4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
8 * - filesystem drivers list
10 * - umount system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h> /* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include <linux/user_namespace.h>
40 static LIST_HEAD(super_blocks
);
41 static DEFINE_SPINLOCK(sb_lock
);
43 static char *sb_writers_name
[SB_FREEZE_LEVELS
] = {
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
56 static unsigned long super_cache_scan(struct shrinker
*shrink
,
57 struct shrink_control
*sc
)
59 struct super_block
*sb
;
66 sb
= container_of(shrink
, struct super_block
, s_shrink
);
69 * Deadlock avoidance. We may hold various FS locks, and we don't want
70 * to recurse into the FS that called us in clear_inode() and friends..
72 if (!(sc
->gfp_mask
& __GFP_FS
))
75 if (!trylock_super(sb
))
78 if (sb
->s_op
->nr_cached_objects
)
79 fs_objects
= sb
->s_op
->nr_cached_objects(sb
, sc
);
81 inodes
= list_lru_shrink_count(&sb
->s_inode_lru
, sc
);
82 dentries
= list_lru_shrink_count(&sb
->s_dentry_lru
, sc
);
83 total_objects
= dentries
+ inodes
+ fs_objects
+ 1;
87 /* proportion the scan between the caches */
88 dentries
= mult_frac(sc
->nr_to_scan
, dentries
, total_objects
);
89 inodes
= mult_frac(sc
->nr_to_scan
, inodes
, total_objects
);
90 fs_objects
= mult_frac(sc
->nr_to_scan
, fs_objects
, total_objects
);
93 * prune the dcache first as the icache is pinned by it, then
94 * prune the icache, followed by the filesystem specific caches
96 * Ensure that we always scan at least one object - memcg kmem
97 * accounting uses this to fully empty the caches.
99 sc
->nr_to_scan
= dentries
+ 1;
100 freed
= prune_dcache_sb(sb
, sc
);
101 sc
->nr_to_scan
= inodes
+ 1;
102 freed
+= prune_icache_sb(sb
, sc
);
105 sc
->nr_to_scan
= fs_objects
+ 1;
106 freed
+= sb
->s_op
->free_cached_objects(sb
, sc
);
109 up_read(&sb
->s_umount
);
113 static unsigned long super_cache_count(struct shrinker
*shrink
,
114 struct shrink_control
*sc
)
116 struct super_block
*sb
;
117 long total_objects
= 0;
119 sb
= container_of(shrink
, struct super_block
, s_shrink
);
122 * We don't call trylock_super() here as it is a scalability bottleneck,
123 * so we're exposed to partial setup state. The shrinker rwsem does not
124 * protect filesystem operations backing list_lru_shrink_count() or
125 * s_op->nr_cached_objects(). Counts can change between
126 * super_cache_count and super_cache_scan, so we really don't need locks
129 * However, if we are currently mounting the superblock, the underlying
130 * filesystem might be in a state of partial construction and hence it
131 * is dangerous to access it. trylock_super() uses a MS_BORN check to
132 * avoid this situation, so do the same here. The memory barrier is
133 * matched with the one in mount_fs() as we don't hold locks here.
135 if (!(sb
->s_flags
& MS_BORN
))
139 if (sb
->s_op
&& sb
->s_op
->nr_cached_objects
)
140 total_objects
= sb
->s_op
->nr_cached_objects(sb
, sc
);
142 total_objects
+= list_lru_shrink_count(&sb
->s_dentry_lru
, sc
);
143 total_objects
+= list_lru_shrink_count(&sb
->s_inode_lru
, sc
);
145 total_objects
= vfs_pressure_ratio(total_objects
);
146 return total_objects
;
149 static void destroy_super_work(struct work_struct
*work
)
151 struct super_block
*s
= container_of(work
, struct super_block
,
155 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++)
156 percpu_free_rwsem(&s
->s_writers
.rw_sem
[i
]);
160 static void destroy_super_rcu(struct rcu_head
*head
)
162 struct super_block
*s
= container_of(head
, struct super_block
, rcu
);
163 INIT_WORK(&s
->destroy_work
, destroy_super_work
);
164 schedule_work(&s
->destroy_work
);
168 * destroy_super - frees a superblock
169 * @s: superblock to free
171 * Frees a superblock.
173 static void destroy_super(struct super_block
*s
)
175 list_lru_destroy(&s
->s_dentry_lru
);
176 list_lru_destroy(&s
->s_inode_lru
);
178 WARN_ON(!list_empty(&s
->s_mounts
));
179 put_user_ns(s
->s_user_ns
);
182 call_rcu(&s
->rcu
, destroy_super_rcu
);
186 * alloc_super - create new superblock
187 * @type: filesystem type superblock should belong to
188 * @flags: the mount flags
189 * @user_ns: User namespace for the super_block
191 * Allocates and initializes a new &struct super_block. alloc_super()
192 * returns a pointer new superblock or %NULL if allocation had failed.
194 static struct super_block
*alloc_super(struct file_system_type
*type
, int flags
,
195 struct user_namespace
*user_ns
)
197 struct super_block
*s
= kzalloc(sizeof(struct super_block
), GFP_USER
);
198 static const struct super_operations default_op
;
204 INIT_LIST_HEAD(&s
->s_mounts
);
205 s
->s_user_ns
= get_user_ns(user_ns
);
207 if (security_sb_alloc(s
))
210 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++) {
211 if (__percpu_init_rwsem(&s
->s_writers
.rw_sem
[i
],
213 &type
->s_writers_key
[i
]))
216 init_waitqueue_head(&s
->s_writers
.wait_unfrozen
);
217 s
->s_bdi
= &noop_backing_dev_info
;
219 if (s
->s_user_ns
!= &init_user_ns
)
220 s
->s_iflags
|= SB_I_NODEV
;
221 INIT_HLIST_NODE(&s
->s_instances
);
222 INIT_HLIST_BL_HEAD(&s
->s_anon
);
223 mutex_init(&s
->s_sync_lock
);
224 INIT_LIST_HEAD(&s
->s_inodes
);
225 spin_lock_init(&s
->s_inode_list_lock
);
226 INIT_LIST_HEAD(&s
->s_inodes_wb
);
227 spin_lock_init(&s
->s_inode_wblist_lock
);
229 if (list_lru_init_memcg(&s
->s_dentry_lru
))
231 if (list_lru_init_memcg(&s
->s_inode_lru
))
234 init_rwsem(&s
->s_umount
);
235 lockdep_set_class(&s
->s_umount
, &type
->s_umount_key
);
237 * sget() can have s_umount recursion.
239 * When it cannot find a suitable sb, it allocates a new
240 * one (this one), and tries again to find a suitable old
243 * In case that succeeds, it will acquire the s_umount
244 * lock of the old one. Since these are clearly distrinct
245 * locks, and this object isn't exposed yet, there's no
248 * Annotate this by putting this lock in a different
251 down_write_nested(&s
->s_umount
, SINGLE_DEPTH_NESTING
);
253 atomic_set(&s
->s_active
, 1);
254 mutex_init(&s
->s_vfs_rename_mutex
);
255 lockdep_set_class(&s
->s_vfs_rename_mutex
, &type
->s_vfs_rename_key
);
256 mutex_init(&s
->s_dquot
.dqio_mutex
);
257 mutex_init(&s
->s_dquot
.dqonoff_mutex
);
258 s
->s_maxbytes
= MAX_NON_LFS
;
259 s
->s_op
= &default_op
;
260 s
->s_time_gran
= 1000000000;
261 s
->cleancache_poolid
= CLEANCACHE_NO_POOL
;
263 s
->s_shrink
.seeks
= DEFAULT_SEEKS
;
264 s
->s_shrink
.scan_objects
= super_cache_scan
;
265 s
->s_shrink
.count_objects
= super_cache_count
;
266 s
->s_shrink
.batch
= 1024;
267 s
->s_shrink
.flags
= SHRINKER_NUMA_AWARE
| SHRINKER_MEMCG_AWARE
;
275 /* Superblock refcounting */
278 * Drop a superblock's refcount. The caller must hold sb_lock.
280 static void __put_super(struct super_block
*sb
)
282 if (!--sb
->s_count
) {
283 list_del_init(&sb
->s_list
);
289 * put_super - drop a temporary reference to superblock
290 * @sb: superblock in question
292 * Drops a temporary reference, frees superblock if there's no
295 static void put_super(struct super_block
*sb
)
299 spin_unlock(&sb_lock
);
304 * deactivate_locked_super - drop an active reference to superblock
305 * @s: superblock to deactivate
307 * Drops an active reference to superblock, converting it into a temporary
308 * one if there is no other active references left. In that case we
309 * tell fs driver to shut it down and drop the temporary reference we
312 * Caller holds exclusive lock on superblock; that lock is released.
314 void deactivate_locked_super(struct super_block
*s
)
316 struct file_system_type
*fs
= s
->s_type
;
317 if (atomic_dec_and_test(&s
->s_active
)) {
318 cleancache_invalidate_fs(s
);
319 unregister_shrinker(&s
->s_shrink
);
323 * Since list_lru_destroy() may sleep, we cannot call it from
324 * put_super(), where we hold the sb_lock. Therefore we destroy
325 * the lru lists right now.
327 list_lru_destroy(&s
->s_dentry_lru
);
328 list_lru_destroy(&s
->s_inode_lru
);
333 up_write(&s
->s_umount
);
337 EXPORT_SYMBOL(deactivate_locked_super
);
340 * deactivate_super - drop an active reference to superblock
341 * @s: superblock to deactivate
343 * Variant of deactivate_locked_super(), except that superblock is *not*
344 * locked by caller. If we are going to drop the final active reference,
345 * lock will be acquired prior to that.
347 void deactivate_super(struct super_block
*s
)
349 if (!atomic_add_unless(&s
->s_active
, -1, 1)) {
350 down_write(&s
->s_umount
);
351 deactivate_locked_super(s
);
355 EXPORT_SYMBOL(deactivate_super
);
358 * grab_super - acquire an active reference
359 * @s: reference we are trying to make active
361 * Tries to acquire an active reference. grab_super() is used when we
362 * had just found a superblock in super_blocks or fs_type->fs_supers
363 * and want to turn it into a full-blown active reference. grab_super()
364 * is called with sb_lock held and drops it. Returns 1 in case of
365 * success, 0 if we had failed (superblock contents was already dead or
366 * dying when grab_super() had been called). Note that this is only
367 * called for superblocks not in rundown mode (== ones still on ->fs_supers
368 * of their type), so increment of ->s_count is OK here.
370 static int grab_super(struct super_block
*s
) __releases(sb_lock
)
373 spin_unlock(&sb_lock
);
374 down_write(&s
->s_umount
);
375 if ((s
->s_flags
& MS_BORN
) && atomic_inc_not_zero(&s
->s_active
)) {
379 up_write(&s
->s_umount
);
385 * trylock_super - try to grab ->s_umount shared
386 * @sb: reference we are trying to grab
388 * Try to prevent fs shutdown. This is used in places where we
389 * cannot take an active reference but we need to ensure that the
390 * filesystem is not shut down while we are working on it. It returns
391 * false if we cannot acquire s_umount or if we lose the race and
392 * filesystem already got into shutdown, and returns true with the s_umount
393 * lock held in read mode in case of success. On successful return,
394 * the caller must drop the s_umount lock when done.
396 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
397 * The reason why it's safe is that we are OK with doing trylock instead
398 * of down_read(). There's a couple of places that are OK with that, but
399 * it's very much not a general-purpose interface.
401 bool trylock_super(struct super_block
*sb
)
403 if (down_read_trylock(&sb
->s_umount
)) {
404 if (!hlist_unhashed(&sb
->s_instances
) &&
405 sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
407 up_read(&sb
->s_umount
);
414 * generic_shutdown_super - common helper for ->kill_sb()
415 * @sb: superblock to kill
417 * generic_shutdown_super() does all fs-independent work on superblock
418 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
419 * that need destruction out of superblock, call generic_shutdown_super()
420 * and release aforementioned objects. Note: dentries and inodes _are_
421 * taken care of and do not need specific handling.
423 * Upon calling this function, the filesystem may no longer alter or
424 * rearrange the set of dentries belonging to this super_block, nor may it
425 * change the attachments of dentries to inodes.
427 void generic_shutdown_super(struct super_block
*sb
)
429 const struct super_operations
*sop
= sb
->s_op
;
432 shrink_dcache_for_umount(sb
);
434 sb
->s_flags
&= ~MS_ACTIVE
;
436 fsnotify_unmount_inodes(sb
);
437 cgroup_writeback_umount();
441 if (sb
->s_dio_done_wq
) {
442 destroy_workqueue(sb
->s_dio_done_wq
);
443 sb
->s_dio_done_wq
= NULL
;
449 if (!list_empty(&sb
->s_inodes
)) {
450 printk("VFS: Busy inodes after unmount of %s. "
451 "Self-destruct in 5 seconds. Have a nice day...\n",
456 /* should be initialized for __put_super_and_need_restart() */
457 hlist_del_init(&sb
->s_instances
);
458 spin_unlock(&sb_lock
);
459 up_write(&sb
->s_umount
);
462 EXPORT_SYMBOL(generic_shutdown_super
);
465 * sget_userns - find or create a superblock
466 * @type: filesystem type superblock should belong to
467 * @test: comparison callback
468 * @set: setup callback
469 * @flags: mount flags
470 * @user_ns: User namespace for the super_block
471 * @data: argument to each of them
473 struct super_block
*sget_userns(struct file_system_type
*type
,
474 int (*test
)(struct super_block
*,void *),
475 int (*set
)(struct super_block
*,void *),
476 int flags
, struct user_namespace
*user_ns
,
479 struct super_block
*s
= NULL
;
480 struct super_block
*old
;
483 if (!(flags
& (MS_KERNMOUNT
|MS_SUBMOUNT
)) &&
484 !(type
->fs_flags
& FS_USERNS_MOUNT
) &&
485 !capable(CAP_SYS_ADMIN
))
486 return ERR_PTR(-EPERM
);
490 hlist_for_each_entry(old
, &type
->fs_supers
, s_instances
) {
491 if (!test(old
, data
))
493 if (user_ns
!= old
->s_user_ns
) {
494 spin_unlock(&sb_lock
);
496 up_write(&s
->s_umount
);
499 return ERR_PTR(-EBUSY
);
501 if (!grab_super(old
))
504 up_write(&s
->s_umount
);
512 spin_unlock(&sb_lock
);
513 s
= alloc_super(type
, (flags
& ~MS_SUBMOUNT
), user_ns
);
515 return ERR_PTR(-ENOMEM
);
521 spin_unlock(&sb_lock
);
522 up_write(&s
->s_umount
);
527 strlcpy(s
->s_id
, type
->name
, sizeof(s
->s_id
));
528 list_add_tail(&s
->s_list
, &super_blocks
);
529 hlist_add_head(&s
->s_instances
, &type
->fs_supers
);
530 spin_unlock(&sb_lock
);
531 get_filesystem(type
);
532 err
= register_shrinker(&s
->s_shrink
);
534 deactivate_locked_super(s
);
540 EXPORT_SYMBOL(sget_userns
);
543 * sget - find or create a superblock
544 * @type: filesystem type superblock should belong to
545 * @test: comparison callback
546 * @set: setup callback
547 * @flags: mount flags
548 * @data: argument to each of them
550 struct super_block
*sget(struct file_system_type
*type
,
551 int (*test
)(struct super_block
*,void *),
552 int (*set
)(struct super_block
*,void *),
556 struct user_namespace
*user_ns
= current_user_ns();
558 /* We don't yet pass the user namespace of the parent
559 * mount through to here so always use &init_user_ns
560 * until that changes.
562 if (flags
& MS_SUBMOUNT
)
563 user_ns
= &init_user_ns
;
565 /* Ensure the requestor has permissions over the target filesystem */
566 if (!(flags
& (MS_KERNMOUNT
|MS_SUBMOUNT
)) && !ns_capable(user_ns
, CAP_SYS_ADMIN
))
567 return ERR_PTR(-EPERM
);
569 return sget_userns(type
, test
, set
, flags
, user_ns
, data
);
574 void drop_super(struct super_block
*sb
)
576 up_read(&sb
->s_umount
);
580 EXPORT_SYMBOL(drop_super
);
583 * iterate_supers - call function for all active superblocks
584 * @f: function to call
585 * @arg: argument to pass to it
587 * Scans the superblock list and calls given function, passing it
588 * locked superblock and given argument.
590 void iterate_supers(void (*f
)(struct super_block
*, void *), void *arg
)
592 struct super_block
*sb
, *p
= NULL
;
595 list_for_each_entry(sb
, &super_blocks
, s_list
) {
596 if (hlist_unhashed(&sb
->s_instances
))
599 spin_unlock(&sb_lock
);
601 down_read(&sb
->s_umount
);
602 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
604 up_read(&sb
->s_umount
);
613 spin_unlock(&sb_lock
);
617 * iterate_supers_type - call function for superblocks of given type
619 * @f: function to call
620 * @arg: argument to pass to it
622 * Scans the superblock list and calls given function, passing it
623 * locked superblock and given argument.
625 void iterate_supers_type(struct file_system_type
*type
,
626 void (*f
)(struct super_block
*, void *), void *arg
)
628 struct super_block
*sb
, *p
= NULL
;
631 hlist_for_each_entry(sb
, &type
->fs_supers
, s_instances
) {
633 spin_unlock(&sb_lock
);
635 down_read(&sb
->s_umount
);
636 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
638 up_read(&sb
->s_umount
);
647 spin_unlock(&sb_lock
);
650 EXPORT_SYMBOL(iterate_supers_type
);
653 * get_super - get the superblock of a device
654 * @bdev: device to get the superblock for
656 * Scans the superblock list and finds the superblock of the file system
657 * mounted on the device given. %NULL is returned if no match is found.
660 struct super_block
*get_super(struct block_device
*bdev
)
662 struct super_block
*sb
;
669 list_for_each_entry(sb
, &super_blocks
, s_list
) {
670 if (hlist_unhashed(&sb
->s_instances
))
672 if (sb
->s_bdev
== bdev
) {
674 spin_unlock(&sb_lock
);
675 down_read(&sb
->s_umount
);
677 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
679 up_read(&sb
->s_umount
);
680 /* nope, got unmounted */
686 spin_unlock(&sb_lock
);
690 EXPORT_SYMBOL(get_super
);
693 * get_super_thawed - get thawed superblock of a device
694 * @bdev: device to get the superblock for
696 * Scans the superblock list and finds the superblock of the file system
697 * mounted on the device. The superblock is returned once it is thawed
698 * (or immediately if it was not frozen). %NULL is returned if no match
701 struct super_block
*get_super_thawed(struct block_device
*bdev
)
704 struct super_block
*s
= get_super(bdev
);
705 if (!s
|| s
->s_writers
.frozen
== SB_UNFROZEN
)
707 up_read(&s
->s_umount
);
708 wait_event(s
->s_writers
.wait_unfrozen
,
709 s
->s_writers
.frozen
== SB_UNFROZEN
);
713 EXPORT_SYMBOL(get_super_thawed
);
716 * get_active_super - get an active reference to the superblock of a device
717 * @bdev: device to get the superblock for
719 * Scans the superblock list and finds the superblock of the file system
720 * mounted on the device given. Returns the superblock with an active
721 * reference or %NULL if none was found.
723 struct super_block
*get_active_super(struct block_device
*bdev
)
725 struct super_block
*sb
;
732 list_for_each_entry(sb
, &super_blocks
, s_list
) {
733 if (hlist_unhashed(&sb
->s_instances
))
735 if (sb
->s_bdev
== bdev
) {
738 up_write(&sb
->s_umount
);
742 spin_unlock(&sb_lock
);
746 struct super_block
*user_get_super(dev_t dev
)
748 struct super_block
*sb
;
752 list_for_each_entry(sb
, &super_blocks
, s_list
) {
753 if (hlist_unhashed(&sb
->s_instances
))
755 if (sb
->s_dev
== dev
) {
757 spin_unlock(&sb_lock
);
758 down_read(&sb
->s_umount
);
760 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
762 up_read(&sb
->s_umount
);
763 /* nope, got unmounted */
769 spin_unlock(&sb_lock
);
774 * do_remount_sb - asks filesystem to change mount options.
775 * @sb: superblock in question
776 * @flags: numeric part of options
777 * @data: the rest of options
778 * @force: whether or not to force the change
780 * Alters the mount options of a mounted file system.
782 int do_remount_sb(struct super_block
*sb
, int flags
, void *data
, int force
)
787 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
)
791 if (!(flags
& MS_RDONLY
) && bdev_read_only(sb
->s_bdev
))
795 remount_ro
= (flags
& MS_RDONLY
) && !(sb
->s_flags
& MS_RDONLY
);
798 if (!hlist_empty(&sb
->s_pins
)) {
799 up_write(&sb
->s_umount
);
800 group_pin_kill(&sb
->s_pins
);
801 down_write(&sb
->s_umount
);
804 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
)
806 remount_ro
= (flags
& MS_RDONLY
) && !(sb
->s_flags
& MS_RDONLY
);
809 shrink_dcache_sb(sb
);
811 /* If we are remounting RDONLY and current sb is read/write,
812 make sure there are no rw files opened */
815 sb
->s_readonly_remount
= 1;
818 retval
= sb_prepare_remount_readonly(sb
);
824 if (sb
->s_op
->remount_fs
) {
825 retval
= sb
->s_op
->remount_fs(sb
, &flags
, data
);
828 goto cancel_readonly
;
829 /* If forced remount, go ahead despite any errors */
830 WARN(1, "forced remount of a %s fs returned %i\n",
831 sb
->s_type
->name
, retval
);
834 sb
->s_flags
= (sb
->s_flags
& ~MS_RMT_MASK
) | (flags
& MS_RMT_MASK
);
835 /* Needs to be ordered wrt mnt_is_readonly() */
837 sb
->s_readonly_remount
= 0;
840 * Some filesystems modify their metadata via some other path than the
841 * bdev buffer cache (eg. use a private mapping, or directories in
842 * pagecache, etc). Also file data modifications go via their own
843 * mappings. So If we try to mount readonly then copy the filesystem
844 * from bdev, we could get stale data, so invalidate it to give a best
845 * effort at coherency.
847 if (remount_ro
&& sb
->s_bdev
)
848 invalidate_bdev(sb
->s_bdev
);
852 sb
->s_readonly_remount
= 0;
856 static void do_emergency_remount(struct work_struct
*work
)
858 struct super_block
*sb
, *p
= NULL
;
861 list_for_each_entry(sb
, &super_blocks
, s_list
) {
862 if (hlist_unhashed(&sb
->s_instances
))
865 spin_unlock(&sb_lock
);
866 down_write(&sb
->s_umount
);
867 if (sb
->s_root
&& sb
->s_bdev
&& (sb
->s_flags
& MS_BORN
) &&
868 !(sb
->s_flags
& MS_RDONLY
)) {
870 * What lock protects sb->s_flags??
872 do_remount_sb(sb
, MS_RDONLY
, NULL
, 1);
874 up_write(&sb
->s_umount
);
882 spin_unlock(&sb_lock
);
884 printk("Emergency Remount complete\n");
887 void emergency_remount(void)
889 struct work_struct
*work
;
891 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
893 INIT_WORK(work
, do_emergency_remount
);
899 * Unnamed block devices are dummy devices used by virtual
900 * filesystems which don't use real block-devices. -- jrs
903 static DEFINE_IDA(unnamed_dev_ida
);
904 static DEFINE_SPINLOCK(unnamed_dev_lock
);/* protects the above */
905 /* Many userspace utilities consider an FSID of 0 invalid.
906 * Always return at least 1 from get_anon_bdev.
908 static int unnamed_dev_start
= 1;
910 int get_anon_bdev(dev_t
*p
)
916 if (ida_pre_get(&unnamed_dev_ida
, GFP_ATOMIC
) == 0)
918 spin_lock(&unnamed_dev_lock
);
919 error
= ida_get_new_above(&unnamed_dev_ida
, unnamed_dev_start
, &dev
);
921 unnamed_dev_start
= dev
+ 1;
922 spin_unlock(&unnamed_dev_lock
);
923 if (error
== -EAGAIN
)
924 /* We raced and lost with another CPU. */
929 if (dev
>= (1 << MINORBITS
)) {
930 spin_lock(&unnamed_dev_lock
);
931 ida_remove(&unnamed_dev_ida
, dev
);
932 if (unnamed_dev_start
> dev
)
933 unnamed_dev_start
= dev
;
934 spin_unlock(&unnamed_dev_lock
);
937 *p
= MKDEV(0, dev
& MINORMASK
);
940 EXPORT_SYMBOL(get_anon_bdev
);
942 void free_anon_bdev(dev_t dev
)
944 int slot
= MINOR(dev
);
945 spin_lock(&unnamed_dev_lock
);
946 ida_remove(&unnamed_dev_ida
, slot
);
947 if (slot
< unnamed_dev_start
)
948 unnamed_dev_start
= slot
;
949 spin_unlock(&unnamed_dev_lock
);
951 EXPORT_SYMBOL(free_anon_bdev
);
953 int set_anon_super(struct super_block
*s
, void *data
)
955 return get_anon_bdev(&s
->s_dev
);
958 EXPORT_SYMBOL(set_anon_super
);
960 void kill_anon_super(struct super_block
*sb
)
962 dev_t dev
= sb
->s_dev
;
963 generic_shutdown_super(sb
);
967 EXPORT_SYMBOL(kill_anon_super
);
969 void kill_litter_super(struct super_block
*sb
)
972 d_genocide(sb
->s_root
);
976 EXPORT_SYMBOL(kill_litter_super
);
978 static int ns_test_super(struct super_block
*sb
, void *data
)
980 return sb
->s_fs_info
== data
;
983 static int ns_set_super(struct super_block
*sb
, void *data
)
985 sb
->s_fs_info
= data
;
986 return set_anon_super(sb
, NULL
);
989 struct dentry
*mount_ns(struct file_system_type
*fs_type
,
990 int flags
, void *data
, void *ns
, struct user_namespace
*user_ns
,
991 int (*fill_super
)(struct super_block
*, void *, int))
993 struct super_block
*sb
;
995 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
996 * over the namespace.
998 if (!(flags
& MS_KERNMOUNT
) && !ns_capable(user_ns
, CAP_SYS_ADMIN
))
999 return ERR_PTR(-EPERM
);
1001 sb
= sget_userns(fs_type
, ns_test_super
, ns_set_super
, flags
,
1004 return ERR_CAST(sb
);
1008 err
= fill_super(sb
, data
, flags
& MS_SILENT
? 1 : 0);
1010 deactivate_locked_super(sb
);
1011 return ERR_PTR(err
);
1014 sb
->s_flags
|= MS_ACTIVE
;
1017 return dget(sb
->s_root
);
1020 EXPORT_SYMBOL(mount_ns
);
1023 static int set_bdev_super(struct super_block
*s
, void *data
)
1026 s
->s_dev
= s
->s_bdev
->bd_dev
;
1029 * We set the bdi here to the queue backing, file systems can
1030 * overwrite this in ->fill_super()
1032 s
->s_bdi
= &bdev_get_queue(s
->s_bdev
)->backing_dev_info
;
1036 static int test_bdev_super(struct super_block
*s
, void *data
)
1038 return (void *)s
->s_bdev
== data
;
1041 struct dentry
*mount_bdev(struct file_system_type
*fs_type
,
1042 int flags
, const char *dev_name
, void *data
,
1043 int (*fill_super
)(struct super_block
*, void *, int))
1045 struct block_device
*bdev
;
1046 struct super_block
*s
;
1047 fmode_t mode
= FMODE_READ
| FMODE_EXCL
;
1050 if (!(flags
& MS_RDONLY
))
1051 mode
|= FMODE_WRITE
;
1053 bdev
= blkdev_get_by_path(dev_name
, mode
, fs_type
);
1055 return ERR_CAST(bdev
);
1058 * once the super is inserted into the list by sget, s_umount
1059 * will protect the lockfs code from trying to start a snapshot
1060 * while we are mounting
1062 mutex_lock(&bdev
->bd_fsfreeze_mutex
);
1063 if (bdev
->bd_fsfreeze_count
> 0) {
1064 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
1068 s
= sget(fs_type
, test_bdev_super
, set_bdev_super
, flags
| MS_NOSEC
,
1070 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
1075 if ((flags
^ s
->s_flags
) & MS_RDONLY
) {
1076 deactivate_locked_super(s
);
1082 * s_umount nests inside bd_mutex during
1083 * __invalidate_device(). blkdev_put() acquires
1084 * bd_mutex and can't be called under s_umount. Drop
1085 * s_umount temporarily. This is safe as we're
1086 * holding an active reference.
1088 up_write(&s
->s_umount
);
1089 blkdev_put(bdev
, mode
);
1090 down_write(&s
->s_umount
);
1093 snprintf(s
->s_id
, sizeof(s
->s_id
), "%pg", bdev
);
1094 sb_set_blocksize(s
, block_size(bdev
));
1095 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1097 deactivate_locked_super(s
);
1101 s
->s_flags
|= MS_ACTIVE
;
1105 return dget(s
->s_root
);
1110 blkdev_put(bdev
, mode
);
1112 return ERR_PTR(error
);
1114 EXPORT_SYMBOL(mount_bdev
);
1116 void kill_block_super(struct super_block
*sb
)
1118 struct block_device
*bdev
= sb
->s_bdev
;
1119 fmode_t mode
= sb
->s_mode
;
1121 bdev
->bd_super
= NULL
;
1122 generic_shutdown_super(sb
);
1123 sync_blockdev(bdev
);
1124 WARN_ON_ONCE(!(mode
& FMODE_EXCL
));
1125 blkdev_put(bdev
, mode
| FMODE_EXCL
);
1128 EXPORT_SYMBOL(kill_block_super
);
1131 struct dentry
*mount_nodev(struct file_system_type
*fs_type
,
1132 int flags
, void *data
,
1133 int (*fill_super
)(struct super_block
*, void *, int))
1136 struct super_block
*s
= sget(fs_type
, NULL
, set_anon_super
, flags
, NULL
);
1141 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1143 deactivate_locked_super(s
);
1144 return ERR_PTR(error
);
1146 s
->s_flags
|= MS_ACTIVE
;
1147 return dget(s
->s_root
);
1149 EXPORT_SYMBOL(mount_nodev
);
1151 static int compare_single(struct super_block
*s
, void *p
)
1156 struct dentry
*mount_single(struct file_system_type
*fs_type
,
1157 int flags
, void *data
,
1158 int (*fill_super
)(struct super_block
*, void *, int))
1160 struct super_block
*s
;
1163 s
= sget(fs_type
, compare_single
, set_anon_super
, flags
, NULL
);
1167 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1169 deactivate_locked_super(s
);
1170 return ERR_PTR(error
);
1172 s
->s_flags
|= MS_ACTIVE
;
1174 do_remount_sb(s
, flags
, data
, 0);
1176 return dget(s
->s_root
);
1178 EXPORT_SYMBOL(mount_single
);
1181 mount_fs(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
1183 struct dentry
*root
;
1184 struct super_block
*sb
;
1185 char *secdata
= NULL
;
1186 int error
= -ENOMEM
;
1188 if (data
&& !(type
->fs_flags
& FS_BINARY_MOUNTDATA
)) {
1189 secdata
= alloc_secdata();
1193 error
= security_sb_copy_data(data
, secdata
);
1195 goto out_free_secdata
;
1198 root
= type
->mount(type
, flags
, name
, data
);
1200 error
= PTR_ERR(root
);
1201 goto out_free_secdata
;
1205 WARN_ON(!sb
->s_bdi
);
1208 * Write barrier is for super_cache_count(). We place it before setting
1209 * MS_BORN as the data dependency between the two functions is the
1210 * superblock structure contents that we just set up, not the MS_BORN
1214 sb
->s_flags
|= MS_BORN
;
1216 error
= security_sb_kern_mount(sb
, flags
, secdata
);
1221 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1222 * but s_maxbytes was an unsigned long long for many releases. Throw
1223 * this warning for a little while to try and catch filesystems that
1224 * violate this rule.
1226 WARN((sb
->s_maxbytes
< 0), "%s set sb->s_maxbytes to "
1227 "negative value (%lld)\n", type
->name
, sb
->s_maxbytes
);
1229 up_write(&sb
->s_umount
);
1230 free_secdata(secdata
);
1234 deactivate_locked_super(sb
);
1236 free_secdata(secdata
);
1238 return ERR_PTR(error
);
1242 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1245 void __sb_end_write(struct super_block
*sb
, int level
)
1247 percpu_up_read(sb
->s_writers
.rw_sem
+ level
-1);
1249 EXPORT_SYMBOL(__sb_end_write
);
1252 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1255 int __sb_start_write(struct super_block
*sb
, int level
, bool wait
)
1257 bool force_trylock
= false;
1260 #ifdef CONFIG_LOCKDEP
1262 * We want lockdep to tell us about possible deadlocks with freezing
1263 * but it's it bit tricky to properly instrument it. Getting a freeze
1264 * protection works as getting a read lock but there are subtle
1265 * problems. XFS for example gets freeze protection on internal level
1266 * twice in some cases, which is OK only because we already hold a
1267 * freeze protection also on higher level. Due to these cases we have
1268 * to use wait == F (trylock mode) which must not fail.
1273 for (i
= 0; i
< level
- 1; i
++)
1274 if (percpu_rwsem_is_held(sb
->s_writers
.rw_sem
+ i
)) {
1275 force_trylock
= true;
1280 if (wait
&& !force_trylock
)
1281 percpu_down_read(sb
->s_writers
.rw_sem
+ level
-1);
1283 ret
= percpu_down_read_trylock(sb
->s_writers
.rw_sem
+ level
-1);
1285 WARN_ON(force_trylock
&& !ret
);
1288 EXPORT_SYMBOL(__sb_start_write
);
1291 * sb_wait_write - wait until all writers to given file system finish
1292 * @sb: the super for which we wait
1293 * @level: type of writers we wait for (normal vs page fault)
1295 * This function waits until there are no writers of given type to given file
1298 static void sb_wait_write(struct super_block
*sb
, int level
)
1300 percpu_down_write(sb
->s_writers
.rw_sem
+ level
-1);
1304 * We are going to return to userspace and forget about these locks, the
1305 * ownership goes to the caller of thaw_super() which does unlock().
1307 static void lockdep_sb_freeze_release(struct super_block
*sb
)
1311 for (level
= SB_FREEZE_LEVELS
- 1; level
>= 0; level
--)
1312 percpu_rwsem_release(sb
->s_writers
.rw_sem
+ level
, 0, _THIS_IP_
);
1316 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1318 static void lockdep_sb_freeze_acquire(struct super_block
*sb
)
1322 for (level
= 0; level
< SB_FREEZE_LEVELS
; ++level
)
1323 percpu_rwsem_acquire(sb
->s_writers
.rw_sem
+ level
, 0, _THIS_IP_
);
1326 static void sb_freeze_unlock(struct super_block
*sb
)
1330 for (level
= SB_FREEZE_LEVELS
- 1; level
>= 0; level
--)
1331 percpu_up_write(sb
->s_writers
.rw_sem
+ level
);
1335 * freeze_super - lock the filesystem and force it into a consistent state
1336 * @sb: the super to lock
1338 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1339 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1342 * During this function, sb->s_writers.frozen goes through these values:
1344 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1346 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1347 * writes should be blocked, though page faults are still allowed. We wait for
1348 * all writes to complete and then proceed to the next stage.
1350 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1351 * but internal fs threads can still modify the filesystem (although they
1352 * should not dirty new pages or inodes), writeback can run etc. After waiting
1353 * for all running page faults we sync the filesystem which will clean all
1354 * dirty pages and inodes (no new dirty pages or inodes can be created when
1357 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1358 * modification are blocked (e.g. XFS preallocation truncation on inode
1359 * reclaim). This is usually implemented by blocking new transactions for
1360 * filesystems that have them and need this additional guard. After all
1361 * internal writers are finished we call ->freeze_fs() to finish filesystem
1362 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1363 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1365 * sb->s_writers.frozen is protected by sb->s_umount.
1367 int freeze_super(struct super_block
*sb
)
1371 atomic_inc(&sb
->s_active
);
1372 down_write(&sb
->s_umount
);
1373 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
) {
1374 deactivate_locked_super(sb
);
1378 if (!(sb
->s_flags
& MS_BORN
)) {
1379 up_write(&sb
->s_umount
);
1380 return 0; /* sic - it's "nothing to do" */
1383 if (sb
->s_flags
& MS_RDONLY
) {
1384 /* Nothing to do really... */
1385 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1386 up_write(&sb
->s_umount
);
1390 sb
->s_writers
.frozen
= SB_FREEZE_WRITE
;
1391 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1392 up_write(&sb
->s_umount
);
1393 sb_wait_write(sb
, SB_FREEZE_WRITE
);
1394 down_write(&sb
->s_umount
);
1396 /* Now we go and block page faults... */
1397 sb
->s_writers
.frozen
= SB_FREEZE_PAGEFAULT
;
1398 sb_wait_write(sb
, SB_FREEZE_PAGEFAULT
);
1400 /* All writers are done so after syncing there won't be dirty data */
1401 sync_filesystem(sb
);
1403 /* Now wait for internal filesystem counter */
1404 sb
->s_writers
.frozen
= SB_FREEZE_FS
;
1405 sb_wait_write(sb
, SB_FREEZE_FS
);
1407 if (sb
->s_op
->freeze_fs
) {
1408 ret
= sb
->s_op
->freeze_fs(sb
);
1411 "VFS:Filesystem freeze failed\n");
1412 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1413 sb_freeze_unlock(sb
);
1414 wake_up(&sb
->s_writers
.wait_unfrozen
);
1415 deactivate_locked_super(sb
);
1420 * For debugging purposes so that fs can warn if it sees write activity
1421 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1423 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1424 lockdep_sb_freeze_release(sb
);
1425 up_write(&sb
->s_umount
);
1428 EXPORT_SYMBOL(freeze_super
);
1431 * thaw_super -- unlock filesystem
1432 * @sb: the super to thaw
1434 * Unlocks the filesystem and marks it writeable again after freeze_super().
1436 int thaw_super(struct super_block
*sb
)
1440 down_write(&sb
->s_umount
);
1441 if (sb
->s_writers
.frozen
!= SB_FREEZE_COMPLETE
) {
1442 up_write(&sb
->s_umount
);
1446 if (sb
->s_flags
& MS_RDONLY
) {
1447 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1451 lockdep_sb_freeze_acquire(sb
);
1453 if (sb
->s_op
->unfreeze_fs
) {
1454 error
= sb
->s_op
->unfreeze_fs(sb
);
1457 "VFS:Filesystem thaw failed\n");
1458 lockdep_sb_freeze_release(sb
);
1459 up_write(&sb
->s_umount
);
1464 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1465 sb_freeze_unlock(sb
);
1467 wake_up(&sb
->s_writers
.wait_unfrozen
);
1468 deactivate_locked_super(sb
);
1471 EXPORT_SYMBOL(thaw_super
);