EIO;
1474 free_extent_buffer(root->node);
1475 goto find_fail;
1477 root->commit_root = btrfs_root_node(root);
1478 out:
1479 btrfs_free_path(path);
1480 return root;
1482 find_fail:
1483 kfree(root);
1484 alloc_fail:
1485 root = ERR_PTR(ret);
1486 goto out;
1489 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1490 struct btrfs_key *location)
1492 struct btrfs_root *root;
1494 root = btrfs_read_tree_root(tree_root, location);
1495 if (IS_ERR(root))
1496 return root;
1498 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1499 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1500 btrfs_check_and_init_root_item(&root->root_item);
1503 return root;
1506 int btrfs_init_fs_root(struct btrfs_root *root)
1508 int ret;
1509 struct btrfs_subvolume_writers *writers;
1511 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1512 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1513 GFP_NOFS);
1514 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1515 ret = -ENOMEM;
1516 goto fail;
1519 writers = btrfs_alloc_subvolume_writers();
1520 if (IS_ERR(writers)) {
1521 ret = PTR_ERR(writers);
1522 goto fail;
1524 root->subv_writers = writers;
1526 btrfs_init_free_ino_ctl(root);
1527 spin_lock_init(&root->ino_cache_lock);
1528 init_waitqueue_head(&root->ino_cache_wait);
1530 ret = get_anon_bdev(&root->anon_dev);
1531 if (ret)
1532 goto fail;
1534 mutex_lock(&root->objectid_mutex);
1535 ret = btrfs_find_highest_objectid(root,
1536 &root->highest_objectid);
1537 if (ret) {
1538 mutex_unlock(&root->objectid_mutex);
1539 goto fail;
1542 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1544 mutex_unlock(&root->objectid_mutex);
1546 return 0;
1547 fail:
1548 /* the caller is responsible to call free_fs_root */
1549 return ret;
1552 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1553 u64 root_id)
1555 struct btrfs_root *root;
1557 spin_lock(&fs_info->fs_roots_radix_lock);
1558 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1559 (unsigned long)root_id);
1560 spin_unlock(&fs_info->fs_roots_radix_lock);
1561 return root;
1564 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1565 struct btrfs_root *root)
1567 int ret;
1569 ret = radix_tree_preload(GFP_NOFS);
1570 if (ret)
1571 return ret;
1573 spin_lock(&fs_info->fs_roots_radix_lock);
1574 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1575 (unsigned long)root->root_key.objectid,
1576 root);
1577 if (ret == 0)
1578 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1579 spin_unlock(&fs_info->fs_roots_radix_lock);
1580 radix_tree_preload_end();
1582 return ret;
1585 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1586 struct btrfs_key *location,
1587 bool check_ref)
1589 struct btrfs_root *root;
1590 struct btrfs_path *path;
1591 struct btrfs_key key;
1592 int ret;
1594 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1595 return fs_info->tree_root;
1596 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1597 return fs_info->extent_root;
1598 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1599 return fs_info->chunk_root;
1600 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1601 return fs_info->dev_root;
1602 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1603 return fs_info->csum_root;
1604 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1605 return fs_info->quota_root ? fs_info->quota_root :
1606 ERR_PTR(-ENOENT);
1607 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1608 return fs_info->uuid_root ? fs_info->uuid_root :
1609 ERR_PTR(-ENOENT);
1610 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1611 return fs_info->free_space_root ? fs_info->free_space_root :
1612 ERR_PTR(-ENOENT);
1613 again:
1614 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1615 if (root) {
1616 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1617 return ERR_PTR(-ENOENT);
1618 return root;
1621 root = btrfs_read_fs_root(fs_info->tree_root, location);
1622 if (IS_ERR(root))
1623 return root;
1625 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1626 ret = -ENOENT;
1627 goto fail;
1630 ret = btrfs_init_fs_root(root);
1631 if (ret)
1632 goto fail;
1634 path = btrfs_alloc_path();
1635 if (!path) {
1636 ret = -ENOMEM;
1637 goto fail;
1639 key.objectid = BTRFS_ORPHAN_OBJECTID;
1640 key.type = BTRFS_ORPHAN_ITEM_KEY;
1641 key.offset = location->objectid;
1643 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1644 btrfs_free_path(path);
1645 if (ret < 0)
1646 goto fail;
1647 if (ret == 0)
1648 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1650 ret = btrfs_insert_fs_root(fs_info, root);
1651 if (ret) {
1652 if (ret == -EEXIST) {
1653 free_fs_root(root);
1654 goto again;
1656 goto fail;
1658 return root;
1659 fail:
1660 free_fs_root(root);
1661 return ERR_PTR(ret);
1664 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1666 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1667 int ret = 0;
1668 struct btrfs_device *device;
1669 struct backing_dev_info *bdi;
1671 rcu_read_lock();
1672 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1673 if (!device->bdev)
1674 continue;
1675 bdi = blk_get_backing_dev_info(device->bdev);
1676 if (bdi_congested(bdi, bdi_bits)) {
1677 ret = 1;
1678 break;
1681 rcu_read_unlock();
1682 return ret;
1685 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1687 int err;
1689 err = bdi_setup_and_register(bdi, "btrfs");
1690 if (err)
1691 return err;
1693 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1694 bdi->congested_fn = btrfs_congested_fn;
1695 bdi->congested_data = info;
1696 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1697 return 0;
1701 * called by the kthread helper functions to finally call the bio end_io
1702 * functions. This is where read checksum verification actually happens
1704 static void end_workqueue_fn(struct btrfs_work *work)
1706 struct bio *bio;
1707 struct btrfs_end_io_wq *end_io_wq;
1709 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1710 bio = end_io_wq->bio;
1712 bio->bi_error = end_io_wq->error;
1713 bio->bi_private = end_io_wq->private;
1714 bio->bi_end_io = end_io_wq->end_io;
1715 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1716 bio_endio(bio);
1719 static int cleaner_kthread(void *arg)
1721 struct btrfs_root *root = arg;
1722 int again;
1723 struct btrfs_trans_handle *trans;
1725 do {
1726 again = 0;
1728 /* Make the cleaner go to sleep early. */
1729 if (btrfs_need_cleaner_sleep(root))
1730 goto sleep;
1733 * Do not do anything if we might cause open_ctree() to block
1734 * before we have finished mounting the filesystem.
1736 if (!test_bit(BTRFS_FS_OPEN, &root->fs_info->flags))
1737 goto sleep;
1739 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1740 goto sleep;
1743 * Avoid the problem that we change the status of the fs
1744 * during the above check and trylock.
1746 if (btrfs_need_cleaner_sleep(root)) {
1747 mutex_unlock(&root->fs_info->cleaner_mutex);
1748 goto sleep;
1751 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1752 btrfs_run_delayed_iputs(root);
1753 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1755 again = btrfs_clean_one_deleted_snapshot(root);
1756 mutex_unlock(&root->fs_info->cleaner_mutex);
1759 * The defragger has dealt with the R/O remount and umount,
1760 * needn't do anything special here.
1762 btrfs_run_defrag_inodes(root->fs_info);
1765 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1766 * with relocation (btrfs_relocate_chunk) and relocation
1767 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1768 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1769 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1770 * unused block groups.
1772 btrfs_delete_unused_bgs(root->fs_info);
1773 sleep:
1774 if (!again) {
1775 set_current_state(TASK_INTERRUPTIBLE);
1776 if (!kthread_should_stop())
1777 schedule();
1778 __set_current_state(TASK_RUNNING);
1780 } while (!kthread_should_stop());
1783 * Transaction kthread is stopped before us and wakes us up.
1784 * However we might have started a new transaction and COWed some
1785 * tree blocks when deleting unused block groups for example. So
1786 * make sure we commit the transaction we started to have a clean
1787 * shutdown when evicting the btree inode - if it has dirty pages
1788 * when we do the final iput() on it, eviction will trigger a
1789 * writeback for it which will fail with null pointer dereferences
1790 * since work queues and other resources were already released and
1791 * destroyed by the time the iput/eviction/writeback is made.
1793 trans = btrfs_attach_transaction(root);
1794 if (IS_ERR(trans)) {
1795 if (PTR_ERR(trans) != -ENOENT)
1796 btrfs_err(root->fs_info,
1797 "cleaner transaction attach returned %ld",
1798 PTR_ERR(trans));
1799 } else {
1800 int ret;
1802 ret = btrfs_commit_transaction(trans, root);
1803 if (ret)
1804 btrfs_err(root->fs_info,
1805 "cleaner open transaction commit returned %d",
1806 ret);
1809 return 0;
1812 static int transaction_kthread(void *arg)
1814 struct btrfs_root *root = arg;
1815 struct btrfs_trans_handle *trans;
1816 struct btrfs_transaction *cur;
1817 u64 transid;
1818 unsigned long now;
1819 unsigned long delay;
1820 bool cannot_commit;
1822 do {
1823 cannot_commit = false;
1824 delay = HZ * root->fs_info->commit_interval;
1825 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1827 spin_lock(&root->fs_info->trans_lock);
1828 cur = root->fs_info->running_transaction;
1829 if (!cur) {
1830 spin_unlock(&root->fs_info->trans_lock);
1831 goto sleep;
1834 now = get_seconds();
1835 if (cur->state < TRANS_STATE_BLOCKED &&
1836 (now < cur->start_time ||
1837 now - cur->start_time < root->fs_info->commit_interval)) {
1838 spin_unlock(&root->fs_info->trans_lock);
1839 delay = HZ * 5;
1840 goto sleep;
1842 transid = cur->transid;
1843 spin_unlock(&root->fs_info->trans_lock);
1845 /* If the file system is aborted, this will always fail. */
1846 trans = btrfs_attach_transaction(root);
1847 if (IS_ERR(trans)) {
1848 if (PTR_ERR(trans) != -ENOENT)
1849 cannot_commit = true;
1850 goto sleep;
1852 if (transid == trans->transid) {
1853 btrfs_commit_transaction(trans, root);
1854 } else {
1855 btrfs_end_transaction(trans, root);
1857 sleep:
1858 wake_up_process(root->fs_info->cleaner_kthread);
1859 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1861 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1862 &root->fs_info->fs_state)))
1863 btrfs_cleanup_transaction(root);
1864 set_current_state(TASK_INTERRUPTIBLE);
1865 if (!kthread_should_stop() &&
1866 (!btrfs_transaction_blocked(root->fs_info) ||
1867 cannot_commit))
1868 schedule_timeout(delay);
1869 __set_current_state(TASK_RUNNING);
1870 } while (!kthread_should_stop());
1871 return 0;
1875 * this will find the highest generation in the array of
1876 * root backups. The index of the highest array is returned,
1877 * or -1 if we can't find anything.
1879 * We check to make sure the array is valid by comparing the
1880 * generation of the latest root in the array with the generation
1881 * in the super block. If they don't match we pitch it.
1883 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1885 u64 cur;
1886 int newest_index = -1;
1887 struct btrfs_root_backup *root_backup;
1888 int i;
1890 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1891 root_backup = info->super_copy->super_roots + i;
1892 cur = btrfs_backup_tree_root_gen(root_backup);
1893 if (cur == newest_gen)
1894 newest_index = i;
1897 /* check to see if we actually wrapped around */
1898 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1899 root_backup = info->super_copy->super_roots;
1900 cur = btrfs_backup_tree_root_gen(root_backup);
1901 if (cur == newest_gen)
1902 newest_index = 0;
1904 return newest_index;
1909 * find the oldest backup so we know where to store new entries
1910 * in the backup array. This will set the backup_root_index
1911 * field in the fs_info struct
1913 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1914 u64 newest_gen)
1916 int newest_index = -1;
1918 newest_index = find_newest_super_backup(info, newest_gen);
1919 /* if there was garbage in there, just move along */
1920 if (newest_index == -1) {
1921 info->backup_root_index = 0;
1922 } else {
1923 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1928 * copy all the root pointers into the super backup array.
1929 * this will bump the backup pointer by one when it is
1930 * done
1932 static void backup_super_roots(struct btrfs_fs_info *info)
1934 int next_backup;
1935 struct btrfs_root_backup *root_backup;
1936 int last_backup;
1938 next_backup = info->backup_root_index;
1939 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1940 BTRFS_NUM_BACKUP_ROOTS;
1943 * just overwrite the last backup if we're at the same generation
1944 * this happens only at umount
1946 root_backup = info->super_for_commit->super_roots + last_backup;
1947 if (btrfs_backup_tree_root_gen(root_backup) ==
1948 btrfs_header_generation(info->tree_root->node))
1949 next_backup = last_backup;
1951 root_backup = info->super_for_commit->super_roots + next_backup;
1954 * make sure all of our padding and empty slots get zero filled
1955 * regardless of which ones we use today
1957 memset(root_backup, 0, sizeof(*root_backup));
1959 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1961 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1962 btrfs_set_backup_tree_root_gen(root_backup,
1963 btrfs_header_generation(info->tree_root->node));
1965 btrfs_set_backup_tree_root_level(root_backup,
1966 btrfs_header_level(info->tree_root->node));
1968 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1969 btrfs_set_backup_chunk_root_gen(root_backup,
1970 btrfs_header_generation(info->chunk_root->node));
1971 btrfs_set_backup_chunk_root_level(root_backup,
1972 btrfs_header_level(info->chunk_root->node));
1974 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1975 btrfs_set_backup_extent_root_gen(root_backup,
1976 btrfs_header_generation(info->extent_root->node));
1977 btrfs_set_backup_extent_root_level(root_backup,
1978 btrfs_header_level(info->extent_root->node));
1981 * we might commit during log recovery, which happens before we set
1982 * the fs_root. Make sure it is valid before we fill it in.
1984 if (info->fs_root && info->fs_root->node) {
1985 btrfs_set_backup_fs_root(root_backup,
1986 info->fs_root->node->start);
1987 btrfs_set_backup_fs_root_gen(root_backup,
1988 btrfs_header_generation(info->fs_root->node));
1989 btrfs_set_backup_fs_root_level(root_backup,
1990 btrfs_header_level(info->fs_root->node));
1993 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1994 btrfs_set_backup_dev_root_gen(root_backup,
1995 btrfs_header_generation(info->dev_root->node));
1996 btrfs_set_backup_dev_root_level(root_backup,
1997 btrfs_header_level(info->dev_root->node));
1999 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2000 btrfs_set_backup_csum_root_gen(root_backup,
2001 btrfs_header_generation(info->csum_root->node));
2002 btrfs_set_backup_csum_root_level(root_backup,
2003 btrfs_header_level(info->csum_root->node));
2005 btrfs_set_backup_total_bytes(root_backup,
2006 btrfs_super_total_bytes(info->super_copy));
2007 btrfs_set_backup_bytes_used(root_backup,
2008 btrfs_super_bytes_used(info->super_copy));
2009 btrfs_set_backup_num_devices(root_backup,
2010 btrfs_super_num_devices(info->super_copy));
2013 * if we don't copy this out to the super_copy, it won't get remembered
2014 * for the next commit
2016 memcpy(&info->super_copy->super_roots,
2017 &info->super_for_commit->super_roots,
2018 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2022 * this copies info out of the root backup array and back into
2023 * the in-memory super block. It is meant to help iterate through
2024 * the array, so you send it the number of backups you've already
2025 * tried and the last backup index you used.
2027 * this returns -1 when it has tried all the backups
2029 static noinline int next_root_backup(struct btrfs_fs_info *info,
2030 struct btrfs_super_block *super,
2031 int *num_backups_tried, int *backup_index)
2033 struct btrfs_root_backup *root_backup;
2034 int newest = *backup_index;
2036 if (*num_backups_tried == 0) {
2037 u64 gen = btrfs_super_generation(super);
2039 newest = find_newest_super_backup(info, gen);
2040 if (newest == -1)
2041 return -1;
2043 *backup_index = newest;
2044 *num_backups_tried = 1;
2045 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2046 /* we've tried all the backups, all done */
2047 return -1;
2048 } else {
2049 /* jump to the next oldest backup */
2050 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2051 BTRFS_NUM_BACKUP_ROOTS;
2052 *backup_index = newest;
2053 *num_backups_tried += 1;
2055 root_backup = super->super_roots + newest;
2057 btrfs_set_super_generation(super,
2058 btrfs_backup_tree_root_gen(root_backup));
2059 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2060 btrfs_set_super_root_level(super,
2061 btrfs_backup_tree_root_level(root_backup));
2062 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2065 * fixme: the total bytes and num_devices need to match or we should
2066 * need a fsck
2068 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2069 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2070 return 0;
2073 /* helper to cleanup workers */
2074 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2076 btrfs_destroy_workqueue(fs_info->fixup_workers);
2077 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2078 btrfs_destroy_workqueue(fs_info->workers);
2079 btrfs_destroy_workqueue(fs_info->endio_workers);
2080 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2081 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2082 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2083 btrfs_destroy_workqueue(fs_info->rmw_workers);
2084 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2085 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2086 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2087 btrfs_destroy_workqueue(fs_info->submit_workers);
2088 btrfs_destroy_workqueue(fs_info->delayed_workers);
2089 btrfs_destroy_workqueue(fs_info->caching_workers);
2090 btrfs_destroy_workqueue(fs_info->readahead_workers);
2091 btrfs_destroy_workqueue(fs_info->flush_workers);
2092 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2093 btrfs_destroy_workqueue(fs_info->extent_workers);
2096 static void free_root_extent_buffers(struct btrfs_root *root)
2098 if (root) {
2099 free_extent_buffer(root->node);
2100 free_extent_buffer(root->commit_root);
2101 root->node = NULL;
2102 root->commit_root = NULL;
2106 /* helper to cleanup tree roots */
2107 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2109 free_root_extent_buffers(info->tree_root);
2111 free_root_extent_buffers(info->dev_root);
2112 free_root_extent_buffers(info->extent_root);
2113 free_root_extent_buffers(info->csum_root);
2114 free_root_extent_buffers(info->quota_root);
2115 free_root_extent_buffers(info->uuid_root);
2116 if (chunk_root)
2117 free_root_extent_buffers(info->chunk_root);
2118 free_root_extent_buffers(info->free_space_root);
2121 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2123 int ret;
2124 struct btrfs_root *gang[8];
2125 int i;
2127 while (!list_empty(&fs_info->dead_roots)) {
2128 gang[0] = list_entry(fs_info->dead_roots.next,
2129 struct btrfs_root, root_list);
2130 list_del(&gang[0]->root_list);
2132 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2133 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2134 } else {
2135 free_extent_buffer(gang[0]->node);
2136 free_extent_buffer(gang[0]->commit_root);
2137 btrfs_put_fs_root(gang[0]);
2141 while (1) {
2142 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2143 (void **)gang, 0,
2144 ARRAY_SIZE(gang));
2145 if (!ret)
2146 break;
2147 for (i = 0; i < ret; i++)
2148 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2151 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2152 btrfs_free_log_root_tree(NULL, fs_info);
2153 btrfs_destroy_pinned_extent(fs_info->tree_root,
2154 fs_info->pinned_extents);
2158 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2160 mutex_init(&fs_info->scrub_lock);
2161 atomic_set(&fs_info->scrubs_running, 0);
2162 atomic_set(&fs_info->scrub_pause_req, 0);
2163 atomic_set(&fs_info->scrubs_paused, 0);
2164 atomic_set(&fs_info->scrub_cancel_req, 0);
2165 init_waitqueue_head(&fs_info->scrub_pause_wait);
2166 fs_info->scrub_workers_refcnt = 0;
2169 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2171 spin_lock_init(&fs_info->balance_lock);
2172 mutex_init(&fs_info->balance_mutex);
2173 atomic_set(&fs_info->balance_running, 0);
2174 atomic_set(&fs_info->balance_pause_req, 0);
2175 atomic_set(&fs_info->balance_cancel_req, 0);
2176 fs_info->balance_ctl = NULL;
2177 init_waitqueue_head(&fs_info->balance_wait_q);
2180 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2181 struct btrfs_root *tree_root)
2183 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2184 set_nlink(fs_info->btree_inode, 1);
2186 * we set the i_size on the btree inode to the max possible int.
2187 * the real end of the address space is determined by all of
2188 * the devices in the system
2190 fs_info->btree_inode->i_size = OFFSET_MAX;
2191 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2193 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2194 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2195 fs_info->btree_inode->i_mapping);
2196 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2197 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2199 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2201 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2202 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2203 sizeof(struct btrfs_key));
2204 set_bit(BTRFS_INODE_DUMMY,
2205 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2206 btrfs_insert_inode_hash(fs_info->btree_inode);
2209 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2211 fs_info->dev_replace.lock_owner = 0;
2212 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2213 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2214 rwlock_init(&fs_info->dev_replace.lock);
2215 atomic_set(&fs_info->dev_replace.read_locks, 0);
2216 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2217 init_waitqueue_head(&fs_info->replace_wait);
2218 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2221 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2223 spin_lock_init(&fs_info->qgroup_lock);
2224 mutex_init(&fs_info->qgroup_ioctl_lock);
2225 fs_info->qgroup_tree = RB_ROOT;
2226 fs_info->qgroup_op_tree = RB_ROOT;
2227 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2228 fs_info->qgroup_seq = 1;
2229 fs_info->qgroup_ulist = NULL;
2230 fs_info->qgroup_rescan_running = false;
2231 mutex_init(&fs_info->qgroup_rescan_lock);
2234 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2235 struct btrfs_fs_devices *fs_devices)
2237 int max_active = fs_info->thread_pool_size;
2238 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2240 fs_info->workers =
2241 btrfs_alloc_workqueue(fs_info, "worker",
2242 flags | WQ_HIGHPRI, max_active, 16);
2244 fs_info->delalloc_workers =
2245 btrfs_alloc_workqueue(fs_info, "delalloc",
2246 flags, max_active, 2);
2248 fs_info->flush_workers =
2249 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2250 flags, max_active, 0);
2252 fs_info->caching_workers =
2253 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2256 * a higher idle thresh on the submit workers makes it much more
2257 * likely that bios will be send down in a sane order to the
2258 * devices
2260 fs_info->submit_workers =
2261 btrfs_alloc_workqueue(fs_info, "submit", flags,
2262 min_t(u64, fs_devices->num_devices,
2263 max_active), 64);
2265 fs_info->fixup_workers =
2266 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2269 * endios are largely parallel and should have a very
2270 * low idle thresh
2272 fs_info->endio_workers =
2273 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2274 fs_info->endio_meta_workers =
2275 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2276 max_active, 4);
2277 fs_info->endio_meta_write_workers =
2278 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2279 max_active, 2);
2280 fs_info->endio_raid56_workers =
2281 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2282 max_active, 4);
2283 fs_info->endio_repair_workers =
2284 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2285 fs_info->rmw_workers =
2286 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2287 fs_info->endio_write_workers =
2288 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2289 max_active, 2);
2290 fs_info->endio_freespace_worker =
2291 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2292 max_active, 0);
2293 fs_info->delayed_workers =
2294 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2295 max_active, 0);
2296 fs_info->readahead_workers =
2297 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2298 max_active, 2);
2299 fs_info->qgroup_rescan_workers =
2300 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2301 fs_info->extent_workers =
2302 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2303 min_t(u64, fs_devices->num_devices,
2304 max_active), 8);
2306 if (!(fs_info->workers && fs_info->delalloc_workers &&
2307 fs_info->submit_workers && fs_info->flush_workers &&
2308 fs_info->endio_workers && fs_info->endio_meta_workers &&
2309 fs_info->endio_meta_write_workers &&
2310 fs_info->endio_repair_workers &&
2311 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2312 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2313 fs_info->caching_workers && fs_info->readahead_workers &&
2314 fs_info->fixup_workers && fs_info->delayed_workers &&
2315 fs_info->extent_workers &&
2316 fs_info->qgroup_rescan_workers)) {
2317 return -ENOMEM;
2320 return 0;
2323 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2324 struct btrfs_fs_devices *fs_devices)
2326 int ret;
2327 struct btrfs_root *tree_root = fs_info->tree_root;
2328 struct btrfs_root *log_tree_root;
2329 struct btrfs_super_block *disk_super = fs_info->super_copy;
2330 u64 bytenr = btrfs_super_log_root(disk_super);
2332 if (fs_devices->rw_devices == 0) {
2333 btrfs_warn(fs_info, "log replay required on RO media");
2334 return -EIO;
2337 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2338 if (!log_tree_root)
2339 return -ENOMEM;
2341 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2342 tree_root->stripesize, log_tree_root, fs_info,
2343 BTRFS_TREE_LOG_OBJECTID);
2345 log_tree_root->node = read_tree_block(tree_root, bytenr,
2346 fs_info->generation + 1);
2347 if (IS_ERR(log_tree_root->node)) {
2348 btrfs_warn(fs_info, "failed to read log tree");
2349 ret = PTR_ERR(log_tree_root->node);
2350 kfree(log_tree_root);
2351 return ret;
2352 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2353 btrfs_err(fs_info, "failed to read log tree");
2354 free_extent_buffer(log_tree_root->node);
2355 kfree(log_tree_root);
2356 return -EIO;
2358 /* returns with log_tree_root freed on success */
2359 ret = btrfs_recover_log_trees(log_tree_root);
2360 if (ret) {
2361 btrfs_handle_fs_error(tree_root->fs_info, ret,
2362 "Failed to recover log tree");
2363 free_extent_buffer(log_tree_root->node);
2364 kfree(log_tree_root);
2365 return ret;
2368 if (fs_info->sb->s_flags & MS_RDONLY) {
2369 ret = btrfs_commit_super(tree_root);
2370 if (ret)
2371 return ret;
2374 return 0;
2377 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2378 struct btrfs_root *tree_root)
2380 struct btrfs_root *root;
2381 struct btrfs_key location;
2382 int ret;
2384 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2385 location.type = BTRFS_ROOT_ITEM_KEY;
2386 location.offset = 0;
2388 root = btrfs_read_tree_root(tree_root, &location);
2389 if (IS_ERR(root))
2390 return PTR_ERR(root);
2391 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2392 fs_info->extent_root = root;
2394 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2395 root = btrfs_read_tree_root(tree_root, &location);
2396 if (IS_ERR(root))
2397 return PTR_ERR(root);
2398 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2399 fs_info->dev_root = root;
2400 btrfs_init_devices_late(fs_info);
2402 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2403 root = btrfs_read_tree_root(tree_root, &location);
2404 if (IS_ERR(root))
2405 return PTR_ERR(root);
2406 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2407 fs_info->csum_root = root;
2409 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2410 root = btrfs_read_tree_root(tree_root, &location);
2411 if (!IS_ERR(root)) {
2412 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2413 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2414 fs_info->quota_root = root;
2417 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2418 root = btrfs_read_tree_root(tree_root, &location);
2419 if (IS_ERR(root)) {
2420 ret = PTR_ERR(root);
2421 if (ret != -ENOENT)
2422 return ret;
2423 } else {
2424 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2425 fs_info->uuid_root = root;
2428 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2429 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2430 root = btrfs_read_tree_root(tree_root, &location);
2431 if (IS_ERR(root))
2432 return PTR_ERR(root);
2433 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2434 fs_info->free_space_root = root;
2437 return 0;
2440 int open_ctree(struct super_block *sb,
2441 struct btrfs_fs_devices *fs_devices,
2442 char *options)
2444 u32 sectorsize;
2445 u32 nodesize;
2446 u32 stripesize;
2447 u64 generation;
2448 u64 features;
2449 struct btrfs_key location;
2450 struct buffer_head *bh;
2451 struct btrfs_super_block *disk_super;
2452 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2453 struct btrfs_root *tree_root;
2454 struct btrfs_root *chunk_root;
2455 int ret;
2456 int err = -EINVAL;
2457 int num_backups_tried = 0;
2458 int backup_index = 0;
2459 int max_active;
2460 int clear_free_space_tree = 0;
2462 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2463 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2464 if (!tree_root || !chunk_root) {
2465 err = -ENOMEM;
2466 goto fail;
2469 ret = init_srcu_struct(&fs_info->subvol_srcu);
2470 if (ret) {
2471 err = ret;
2472 goto fail;
2475 ret = setup_bdi(fs_info, &fs_info->bdi);
2476 if (ret) {
2477 err = ret;
2478 goto fail_srcu;
2481 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2482 if (ret) {
2483 err = ret;
2484 goto fail_bdi;
2486 fs_info->dirty_metadata_batch = PAGE_SIZE *
2487 (1 + ilog2(nr_cpu_ids));
2489 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2490 if (ret) {
2491 err = ret;
2492 goto fail_dirty_metadata_bytes;
2495 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2496 if (ret) {
2497 err = ret;
2498 goto fail_delalloc_bytes;
2501 fs_info->btree_inode = new_inode(sb);
2502 if (!fs_info->btree_inode) {
2503 err = -ENOMEM;
2504 goto fail_bio_counter;
2507 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2509 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2510 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2511 INIT_LIST_HEAD(&fs_info->trans_list);
2512 INIT_LIST_HEAD(&fs_info->dead_roots);
2513 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2514 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2515 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2516 spin_lock_init(&fs_info->delalloc_root_lock);
2517 spin_lock_init(&fs_info->trans_lock);
2518 spin_lock_init(&fs_info->fs_roots_radix_lock);
2519 spin_lock_init(&fs_info->delayed_iput_lock);
2520 spin_lock_init(&fs_info->defrag_inodes_lock);
2521 spin_lock_init(&fs_info->free_chunk_lock);
2522 spin_lock_init(&fs_info->tree_mod_seq_lock);
2523 spin_lock_init(&fs_info->super_lock);
2524 spin_lock_init(&fs_info->qgroup_op_lock);
2525 spin_lock_init(&fs_info->buffer_lock);
2526 spin_lock_init(&fs_info->unused_bgs_lock);
2527 rwlock_init(&fs_info->tree_mod_log_lock);
2528 mutex_init(&fs_info->unused_bg_unpin_mutex);
2529 mutex_init(&fs_info->delete_unused_bgs_mutex);
2530 mutex_init(&fs_info->reloc_mutex);
2531 mutex_init(&fs_info->delalloc_root_mutex);
2532 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2533 seqlock_init(&fs_info->profiles_lock);
2535 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2536 INIT_LIST_HEAD(&fs_info->space_info);
2537 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2538 INIT_LIST_HEAD(&fs_info->unused_bgs);
2539 btrfs_mapping_init(&fs_info->mapping_tree);
2540 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2541 BTRFS_BLOCK_RSV_GLOBAL);
2542 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2543 BTRFS_BLOCK_RSV_DELALLOC);
2544 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2545 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2546 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2547 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2548 BTRFS_BLOCK_RSV_DELOPS);
2549 atomic_set(&fs_info->nr_async_submits, 0);
2550 atomic_set(&fs_info->async_delalloc_pages, 0);
2551 atomic_set(&fs_info->async_submit_draining, 0);
2552 atomic_set(&fs_info->nr_async_bios, 0);
2553 atomic_set(&fs_info->defrag_running, 0);
2554 atomic_set(&fs_info->qgroup_op_seq, 0);
2555 atomic_set(&fs_info->reada_works_cnt, 0);
2556 atomic64_set(&fs_info->tree_mod_seq, 0);
2557 fs_info->fs_frozen = 0;
2558 fs_info->sb = sb;
2559 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2560 fs_info->metadata_ratio = 0;
2561 fs_info->defrag_inodes = RB_ROOT;
2562 fs_info->free_chunk_space = 0;
2563 fs_info->tree_mod_log = RB_ROOT;
2564 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2565 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2566 /* readahead state */
2567 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2568 spin_lock_init(&fs_info->reada_lock);
2570 fs_info->thread_pool_size = min_t(unsigned long,
2571 num_online_cpus() + 2, 8);
2573 INIT_LIST_HEAD(&fs_info->ordered_roots);
2574 spin_lock_init(&fs_info->ordered_root_lock);
2575 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2576 GFP_KERNEL);
2577 if (!fs_info->delayed_root) {
2578 err = -ENOMEM;
2579 goto fail_iput;
2581 btrfs_init_delayed_root(fs_info->delayed_root);
2583 btrfs_init_scrub(fs_info);
2584 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2585 fs_info->check_integrity_print_mask = 0;
2586 #endif
2587 btrfs_init_balance(fs_info);
2588 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2590 sb->s_blocksize = 4096;
2591 sb->s_blocksize_bits = blksize_bits(4096);
2592 sb->s_bdi = &fs_info->bdi;
2594 btrfs_init_btree_inode(fs_info, tree_root);
2596 spin_lock_init(&fs_info->block_group_cache_lock);
2597 fs_info->block_group_cache_tree = RB_ROOT;
2598 fs_info->first_logical_byte = (u64)-1;
2600 extent_io_tree_init(&fs_info->freed_extents[0],
2601 fs_info->btree_inode->i_mapping);
2602 extent_io_tree_init(&fs_info->freed_extents[1],
2603 fs_info->btree_inode->i_mapping);
2604 fs_info->pinned_extents = &fs_info->freed_extents[0];
2605 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2607 mutex_init(&fs_info->ordered_operations_mutex);
2608 mutex_init(&fs_info->tree_log_mutex);
2609 mutex_init(&fs_info->chunk_mutex);
2610 mutex_init(&fs_info->transaction_kthread_mutex);
2611 mutex_init(&fs_info->cleaner_mutex);
2612 mutex_init(&fs_info->volume_mutex);
2613 mutex_init(&fs_info->ro_block_group_mutex);
2614 init_rwsem(&fs_info->commit_root_sem);
2615 init_rwsem(&fs_info->cleanup_work_sem);
2616 init_rwsem(&fs_info->subvol_sem);
2617 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2619 btrfs_init_dev_replace_locks(fs_info);
2620 btrfs_init_qgroup(fs_info);
2622 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2623 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2625 init_waitqueue_head(&fs_info->transaction_throttle);
2626 init_waitqueue_head(&fs_info->transaction_wait);
2627 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2628 init_waitqueue_head(&fs_info->async_submit_wait);
2630 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2632 ret = btrfs_alloc_stripe_hash_table(fs_info);
2633 if (ret) {
2634 err = ret;
2635 goto fail_alloc;
2638 __setup_root(4096, 4096, 4096, tree_root,
2639 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2641 invalidate_bdev(fs_devices->latest_bdev);
2644 * Read super block and check the signature bytes only
2646 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2647 if (IS_ERR(bh)) {
2648 err = PTR_ERR(bh);
2649 goto fail_alloc;
2653 * We want to check superblock checksum, the type is stored inside.
2654 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2656 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2657 btrfs_err(fs_info, "superblock checksum mismatch");
2658 err = -EINVAL;
2659 brelse(bh);
2660 goto fail_alloc;
2664 * super_copy is zeroed at allocation time and we never touch the
2665 * following bytes up to INFO_SIZE, the checksum is calculated from
2666 * the whole block of INFO_SIZE
2668 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2669 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2670 sizeof(*fs_info->super_for_commit));
2671 brelse(bh);
2673 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2675 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2676 if (ret) {
2677 btrfs_err(fs_info, "superblock contains fatal errors");
2678 err = -EINVAL;
2679 goto fail_alloc;
2682 disk_super = fs_info->super_copy;
2683 if (!btrfs_super_root(disk_super))
2684 goto fail_alloc;
2686 /* check FS state, whether FS is broken. */
2687 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2688 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2691 * run through our array of backup supers and setup
2692 * our ring pointer to the oldest one
2694 generation = btrfs_super_generation(disk_super);
2695 find_oldest_super_backup(fs_info, generation);
2698 * In the long term, we'll store the compression type in the super
2699 * block, and it'll be used for per file compression control.
2701 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2703 ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2704 if (ret) {
2705 err = ret;
2706 goto fail_alloc;
2709 features = btrfs_super_incompat_flags(disk_super) &
2710 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2711 if (features) {
2712 btrfs_err(fs_info,
2713 "cannot mount because of unsupported optional features (%llx)",
2714 features);
2715 err = -EINVAL;
2716 goto fail_alloc;
2719 features = btrfs_super_incompat_flags(disk_super);
2720 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2721 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2722 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2724 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2725 btrfs_info(fs_info, "has skinny extents");
2728 * flag our filesystem as having big metadata blocks if
2729 * they are bigger than the page size
2731 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2732 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2733 btrfs_info(fs_info,
2734 "flagging fs with big metadata feature");
2735 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2738 nodesize = btrfs_super_nodesize(disk_super);
2739 sectorsize = btrfs_super_sectorsize(disk_super);
2740 stripesize = sectorsize;
2741 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2742 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2745 * mixed block groups end up with duplicate but slightly offset
2746 * extent buffers for the same range. It leads to corruptions
2748 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2749 (sectorsize != nodesize)) {
2750 btrfs_err(fs_info,
2751 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2752 nodesize, sectorsize);
2753 goto fail_alloc;
2757 * Needn't use the lock because there is no other task which will
2758 * update the flag.
2760 btrfs_set_super_incompat_flags(disk_super, features);
2762 features = btrfs_super_compat_ro_flags(disk_super) &
2763 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2764 if (!(sb->s_flags & MS_RDONLY) && features) {
2765 btrfs_err(fs_info,
2766 "cannot mount read-write because of unsupported optional features (%llx)",
2767 features);
2768 err = -EINVAL;
2769 goto fail_alloc;
2772 max_active = fs_info->thread_pool_size;
2774 ret = btrfs_init_workqueues(fs_info, fs_devices);
2775 if (ret) {
2776 err = ret;
2777 goto fail_sb_buffer;
2780 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2781 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2782 SZ_4M / PAGE_SIZE);
2784 tree_root->nodesize = nodesize;
2785 tree_root->sectorsize = sectorsize;
2786 tree_root->stripesize = stripesize;
2788 sb->s_blocksize = sectorsize;
2789 sb->s_blocksize_bits = blksize_bits(sectorsize);
2791 mutex_lock(&fs_info->chunk_mutex);
2792 ret = btrfs_read_sys_array(tree_root);
2793 mutex_unlock(&fs_info->chunk_mutex);
2794 if (ret) {
2795 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2796 goto fail_sb_buffer;
2799 generation = btrfs_super_chunk_root_generation(disk_super);
2801 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2802 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2804 chunk_root->node = read_tree_block(chunk_root,
2805 btrfs_super_chunk_root(disk_super),
2806 generation);
2807 if (IS_ERR(chunk_root->node) ||
2808 !extent_buffer_uptodate(chunk_root->node)) {
2809 btrfs_err(fs_info, "failed to read chunk root");
2810 if (!IS_ERR(chunk_root->node))
2811 free_extent_buffer(chunk_root->node);
2812 chunk_root->node = NULL;
2813 goto fail_tree_roots;
2815 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2816 chunk_root->commit_root = btrfs_root_node(chunk_root);
2818 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2819 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2821 ret = btrfs_read_chunk_tree(chunk_root);
2822 if (ret) {
2823 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2824 goto fail_tree_roots;
2828 * keep the device that is marked to be the target device for the
2829 * dev_replace procedure
2831 btrfs_close_extra_devices(fs_devices, 0);
2833 if (!fs_devices->latest_bdev) {
2834 btrfs_err(fs_info, "failed to read devices");
2835 goto fail_tree_roots;
2838 retry_root_backup:
2839 generation = btrfs_super_generation(disk_super);
2841 tree_root->node = read_tree_block(tree_root,
2842 btrfs_super_root(disk_super),
2843 generation);
2844 if (IS_ERR(tree_root->node) ||
2845 !extent_buffer_uptodate(tree_root->node)) {
2846 btrfs_warn(fs_info, "failed to read tree root");
2847 if (!IS_ERR(tree_root->node))
2848 free_extent_buffer(tree_root->node);
2849 tree_root->node = NULL;
2850 goto recovery_tree_root;
2853 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2854 tree_root->commit_root = btrfs_root_node(tree_root);
2855 btrfs_set_root_refs(&tree_root->root_item, 1);
2857 mutex_lock(&tree_root->objectid_mutex);
2858 ret = btrfs_find_highest_objectid(tree_root,
2859 &tree_root->highest_objectid);
2860 if (ret) {
2861 mutex_unlock(&tree_root->objectid_mutex);
2862 goto recovery_tree_root;
2865 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2867 mutex_unlock(&tree_root->objectid_mutex);
2869 ret = btrfs_read_roots(fs_info, tree_root);
2870 if (ret)
2871 goto recovery_tree_root;
2873 fs_info->generation = generation;
2874 fs_info->last_trans_committed = generation;
2876 ret = btrfs_recover_balance(fs_info);
2877 if (ret) {
2878 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2879 goto fail_block_groups;
2882 ret = btrfs_init_dev_stats(fs_info);
2883 if (ret) {
2884 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2885 goto fail_block_groups;
2888 ret = btrfs_init_dev_replace(fs_info);
2889 if (ret) {
2890 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2891 goto fail_block_groups;
2894 btrfs_close_extra_devices(fs_devices, 1);
2896 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2897 if (ret) {
2898 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2899 ret);
2900 goto fail_block_groups;
2903 ret = btrfs_sysfs_add_device(fs_devices);
2904 if (ret) {
2905 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2906 ret);
2907 goto fail_fsdev_sysfs;
2910 ret = btrfs_sysfs_add_mounted(fs_info);
2911 if (ret) {
2912 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2913 goto fail_fsdev_sysfs;
2916 ret = btrfs_init_space_info(fs_info);
2917 if (ret) {
2918 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2919 goto fail_sysfs;
2922 ret = btrfs_read_block_groups(fs_info->extent_root);
2923 if (ret) {
2924 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2925 goto fail_sysfs;
2927 fs_info->num_tolerated_disk_barrier_failures =
2928 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2929 if (fs_info->fs_devices->missing_devices >
2930 fs_info->num_tolerated_disk_barrier_failures &&
2931 !(sb->s_flags & MS_RDONLY)) {
2932 btrfs_warn(fs_info,
2933 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
2934 fs_info->fs_devices->missing_devices,
2935 fs_info->num_tolerated_disk_barrier_failures);
2936 goto fail_sysfs;
2939 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2940 "btrfs-cleaner");
2941 if (IS_ERR(fs_info->cleaner_kthread))
2942 goto fail_sysfs;
2944 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2945 tree_root,
2946 "btrfs-transaction");
2947 if (IS_ERR(fs_info->transaction_kthread))
2948 goto fail_cleaner;
2950 if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
2951 !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
2952 !fs_info->fs_devices->rotating) {
2953 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
2954 btrfs_set_opt(fs_info->mount_opt, SSD);
2958 * Mount does not set all options immediately, we can do it now and do
2959 * not have to wait for transaction commit
2961 btrfs_apply_pending_changes(fs_info);
2963 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2964 if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
2965 ret = btrfsic_mount(tree_root, fs_devices,
2966 btrfs_test_opt(tree_root->fs_info,
2967 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2968 1 : 0,
2969 fs_info->check_integrity_print_mask);
2970 if (ret)
2971 btrfs_warn(fs_info,
2972 "failed to initialize integrity check module: %d",
2973 ret);
2975 #endif
2976 ret = btrfs_read_qgroup_config(fs_info);
2977 if (ret)
2978 goto fail_trans_kthread;
2980 /* do not make disk changes in broken FS or nologreplay is given */
2981 if (btrfs_super_log_root(disk_super) != 0 &&
2982 !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
2983 ret = btrfs_replay_log(fs_info, fs_devices);
2984 if (ret) {
2985 err = ret;
2986 goto fail_qgroup;
2990 ret = btrfs_find_orphan_roots(tree_root);
2991 if (ret)
2992 goto fail_qgroup;
2994 if (!(sb->s_flags & MS_RDONLY)) {
2995 ret = btrfs_cleanup_fs_roots(fs_info);
2996 if (ret)
2997 goto fail_qgroup;
2999 mutex_lock(&fs_info->cleaner_mutex);
3000 ret = btrfs_recover_relocation(tree_root);
3001 mutex_unlock(&fs_info->cleaner_mutex);
3002 if (ret < 0) {
3003 btrfs_warn(fs_info, "failed to recover relocation: %d",
3004 ret);
3005 err = -EINVAL;
3006 goto fail_qgroup;
3010 location.objectid = BTRFS_FS_TREE_OBJECTID;
3011 location.type = BTRFS_ROOT_ITEM_KEY;
3012 location.offset = 0;
3014 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3015 if (IS_ERR(fs_info->fs_root)) {
3016 err = PTR_ERR(fs_info->fs_root);
3017 goto fail_qgroup;
3020 if (sb->s_flags & MS_RDONLY)
3021 return 0;
3023 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3024 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3025 clear_free_space_tree = 1;
3026 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3027 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3028 btrfs_warn(fs_info, "free space tree is invalid");
3029 clear_free_space_tree = 1;
3032 if (clear_free_space_tree) {
3033 btrfs_info(fs_info, "clearing free space tree");
3034 ret = btrfs_clear_free_space_tree(fs_info);
3035 if (ret) {
3036 btrfs_warn(fs_info,
3037 "failed to clear free space tree: %d", ret);
3038 close_ctree(tree_root);
3039 return ret;
3043 if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
3044 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3045 btrfs_info(fs_info, "creating free space tree");
3046 ret = btrfs_create_free_space_tree(fs_info);
3047 if (ret) {
3048 btrfs_warn(fs_info,
3049 "failed to create free space tree: %d", ret);
3050 close_ctree(tree_root);
3051 return ret;
3055 down_read(&fs_info->cleanup_work_sem);
3056 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3057 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3058 up_read(&fs_info->cleanup_work_sem);
3059 close_ctree(tree_root);
3060 return ret;
3062 up_read(&fs_info->cleanup_work_sem);
3064 ret = btrfs_resume_balance_async(fs_info);
3065 if (ret) {
3066 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3067 close_ctree(tree_root);
3068 return ret;
3071 ret = btrfs_resume_dev_replace_async(fs_info);
3072 if (ret) {
3073 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3074 close_ctree(tree_root);
3075 return ret;
3078 btrfs_qgroup_rescan_resume(fs_info);
3080 if (!fs_info->uuid_root) {
3081 btrfs_info(fs_info, "creating UUID tree");
3082 ret = btrfs_create_uuid_tree(fs_info);
3083 if (ret) {
3084 btrfs_warn(fs_info,
3085 "failed to create the UUID tree: %d", ret);
3086 close_ctree(tree_root);
3087 return ret;
3089 } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
3090 fs_info->generation !=
3091 btrfs_super_uuid_tree_generation(disk_super)) {
3092 btrfs_info(fs_info, "checking UUID tree");
3093 ret = btrfs_check_uuid_tree(fs_info);
3094 if (ret) {
3095 btrfs_warn(fs_info,
3096 "failed to check the UUID tree: %d", ret);
3097 close_ctree(tree_root);
3098 return ret;
3100 } else {
3101 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3103 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3106 * backuproot only affect mount behavior, and if open_ctree succeeded,
3107 * no need to keep the flag
3109 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3111 return 0;
3113 fail_qgroup:
3114 btrfs_free_qgroup_config(fs_info);
3115 fail_trans_kthread:
3116 kthread_stop(fs_info->transaction_kthread);
3117 btrfs_cleanup_transaction(fs_info->tree_root);
3118 btrfs_free_fs_roots(fs_info);
3119 fail_cleaner:
3120 kthread_stop(fs_info->cleaner_kthread);
3123 * make sure we're done with the btree inode before we stop our
3124 * kthreads
3126 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3128 fail_sysfs:
3129 btrfs_sysfs_remove_mounted(fs_info);
3131 fail_fsdev_sysfs:
3132 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3134 fail_block_groups:
3135 btrfs_put_block_group_cache(fs_info);
3136 btrfs_free_block_groups(fs_info);
3138 fail_tree_roots:
3139 free_root_pointers(fs_info, 1);
3140 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3142 fail_sb_buffer:
3143 btrfs_stop_all_workers(fs_info);
3144 fail_alloc:
3145 fail_iput:
3146 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3148 iput(fs_info->btree_inode);
3149 fail_bio_counter:
3150 percpu_counter_destroy(&fs_info->bio_counter);
3151 fail_delalloc_bytes:
3152 percpu_counter_destroy(&fs_info->delalloc_bytes);
3153 fail_dirty_metadata_bytes:
3154 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3155 fail_bdi:
3156 bdi_destroy(&fs_info->bdi);
3157 fail_srcu:
3158 cleanup_srcu_struct(&fs_info->subvol_srcu);
3159 fail:
3160 btrfs_free_stripe_hash_table(fs_info);
3161 btrfs_close_devices(fs_info->fs_devices);
3162 return err;
3164 recovery_tree_root:
3165 if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
3166 goto fail_tree_roots;
3168 free_root_pointers(fs_info, 0);
3170 /* don't use the log in recovery mode, it won't be valid */
3171 btrfs_set_super_log_root(disk_super, 0);
3173 /* we can't trust the free space cache either */
3174 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3176 ret = next_root_backup(fs_info, fs_info->super_copy,
3177 &num_backups_tried, &backup_index);
3178 if (ret == -1)
3179 goto fail_block_groups;
3180 goto retry_root_backup;
3183 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3185 if (uptodate) {
3186 set_buffer_uptodate(bh);
3187 } else {
3188 struct btrfs_device *device = (struct btrfs_device *)
3189 bh->b_private;
3191 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3192 "lost page write due to IO error on %s",
3193 rcu_str_deref(device->name));
3194 /* note, we don't set_buffer_write_io_error because we have
3195 * our own ways of dealing with the IO errors
3197 clear_buffer_uptodate(bh);
3198 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3200 unlock_buffer(bh);
3201 put_bh(bh);
3204 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3205 struct buffer_head **bh_ret)
3207 struct buffer_head *bh;
3208 struct btrfs_super_block *super;
3209 u64 bytenr;
3211 bytenr = btrfs_sb_offset(copy_num);
3212 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3213 return -EINVAL;
3215 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3217 * If we fail to read from the underlying devices, as of now
3218 * the best option we have is to mark it EIO.
3220 if (!bh)
3221 return -EIO;
3223 super = (struct btrfs_super_block *)bh->b_data;
3224 if (btrfs_super_bytenr(super) != bytenr ||
3225 btrfs_super_magic(super) != BTRFS_MAGIC) {
3226 brelse(bh);
3227 return -EINVAL;
3230 *bh_ret = bh;
3231 return 0;
3235 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3237 struct buffer_head *bh;
3238 struct buffer_head *latest = NULL;
3239 struct btrfs_super_block *super;
3240 int i;
3241 u64 transid = 0;
3242 int ret = -EINVAL;
3244 /* we would like to check all the supers, but that would make
3245 * a btrfs mount succeed after a mkfs from a different FS.
3246 * So, we need to add a special mount option to scan for
3247 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3249 for (i = 0; i < 1; i++) {
3250 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3251 if (ret)
3252 continue;
3254 super = (struct btrfs_super_block *)bh->b_data;
3256 if (!latest || btrfs_super_generation(super) > transid) {
3257 brelse(latest);
3258 latest = bh;
3259 transid = btrfs_super_generation(super);
3260 } else {
3261 brelse(bh);
3265 if (!latest)
3266 return ERR_PTR(ret);
3268 return latest;
3272 * this should be called twice, once with wait == 0 and
3273 * once with wait == 1. When wait == 0 is done, all the buffer heads
3274 * we write are pinned.
3276 * They are released when wait == 1 is done.
3277 * max_mirrors must be the same for both runs, and it indicates how
3278 * many supers on this one device should be written.
3280 * max_mirrors == 0 means to write them all.
3282 static int write_dev_supers(struct btrfs_device *device,
3283 struct btrfs_super_block *sb,
3284 int do_barriers, int wait, int max_mirrors)
3286 struct buffer_head *bh;
3287 int i;
3288 int ret;
3289 int errors = 0;
3290 u32 crc;
3291 u64 bytenr;
3293 if (max_mirrors == 0)
3294 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3296 for (i = 0; i < max_mirrors; i++) {
3297 bytenr = btrfs_sb_offset(i);
3298 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3299 device->commit_total_bytes)
3300 break;
3302 if (wait) {
3303 bh = __find_get_block(device->bdev, bytenr / 4096,
3304 BTRFS_SUPER_INFO_SIZE);
3305 if (!bh) {
3306 errors++;
3307 continue;
3309 wait_on_buffer(bh);
3310 if (!buffer_uptodate(bh))
3311 errors++;
3313 /* drop our reference */
3314 brelse(bh);
3316 /* drop the reference from the wait == 0 run */
3317 brelse(bh);
3318 continue;
3319 } else {
3320 btrfs_set_super_bytenr(sb, bytenr);
3322 crc = ~(u32)0;
3323 crc = btrfs_csum_data((char *)sb +
3324 BTRFS_CSUM_SIZE, crc,
3325 BTRFS_SUPER_INFO_SIZE -
3326 BTRFS_CSUM_SIZE);
3327 btrfs_csum_final(crc, sb->csum);
3330 * one reference for us, and we leave it for the
3331 * caller
3333 bh = __getblk(device->bdev, bytenr / 4096,
3334 BTRFS_SUPER_INFO_SIZE);
3335 if (!bh) {
3336 btrfs_err(device->dev_root->fs_info,
3337 "couldn't get super buffer head for bytenr %llu",
3338 bytenr);
3339 errors++;
3340 continue;
3343 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3345 /* one reference for submit_bh */
3346 get_bh(bh);
3348 set_buffer_uptodate(bh);
3349 lock_buffer(bh);
3350 bh->b_end_io = btrfs_end_buffer_write_sync;
3351 bh->b_private = device;
3355 * we fua the first super. The others we allow
3356 * to go down lazy.
3358 if (i == 0)
3359 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
3360 else
3361 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
3362 if (ret)
3363 errors++;
3365 return errors < i ? 0 : -1;
3369 * endio for the write_dev_flush, this will wake anyone waiting
3370 * for the barrier when it is done
3372 static void btrfs_end_empty_barrier(struct bio *bio)
3374 if (bio->bi_private)
3375 complete(bio->bi_private);
3376 bio_put(bio);
3380 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3381 * sent down. With wait == 1, it waits for the previous flush.
3383 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3384 * capable
3386 static int write_dev_flush(struct btrfs_device *device, int wait)
3388 struct bio *bio;
3389 int ret = 0;
3391 if (device->nobarriers)
3392 return 0;
3394 if (wait) {
3395 bio = device->flush_bio;
3396 if (!bio)
3397 return 0;
3399 wait_for_completion(&device->flush_wait);
3401 if (bio->bi_error) {
3402 ret = bio->bi_error;
3403 btrfs_dev_stat_inc_and_print(device,
3404 BTRFS_DEV_STAT_FLUSH_ERRS);
3407 /* drop the reference from the wait == 0 run */
3408 bio_put(bio);
3409 device->flush_bio = NULL;
3411 return ret;
3415 * one reference for us, and we leave it for the
3416 * caller
3418 device->flush_bio = NULL;
3419 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3420 if (!bio)
3421 return -ENOMEM;
3423 bio->bi_end_io = btrfs_end_empty_barrier;
3424 bio->bi_bdev = device->bdev;
3425 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
3426 init_completion(&device->flush_wait);
3427 bio->bi_private = &device->flush_wait;
3428 device->flush_bio = bio;
3430 bio_get(bio);
3431 btrfsic_submit_bio(bio);
3433 return 0;
3437 * send an empty flush down to each device in parallel,
3438 * then wait for them
3440 static int barrier_all_devices(struct btrfs_fs_info *info)
3442 struct list_head *head;
3443 struct btrfs_device *dev;
3444 int errors_send = 0;
3445 int errors_wait = 0;
3446 int ret;
3448 /* send down all the barriers */
3449 head = &info->fs_devices->devices;
3450 list_for_each_entry_rcu(dev, head, dev_list) {
3451 if (dev->missing)
3452 continue;
3453 if (!dev->bdev) {
3454 errors_send++;
3455 continue;
3457 if (!dev->in_fs_metadata || !dev->writeable)
3458 continue;
3460 ret = write_dev_flush(dev, 0);
3461 if (ret)
3462 errors_send++;
3465 /* wait for all the barriers */
3466 list_for_each_entry_rcu(dev, head, dev_list) {
3467 if (dev->missing)
3468 continue;
3469 if (!dev->bdev) {
3470 errors_wait++;
3471 continue;
3473 if (!dev->in_fs_metadata || !dev->writeable)
3474 continue;
3476 ret = write_dev_flush(dev, 1);
3477 if (ret)
3478 errors_wait++;
3480 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3481 errors_wait > info->num_tolerated_disk_barrier_failures)
3482 return -EIO;
3483 return 0;
3486 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3488 int raid_type;
3489 int min_tolerated = INT_MAX;
3491 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3492 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3493 min_tolerated = min(min_tolerated,
3494 btrfs_raid_array[BTRFS_RAID_SINGLE].
3495 tolerated_failures);
3497 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3498 if (raid_type == BTRFS_RAID_SINGLE)
3499 continue;
3500 if (!(flags & btrfs_raid_group[raid_type]))
3501 continue;
3502 min_tolerated = min(min_tolerated,
3503 btrfs_raid_array[raid_type].
3504 tolerated_failures);
3507 if (min_tolerated == INT_MAX) {
3508 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3509 min_tolerated = 0;
3512 return min_tolerated;
3515 int btrfs_calc_num_tolerated_disk_barrier_failures(
3516 struct btrfs_fs_info *fs_info)
3518 struct btrfs_ioctl_space_info space;
3519 struct btrfs_space_info *sinfo;
3520 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3521 BTRFS_BLOCK_GROUP_SYSTEM,
3522 BTRFS_BLOCK_GROUP_METADATA,
3523 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3524 int i;
3525 int c;
3526 int num_tolerated_disk_barrier_failures =
3527 (int)fs_info->fs_devices->num_devices;
3529 for (i = 0; i < ARRAY_SIZE(types); i++) {
3530 struct btrfs_space_info *tmp;
3532 sinfo = NULL;
3533 rcu_read_lock();
3534 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3535 if (tmp->flags == types[i]) {
3536 sinfo = tmp;
3537 break;
3540 rcu_read_unlock();
3542 if (!sinfo)
3543 continue;
3545 down_read(&sinfo->groups_sem);
3546 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3547 u64 flags;
3549 if (list_empty(&sinfo->block_groups[c]))
3550 continue;
3552 btrfs_get_block_group_info(&sinfo->block_groups[c],
3553 &space);
3554 if (space.total_bytes == 0 || space.used_bytes == 0)
3555 continue;
3556 flags = space.flags;
3558 num_tolerated_disk_barrier_failures = min(
3559 num_tolerated_disk_barrier_failures,
3560 btrfs_get_num_tolerated_disk_barrier_failures(
3561 flags));
3563 up_read(&sinfo->groups_sem);
3566 return num_tolerated_disk_barrier_failures;
3569 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3571 struct list_head *head;
3572 struct btrfs_device *dev;
3573 struct btrfs_super_block *sb;
3574 struct btrfs_dev_item *dev_item;
3575 int ret;
3576 int do_barriers;
3577 int max_errors;
3578 int total_errors = 0;
3579 u64 flags;
3581 do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
3582 backup_super_roots(root->fs_info);
3584 sb = root->fs_info->super_for_commit;
3585 dev_item = &sb->dev_item;
3587 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3588 head = &root->fs_info->fs_devices->devices;
3589 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3591 if (do_barriers) {
3592 ret = barrier_all_devices(root->fs_info);
3593 if (ret) {
3594 mutex_unlock(
3595 &root->fs_info->fs_devices->device_list_mutex);
3596 btrfs_handle_fs_error(root->fs_info, ret,
3597 "errors while submitting device barriers.");
3598 return ret;
3602 list_for_each_entry_rcu(dev, head, dev_list) {
3603 if (!dev->bdev) {
3604 total_errors++;
3605 continue;
3607 if (!dev->in_fs_metadata || !dev->writeable)
3608 continue;
3610 btrfs_set_stack_device_generation(dev_item, 0);
3611 btrfs_set_stack_device_type(dev_item, dev->type);
3612 btrfs_set_stack_device_id(dev_item, dev->devid);
3613 btrfs_set_stack_device_total_bytes(dev_item,
3614 dev->commit_total_bytes);
3615 btrfs_set_stack_device_bytes_used(dev_item,
3616 dev->commit_bytes_used);
3617 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3618 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3619 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3620 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3621 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3623 flags = btrfs_super_flags(sb);
3624 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3626 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3627 if (ret)
3628 total_errors++;
3630 if (total_errors > max_errors) {
3631 btrfs_err(root->fs_info, "%d errors while writing supers",
3632 total_errors);
3633 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3635 /* FUA is masked off if unsupported and can't be the reason */
3636 btrfs_handle_fs_error(root->fs_info, -EIO,
3637 "%d errors while writing supers", total_errors);
3638 return -EIO;
3641 total_errors = 0;
3642 list_for_each_entry_rcu(dev, head, dev_list) {
3643 if (!dev->bdev)
3644 continue;
3645 if (!dev->in_fs_metadata || !dev->writeable)
3646 continue;
3648 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3649 if (ret)
3650 total_errors++;
3652 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3653 if (total_errors > max_errors) {
3654 btrfs_handle_fs_error(root->fs_info, -EIO,
3655 "%d errors while writing supers", total_errors);
3656 return -EIO;
3658 return 0;
3661 int write_ctree_super(struct btrfs_trans_handle *trans,
3662 struct btrfs_root *root, int max_mirrors)
3664 return write_all_supers(root, max_mirrors);
3667 /* Drop a fs root from the radix tree and free it. */
3668 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3669 struct btrfs_root *root)
3671 spin_lock(&fs_info->fs_roots_radix_lock);
3672 radix_tree_delete(&fs_info->fs_roots_radix,
3673 (unsigned long)root->root_key.objectid);
3674 spin_unlock(&fs_info->fs_roots_radix_lock);
3676 if (btrfs_root_refs(&root->root_item) == 0)
3677 synchronize_srcu(&fs_info->subvol_srcu);
3679 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3680 btrfs_free_log(NULL, root);
3681 if (root->reloc_root) {
3682 free_extent_buffer(root->reloc_root->node);
3683 free_extent_buffer(root->reloc_root->commit_root);
3684 btrfs_put_fs_root(root->reloc_root);
3685 root->reloc_root = NULL;
3689 if (root->free_ino_pinned)
3690 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3691 if (root->free_ino_ctl)
3692 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3693 free_fs_root(root);
3696 static void free_fs_root(struct btrfs_root *root)
3698 iput(root->ino_cache_inode);
3699 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3700 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3701 root->orphan_block_rsv = NULL;
3702 if (root->anon_dev)
3703 free_anon_bdev(root->anon_dev);
3704 if (root->subv_writers)
3705 btrfs_free_subvolume_writers(root->subv_writers);
3706 free_extent_buffer(root->node);
3707 free_extent_buffer(root->commit_root);
3708 kfree(root->free_ino_ctl);
3709 kfree(root->free_ino_pinned);
3710 kfree(root->name);
3711 btrfs_put_fs_root(root);
3714 void btrfs_free_fs_root(struct btrfs_root *root)
3716 free_fs_root(root);
3719 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3721 u64 root_objectid = 0;
3722 struct btrfs_root *gang[8];
3723 int i = 0;
3724 int err = 0;
3725 unsigned int ret = 0;
3726 int index;
3728 while (1) {
3729 index = srcu_read_lock(&fs_info->subvol_srcu);
3730 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3731 (void **)gang, root_objectid,
3732 ARRAY_SIZE(gang));
3733 if (!ret) {
3734 srcu_read_unlock(&fs_info->subvol_srcu, index);
3735 break;
3737 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3739 for (i = 0; i < ret; i++) {
3740 /* Avoid to grab roots in dead_roots */
3741 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3742 gang[i] = NULL;
3743 continue;
3745 /* grab all the search result for later use */
3746 gang[i] = btrfs_grab_fs_root(gang[i]);
3748 srcu_read_unlock(&fs_info->subvol_srcu, index);
3750 for (i = 0; i < ret; i++) {
3751 if (!gang[i])
3752 continue;
3753 root_objectid = gang[i]->root_key.objectid;
3754 err = btrfs_orphan_cleanup(gang[i]);
3755 if (err)
3756 break;
3757 btrfs_put_fs_root(gang[i]);
3759 root_objectid++;
3762 /* release the uncleaned roots due to error */
3763 for (; i < ret; i++) {
3764 if (gang[i])
3765 btrfs_put_fs_root(gang[i]);
3767 return err;
3770 int btrfs_commit_super(struct btrfs_root *root)
3772 struct btrfs_trans_handle *trans;
3774 mutex_lock(&root->fs_info->cleaner_mutex);
3775 btrfs_run_delayed_iputs(root);
3776 mutex_unlock(&root->fs_info->cleaner_mutex);
3777 wake_up_process(root->fs_info->cleaner_kthread);
3779 /* wait until ongoing cleanup work done */
3780 down_write(&root->fs_info->cleanup_work_sem);
3781 up_write(&root->fs_info->cleanup_work_sem);
3783 trans = btrfs_join_transaction(root);
3784 if (IS_ERR(trans))
3785 return PTR_ERR(trans);
3786 return btrfs_commit_transaction(trans, root);
3789 void close_ctree(struct btrfs_root *root)
3791 struct btrfs_fs_info *fs_info = root->fs_info;
3792 int ret;
3794 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3796 /* wait for the qgroup rescan worker to stop */
3797 btrfs_qgroup_wait_for_completion(fs_info, false);
3799 /* wait for the uuid_scan task to finish */
3800 down(&fs_info->uuid_tree_rescan_sem);
3801 /* avoid complains from lockdep et al., set sem back to initial state */
3802 up(&fs_info->uuid_tree_rescan_sem);
3804 /* pause restriper - we want to resume on mount */
3805 btrfs_pause_balance(fs_info);
3807 btrfs_dev_replace_suspend_for_unmount(fs_info);
3809 btrfs_scrub_cancel(fs_info);
3811 /* wait for any defraggers to finish */
3812 wait_event(fs_info->transaction_wait,
3813 (atomic_read(&fs_info->defrag_running) == 0));
3815 /* clear out the rbtree of defraggable inodes */
3816 btrfs_cleanup_defrag_inodes(fs_info);
3818 cancel_work_sync(&fs_info->async_reclaim_work);
3820 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3822 * If the cleaner thread is stopped and there are
3823 * block groups queued for removal, the deletion will be
3824 * skipped when we quit the cleaner thread.
3826 btrfs_delete_unused_bgs(root->fs_info);
3828 ret = btrfs_commit_super(root);
3829 if (ret)
3830 btrfs_err(fs_info, "commit super ret %d", ret);
3833 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3834 btrfs_error_commit_super(root);
3836 kthread_stop(fs_info->transaction_kthread);
3837 kthread_stop(fs_info->cleaner_kthread);
3839 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3841 btrfs_free_qgroup_config(fs_info);
3843 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3844 btrfs_info(fs_info, "at unmount delalloc count %lld",
3845 percpu_counter_sum(&fs_info->delalloc_bytes));
3848 btrfs_sysfs_remove_mounted(fs_info);
3849 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3851 btrfs_free_fs_roots(fs_info);
3853 btrfs_put_block_group_cache(fs_info);
3855 btrfs_free_block_groups(fs_info);
3858 * we must make sure there is not any read request to
3859 * submit after we stopping all workers.
3861 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3862 btrfs_stop_all_workers(fs_info);
3864 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3865 free_root_pointers(fs_info, 1);
3867 iput(fs_info->btree_inode);
3869 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3870 if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
3871 btrfsic_unmount(root, fs_info->fs_devices);
3872 #endif
3874 btrfs_close_devices(fs_info->fs_devices);
3875 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3877 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3878 percpu_counter_destroy(&fs_info->delalloc_bytes);
3879 percpu_counter_destroy(&fs_info->bio_counter);
3880 bdi_destroy(&fs_info->bdi);
3881 cleanup_srcu_struct(&fs_info->subvol_srcu);
3883 btrfs_free_stripe_hash_table(fs_info);
3885 __btrfs_free_block_rsv(root->orphan_block_rsv);
3886 root->orphan_block_rsv = NULL;
3888 lock_chunks(root);
3889 while (!list_empty(&fs_info->pinned_chunks)) {
3890 struct extent_map *em;
3892 em = list_first_entry(&fs_info->pinned_chunks,
3893 struct extent_map, list);
3894 list_del_init(&em->list);
3895 free_extent_map(em);
3897 unlock_chunks(root);
3900 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3901 int atomic)
3903 int ret;
3904 struct inode *btree_inode = buf->pages[0]->mapping->host;
3906 ret = extent_buffer_uptodate(buf);
3907 if (!ret)
3908 return ret;
3910 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3911 parent_transid, atomic);
3912 if (ret == -EAGAIN)
3913 return ret;
3914 return !ret;
3917 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3919 struct btrfs_root *root;
3920 u64 transid = btrfs_header_generation(buf);
3921 int was_dirty;
3923 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3925 * This is a fast path so only do this check if we have sanity tests
3926 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3927 * outside of the sanity tests.
3929 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3930 return;
3931 #endif
3932 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3933 btrfs_assert_tree_locked(buf);
3934 if (transid != root->fs_info->generation)
3935 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
3936 buf->start, transid, root->fs_info->generation);
3937 was_dirty = set_extent_buffer_dirty(buf);
3938 if (!was_dirty)
3939 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3940 buf->len,
3941 root->fs_info->dirty_metadata_batch);
3942 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3944 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3945 * but item data not updated.
3946 * So here we should only check item pointers, not item data.
3948 if (btrfs_header_level(buf) == 0 &&
3949 btrfs_check_leaf_relaxed(root, buf)) {
3950 btrfs_print_leaf(root, buf);
3951 ASSERT(0);
3953 #endif
3956 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3957 int flush_delayed)
3960 * looks as though older kernels can get into trouble with
3961 * this code, they end up stuck in balance_dirty_pages forever
3963 int ret;
3965 if (current->flags & PF_MEMALLOC)
3966 return;
3968 if (flush_delayed)
3969 btrfs_balance_delayed_items(root);
3971 ret = __percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3972 BTRFS_DIRTY_METADATA_THRESH,
3973 root->fs_info->dirty_metadata_batch);
3974 if (ret > 0) {
3975 balance_dirty_pages_ratelimited(
3976 root->fs_info->btree_inode->i_mapping);
3980 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3982 __btrfs_btree_balance_dirty(root, 1);
3985 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3987 __btrfs_btree_balance_dirty(root, 0);
3990 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3992 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3993 return btree_read_extent_buffer_pages(root, buf, parent_transid);
3996 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3997 int read_only)
3999 struct btrfs_super_block *sb = fs_info->super_copy;
4000 u64 nodesize = btrfs_super_nodesize(sb);
4001 u64 sectorsize = btrfs_super_sectorsize(sb);
4002 int ret = 0;
4004 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4005 btrfs_err(fs_info, "no valid FS found");
4006 ret = -EINVAL;
4008 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
4009 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
4010 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4011 ret = -EINVAL;
4013 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4014 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
4015 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4016 ret = -EINVAL;
4018 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4019 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4020 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4021 ret = -EINVAL;
4023 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4024 btrfs_err(fs_info, "log_root level too big: %d >= %d",
4025 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4026 ret = -EINVAL;
4030 * Check sectorsize and nodesize first, other check will need it.
4031 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4033 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4034 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4035 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4036 ret = -EINVAL;
4038 /* Only PAGE SIZE is supported yet */
4039 if (sectorsize != PAGE_SIZE) {
4040 btrfs_err(fs_info,
4041 "sectorsize %llu not supported yet, only support %lu",
4042 sectorsize, PAGE_SIZE);
4043 ret = -EINVAL;
4045 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4046 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4047 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4048 ret = -EINVAL;
4050 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4051 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4052 le32_to_cpu(sb->__unused_leafsize), nodesize);
4053 ret = -EINVAL;
4056 /* Root alignment check */
4057 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4058 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4059 btrfs_super_root(sb));
4060 ret = -EINVAL;
4062 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4063 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4064 btrfs_super_chunk_root(sb));
4065 ret = -EINVAL;
4067 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4068 btrfs_warn(fs_info, "log_root block unaligned: %llu",
4069 btrfs_super_log_root(sb));
4070 ret = -EINVAL;
4073 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4074 btrfs_err(fs_info,
4075 "dev_item UUID does not match fsid: %pU != %pU",
4076 fs_info->fsid, sb->dev_item.fsid);
4077 ret = -EINVAL;
4081 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4082 * done later
4084 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4085 btrfs_err(fs_info, "bytes_used is too small %llu",
4086 btrfs_super_bytes_used(sb));
4087 ret = -EINVAL;
4089 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4090 btrfs_err(fs_info, "invalid stripesize %u",
4091 btrfs_super_stripesize(sb));
4092 ret = -EINVAL;
4094 if (btrfs_super_num_devices(sb) > (1UL << 31))
4095 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4096 btrfs_super_num_devices(sb));
4097 if (btrfs_super_num_devices(sb) == 0) {
4098 btrfs_err(fs_info, "number of devices is 0");
4099 ret = -EINVAL;
4102 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4103 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4104 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4105 ret = -EINVAL;
4109 * Obvious sys_chunk_array corruptions, it must hold at least one key
4110 * and one chunk
4112 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4113 btrfs_err(fs_info, "system chunk array too big %u > %u",
4114 btrfs_super_sys_array_size(sb),
4115 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4116 ret = -EINVAL;
4118 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4119 + sizeof(struct btrfs_chunk)) {
4120 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4121 btrfs_super_sys_array_size(sb),
4122 sizeof(struct btrfs_disk_key)
4123 + sizeof(struct btrfs_chunk));
4124 ret = -EINVAL;
4128 * The generation is a global counter, we'll trust it more than the others
4129 * but it's still possible that it's the one that's wrong.
4131 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4132 btrfs_warn(fs_info,
4133 "suspicious: generation < chunk_root_generation: %llu < %llu",
4134 btrfs_super_generation(sb),
4135 btrfs_super_chunk_root_generation(sb));
4136 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4137 && btrfs_super_cache_generation(sb) != (u64)-1)
4138 btrfs_warn(fs_info,
4139 "suspicious: generation < cache_generation: %llu < %llu",
4140 btrfs_super_generation(sb),
4141 btrfs_super_cache_generation(sb));
4143 return ret;
4146 static void btrfs_error_commit_super(struct btrfs_root *root)
4148 mutex_lock(&root->fs_info->cleaner_mutex);
4149 btrfs_run_delayed_iputs(root);
4150 mutex_unlock(&root->fs_info->cleaner_mutex);
4152 down_write(&root->fs_info->cleanup_work_sem);
4153 up_write(&root->fs_info->cleanup_work_sem);
4155 /* cleanup FS via transaction */
4156 btrfs_cleanup_transaction(root);
4159 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4161 struct btrfs_ordered_extent *ordered;
4163 spin_lock(&root->ordered_extent_lock);
4165 * This will just short circuit the ordered completion stuff which will
4166 * make sure the ordered extent gets properly cleaned up.
4168 list_for_each_entry(ordered, &root->ordered_extents,
4169 root_extent_list)
4170 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4171 spin_unlock(&root->ordered_extent_lock);
4174 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4176 struct btrfs_root *root;
4177 struct list_head splice;
4179 INIT_LIST_HEAD(&splice);
4181 spin_lock(&fs_info->ordered_root_lock);
4182 list_splice_init(&fs_info->ordered_roots, &splice);
4183 while (!list_empty(&splice)) {
4184 root = list_first_entry(&splice, struct btrfs_root,
4185 ordered_root);
4186 list_move_tail(&root->ordered_root,
4187 &fs_info->ordered_roots);
4189 spin_unlock(&fs_info->ordered_root_lock);
4190 btrfs_destroy_ordered_extents(root);
4192 cond_resched();
4193 spin_lock(&fs_info->ordered_root_lock);
4195 spin_unlock(&fs_info->ordered_root_lock);
4198 * We need this here because if we've been flipped read-only we won't
4199 * get sync() from the umount, so we need to make sure any ordered
4200 * extents that haven't had their dirty pages IO start writeout yet
4201 * actually get run and error out properly.
4203 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
4206 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4207 struct btrfs_root *root)
4209 struct rb_node *node;
4210 struct btrfs_delayed_ref_root *delayed_refs;
4211 struct btrfs_delayed_ref_node *ref;
4212 int ret = 0;
4214 delayed_refs = &trans->delayed_refs;
4216 spin_lock(&delayed_refs->lock);
4217 if (atomic_read(&delayed_refs->num_entries) == 0) {
4218 spin_unlock(&delayed_refs->lock);
4219 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4220 return ret;
4223 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4224 struct btrfs_delayed_ref_head *head;
4225 struct btrfs_delayed_ref_node *tmp;
4226 bool pin_bytes = false;
4228 head = rb_entry(node, struct btrfs_delayed_ref_head,
4229 href_node);
4230 if (!mutex_trylock(&head->mutex)) {
4231 atomic_inc(&head->node.refs);
4232 spin_unlock(&delayed_refs->lock);
4234 mutex_lock(&head->mutex);
4235 mutex_unlock(&head->mutex);
4236 btrfs_put_delayed_ref(&head->node);
4237 spin_lock(&delayed_refs->lock);
4238 continue;
4240 spin_lock(&head->lock);
4241 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4242 list) {
4243 ref->in_tree = 0;
4244 list_del(&ref->list);
4245 atomic_dec(&delayed_refs->num_entries);
4246 btrfs_put_delayed_ref(ref);
4248 if (head->must_insert_reserved)
4249 pin_bytes = true;
4250 btrfs_free_delayed_extent_op(head->extent_op);
4251 delayed_refs->num_heads--;
4252 if (head->processing == 0)
4253 delayed_refs->num_heads_ready--;
4254 atomic_dec(&delayed_refs->num_entries);
4255 head->node.in_tree = 0;
4256 rb_erase(&head->href_node, &delayed_refs->href_root);
4257 spin_unlock(&head->lock);
4258 spin_unlock(&delayed_refs->lock);
4259 mutex_unlock(&head->mutex);
4261 if (pin_bytes)
4262 btrfs_pin_extent(root, head->node.bytenr,
4263 head->node.num_bytes, 1);
4264 btrfs_put_delayed_ref(&head->node);
4265 cond_resched();
4266 spin_lock(&delayed_refs->lock);
4269 spin_unlock(&delayed_refs->lock);
4271 return ret;
4274 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4276 struct btrfs_inode *btrfs_inode;
4277 struct list_head splice;
4279 INIT_LIST_HEAD(&splice);
4281 spin_lock(&root->delalloc_lock);
4282 list_splice_init(&root->delalloc_inodes, &splice);
4284 while (!list_empty(&splice)) {
4285 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4286 delalloc_inodes);
4288 list_del_init(&btrfs_inode->delalloc_inodes);
4289 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4290 &btrfs_inode->runtime_flags);
4291 spin_unlock(&root->delalloc_lock);
4293 btrfs_invalidate_inodes(btrfs_inode->root);
4295 spin_lock(&root->delalloc_lock);
4298 spin_unlock(&root->delalloc_lock);
4301 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4303 struct btrfs_root *root;
4304 struct list_head splice;
4306 INIT_LIST_HEAD(&splice);
4308 spin_lock(&fs_info->delalloc_root_lock);
4309 list_splice_init(&fs_info->delalloc_roots, &splice);
4310 while (!list_empty(&splice)) {
4311 root = list_first_entry(&splice, struct btrfs_root,
4312 delalloc_root);
4313 list_del_init(&root->delalloc_root);
4314 root = btrfs_grab_fs_root(root);
4315 BUG_ON(!root);
4316 spin_unlock(&fs_info->delalloc_root_lock);
4318 btrfs_destroy_delalloc_inodes(root);
4319 btrfs_put_fs_root(root);
4321 spin_lock(&fs_info->delalloc_root_lock);
4323 spin_unlock(&fs_info->delalloc_root_lock);
4326 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4327 struct extent_io_tree *dirty_pages,
4328 int mark)
4330 int ret;
4331 struct extent_buffer *eb;
4332 u64 start = 0;
4333 u64 end;
4335 while (1) {
4336 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4337 mark, NULL);
4338 if (ret)
4339 break;
4341 clear_extent_bits(dirty_pages, start, end, mark);
4342 while (start <= end) {
4343 eb = btrfs_find_tree_block(root->fs_info, start);
4344 start += root->nodesize;
4345 if (!eb)
4346 continue;
4347 wait_on_extent_buffer_writeback(eb);
4349 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4350 &eb->bflags))
4351 clear_extent_buffer_dirty(eb);
4352 free_extent_buffer_stale(eb);
4356 return ret;
4359 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4360 struct extent_io_tree *pinned_extents)
4362 struct btrfs_fs_info *fs_info = root->fs_info;
4363 struct extent_io_tree *unpin;
4364 u64 start;
4365 u64 end;
4366 int ret;
4367 bool loop = true;
4369 unpin = pinned_extents;
4370 again:
4371 while (1) {
4373 * The btrfs_finish_extent_commit() may get the same range as
4374 * ours between find_first_extent_bit and clear_extent_dirty.
4375 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4376 * the same extent range.
4378 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4379 ret = find_first_extent_bit(unpin, 0, &start, &end,
4380 EXTENT_DIRTY, NULL);
4381 if (ret) {
4382 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4383 break;
4386 clear_extent_dirty(unpin, start, end);
4387 btrfs_error_unpin_extent_range(root, start, end);
4388 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4389 cond_resched();
4392 if (loop) {
4393 if (unpin == &fs_info->freed_extents[0])
4394 unpin = &fs_info->freed_extents[1];
4395 else
4396 unpin = &fs_info->freed_extents[0];
4397 loop = false;
4398 goto again;
4401 return 0;
4404 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4406 struct inode *inode;
4408 inode = cache->io_ctl.inode;
4409 if (inode) {
4410 invalidate_inode_pages2(inode->i_mapping);
4411 BTRFS_I(inode)->generation = 0;
4412 cache->io_ctl.inode = NULL;
4413 iput(inode);
4415 btrfs_put_block_group(cache);
4418 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4419 struct btrfs_root *root)
4421 struct btrfs_block_group_cache *cache;
4423 spin_lock(&cur_trans->dirty_bgs_lock);
4424 while (!list_empty(&cur_trans->dirty_bgs)) {
4425 cache = list_first_entry(&cur_trans->dirty_bgs,
4426 struct btrfs_block_group_cache,
4427 dirty_list);
4428 if (!cache) {
4429 btrfs_err(root->fs_info,
4430 "orphan block group dirty_bgs list");
4431 spin_unlock(&cur_trans->dirty_bgs_lock);
4432 return;
4435 if (!list_empty(&cache->io_list)) {
4436 spin_unlock(&cur_trans->dirty_bgs_lock);
4437 list_del_init(&cache->io_list);
4438 btrfs_cleanup_bg_io(cache);
4439 spin_lock(&cur_trans->dirty_bgs_lock);
4442 list_del_init(&cache->dirty_list);
4443 spin_lock(&cache->lock);
4444 cache->disk_cache_state = BTRFS_DC_ERROR;
4445 spin_unlock(&cache->lock);
4447 spin_unlock(&cur_trans->dirty_bgs_lock);
4448 btrfs_put_block_group(cache);
4449 spin_lock(&cur_trans->dirty_bgs_lock);
4451 spin_unlock(&cur_trans->dirty_bgs_lock);
4453 while (!list_empty(&cur_trans->io_bgs)) {
4454 cache = list_first_entry(&cur_trans->io_bgs,
4455 struct btrfs_block_group_cache,
4456 io_list);
4457 if (!cache) {
4458 btrfs_err(root->fs_info,
4459 "orphan block group on io_bgs list");
4460 return;
4463 list_del_init(&cache->io_list);
4464 spin_lock(&cache->lock);
4465 cache->disk_cache_state = BTRFS_DC_ERROR;
4466 spin_unlock(&cache->lock);
4467 btrfs_cleanup_bg_io(cache);
4471 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4472 struct btrfs_root *root)
4474 btrfs_cleanup_dirty_bgs(cur_trans, root);
4475 ASSERT(list_empty(&cur_trans->dirty_bgs));
4476 ASSERT(list_empty(&cur_trans->io_bgs));
4478 btrfs_destroy_delayed_refs(cur_trans, root);
4480 cur_trans->state = TRANS_STATE_COMMIT_START;
4481 wake_up(&root->fs_info->transaction_blocked_wait);
4483 cur_trans->state = TRANS_STATE_UNBLOCKED;
4484 wake_up(&root->fs_info->transaction_wait);
4486 btrfs_destroy_delayed_inodes(root);
4487 btrfs_assert_delayed_root_empty(root);
4489 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4490 EXTENT_DIRTY);
4491 btrfs_destroy_pinned_extent(root,
4492 root->fs_info->pinned_extents);
4494 cur_trans->state =TRANS_STATE_COMPLETED;
4495 wake_up(&cur_trans->commit_wait);
4498 memset(cur_trans, 0, sizeof(*cur_trans));
4499 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4503 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4505 struct btrfs_transaction *t;
4507 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4509 spin_lock(&root->fs_info->trans_lock);
4510 while (!list_empty(&root->fs_info->trans_list)) {
4511 t = list_first_entry(&root->fs_info->trans_list,
4512 struct btrfs_transaction, list);
4513 if (t->state >= TRANS_STATE_COMMIT_START) {
4514 atomic_inc(&t->use_count);
4515 spin_unlock(&root->fs_info->trans_lock);
4516 btrfs_wait_for_commit(root, t->transid);
4517 btrfs_put_transaction(t);
4518 spin_lock(&root->fs_info->trans_lock);
4519 continue;
4521 if (t == root->fs_info->running_transaction) {
4522 t->state = TRANS_STATE_COMMIT_DOING;
4523 spin_unlock(&root->fs_info->trans_lock);
4525 * We wait for 0 num_writers since we don't hold a trans
4526 * handle open currently for this transaction.
4528 wait_event(t->writer_wait,
4529 atomic_read(&t->num_writers) == 0);
4530 } else {
4531 spin_unlock(&root->fs_info->trans_lock);
4533 btrfs_cleanup_one_transaction(t, root);
4535 spin_lock(&root->fs_info->trans_lock);
4536 if (t == root->fs_info->running_transaction)
4537 root->fs_info->running_transaction = NULL;
4538 list_del_init(&t->list);
4539 spin_unlock(&root->fs_info->trans_lock);
4541 btrfs_put_transaction(t);
4542 trace_btrfs_transaction_commit(root);
4543 spin_lock(&root->fs_info->trans_lock);
4545 spin_unlock(&root->fs_info->trans_lock);
4546 btrfs_destroy_all_ordered_extents(root->fs_info);
4547 btrfs_destroy_delayed_inodes(root);
4548 btrfs_assert_delayed_root_empty(root);
4549 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4550 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4551 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4553 return 0;
4556 static const struct extent_io_ops btree_extent_io_ops = {
4557 .readpage_end_io_hook = btree_readpage_end_io_hook,
4558 .readpage_io_failed_hook = btree_io_failed_hook,
4559 .submit_bio_hook = btree_submit_bio_hook,
4560 /* note we're sharing with inode.c for the merge bio hook */
4561 .merge_bio_hook = btrfs_merge_bio_hook,