2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
24 #include "ordered-data.h"
25 #include "transaction.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
39 * Future enhancements:
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
42 * - track and record media errors, throw out bad devices
43 * - add a mode to also read unallocated space
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
66 struct scrub_recover
{
68 struct btrfs_bio
*bbio
;
73 struct scrub_block
*sblock
;
75 struct btrfs_device
*dev
;
76 struct list_head list
;
77 u64 flags
; /* extent flags */
81 u64 physical_for_dev_replace
;
84 unsigned int mirror_num
:8;
85 unsigned int have_csum
:1;
86 unsigned int io_error
:1;
88 u8 csum
[BTRFS_CSUM_SIZE
];
90 struct scrub_recover
*recover
;
95 struct scrub_ctx
*sctx
;
96 struct btrfs_device
*dev
;
101 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102 struct scrub_page
*pagev
[SCRUB_PAGES_PER_WR_BIO
];
104 struct scrub_page
*pagev
[SCRUB_PAGES_PER_RD_BIO
];
108 struct btrfs_work work
;
112 struct scrub_page
*pagev
[SCRUB_MAX_PAGES_PER_BLOCK
];
114 atomic_t outstanding_pages
;
115 atomic_t refs
; /* free mem on transition to zero */
116 struct scrub_ctx
*sctx
;
117 struct scrub_parity
*sparity
;
119 unsigned int header_error
:1;
120 unsigned int checksum_error
:1;
121 unsigned int no_io_error_seen
:1;
122 unsigned int generation_error
:1; /* also sets header_error */
124 /* The following is for the data used to check parity */
125 /* It is for the data with checksum */
126 unsigned int data_corrected
:1;
128 struct btrfs_work work
;
131 /* Used for the chunks with parity stripe such RAID5/6 */
132 struct scrub_parity
{
133 struct scrub_ctx
*sctx
;
135 struct btrfs_device
*scrub_dev
;
147 struct list_head spages
;
149 /* Work of parity check and repair */
150 struct btrfs_work work
;
152 /* Mark the parity blocks which have data */
153 unsigned long *dbitmap
;
156 * Mark the parity blocks which have data, but errors happen when
157 * read data or check data
159 unsigned long *ebitmap
;
161 unsigned long bitmap
[0];
164 struct scrub_wr_ctx
{
165 struct scrub_bio
*wr_curr_bio
;
166 struct btrfs_device
*tgtdev
;
167 int pages_per_wr_bio
; /* <= SCRUB_PAGES_PER_WR_BIO */
168 atomic_t flush_all_writes
;
169 struct mutex wr_lock
;
173 struct scrub_bio
*bios
[SCRUB_BIOS_PER_SCTX
];
174 struct btrfs_root
*dev_root
;
177 atomic_t bios_in_flight
;
178 atomic_t workers_pending
;
179 spinlock_t list_lock
;
180 wait_queue_head_t list_wait
;
182 struct list_head csum_list
;
185 int pages_per_rd_bio
;
190 struct scrub_wr_ctx wr_ctx
;
195 struct btrfs_scrub_progress stat
;
196 spinlock_t stat_lock
;
199 * Use a ref counter to avoid use-after-free issues. Scrub workers
200 * decrement bios_in_flight and workers_pending and then do a wakeup
201 * on the list_wait wait queue. We must ensure the main scrub task
202 * doesn't free the scrub context before or while the workers are
203 * doing the wakeup() call.
208 struct scrub_fixup_nodatasum
{
209 struct scrub_ctx
*sctx
;
210 struct btrfs_device
*dev
;
212 struct btrfs_root
*root
;
213 struct btrfs_work work
;
217 struct scrub_nocow_inode
{
221 struct list_head list
;
224 struct scrub_copy_nocow_ctx
{
225 struct scrub_ctx
*sctx
;
229 u64 physical_for_dev_replace
;
230 struct list_head inodes
;
231 struct btrfs_work work
;
234 struct scrub_warning
{
235 struct btrfs_path
*path
;
236 u64 extent_item_size
;
240 struct btrfs_device
*dev
;
243 static void scrub_pending_bio_inc(struct scrub_ctx
*sctx
);
244 static void scrub_pending_bio_dec(struct scrub_ctx
*sctx
);
245 static void scrub_pending_trans_workers_inc(struct scrub_ctx
*sctx
);
246 static void scrub_pending_trans_workers_dec(struct scrub_ctx
*sctx
);
247 static int scrub_handle_errored_block(struct scrub_block
*sblock_to_check
);
248 static int scrub_setup_recheck_block(struct scrub_block
*original_sblock
,
249 struct scrub_block
*sblocks_for_recheck
);
250 static void scrub_recheck_block(struct btrfs_fs_info
*fs_info
,
251 struct scrub_block
*sblock
,
252 int retry_failed_mirror
);
253 static void scrub_recheck_block_checksum(struct scrub_block
*sblock
);
254 static int scrub_repair_block_from_good_copy(struct scrub_block
*sblock_bad
,
255 struct scrub_block
*sblock_good
);
256 static int scrub_repair_page_from_good_copy(struct scrub_block
*sblock_bad
,
257 struct scrub_block
*sblock_good
,
258 int page_num
, int force_write
);
259 static void scrub_write_block_to_dev_replace(struct scrub_block
*sblock
);
260 static int scrub_write_page_to_dev_replace(struct scrub_block
*sblock
,
262 static int scrub_checksum_data(struct scrub_block
*sblock
);
263 static int scrub_checksum_tree_block(struct scrub_block
*sblock
);
264 static int scrub_checksum_super(struct scrub_block
*sblock
);
265 static void scrub_block_get(struct scrub_block
*sblock
);
266 static void scrub_block_put(struct scrub_block
*sblock
);
267 static void scrub_page_get(struct scrub_page
*spage
);
268 static void scrub_page_put(struct scrub_page
*spage
);
269 static void scrub_parity_get(struct scrub_parity
*sparity
);
270 static void scrub_parity_put(struct scrub_parity
*sparity
);
271 static int scrub_add_page_to_rd_bio(struct scrub_ctx
*sctx
,
272 struct scrub_page
*spage
);
273 static int scrub_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
274 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
275 u64 gen
, int mirror_num
, u8
*csum
, int force
,
276 u64 physical_for_dev_replace
);
277 static void scrub_bio_end_io(struct bio
*bio
);
278 static void scrub_bio_end_io_worker(struct btrfs_work
*work
);
279 static void scrub_block_complete(struct scrub_block
*sblock
);
280 static void scrub_remap_extent(struct btrfs_fs_info
*fs_info
,
281 u64 extent_logical
, u64 extent_len
,
282 u64
*extent_physical
,
283 struct btrfs_device
**extent_dev
,
284 int *extent_mirror_num
);
285 static int scrub_setup_wr_ctx(struct scrub_ctx
*sctx
,
286 struct scrub_wr_ctx
*wr_ctx
,
287 struct btrfs_fs_info
*fs_info
,
288 struct btrfs_device
*dev
,
290 static void scrub_free_wr_ctx(struct scrub_wr_ctx
*wr_ctx
);
291 static int scrub_add_page_to_wr_bio(struct scrub_ctx
*sctx
,
292 struct scrub_page
*spage
);
293 static void scrub_wr_submit(struct scrub_ctx
*sctx
);
294 static void scrub_wr_bio_end_io(struct bio
*bio
);
295 static void scrub_wr_bio_end_io_worker(struct btrfs_work
*work
);
296 static int write_page_nocow(struct scrub_ctx
*sctx
,
297 u64 physical_for_dev_replace
, struct page
*page
);
298 static int copy_nocow_pages_for_inode(u64 inum
, u64 offset
, u64 root
,
299 struct scrub_copy_nocow_ctx
*ctx
);
300 static int copy_nocow_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
301 int mirror_num
, u64 physical_for_dev_replace
);
302 static void copy_nocow_pages_worker(struct btrfs_work
*work
);
303 static void __scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
);
304 static void scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
);
305 static void scrub_put_ctx(struct scrub_ctx
*sctx
);
308 static void scrub_pending_bio_inc(struct scrub_ctx
*sctx
)
310 atomic_inc(&sctx
->refs
);
311 atomic_inc(&sctx
->bios_in_flight
);
314 static void scrub_pending_bio_dec(struct scrub_ctx
*sctx
)
316 atomic_dec(&sctx
->bios_in_flight
);
317 wake_up(&sctx
->list_wait
);
321 static void __scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
)
323 while (atomic_read(&fs_info
->scrub_pause_req
)) {
324 mutex_unlock(&fs_info
->scrub_lock
);
325 wait_event(fs_info
->scrub_pause_wait
,
326 atomic_read(&fs_info
->scrub_pause_req
) == 0);
327 mutex_lock(&fs_info
->scrub_lock
);
331 static void scrub_pause_on(struct btrfs_fs_info
*fs_info
)
333 atomic_inc(&fs_info
->scrubs_paused
);
334 wake_up(&fs_info
->scrub_pause_wait
);
337 static void scrub_pause_off(struct btrfs_fs_info
*fs_info
)
339 mutex_lock(&fs_info
->scrub_lock
);
340 __scrub_blocked_if_needed(fs_info
);
341 atomic_dec(&fs_info
->scrubs_paused
);
342 mutex_unlock(&fs_info
->scrub_lock
);
344 wake_up(&fs_info
->scrub_pause_wait
);
347 static void scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
)
349 scrub_pause_on(fs_info
);
350 scrub_pause_off(fs_info
);
354 * used for workers that require transaction commits (i.e., for the
357 static void scrub_pending_trans_workers_inc(struct scrub_ctx
*sctx
)
359 struct btrfs_fs_info
*fs_info
= sctx
->dev_root
->fs_info
;
361 atomic_inc(&sctx
->refs
);
363 * increment scrubs_running to prevent cancel requests from
364 * completing as long as a worker is running. we must also
365 * increment scrubs_paused to prevent deadlocking on pause
366 * requests used for transactions commits (as the worker uses a
367 * transaction context). it is safe to regard the worker
368 * as paused for all matters practical. effectively, we only
369 * avoid cancellation requests from completing.
371 mutex_lock(&fs_info
->scrub_lock
);
372 atomic_inc(&fs_info
->scrubs_running
);
373 atomic_inc(&fs_info
->scrubs_paused
);
374 mutex_unlock(&fs_info
->scrub_lock
);
377 * check if @scrubs_running=@scrubs_paused condition
378 * inside wait_event() is not an atomic operation.
379 * which means we may inc/dec @scrub_running/paused
380 * at any time. Let's wake up @scrub_pause_wait as
381 * much as we can to let commit transaction blocked less.
383 wake_up(&fs_info
->scrub_pause_wait
);
385 atomic_inc(&sctx
->workers_pending
);
388 /* used for workers that require transaction commits */
389 static void scrub_pending_trans_workers_dec(struct scrub_ctx
*sctx
)
391 struct btrfs_fs_info
*fs_info
= sctx
->dev_root
->fs_info
;
394 * see scrub_pending_trans_workers_inc() why we're pretending
395 * to be paused in the scrub counters
397 mutex_lock(&fs_info
->scrub_lock
);
398 atomic_dec(&fs_info
->scrubs_running
);
399 atomic_dec(&fs_info
->scrubs_paused
);
400 mutex_unlock(&fs_info
->scrub_lock
);
401 atomic_dec(&sctx
->workers_pending
);
402 wake_up(&fs_info
->scrub_pause_wait
);
403 wake_up(&sctx
->list_wait
);
407 static void scrub_free_csums(struct scrub_ctx
*sctx
)
409 while (!list_empty(&sctx
->csum_list
)) {
410 struct btrfs_ordered_sum
*sum
;
411 sum
= list_first_entry(&sctx
->csum_list
,
412 struct btrfs_ordered_sum
, list
);
413 list_del(&sum
->list
);
418 static noinline_for_stack
void scrub_free_ctx(struct scrub_ctx
*sctx
)
425 scrub_free_wr_ctx(&sctx
->wr_ctx
);
427 /* this can happen when scrub is cancelled */
428 if (sctx
->curr
!= -1) {
429 struct scrub_bio
*sbio
= sctx
->bios
[sctx
->curr
];
431 for (i
= 0; i
< sbio
->page_count
; i
++) {
432 WARN_ON(!sbio
->pagev
[i
]->page
);
433 scrub_block_put(sbio
->pagev
[i
]->sblock
);
438 for (i
= 0; i
< SCRUB_BIOS_PER_SCTX
; ++i
) {
439 struct scrub_bio
*sbio
= sctx
->bios
[i
];
446 scrub_free_csums(sctx
);
450 static void scrub_put_ctx(struct scrub_ctx
*sctx
)
452 if (atomic_dec_and_test(&sctx
->refs
))
453 scrub_free_ctx(sctx
);
456 static noinline_for_stack
457 struct scrub_ctx
*scrub_setup_ctx(struct btrfs_device
*dev
, int is_dev_replace
)
459 struct scrub_ctx
*sctx
;
461 struct btrfs_fs_info
*fs_info
= dev
->dev_root
->fs_info
;
464 sctx
= kzalloc(sizeof(*sctx
), GFP_KERNEL
);
467 atomic_set(&sctx
->refs
, 1);
468 sctx
->is_dev_replace
= is_dev_replace
;
469 sctx
->pages_per_rd_bio
= SCRUB_PAGES_PER_RD_BIO
;
471 sctx
->dev_root
= dev
->dev_root
;
472 for (i
= 0; i
< SCRUB_BIOS_PER_SCTX
; ++i
) {
473 struct scrub_bio
*sbio
;
475 sbio
= kzalloc(sizeof(*sbio
), GFP_KERNEL
);
478 sctx
->bios
[i
] = sbio
;
482 sbio
->page_count
= 0;
483 btrfs_init_work(&sbio
->work
, btrfs_scrub_helper
,
484 scrub_bio_end_io_worker
, NULL
, NULL
);
486 if (i
!= SCRUB_BIOS_PER_SCTX
- 1)
487 sctx
->bios
[i
]->next_free
= i
+ 1;
489 sctx
->bios
[i
]->next_free
= -1;
491 sctx
->first_free
= 0;
492 sctx
->nodesize
= dev
->dev_root
->nodesize
;
493 sctx
->sectorsize
= dev
->dev_root
->sectorsize
;
494 atomic_set(&sctx
->bios_in_flight
, 0);
495 atomic_set(&sctx
->workers_pending
, 0);
496 atomic_set(&sctx
->cancel_req
, 0);
497 sctx
->csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
498 INIT_LIST_HEAD(&sctx
->csum_list
);
500 spin_lock_init(&sctx
->list_lock
);
501 spin_lock_init(&sctx
->stat_lock
);
502 init_waitqueue_head(&sctx
->list_wait
);
504 ret
= scrub_setup_wr_ctx(sctx
, &sctx
->wr_ctx
, fs_info
,
505 fs_info
->dev_replace
.tgtdev
, is_dev_replace
);
507 scrub_free_ctx(sctx
);
513 scrub_free_ctx(sctx
);
514 return ERR_PTR(-ENOMEM
);
517 static int scrub_print_warning_inode(u64 inum
, u64 offset
, u64 root
,
524 struct extent_buffer
*eb
;
525 struct btrfs_inode_item
*inode_item
;
526 struct scrub_warning
*swarn
= warn_ctx
;
527 struct btrfs_fs_info
*fs_info
= swarn
->dev
->dev_root
->fs_info
;
528 struct inode_fs_paths
*ipath
= NULL
;
529 struct btrfs_root
*local_root
;
530 struct btrfs_key root_key
;
531 struct btrfs_key key
;
533 root_key
.objectid
= root
;
534 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
535 root_key
.offset
= (u64
)-1;
536 local_root
= btrfs_read_fs_root_no_name(fs_info
, &root_key
);
537 if (IS_ERR(local_root
)) {
538 ret
= PTR_ERR(local_root
);
543 * this makes the path point to (inum INODE_ITEM ioff)
546 key
.type
= BTRFS_INODE_ITEM_KEY
;
549 ret
= btrfs_search_slot(NULL
, local_root
, &key
, swarn
->path
, 0, 0);
551 btrfs_release_path(swarn
->path
);
555 eb
= swarn
->path
->nodes
[0];
556 inode_item
= btrfs_item_ptr(eb
, swarn
->path
->slots
[0],
557 struct btrfs_inode_item
);
558 isize
= btrfs_inode_size(eb
, inode_item
);
559 nlink
= btrfs_inode_nlink(eb
, inode_item
);
560 btrfs_release_path(swarn
->path
);
562 ipath
= init_ipath(4096, local_root
, swarn
->path
);
564 ret
= PTR_ERR(ipath
);
568 ret
= paths_from_inode(inum
, ipath
);
574 * we deliberately ignore the bit ipath might have been too small to
575 * hold all of the paths here
577 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
)
578 btrfs_warn_in_rcu(fs_info
,
579 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
580 swarn
->errstr
, swarn
->logical
,
581 rcu_str_deref(swarn
->dev
->name
),
582 (unsigned long long)swarn
->sector
,
584 min(isize
- offset
, (u64
)PAGE_SIZE
), nlink
,
585 (char *)(unsigned long)ipath
->fspath
->val
[i
]);
591 btrfs_warn_in_rcu(fs_info
,
592 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
593 swarn
->errstr
, swarn
->logical
,
594 rcu_str_deref(swarn
->dev
->name
),
595 (unsigned long long)swarn
->sector
,
596 root
, inum
, offset
, ret
);
602 static void scrub_print_warning(const char *errstr
, struct scrub_block
*sblock
)
604 struct btrfs_device
*dev
;
605 struct btrfs_fs_info
*fs_info
;
606 struct btrfs_path
*path
;
607 struct btrfs_key found_key
;
608 struct extent_buffer
*eb
;
609 struct btrfs_extent_item
*ei
;
610 struct scrub_warning swarn
;
611 unsigned long ptr
= 0;
619 WARN_ON(sblock
->page_count
< 1);
620 dev
= sblock
->pagev
[0]->dev
;
621 fs_info
= sblock
->sctx
->dev_root
->fs_info
;
623 path
= btrfs_alloc_path();
627 swarn
.sector
= (sblock
->pagev
[0]->physical
) >> 9;
628 swarn
.logical
= sblock
->pagev
[0]->logical
;
629 swarn
.errstr
= errstr
;
632 ret
= extent_from_logical(fs_info
, swarn
.logical
, path
, &found_key
,
637 extent_item_pos
= swarn
.logical
- found_key
.objectid
;
638 swarn
.extent_item_size
= found_key
.offset
;
641 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
642 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
644 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
646 ret
= tree_backref_for_extent(&ptr
, eb
, &found_key
, ei
,
647 item_size
, &ref_root
,
649 btrfs_warn_in_rcu(fs_info
,
650 "%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu",
651 errstr
, swarn
.logical
,
652 rcu_str_deref(dev
->name
),
653 (unsigned long long)swarn
.sector
,
654 ref_level
? "node" : "leaf",
655 ret
< 0 ? -1 : ref_level
,
656 ret
< 0 ? -1 : ref_root
);
658 btrfs_release_path(path
);
660 btrfs_release_path(path
);
663 iterate_extent_inodes(fs_info
, found_key
.objectid
,
665 scrub_print_warning_inode
, &swarn
);
669 btrfs_free_path(path
);
672 static int scrub_fixup_readpage(u64 inum
, u64 offset
, u64 root
, void *fixup_ctx
)
674 struct page
*page
= NULL
;
676 struct scrub_fixup_nodatasum
*fixup
= fixup_ctx
;
679 struct btrfs_key key
;
680 struct inode
*inode
= NULL
;
681 struct btrfs_fs_info
*fs_info
;
682 u64 end
= offset
+ PAGE_SIZE
- 1;
683 struct btrfs_root
*local_root
;
687 key
.type
= BTRFS_ROOT_ITEM_KEY
;
688 key
.offset
= (u64
)-1;
690 fs_info
= fixup
->root
->fs_info
;
691 srcu_index
= srcu_read_lock(&fs_info
->subvol_srcu
);
693 local_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
694 if (IS_ERR(local_root
)) {
695 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
696 return PTR_ERR(local_root
);
699 key
.type
= BTRFS_INODE_ITEM_KEY
;
702 inode
= btrfs_iget(fs_info
->sb
, &key
, local_root
, NULL
);
703 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
705 return PTR_ERR(inode
);
707 index
= offset
>> PAGE_SHIFT
;
709 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
715 if (PageUptodate(page
)) {
716 if (PageDirty(page
)) {
718 * we need to write the data to the defect sector. the
719 * data that was in that sector is not in memory,
720 * because the page was modified. we must not write the
721 * modified page to that sector.
723 * TODO: what could be done here: wait for the delalloc
724 * runner to write out that page (might involve
725 * COW) and see whether the sector is still
726 * referenced afterwards.
728 * For the meantime, we'll treat this error
729 * incorrectable, although there is a chance that a
730 * later scrub will find the bad sector again and that
731 * there's no dirty page in memory, then.
736 ret
= repair_io_failure(inode
, offset
, PAGE_SIZE
,
737 fixup
->logical
, page
,
738 offset
- page_offset(page
),
744 * we need to get good data first. the general readpage path
745 * will call repair_io_failure for us, we just have to make
746 * sure we read the bad mirror.
748 ret
= set_extent_bits(&BTRFS_I(inode
)->io_tree
, offset
, end
,
751 /* set_extent_bits should give proper error */
758 ret
= extent_read_full_page(&BTRFS_I(inode
)->io_tree
, page
,
761 wait_on_page_locked(page
);
763 corrected
= !test_range_bit(&BTRFS_I(inode
)->io_tree
, offset
,
764 end
, EXTENT_DAMAGED
, 0, NULL
);
766 clear_extent_bits(&BTRFS_I(inode
)->io_tree
, offset
, end
,
779 if (ret
== 0 && corrected
) {
781 * we only need to call readpage for one of the inodes belonging
782 * to this extent. so make iterate_extent_inodes stop
790 static void scrub_fixup_nodatasum(struct btrfs_work
*work
)
793 struct scrub_fixup_nodatasum
*fixup
;
794 struct scrub_ctx
*sctx
;
795 struct btrfs_trans_handle
*trans
= NULL
;
796 struct btrfs_path
*path
;
797 int uncorrectable
= 0;
799 fixup
= container_of(work
, struct scrub_fixup_nodatasum
, work
);
802 path
= btrfs_alloc_path();
804 spin_lock(&sctx
->stat_lock
);
805 ++sctx
->stat
.malloc_errors
;
806 spin_unlock(&sctx
->stat_lock
);
811 trans
= btrfs_join_transaction(fixup
->root
);
818 * the idea is to trigger a regular read through the standard path. we
819 * read a page from the (failed) logical address by specifying the
820 * corresponding copynum of the failed sector. thus, that readpage is
822 * that is the point where on-the-fly error correction will kick in
823 * (once it's finished) and rewrite the failed sector if a good copy
826 ret
= iterate_inodes_from_logical(fixup
->logical
, fixup
->root
->fs_info
,
827 path
, scrub_fixup_readpage
,
835 spin_lock(&sctx
->stat_lock
);
836 ++sctx
->stat
.corrected_errors
;
837 spin_unlock(&sctx
->stat_lock
);
840 if (trans
&& !IS_ERR(trans
))
841 btrfs_end_transaction(trans
, fixup
->root
);
843 spin_lock(&sctx
->stat_lock
);
844 ++sctx
->stat
.uncorrectable_errors
;
845 spin_unlock(&sctx
->stat_lock
);
846 btrfs_dev_replace_stats_inc(
847 &sctx
->dev_root
->fs_info
->dev_replace
.
848 num_uncorrectable_read_errors
);
849 btrfs_err_rl_in_rcu(sctx
->dev_root
->fs_info
,
850 "unable to fixup (nodatasum) error at logical %llu on dev %s",
851 fixup
->logical
, rcu_str_deref(fixup
->dev
->name
));
854 btrfs_free_path(path
);
857 scrub_pending_trans_workers_dec(sctx
);
860 static inline void scrub_get_recover(struct scrub_recover
*recover
)
862 atomic_inc(&recover
->refs
);
865 static inline void scrub_put_recover(struct scrub_recover
*recover
)
867 if (atomic_dec_and_test(&recover
->refs
)) {
868 btrfs_put_bbio(recover
->bbio
);
874 * scrub_handle_errored_block gets called when either verification of the
875 * pages failed or the bio failed to read, e.g. with EIO. In the latter
876 * case, this function handles all pages in the bio, even though only one
878 * The goal of this function is to repair the errored block by using the
879 * contents of one of the mirrors.
881 static int scrub_handle_errored_block(struct scrub_block
*sblock_to_check
)
883 struct scrub_ctx
*sctx
= sblock_to_check
->sctx
;
884 struct btrfs_device
*dev
;
885 struct btrfs_fs_info
*fs_info
;
888 unsigned int failed_mirror_index
;
889 unsigned int is_metadata
;
890 unsigned int have_csum
;
891 struct scrub_block
*sblocks_for_recheck
; /* holds one for each mirror */
892 struct scrub_block
*sblock_bad
;
897 static DEFINE_RATELIMIT_STATE(_rs
, DEFAULT_RATELIMIT_INTERVAL
,
898 DEFAULT_RATELIMIT_BURST
);
900 BUG_ON(sblock_to_check
->page_count
< 1);
901 fs_info
= sctx
->dev_root
->fs_info
;
902 if (sblock_to_check
->pagev
[0]->flags
& BTRFS_EXTENT_FLAG_SUPER
) {
904 * if we find an error in a super block, we just report it.
905 * They will get written with the next transaction commit
908 spin_lock(&sctx
->stat_lock
);
909 ++sctx
->stat
.super_errors
;
910 spin_unlock(&sctx
->stat_lock
);
913 length
= sblock_to_check
->page_count
* PAGE_SIZE
;
914 logical
= sblock_to_check
->pagev
[0]->logical
;
915 BUG_ON(sblock_to_check
->pagev
[0]->mirror_num
< 1);
916 failed_mirror_index
= sblock_to_check
->pagev
[0]->mirror_num
- 1;
917 is_metadata
= !(sblock_to_check
->pagev
[0]->flags
&
918 BTRFS_EXTENT_FLAG_DATA
);
919 have_csum
= sblock_to_check
->pagev
[0]->have_csum
;
920 dev
= sblock_to_check
->pagev
[0]->dev
;
922 if (sctx
->is_dev_replace
&& !is_metadata
&& !have_csum
) {
923 sblocks_for_recheck
= NULL
;
928 * read all mirrors one after the other. This includes to
929 * re-read the extent or metadata block that failed (that was
930 * the cause that this fixup code is called) another time,
931 * page by page this time in order to know which pages
932 * caused I/O errors and which ones are good (for all mirrors).
933 * It is the goal to handle the situation when more than one
934 * mirror contains I/O errors, but the errors do not
935 * overlap, i.e. the data can be repaired by selecting the
936 * pages from those mirrors without I/O error on the
937 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
938 * would be that mirror #1 has an I/O error on the first page,
939 * the second page is good, and mirror #2 has an I/O error on
940 * the second page, but the first page is good.
941 * Then the first page of the first mirror can be repaired by
942 * taking the first page of the second mirror, and the
943 * second page of the second mirror can be repaired by
944 * copying the contents of the 2nd page of the 1st mirror.
945 * One more note: if the pages of one mirror contain I/O
946 * errors, the checksum cannot be verified. In order to get
947 * the best data for repairing, the first attempt is to find
948 * a mirror without I/O errors and with a validated checksum.
949 * Only if this is not possible, the pages are picked from
950 * mirrors with I/O errors without considering the checksum.
951 * If the latter is the case, at the end, the checksum of the
952 * repaired area is verified in order to correctly maintain
956 sblocks_for_recheck
= kcalloc(BTRFS_MAX_MIRRORS
,
957 sizeof(*sblocks_for_recheck
), GFP_NOFS
);
958 if (!sblocks_for_recheck
) {
959 spin_lock(&sctx
->stat_lock
);
960 sctx
->stat
.malloc_errors
++;
961 sctx
->stat
.read_errors
++;
962 sctx
->stat
.uncorrectable_errors
++;
963 spin_unlock(&sctx
->stat_lock
);
964 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
968 /* setup the context, map the logical blocks and alloc the pages */
969 ret
= scrub_setup_recheck_block(sblock_to_check
, sblocks_for_recheck
);
971 spin_lock(&sctx
->stat_lock
);
972 sctx
->stat
.read_errors
++;
973 sctx
->stat
.uncorrectable_errors
++;
974 spin_unlock(&sctx
->stat_lock
);
975 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
978 BUG_ON(failed_mirror_index
>= BTRFS_MAX_MIRRORS
);
979 sblock_bad
= sblocks_for_recheck
+ failed_mirror_index
;
981 /* build and submit the bios for the failed mirror, check checksums */
982 scrub_recheck_block(fs_info
, sblock_bad
, 1);
984 if (!sblock_bad
->header_error
&& !sblock_bad
->checksum_error
&&
985 sblock_bad
->no_io_error_seen
) {
987 * the error disappeared after reading page by page, or
988 * the area was part of a huge bio and other parts of the
989 * bio caused I/O errors, or the block layer merged several
990 * read requests into one and the error is caused by a
991 * different bio (usually one of the two latter cases is
994 spin_lock(&sctx
->stat_lock
);
995 sctx
->stat
.unverified_errors
++;
996 sblock_to_check
->data_corrected
= 1;
997 spin_unlock(&sctx
->stat_lock
);
999 if (sctx
->is_dev_replace
)
1000 scrub_write_block_to_dev_replace(sblock_bad
);
1004 if (!sblock_bad
->no_io_error_seen
) {
1005 spin_lock(&sctx
->stat_lock
);
1006 sctx
->stat
.read_errors
++;
1007 spin_unlock(&sctx
->stat_lock
);
1008 if (__ratelimit(&_rs
))
1009 scrub_print_warning("i/o error", sblock_to_check
);
1010 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
1011 } else if (sblock_bad
->checksum_error
) {
1012 spin_lock(&sctx
->stat_lock
);
1013 sctx
->stat
.csum_errors
++;
1014 spin_unlock(&sctx
->stat_lock
);
1015 if (__ratelimit(&_rs
))
1016 scrub_print_warning("checksum error", sblock_to_check
);
1017 btrfs_dev_stat_inc_and_print(dev
,
1018 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
1019 } else if (sblock_bad
->header_error
) {
1020 spin_lock(&sctx
->stat_lock
);
1021 sctx
->stat
.verify_errors
++;
1022 spin_unlock(&sctx
->stat_lock
);
1023 if (__ratelimit(&_rs
))
1024 scrub_print_warning("checksum/header error",
1026 if (sblock_bad
->generation_error
)
1027 btrfs_dev_stat_inc_and_print(dev
,
1028 BTRFS_DEV_STAT_GENERATION_ERRS
);
1030 btrfs_dev_stat_inc_and_print(dev
,
1031 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
1034 if (sctx
->readonly
) {
1035 ASSERT(!sctx
->is_dev_replace
);
1039 if (!is_metadata
&& !have_csum
) {
1040 struct scrub_fixup_nodatasum
*fixup_nodatasum
;
1042 WARN_ON(sctx
->is_dev_replace
);
1047 * !is_metadata and !have_csum, this means that the data
1048 * might not be COWed, that it might be modified
1049 * concurrently. The general strategy to work on the
1050 * commit root does not help in the case when COW is not
1053 fixup_nodatasum
= kzalloc(sizeof(*fixup_nodatasum
), GFP_NOFS
);
1054 if (!fixup_nodatasum
)
1055 goto did_not_correct_error
;
1056 fixup_nodatasum
->sctx
= sctx
;
1057 fixup_nodatasum
->dev
= dev
;
1058 fixup_nodatasum
->logical
= logical
;
1059 fixup_nodatasum
->root
= fs_info
->extent_root
;
1060 fixup_nodatasum
->mirror_num
= failed_mirror_index
+ 1;
1061 scrub_pending_trans_workers_inc(sctx
);
1062 btrfs_init_work(&fixup_nodatasum
->work
, btrfs_scrub_helper
,
1063 scrub_fixup_nodatasum
, NULL
, NULL
);
1064 btrfs_queue_work(fs_info
->scrub_workers
,
1065 &fixup_nodatasum
->work
);
1070 * now build and submit the bios for the other mirrors, check
1072 * First try to pick the mirror which is completely without I/O
1073 * errors and also does not have a checksum error.
1074 * If one is found, and if a checksum is present, the full block
1075 * that is known to contain an error is rewritten. Afterwards
1076 * the block is known to be corrected.
1077 * If a mirror is found which is completely correct, and no
1078 * checksum is present, only those pages are rewritten that had
1079 * an I/O error in the block to be repaired, since it cannot be
1080 * determined, which copy of the other pages is better (and it
1081 * could happen otherwise that a correct page would be
1082 * overwritten by a bad one).
1084 for (mirror_index
= 0;
1085 mirror_index
< BTRFS_MAX_MIRRORS
&&
1086 sblocks_for_recheck
[mirror_index
].page_count
> 0;
1088 struct scrub_block
*sblock_other
;
1090 if (mirror_index
== failed_mirror_index
)
1092 sblock_other
= sblocks_for_recheck
+ mirror_index
;
1094 /* build and submit the bios, check checksums */
1095 scrub_recheck_block(fs_info
, sblock_other
, 0);
1097 if (!sblock_other
->header_error
&&
1098 !sblock_other
->checksum_error
&&
1099 sblock_other
->no_io_error_seen
) {
1100 if (sctx
->is_dev_replace
) {
1101 scrub_write_block_to_dev_replace(sblock_other
);
1102 goto corrected_error
;
1104 ret
= scrub_repair_block_from_good_copy(
1105 sblock_bad
, sblock_other
);
1107 goto corrected_error
;
1112 if (sblock_bad
->no_io_error_seen
&& !sctx
->is_dev_replace
)
1113 goto did_not_correct_error
;
1116 * In case of I/O errors in the area that is supposed to be
1117 * repaired, continue by picking good copies of those pages.
1118 * Select the good pages from mirrors to rewrite bad pages from
1119 * the area to fix. Afterwards verify the checksum of the block
1120 * that is supposed to be repaired. This verification step is
1121 * only done for the purpose of statistic counting and for the
1122 * final scrub report, whether errors remain.
1123 * A perfect algorithm could make use of the checksum and try
1124 * all possible combinations of pages from the different mirrors
1125 * until the checksum verification succeeds. For example, when
1126 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1127 * of mirror #2 is readable but the final checksum test fails,
1128 * then the 2nd page of mirror #3 could be tried, whether now
1129 * the final checksum succeeds. But this would be a rare
1130 * exception and is therefore not implemented. At least it is
1131 * avoided that the good copy is overwritten.
1132 * A more useful improvement would be to pick the sectors
1133 * without I/O error based on sector sizes (512 bytes on legacy
1134 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1135 * mirror could be repaired by taking 512 byte of a different
1136 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1137 * area are unreadable.
1140 for (page_num
= 0; page_num
< sblock_bad
->page_count
;
1142 struct scrub_page
*page_bad
= sblock_bad
->pagev
[page_num
];
1143 struct scrub_block
*sblock_other
= NULL
;
1145 /* skip no-io-error page in scrub */
1146 if (!page_bad
->io_error
&& !sctx
->is_dev_replace
)
1149 /* try to find no-io-error page in mirrors */
1150 if (page_bad
->io_error
) {
1151 for (mirror_index
= 0;
1152 mirror_index
< BTRFS_MAX_MIRRORS
&&
1153 sblocks_for_recheck
[mirror_index
].page_count
> 0;
1155 if (!sblocks_for_recheck
[mirror_index
].
1156 pagev
[page_num
]->io_error
) {
1157 sblock_other
= sblocks_for_recheck
+
1166 if (sctx
->is_dev_replace
) {
1168 * did not find a mirror to fetch the page
1169 * from. scrub_write_page_to_dev_replace()
1170 * handles this case (page->io_error), by
1171 * filling the block with zeros before
1172 * submitting the write request
1175 sblock_other
= sblock_bad
;
1177 if (scrub_write_page_to_dev_replace(sblock_other
,
1179 btrfs_dev_replace_stats_inc(
1181 fs_info
->dev_replace
.
1185 } else if (sblock_other
) {
1186 ret
= scrub_repair_page_from_good_copy(sblock_bad
,
1190 page_bad
->io_error
= 0;
1196 if (success
&& !sctx
->is_dev_replace
) {
1197 if (is_metadata
|| have_csum
) {
1199 * need to verify the checksum now that all
1200 * sectors on disk are repaired (the write
1201 * request for data to be repaired is on its way).
1202 * Just be lazy and use scrub_recheck_block()
1203 * which re-reads the data before the checksum
1204 * is verified, but most likely the data comes out
1205 * of the page cache.
1207 scrub_recheck_block(fs_info
, sblock_bad
, 1);
1208 if (!sblock_bad
->header_error
&&
1209 !sblock_bad
->checksum_error
&&
1210 sblock_bad
->no_io_error_seen
)
1211 goto corrected_error
;
1213 goto did_not_correct_error
;
1216 spin_lock(&sctx
->stat_lock
);
1217 sctx
->stat
.corrected_errors
++;
1218 sblock_to_check
->data_corrected
= 1;
1219 spin_unlock(&sctx
->stat_lock
);
1220 btrfs_err_rl_in_rcu(fs_info
,
1221 "fixed up error at logical %llu on dev %s",
1222 logical
, rcu_str_deref(dev
->name
));
1225 did_not_correct_error
:
1226 spin_lock(&sctx
->stat_lock
);
1227 sctx
->stat
.uncorrectable_errors
++;
1228 spin_unlock(&sctx
->stat_lock
);
1229 btrfs_err_rl_in_rcu(fs_info
,
1230 "unable to fixup (regular) error at logical %llu on dev %s",
1231 logical
, rcu_str_deref(dev
->name
));
1235 if (sblocks_for_recheck
) {
1236 for (mirror_index
= 0; mirror_index
< BTRFS_MAX_MIRRORS
;
1238 struct scrub_block
*sblock
= sblocks_for_recheck
+
1240 struct scrub_recover
*recover
;
1243 for (page_index
= 0; page_index
< sblock
->page_count
;
1245 sblock
->pagev
[page_index
]->sblock
= NULL
;
1246 recover
= sblock
->pagev
[page_index
]->recover
;
1248 scrub_put_recover(recover
);
1249 sblock
->pagev
[page_index
]->recover
=
1252 scrub_page_put(sblock
->pagev
[page_index
]);
1255 kfree(sblocks_for_recheck
);
1261 static inline int scrub_nr_raid_mirrors(struct btrfs_bio
*bbio
)
1263 if (bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID5
)
1265 else if (bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID6
)
1268 return (int)bbio
->num_stripes
;
1271 static inline void scrub_stripe_index_and_offset(u64 logical
, u64 map_type
,
1274 int nstripes
, int mirror
,
1280 if (map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
1282 for (i
= 0; i
< nstripes
; i
++) {
1283 if (raid_map
[i
] == RAID6_Q_STRIPE
||
1284 raid_map
[i
] == RAID5_P_STRIPE
)
1287 if (logical
>= raid_map
[i
] &&
1288 logical
< raid_map
[i
] + mapped_length
)
1293 *stripe_offset
= logical
- raid_map
[i
];
1295 /* The other RAID type */
1296 *stripe_index
= mirror
;
1301 static int scrub_setup_recheck_block(struct scrub_block
*original_sblock
,
1302 struct scrub_block
*sblocks_for_recheck
)
1304 struct scrub_ctx
*sctx
= original_sblock
->sctx
;
1305 struct btrfs_fs_info
*fs_info
= sctx
->dev_root
->fs_info
;
1306 u64 length
= original_sblock
->page_count
* PAGE_SIZE
;
1307 u64 logical
= original_sblock
->pagev
[0]->logical
;
1308 u64 generation
= original_sblock
->pagev
[0]->generation
;
1309 u64 flags
= original_sblock
->pagev
[0]->flags
;
1310 u64 have_csum
= original_sblock
->pagev
[0]->have_csum
;
1311 struct scrub_recover
*recover
;
1312 struct btrfs_bio
*bbio
;
1323 * note: the two members refs and outstanding_pages
1324 * are not used (and not set) in the blocks that are used for
1325 * the recheck procedure
1328 while (length
> 0) {
1329 sublen
= min_t(u64
, length
, PAGE_SIZE
);
1330 mapped_length
= sublen
;
1334 * with a length of PAGE_SIZE, each returned stripe
1335 * represents one mirror
1337 ret
= btrfs_map_sblock(fs_info
, REQ_GET_READ_MIRRORS
, logical
,
1338 &mapped_length
, &bbio
, 0, 1);
1339 if (ret
|| !bbio
|| mapped_length
< sublen
) {
1340 btrfs_put_bbio(bbio
);
1344 recover
= kzalloc(sizeof(struct scrub_recover
), GFP_NOFS
);
1346 btrfs_put_bbio(bbio
);
1350 atomic_set(&recover
->refs
, 1);
1351 recover
->bbio
= bbio
;
1352 recover
->map_length
= mapped_length
;
1354 BUG_ON(page_index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
1356 nmirrors
= min(scrub_nr_raid_mirrors(bbio
), BTRFS_MAX_MIRRORS
);
1358 for (mirror_index
= 0; mirror_index
< nmirrors
;
1360 struct scrub_block
*sblock
;
1361 struct scrub_page
*page
;
1363 sblock
= sblocks_for_recheck
+ mirror_index
;
1364 sblock
->sctx
= sctx
;
1366 page
= kzalloc(sizeof(*page
), GFP_NOFS
);
1369 spin_lock(&sctx
->stat_lock
);
1370 sctx
->stat
.malloc_errors
++;
1371 spin_unlock(&sctx
->stat_lock
);
1372 scrub_put_recover(recover
);
1375 scrub_page_get(page
);
1376 sblock
->pagev
[page_index
] = page
;
1377 page
->sblock
= sblock
;
1378 page
->flags
= flags
;
1379 page
->generation
= generation
;
1380 page
->logical
= logical
;
1381 page
->have_csum
= have_csum
;
1384 original_sblock
->pagev
[0]->csum
,
1387 scrub_stripe_index_and_offset(logical
,
1396 page
->physical
= bbio
->stripes
[stripe_index
].physical
+
1398 page
->dev
= bbio
->stripes
[stripe_index
].dev
;
1400 BUG_ON(page_index
>= original_sblock
->page_count
);
1401 page
->physical_for_dev_replace
=
1402 original_sblock
->pagev
[page_index
]->
1403 physical_for_dev_replace
;
1404 /* for missing devices, dev->bdev is NULL */
1405 page
->mirror_num
= mirror_index
+ 1;
1406 sblock
->page_count
++;
1407 page
->page
= alloc_page(GFP_NOFS
);
1411 scrub_get_recover(recover
);
1412 page
->recover
= recover
;
1414 scrub_put_recover(recover
);
1423 struct scrub_bio_ret
{
1424 struct completion event
;
1428 static void scrub_bio_wait_endio(struct bio
*bio
)
1430 struct scrub_bio_ret
*ret
= bio
->bi_private
;
1432 ret
->error
= bio
->bi_error
;
1433 complete(&ret
->event
);
1436 static inline int scrub_is_page_on_raid56(struct scrub_page
*page
)
1438 return page
->recover
&&
1439 (page
->recover
->bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
);
1442 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info
*fs_info
,
1444 struct scrub_page
*page
)
1446 struct scrub_bio_ret done
;
1449 init_completion(&done
.event
);
1451 bio
->bi_iter
.bi_sector
= page
->logical
>> 9;
1452 bio
->bi_private
= &done
;
1453 bio
->bi_end_io
= scrub_bio_wait_endio
;
1455 ret
= raid56_parity_recover(fs_info
->fs_root
, bio
, page
->recover
->bbio
,
1456 page
->recover
->map_length
,
1457 page
->mirror_num
, 0);
1461 wait_for_completion(&done
.event
);
1469 * this function will check the on disk data for checksum errors, header
1470 * errors and read I/O errors. If any I/O errors happen, the exact pages
1471 * which are errored are marked as being bad. The goal is to enable scrub
1472 * to take those pages that are not errored from all the mirrors so that
1473 * the pages that are errored in the just handled mirror can be repaired.
1475 static void scrub_recheck_block(struct btrfs_fs_info
*fs_info
,
1476 struct scrub_block
*sblock
,
1477 int retry_failed_mirror
)
1481 sblock
->no_io_error_seen
= 1;
1483 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1485 struct scrub_page
*page
= sblock
->pagev
[page_num
];
1487 if (page
->dev
->bdev
== NULL
) {
1489 sblock
->no_io_error_seen
= 0;
1493 WARN_ON(!page
->page
);
1494 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
1497 sblock
->no_io_error_seen
= 0;
1500 bio
->bi_bdev
= page
->dev
->bdev
;
1502 bio_add_page(bio
, page
->page
, PAGE_SIZE
, 0);
1503 if (!retry_failed_mirror
&& scrub_is_page_on_raid56(page
)) {
1504 if (scrub_submit_raid56_bio_wait(fs_info
, bio
, page
))
1505 sblock
->no_io_error_seen
= 0;
1507 bio
->bi_iter
.bi_sector
= page
->physical
>> 9;
1508 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
1510 if (btrfsic_submit_bio_wait(bio
))
1511 sblock
->no_io_error_seen
= 0;
1517 if (sblock
->no_io_error_seen
)
1518 scrub_recheck_block_checksum(sblock
);
1521 static inline int scrub_check_fsid(u8 fsid
[],
1522 struct scrub_page
*spage
)
1524 struct btrfs_fs_devices
*fs_devices
= spage
->dev
->fs_devices
;
1527 ret
= memcmp(fsid
, fs_devices
->fsid
, BTRFS_UUID_SIZE
);
1531 static void scrub_recheck_block_checksum(struct scrub_block
*sblock
)
1533 sblock
->header_error
= 0;
1534 sblock
->checksum_error
= 0;
1535 sblock
->generation_error
= 0;
1537 if (sblock
->pagev
[0]->flags
& BTRFS_EXTENT_FLAG_DATA
)
1538 scrub_checksum_data(sblock
);
1540 scrub_checksum_tree_block(sblock
);
1543 static int scrub_repair_block_from_good_copy(struct scrub_block
*sblock_bad
,
1544 struct scrub_block
*sblock_good
)
1549 for (page_num
= 0; page_num
< sblock_bad
->page_count
; page_num
++) {
1552 ret_sub
= scrub_repair_page_from_good_copy(sblock_bad
,
1562 static int scrub_repair_page_from_good_copy(struct scrub_block
*sblock_bad
,
1563 struct scrub_block
*sblock_good
,
1564 int page_num
, int force_write
)
1566 struct scrub_page
*page_bad
= sblock_bad
->pagev
[page_num
];
1567 struct scrub_page
*page_good
= sblock_good
->pagev
[page_num
];
1569 BUG_ON(page_bad
->page
== NULL
);
1570 BUG_ON(page_good
->page
== NULL
);
1571 if (force_write
|| sblock_bad
->header_error
||
1572 sblock_bad
->checksum_error
|| page_bad
->io_error
) {
1576 if (!page_bad
->dev
->bdev
) {
1577 btrfs_warn_rl(sblock_bad
->sctx
->dev_root
->fs_info
,
1578 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1582 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
1585 bio
->bi_bdev
= page_bad
->dev
->bdev
;
1586 bio
->bi_iter
.bi_sector
= page_bad
->physical
>> 9;
1587 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
1589 ret
= bio_add_page(bio
, page_good
->page
, PAGE_SIZE
, 0);
1590 if (PAGE_SIZE
!= ret
) {
1595 if (btrfsic_submit_bio_wait(bio
)) {
1596 btrfs_dev_stat_inc_and_print(page_bad
->dev
,
1597 BTRFS_DEV_STAT_WRITE_ERRS
);
1598 btrfs_dev_replace_stats_inc(
1599 &sblock_bad
->sctx
->dev_root
->fs_info
->
1600 dev_replace
.num_write_errors
);
1610 static void scrub_write_block_to_dev_replace(struct scrub_block
*sblock
)
1615 * This block is used for the check of the parity on the source device,
1616 * so the data needn't be written into the destination device.
1618 if (sblock
->sparity
)
1621 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1624 ret
= scrub_write_page_to_dev_replace(sblock
, page_num
);
1626 btrfs_dev_replace_stats_inc(
1627 &sblock
->sctx
->dev_root
->fs_info
->dev_replace
.
1632 static int scrub_write_page_to_dev_replace(struct scrub_block
*sblock
,
1635 struct scrub_page
*spage
= sblock
->pagev
[page_num
];
1637 BUG_ON(spage
->page
== NULL
);
1638 if (spage
->io_error
) {
1639 void *mapped_buffer
= kmap_atomic(spage
->page
);
1641 memset(mapped_buffer
, 0, PAGE_SIZE
);
1642 flush_dcache_page(spage
->page
);
1643 kunmap_atomic(mapped_buffer
);
1645 return scrub_add_page_to_wr_bio(sblock
->sctx
, spage
);
1648 static int scrub_add_page_to_wr_bio(struct scrub_ctx
*sctx
,
1649 struct scrub_page
*spage
)
1651 struct scrub_wr_ctx
*wr_ctx
= &sctx
->wr_ctx
;
1652 struct scrub_bio
*sbio
;
1655 mutex_lock(&wr_ctx
->wr_lock
);
1657 if (!wr_ctx
->wr_curr_bio
) {
1658 wr_ctx
->wr_curr_bio
= kzalloc(sizeof(*wr_ctx
->wr_curr_bio
),
1660 if (!wr_ctx
->wr_curr_bio
) {
1661 mutex_unlock(&wr_ctx
->wr_lock
);
1664 wr_ctx
->wr_curr_bio
->sctx
= sctx
;
1665 wr_ctx
->wr_curr_bio
->page_count
= 0;
1667 sbio
= wr_ctx
->wr_curr_bio
;
1668 if (sbio
->page_count
== 0) {
1671 sbio
->physical
= spage
->physical_for_dev_replace
;
1672 sbio
->logical
= spage
->logical
;
1673 sbio
->dev
= wr_ctx
->tgtdev
;
1676 bio
= btrfs_io_bio_alloc(GFP_KERNEL
,
1677 wr_ctx
->pages_per_wr_bio
);
1679 mutex_unlock(&wr_ctx
->wr_lock
);
1685 bio
->bi_private
= sbio
;
1686 bio
->bi_end_io
= scrub_wr_bio_end_io
;
1687 bio
->bi_bdev
= sbio
->dev
->bdev
;
1688 bio
->bi_iter
.bi_sector
= sbio
->physical
>> 9;
1689 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
1691 } else if (sbio
->physical
+ sbio
->page_count
* PAGE_SIZE
!=
1692 spage
->physical_for_dev_replace
||
1693 sbio
->logical
+ sbio
->page_count
* PAGE_SIZE
!=
1695 scrub_wr_submit(sctx
);
1699 ret
= bio_add_page(sbio
->bio
, spage
->page
, PAGE_SIZE
, 0);
1700 if (ret
!= PAGE_SIZE
) {
1701 if (sbio
->page_count
< 1) {
1704 mutex_unlock(&wr_ctx
->wr_lock
);
1707 scrub_wr_submit(sctx
);
1711 sbio
->pagev
[sbio
->page_count
] = spage
;
1712 scrub_page_get(spage
);
1714 if (sbio
->page_count
== wr_ctx
->pages_per_wr_bio
)
1715 scrub_wr_submit(sctx
);
1716 mutex_unlock(&wr_ctx
->wr_lock
);
1721 static void scrub_wr_submit(struct scrub_ctx
*sctx
)
1723 struct scrub_wr_ctx
*wr_ctx
= &sctx
->wr_ctx
;
1724 struct scrub_bio
*sbio
;
1726 if (!wr_ctx
->wr_curr_bio
)
1729 sbio
= wr_ctx
->wr_curr_bio
;
1730 wr_ctx
->wr_curr_bio
= NULL
;
1731 WARN_ON(!sbio
->bio
->bi_bdev
);
1732 scrub_pending_bio_inc(sctx
);
1733 /* process all writes in a single worker thread. Then the block layer
1734 * orders the requests before sending them to the driver which
1735 * doubled the write performance on spinning disks when measured
1737 btrfsic_submit_bio(sbio
->bio
);
1740 static void scrub_wr_bio_end_io(struct bio
*bio
)
1742 struct scrub_bio
*sbio
= bio
->bi_private
;
1743 struct btrfs_fs_info
*fs_info
= sbio
->dev
->dev_root
->fs_info
;
1745 sbio
->err
= bio
->bi_error
;
1748 btrfs_init_work(&sbio
->work
, btrfs_scrubwrc_helper
,
1749 scrub_wr_bio_end_io_worker
, NULL
, NULL
);
1750 btrfs_queue_work(fs_info
->scrub_wr_completion_workers
, &sbio
->work
);
1753 static void scrub_wr_bio_end_io_worker(struct btrfs_work
*work
)
1755 struct scrub_bio
*sbio
= container_of(work
, struct scrub_bio
, work
);
1756 struct scrub_ctx
*sctx
= sbio
->sctx
;
1759 WARN_ON(sbio
->page_count
> SCRUB_PAGES_PER_WR_BIO
);
1761 struct btrfs_dev_replace
*dev_replace
=
1762 &sbio
->sctx
->dev_root
->fs_info
->dev_replace
;
1764 for (i
= 0; i
< sbio
->page_count
; i
++) {
1765 struct scrub_page
*spage
= sbio
->pagev
[i
];
1767 spage
->io_error
= 1;
1768 btrfs_dev_replace_stats_inc(&dev_replace
->
1773 for (i
= 0; i
< sbio
->page_count
; i
++)
1774 scrub_page_put(sbio
->pagev
[i
]);
1778 scrub_pending_bio_dec(sctx
);
1781 static int scrub_checksum(struct scrub_block
*sblock
)
1787 * No need to initialize these stats currently,
1788 * because this function only use return value
1789 * instead of these stats value.
1794 sblock
->header_error
= 0;
1795 sblock
->generation_error
= 0;
1796 sblock
->checksum_error
= 0;
1798 WARN_ON(sblock
->page_count
< 1);
1799 flags
= sblock
->pagev
[0]->flags
;
1801 if (flags
& BTRFS_EXTENT_FLAG_DATA
)
1802 ret
= scrub_checksum_data(sblock
);
1803 else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1804 ret
= scrub_checksum_tree_block(sblock
);
1805 else if (flags
& BTRFS_EXTENT_FLAG_SUPER
)
1806 (void)scrub_checksum_super(sblock
);
1810 scrub_handle_errored_block(sblock
);
1815 static int scrub_checksum_data(struct scrub_block
*sblock
)
1817 struct scrub_ctx
*sctx
= sblock
->sctx
;
1818 u8 csum
[BTRFS_CSUM_SIZE
];
1826 BUG_ON(sblock
->page_count
< 1);
1827 if (!sblock
->pagev
[0]->have_csum
)
1830 on_disk_csum
= sblock
->pagev
[0]->csum
;
1831 page
= sblock
->pagev
[0]->page
;
1832 buffer
= kmap_atomic(page
);
1834 len
= sctx
->sectorsize
;
1837 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
1839 crc
= btrfs_csum_data(buffer
, crc
, l
);
1840 kunmap_atomic(buffer
);
1845 BUG_ON(index
>= sblock
->page_count
);
1846 BUG_ON(!sblock
->pagev
[index
]->page
);
1847 page
= sblock
->pagev
[index
]->page
;
1848 buffer
= kmap_atomic(page
);
1851 btrfs_csum_final(crc
, csum
);
1852 if (memcmp(csum
, on_disk_csum
, sctx
->csum_size
))
1853 sblock
->checksum_error
= 1;
1855 return sblock
->checksum_error
;
1858 static int scrub_checksum_tree_block(struct scrub_block
*sblock
)
1860 struct scrub_ctx
*sctx
= sblock
->sctx
;
1861 struct btrfs_header
*h
;
1862 struct btrfs_root
*root
= sctx
->dev_root
;
1863 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1864 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
1865 u8 on_disk_csum
[BTRFS_CSUM_SIZE
];
1867 void *mapped_buffer
;
1874 BUG_ON(sblock
->page_count
< 1);
1875 page
= sblock
->pagev
[0]->page
;
1876 mapped_buffer
= kmap_atomic(page
);
1877 h
= (struct btrfs_header
*)mapped_buffer
;
1878 memcpy(on_disk_csum
, h
->csum
, sctx
->csum_size
);
1881 * we don't use the getter functions here, as we
1882 * a) don't have an extent buffer and
1883 * b) the page is already kmapped
1885 if (sblock
->pagev
[0]->logical
!= btrfs_stack_header_bytenr(h
))
1886 sblock
->header_error
= 1;
1888 if (sblock
->pagev
[0]->generation
!= btrfs_stack_header_generation(h
)) {
1889 sblock
->header_error
= 1;
1890 sblock
->generation_error
= 1;
1893 if (!scrub_check_fsid(h
->fsid
, sblock
->pagev
[0]))
1894 sblock
->header_error
= 1;
1896 if (memcmp(h
->chunk_tree_uuid
, fs_info
->chunk_tree_uuid
,
1898 sblock
->header_error
= 1;
1900 len
= sctx
->nodesize
- BTRFS_CSUM_SIZE
;
1901 mapped_size
= PAGE_SIZE
- BTRFS_CSUM_SIZE
;
1902 p
= ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
;
1905 u64 l
= min_t(u64
, len
, mapped_size
);
1907 crc
= btrfs_csum_data(p
, crc
, l
);
1908 kunmap_atomic(mapped_buffer
);
1913 BUG_ON(index
>= sblock
->page_count
);
1914 BUG_ON(!sblock
->pagev
[index
]->page
);
1915 page
= sblock
->pagev
[index
]->page
;
1916 mapped_buffer
= kmap_atomic(page
);
1917 mapped_size
= PAGE_SIZE
;
1921 btrfs_csum_final(crc
, calculated_csum
);
1922 if (memcmp(calculated_csum
, on_disk_csum
, sctx
->csum_size
))
1923 sblock
->checksum_error
= 1;
1925 return sblock
->header_error
|| sblock
->checksum_error
;
1928 static int scrub_checksum_super(struct scrub_block
*sblock
)
1930 struct btrfs_super_block
*s
;
1931 struct scrub_ctx
*sctx
= sblock
->sctx
;
1932 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
1933 u8 on_disk_csum
[BTRFS_CSUM_SIZE
];
1935 void *mapped_buffer
;
1944 BUG_ON(sblock
->page_count
< 1);
1945 page
= sblock
->pagev
[0]->page
;
1946 mapped_buffer
= kmap_atomic(page
);
1947 s
= (struct btrfs_super_block
*)mapped_buffer
;
1948 memcpy(on_disk_csum
, s
->csum
, sctx
->csum_size
);
1950 if (sblock
->pagev
[0]->logical
!= btrfs_super_bytenr(s
))
1953 if (sblock
->pagev
[0]->generation
!= btrfs_super_generation(s
))
1956 if (!scrub_check_fsid(s
->fsid
, sblock
->pagev
[0]))
1959 len
= BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
;
1960 mapped_size
= PAGE_SIZE
- BTRFS_CSUM_SIZE
;
1961 p
= ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
;
1964 u64 l
= min_t(u64
, len
, mapped_size
);
1966 crc
= btrfs_csum_data(p
, crc
, l
);
1967 kunmap_atomic(mapped_buffer
);
1972 BUG_ON(index
>= sblock
->page_count
);
1973 BUG_ON(!sblock
->pagev
[index
]->page
);
1974 page
= sblock
->pagev
[index
]->page
;
1975 mapped_buffer
= kmap_atomic(page
);
1976 mapped_size
= PAGE_SIZE
;
1980 btrfs_csum_final(crc
, calculated_csum
);
1981 if (memcmp(calculated_csum
, on_disk_csum
, sctx
->csum_size
))
1984 if (fail_cor
+ fail_gen
) {
1986 * if we find an error in a super block, we just report it.
1987 * They will get written with the next transaction commit
1990 spin_lock(&sctx
->stat_lock
);
1991 ++sctx
->stat
.super_errors
;
1992 spin_unlock(&sctx
->stat_lock
);
1994 btrfs_dev_stat_inc_and_print(sblock
->pagev
[0]->dev
,
1995 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
1997 btrfs_dev_stat_inc_and_print(sblock
->pagev
[0]->dev
,
1998 BTRFS_DEV_STAT_GENERATION_ERRS
);
2001 return fail_cor
+ fail_gen
;
2004 static void scrub_block_get(struct scrub_block
*sblock
)
2006 atomic_inc(&sblock
->refs
);
2009 static void scrub_block_put(struct scrub_block
*sblock
)
2011 if (atomic_dec_and_test(&sblock
->refs
)) {
2014 if (sblock
->sparity
)
2015 scrub_parity_put(sblock
->sparity
);
2017 for (i
= 0; i
< sblock
->page_count
; i
++)
2018 scrub_page_put(sblock
->pagev
[i
]);
2023 static void scrub_page_get(struct scrub_page
*spage
)
2025 atomic_inc(&spage
->refs
);
2028 static void scrub_page_put(struct scrub_page
*spage
)
2030 if (atomic_dec_and_test(&spage
->refs
)) {
2032 __free_page(spage
->page
);
2037 static void scrub_submit(struct scrub_ctx
*sctx
)
2039 struct scrub_bio
*sbio
;
2041 if (sctx
->curr
== -1)
2044 sbio
= sctx
->bios
[sctx
->curr
];
2046 scrub_pending_bio_inc(sctx
);
2047 btrfsic_submit_bio(sbio
->bio
);
2050 static int scrub_add_page_to_rd_bio(struct scrub_ctx
*sctx
,
2051 struct scrub_page
*spage
)
2053 struct scrub_block
*sblock
= spage
->sblock
;
2054 struct scrub_bio
*sbio
;
2059 * grab a fresh bio or wait for one to become available
2061 while (sctx
->curr
== -1) {
2062 spin_lock(&sctx
->list_lock
);
2063 sctx
->curr
= sctx
->first_free
;
2064 if (sctx
->curr
!= -1) {
2065 sctx
->first_free
= sctx
->bios
[sctx
->curr
]->next_free
;
2066 sctx
->bios
[sctx
->curr
]->next_free
= -1;
2067 sctx
->bios
[sctx
->curr
]->page_count
= 0;
2068 spin_unlock(&sctx
->list_lock
);
2070 spin_unlock(&sctx
->list_lock
);
2071 wait_event(sctx
->list_wait
, sctx
->first_free
!= -1);
2074 sbio
= sctx
->bios
[sctx
->curr
];
2075 if (sbio
->page_count
== 0) {
2078 sbio
->physical
= spage
->physical
;
2079 sbio
->logical
= spage
->logical
;
2080 sbio
->dev
= spage
->dev
;
2083 bio
= btrfs_io_bio_alloc(GFP_KERNEL
,
2084 sctx
->pages_per_rd_bio
);
2090 bio
->bi_private
= sbio
;
2091 bio
->bi_end_io
= scrub_bio_end_io
;
2092 bio
->bi_bdev
= sbio
->dev
->bdev
;
2093 bio
->bi_iter
.bi_sector
= sbio
->physical
>> 9;
2094 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
2096 } else if (sbio
->physical
+ sbio
->page_count
* PAGE_SIZE
!=
2098 sbio
->logical
+ sbio
->page_count
* PAGE_SIZE
!=
2100 sbio
->dev
!= spage
->dev
) {
2105 sbio
->pagev
[sbio
->page_count
] = spage
;
2106 ret
= bio_add_page(sbio
->bio
, spage
->page
, PAGE_SIZE
, 0);
2107 if (ret
!= PAGE_SIZE
) {
2108 if (sbio
->page_count
< 1) {
2117 scrub_block_get(sblock
); /* one for the page added to the bio */
2118 atomic_inc(&sblock
->outstanding_pages
);
2120 if (sbio
->page_count
== sctx
->pages_per_rd_bio
)
2126 static void scrub_missing_raid56_end_io(struct bio
*bio
)
2128 struct scrub_block
*sblock
= bio
->bi_private
;
2129 struct btrfs_fs_info
*fs_info
= sblock
->sctx
->dev_root
->fs_info
;
2132 sblock
->no_io_error_seen
= 0;
2136 btrfs_queue_work(fs_info
->scrub_workers
, &sblock
->work
);
2139 static void scrub_missing_raid56_worker(struct btrfs_work
*work
)
2141 struct scrub_block
*sblock
= container_of(work
, struct scrub_block
, work
);
2142 struct scrub_ctx
*sctx
= sblock
->sctx
;
2144 struct btrfs_device
*dev
;
2146 logical
= sblock
->pagev
[0]->logical
;
2147 dev
= sblock
->pagev
[0]->dev
;
2149 if (sblock
->no_io_error_seen
)
2150 scrub_recheck_block_checksum(sblock
);
2152 if (!sblock
->no_io_error_seen
) {
2153 spin_lock(&sctx
->stat_lock
);
2154 sctx
->stat
.read_errors
++;
2155 spin_unlock(&sctx
->stat_lock
);
2156 btrfs_err_rl_in_rcu(sctx
->dev_root
->fs_info
,
2157 "IO error rebuilding logical %llu for dev %s",
2158 logical
, rcu_str_deref(dev
->name
));
2159 } else if (sblock
->header_error
|| sblock
->checksum_error
) {
2160 spin_lock(&sctx
->stat_lock
);
2161 sctx
->stat
.uncorrectable_errors
++;
2162 spin_unlock(&sctx
->stat_lock
);
2163 btrfs_err_rl_in_rcu(sctx
->dev_root
->fs_info
,
2164 "failed to rebuild valid logical %llu for dev %s",
2165 logical
, rcu_str_deref(dev
->name
));
2167 scrub_write_block_to_dev_replace(sblock
);
2170 scrub_block_put(sblock
);
2172 if (sctx
->is_dev_replace
&&
2173 atomic_read(&sctx
->wr_ctx
.flush_all_writes
)) {
2174 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
2175 scrub_wr_submit(sctx
);
2176 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
2179 scrub_pending_bio_dec(sctx
);
2182 static void scrub_missing_raid56_pages(struct scrub_block
*sblock
)
2184 struct scrub_ctx
*sctx
= sblock
->sctx
;
2185 struct btrfs_fs_info
*fs_info
= sctx
->dev_root
->fs_info
;
2186 u64 length
= sblock
->page_count
* PAGE_SIZE
;
2187 u64 logical
= sblock
->pagev
[0]->logical
;
2188 struct btrfs_bio
*bbio
= NULL
;
2190 struct btrfs_raid_bio
*rbio
;
2194 ret
= btrfs_map_sblock(fs_info
, REQ_GET_READ_MIRRORS
, logical
, &length
,
2196 if (ret
|| !bbio
|| !bbio
->raid_map
)
2199 if (WARN_ON(!sctx
->is_dev_replace
||
2200 !(bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))) {
2202 * We shouldn't be scrubbing a missing device. Even for dev
2203 * replace, we should only get here for RAID 5/6. We either
2204 * managed to mount something with no mirrors remaining or
2205 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2210 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 0);
2214 bio
->bi_iter
.bi_sector
= logical
>> 9;
2215 bio
->bi_private
= sblock
;
2216 bio
->bi_end_io
= scrub_missing_raid56_end_io
;
2218 rbio
= raid56_alloc_missing_rbio(sctx
->dev_root
, bio
, bbio
, length
);
2222 for (i
= 0; i
< sblock
->page_count
; i
++) {
2223 struct scrub_page
*spage
= sblock
->pagev
[i
];
2225 raid56_add_scrub_pages(rbio
, spage
->page
, spage
->logical
);
2228 btrfs_init_work(&sblock
->work
, btrfs_scrub_helper
,
2229 scrub_missing_raid56_worker
, NULL
, NULL
);
2230 scrub_block_get(sblock
);
2231 scrub_pending_bio_inc(sctx
);
2232 raid56_submit_missing_rbio(rbio
);
2238 btrfs_put_bbio(bbio
);
2239 spin_lock(&sctx
->stat_lock
);
2240 sctx
->stat
.malloc_errors
++;
2241 spin_unlock(&sctx
->stat_lock
);
2244 static int scrub_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
2245 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
2246 u64 gen
, int mirror_num
, u8
*csum
, int force
,
2247 u64 physical_for_dev_replace
)
2249 struct scrub_block
*sblock
;
2252 sblock
= kzalloc(sizeof(*sblock
), GFP_KERNEL
);
2254 spin_lock(&sctx
->stat_lock
);
2255 sctx
->stat
.malloc_errors
++;
2256 spin_unlock(&sctx
->stat_lock
);
2260 /* one ref inside this function, plus one for each page added to
2262 atomic_set(&sblock
->refs
, 1);
2263 sblock
->sctx
= sctx
;
2264 sblock
->no_io_error_seen
= 1;
2266 for (index
= 0; len
> 0; index
++) {
2267 struct scrub_page
*spage
;
2268 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
2270 spage
= kzalloc(sizeof(*spage
), GFP_KERNEL
);
2273 spin_lock(&sctx
->stat_lock
);
2274 sctx
->stat
.malloc_errors
++;
2275 spin_unlock(&sctx
->stat_lock
);
2276 scrub_block_put(sblock
);
2279 BUG_ON(index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
2280 scrub_page_get(spage
);
2281 sblock
->pagev
[index
] = spage
;
2282 spage
->sblock
= sblock
;
2284 spage
->flags
= flags
;
2285 spage
->generation
= gen
;
2286 spage
->logical
= logical
;
2287 spage
->physical
= physical
;
2288 spage
->physical_for_dev_replace
= physical_for_dev_replace
;
2289 spage
->mirror_num
= mirror_num
;
2291 spage
->have_csum
= 1;
2292 memcpy(spage
->csum
, csum
, sctx
->csum_size
);
2294 spage
->have_csum
= 0;
2296 sblock
->page_count
++;
2297 spage
->page
= alloc_page(GFP_KERNEL
);
2303 physical_for_dev_replace
+= l
;
2306 WARN_ON(sblock
->page_count
== 0);
2309 * This case should only be hit for RAID 5/6 device replace. See
2310 * the comment in scrub_missing_raid56_pages() for details.
2312 scrub_missing_raid56_pages(sblock
);
2314 for (index
= 0; index
< sblock
->page_count
; index
++) {
2315 struct scrub_page
*spage
= sblock
->pagev
[index
];
2318 ret
= scrub_add_page_to_rd_bio(sctx
, spage
);
2320 scrub_block_put(sblock
);
2329 /* last one frees, either here or in bio completion for last page */
2330 scrub_block_put(sblock
);
2334 static void scrub_bio_end_io(struct bio
*bio
)
2336 struct scrub_bio
*sbio
= bio
->bi_private
;
2337 struct btrfs_fs_info
*fs_info
= sbio
->dev
->dev_root
->fs_info
;
2339 sbio
->err
= bio
->bi_error
;
2342 btrfs_queue_work(fs_info
->scrub_workers
, &sbio
->work
);
2345 static void scrub_bio_end_io_worker(struct btrfs_work
*work
)
2347 struct scrub_bio
*sbio
= container_of(work
, struct scrub_bio
, work
);
2348 struct scrub_ctx
*sctx
= sbio
->sctx
;
2351 BUG_ON(sbio
->page_count
> SCRUB_PAGES_PER_RD_BIO
);
2353 for (i
= 0; i
< sbio
->page_count
; i
++) {
2354 struct scrub_page
*spage
= sbio
->pagev
[i
];
2356 spage
->io_error
= 1;
2357 spage
->sblock
->no_io_error_seen
= 0;
2361 /* now complete the scrub_block items that have all pages completed */
2362 for (i
= 0; i
< sbio
->page_count
; i
++) {
2363 struct scrub_page
*spage
= sbio
->pagev
[i
];
2364 struct scrub_block
*sblock
= spage
->sblock
;
2366 if (atomic_dec_and_test(&sblock
->outstanding_pages
))
2367 scrub_block_complete(sblock
);
2368 scrub_block_put(sblock
);
2373 spin_lock(&sctx
->list_lock
);
2374 sbio
->next_free
= sctx
->first_free
;
2375 sctx
->first_free
= sbio
->index
;
2376 spin_unlock(&sctx
->list_lock
);
2378 if (sctx
->is_dev_replace
&&
2379 atomic_read(&sctx
->wr_ctx
.flush_all_writes
)) {
2380 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
2381 scrub_wr_submit(sctx
);
2382 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
2385 scrub_pending_bio_dec(sctx
);
2388 static inline void __scrub_mark_bitmap(struct scrub_parity
*sparity
,
2389 unsigned long *bitmap
,
2394 int sectorsize
= sparity
->sctx
->dev_root
->sectorsize
;
2396 if (len
>= sparity
->stripe_len
) {
2397 bitmap_set(bitmap
, 0, sparity
->nsectors
);
2401 start
-= sparity
->logic_start
;
2402 start
= div_u64_rem(start
, sparity
->stripe_len
, &offset
);
2403 offset
/= sectorsize
;
2404 nsectors
= (int)len
/ sectorsize
;
2406 if (offset
+ nsectors
<= sparity
->nsectors
) {
2407 bitmap_set(bitmap
, offset
, nsectors
);
2411 bitmap_set(bitmap
, offset
, sparity
->nsectors
- offset
);
2412 bitmap_set(bitmap
, 0, nsectors
- (sparity
->nsectors
- offset
));
2415 static inline void scrub_parity_mark_sectors_error(struct scrub_parity
*sparity
,
2418 __scrub_mark_bitmap(sparity
, sparity
->ebitmap
, start
, len
);
2421 static inline void scrub_parity_mark_sectors_data(struct scrub_parity
*sparity
,
2424 __scrub_mark_bitmap(sparity
, sparity
->dbitmap
, start
, len
);
2427 static void scrub_block_complete(struct scrub_block
*sblock
)
2431 if (!sblock
->no_io_error_seen
) {
2433 scrub_handle_errored_block(sblock
);
2436 * if has checksum error, write via repair mechanism in
2437 * dev replace case, otherwise write here in dev replace
2440 corrupted
= scrub_checksum(sblock
);
2441 if (!corrupted
&& sblock
->sctx
->is_dev_replace
)
2442 scrub_write_block_to_dev_replace(sblock
);
2445 if (sblock
->sparity
&& corrupted
&& !sblock
->data_corrected
) {
2446 u64 start
= sblock
->pagev
[0]->logical
;
2447 u64 end
= sblock
->pagev
[sblock
->page_count
- 1]->logical
+
2450 scrub_parity_mark_sectors_error(sblock
->sparity
,
2451 start
, end
- start
);
2455 static int scrub_find_csum(struct scrub_ctx
*sctx
, u64 logical
, u8
*csum
)
2457 struct btrfs_ordered_sum
*sum
= NULL
;
2458 unsigned long index
;
2459 unsigned long num_sectors
;
2461 while (!list_empty(&sctx
->csum_list
)) {
2462 sum
= list_first_entry(&sctx
->csum_list
,
2463 struct btrfs_ordered_sum
, list
);
2464 if (sum
->bytenr
> logical
)
2466 if (sum
->bytenr
+ sum
->len
> logical
)
2469 ++sctx
->stat
.csum_discards
;
2470 list_del(&sum
->list
);
2477 index
= ((u32
)(logical
- sum
->bytenr
)) / sctx
->sectorsize
;
2478 num_sectors
= sum
->len
/ sctx
->sectorsize
;
2479 memcpy(csum
, sum
->sums
+ index
, sctx
->csum_size
);
2480 if (index
== num_sectors
- 1) {
2481 list_del(&sum
->list
);
2487 /* scrub extent tries to collect up to 64 kB for each bio */
2488 static int scrub_extent(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
2489 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
2490 u64 gen
, int mirror_num
, u64 physical_for_dev_replace
)
2493 u8 csum
[BTRFS_CSUM_SIZE
];
2496 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2497 blocksize
= sctx
->sectorsize
;
2498 spin_lock(&sctx
->stat_lock
);
2499 sctx
->stat
.data_extents_scrubbed
++;
2500 sctx
->stat
.data_bytes_scrubbed
+= len
;
2501 spin_unlock(&sctx
->stat_lock
);
2502 } else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
2503 blocksize
= sctx
->nodesize
;
2504 spin_lock(&sctx
->stat_lock
);
2505 sctx
->stat
.tree_extents_scrubbed
++;
2506 sctx
->stat
.tree_bytes_scrubbed
+= len
;
2507 spin_unlock(&sctx
->stat_lock
);
2509 blocksize
= sctx
->sectorsize
;
2514 u64 l
= min_t(u64
, len
, blocksize
);
2517 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2518 /* push csums to sbio */
2519 have_csum
= scrub_find_csum(sctx
, logical
, csum
);
2521 ++sctx
->stat
.no_csum
;
2522 if (0 && sctx
->is_dev_replace
&& !have_csum
) {
2523 ret
= copy_nocow_pages(sctx
, logical
, l
,
2525 physical_for_dev_replace
);
2526 goto behind_scrub_pages
;
2529 ret
= scrub_pages(sctx
, logical
, l
, physical
, dev
, flags
, gen
,
2530 mirror_num
, have_csum
? csum
: NULL
, 0,
2531 physical_for_dev_replace
);
2538 physical_for_dev_replace
+= l
;
2543 static int scrub_pages_for_parity(struct scrub_parity
*sparity
,
2544 u64 logical
, u64 len
,
2545 u64 physical
, struct btrfs_device
*dev
,
2546 u64 flags
, u64 gen
, int mirror_num
, u8
*csum
)
2548 struct scrub_ctx
*sctx
= sparity
->sctx
;
2549 struct scrub_block
*sblock
;
2552 sblock
= kzalloc(sizeof(*sblock
), GFP_KERNEL
);
2554 spin_lock(&sctx
->stat_lock
);
2555 sctx
->stat
.malloc_errors
++;
2556 spin_unlock(&sctx
->stat_lock
);
2560 /* one ref inside this function, plus one for each page added to
2562 atomic_set(&sblock
->refs
, 1);
2563 sblock
->sctx
= sctx
;
2564 sblock
->no_io_error_seen
= 1;
2565 sblock
->sparity
= sparity
;
2566 scrub_parity_get(sparity
);
2568 for (index
= 0; len
> 0; index
++) {
2569 struct scrub_page
*spage
;
2570 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
2572 spage
= kzalloc(sizeof(*spage
), GFP_KERNEL
);
2575 spin_lock(&sctx
->stat_lock
);
2576 sctx
->stat
.malloc_errors
++;
2577 spin_unlock(&sctx
->stat_lock
);
2578 scrub_block_put(sblock
);
2581 BUG_ON(index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
2582 /* For scrub block */
2583 scrub_page_get(spage
);
2584 sblock
->pagev
[index
] = spage
;
2585 /* For scrub parity */
2586 scrub_page_get(spage
);
2587 list_add_tail(&spage
->list
, &sparity
->spages
);
2588 spage
->sblock
= sblock
;
2590 spage
->flags
= flags
;
2591 spage
->generation
= gen
;
2592 spage
->logical
= logical
;
2593 spage
->physical
= physical
;
2594 spage
->mirror_num
= mirror_num
;
2596 spage
->have_csum
= 1;
2597 memcpy(spage
->csum
, csum
, sctx
->csum_size
);
2599 spage
->have_csum
= 0;
2601 sblock
->page_count
++;
2602 spage
->page
= alloc_page(GFP_KERNEL
);
2610 WARN_ON(sblock
->page_count
== 0);
2611 for (index
= 0; index
< sblock
->page_count
; index
++) {
2612 struct scrub_page
*spage
= sblock
->pagev
[index
];
2615 ret
= scrub_add_page_to_rd_bio(sctx
, spage
);
2617 scrub_block_put(sblock
);
2622 /* last one frees, either here or in bio completion for last page */
2623 scrub_block_put(sblock
);
2627 static int scrub_extent_for_parity(struct scrub_parity
*sparity
,
2628 u64 logical
, u64 len
,
2629 u64 physical
, struct btrfs_device
*dev
,
2630 u64 flags
, u64 gen
, int mirror_num
)
2632 struct scrub_ctx
*sctx
= sparity
->sctx
;
2634 u8 csum
[BTRFS_CSUM_SIZE
];
2638 scrub_parity_mark_sectors_error(sparity
, logical
, len
);
2642 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2643 blocksize
= sctx
->sectorsize
;
2644 } else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
2645 blocksize
= sctx
->nodesize
;
2647 blocksize
= sctx
->sectorsize
;
2652 u64 l
= min_t(u64
, len
, blocksize
);
2655 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2656 /* push csums to sbio */
2657 have_csum
= scrub_find_csum(sctx
, logical
, csum
);
2661 ret
= scrub_pages_for_parity(sparity
, logical
, l
, physical
, dev
,
2662 flags
, gen
, mirror_num
,
2663 have_csum
? csum
: NULL
);
2675 * Given a physical address, this will calculate it's
2676 * logical offset. if this is a parity stripe, it will return
2677 * the most left data stripe's logical offset.
2679 * return 0 if it is a data stripe, 1 means parity stripe.
2681 static int get_raid56_logic_offset(u64 physical
, int num
,
2682 struct map_lookup
*map
, u64
*offset
,
2692 last_offset
= (physical
- map
->stripes
[num
].physical
) *
2693 nr_data_stripes(map
);
2695 *stripe_start
= last_offset
;
2697 *offset
= last_offset
;
2698 for (i
= 0; i
< nr_data_stripes(map
); i
++) {
2699 *offset
= last_offset
+ i
* map
->stripe_len
;
2701 stripe_nr
= div_u64(*offset
, map
->stripe_len
);
2702 stripe_nr
= div_u64(stripe_nr
, nr_data_stripes(map
));
2704 /* Work out the disk rotation on this stripe-set */
2705 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
, &rot
);
2706 /* calculate which stripe this data locates */
2708 stripe_index
= rot
% map
->num_stripes
;
2709 if (stripe_index
== num
)
2711 if (stripe_index
< num
)
2714 *offset
= last_offset
+ j
* map
->stripe_len
;
2718 static void scrub_free_parity(struct scrub_parity
*sparity
)
2720 struct scrub_ctx
*sctx
= sparity
->sctx
;
2721 struct scrub_page
*curr
, *next
;
2724 nbits
= bitmap_weight(sparity
->ebitmap
, sparity
->nsectors
);
2726 spin_lock(&sctx
->stat_lock
);
2727 sctx
->stat
.read_errors
+= nbits
;
2728 sctx
->stat
.uncorrectable_errors
+= nbits
;
2729 spin_unlock(&sctx
->stat_lock
);
2732 list_for_each_entry_safe(curr
, next
, &sparity
->spages
, list
) {
2733 list_del_init(&curr
->list
);
2734 scrub_page_put(curr
);
2740 static void scrub_parity_bio_endio_worker(struct btrfs_work
*work
)
2742 struct scrub_parity
*sparity
= container_of(work
, struct scrub_parity
,
2744 struct scrub_ctx
*sctx
= sparity
->sctx
;
2746 scrub_free_parity(sparity
);
2747 scrub_pending_bio_dec(sctx
);
2750 static void scrub_parity_bio_endio(struct bio
*bio
)
2752 struct scrub_parity
*sparity
= (struct scrub_parity
*)bio
->bi_private
;
2755 bitmap_or(sparity
->ebitmap
, sparity
->ebitmap
, sparity
->dbitmap
,
2760 btrfs_init_work(&sparity
->work
, btrfs_scrubparity_helper
,
2761 scrub_parity_bio_endio_worker
, NULL
, NULL
);
2762 btrfs_queue_work(sparity
->sctx
->dev_root
->fs_info
->scrub_parity_workers
,
2766 static void scrub_parity_check_and_repair(struct scrub_parity
*sparity
)
2768 struct scrub_ctx
*sctx
= sparity
->sctx
;
2770 struct btrfs_raid_bio
*rbio
;
2771 struct scrub_page
*spage
;
2772 struct btrfs_bio
*bbio
= NULL
;
2776 if (!bitmap_andnot(sparity
->dbitmap
, sparity
->dbitmap
, sparity
->ebitmap
,
2780 length
= sparity
->logic_end
- sparity
->logic_start
;
2781 ret
= btrfs_map_sblock(sctx
->dev_root
->fs_info
, WRITE
,
2782 sparity
->logic_start
,
2783 &length
, &bbio
, 0, 1);
2784 if (ret
|| !bbio
|| !bbio
->raid_map
)
2787 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 0);
2791 bio
->bi_iter
.bi_sector
= sparity
->logic_start
>> 9;
2792 bio
->bi_private
= sparity
;
2793 bio
->bi_end_io
= scrub_parity_bio_endio
;
2795 rbio
= raid56_parity_alloc_scrub_rbio(sctx
->dev_root
, bio
, bbio
,
2796 length
, sparity
->scrub_dev
,
2802 list_for_each_entry(spage
, &sparity
->spages
, list
)
2803 raid56_add_scrub_pages(rbio
, spage
->page
, spage
->logical
);
2805 scrub_pending_bio_inc(sctx
);
2806 raid56_parity_submit_scrub_rbio(rbio
);
2812 btrfs_put_bbio(bbio
);
2813 bitmap_or(sparity
->ebitmap
, sparity
->ebitmap
, sparity
->dbitmap
,
2815 spin_lock(&sctx
->stat_lock
);
2816 sctx
->stat
.malloc_errors
++;
2817 spin_unlock(&sctx
->stat_lock
);
2819 scrub_free_parity(sparity
);
2822 static inline int scrub_calc_parity_bitmap_len(int nsectors
)
2824 return DIV_ROUND_UP(nsectors
, BITS_PER_LONG
) * sizeof(long);
2827 static void scrub_parity_get(struct scrub_parity
*sparity
)
2829 atomic_inc(&sparity
->refs
);
2832 static void scrub_parity_put(struct scrub_parity
*sparity
)
2834 if (!atomic_dec_and_test(&sparity
->refs
))
2837 scrub_parity_check_and_repair(sparity
);
2840 static noinline_for_stack
int scrub_raid56_parity(struct scrub_ctx
*sctx
,
2841 struct map_lookup
*map
,
2842 struct btrfs_device
*sdev
,
2843 struct btrfs_path
*path
,
2847 struct btrfs_fs_info
*fs_info
= sctx
->dev_root
->fs_info
;
2848 struct btrfs_root
*root
= fs_info
->extent_root
;
2849 struct btrfs_root
*csum_root
= fs_info
->csum_root
;
2850 struct btrfs_extent_item
*extent
;
2851 struct btrfs_bio
*bbio
= NULL
;
2855 struct extent_buffer
*l
;
2856 struct btrfs_key key
;
2859 u64 extent_physical
;
2862 struct btrfs_device
*extent_dev
;
2863 struct scrub_parity
*sparity
;
2866 int extent_mirror_num
;
2869 nsectors
= div_u64(map
->stripe_len
, root
->sectorsize
);
2870 bitmap_len
= scrub_calc_parity_bitmap_len(nsectors
);
2871 sparity
= kzalloc(sizeof(struct scrub_parity
) + 2 * bitmap_len
,
2874 spin_lock(&sctx
->stat_lock
);
2875 sctx
->stat
.malloc_errors
++;
2876 spin_unlock(&sctx
->stat_lock
);
2880 sparity
->stripe_len
= map
->stripe_len
;
2881 sparity
->nsectors
= nsectors
;
2882 sparity
->sctx
= sctx
;
2883 sparity
->scrub_dev
= sdev
;
2884 sparity
->logic_start
= logic_start
;
2885 sparity
->logic_end
= logic_end
;
2886 atomic_set(&sparity
->refs
, 1);
2887 INIT_LIST_HEAD(&sparity
->spages
);
2888 sparity
->dbitmap
= sparity
->bitmap
;
2889 sparity
->ebitmap
= (void *)sparity
->bitmap
+ bitmap_len
;
2892 while (logic_start
< logic_end
) {
2893 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
2894 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2896 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2897 key
.objectid
= logic_start
;
2898 key
.offset
= (u64
)-1;
2900 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2905 ret
= btrfs_previous_extent_item(root
, path
, 0);
2909 btrfs_release_path(path
);
2910 ret
= btrfs_search_slot(NULL
, root
, &key
,
2922 slot
= path
->slots
[0];
2923 if (slot
>= btrfs_header_nritems(l
)) {
2924 ret
= btrfs_next_leaf(root
, path
);
2933 btrfs_item_key_to_cpu(l
, &key
, slot
);
2935 if (key
.type
!= BTRFS_EXTENT_ITEM_KEY
&&
2936 key
.type
!= BTRFS_METADATA_ITEM_KEY
)
2939 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
2940 bytes
= root
->nodesize
;
2944 if (key
.objectid
+ bytes
<= logic_start
)
2947 if (key
.objectid
>= logic_end
) {
2952 while (key
.objectid
>= logic_start
+ map
->stripe_len
)
2953 logic_start
+= map
->stripe_len
;
2955 extent
= btrfs_item_ptr(l
, slot
,
2956 struct btrfs_extent_item
);
2957 flags
= btrfs_extent_flags(l
, extent
);
2958 generation
= btrfs_extent_generation(l
, extent
);
2960 if ((flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) &&
2961 (key
.objectid
< logic_start
||
2962 key
.objectid
+ bytes
>
2963 logic_start
+ map
->stripe_len
)) {
2965 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2966 key
.objectid
, logic_start
);
2967 spin_lock(&sctx
->stat_lock
);
2968 sctx
->stat
.uncorrectable_errors
++;
2969 spin_unlock(&sctx
->stat_lock
);
2973 extent_logical
= key
.objectid
;
2976 if (extent_logical
< logic_start
) {
2977 extent_len
-= logic_start
- extent_logical
;
2978 extent_logical
= logic_start
;
2981 if (extent_logical
+ extent_len
>
2982 logic_start
+ map
->stripe_len
)
2983 extent_len
= logic_start
+ map
->stripe_len
-
2986 scrub_parity_mark_sectors_data(sparity
, extent_logical
,
2989 mapped_length
= extent_len
;
2991 ret
= btrfs_map_block(fs_info
, READ
, extent_logical
,
2992 &mapped_length
, &bbio
, 0);
2994 if (!bbio
|| mapped_length
< extent_len
)
2998 btrfs_put_bbio(bbio
);
3001 extent_physical
= bbio
->stripes
[0].physical
;
3002 extent_mirror_num
= bbio
->mirror_num
;
3003 extent_dev
= bbio
->stripes
[0].dev
;
3004 btrfs_put_bbio(bbio
);
3006 ret
= btrfs_lookup_csums_range(csum_root
,
3008 extent_logical
+ extent_len
- 1,
3009 &sctx
->csum_list
, 1);
3013 ret
= scrub_extent_for_parity(sparity
, extent_logical
,
3020 scrub_free_csums(sctx
);
3025 if (extent_logical
+ extent_len
<
3026 key
.objectid
+ bytes
) {
3027 logic_start
+= map
->stripe_len
;
3029 if (logic_start
>= logic_end
) {
3034 if (logic_start
< key
.objectid
+ bytes
) {
3043 btrfs_release_path(path
);
3048 logic_start
+= map
->stripe_len
;
3052 scrub_parity_mark_sectors_error(sparity
, logic_start
,
3053 logic_end
- logic_start
);
3054 scrub_parity_put(sparity
);
3056 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
3057 scrub_wr_submit(sctx
);
3058 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
3060 btrfs_release_path(path
);
3061 return ret
< 0 ? ret
: 0;
3064 static noinline_for_stack
int scrub_stripe(struct scrub_ctx
*sctx
,
3065 struct map_lookup
*map
,
3066 struct btrfs_device
*scrub_dev
,
3067 int num
, u64 base
, u64 length
,
3070 struct btrfs_path
*path
, *ppath
;
3071 struct btrfs_fs_info
*fs_info
= sctx
->dev_root
->fs_info
;
3072 struct btrfs_root
*root
= fs_info
->extent_root
;
3073 struct btrfs_root
*csum_root
= fs_info
->csum_root
;
3074 struct btrfs_extent_item
*extent
;
3075 struct blk_plug plug
;
3080 struct extent_buffer
*l
;
3087 struct reada_control
*reada1
;
3088 struct reada_control
*reada2
;
3089 struct btrfs_key key
;
3090 struct btrfs_key key_end
;
3091 u64 increment
= map
->stripe_len
;
3094 u64 extent_physical
;
3098 struct btrfs_device
*extent_dev
;
3099 int extent_mirror_num
;
3102 physical
= map
->stripes
[num
].physical
;
3104 nstripes
= div_u64(length
, map
->stripe_len
);
3105 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
3106 offset
= map
->stripe_len
* num
;
3107 increment
= map
->stripe_len
* map
->num_stripes
;
3109 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
3110 int factor
= map
->num_stripes
/ map
->sub_stripes
;
3111 offset
= map
->stripe_len
* (num
/ map
->sub_stripes
);
3112 increment
= map
->stripe_len
* factor
;
3113 mirror_num
= num
% map
->sub_stripes
+ 1;
3114 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
3115 increment
= map
->stripe_len
;
3116 mirror_num
= num
% map
->num_stripes
+ 1;
3117 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
3118 increment
= map
->stripe_len
;
3119 mirror_num
= num
% map
->num_stripes
+ 1;
3120 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3121 get_raid56_logic_offset(physical
, num
, map
, &offset
, NULL
);
3122 increment
= map
->stripe_len
* nr_data_stripes(map
);
3125 increment
= map
->stripe_len
;
3129 path
= btrfs_alloc_path();
3133 ppath
= btrfs_alloc_path();
3135 btrfs_free_path(path
);
3140 * work on commit root. The related disk blocks are static as
3141 * long as COW is applied. This means, it is save to rewrite
3142 * them to repair disk errors without any race conditions
3144 path
->search_commit_root
= 1;
3145 path
->skip_locking
= 1;
3147 ppath
->search_commit_root
= 1;
3148 ppath
->skip_locking
= 1;
3150 * trigger the readahead for extent tree csum tree and wait for
3151 * completion. During readahead, the scrub is officially paused
3152 * to not hold off transaction commits
3154 logical
= base
+ offset
;
3155 physical_end
= physical
+ nstripes
* map
->stripe_len
;
3156 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3157 get_raid56_logic_offset(physical_end
, num
,
3158 map
, &logic_end
, NULL
);
3161 logic_end
= logical
+ increment
* nstripes
;
3163 wait_event(sctx
->list_wait
,
3164 atomic_read(&sctx
->bios_in_flight
) == 0);
3165 scrub_blocked_if_needed(fs_info
);
3167 /* FIXME it might be better to start readahead at commit root */
3168 key
.objectid
= logical
;
3169 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3170 key
.offset
= (u64
)0;
3171 key_end
.objectid
= logic_end
;
3172 key_end
.type
= BTRFS_METADATA_ITEM_KEY
;
3173 key_end
.offset
= (u64
)-1;
3174 reada1
= btrfs_reada_add(root
, &key
, &key_end
);
3176 key
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
3177 key
.type
= BTRFS_EXTENT_CSUM_KEY
;
3178 key
.offset
= logical
;
3179 key_end
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
3180 key_end
.type
= BTRFS_EXTENT_CSUM_KEY
;
3181 key_end
.offset
= logic_end
;
3182 reada2
= btrfs_reada_add(csum_root
, &key
, &key_end
);
3184 if (!IS_ERR(reada1
))
3185 btrfs_reada_wait(reada1
);
3186 if (!IS_ERR(reada2
))
3187 btrfs_reada_wait(reada2
);
3191 * collect all data csums for the stripe to avoid seeking during
3192 * the scrub. This might currently (crc32) end up to be about 1MB
3194 blk_start_plug(&plug
);
3197 * now find all extents for each stripe and scrub them
3200 while (physical
< physical_end
) {
3204 if (atomic_read(&fs_info
->scrub_cancel_req
) ||
3205 atomic_read(&sctx
->cancel_req
)) {
3210 * check to see if we have to pause
3212 if (atomic_read(&fs_info
->scrub_pause_req
)) {
3213 /* push queued extents */
3214 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 1);
3216 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
3217 scrub_wr_submit(sctx
);
3218 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
3219 wait_event(sctx
->list_wait
,
3220 atomic_read(&sctx
->bios_in_flight
) == 0);
3221 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 0);
3222 scrub_blocked_if_needed(fs_info
);
3225 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3226 ret
= get_raid56_logic_offset(physical
, num
, map
,
3231 /* it is parity strip */
3232 stripe_logical
+= base
;
3233 stripe_end
= stripe_logical
+ increment
;
3234 ret
= scrub_raid56_parity(sctx
, map
, scrub_dev
,
3235 ppath
, stripe_logical
,
3243 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
3244 key
.type
= BTRFS_METADATA_ITEM_KEY
;
3246 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3247 key
.objectid
= logical
;
3248 key
.offset
= (u64
)-1;
3250 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3255 ret
= btrfs_previous_extent_item(root
, path
, 0);
3259 /* there's no smaller item, so stick with the
3261 btrfs_release_path(path
);
3262 ret
= btrfs_search_slot(NULL
, root
, &key
,
3274 slot
= path
->slots
[0];
3275 if (slot
>= btrfs_header_nritems(l
)) {
3276 ret
= btrfs_next_leaf(root
, path
);
3285 btrfs_item_key_to_cpu(l
, &key
, slot
);
3287 if (key
.type
!= BTRFS_EXTENT_ITEM_KEY
&&
3288 key
.type
!= BTRFS_METADATA_ITEM_KEY
)
3291 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
3292 bytes
= root
->nodesize
;
3296 if (key
.objectid
+ bytes
<= logical
)
3299 if (key
.objectid
>= logical
+ map
->stripe_len
) {
3300 /* out of this device extent */
3301 if (key
.objectid
>= logic_end
)
3306 extent
= btrfs_item_ptr(l
, slot
,
3307 struct btrfs_extent_item
);
3308 flags
= btrfs_extent_flags(l
, extent
);
3309 generation
= btrfs_extent_generation(l
, extent
);
3311 if ((flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) &&
3312 (key
.objectid
< logical
||
3313 key
.objectid
+ bytes
>
3314 logical
+ map
->stripe_len
)) {
3316 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3317 key
.objectid
, logical
);
3318 spin_lock(&sctx
->stat_lock
);
3319 sctx
->stat
.uncorrectable_errors
++;
3320 spin_unlock(&sctx
->stat_lock
);
3325 extent_logical
= key
.objectid
;
3329 * trim extent to this stripe
3331 if (extent_logical
< logical
) {
3332 extent_len
-= logical
- extent_logical
;
3333 extent_logical
= logical
;
3335 if (extent_logical
+ extent_len
>
3336 logical
+ map
->stripe_len
) {
3337 extent_len
= logical
+ map
->stripe_len
-
3341 extent_physical
= extent_logical
- logical
+ physical
;
3342 extent_dev
= scrub_dev
;
3343 extent_mirror_num
= mirror_num
;
3345 scrub_remap_extent(fs_info
, extent_logical
,
3346 extent_len
, &extent_physical
,
3348 &extent_mirror_num
);
3350 ret
= btrfs_lookup_csums_range(csum_root
,
3354 &sctx
->csum_list
, 1);
3358 ret
= scrub_extent(sctx
, extent_logical
, extent_len
,
3359 extent_physical
, extent_dev
, flags
,
3360 generation
, extent_mirror_num
,
3361 extent_logical
- logical
+ physical
);
3363 scrub_free_csums(sctx
);
3368 if (extent_logical
+ extent_len
<
3369 key
.objectid
+ bytes
) {
3370 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3372 * loop until we find next data stripe
3373 * or we have finished all stripes.
3376 physical
+= map
->stripe_len
;
3377 ret
= get_raid56_logic_offset(physical
,
3382 if (ret
&& physical
< physical_end
) {
3383 stripe_logical
+= base
;
3384 stripe_end
= stripe_logical
+
3386 ret
= scrub_raid56_parity(sctx
,
3387 map
, scrub_dev
, ppath
,
3395 physical
+= map
->stripe_len
;
3396 logical
+= increment
;
3398 if (logical
< key
.objectid
+ bytes
) {
3403 if (physical
>= physical_end
) {
3411 btrfs_release_path(path
);
3413 logical
+= increment
;
3414 physical
+= map
->stripe_len
;
3415 spin_lock(&sctx
->stat_lock
);
3417 sctx
->stat
.last_physical
= map
->stripes
[num
].physical
+
3420 sctx
->stat
.last_physical
= physical
;
3421 spin_unlock(&sctx
->stat_lock
);
3426 /* push queued extents */
3428 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
3429 scrub_wr_submit(sctx
);
3430 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
3432 blk_finish_plug(&plug
);
3433 btrfs_free_path(path
);
3434 btrfs_free_path(ppath
);
3435 return ret
< 0 ? ret
: 0;
3438 static noinline_for_stack
int scrub_chunk(struct scrub_ctx
*sctx
,
3439 struct btrfs_device
*scrub_dev
,
3440 u64 chunk_offset
, u64 length
,
3442 struct btrfs_block_group_cache
*cache
,
3445 struct btrfs_mapping_tree
*map_tree
=
3446 &sctx
->dev_root
->fs_info
->mapping_tree
;
3447 struct map_lookup
*map
;
3448 struct extent_map
*em
;
3452 read_lock(&map_tree
->map_tree
.lock
);
3453 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
3454 read_unlock(&map_tree
->map_tree
.lock
);
3458 * Might have been an unused block group deleted by the cleaner
3459 * kthread or relocation.
3461 spin_lock(&cache
->lock
);
3462 if (!cache
->removed
)
3464 spin_unlock(&cache
->lock
);
3469 map
= em
->map_lookup
;
3470 if (em
->start
!= chunk_offset
)
3473 if (em
->len
< length
)
3476 for (i
= 0; i
< map
->num_stripes
; ++i
) {
3477 if (map
->stripes
[i
].dev
->bdev
== scrub_dev
->bdev
&&
3478 map
->stripes
[i
].physical
== dev_offset
) {
3479 ret
= scrub_stripe(sctx
, map
, scrub_dev
, i
,
3480 chunk_offset
, length
,
3487 free_extent_map(em
);
3492 static noinline_for_stack
3493 int scrub_enumerate_chunks(struct scrub_ctx
*sctx
,
3494 struct btrfs_device
*scrub_dev
, u64 start
, u64 end
,
3497 struct btrfs_dev_extent
*dev_extent
= NULL
;
3498 struct btrfs_path
*path
;
3499 struct btrfs_root
*root
= sctx
->dev_root
;
3500 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3506 struct extent_buffer
*l
;
3507 struct btrfs_key key
;
3508 struct btrfs_key found_key
;
3509 struct btrfs_block_group_cache
*cache
;
3510 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
3512 path
= btrfs_alloc_path();
3516 path
->reada
= READA_FORWARD
;
3517 path
->search_commit_root
= 1;
3518 path
->skip_locking
= 1;
3520 key
.objectid
= scrub_dev
->devid
;
3522 key
.type
= BTRFS_DEV_EXTENT_KEY
;
3525 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3529 if (path
->slots
[0] >=
3530 btrfs_header_nritems(path
->nodes
[0])) {
3531 ret
= btrfs_next_leaf(root
, path
);
3544 slot
= path
->slots
[0];
3546 btrfs_item_key_to_cpu(l
, &found_key
, slot
);
3548 if (found_key
.objectid
!= scrub_dev
->devid
)
3551 if (found_key
.type
!= BTRFS_DEV_EXTENT_KEY
)
3554 if (found_key
.offset
>= end
)
3557 if (found_key
.offset
< key
.offset
)
3560 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
3561 length
= btrfs_dev_extent_length(l
, dev_extent
);
3563 if (found_key
.offset
+ length
<= start
)
3566 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
3569 * get a reference on the corresponding block group to prevent
3570 * the chunk from going away while we scrub it
3572 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3574 /* some chunks are removed but not committed to disk yet,
3575 * continue scrubbing */
3580 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3581 * to avoid deadlock caused by:
3582 * btrfs_inc_block_group_ro()
3583 * -> btrfs_wait_for_commit()
3584 * -> btrfs_commit_transaction()
3585 * -> btrfs_scrub_pause()
3587 scrub_pause_on(fs_info
);
3588 ret
= btrfs_inc_block_group_ro(root
, cache
);
3589 if (!ret
&& is_dev_replace
) {
3591 * If we are doing a device replace wait for any tasks
3592 * that started dellaloc right before we set the block
3593 * group to RO mode, as they might have just allocated
3594 * an extent from it or decided they could do a nocow
3595 * write. And if any such tasks did that, wait for their
3596 * ordered extents to complete and then commit the
3597 * current transaction, so that we can later see the new
3598 * extent items in the extent tree - the ordered extents
3599 * create delayed data references (for cow writes) when
3600 * they complete, which will be run and insert the
3601 * corresponding extent items into the extent tree when
3602 * we commit the transaction they used when running
3603 * inode.c:btrfs_finish_ordered_io(). We later use
3604 * the commit root of the extent tree to find extents
3605 * to copy from the srcdev into the tgtdev, and we don't
3606 * want to miss any new extents.
3608 btrfs_wait_block_group_reservations(cache
);
3609 btrfs_wait_nocow_writers(cache
);
3610 ret
= btrfs_wait_ordered_roots(fs_info
, -1,
3611 cache
->key
.objectid
,
3614 struct btrfs_trans_handle
*trans
;
3616 trans
= btrfs_join_transaction(root
);
3618 ret
= PTR_ERR(trans
);
3620 ret
= btrfs_commit_transaction(trans
,
3623 scrub_pause_off(fs_info
);
3624 btrfs_put_block_group(cache
);
3629 scrub_pause_off(fs_info
);
3633 } else if (ret
== -ENOSPC
) {
3635 * btrfs_inc_block_group_ro return -ENOSPC when it
3636 * failed in creating new chunk for metadata.
3637 * It is not a problem for scrub/replace, because
3638 * metadata are always cowed, and our scrub paused
3639 * commit_transactions.
3644 "failed setting block group ro, ret=%d\n",
3646 btrfs_put_block_group(cache
);
3650 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 1);
3651 dev_replace
->cursor_right
= found_key
.offset
+ length
;
3652 dev_replace
->cursor_left
= found_key
.offset
;
3653 dev_replace
->item_needs_writeback
= 1;
3654 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 1);
3655 ret
= scrub_chunk(sctx
, scrub_dev
, chunk_offset
, length
,
3656 found_key
.offset
, cache
, is_dev_replace
);
3659 * flush, submit all pending read and write bios, afterwards
3661 * Note that in the dev replace case, a read request causes
3662 * write requests that are submitted in the read completion
3663 * worker. Therefore in the current situation, it is required
3664 * that all write requests are flushed, so that all read and
3665 * write requests are really completed when bios_in_flight
3668 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 1);
3670 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
3671 scrub_wr_submit(sctx
);
3672 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
3674 wait_event(sctx
->list_wait
,
3675 atomic_read(&sctx
->bios_in_flight
) == 0);
3677 scrub_pause_on(fs_info
);
3680 * must be called before we decrease @scrub_paused.
3681 * make sure we don't block transaction commit while
3682 * we are waiting pending workers finished.
3684 wait_event(sctx
->list_wait
,
3685 atomic_read(&sctx
->workers_pending
) == 0);
3686 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 0);
3688 scrub_pause_off(fs_info
);
3690 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 1);
3691 dev_replace
->cursor_left
= dev_replace
->cursor_right
;
3692 dev_replace
->item_needs_writeback
= 1;
3693 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 1);
3696 btrfs_dec_block_group_ro(root
, cache
);
3699 * We might have prevented the cleaner kthread from deleting
3700 * this block group if it was already unused because we raced
3701 * and set it to RO mode first. So add it back to the unused
3702 * list, otherwise it might not ever be deleted unless a manual
3703 * balance is triggered or it becomes used and unused again.
3705 spin_lock(&cache
->lock
);
3706 if (!cache
->removed
&& !cache
->ro
&& cache
->reserved
== 0 &&
3707 btrfs_block_group_used(&cache
->item
) == 0) {
3708 spin_unlock(&cache
->lock
);
3709 spin_lock(&fs_info
->unused_bgs_lock
);
3710 if (list_empty(&cache
->bg_list
)) {
3711 btrfs_get_block_group(cache
);
3712 list_add_tail(&cache
->bg_list
,
3713 &fs_info
->unused_bgs
);
3715 spin_unlock(&fs_info
->unused_bgs_lock
);
3717 spin_unlock(&cache
->lock
);
3720 btrfs_put_block_group(cache
);
3723 if (is_dev_replace
&&
3724 atomic64_read(&dev_replace
->num_write_errors
) > 0) {
3728 if (sctx
->stat
.malloc_errors
> 0) {
3733 key
.offset
= found_key
.offset
+ length
;
3734 btrfs_release_path(path
);
3737 btrfs_free_path(path
);
3742 static noinline_for_stack
int scrub_supers(struct scrub_ctx
*sctx
,
3743 struct btrfs_device
*scrub_dev
)
3749 struct btrfs_root
*root
= sctx
->dev_root
;
3751 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
3754 /* Seed devices of a new filesystem has their own generation. */
3755 if (scrub_dev
->fs_devices
!= root
->fs_info
->fs_devices
)
3756 gen
= scrub_dev
->generation
;
3758 gen
= root
->fs_info
->last_trans_committed
;
3760 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
3761 bytenr
= btrfs_sb_offset(i
);
3762 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>
3763 scrub_dev
->commit_total_bytes
)
3766 ret
= scrub_pages(sctx
, bytenr
, BTRFS_SUPER_INFO_SIZE
, bytenr
,
3767 scrub_dev
, BTRFS_EXTENT_FLAG_SUPER
, gen
, i
,
3772 wait_event(sctx
->list_wait
, atomic_read(&sctx
->bios_in_flight
) == 0);
3778 * get a reference count on fs_info->scrub_workers. start worker if necessary
3780 static noinline_for_stack
int scrub_workers_get(struct btrfs_fs_info
*fs_info
,
3783 unsigned int flags
= WQ_FREEZABLE
| WQ_UNBOUND
;
3784 int max_active
= fs_info
->thread_pool_size
;
3786 if (fs_info
->scrub_workers_refcnt
== 0) {
3788 fs_info
->scrub_workers
=
3789 btrfs_alloc_workqueue(fs_info
, "scrub", flags
,
3792 fs_info
->scrub_workers
=
3793 btrfs_alloc_workqueue(fs_info
, "scrub", flags
,
3795 if (!fs_info
->scrub_workers
)
3796 goto fail_scrub_workers
;
3798 fs_info
->scrub_wr_completion_workers
=
3799 btrfs_alloc_workqueue(fs_info
, "scrubwrc", flags
,
3801 if (!fs_info
->scrub_wr_completion_workers
)
3802 goto fail_scrub_wr_completion_workers
;
3804 fs_info
->scrub_nocow_workers
=
3805 btrfs_alloc_workqueue(fs_info
, "scrubnc", flags
, 1, 0);
3806 if (!fs_info
->scrub_nocow_workers
)
3807 goto fail_scrub_nocow_workers
;
3808 fs_info
->scrub_parity_workers
=
3809 btrfs_alloc_workqueue(fs_info
, "scrubparity", flags
,
3811 if (!fs_info
->scrub_parity_workers
)
3812 goto fail_scrub_parity_workers
;
3814 ++fs_info
->scrub_workers_refcnt
;
3817 fail_scrub_parity_workers
:
3818 btrfs_destroy_workqueue(fs_info
->scrub_nocow_workers
);
3819 fail_scrub_nocow_workers
:
3820 btrfs_destroy_workqueue(fs_info
->scrub_wr_completion_workers
);
3821 fail_scrub_wr_completion_workers
:
3822 btrfs_destroy_workqueue(fs_info
->scrub_workers
);
3827 static noinline_for_stack
void scrub_workers_put(struct btrfs_fs_info
*fs_info
)
3829 if (--fs_info
->scrub_workers_refcnt
== 0) {
3830 btrfs_destroy_workqueue(fs_info
->scrub_workers
);
3831 btrfs_destroy_workqueue(fs_info
->scrub_wr_completion_workers
);
3832 btrfs_destroy_workqueue(fs_info
->scrub_nocow_workers
);
3833 btrfs_destroy_workqueue(fs_info
->scrub_parity_workers
);
3835 WARN_ON(fs_info
->scrub_workers_refcnt
< 0);
3838 int btrfs_scrub_dev(struct btrfs_fs_info
*fs_info
, u64 devid
, u64 start
,
3839 u64 end
, struct btrfs_scrub_progress
*progress
,
3840 int readonly
, int is_dev_replace
)
3842 struct scrub_ctx
*sctx
;
3844 struct btrfs_device
*dev
;
3845 struct rcu_string
*name
;
3847 if (btrfs_fs_closing(fs_info
))
3850 if (fs_info
->chunk_root
->nodesize
> BTRFS_STRIPE_LEN
) {
3852 * in this case scrub is unable to calculate the checksum
3853 * the way scrub is implemented. Do not handle this
3854 * situation at all because it won't ever happen.
3857 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3858 fs_info
->chunk_root
->nodesize
, BTRFS_STRIPE_LEN
);
3862 if (fs_info
->chunk_root
->sectorsize
!= PAGE_SIZE
) {
3863 /* not supported for data w/o checksums */
3864 btrfs_err_rl(fs_info
,
3865 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3866 fs_info
->chunk_root
->sectorsize
, PAGE_SIZE
);
3870 if (fs_info
->chunk_root
->nodesize
>
3871 PAGE_SIZE
* SCRUB_MAX_PAGES_PER_BLOCK
||
3872 fs_info
->chunk_root
->sectorsize
>
3873 PAGE_SIZE
* SCRUB_MAX_PAGES_PER_BLOCK
) {
3875 * would exhaust the array bounds of pagev member in
3876 * struct scrub_block
3879 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3880 fs_info
->chunk_root
->nodesize
,
3881 SCRUB_MAX_PAGES_PER_BLOCK
,
3882 fs_info
->chunk_root
->sectorsize
,
3883 SCRUB_MAX_PAGES_PER_BLOCK
);
3888 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
3889 dev
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
3890 if (!dev
|| (dev
->missing
&& !is_dev_replace
)) {
3891 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3895 if (!is_dev_replace
&& !readonly
&& !dev
->writeable
) {
3896 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3898 name
= rcu_dereference(dev
->name
);
3899 btrfs_err(fs_info
, "scrub: device %s is not writable",
3905 mutex_lock(&fs_info
->scrub_lock
);
3906 if (!dev
->in_fs_metadata
|| dev
->is_tgtdev_for_dev_replace
) {
3907 mutex_unlock(&fs_info
->scrub_lock
);
3908 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3912 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
3913 if (dev
->scrub_device
||
3915 btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))) {
3916 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
3917 mutex_unlock(&fs_info
->scrub_lock
);
3918 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3919 return -EINPROGRESS
;
3921 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
3923 ret
= scrub_workers_get(fs_info
, is_dev_replace
);
3925 mutex_unlock(&fs_info
->scrub_lock
);
3926 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3930 sctx
= scrub_setup_ctx(dev
, is_dev_replace
);
3932 mutex_unlock(&fs_info
->scrub_lock
);
3933 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3934 scrub_workers_put(fs_info
);
3935 return PTR_ERR(sctx
);
3937 sctx
->readonly
= readonly
;
3938 dev
->scrub_device
= sctx
;
3939 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3942 * checking @scrub_pause_req here, we can avoid
3943 * race between committing transaction and scrubbing.
3945 __scrub_blocked_if_needed(fs_info
);
3946 atomic_inc(&fs_info
->scrubs_running
);
3947 mutex_unlock(&fs_info
->scrub_lock
);
3949 if (!is_dev_replace
) {
3951 * by holding device list mutex, we can
3952 * kick off writing super in log tree sync.
3954 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
3955 ret
= scrub_supers(sctx
, dev
);
3956 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3960 ret
= scrub_enumerate_chunks(sctx
, dev
, start
, end
,
3963 wait_event(sctx
->list_wait
, atomic_read(&sctx
->bios_in_flight
) == 0);
3964 atomic_dec(&fs_info
->scrubs_running
);
3965 wake_up(&fs_info
->scrub_pause_wait
);
3967 wait_event(sctx
->list_wait
, atomic_read(&sctx
->workers_pending
) == 0);
3970 memcpy(progress
, &sctx
->stat
, sizeof(*progress
));
3972 mutex_lock(&fs_info
->scrub_lock
);
3973 dev
->scrub_device
= NULL
;
3974 scrub_workers_put(fs_info
);
3975 mutex_unlock(&fs_info
->scrub_lock
);
3977 scrub_put_ctx(sctx
);
3982 void btrfs_scrub_pause(struct btrfs_root
*root
)
3984 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3986 mutex_lock(&fs_info
->scrub_lock
);
3987 atomic_inc(&fs_info
->scrub_pause_req
);
3988 while (atomic_read(&fs_info
->scrubs_paused
) !=
3989 atomic_read(&fs_info
->scrubs_running
)) {
3990 mutex_unlock(&fs_info
->scrub_lock
);
3991 wait_event(fs_info
->scrub_pause_wait
,
3992 atomic_read(&fs_info
->scrubs_paused
) ==
3993 atomic_read(&fs_info
->scrubs_running
));
3994 mutex_lock(&fs_info
->scrub_lock
);
3996 mutex_unlock(&fs_info
->scrub_lock
);
3999 void btrfs_scrub_continue(struct btrfs_root
*root
)
4001 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4003 atomic_dec(&fs_info
->scrub_pause_req
);
4004 wake_up(&fs_info
->scrub_pause_wait
);
4007 int btrfs_scrub_cancel(struct btrfs_fs_info
*fs_info
)
4009 mutex_lock(&fs_info
->scrub_lock
);
4010 if (!atomic_read(&fs_info
->scrubs_running
)) {
4011 mutex_unlock(&fs_info
->scrub_lock
);
4015 atomic_inc(&fs_info
->scrub_cancel_req
);
4016 while (atomic_read(&fs_info
->scrubs_running
)) {
4017 mutex_unlock(&fs_info
->scrub_lock
);
4018 wait_event(fs_info
->scrub_pause_wait
,
4019 atomic_read(&fs_info
->scrubs_running
) == 0);
4020 mutex_lock(&fs_info
->scrub_lock
);
4022 atomic_dec(&fs_info
->scrub_cancel_req
);
4023 mutex_unlock(&fs_info
->scrub_lock
);
4028 int btrfs_scrub_cancel_dev(struct btrfs_fs_info
*fs_info
,
4029 struct btrfs_device
*dev
)
4031 struct scrub_ctx
*sctx
;
4033 mutex_lock(&fs_info
->scrub_lock
);
4034 sctx
= dev
->scrub_device
;
4036 mutex_unlock(&fs_info
->scrub_lock
);
4039 atomic_inc(&sctx
->cancel_req
);
4040 while (dev
->scrub_device
) {
4041 mutex_unlock(&fs_info
->scrub_lock
);
4042 wait_event(fs_info
->scrub_pause_wait
,
4043 dev
->scrub_device
== NULL
);
4044 mutex_lock(&fs_info
->scrub_lock
);
4046 mutex_unlock(&fs_info
->scrub_lock
);
4051 int btrfs_scrub_progress(struct btrfs_root
*root
, u64 devid
,
4052 struct btrfs_scrub_progress
*progress
)
4054 struct btrfs_device
*dev
;
4055 struct scrub_ctx
*sctx
= NULL
;
4057 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
4058 dev
= btrfs_find_device(root
->fs_info
, devid
, NULL
, NULL
);
4060 sctx
= dev
->scrub_device
;
4062 memcpy(progress
, &sctx
->stat
, sizeof(*progress
));
4063 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
4065 return dev
? (sctx
? 0 : -ENOTCONN
) : -ENODEV
;
4068 static void scrub_remap_extent(struct btrfs_fs_info
*fs_info
,
4069 u64 extent_logical
, u64 extent_len
,
4070 u64
*extent_physical
,
4071 struct btrfs_device
**extent_dev
,
4072 int *extent_mirror_num
)
4075 struct btrfs_bio
*bbio
= NULL
;
4078 mapped_length
= extent_len
;
4079 ret
= btrfs_map_block(fs_info
, READ
, extent_logical
,
4080 &mapped_length
, &bbio
, 0);
4081 if (ret
|| !bbio
|| mapped_length
< extent_len
||
4082 !bbio
->stripes
[0].dev
->bdev
) {
4083 btrfs_put_bbio(bbio
);
4087 *extent_physical
= bbio
->stripes
[0].physical
;
4088 *extent_mirror_num
= bbio
->mirror_num
;
4089 *extent_dev
= bbio
->stripes
[0].dev
;
4090 btrfs_put_bbio(bbio
);
4093 static int scrub_setup_wr_ctx(struct scrub_ctx
*sctx
,
4094 struct scrub_wr_ctx
*wr_ctx
,
4095 struct btrfs_fs_info
*fs_info
,
4096 struct btrfs_device
*dev
,
4099 WARN_ON(wr_ctx
->wr_curr_bio
!= NULL
);
4101 mutex_init(&wr_ctx
->wr_lock
);
4102 wr_ctx
->wr_curr_bio
= NULL
;
4103 if (!is_dev_replace
)
4106 WARN_ON(!dev
->bdev
);
4107 wr_ctx
->pages_per_wr_bio
= SCRUB_PAGES_PER_WR_BIO
;
4108 wr_ctx
->tgtdev
= dev
;
4109 atomic_set(&wr_ctx
->flush_all_writes
, 0);
4113 static void scrub_free_wr_ctx(struct scrub_wr_ctx
*wr_ctx
)
4115 mutex_lock(&wr_ctx
->wr_lock
);
4116 kfree(wr_ctx
->wr_curr_bio
);
4117 wr_ctx
->wr_curr_bio
= NULL
;
4118 mutex_unlock(&wr_ctx
->wr_lock
);
4121 static int copy_nocow_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
4122 int mirror_num
, u64 physical_for_dev_replace
)
4124 struct scrub_copy_nocow_ctx
*nocow_ctx
;
4125 struct btrfs_fs_info
*fs_info
= sctx
->dev_root
->fs_info
;
4127 nocow_ctx
= kzalloc(sizeof(*nocow_ctx
), GFP_NOFS
);
4129 spin_lock(&sctx
->stat_lock
);
4130 sctx
->stat
.malloc_errors
++;
4131 spin_unlock(&sctx
->stat_lock
);
4135 scrub_pending_trans_workers_inc(sctx
);
4137 nocow_ctx
->sctx
= sctx
;
4138 nocow_ctx
->logical
= logical
;
4139 nocow_ctx
->len
= len
;
4140 nocow_ctx
->mirror_num
= mirror_num
;
4141 nocow_ctx
->physical_for_dev_replace
= physical_for_dev_replace
;
4142 btrfs_init_work(&nocow_ctx
->work
, btrfs_scrubnc_helper
,
4143 copy_nocow_pages_worker
, NULL
, NULL
);
4144 INIT_LIST_HEAD(&nocow_ctx
->inodes
);
4145 btrfs_queue_work(fs_info
->scrub_nocow_workers
,
4151 static int record_inode_for_nocow(u64 inum
, u64 offset
, u64 root
, void *ctx
)
4153 struct scrub_copy_nocow_ctx
*nocow_ctx
= ctx
;
4154 struct scrub_nocow_inode
*nocow_inode
;
4156 nocow_inode
= kzalloc(sizeof(*nocow_inode
), GFP_NOFS
);
4159 nocow_inode
->inum
= inum
;
4160 nocow_inode
->offset
= offset
;
4161 nocow_inode
->root
= root
;
4162 list_add_tail(&nocow_inode
->list
, &nocow_ctx
->inodes
);
4166 #define COPY_COMPLETE 1
4168 static void copy_nocow_pages_worker(struct btrfs_work
*work
)
4170 struct scrub_copy_nocow_ctx
*nocow_ctx
=
4171 container_of(work
, struct scrub_copy_nocow_ctx
, work
);
4172 struct scrub_ctx
*sctx
= nocow_ctx
->sctx
;
4173 u64 logical
= nocow_ctx
->logical
;
4174 u64 len
= nocow_ctx
->len
;
4175 int mirror_num
= nocow_ctx
->mirror_num
;
4176 u64 physical_for_dev_replace
= nocow_ctx
->physical_for_dev_replace
;
4178 struct btrfs_trans_handle
*trans
= NULL
;
4179 struct btrfs_fs_info
*fs_info
;
4180 struct btrfs_path
*path
;
4181 struct btrfs_root
*root
;
4182 int not_written
= 0;
4184 fs_info
= sctx
->dev_root
->fs_info
;
4185 root
= fs_info
->extent_root
;
4187 path
= btrfs_alloc_path();
4189 spin_lock(&sctx
->stat_lock
);
4190 sctx
->stat
.malloc_errors
++;
4191 spin_unlock(&sctx
->stat_lock
);
4196 trans
= btrfs_join_transaction(root
);
4197 if (IS_ERR(trans
)) {
4202 ret
= iterate_inodes_from_logical(logical
, fs_info
, path
,
4203 record_inode_for_nocow
, nocow_ctx
);
4204 if (ret
!= 0 && ret
!= -ENOENT
) {
4206 "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4207 logical
, physical_for_dev_replace
, len
, mirror_num
,
4213 btrfs_end_transaction(trans
, root
);
4215 while (!list_empty(&nocow_ctx
->inodes
)) {
4216 struct scrub_nocow_inode
*entry
;
4217 entry
= list_first_entry(&nocow_ctx
->inodes
,
4218 struct scrub_nocow_inode
,
4220 list_del_init(&entry
->list
);
4221 ret
= copy_nocow_pages_for_inode(entry
->inum
, entry
->offset
,
4222 entry
->root
, nocow_ctx
);
4224 if (ret
== COPY_COMPLETE
) {
4232 while (!list_empty(&nocow_ctx
->inodes
)) {
4233 struct scrub_nocow_inode
*entry
;
4234 entry
= list_first_entry(&nocow_ctx
->inodes
,
4235 struct scrub_nocow_inode
,
4237 list_del_init(&entry
->list
);
4240 if (trans
&& !IS_ERR(trans
))
4241 btrfs_end_transaction(trans
, root
);
4243 btrfs_dev_replace_stats_inc(&fs_info
->dev_replace
.
4244 num_uncorrectable_read_errors
);
4246 btrfs_free_path(path
);
4249 scrub_pending_trans_workers_dec(sctx
);
4252 static int check_extent_to_block(struct inode
*inode
, u64 start
, u64 len
,
4255 struct extent_state
*cached_state
= NULL
;
4256 struct btrfs_ordered_extent
*ordered
;
4257 struct extent_io_tree
*io_tree
;
4258 struct extent_map
*em
;
4259 u64 lockstart
= start
, lockend
= start
+ len
- 1;
4262 io_tree
= &BTRFS_I(inode
)->io_tree
;
4264 lock_extent_bits(io_tree
, lockstart
, lockend
, &cached_state
);
4265 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
, len
);
4267 btrfs_put_ordered_extent(ordered
);
4272 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
4279 * This extent does not actually cover the logical extent anymore,
4280 * move on to the next inode.
4282 if (em
->block_start
> logical
||
4283 em
->block_start
+ em
->block_len
< logical
+ len
) {
4284 free_extent_map(em
);
4288 free_extent_map(em
);
4291 unlock_extent_cached(io_tree
, lockstart
, lockend
, &cached_state
,
4296 static int copy_nocow_pages_for_inode(u64 inum
, u64 offset
, u64 root
,
4297 struct scrub_copy_nocow_ctx
*nocow_ctx
)
4299 struct btrfs_fs_info
*fs_info
= nocow_ctx
->sctx
->dev_root
->fs_info
;
4300 struct btrfs_key key
;
4301 struct inode
*inode
;
4303 struct btrfs_root
*local_root
;
4304 struct extent_io_tree
*io_tree
;
4305 u64 physical_for_dev_replace
;
4306 u64 nocow_ctx_logical
;
4307 u64 len
= nocow_ctx
->len
;
4308 unsigned long index
;
4313 key
.objectid
= root
;
4314 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4315 key
.offset
= (u64
)-1;
4317 srcu_index
= srcu_read_lock(&fs_info
->subvol_srcu
);
4319 local_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4320 if (IS_ERR(local_root
)) {
4321 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
4322 return PTR_ERR(local_root
);
4325 key
.type
= BTRFS_INODE_ITEM_KEY
;
4326 key
.objectid
= inum
;
4328 inode
= btrfs_iget(fs_info
->sb
, &key
, local_root
, NULL
);
4329 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
4331 return PTR_ERR(inode
);
4333 /* Avoid truncate/dio/punch hole.. */
4335 inode_dio_wait(inode
);
4337 physical_for_dev_replace
= nocow_ctx
->physical_for_dev_replace
;
4338 io_tree
= &BTRFS_I(inode
)->io_tree
;
4339 nocow_ctx_logical
= nocow_ctx
->logical
;
4341 ret
= check_extent_to_block(inode
, offset
, len
, nocow_ctx_logical
);
4343 ret
= ret
> 0 ? 0 : ret
;
4347 while (len
>= PAGE_SIZE
) {
4348 index
= offset
>> PAGE_SHIFT
;
4350 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
4352 btrfs_err(fs_info
, "find_or_create_page() failed");
4357 if (PageUptodate(page
)) {
4358 if (PageDirty(page
))
4361 ClearPageError(page
);
4362 err
= extent_read_full_page(io_tree
, page
,
4364 nocow_ctx
->mirror_num
);
4372 * If the page has been remove from the page cache,
4373 * the data on it is meaningless, because it may be
4374 * old one, the new data may be written into the new
4375 * page in the page cache.
4377 if (page
->mapping
!= inode
->i_mapping
) {
4382 if (!PageUptodate(page
)) {
4388 ret
= check_extent_to_block(inode
, offset
, len
,
4391 ret
= ret
> 0 ? 0 : ret
;
4395 err
= write_page_nocow(nocow_ctx
->sctx
,
4396 physical_for_dev_replace
, page
);
4406 offset
+= PAGE_SIZE
;
4407 physical_for_dev_replace
+= PAGE_SIZE
;
4408 nocow_ctx_logical
+= PAGE_SIZE
;
4411 ret
= COPY_COMPLETE
;
4413 inode_unlock(inode
);
4418 static int write_page_nocow(struct scrub_ctx
*sctx
,
4419 u64 physical_for_dev_replace
, struct page
*page
)
4422 struct btrfs_device
*dev
;
4425 dev
= sctx
->wr_ctx
.tgtdev
;
4429 btrfs_warn_rl(dev
->dev_root
->fs_info
,
4430 "scrub write_page_nocow(bdev == NULL) is unexpected");
4433 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
4435 spin_lock(&sctx
->stat_lock
);
4436 sctx
->stat
.malloc_errors
++;
4437 spin_unlock(&sctx
->stat_lock
);
4440 bio
->bi_iter
.bi_size
= 0;
4441 bio
->bi_iter
.bi_sector
= physical_for_dev_replace
>> 9;
4442 bio
->bi_bdev
= dev
->bdev
;
4443 bio_set_op_attrs(bio
, REQ_OP_WRITE
, WRITE_SYNC
);
4444 ret
= bio_add_page(bio
, page
, PAGE_SIZE
, 0);
4445 if (ret
!= PAGE_SIZE
) {
4448 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_WRITE_ERRS
);
4452 if (btrfsic_submit_bio_wait(bio
))
4453 goto leave_with_eio
;