ARC: export "abort" for modules
[linux/fpc-iii.git] / sound / core / pcm_lib.c
blob3acb373674c3705c29b0fa9e0839ec2e5c4beb20
1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
35 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
36 #define CREATE_TRACE_POINTS
37 #include "pcm_trace.h"
38 #else
39 #define trace_hwptr(substream, pos, in_interrupt)
40 #define trace_xrun(substream)
41 #define trace_hw_ptr_error(substream, reason)
42 #endif
45 * fill ring buffer with silence
46 * runtime->silence_start: starting pointer to silence area
47 * runtime->silence_filled: size filled with silence
48 * runtime->silence_threshold: threshold from application
49 * runtime->silence_size: maximal size from application
51 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
53 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
55 struct snd_pcm_runtime *runtime = substream->runtime;
56 snd_pcm_uframes_t frames, ofs, transfer;
58 if (runtime->silence_size < runtime->boundary) {
59 snd_pcm_sframes_t noise_dist, n;
60 if (runtime->silence_start != runtime->control->appl_ptr) {
61 n = runtime->control->appl_ptr - runtime->silence_start;
62 if (n < 0)
63 n += runtime->boundary;
64 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
65 runtime->silence_filled -= n;
66 else
67 runtime->silence_filled = 0;
68 runtime->silence_start = runtime->control->appl_ptr;
70 if (runtime->silence_filled >= runtime->buffer_size)
71 return;
72 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
73 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
74 return;
75 frames = runtime->silence_threshold - noise_dist;
76 if (frames > runtime->silence_size)
77 frames = runtime->silence_size;
78 } else {
79 if (new_hw_ptr == ULONG_MAX) { /* initialization */
80 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
81 if (avail > runtime->buffer_size)
82 avail = runtime->buffer_size;
83 runtime->silence_filled = avail > 0 ? avail : 0;
84 runtime->silence_start = (runtime->status->hw_ptr +
85 runtime->silence_filled) %
86 runtime->boundary;
87 } else {
88 ofs = runtime->status->hw_ptr;
89 frames = new_hw_ptr - ofs;
90 if ((snd_pcm_sframes_t)frames < 0)
91 frames += runtime->boundary;
92 runtime->silence_filled -= frames;
93 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
94 runtime->silence_filled = 0;
95 runtime->silence_start = new_hw_ptr;
96 } else {
97 runtime->silence_start = ofs;
100 frames = runtime->buffer_size - runtime->silence_filled;
102 if (snd_BUG_ON(frames > runtime->buffer_size))
103 return;
104 if (frames == 0)
105 return;
106 ofs = runtime->silence_start % runtime->buffer_size;
107 while (frames > 0) {
108 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
109 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
110 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
111 if (substream->ops->silence) {
112 int err;
113 err = substream->ops->silence(substream, -1, ofs, transfer);
114 snd_BUG_ON(err < 0);
115 } else {
116 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
117 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
119 } else {
120 unsigned int c;
121 unsigned int channels = runtime->channels;
122 if (substream->ops->silence) {
123 for (c = 0; c < channels; ++c) {
124 int err;
125 err = substream->ops->silence(substream, c, ofs, transfer);
126 snd_BUG_ON(err < 0);
128 } else {
129 size_t dma_csize = runtime->dma_bytes / channels;
130 for (c = 0; c < channels; ++c) {
131 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
132 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
136 runtime->silence_filled += transfer;
137 frames -= transfer;
138 ofs = 0;
142 #ifdef CONFIG_SND_DEBUG
143 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
144 char *name, size_t len)
146 snprintf(name, len, "pcmC%dD%d%c:%d",
147 substream->pcm->card->number,
148 substream->pcm->device,
149 substream->stream ? 'c' : 'p',
150 substream->number);
152 EXPORT_SYMBOL(snd_pcm_debug_name);
153 #endif
155 #define XRUN_DEBUG_BASIC (1<<0)
156 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
157 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
159 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
161 #define xrun_debug(substream, mask) \
162 ((substream)->pstr->xrun_debug & (mask))
163 #else
164 #define xrun_debug(substream, mask) 0
165 #endif
167 #define dump_stack_on_xrun(substream) do { \
168 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
169 dump_stack(); \
170 } while (0)
172 static void xrun(struct snd_pcm_substream *substream)
174 struct snd_pcm_runtime *runtime = substream->runtime;
176 trace_xrun(substream);
177 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
178 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
179 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
180 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
181 char name[16];
182 snd_pcm_debug_name(substream, name, sizeof(name));
183 pcm_warn(substream->pcm, "XRUN: %s\n", name);
184 dump_stack_on_xrun(substream);
188 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
189 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
190 do { \
191 trace_hw_ptr_error(substream, reason); \
192 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
193 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
194 (in_interrupt) ? 'Q' : 'P', ##args); \
195 dump_stack_on_xrun(substream); \
197 } while (0)
199 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
201 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
203 #endif
205 int snd_pcm_update_state(struct snd_pcm_substream *substream,
206 struct snd_pcm_runtime *runtime)
208 snd_pcm_uframes_t avail;
210 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
211 avail = snd_pcm_playback_avail(runtime);
212 else
213 avail = snd_pcm_capture_avail(runtime);
214 if (avail > runtime->avail_max)
215 runtime->avail_max = avail;
216 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
217 if (avail >= runtime->buffer_size) {
218 snd_pcm_drain_done(substream);
219 return -EPIPE;
221 } else {
222 if (avail >= runtime->stop_threshold) {
223 xrun(substream);
224 return -EPIPE;
227 if (runtime->twake) {
228 if (avail >= runtime->twake)
229 wake_up(&runtime->tsleep);
230 } else if (avail >= runtime->control->avail_min)
231 wake_up(&runtime->sleep);
232 return 0;
235 static void update_audio_tstamp(struct snd_pcm_substream *substream,
236 struct timespec *curr_tstamp,
237 struct timespec *audio_tstamp)
239 struct snd_pcm_runtime *runtime = substream->runtime;
240 u64 audio_frames, audio_nsecs;
241 struct timespec driver_tstamp;
243 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
244 return;
246 if (!(substream->ops->get_time_info) ||
247 (runtime->audio_tstamp_report.actual_type ==
248 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
251 * provide audio timestamp derived from pointer position
252 * add delay only if requested
255 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
257 if (runtime->audio_tstamp_config.report_delay) {
258 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
259 audio_frames -= runtime->delay;
260 else
261 audio_frames += runtime->delay;
263 audio_nsecs = div_u64(audio_frames * 1000000000LL,
264 runtime->rate);
265 *audio_tstamp = ns_to_timespec(audio_nsecs);
267 if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) {
268 runtime->status->audio_tstamp = *audio_tstamp;
269 runtime->status->tstamp = *curr_tstamp;
273 * re-take a driver timestamp to let apps detect if the reference tstamp
274 * read by low-level hardware was provided with a delay
276 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
277 runtime->driver_tstamp = driver_tstamp;
280 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
281 unsigned int in_interrupt)
283 struct snd_pcm_runtime *runtime = substream->runtime;
284 snd_pcm_uframes_t pos;
285 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
286 snd_pcm_sframes_t hdelta, delta;
287 unsigned long jdelta;
288 unsigned long curr_jiffies;
289 struct timespec curr_tstamp;
290 struct timespec audio_tstamp;
291 int crossed_boundary = 0;
293 old_hw_ptr = runtime->status->hw_ptr;
296 * group pointer, time and jiffies reads to allow for more
297 * accurate correlations/corrections.
298 * The values are stored at the end of this routine after
299 * corrections for hw_ptr position
301 pos = substream->ops->pointer(substream);
302 curr_jiffies = jiffies;
303 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
304 if ((substream->ops->get_time_info) &&
305 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
306 substream->ops->get_time_info(substream, &curr_tstamp,
307 &audio_tstamp,
308 &runtime->audio_tstamp_config,
309 &runtime->audio_tstamp_report);
311 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
312 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
313 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
314 } else
315 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
318 if (pos == SNDRV_PCM_POS_XRUN) {
319 xrun(substream);
320 return -EPIPE;
322 if (pos >= runtime->buffer_size) {
323 if (printk_ratelimit()) {
324 char name[16];
325 snd_pcm_debug_name(substream, name, sizeof(name));
326 pcm_err(substream->pcm,
327 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
328 name, pos, runtime->buffer_size,
329 runtime->period_size);
331 pos = 0;
333 pos -= pos % runtime->min_align;
334 trace_hwptr(substream, pos, in_interrupt);
335 hw_base = runtime->hw_ptr_base;
336 new_hw_ptr = hw_base + pos;
337 if (in_interrupt) {
338 /* we know that one period was processed */
339 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
340 delta = runtime->hw_ptr_interrupt + runtime->period_size;
341 if (delta > new_hw_ptr) {
342 /* check for double acknowledged interrupts */
343 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
344 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
345 hw_base += runtime->buffer_size;
346 if (hw_base >= runtime->boundary) {
347 hw_base = 0;
348 crossed_boundary++;
350 new_hw_ptr = hw_base + pos;
351 goto __delta;
355 /* new_hw_ptr might be lower than old_hw_ptr in case when */
356 /* pointer crosses the end of the ring buffer */
357 if (new_hw_ptr < old_hw_ptr) {
358 hw_base += runtime->buffer_size;
359 if (hw_base >= runtime->boundary) {
360 hw_base = 0;
361 crossed_boundary++;
363 new_hw_ptr = hw_base + pos;
365 __delta:
366 delta = new_hw_ptr - old_hw_ptr;
367 if (delta < 0)
368 delta += runtime->boundary;
370 if (runtime->no_period_wakeup) {
371 snd_pcm_sframes_t xrun_threshold;
373 * Without regular period interrupts, we have to check
374 * the elapsed time to detect xruns.
376 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
377 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
378 goto no_delta_check;
379 hdelta = jdelta - delta * HZ / runtime->rate;
380 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
381 while (hdelta > xrun_threshold) {
382 delta += runtime->buffer_size;
383 hw_base += runtime->buffer_size;
384 if (hw_base >= runtime->boundary) {
385 hw_base = 0;
386 crossed_boundary++;
388 new_hw_ptr = hw_base + pos;
389 hdelta -= runtime->hw_ptr_buffer_jiffies;
391 goto no_delta_check;
394 /* something must be really wrong */
395 if (delta >= runtime->buffer_size + runtime->period_size) {
396 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
397 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
398 substream->stream, (long)pos,
399 (long)new_hw_ptr, (long)old_hw_ptr);
400 return 0;
403 /* Do jiffies check only in xrun_debug mode */
404 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
405 goto no_jiffies_check;
407 /* Skip the jiffies check for hardwares with BATCH flag.
408 * Such hardware usually just increases the position at each IRQ,
409 * thus it can't give any strange position.
411 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
412 goto no_jiffies_check;
413 hdelta = delta;
414 if (hdelta < runtime->delay)
415 goto no_jiffies_check;
416 hdelta -= runtime->delay;
417 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
418 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
419 delta = jdelta /
420 (((runtime->period_size * HZ) / runtime->rate)
421 + HZ/100);
422 /* move new_hw_ptr according jiffies not pos variable */
423 new_hw_ptr = old_hw_ptr;
424 hw_base = delta;
425 /* use loop to avoid checks for delta overflows */
426 /* the delta value is small or zero in most cases */
427 while (delta > 0) {
428 new_hw_ptr += runtime->period_size;
429 if (new_hw_ptr >= runtime->boundary) {
430 new_hw_ptr -= runtime->boundary;
431 crossed_boundary--;
433 delta--;
435 /* align hw_base to buffer_size */
436 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
437 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
438 (long)pos, (long)hdelta,
439 (long)runtime->period_size, jdelta,
440 ((hdelta * HZ) / runtime->rate), hw_base,
441 (unsigned long)old_hw_ptr,
442 (unsigned long)new_hw_ptr);
443 /* reset values to proper state */
444 delta = 0;
445 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
447 no_jiffies_check:
448 if (delta > runtime->period_size + runtime->period_size / 2) {
449 hw_ptr_error(substream, in_interrupt,
450 "Lost interrupts?",
451 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
452 substream->stream, (long)delta,
453 (long)new_hw_ptr,
454 (long)old_hw_ptr);
457 no_delta_check:
458 if (runtime->status->hw_ptr == new_hw_ptr) {
459 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
460 return 0;
463 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
464 runtime->silence_size > 0)
465 snd_pcm_playback_silence(substream, new_hw_ptr);
467 if (in_interrupt) {
468 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
469 if (delta < 0)
470 delta += runtime->boundary;
471 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
472 runtime->hw_ptr_interrupt += delta;
473 if (runtime->hw_ptr_interrupt >= runtime->boundary)
474 runtime->hw_ptr_interrupt -= runtime->boundary;
476 runtime->hw_ptr_base = hw_base;
477 runtime->status->hw_ptr = new_hw_ptr;
478 runtime->hw_ptr_jiffies = curr_jiffies;
479 if (crossed_boundary) {
480 snd_BUG_ON(crossed_boundary != 1);
481 runtime->hw_ptr_wrap += runtime->boundary;
484 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
486 return snd_pcm_update_state(substream, runtime);
489 /* CAUTION: call it with irq disabled */
490 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
492 return snd_pcm_update_hw_ptr0(substream, 0);
496 * snd_pcm_set_ops - set the PCM operators
497 * @pcm: the pcm instance
498 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
499 * @ops: the operator table
501 * Sets the given PCM operators to the pcm instance.
503 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
504 const struct snd_pcm_ops *ops)
506 struct snd_pcm_str *stream = &pcm->streams[direction];
507 struct snd_pcm_substream *substream;
509 for (substream = stream->substream; substream != NULL; substream = substream->next)
510 substream->ops = ops;
513 EXPORT_SYMBOL(snd_pcm_set_ops);
516 * snd_pcm_sync - set the PCM sync id
517 * @substream: the pcm substream
519 * Sets the PCM sync identifier for the card.
521 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
523 struct snd_pcm_runtime *runtime = substream->runtime;
525 runtime->sync.id32[0] = substream->pcm->card->number;
526 runtime->sync.id32[1] = -1;
527 runtime->sync.id32[2] = -1;
528 runtime->sync.id32[3] = -1;
531 EXPORT_SYMBOL(snd_pcm_set_sync);
534 * Standard ioctl routine
537 static inline unsigned int div32(unsigned int a, unsigned int b,
538 unsigned int *r)
540 if (b == 0) {
541 *r = 0;
542 return UINT_MAX;
544 *r = a % b;
545 return a / b;
548 static inline unsigned int div_down(unsigned int a, unsigned int b)
550 if (b == 0)
551 return UINT_MAX;
552 return a / b;
555 static inline unsigned int div_up(unsigned int a, unsigned int b)
557 unsigned int r;
558 unsigned int q;
559 if (b == 0)
560 return UINT_MAX;
561 q = div32(a, b, &r);
562 if (r)
563 ++q;
564 return q;
567 static inline unsigned int mul(unsigned int a, unsigned int b)
569 if (a == 0)
570 return 0;
571 if (div_down(UINT_MAX, a) < b)
572 return UINT_MAX;
573 return a * b;
576 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
577 unsigned int c, unsigned int *r)
579 u_int64_t n = (u_int64_t) a * b;
580 if (c == 0) {
581 *r = 0;
582 return UINT_MAX;
584 n = div_u64_rem(n, c, r);
585 if (n >= UINT_MAX) {
586 *r = 0;
587 return UINT_MAX;
589 return n;
593 * snd_interval_refine - refine the interval value of configurator
594 * @i: the interval value to refine
595 * @v: the interval value to refer to
597 * Refines the interval value with the reference value.
598 * The interval is changed to the range satisfying both intervals.
599 * The interval status (min, max, integer, etc.) are evaluated.
601 * Return: Positive if the value is changed, zero if it's not changed, or a
602 * negative error code.
604 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
606 int changed = 0;
607 if (snd_BUG_ON(snd_interval_empty(i)))
608 return -EINVAL;
609 if (i->min < v->min) {
610 i->min = v->min;
611 i->openmin = v->openmin;
612 changed = 1;
613 } else if (i->min == v->min && !i->openmin && v->openmin) {
614 i->openmin = 1;
615 changed = 1;
617 if (i->max > v->max) {
618 i->max = v->max;
619 i->openmax = v->openmax;
620 changed = 1;
621 } else if (i->max == v->max && !i->openmax && v->openmax) {
622 i->openmax = 1;
623 changed = 1;
625 if (!i->integer && v->integer) {
626 i->integer = 1;
627 changed = 1;
629 if (i->integer) {
630 if (i->openmin) {
631 i->min++;
632 i->openmin = 0;
634 if (i->openmax) {
635 i->max--;
636 i->openmax = 0;
638 } else if (!i->openmin && !i->openmax && i->min == i->max)
639 i->integer = 1;
640 if (snd_interval_checkempty(i)) {
641 snd_interval_none(i);
642 return -EINVAL;
644 return changed;
647 EXPORT_SYMBOL(snd_interval_refine);
649 static int snd_interval_refine_first(struct snd_interval *i)
651 const unsigned int last_max = i->max;
653 if (snd_BUG_ON(snd_interval_empty(i)))
654 return -EINVAL;
655 if (snd_interval_single(i))
656 return 0;
657 i->max = i->min;
658 if (i->openmin)
659 i->max++;
660 /* only exclude max value if also excluded before refine */
661 i->openmax = (i->openmax && i->max >= last_max);
662 return 1;
665 static int snd_interval_refine_last(struct snd_interval *i)
667 const unsigned int last_min = i->min;
669 if (snd_BUG_ON(snd_interval_empty(i)))
670 return -EINVAL;
671 if (snd_interval_single(i))
672 return 0;
673 i->min = i->max;
674 if (i->openmax)
675 i->min--;
676 /* only exclude min value if also excluded before refine */
677 i->openmin = (i->openmin && i->min <= last_min);
678 return 1;
681 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
683 if (a->empty || b->empty) {
684 snd_interval_none(c);
685 return;
687 c->empty = 0;
688 c->min = mul(a->min, b->min);
689 c->openmin = (a->openmin || b->openmin);
690 c->max = mul(a->max, b->max);
691 c->openmax = (a->openmax || b->openmax);
692 c->integer = (a->integer && b->integer);
696 * snd_interval_div - refine the interval value with division
697 * @a: dividend
698 * @b: divisor
699 * @c: quotient
701 * c = a / b
703 * Returns non-zero if the value is changed, zero if not changed.
705 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
707 unsigned int r;
708 if (a->empty || b->empty) {
709 snd_interval_none(c);
710 return;
712 c->empty = 0;
713 c->min = div32(a->min, b->max, &r);
714 c->openmin = (r || a->openmin || b->openmax);
715 if (b->min > 0) {
716 c->max = div32(a->max, b->min, &r);
717 if (r) {
718 c->max++;
719 c->openmax = 1;
720 } else
721 c->openmax = (a->openmax || b->openmin);
722 } else {
723 c->max = UINT_MAX;
724 c->openmax = 0;
726 c->integer = 0;
730 * snd_interval_muldivk - refine the interval value
731 * @a: dividend 1
732 * @b: dividend 2
733 * @k: divisor (as integer)
734 * @c: result
736 * c = a * b / k
738 * Returns non-zero if the value is changed, zero if not changed.
740 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
741 unsigned int k, struct snd_interval *c)
743 unsigned int r;
744 if (a->empty || b->empty) {
745 snd_interval_none(c);
746 return;
748 c->empty = 0;
749 c->min = muldiv32(a->min, b->min, k, &r);
750 c->openmin = (r || a->openmin || b->openmin);
751 c->max = muldiv32(a->max, b->max, k, &r);
752 if (r) {
753 c->max++;
754 c->openmax = 1;
755 } else
756 c->openmax = (a->openmax || b->openmax);
757 c->integer = 0;
761 * snd_interval_mulkdiv - refine the interval value
762 * @a: dividend 1
763 * @k: dividend 2 (as integer)
764 * @b: divisor
765 * @c: result
767 * c = a * k / b
769 * Returns non-zero if the value is changed, zero if not changed.
771 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
772 const struct snd_interval *b, struct snd_interval *c)
774 unsigned int r;
775 if (a->empty || b->empty) {
776 snd_interval_none(c);
777 return;
779 c->empty = 0;
780 c->min = muldiv32(a->min, k, b->max, &r);
781 c->openmin = (r || a->openmin || b->openmax);
782 if (b->min > 0) {
783 c->max = muldiv32(a->max, k, b->min, &r);
784 if (r) {
785 c->max++;
786 c->openmax = 1;
787 } else
788 c->openmax = (a->openmax || b->openmin);
789 } else {
790 c->max = UINT_MAX;
791 c->openmax = 0;
793 c->integer = 0;
796 /* ---- */
800 * snd_interval_ratnum - refine the interval value
801 * @i: interval to refine
802 * @rats_count: number of ratnum_t
803 * @rats: ratnum_t array
804 * @nump: pointer to store the resultant numerator
805 * @denp: pointer to store the resultant denominator
807 * Return: Positive if the value is changed, zero if it's not changed, or a
808 * negative error code.
810 int snd_interval_ratnum(struct snd_interval *i,
811 unsigned int rats_count, const struct snd_ratnum *rats,
812 unsigned int *nump, unsigned int *denp)
814 unsigned int best_num, best_den;
815 int best_diff;
816 unsigned int k;
817 struct snd_interval t;
818 int err;
819 unsigned int result_num, result_den;
820 int result_diff;
822 best_num = best_den = best_diff = 0;
823 for (k = 0; k < rats_count; ++k) {
824 unsigned int num = rats[k].num;
825 unsigned int den;
826 unsigned int q = i->min;
827 int diff;
828 if (q == 0)
829 q = 1;
830 den = div_up(num, q);
831 if (den < rats[k].den_min)
832 continue;
833 if (den > rats[k].den_max)
834 den = rats[k].den_max;
835 else {
836 unsigned int r;
837 r = (den - rats[k].den_min) % rats[k].den_step;
838 if (r != 0)
839 den -= r;
841 diff = num - q * den;
842 if (diff < 0)
843 diff = -diff;
844 if (best_num == 0 ||
845 diff * best_den < best_diff * den) {
846 best_diff = diff;
847 best_den = den;
848 best_num = num;
851 if (best_den == 0) {
852 i->empty = 1;
853 return -EINVAL;
855 t.min = div_down(best_num, best_den);
856 t.openmin = !!(best_num % best_den);
858 result_num = best_num;
859 result_diff = best_diff;
860 result_den = best_den;
861 best_num = best_den = best_diff = 0;
862 for (k = 0; k < rats_count; ++k) {
863 unsigned int num = rats[k].num;
864 unsigned int den;
865 unsigned int q = i->max;
866 int diff;
867 if (q == 0) {
868 i->empty = 1;
869 return -EINVAL;
871 den = div_down(num, q);
872 if (den > rats[k].den_max)
873 continue;
874 if (den < rats[k].den_min)
875 den = rats[k].den_min;
876 else {
877 unsigned int r;
878 r = (den - rats[k].den_min) % rats[k].den_step;
879 if (r != 0)
880 den += rats[k].den_step - r;
882 diff = q * den - num;
883 if (diff < 0)
884 diff = -diff;
885 if (best_num == 0 ||
886 diff * best_den < best_diff * den) {
887 best_diff = diff;
888 best_den = den;
889 best_num = num;
892 if (best_den == 0) {
893 i->empty = 1;
894 return -EINVAL;
896 t.max = div_up(best_num, best_den);
897 t.openmax = !!(best_num % best_den);
898 t.integer = 0;
899 err = snd_interval_refine(i, &t);
900 if (err < 0)
901 return err;
903 if (snd_interval_single(i)) {
904 if (best_diff * result_den < result_diff * best_den) {
905 result_num = best_num;
906 result_den = best_den;
908 if (nump)
909 *nump = result_num;
910 if (denp)
911 *denp = result_den;
913 return err;
916 EXPORT_SYMBOL(snd_interval_ratnum);
919 * snd_interval_ratden - refine the interval value
920 * @i: interval to refine
921 * @rats_count: number of struct ratden
922 * @rats: struct ratden array
923 * @nump: pointer to store the resultant numerator
924 * @denp: pointer to store the resultant denominator
926 * Return: Positive if the value is changed, zero if it's not changed, or a
927 * negative error code.
929 static int snd_interval_ratden(struct snd_interval *i,
930 unsigned int rats_count,
931 const struct snd_ratden *rats,
932 unsigned int *nump, unsigned int *denp)
934 unsigned int best_num, best_diff, best_den;
935 unsigned int k;
936 struct snd_interval t;
937 int err;
939 best_num = best_den = best_diff = 0;
940 for (k = 0; k < rats_count; ++k) {
941 unsigned int num;
942 unsigned int den = rats[k].den;
943 unsigned int q = i->min;
944 int diff;
945 num = mul(q, den);
946 if (num > rats[k].num_max)
947 continue;
948 if (num < rats[k].num_min)
949 num = rats[k].num_max;
950 else {
951 unsigned int r;
952 r = (num - rats[k].num_min) % rats[k].num_step;
953 if (r != 0)
954 num += rats[k].num_step - r;
956 diff = num - q * den;
957 if (best_num == 0 ||
958 diff * best_den < best_diff * den) {
959 best_diff = diff;
960 best_den = den;
961 best_num = num;
964 if (best_den == 0) {
965 i->empty = 1;
966 return -EINVAL;
968 t.min = div_down(best_num, best_den);
969 t.openmin = !!(best_num % best_den);
971 best_num = best_den = best_diff = 0;
972 for (k = 0; k < rats_count; ++k) {
973 unsigned int num;
974 unsigned int den = rats[k].den;
975 unsigned int q = i->max;
976 int diff;
977 num = mul(q, den);
978 if (num < rats[k].num_min)
979 continue;
980 if (num > rats[k].num_max)
981 num = rats[k].num_max;
982 else {
983 unsigned int r;
984 r = (num - rats[k].num_min) % rats[k].num_step;
985 if (r != 0)
986 num -= r;
988 diff = q * den - num;
989 if (best_num == 0 ||
990 diff * best_den < best_diff * den) {
991 best_diff = diff;
992 best_den = den;
993 best_num = num;
996 if (best_den == 0) {
997 i->empty = 1;
998 return -EINVAL;
1000 t.max = div_up(best_num, best_den);
1001 t.openmax = !!(best_num % best_den);
1002 t.integer = 0;
1003 err = snd_interval_refine(i, &t);
1004 if (err < 0)
1005 return err;
1007 if (snd_interval_single(i)) {
1008 if (nump)
1009 *nump = best_num;
1010 if (denp)
1011 *denp = best_den;
1013 return err;
1017 * snd_interval_list - refine the interval value from the list
1018 * @i: the interval value to refine
1019 * @count: the number of elements in the list
1020 * @list: the value list
1021 * @mask: the bit-mask to evaluate
1023 * Refines the interval value from the list.
1024 * When mask is non-zero, only the elements corresponding to bit 1 are
1025 * evaluated.
1027 * Return: Positive if the value is changed, zero if it's not changed, or a
1028 * negative error code.
1030 int snd_interval_list(struct snd_interval *i, unsigned int count,
1031 const unsigned int *list, unsigned int mask)
1033 unsigned int k;
1034 struct snd_interval list_range;
1036 if (!count) {
1037 i->empty = 1;
1038 return -EINVAL;
1040 snd_interval_any(&list_range);
1041 list_range.min = UINT_MAX;
1042 list_range.max = 0;
1043 for (k = 0; k < count; k++) {
1044 if (mask && !(mask & (1 << k)))
1045 continue;
1046 if (!snd_interval_test(i, list[k]))
1047 continue;
1048 list_range.min = min(list_range.min, list[k]);
1049 list_range.max = max(list_range.max, list[k]);
1051 return snd_interval_refine(i, &list_range);
1054 EXPORT_SYMBOL(snd_interval_list);
1057 * snd_interval_ranges - refine the interval value from the list of ranges
1058 * @i: the interval value to refine
1059 * @count: the number of elements in the list of ranges
1060 * @ranges: the ranges list
1061 * @mask: the bit-mask to evaluate
1063 * Refines the interval value from the list of ranges.
1064 * When mask is non-zero, only the elements corresponding to bit 1 are
1065 * evaluated.
1067 * Return: Positive if the value is changed, zero if it's not changed, or a
1068 * negative error code.
1070 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1071 const struct snd_interval *ranges, unsigned int mask)
1073 unsigned int k;
1074 struct snd_interval range_union;
1075 struct snd_interval range;
1077 if (!count) {
1078 snd_interval_none(i);
1079 return -EINVAL;
1081 snd_interval_any(&range_union);
1082 range_union.min = UINT_MAX;
1083 range_union.max = 0;
1084 for (k = 0; k < count; k++) {
1085 if (mask && !(mask & (1 << k)))
1086 continue;
1087 snd_interval_copy(&range, &ranges[k]);
1088 if (snd_interval_refine(&range, i) < 0)
1089 continue;
1090 if (snd_interval_empty(&range))
1091 continue;
1093 if (range.min < range_union.min) {
1094 range_union.min = range.min;
1095 range_union.openmin = 1;
1097 if (range.min == range_union.min && !range.openmin)
1098 range_union.openmin = 0;
1099 if (range.max > range_union.max) {
1100 range_union.max = range.max;
1101 range_union.openmax = 1;
1103 if (range.max == range_union.max && !range.openmax)
1104 range_union.openmax = 0;
1106 return snd_interval_refine(i, &range_union);
1108 EXPORT_SYMBOL(snd_interval_ranges);
1110 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1112 unsigned int n;
1113 int changed = 0;
1114 n = i->min % step;
1115 if (n != 0 || i->openmin) {
1116 i->min += step - n;
1117 i->openmin = 0;
1118 changed = 1;
1120 n = i->max % step;
1121 if (n != 0 || i->openmax) {
1122 i->max -= n;
1123 i->openmax = 0;
1124 changed = 1;
1126 if (snd_interval_checkempty(i)) {
1127 i->empty = 1;
1128 return -EINVAL;
1130 return changed;
1133 /* Info constraints helpers */
1136 * snd_pcm_hw_rule_add - add the hw-constraint rule
1137 * @runtime: the pcm runtime instance
1138 * @cond: condition bits
1139 * @var: the variable to evaluate
1140 * @func: the evaluation function
1141 * @private: the private data pointer passed to function
1142 * @dep: the dependent variables
1144 * Return: Zero if successful, or a negative error code on failure.
1146 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1147 int var,
1148 snd_pcm_hw_rule_func_t func, void *private,
1149 int dep, ...)
1151 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1152 struct snd_pcm_hw_rule *c;
1153 unsigned int k;
1154 va_list args;
1155 va_start(args, dep);
1156 if (constrs->rules_num >= constrs->rules_all) {
1157 struct snd_pcm_hw_rule *new;
1158 unsigned int new_rules = constrs->rules_all + 16;
1159 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1160 if (!new) {
1161 va_end(args);
1162 return -ENOMEM;
1164 if (constrs->rules) {
1165 memcpy(new, constrs->rules,
1166 constrs->rules_num * sizeof(*c));
1167 kfree(constrs->rules);
1169 constrs->rules = new;
1170 constrs->rules_all = new_rules;
1172 c = &constrs->rules[constrs->rules_num];
1173 c->cond = cond;
1174 c->func = func;
1175 c->var = var;
1176 c->private = private;
1177 k = 0;
1178 while (1) {
1179 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1180 va_end(args);
1181 return -EINVAL;
1183 c->deps[k++] = dep;
1184 if (dep < 0)
1185 break;
1186 dep = va_arg(args, int);
1188 constrs->rules_num++;
1189 va_end(args);
1190 return 0;
1193 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1196 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1197 * @runtime: PCM runtime instance
1198 * @var: hw_params variable to apply the mask
1199 * @mask: the bitmap mask
1201 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1203 * Return: Zero if successful, or a negative error code on failure.
1205 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1206 u_int32_t mask)
1208 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1209 struct snd_mask *maskp = constrs_mask(constrs, var);
1210 *maskp->bits &= mask;
1211 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1212 if (*maskp->bits == 0)
1213 return -EINVAL;
1214 return 0;
1218 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1219 * @runtime: PCM runtime instance
1220 * @var: hw_params variable to apply the mask
1221 * @mask: the 64bit bitmap mask
1223 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1225 * Return: Zero if successful, or a negative error code on failure.
1227 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1228 u_int64_t mask)
1230 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1231 struct snd_mask *maskp = constrs_mask(constrs, var);
1232 maskp->bits[0] &= (u_int32_t)mask;
1233 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1234 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1235 if (! maskp->bits[0] && ! maskp->bits[1])
1236 return -EINVAL;
1237 return 0;
1239 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1242 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1243 * @runtime: PCM runtime instance
1244 * @var: hw_params variable to apply the integer constraint
1246 * Apply the constraint of integer to an interval parameter.
1248 * Return: Positive if the value is changed, zero if it's not changed, or a
1249 * negative error code.
1251 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1253 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1254 return snd_interval_setinteger(constrs_interval(constrs, var));
1257 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1260 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1261 * @runtime: PCM runtime instance
1262 * @var: hw_params variable to apply the range
1263 * @min: the minimal value
1264 * @max: the maximal value
1266 * Apply the min/max range constraint to an interval parameter.
1268 * Return: Positive if the value is changed, zero if it's not changed, or a
1269 * negative error code.
1271 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1272 unsigned int min, unsigned int max)
1274 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1275 struct snd_interval t;
1276 t.min = min;
1277 t.max = max;
1278 t.openmin = t.openmax = 0;
1279 t.integer = 0;
1280 return snd_interval_refine(constrs_interval(constrs, var), &t);
1283 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1285 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1286 struct snd_pcm_hw_rule *rule)
1288 struct snd_pcm_hw_constraint_list *list = rule->private;
1289 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1294 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1295 * @runtime: PCM runtime instance
1296 * @cond: condition bits
1297 * @var: hw_params variable to apply the list constraint
1298 * @l: list
1300 * Apply the list of constraints to an interval parameter.
1302 * Return: Zero if successful, or a negative error code on failure.
1304 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1305 unsigned int cond,
1306 snd_pcm_hw_param_t var,
1307 const struct snd_pcm_hw_constraint_list *l)
1309 return snd_pcm_hw_rule_add(runtime, cond, var,
1310 snd_pcm_hw_rule_list, (void *)l,
1311 var, -1);
1314 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1316 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1317 struct snd_pcm_hw_rule *rule)
1319 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1320 return snd_interval_ranges(hw_param_interval(params, rule->var),
1321 r->count, r->ranges, r->mask);
1326 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1327 * @runtime: PCM runtime instance
1328 * @cond: condition bits
1329 * @var: hw_params variable to apply the list of range constraints
1330 * @r: ranges
1332 * Apply the list of range constraints to an interval parameter.
1334 * Return: Zero if successful, or a negative error code on failure.
1336 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1337 unsigned int cond,
1338 snd_pcm_hw_param_t var,
1339 const struct snd_pcm_hw_constraint_ranges *r)
1341 return snd_pcm_hw_rule_add(runtime, cond, var,
1342 snd_pcm_hw_rule_ranges, (void *)r,
1343 var, -1);
1345 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1347 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1348 struct snd_pcm_hw_rule *rule)
1350 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1351 unsigned int num = 0, den = 0;
1352 int err;
1353 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1354 r->nrats, r->rats, &num, &den);
1355 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1356 params->rate_num = num;
1357 params->rate_den = den;
1359 return err;
1363 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1364 * @runtime: PCM runtime instance
1365 * @cond: condition bits
1366 * @var: hw_params variable to apply the ratnums constraint
1367 * @r: struct snd_ratnums constriants
1369 * Return: Zero if successful, or a negative error code on failure.
1371 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1372 unsigned int cond,
1373 snd_pcm_hw_param_t var,
1374 const struct snd_pcm_hw_constraint_ratnums *r)
1376 return snd_pcm_hw_rule_add(runtime, cond, var,
1377 snd_pcm_hw_rule_ratnums, (void *)r,
1378 var, -1);
1381 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1383 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1384 struct snd_pcm_hw_rule *rule)
1386 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1387 unsigned int num = 0, den = 0;
1388 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1389 r->nrats, r->rats, &num, &den);
1390 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1391 params->rate_num = num;
1392 params->rate_den = den;
1394 return err;
1398 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1399 * @runtime: PCM runtime instance
1400 * @cond: condition bits
1401 * @var: hw_params variable to apply the ratdens constraint
1402 * @r: struct snd_ratdens constriants
1404 * Return: Zero if successful, or a negative error code on failure.
1406 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1407 unsigned int cond,
1408 snd_pcm_hw_param_t var,
1409 const struct snd_pcm_hw_constraint_ratdens *r)
1411 return snd_pcm_hw_rule_add(runtime, cond, var,
1412 snd_pcm_hw_rule_ratdens, (void *)r,
1413 var, -1);
1416 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1418 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1419 struct snd_pcm_hw_rule *rule)
1421 unsigned int l = (unsigned long) rule->private;
1422 int width = l & 0xffff;
1423 unsigned int msbits = l >> 16;
1424 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1426 if (!snd_interval_single(i))
1427 return 0;
1429 if ((snd_interval_value(i) == width) ||
1430 (width == 0 && snd_interval_value(i) > msbits))
1431 params->msbits = min_not_zero(params->msbits, msbits);
1433 return 0;
1437 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1438 * @runtime: PCM runtime instance
1439 * @cond: condition bits
1440 * @width: sample bits width
1441 * @msbits: msbits width
1443 * This constraint will set the number of most significant bits (msbits) if a
1444 * sample format with the specified width has been select. If width is set to 0
1445 * the msbits will be set for any sample format with a width larger than the
1446 * specified msbits.
1448 * Return: Zero if successful, or a negative error code on failure.
1450 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1451 unsigned int cond,
1452 unsigned int width,
1453 unsigned int msbits)
1455 unsigned long l = (msbits << 16) | width;
1456 return snd_pcm_hw_rule_add(runtime, cond, -1,
1457 snd_pcm_hw_rule_msbits,
1458 (void*) l,
1459 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1462 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1464 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1465 struct snd_pcm_hw_rule *rule)
1467 unsigned long step = (unsigned long) rule->private;
1468 return snd_interval_step(hw_param_interval(params, rule->var), step);
1472 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1473 * @runtime: PCM runtime instance
1474 * @cond: condition bits
1475 * @var: hw_params variable to apply the step constraint
1476 * @step: step size
1478 * Return: Zero if successful, or a negative error code on failure.
1480 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1481 unsigned int cond,
1482 snd_pcm_hw_param_t var,
1483 unsigned long step)
1485 return snd_pcm_hw_rule_add(runtime, cond, var,
1486 snd_pcm_hw_rule_step, (void *) step,
1487 var, -1);
1490 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1492 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1494 static unsigned int pow2_sizes[] = {
1495 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1496 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1497 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1498 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1500 return snd_interval_list(hw_param_interval(params, rule->var),
1501 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1505 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1506 * @runtime: PCM runtime instance
1507 * @cond: condition bits
1508 * @var: hw_params variable to apply the power-of-2 constraint
1510 * Return: Zero if successful, or a negative error code on failure.
1512 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1513 unsigned int cond,
1514 snd_pcm_hw_param_t var)
1516 return snd_pcm_hw_rule_add(runtime, cond, var,
1517 snd_pcm_hw_rule_pow2, NULL,
1518 var, -1);
1521 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1523 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1524 struct snd_pcm_hw_rule *rule)
1526 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1527 struct snd_interval *rate;
1529 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1530 return snd_interval_list(rate, 1, &base_rate, 0);
1534 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1535 * @runtime: PCM runtime instance
1536 * @base_rate: the rate at which the hardware does not resample
1538 * Return: Zero if successful, or a negative error code on failure.
1540 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1541 unsigned int base_rate)
1543 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1544 SNDRV_PCM_HW_PARAM_RATE,
1545 snd_pcm_hw_rule_noresample_func,
1546 (void *)(uintptr_t)base_rate,
1547 SNDRV_PCM_HW_PARAM_RATE, -1);
1549 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1551 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1552 snd_pcm_hw_param_t var)
1554 if (hw_is_mask(var)) {
1555 snd_mask_any(hw_param_mask(params, var));
1556 params->cmask |= 1 << var;
1557 params->rmask |= 1 << var;
1558 return;
1560 if (hw_is_interval(var)) {
1561 snd_interval_any(hw_param_interval(params, var));
1562 params->cmask |= 1 << var;
1563 params->rmask |= 1 << var;
1564 return;
1566 snd_BUG();
1569 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1571 unsigned int k;
1572 memset(params, 0, sizeof(*params));
1573 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1574 _snd_pcm_hw_param_any(params, k);
1575 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1576 _snd_pcm_hw_param_any(params, k);
1577 params->info = ~0U;
1580 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1583 * snd_pcm_hw_param_value - return @params field @var value
1584 * @params: the hw_params instance
1585 * @var: parameter to retrieve
1586 * @dir: pointer to the direction (-1,0,1) or %NULL
1588 * Return: The value for field @var if it's fixed in configuration space
1589 * defined by @params. -%EINVAL otherwise.
1591 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1592 snd_pcm_hw_param_t var, int *dir)
1594 if (hw_is_mask(var)) {
1595 const struct snd_mask *mask = hw_param_mask_c(params, var);
1596 if (!snd_mask_single(mask))
1597 return -EINVAL;
1598 if (dir)
1599 *dir = 0;
1600 return snd_mask_value(mask);
1602 if (hw_is_interval(var)) {
1603 const struct snd_interval *i = hw_param_interval_c(params, var);
1604 if (!snd_interval_single(i))
1605 return -EINVAL;
1606 if (dir)
1607 *dir = i->openmin;
1608 return snd_interval_value(i);
1610 return -EINVAL;
1613 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1615 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1616 snd_pcm_hw_param_t var)
1618 if (hw_is_mask(var)) {
1619 snd_mask_none(hw_param_mask(params, var));
1620 params->cmask |= 1 << var;
1621 params->rmask |= 1 << var;
1622 } else if (hw_is_interval(var)) {
1623 snd_interval_none(hw_param_interval(params, var));
1624 params->cmask |= 1 << var;
1625 params->rmask |= 1 << var;
1626 } else {
1627 snd_BUG();
1631 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1633 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1634 snd_pcm_hw_param_t var)
1636 int changed;
1637 if (hw_is_mask(var))
1638 changed = snd_mask_refine_first(hw_param_mask(params, var));
1639 else if (hw_is_interval(var))
1640 changed = snd_interval_refine_first(hw_param_interval(params, var));
1641 else
1642 return -EINVAL;
1643 if (changed) {
1644 params->cmask |= 1 << var;
1645 params->rmask |= 1 << var;
1647 return changed;
1652 * snd_pcm_hw_param_first - refine config space and return minimum value
1653 * @pcm: PCM instance
1654 * @params: the hw_params instance
1655 * @var: parameter to retrieve
1656 * @dir: pointer to the direction (-1,0,1) or %NULL
1658 * Inside configuration space defined by @params remove from @var all
1659 * values > minimum. Reduce configuration space accordingly.
1661 * Return: The minimum, or a negative error code on failure.
1663 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1664 struct snd_pcm_hw_params *params,
1665 snd_pcm_hw_param_t var, int *dir)
1667 int changed = _snd_pcm_hw_param_first(params, var);
1668 if (changed < 0)
1669 return changed;
1670 if (params->rmask) {
1671 int err = snd_pcm_hw_refine(pcm, params);
1672 if (err < 0)
1673 return err;
1675 return snd_pcm_hw_param_value(params, var, dir);
1678 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1680 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1681 snd_pcm_hw_param_t var)
1683 int changed;
1684 if (hw_is_mask(var))
1685 changed = snd_mask_refine_last(hw_param_mask(params, var));
1686 else if (hw_is_interval(var))
1687 changed = snd_interval_refine_last(hw_param_interval(params, var));
1688 else
1689 return -EINVAL;
1690 if (changed) {
1691 params->cmask |= 1 << var;
1692 params->rmask |= 1 << var;
1694 return changed;
1699 * snd_pcm_hw_param_last - refine config space and return maximum value
1700 * @pcm: PCM instance
1701 * @params: the hw_params instance
1702 * @var: parameter to retrieve
1703 * @dir: pointer to the direction (-1,0,1) or %NULL
1705 * Inside configuration space defined by @params remove from @var all
1706 * values < maximum. Reduce configuration space accordingly.
1708 * Return: The maximum, or a negative error code on failure.
1710 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1711 struct snd_pcm_hw_params *params,
1712 snd_pcm_hw_param_t var, int *dir)
1714 int changed = _snd_pcm_hw_param_last(params, var);
1715 if (changed < 0)
1716 return changed;
1717 if (params->rmask) {
1718 int err = snd_pcm_hw_refine(pcm, params);
1719 if (err < 0)
1720 return err;
1722 return snd_pcm_hw_param_value(params, var, dir);
1725 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1728 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1729 * @pcm: PCM instance
1730 * @params: the hw_params instance
1732 * Choose one configuration from configuration space defined by @params.
1733 * The configuration chosen is that obtained fixing in this order:
1734 * first access, first format, first subformat, min channels,
1735 * min rate, min period time, max buffer size, min tick time
1737 * Return: Zero if successful, or a negative error code on failure.
1739 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1740 struct snd_pcm_hw_params *params)
1742 static int vars[] = {
1743 SNDRV_PCM_HW_PARAM_ACCESS,
1744 SNDRV_PCM_HW_PARAM_FORMAT,
1745 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1746 SNDRV_PCM_HW_PARAM_CHANNELS,
1747 SNDRV_PCM_HW_PARAM_RATE,
1748 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1749 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1750 SNDRV_PCM_HW_PARAM_TICK_TIME,
1753 int err, *v;
1755 for (v = vars; *v != -1; v++) {
1756 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1757 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1758 else
1759 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1760 if (snd_BUG_ON(err < 0))
1761 return err;
1763 return 0;
1766 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1767 void *arg)
1769 struct snd_pcm_runtime *runtime = substream->runtime;
1770 unsigned long flags;
1771 snd_pcm_stream_lock_irqsave(substream, flags);
1772 if (snd_pcm_running(substream) &&
1773 snd_pcm_update_hw_ptr(substream) >= 0)
1774 runtime->status->hw_ptr %= runtime->buffer_size;
1775 else {
1776 runtime->status->hw_ptr = 0;
1777 runtime->hw_ptr_wrap = 0;
1779 snd_pcm_stream_unlock_irqrestore(substream, flags);
1780 return 0;
1783 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1784 void *arg)
1786 struct snd_pcm_channel_info *info = arg;
1787 struct snd_pcm_runtime *runtime = substream->runtime;
1788 int width;
1789 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1790 info->offset = -1;
1791 return 0;
1793 width = snd_pcm_format_physical_width(runtime->format);
1794 if (width < 0)
1795 return width;
1796 info->offset = 0;
1797 switch (runtime->access) {
1798 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1799 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1800 info->first = info->channel * width;
1801 info->step = runtime->channels * width;
1802 break;
1803 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1804 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1806 size_t size = runtime->dma_bytes / runtime->channels;
1807 info->first = info->channel * size * 8;
1808 info->step = width;
1809 break;
1811 default:
1812 snd_BUG();
1813 break;
1815 return 0;
1818 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1819 void *arg)
1821 struct snd_pcm_hw_params *params = arg;
1822 snd_pcm_format_t format;
1823 int channels;
1824 ssize_t frame_size;
1826 params->fifo_size = substream->runtime->hw.fifo_size;
1827 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1828 format = params_format(params);
1829 channels = params_channels(params);
1830 frame_size = snd_pcm_format_size(format, channels);
1831 if (frame_size > 0)
1832 params->fifo_size /= (unsigned)frame_size;
1834 return 0;
1838 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1839 * @substream: the pcm substream instance
1840 * @cmd: ioctl command
1841 * @arg: ioctl argument
1843 * Processes the generic ioctl commands for PCM.
1844 * Can be passed as the ioctl callback for PCM ops.
1846 * Return: Zero if successful, or a negative error code on failure.
1848 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1849 unsigned int cmd, void *arg)
1851 switch (cmd) {
1852 case SNDRV_PCM_IOCTL1_RESET:
1853 return snd_pcm_lib_ioctl_reset(substream, arg);
1854 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1855 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1856 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1857 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1859 return -ENXIO;
1862 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1865 * snd_pcm_period_elapsed - update the pcm status for the next period
1866 * @substream: the pcm substream instance
1868 * This function is called from the interrupt handler when the
1869 * PCM has processed the period size. It will update the current
1870 * pointer, wake up sleepers, etc.
1872 * Even if more than one periods have elapsed since the last call, you
1873 * have to call this only once.
1875 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1877 struct snd_pcm_runtime *runtime;
1878 unsigned long flags;
1880 if (PCM_RUNTIME_CHECK(substream))
1881 return;
1882 runtime = substream->runtime;
1884 snd_pcm_stream_lock_irqsave(substream, flags);
1885 if (!snd_pcm_running(substream) ||
1886 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1887 goto _end;
1889 #ifdef CONFIG_SND_PCM_TIMER
1890 if (substream->timer_running)
1891 snd_timer_interrupt(substream->timer, 1);
1892 #endif
1893 _end:
1894 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1895 snd_pcm_stream_unlock_irqrestore(substream, flags);
1898 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1901 * Wait until avail_min data becomes available
1902 * Returns a negative error code if any error occurs during operation.
1903 * The available space is stored on availp. When err = 0 and avail = 0
1904 * on the capture stream, it indicates the stream is in DRAINING state.
1906 static int wait_for_avail(struct snd_pcm_substream *substream,
1907 snd_pcm_uframes_t *availp)
1909 struct snd_pcm_runtime *runtime = substream->runtime;
1910 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1911 wait_queue_t wait;
1912 int err = 0;
1913 snd_pcm_uframes_t avail = 0;
1914 long wait_time, tout;
1916 init_waitqueue_entry(&wait, current);
1917 set_current_state(TASK_INTERRUPTIBLE);
1918 add_wait_queue(&runtime->tsleep, &wait);
1920 if (runtime->no_period_wakeup)
1921 wait_time = MAX_SCHEDULE_TIMEOUT;
1922 else {
1923 wait_time = 10;
1924 if (runtime->rate) {
1925 long t = runtime->period_size * 2 / runtime->rate;
1926 wait_time = max(t, wait_time);
1928 wait_time = msecs_to_jiffies(wait_time * 1000);
1931 for (;;) {
1932 if (signal_pending(current)) {
1933 err = -ERESTARTSYS;
1934 break;
1938 * We need to check if space became available already
1939 * (and thus the wakeup happened already) first to close
1940 * the race of space already having become available.
1941 * This check must happen after been added to the waitqueue
1942 * and having current state be INTERRUPTIBLE.
1944 if (is_playback)
1945 avail = snd_pcm_playback_avail(runtime);
1946 else
1947 avail = snd_pcm_capture_avail(runtime);
1948 if (avail >= runtime->twake)
1949 break;
1950 snd_pcm_stream_unlock_irq(substream);
1952 tout = schedule_timeout(wait_time);
1954 snd_pcm_stream_lock_irq(substream);
1955 set_current_state(TASK_INTERRUPTIBLE);
1956 switch (runtime->status->state) {
1957 case SNDRV_PCM_STATE_SUSPENDED:
1958 err = -ESTRPIPE;
1959 goto _endloop;
1960 case SNDRV_PCM_STATE_XRUN:
1961 err = -EPIPE;
1962 goto _endloop;
1963 case SNDRV_PCM_STATE_DRAINING:
1964 if (is_playback)
1965 err = -EPIPE;
1966 else
1967 avail = 0; /* indicate draining */
1968 goto _endloop;
1969 case SNDRV_PCM_STATE_OPEN:
1970 case SNDRV_PCM_STATE_SETUP:
1971 case SNDRV_PCM_STATE_DISCONNECTED:
1972 err = -EBADFD;
1973 goto _endloop;
1974 case SNDRV_PCM_STATE_PAUSED:
1975 continue;
1977 if (!tout) {
1978 pcm_dbg(substream->pcm,
1979 "%s write error (DMA or IRQ trouble?)\n",
1980 is_playback ? "playback" : "capture");
1981 err = -EIO;
1982 break;
1985 _endloop:
1986 set_current_state(TASK_RUNNING);
1987 remove_wait_queue(&runtime->tsleep, &wait);
1988 *availp = avail;
1989 return err;
1992 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1993 unsigned int hwoff,
1994 unsigned long data, unsigned int off,
1995 snd_pcm_uframes_t frames)
1997 struct snd_pcm_runtime *runtime = substream->runtime;
1998 int err;
1999 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2000 if (substream->ops->copy) {
2001 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2002 return err;
2003 } else {
2004 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2005 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2006 return -EFAULT;
2008 return 0;
2011 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
2012 unsigned long data, unsigned int off,
2013 snd_pcm_uframes_t size);
2015 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
2016 unsigned long data,
2017 snd_pcm_uframes_t size,
2018 int nonblock,
2019 transfer_f transfer)
2021 struct snd_pcm_runtime *runtime = substream->runtime;
2022 snd_pcm_uframes_t xfer = 0;
2023 snd_pcm_uframes_t offset = 0;
2024 snd_pcm_uframes_t avail;
2025 int err = 0;
2027 if (size == 0)
2028 return 0;
2030 snd_pcm_stream_lock_irq(substream);
2031 switch (runtime->status->state) {
2032 case SNDRV_PCM_STATE_PREPARED:
2033 case SNDRV_PCM_STATE_RUNNING:
2034 case SNDRV_PCM_STATE_PAUSED:
2035 break;
2036 case SNDRV_PCM_STATE_XRUN:
2037 err = -EPIPE;
2038 goto _end_unlock;
2039 case SNDRV_PCM_STATE_SUSPENDED:
2040 err = -ESTRPIPE;
2041 goto _end_unlock;
2042 default:
2043 err = -EBADFD;
2044 goto _end_unlock;
2047 runtime->twake = runtime->control->avail_min ? : 1;
2048 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2049 snd_pcm_update_hw_ptr(substream);
2050 avail = snd_pcm_playback_avail(runtime);
2051 while (size > 0) {
2052 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2053 snd_pcm_uframes_t cont;
2054 if (!avail) {
2055 if (nonblock) {
2056 err = -EAGAIN;
2057 goto _end_unlock;
2059 runtime->twake = min_t(snd_pcm_uframes_t, size,
2060 runtime->control->avail_min ? : 1);
2061 err = wait_for_avail(substream, &avail);
2062 if (err < 0)
2063 goto _end_unlock;
2065 frames = size > avail ? avail : size;
2066 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2067 if (frames > cont)
2068 frames = cont;
2069 if (snd_BUG_ON(!frames)) {
2070 runtime->twake = 0;
2071 snd_pcm_stream_unlock_irq(substream);
2072 return -EINVAL;
2074 appl_ptr = runtime->control->appl_ptr;
2075 appl_ofs = appl_ptr % runtime->buffer_size;
2076 snd_pcm_stream_unlock_irq(substream);
2077 err = transfer(substream, appl_ofs, data, offset, frames);
2078 snd_pcm_stream_lock_irq(substream);
2079 if (err < 0)
2080 goto _end_unlock;
2081 switch (runtime->status->state) {
2082 case SNDRV_PCM_STATE_XRUN:
2083 err = -EPIPE;
2084 goto _end_unlock;
2085 case SNDRV_PCM_STATE_SUSPENDED:
2086 err = -ESTRPIPE;
2087 goto _end_unlock;
2088 default:
2089 break;
2091 appl_ptr += frames;
2092 if (appl_ptr >= runtime->boundary)
2093 appl_ptr -= runtime->boundary;
2094 runtime->control->appl_ptr = appl_ptr;
2095 if (substream->ops->ack)
2096 substream->ops->ack(substream);
2098 offset += frames;
2099 size -= frames;
2100 xfer += frames;
2101 avail -= frames;
2102 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2103 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2104 err = snd_pcm_start(substream);
2105 if (err < 0)
2106 goto _end_unlock;
2109 _end_unlock:
2110 runtime->twake = 0;
2111 if (xfer > 0 && err >= 0)
2112 snd_pcm_update_state(substream, runtime);
2113 snd_pcm_stream_unlock_irq(substream);
2114 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2117 /* sanity-check for read/write methods */
2118 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2120 struct snd_pcm_runtime *runtime;
2121 if (PCM_RUNTIME_CHECK(substream))
2122 return -ENXIO;
2123 runtime = substream->runtime;
2124 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2125 return -EINVAL;
2126 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2127 return -EBADFD;
2128 return 0;
2131 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2133 struct snd_pcm_runtime *runtime;
2134 int nonblock;
2135 int err;
2137 err = pcm_sanity_check(substream);
2138 if (err < 0)
2139 return err;
2140 runtime = substream->runtime;
2141 nonblock = !!(substream->f_flags & O_NONBLOCK);
2143 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2144 runtime->channels > 1)
2145 return -EINVAL;
2146 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2147 snd_pcm_lib_write_transfer);
2150 EXPORT_SYMBOL(snd_pcm_lib_write);
2152 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2153 unsigned int hwoff,
2154 unsigned long data, unsigned int off,
2155 snd_pcm_uframes_t frames)
2157 struct snd_pcm_runtime *runtime = substream->runtime;
2158 int err;
2159 void __user **bufs = (void __user **)data;
2160 int channels = runtime->channels;
2161 int c;
2162 if (substream->ops->copy) {
2163 if (snd_BUG_ON(!substream->ops->silence))
2164 return -EINVAL;
2165 for (c = 0; c < channels; ++c, ++bufs) {
2166 if (*bufs == NULL) {
2167 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2168 return err;
2169 } else {
2170 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2171 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2172 return err;
2175 } else {
2176 /* default transfer behaviour */
2177 size_t dma_csize = runtime->dma_bytes / channels;
2178 for (c = 0; c < channels; ++c, ++bufs) {
2179 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2180 if (*bufs == NULL) {
2181 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2182 } else {
2183 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2184 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2185 return -EFAULT;
2189 return 0;
2192 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2193 void __user **bufs,
2194 snd_pcm_uframes_t frames)
2196 struct snd_pcm_runtime *runtime;
2197 int nonblock;
2198 int err;
2200 err = pcm_sanity_check(substream);
2201 if (err < 0)
2202 return err;
2203 runtime = substream->runtime;
2204 nonblock = !!(substream->f_flags & O_NONBLOCK);
2206 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2207 return -EINVAL;
2208 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2209 nonblock, snd_pcm_lib_writev_transfer);
2212 EXPORT_SYMBOL(snd_pcm_lib_writev);
2214 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2215 unsigned int hwoff,
2216 unsigned long data, unsigned int off,
2217 snd_pcm_uframes_t frames)
2219 struct snd_pcm_runtime *runtime = substream->runtime;
2220 int err;
2221 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2222 if (substream->ops->copy) {
2223 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2224 return err;
2225 } else {
2226 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2227 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2228 return -EFAULT;
2230 return 0;
2233 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2234 unsigned long data,
2235 snd_pcm_uframes_t size,
2236 int nonblock,
2237 transfer_f transfer)
2239 struct snd_pcm_runtime *runtime = substream->runtime;
2240 snd_pcm_uframes_t xfer = 0;
2241 snd_pcm_uframes_t offset = 0;
2242 snd_pcm_uframes_t avail;
2243 int err = 0;
2245 if (size == 0)
2246 return 0;
2248 snd_pcm_stream_lock_irq(substream);
2249 switch (runtime->status->state) {
2250 case SNDRV_PCM_STATE_PREPARED:
2251 if (size >= runtime->start_threshold) {
2252 err = snd_pcm_start(substream);
2253 if (err < 0)
2254 goto _end_unlock;
2256 break;
2257 case SNDRV_PCM_STATE_DRAINING:
2258 case SNDRV_PCM_STATE_RUNNING:
2259 case SNDRV_PCM_STATE_PAUSED:
2260 break;
2261 case SNDRV_PCM_STATE_XRUN:
2262 err = -EPIPE;
2263 goto _end_unlock;
2264 case SNDRV_PCM_STATE_SUSPENDED:
2265 err = -ESTRPIPE;
2266 goto _end_unlock;
2267 default:
2268 err = -EBADFD;
2269 goto _end_unlock;
2272 runtime->twake = runtime->control->avail_min ? : 1;
2273 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2274 snd_pcm_update_hw_ptr(substream);
2275 avail = snd_pcm_capture_avail(runtime);
2276 while (size > 0) {
2277 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2278 snd_pcm_uframes_t cont;
2279 if (!avail) {
2280 if (runtime->status->state ==
2281 SNDRV_PCM_STATE_DRAINING) {
2282 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2283 goto _end_unlock;
2285 if (nonblock) {
2286 err = -EAGAIN;
2287 goto _end_unlock;
2289 runtime->twake = min_t(snd_pcm_uframes_t, size,
2290 runtime->control->avail_min ? : 1);
2291 err = wait_for_avail(substream, &avail);
2292 if (err < 0)
2293 goto _end_unlock;
2294 if (!avail)
2295 continue; /* draining */
2297 frames = size > avail ? avail : size;
2298 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2299 if (frames > cont)
2300 frames = cont;
2301 if (snd_BUG_ON(!frames)) {
2302 runtime->twake = 0;
2303 snd_pcm_stream_unlock_irq(substream);
2304 return -EINVAL;
2306 appl_ptr = runtime->control->appl_ptr;
2307 appl_ofs = appl_ptr % runtime->buffer_size;
2308 snd_pcm_stream_unlock_irq(substream);
2309 err = transfer(substream, appl_ofs, data, offset, frames);
2310 snd_pcm_stream_lock_irq(substream);
2311 if (err < 0)
2312 goto _end_unlock;
2313 switch (runtime->status->state) {
2314 case SNDRV_PCM_STATE_XRUN:
2315 err = -EPIPE;
2316 goto _end_unlock;
2317 case SNDRV_PCM_STATE_SUSPENDED:
2318 err = -ESTRPIPE;
2319 goto _end_unlock;
2320 default:
2321 break;
2323 appl_ptr += frames;
2324 if (appl_ptr >= runtime->boundary)
2325 appl_ptr -= runtime->boundary;
2326 runtime->control->appl_ptr = appl_ptr;
2327 if (substream->ops->ack)
2328 substream->ops->ack(substream);
2330 offset += frames;
2331 size -= frames;
2332 xfer += frames;
2333 avail -= frames;
2335 _end_unlock:
2336 runtime->twake = 0;
2337 if (xfer > 0 && err >= 0)
2338 snd_pcm_update_state(substream, runtime);
2339 snd_pcm_stream_unlock_irq(substream);
2340 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2343 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2345 struct snd_pcm_runtime *runtime;
2346 int nonblock;
2347 int err;
2349 err = pcm_sanity_check(substream);
2350 if (err < 0)
2351 return err;
2352 runtime = substream->runtime;
2353 nonblock = !!(substream->f_flags & O_NONBLOCK);
2354 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2355 return -EINVAL;
2356 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2359 EXPORT_SYMBOL(snd_pcm_lib_read);
2361 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2362 unsigned int hwoff,
2363 unsigned long data, unsigned int off,
2364 snd_pcm_uframes_t frames)
2366 struct snd_pcm_runtime *runtime = substream->runtime;
2367 int err;
2368 void __user **bufs = (void __user **)data;
2369 int channels = runtime->channels;
2370 int c;
2371 if (substream->ops->copy) {
2372 for (c = 0; c < channels; ++c, ++bufs) {
2373 char __user *buf;
2374 if (*bufs == NULL)
2375 continue;
2376 buf = *bufs + samples_to_bytes(runtime, off);
2377 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2378 return err;
2380 } else {
2381 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2382 for (c = 0; c < channels; ++c, ++bufs) {
2383 char *hwbuf;
2384 char __user *buf;
2385 if (*bufs == NULL)
2386 continue;
2388 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2389 buf = *bufs + samples_to_bytes(runtime, off);
2390 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2391 return -EFAULT;
2394 return 0;
2397 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2398 void __user **bufs,
2399 snd_pcm_uframes_t frames)
2401 struct snd_pcm_runtime *runtime;
2402 int nonblock;
2403 int err;
2405 err = pcm_sanity_check(substream);
2406 if (err < 0)
2407 return err;
2408 runtime = substream->runtime;
2409 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2410 return -EBADFD;
2412 nonblock = !!(substream->f_flags & O_NONBLOCK);
2413 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2414 return -EINVAL;
2415 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2418 EXPORT_SYMBOL(snd_pcm_lib_readv);
2421 * standard channel mapping helpers
2424 /* default channel maps for multi-channel playbacks, up to 8 channels */
2425 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2426 { .channels = 1,
2427 .map = { SNDRV_CHMAP_MONO } },
2428 { .channels = 2,
2429 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2430 { .channels = 4,
2431 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2432 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2433 { .channels = 6,
2434 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2435 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2436 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2437 { .channels = 8,
2438 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2439 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2440 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2441 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2444 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2446 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2447 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2448 { .channels = 1,
2449 .map = { SNDRV_CHMAP_MONO } },
2450 { .channels = 2,
2451 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2452 { .channels = 4,
2453 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2454 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2455 { .channels = 6,
2456 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2457 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2458 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2459 { .channels = 8,
2460 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2461 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2462 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2463 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2466 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2468 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2470 if (ch > info->max_channels)
2471 return false;
2472 return !info->channel_mask || (info->channel_mask & (1U << ch));
2475 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2476 struct snd_ctl_elem_info *uinfo)
2478 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2480 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2481 uinfo->count = 0;
2482 uinfo->count = info->max_channels;
2483 uinfo->value.integer.min = 0;
2484 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2485 return 0;
2488 /* get callback for channel map ctl element
2489 * stores the channel position firstly matching with the current channels
2491 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2492 struct snd_ctl_elem_value *ucontrol)
2494 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2495 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2496 struct snd_pcm_substream *substream;
2497 const struct snd_pcm_chmap_elem *map;
2499 if (!info->chmap)
2500 return -EINVAL;
2501 substream = snd_pcm_chmap_substream(info, idx);
2502 if (!substream)
2503 return -ENODEV;
2504 memset(ucontrol->value.integer.value, 0,
2505 sizeof(ucontrol->value.integer.value));
2506 if (!substream->runtime)
2507 return 0; /* no channels set */
2508 for (map = info->chmap; map->channels; map++) {
2509 int i;
2510 if (map->channels == substream->runtime->channels &&
2511 valid_chmap_channels(info, map->channels)) {
2512 for (i = 0; i < map->channels; i++)
2513 ucontrol->value.integer.value[i] = map->map[i];
2514 return 0;
2517 return -EINVAL;
2520 /* tlv callback for channel map ctl element
2521 * expands the pre-defined channel maps in a form of TLV
2523 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2524 unsigned int size, unsigned int __user *tlv)
2526 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2527 const struct snd_pcm_chmap_elem *map;
2528 unsigned int __user *dst;
2529 int c, count = 0;
2531 if (!info->chmap)
2532 return -EINVAL;
2533 if (size < 8)
2534 return -ENOMEM;
2535 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2536 return -EFAULT;
2537 size -= 8;
2538 dst = tlv + 2;
2539 for (map = info->chmap; map->channels; map++) {
2540 int chs_bytes = map->channels * 4;
2541 if (!valid_chmap_channels(info, map->channels))
2542 continue;
2543 if (size < 8)
2544 return -ENOMEM;
2545 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2546 put_user(chs_bytes, dst + 1))
2547 return -EFAULT;
2548 dst += 2;
2549 size -= 8;
2550 count += 8;
2551 if (size < chs_bytes)
2552 return -ENOMEM;
2553 size -= chs_bytes;
2554 count += chs_bytes;
2555 for (c = 0; c < map->channels; c++) {
2556 if (put_user(map->map[c], dst))
2557 return -EFAULT;
2558 dst++;
2561 if (put_user(count, tlv + 1))
2562 return -EFAULT;
2563 return 0;
2566 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2568 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2569 info->pcm->streams[info->stream].chmap_kctl = NULL;
2570 kfree(info);
2574 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2575 * @pcm: the assigned PCM instance
2576 * @stream: stream direction
2577 * @chmap: channel map elements (for query)
2578 * @max_channels: the max number of channels for the stream
2579 * @private_value: the value passed to each kcontrol's private_value field
2580 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2582 * Create channel-mapping control elements assigned to the given PCM stream(s).
2583 * Return: Zero if successful, or a negative error value.
2585 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2586 const struct snd_pcm_chmap_elem *chmap,
2587 int max_channels,
2588 unsigned long private_value,
2589 struct snd_pcm_chmap **info_ret)
2591 struct snd_pcm_chmap *info;
2592 struct snd_kcontrol_new knew = {
2593 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2594 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2595 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2596 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2597 .info = pcm_chmap_ctl_info,
2598 .get = pcm_chmap_ctl_get,
2599 .tlv.c = pcm_chmap_ctl_tlv,
2601 int err;
2603 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2604 return -EBUSY;
2605 info = kzalloc(sizeof(*info), GFP_KERNEL);
2606 if (!info)
2607 return -ENOMEM;
2608 info->pcm = pcm;
2609 info->stream = stream;
2610 info->chmap = chmap;
2611 info->max_channels = max_channels;
2612 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2613 knew.name = "Playback Channel Map";
2614 else
2615 knew.name = "Capture Channel Map";
2616 knew.device = pcm->device;
2617 knew.count = pcm->streams[stream].substream_count;
2618 knew.private_value = private_value;
2619 info->kctl = snd_ctl_new1(&knew, info);
2620 if (!info->kctl) {
2621 kfree(info);
2622 return -ENOMEM;
2624 info->kctl->private_free = pcm_chmap_ctl_private_free;
2625 err = snd_ctl_add(pcm->card, info->kctl);
2626 if (err < 0)
2627 return err;
2628 pcm->streams[stream].chmap_kctl = info->kctl;
2629 if (info_ret)
2630 *info_ret = info;
2631 return 0;
2633 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);