2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
65 #define NR_STRIPES 256
66 #define STRIPE_SIZE PAGE_SIZE
67 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD 1
70 #define BYPASS_THRESHOLD 1
71 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK (NR_HASH - 1)
74 static inline struct hlist_head
*stripe_hash(struct r5conf
*conf
, sector_t sect
)
76 int hash
= (sect
>> STRIPE_SHIFT
) & HASH_MASK
;
77 return &conf
->stripe_hashtbl
[hash
];
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81 * order without overlap. There may be several bio's per stripe+device, and
82 * a bio could span several devices.
83 * When walking this list for a particular stripe+device, we must never proceed
84 * beyond a bio that extends past this device, as the next bio might no longer
86 * This function is used to determine the 'next' bio in the list, given the sector
87 * of the current stripe+device
89 static inline struct bio
*r5_next_bio(struct bio
*bio
, sector_t sector
)
91 int sectors
= bio
->bi_size
>> 9;
92 if (bio
->bi_sector
+ sectors
< sector
+ STRIPE_SECTORS
)
99 * We maintain a biased count of active stripes in the bottom 16 bits of
100 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
102 static inline int raid5_bi_phys_segments(struct bio
*bio
)
104 return bio
->bi_phys_segments
& 0xffff;
107 static inline int raid5_bi_hw_segments(struct bio
*bio
)
109 return (bio
->bi_phys_segments
>> 16) & 0xffff;
112 static inline int raid5_dec_bi_phys_segments(struct bio
*bio
)
114 --bio
->bi_phys_segments
;
115 return raid5_bi_phys_segments(bio
);
118 static inline int raid5_dec_bi_hw_segments(struct bio
*bio
)
120 unsigned short val
= raid5_bi_hw_segments(bio
);
123 bio
->bi_phys_segments
= (val
<< 16) | raid5_bi_phys_segments(bio
);
127 static inline void raid5_set_bi_hw_segments(struct bio
*bio
, unsigned int cnt
)
129 bio
->bi_phys_segments
= raid5_bi_phys_segments(bio
) | (cnt
<< 16);
132 /* Find first data disk in a raid6 stripe */
133 static inline int raid6_d0(struct stripe_head
*sh
)
136 /* ddf always start from first device */
138 /* md starts just after Q block */
139 if (sh
->qd_idx
== sh
->disks
- 1)
142 return sh
->qd_idx
+ 1;
144 static inline int raid6_next_disk(int disk
, int raid_disks
)
147 return (disk
< raid_disks
) ? disk
: 0;
150 /* When walking through the disks in a raid5, starting at raid6_d0,
151 * We need to map each disk to a 'slot', where the data disks are slot
152 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153 * is raid_disks-1. This help does that mapping.
155 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
156 int *count
, int syndrome_disks
)
162 if (idx
== sh
->pd_idx
)
163 return syndrome_disks
;
164 if (idx
== sh
->qd_idx
)
165 return syndrome_disks
+ 1;
171 static void return_io(struct bio
*return_bi
)
173 struct bio
*bi
= return_bi
;
176 return_bi
= bi
->bi_next
;
184 static void print_raid5_conf (struct r5conf
*conf
);
186 static int stripe_operations_active(struct stripe_head
*sh
)
188 return sh
->check_state
|| sh
->reconstruct_state
||
189 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
190 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
193 static void __release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
)
195 if (atomic_dec_and_test(&sh
->count
)) {
196 BUG_ON(!list_empty(&sh
->lru
));
197 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
198 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
199 if (test_bit(STRIPE_DELAYED
, &sh
->state
) &&
200 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
201 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
202 else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
203 sh
->bm_seq
- conf
->seq_write
> 0)
204 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
206 clear_bit(STRIPE_DELAYED
, &sh
->state
);
207 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
208 list_add_tail(&sh
->lru
, &conf
->handle_list
);
210 md_wakeup_thread(conf
->mddev
->thread
);
212 BUG_ON(stripe_operations_active(sh
));
213 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
214 if (atomic_dec_return(&conf
->preread_active_stripes
)
216 md_wakeup_thread(conf
->mddev
->thread
);
217 atomic_dec(&conf
->active_stripes
);
218 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
219 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
220 wake_up(&conf
->wait_for_stripe
);
221 if (conf
->retry_read_aligned
)
222 md_wakeup_thread(conf
->mddev
->thread
);
228 static void release_stripe(struct stripe_head
*sh
)
230 struct r5conf
*conf
= sh
->raid_conf
;
233 spin_lock_irqsave(&conf
->device_lock
, flags
);
234 __release_stripe(conf
, sh
);
235 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
238 static inline void remove_hash(struct stripe_head
*sh
)
240 pr_debug("remove_hash(), stripe %llu\n",
241 (unsigned long long)sh
->sector
);
243 hlist_del_init(&sh
->hash
);
246 static inline void insert_hash(struct r5conf
*conf
, struct stripe_head
*sh
)
248 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
250 pr_debug("insert_hash(), stripe %llu\n",
251 (unsigned long long)sh
->sector
);
253 hlist_add_head(&sh
->hash
, hp
);
257 /* find an idle stripe, make sure it is unhashed, and return it. */
258 static struct stripe_head
*get_free_stripe(struct r5conf
*conf
)
260 struct stripe_head
*sh
= NULL
;
261 struct list_head
*first
;
263 if (list_empty(&conf
->inactive_list
))
265 first
= conf
->inactive_list
.next
;
266 sh
= list_entry(first
, struct stripe_head
, lru
);
267 list_del_init(first
);
269 atomic_inc(&conf
->active_stripes
);
274 static void shrink_buffers(struct stripe_head
*sh
)
278 int num
= sh
->raid_conf
->pool_size
;
280 for (i
= 0; i
< num
; i
++) {
284 sh
->dev
[i
].page
= NULL
;
289 static int grow_buffers(struct stripe_head
*sh
)
292 int num
= sh
->raid_conf
->pool_size
;
294 for (i
= 0; i
< num
; i
++) {
297 if (!(page
= alloc_page(GFP_KERNEL
))) {
300 sh
->dev
[i
].page
= page
;
305 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
);
306 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
307 struct stripe_head
*sh
);
309 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
311 struct r5conf
*conf
= sh
->raid_conf
;
314 BUG_ON(atomic_read(&sh
->count
) != 0);
315 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
316 BUG_ON(stripe_operations_active(sh
));
318 pr_debug("init_stripe called, stripe %llu\n",
319 (unsigned long long)sh
->sector
);
323 sh
->generation
= conf
->generation
- previous
;
324 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
326 stripe_set_idx(sector
, conf
, previous
, sh
);
330 for (i
= sh
->disks
; i
--; ) {
331 struct r5dev
*dev
= &sh
->dev
[i
];
333 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
334 test_bit(R5_LOCKED
, &dev
->flags
)) {
335 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
336 (unsigned long long)sh
->sector
, i
, dev
->toread
,
337 dev
->read
, dev
->towrite
, dev
->written
,
338 test_bit(R5_LOCKED
, &dev
->flags
));
342 raid5_build_block(sh
, i
, previous
);
344 insert_hash(conf
, sh
);
347 static struct stripe_head
*__find_stripe(struct r5conf
*conf
, sector_t sector
,
350 struct stripe_head
*sh
;
351 struct hlist_node
*hn
;
353 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
354 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
355 if (sh
->sector
== sector
&& sh
->generation
== generation
)
357 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
362 * Need to check if array has failed when deciding whether to:
364 * - remove non-faulty devices
367 * This determination is simple when no reshape is happening.
368 * However if there is a reshape, we need to carefully check
369 * both the before and after sections.
370 * This is because some failed devices may only affect one
371 * of the two sections, and some non-in_sync devices may
372 * be insync in the section most affected by failed devices.
374 static int calc_degraded(struct r5conf
*conf
)
376 int degraded
, degraded2
;
381 for (i
= 0; i
< conf
->previous_raid_disks
; i
++) {
382 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
383 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
385 else if (test_bit(In_sync
, &rdev
->flags
))
388 /* not in-sync or faulty.
389 * If the reshape increases the number of devices,
390 * this is being recovered by the reshape, so
391 * this 'previous' section is not in_sync.
392 * If the number of devices is being reduced however,
393 * the device can only be part of the array if
394 * we are reverting a reshape, so this section will
397 if (conf
->raid_disks
>= conf
->previous_raid_disks
)
401 if (conf
->raid_disks
== conf
->previous_raid_disks
)
405 for (i
= 0; i
< conf
->raid_disks
; i
++) {
406 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
407 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
409 else if (test_bit(In_sync
, &rdev
->flags
))
412 /* not in-sync or faulty.
413 * If reshape increases the number of devices, this
414 * section has already been recovered, else it
415 * almost certainly hasn't.
417 if (conf
->raid_disks
<= conf
->previous_raid_disks
)
421 if (degraded2
> degraded
)
426 static int has_failed(struct r5conf
*conf
)
430 if (conf
->mddev
->reshape_position
== MaxSector
)
431 return conf
->mddev
->degraded
> conf
->max_degraded
;
433 degraded
= calc_degraded(conf
);
434 if (degraded
> conf
->max_degraded
)
439 static struct stripe_head
*
440 get_active_stripe(struct r5conf
*conf
, sector_t sector
,
441 int previous
, int noblock
, int noquiesce
)
443 struct stripe_head
*sh
;
445 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
447 spin_lock_irq(&conf
->device_lock
);
450 wait_event_lock_irq(conf
->wait_for_stripe
,
451 conf
->quiesce
== 0 || noquiesce
,
452 conf
->device_lock
, /* nothing */);
453 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
455 if (!conf
->inactive_blocked
)
456 sh
= get_free_stripe(conf
);
457 if (noblock
&& sh
== NULL
)
460 conf
->inactive_blocked
= 1;
461 wait_event_lock_irq(conf
->wait_for_stripe
,
462 !list_empty(&conf
->inactive_list
) &&
463 (atomic_read(&conf
->active_stripes
)
464 < (conf
->max_nr_stripes
*3/4)
465 || !conf
->inactive_blocked
),
468 conf
->inactive_blocked
= 0;
470 init_stripe(sh
, sector
, previous
);
472 if (atomic_read(&sh
->count
)) {
473 BUG_ON(!list_empty(&sh
->lru
)
474 && !test_bit(STRIPE_EXPANDING
, &sh
->state
));
476 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
477 atomic_inc(&conf
->active_stripes
);
478 if (list_empty(&sh
->lru
) &&
479 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
481 list_del_init(&sh
->lru
);
484 } while (sh
== NULL
);
487 atomic_inc(&sh
->count
);
489 spin_unlock_irq(&conf
->device_lock
);
493 /* Determine if 'data_offset' or 'new_data_offset' should be used
494 * in this stripe_head.
496 static int use_new_offset(struct r5conf
*conf
, struct stripe_head
*sh
)
498 sector_t progress
= conf
->reshape_progress
;
499 /* Need a memory barrier to make sure we see the value
500 * of conf->generation, or ->data_offset that was set before
501 * reshape_progress was updated.
504 if (progress
== MaxSector
)
506 if (sh
->generation
== conf
->generation
- 1)
508 /* We are in a reshape, and this is a new-generation stripe,
509 * so use new_data_offset.
515 raid5_end_read_request(struct bio
*bi
, int error
);
517 raid5_end_write_request(struct bio
*bi
, int error
);
519 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
521 struct r5conf
*conf
= sh
->raid_conf
;
522 int i
, disks
= sh
->disks
;
526 for (i
= disks
; i
--; ) {
528 int replace_only
= 0;
529 struct bio
*bi
, *rbi
;
530 struct md_rdev
*rdev
, *rrdev
= NULL
;
531 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
532 if (test_and_clear_bit(R5_WantFUA
, &sh
->dev
[i
].flags
))
536 } else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
538 else if (test_and_clear_bit(R5_WantReplace
,
539 &sh
->dev
[i
].flags
)) {
544 if (test_and_clear_bit(R5_SyncIO
, &sh
->dev
[i
].flags
))
547 bi
= &sh
->dev
[i
].req
;
548 rbi
= &sh
->dev
[i
].rreq
; /* For writing to replacement */
553 bi
->bi_end_io
= raid5_end_write_request
;
554 rbi
->bi_end_io
= raid5_end_write_request
;
556 bi
->bi_end_io
= raid5_end_read_request
;
559 rrdev
= rcu_dereference(conf
->disks
[i
].replacement
);
560 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
561 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
570 /* We raced and saw duplicates */
573 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
) && rrdev
)
578 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
581 atomic_inc(&rdev
->nr_pending
);
582 if (rrdev
&& test_bit(Faulty
, &rrdev
->flags
))
585 atomic_inc(&rrdev
->nr_pending
);
588 /* We have already checked bad blocks for reads. Now
589 * need to check for writes. We never accept write errors
590 * on the replacement, so we don't to check rrdev.
592 while ((rw
& WRITE
) && rdev
&&
593 test_bit(WriteErrorSeen
, &rdev
->flags
)) {
596 int bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
597 &first_bad
, &bad_sectors
);
602 set_bit(BlockedBadBlocks
, &rdev
->flags
);
603 if (!conf
->mddev
->external
&&
604 conf
->mddev
->flags
) {
605 /* It is very unlikely, but we might
606 * still need to write out the
607 * bad block log - better give it
609 md_check_recovery(conf
->mddev
);
612 * Because md_wait_for_blocked_rdev
613 * will dec nr_pending, we must
614 * increment it first.
616 atomic_inc(&rdev
->nr_pending
);
617 md_wait_for_blocked_rdev(rdev
, conf
->mddev
);
619 /* Acknowledged bad block - skip the write */
620 rdev_dec_pending(rdev
, conf
->mddev
);
626 if (s
->syncing
|| s
->expanding
|| s
->expanded
628 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
630 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
632 bi
->bi_bdev
= rdev
->bdev
;
633 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
634 __func__
, (unsigned long long)sh
->sector
,
636 atomic_inc(&sh
->count
);
637 if (use_new_offset(conf
, sh
))
638 bi
->bi_sector
= (sh
->sector
639 + rdev
->new_data_offset
);
641 bi
->bi_sector
= (sh
->sector
642 + rdev
->data_offset
);
643 bi
->bi_flags
= 1 << BIO_UPTODATE
;
645 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
646 bi
->bi_io_vec
[0].bv_offset
= 0;
647 bi
->bi_size
= STRIPE_SIZE
;
650 set_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
);
651 generic_make_request(bi
);
654 if (s
->syncing
|| s
->expanding
|| s
->expanded
656 md_sync_acct(rrdev
->bdev
, STRIPE_SECTORS
);
658 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
660 rbi
->bi_bdev
= rrdev
->bdev
;
661 pr_debug("%s: for %llu schedule op %ld on "
662 "replacement disc %d\n",
663 __func__
, (unsigned long long)sh
->sector
,
665 atomic_inc(&sh
->count
);
666 if (use_new_offset(conf
, sh
))
667 rbi
->bi_sector
= (sh
->sector
668 + rrdev
->new_data_offset
);
670 rbi
->bi_sector
= (sh
->sector
671 + rrdev
->data_offset
);
672 rbi
->bi_flags
= 1 << BIO_UPTODATE
;
674 rbi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
675 rbi
->bi_io_vec
[0].bv_offset
= 0;
676 rbi
->bi_size
= STRIPE_SIZE
;
678 generic_make_request(rbi
);
680 if (!rdev
&& !rrdev
) {
682 set_bit(STRIPE_DEGRADED
, &sh
->state
);
683 pr_debug("skip op %ld on disc %d for sector %llu\n",
684 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
685 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
686 set_bit(STRIPE_HANDLE
, &sh
->state
);
691 static struct dma_async_tx_descriptor
*
692 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
693 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
696 struct page
*bio_page
;
699 struct async_submit_ctl submit
;
700 enum async_tx_flags flags
= 0;
702 if (bio
->bi_sector
>= sector
)
703 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
705 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
708 flags
|= ASYNC_TX_FENCE
;
709 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
711 bio_for_each_segment(bvl
, bio
, i
) {
712 int len
= bvl
->bv_len
;
716 if (page_offset
< 0) {
717 b_offset
= -page_offset
;
718 page_offset
+= b_offset
;
722 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
723 clen
= STRIPE_SIZE
- page_offset
;
728 b_offset
+= bvl
->bv_offset
;
729 bio_page
= bvl
->bv_page
;
731 tx
= async_memcpy(page
, bio_page
, page_offset
,
732 b_offset
, clen
, &submit
);
734 tx
= async_memcpy(bio_page
, page
, b_offset
,
735 page_offset
, clen
, &submit
);
737 /* chain the operations */
738 submit
.depend_tx
= tx
;
740 if (clen
< len
) /* hit end of page */
748 static void ops_complete_biofill(void *stripe_head_ref
)
750 struct stripe_head
*sh
= stripe_head_ref
;
751 struct bio
*return_bi
= NULL
;
752 struct r5conf
*conf
= sh
->raid_conf
;
755 pr_debug("%s: stripe %llu\n", __func__
,
756 (unsigned long long)sh
->sector
);
758 /* clear completed biofills */
759 spin_lock_irq(&conf
->device_lock
);
760 for (i
= sh
->disks
; i
--; ) {
761 struct r5dev
*dev
= &sh
->dev
[i
];
763 /* acknowledge completion of a biofill operation */
764 /* and check if we need to reply to a read request,
765 * new R5_Wantfill requests are held off until
766 * !STRIPE_BIOFILL_RUN
768 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
769 struct bio
*rbi
, *rbi2
;
774 while (rbi
&& rbi
->bi_sector
<
775 dev
->sector
+ STRIPE_SECTORS
) {
776 rbi2
= r5_next_bio(rbi
, dev
->sector
);
777 if (!raid5_dec_bi_phys_segments(rbi
)) {
778 rbi
->bi_next
= return_bi
;
785 spin_unlock_irq(&conf
->device_lock
);
786 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
788 return_io(return_bi
);
790 set_bit(STRIPE_HANDLE
, &sh
->state
);
794 static void ops_run_biofill(struct stripe_head
*sh
)
796 struct dma_async_tx_descriptor
*tx
= NULL
;
797 struct r5conf
*conf
= sh
->raid_conf
;
798 struct async_submit_ctl submit
;
801 pr_debug("%s: stripe %llu\n", __func__
,
802 (unsigned long long)sh
->sector
);
804 for (i
= sh
->disks
; i
--; ) {
805 struct r5dev
*dev
= &sh
->dev
[i
];
806 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
808 spin_lock_irq(&conf
->device_lock
);
809 dev
->read
= rbi
= dev
->toread
;
811 spin_unlock_irq(&conf
->device_lock
);
812 while (rbi
&& rbi
->bi_sector
<
813 dev
->sector
+ STRIPE_SECTORS
) {
814 tx
= async_copy_data(0, rbi
, dev
->page
,
816 rbi
= r5_next_bio(rbi
, dev
->sector
);
821 atomic_inc(&sh
->count
);
822 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
823 async_trigger_callback(&submit
);
826 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
833 tgt
= &sh
->dev
[target
];
834 set_bit(R5_UPTODATE
, &tgt
->flags
);
835 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
836 clear_bit(R5_Wantcompute
, &tgt
->flags
);
839 static void ops_complete_compute(void *stripe_head_ref
)
841 struct stripe_head
*sh
= stripe_head_ref
;
843 pr_debug("%s: stripe %llu\n", __func__
,
844 (unsigned long long)sh
->sector
);
846 /* mark the computed target(s) as uptodate */
847 mark_target_uptodate(sh
, sh
->ops
.target
);
848 mark_target_uptodate(sh
, sh
->ops
.target2
);
850 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
851 if (sh
->check_state
== check_state_compute_run
)
852 sh
->check_state
= check_state_compute_result
;
853 set_bit(STRIPE_HANDLE
, &sh
->state
);
857 /* return a pointer to the address conversion region of the scribble buffer */
858 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
859 struct raid5_percpu
*percpu
)
861 return percpu
->scribble
+ sizeof(struct page
*) * (sh
->disks
+ 2);
864 static struct dma_async_tx_descriptor
*
865 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
867 int disks
= sh
->disks
;
868 struct page
**xor_srcs
= percpu
->scribble
;
869 int target
= sh
->ops
.target
;
870 struct r5dev
*tgt
= &sh
->dev
[target
];
871 struct page
*xor_dest
= tgt
->page
;
873 struct dma_async_tx_descriptor
*tx
;
874 struct async_submit_ctl submit
;
877 pr_debug("%s: stripe %llu block: %d\n",
878 __func__
, (unsigned long long)sh
->sector
, target
);
879 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
881 for (i
= disks
; i
--; )
883 xor_srcs
[count
++] = sh
->dev
[i
].page
;
885 atomic_inc(&sh
->count
);
887 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
888 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
));
889 if (unlikely(count
== 1))
890 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
892 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
897 /* set_syndrome_sources - populate source buffers for gen_syndrome
898 * @srcs - (struct page *) array of size sh->disks
899 * @sh - stripe_head to parse
901 * Populates srcs in proper layout order for the stripe and returns the
902 * 'count' of sources to be used in a call to async_gen_syndrome. The P
903 * destination buffer is recorded in srcs[count] and the Q destination
904 * is recorded in srcs[count+1]].
906 static int set_syndrome_sources(struct page
**srcs
, struct stripe_head
*sh
)
908 int disks
= sh
->disks
;
909 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
910 int d0_idx
= raid6_d0(sh
);
914 for (i
= 0; i
< disks
; i
++)
920 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
922 srcs
[slot
] = sh
->dev
[i
].page
;
923 i
= raid6_next_disk(i
, disks
);
924 } while (i
!= d0_idx
);
926 return syndrome_disks
;
929 static struct dma_async_tx_descriptor
*
930 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
932 int disks
= sh
->disks
;
933 struct page
**blocks
= percpu
->scribble
;
935 int qd_idx
= sh
->qd_idx
;
936 struct dma_async_tx_descriptor
*tx
;
937 struct async_submit_ctl submit
;
943 if (sh
->ops
.target
< 0)
944 target
= sh
->ops
.target2
;
945 else if (sh
->ops
.target2
< 0)
946 target
= sh
->ops
.target
;
948 /* we should only have one valid target */
951 pr_debug("%s: stripe %llu block: %d\n",
952 __func__
, (unsigned long long)sh
->sector
, target
);
954 tgt
= &sh
->dev
[target
];
955 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
958 atomic_inc(&sh
->count
);
960 if (target
== qd_idx
) {
961 count
= set_syndrome_sources(blocks
, sh
);
962 blocks
[count
] = NULL
; /* regenerating p is not necessary */
963 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
964 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
965 ops_complete_compute
, sh
,
966 to_addr_conv(sh
, percpu
));
967 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
969 /* Compute any data- or p-drive using XOR */
971 for (i
= disks
; i
-- ; ) {
972 if (i
== target
|| i
== qd_idx
)
974 blocks
[count
++] = sh
->dev
[i
].page
;
977 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
978 NULL
, ops_complete_compute
, sh
,
979 to_addr_conv(sh
, percpu
));
980 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
986 static struct dma_async_tx_descriptor
*
987 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
989 int i
, count
, disks
= sh
->disks
;
990 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
991 int d0_idx
= raid6_d0(sh
);
992 int faila
= -1, failb
= -1;
993 int target
= sh
->ops
.target
;
994 int target2
= sh
->ops
.target2
;
995 struct r5dev
*tgt
= &sh
->dev
[target
];
996 struct r5dev
*tgt2
= &sh
->dev
[target2
];
997 struct dma_async_tx_descriptor
*tx
;
998 struct page
**blocks
= percpu
->scribble
;
999 struct async_submit_ctl submit
;
1001 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1002 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
1003 BUG_ON(target
< 0 || target2
< 0);
1004 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1005 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
1007 /* we need to open-code set_syndrome_sources to handle the
1008 * slot number conversion for 'faila' and 'failb'
1010 for (i
= 0; i
< disks
; i
++)
1015 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1017 blocks
[slot
] = sh
->dev
[i
].page
;
1023 i
= raid6_next_disk(i
, disks
);
1024 } while (i
!= d0_idx
);
1026 BUG_ON(faila
== failb
);
1029 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1030 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
1032 atomic_inc(&sh
->count
);
1034 if (failb
== syndrome_disks
+1) {
1035 /* Q disk is one of the missing disks */
1036 if (faila
== syndrome_disks
) {
1037 /* Missing P+Q, just recompute */
1038 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1039 ops_complete_compute
, sh
,
1040 to_addr_conv(sh
, percpu
));
1041 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
1042 STRIPE_SIZE
, &submit
);
1046 int qd_idx
= sh
->qd_idx
;
1048 /* Missing D+Q: recompute D from P, then recompute Q */
1049 if (target
== qd_idx
)
1050 data_target
= target2
;
1052 data_target
= target
;
1055 for (i
= disks
; i
-- ; ) {
1056 if (i
== data_target
|| i
== qd_idx
)
1058 blocks
[count
++] = sh
->dev
[i
].page
;
1060 dest
= sh
->dev
[data_target
].page
;
1061 init_async_submit(&submit
,
1062 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1064 to_addr_conv(sh
, percpu
));
1065 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
1068 count
= set_syndrome_sources(blocks
, sh
);
1069 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
1070 ops_complete_compute
, sh
,
1071 to_addr_conv(sh
, percpu
));
1072 return async_gen_syndrome(blocks
, 0, count
+2,
1073 STRIPE_SIZE
, &submit
);
1076 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1077 ops_complete_compute
, sh
,
1078 to_addr_conv(sh
, percpu
));
1079 if (failb
== syndrome_disks
) {
1080 /* We're missing D+P. */
1081 return async_raid6_datap_recov(syndrome_disks
+2,
1085 /* We're missing D+D. */
1086 return async_raid6_2data_recov(syndrome_disks
+2,
1087 STRIPE_SIZE
, faila
, failb
,
1094 static void ops_complete_prexor(void *stripe_head_ref
)
1096 struct stripe_head
*sh
= stripe_head_ref
;
1098 pr_debug("%s: stripe %llu\n", __func__
,
1099 (unsigned long long)sh
->sector
);
1102 static struct dma_async_tx_descriptor
*
1103 ops_run_prexor(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1104 struct dma_async_tx_descriptor
*tx
)
1106 int disks
= sh
->disks
;
1107 struct page
**xor_srcs
= percpu
->scribble
;
1108 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1109 struct async_submit_ctl submit
;
1111 /* existing parity data subtracted */
1112 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1114 pr_debug("%s: stripe %llu\n", __func__
,
1115 (unsigned long long)sh
->sector
);
1117 for (i
= disks
; i
--; ) {
1118 struct r5dev
*dev
= &sh
->dev
[i
];
1119 /* Only process blocks that are known to be uptodate */
1120 if (test_bit(R5_Wantdrain
, &dev
->flags
))
1121 xor_srcs
[count
++] = dev
->page
;
1124 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
1125 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
));
1126 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1131 static struct dma_async_tx_descriptor
*
1132 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
1134 int disks
= sh
->disks
;
1137 pr_debug("%s: stripe %llu\n", __func__
,
1138 (unsigned long long)sh
->sector
);
1140 for (i
= disks
; i
--; ) {
1141 struct r5dev
*dev
= &sh
->dev
[i
];
1144 if (test_and_clear_bit(R5_Wantdrain
, &dev
->flags
)) {
1147 spin_lock_irq(&sh
->raid_conf
->device_lock
);
1148 chosen
= dev
->towrite
;
1149 dev
->towrite
= NULL
;
1150 BUG_ON(dev
->written
);
1151 wbi
= dev
->written
= chosen
;
1152 spin_unlock_irq(&sh
->raid_conf
->device_lock
);
1154 while (wbi
&& wbi
->bi_sector
<
1155 dev
->sector
+ STRIPE_SECTORS
) {
1156 if (wbi
->bi_rw
& REQ_FUA
)
1157 set_bit(R5_WantFUA
, &dev
->flags
);
1158 if (wbi
->bi_rw
& REQ_SYNC
)
1159 set_bit(R5_SyncIO
, &dev
->flags
);
1160 tx
= async_copy_data(1, wbi
, dev
->page
,
1162 wbi
= r5_next_bio(wbi
, dev
->sector
);
1170 static void ops_complete_reconstruct(void *stripe_head_ref
)
1172 struct stripe_head
*sh
= stripe_head_ref
;
1173 int disks
= sh
->disks
;
1174 int pd_idx
= sh
->pd_idx
;
1175 int qd_idx
= sh
->qd_idx
;
1177 bool fua
= false, sync
= false;
1179 pr_debug("%s: stripe %llu\n", __func__
,
1180 (unsigned long long)sh
->sector
);
1182 for (i
= disks
; i
--; ) {
1183 fua
|= test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
);
1184 sync
|= test_bit(R5_SyncIO
, &sh
->dev
[i
].flags
);
1187 for (i
= disks
; i
--; ) {
1188 struct r5dev
*dev
= &sh
->dev
[i
];
1190 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
) {
1191 set_bit(R5_UPTODATE
, &dev
->flags
);
1193 set_bit(R5_WantFUA
, &dev
->flags
);
1195 set_bit(R5_SyncIO
, &dev
->flags
);
1199 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
1200 sh
->reconstruct_state
= reconstruct_state_drain_result
;
1201 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
1202 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
1204 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
1205 sh
->reconstruct_state
= reconstruct_state_result
;
1208 set_bit(STRIPE_HANDLE
, &sh
->state
);
1213 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1214 struct dma_async_tx_descriptor
*tx
)
1216 int disks
= sh
->disks
;
1217 struct page
**xor_srcs
= percpu
->scribble
;
1218 struct async_submit_ctl submit
;
1219 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1220 struct page
*xor_dest
;
1222 unsigned long flags
;
1224 pr_debug("%s: stripe %llu\n", __func__
,
1225 (unsigned long long)sh
->sector
);
1227 /* check if prexor is active which means only process blocks
1228 * that are part of a read-modify-write (written)
1230 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1232 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1233 for (i
= disks
; i
--; ) {
1234 struct r5dev
*dev
= &sh
->dev
[i
];
1236 xor_srcs
[count
++] = dev
->page
;
1239 xor_dest
= sh
->dev
[pd_idx
].page
;
1240 for (i
= disks
; i
--; ) {
1241 struct r5dev
*dev
= &sh
->dev
[i
];
1243 xor_srcs
[count
++] = dev
->page
;
1247 /* 1/ if we prexor'd then the dest is reused as a source
1248 * 2/ if we did not prexor then we are redoing the parity
1249 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1250 * for the synchronous xor case
1252 flags
= ASYNC_TX_ACK
|
1253 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1255 atomic_inc(&sh
->count
);
1257 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, sh
,
1258 to_addr_conv(sh
, percpu
));
1259 if (unlikely(count
== 1))
1260 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1262 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1266 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1267 struct dma_async_tx_descriptor
*tx
)
1269 struct async_submit_ctl submit
;
1270 struct page
**blocks
= percpu
->scribble
;
1273 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1275 count
= set_syndrome_sources(blocks
, sh
);
1277 atomic_inc(&sh
->count
);
1279 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_reconstruct
,
1280 sh
, to_addr_conv(sh
, percpu
));
1281 async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1284 static void ops_complete_check(void *stripe_head_ref
)
1286 struct stripe_head
*sh
= stripe_head_ref
;
1288 pr_debug("%s: stripe %llu\n", __func__
,
1289 (unsigned long long)sh
->sector
);
1291 sh
->check_state
= check_state_check_result
;
1292 set_bit(STRIPE_HANDLE
, &sh
->state
);
1296 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1298 int disks
= sh
->disks
;
1299 int pd_idx
= sh
->pd_idx
;
1300 int qd_idx
= sh
->qd_idx
;
1301 struct page
*xor_dest
;
1302 struct page
**xor_srcs
= percpu
->scribble
;
1303 struct dma_async_tx_descriptor
*tx
;
1304 struct async_submit_ctl submit
;
1308 pr_debug("%s: stripe %llu\n", __func__
,
1309 (unsigned long long)sh
->sector
);
1312 xor_dest
= sh
->dev
[pd_idx
].page
;
1313 xor_srcs
[count
++] = xor_dest
;
1314 for (i
= disks
; i
--; ) {
1315 if (i
== pd_idx
|| i
== qd_idx
)
1317 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1320 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
1321 to_addr_conv(sh
, percpu
));
1322 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
1323 &sh
->ops
.zero_sum_result
, &submit
);
1325 atomic_inc(&sh
->count
);
1326 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
1327 tx
= async_trigger_callback(&submit
);
1330 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
1332 struct page
**srcs
= percpu
->scribble
;
1333 struct async_submit_ctl submit
;
1336 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
1337 (unsigned long long)sh
->sector
, checkp
);
1339 count
= set_syndrome_sources(srcs
, sh
);
1343 atomic_inc(&sh
->count
);
1344 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
1345 sh
, to_addr_conv(sh
, percpu
));
1346 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
1347 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
1350 static void __raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1352 int overlap_clear
= 0, i
, disks
= sh
->disks
;
1353 struct dma_async_tx_descriptor
*tx
= NULL
;
1354 struct r5conf
*conf
= sh
->raid_conf
;
1355 int level
= conf
->level
;
1356 struct raid5_percpu
*percpu
;
1360 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1361 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
1362 ops_run_biofill(sh
);
1366 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
1368 tx
= ops_run_compute5(sh
, percpu
);
1370 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
1371 tx
= ops_run_compute6_1(sh
, percpu
);
1373 tx
= ops_run_compute6_2(sh
, percpu
);
1375 /* terminate the chain if reconstruct is not set to be run */
1376 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
1380 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
))
1381 tx
= ops_run_prexor(sh
, percpu
, tx
);
1383 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
1384 tx
= ops_run_biodrain(sh
, tx
);
1388 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
1390 ops_run_reconstruct5(sh
, percpu
, tx
);
1392 ops_run_reconstruct6(sh
, percpu
, tx
);
1395 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
1396 if (sh
->check_state
== check_state_run
)
1397 ops_run_check_p(sh
, percpu
);
1398 else if (sh
->check_state
== check_state_run_q
)
1399 ops_run_check_pq(sh
, percpu
, 0);
1400 else if (sh
->check_state
== check_state_run_pq
)
1401 ops_run_check_pq(sh
, percpu
, 1);
1407 for (i
= disks
; i
--; ) {
1408 struct r5dev
*dev
= &sh
->dev
[i
];
1409 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1410 wake_up(&sh
->raid_conf
->wait_for_overlap
);
1415 #ifdef CONFIG_MULTICORE_RAID456
1416 static void async_run_ops(void *param
, async_cookie_t cookie
)
1418 struct stripe_head
*sh
= param
;
1419 unsigned long ops_request
= sh
->ops
.request
;
1421 clear_bit_unlock(STRIPE_OPS_REQ_PENDING
, &sh
->state
);
1422 wake_up(&sh
->ops
.wait_for_ops
);
1424 __raid_run_ops(sh
, ops_request
);
1428 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1430 /* since handle_stripe can be called outside of raid5d context
1431 * we need to ensure sh->ops.request is de-staged before another
1434 wait_event(sh
->ops
.wait_for_ops
,
1435 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING
, &sh
->state
));
1436 sh
->ops
.request
= ops_request
;
1438 atomic_inc(&sh
->count
);
1439 async_schedule(async_run_ops
, sh
);
1442 #define raid_run_ops __raid_run_ops
1445 static int grow_one_stripe(struct r5conf
*conf
)
1447 struct stripe_head
*sh
;
1448 sh
= kmem_cache_zalloc(conf
->slab_cache
, GFP_KERNEL
);
1452 sh
->raid_conf
= conf
;
1453 #ifdef CONFIG_MULTICORE_RAID456
1454 init_waitqueue_head(&sh
->ops
.wait_for_ops
);
1457 if (grow_buffers(sh
)) {
1459 kmem_cache_free(conf
->slab_cache
, sh
);
1462 /* we just created an active stripe so... */
1463 atomic_set(&sh
->count
, 1);
1464 atomic_inc(&conf
->active_stripes
);
1465 INIT_LIST_HEAD(&sh
->lru
);
1470 static int grow_stripes(struct r5conf
*conf
, int num
)
1472 struct kmem_cache
*sc
;
1473 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
1475 if (conf
->mddev
->gendisk
)
1476 sprintf(conf
->cache_name
[0],
1477 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
1479 sprintf(conf
->cache_name
[0],
1480 "raid%d-%p", conf
->level
, conf
->mddev
);
1481 sprintf(conf
->cache_name
[1], "%s-alt", conf
->cache_name
[0]);
1483 conf
->active_name
= 0;
1484 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
1485 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
1489 conf
->slab_cache
= sc
;
1490 conf
->pool_size
= devs
;
1492 if (!grow_one_stripe(conf
))
1498 * scribble_len - return the required size of the scribble region
1499 * @num - total number of disks in the array
1501 * The size must be enough to contain:
1502 * 1/ a struct page pointer for each device in the array +2
1503 * 2/ room to convert each entry in (1) to its corresponding dma
1504 * (dma_map_page()) or page (page_address()) address.
1506 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1507 * calculate over all devices (not just the data blocks), using zeros in place
1508 * of the P and Q blocks.
1510 static size_t scribble_len(int num
)
1514 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
1519 static int resize_stripes(struct r5conf
*conf
, int newsize
)
1521 /* Make all the stripes able to hold 'newsize' devices.
1522 * New slots in each stripe get 'page' set to a new page.
1524 * This happens in stages:
1525 * 1/ create a new kmem_cache and allocate the required number of
1527 * 2/ gather all the old stripe_heads and tranfer the pages across
1528 * to the new stripe_heads. This will have the side effect of
1529 * freezing the array as once all stripe_heads have been collected,
1530 * no IO will be possible. Old stripe heads are freed once their
1531 * pages have been transferred over, and the old kmem_cache is
1532 * freed when all stripes are done.
1533 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1534 * we simple return a failre status - no need to clean anything up.
1535 * 4/ allocate new pages for the new slots in the new stripe_heads.
1536 * If this fails, we don't bother trying the shrink the
1537 * stripe_heads down again, we just leave them as they are.
1538 * As each stripe_head is processed the new one is released into
1541 * Once step2 is started, we cannot afford to wait for a write,
1542 * so we use GFP_NOIO allocations.
1544 struct stripe_head
*osh
, *nsh
;
1545 LIST_HEAD(newstripes
);
1546 struct disk_info
*ndisks
;
1549 struct kmem_cache
*sc
;
1552 if (newsize
<= conf
->pool_size
)
1553 return 0; /* never bother to shrink */
1555 err
= md_allow_write(conf
->mddev
);
1560 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
1561 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
1566 for (i
= conf
->max_nr_stripes
; i
; i
--) {
1567 nsh
= kmem_cache_zalloc(sc
, GFP_KERNEL
);
1571 nsh
->raid_conf
= conf
;
1572 #ifdef CONFIG_MULTICORE_RAID456
1573 init_waitqueue_head(&nsh
->ops
.wait_for_ops
);
1576 list_add(&nsh
->lru
, &newstripes
);
1579 /* didn't get enough, give up */
1580 while (!list_empty(&newstripes
)) {
1581 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1582 list_del(&nsh
->lru
);
1583 kmem_cache_free(sc
, nsh
);
1585 kmem_cache_destroy(sc
);
1588 /* Step 2 - Must use GFP_NOIO now.
1589 * OK, we have enough stripes, start collecting inactive
1590 * stripes and copying them over
1592 list_for_each_entry(nsh
, &newstripes
, lru
) {
1593 spin_lock_irq(&conf
->device_lock
);
1594 wait_event_lock_irq(conf
->wait_for_stripe
,
1595 !list_empty(&conf
->inactive_list
),
1598 osh
= get_free_stripe(conf
);
1599 spin_unlock_irq(&conf
->device_lock
);
1600 atomic_set(&nsh
->count
, 1);
1601 for(i
=0; i
<conf
->pool_size
; i
++)
1602 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
1603 for( ; i
<newsize
; i
++)
1604 nsh
->dev
[i
].page
= NULL
;
1605 kmem_cache_free(conf
->slab_cache
, osh
);
1607 kmem_cache_destroy(conf
->slab_cache
);
1610 * At this point, we are holding all the stripes so the array
1611 * is completely stalled, so now is a good time to resize
1612 * conf->disks and the scribble region
1614 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
1616 for (i
=0; i
<conf
->raid_disks
; i
++)
1617 ndisks
[i
] = conf
->disks
[i
];
1619 conf
->disks
= ndisks
;
1624 conf
->scribble_len
= scribble_len(newsize
);
1625 for_each_present_cpu(cpu
) {
1626 struct raid5_percpu
*percpu
;
1629 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1630 scribble
= kmalloc(conf
->scribble_len
, GFP_NOIO
);
1633 kfree(percpu
->scribble
);
1634 percpu
->scribble
= scribble
;
1642 /* Step 4, return new stripes to service */
1643 while(!list_empty(&newstripes
)) {
1644 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1645 list_del_init(&nsh
->lru
);
1647 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
1648 if (nsh
->dev
[i
].page
== NULL
) {
1649 struct page
*p
= alloc_page(GFP_NOIO
);
1650 nsh
->dev
[i
].page
= p
;
1654 release_stripe(nsh
);
1656 /* critical section pass, GFP_NOIO no longer needed */
1658 conf
->slab_cache
= sc
;
1659 conf
->active_name
= 1-conf
->active_name
;
1660 conf
->pool_size
= newsize
;
1664 static int drop_one_stripe(struct r5conf
*conf
)
1666 struct stripe_head
*sh
;
1668 spin_lock_irq(&conf
->device_lock
);
1669 sh
= get_free_stripe(conf
);
1670 spin_unlock_irq(&conf
->device_lock
);
1673 BUG_ON(atomic_read(&sh
->count
));
1675 kmem_cache_free(conf
->slab_cache
, sh
);
1676 atomic_dec(&conf
->active_stripes
);
1680 static void shrink_stripes(struct r5conf
*conf
)
1682 while (drop_one_stripe(conf
))
1685 if (conf
->slab_cache
)
1686 kmem_cache_destroy(conf
->slab_cache
);
1687 conf
->slab_cache
= NULL
;
1690 static void raid5_end_read_request(struct bio
* bi
, int error
)
1692 struct stripe_head
*sh
= bi
->bi_private
;
1693 struct r5conf
*conf
= sh
->raid_conf
;
1694 int disks
= sh
->disks
, i
;
1695 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1696 char b
[BDEVNAME_SIZE
];
1697 struct md_rdev
*rdev
= NULL
;
1700 for (i
=0 ; i
<disks
; i
++)
1701 if (bi
== &sh
->dev
[i
].req
)
1704 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1705 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1711 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
1712 /* If replacement finished while this request was outstanding,
1713 * 'replacement' might be NULL already.
1714 * In that case it moved down to 'rdev'.
1715 * rdev is not removed until all requests are finished.
1717 rdev
= conf
->disks
[i
].replacement
;
1719 rdev
= conf
->disks
[i
].rdev
;
1721 if (use_new_offset(conf
, sh
))
1722 s
= sh
->sector
+ rdev
->new_data_offset
;
1724 s
= sh
->sector
+ rdev
->data_offset
;
1726 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1727 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1728 /* Note that this cannot happen on a
1729 * replacement device. We just fail those on
1734 "md/raid:%s: read error corrected"
1735 " (%lu sectors at %llu on %s)\n",
1736 mdname(conf
->mddev
), STRIPE_SECTORS
,
1737 (unsigned long long)s
,
1738 bdevname(rdev
->bdev
, b
));
1739 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
1740 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1741 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1743 if (atomic_read(&rdev
->read_errors
))
1744 atomic_set(&rdev
->read_errors
, 0);
1746 const char *bdn
= bdevname(rdev
->bdev
, b
);
1750 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1751 atomic_inc(&rdev
->read_errors
);
1752 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
1755 "md/raid:%s: read error on replacement device "
1756 "(sector %llu on %s).\n",
1757 mdname(conf
->mddev
),
1758 (unsigned long long)s
,
1760 else if (conf
->mddev
->degraded
>= conf
->max_degraded
) {
1764 "md/raid:%s: read error not correctable "
1765 "(sector %llu on %s).\n",
1766 mdname(conf
->mddev
),
1767 (unsigned long long)s
,
1769 } else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
)) {
1774 "md/raid:%s: read error NOT corrected!! "
1775 "(sector %llu on %s).\n",
1776 mdname(conf
->mddev
),
1777 (unsigned long long)s
,
1779 } else if (atomic_read(&rdev
->read_errors
)
1780 > conf
->max_nr_stripes
)
1782 "md/raid:%s: Too many read errors, failing device %s.\n",
1783 mdname(conf
->mddev
), bdn
);
1787 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1789 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1790 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1792 && test_bit(In_sync
, &rdev
->flags
)
1793 && rdev_set_badblocks(
1794 rdev
, sh
->sector
, STRIPE_SECTORS
, 0)))
1795 md_error(conf
->mddev
, rdev
);
1798 rdev_dec_pending(rdev
, conf
->mddev
);
1799 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1800 set_bit(STRIPE_HANDLE
, &sh
->state
);
1804 static void raid5_end_write_request(struct bio
*bi
, int error
)
1806 struct stripe_head
*sh
= bi
->bi_private
;
1807 struct r5conf
*conf
= sh
->raid_conf
;
1808 int disks
= sh
->disks
, i
;
1809 struct md_rdev
*uninitialized_var(rdev
);
1810 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1813 int replacement
= 0;
1815 for (i
= 0 ; i
< disks
; i
++) {
1816 if (bi
== &sh
->dev
[i
].req
) {
1817 rdev
= conf
->disks
[i
].rdev
;
1820 if (bi
== &sh
->dev
[i
].rreq
) {
1821 rdev
= conf
->disks
[i
].replacement
;
1825 /* rdev was removed and 'replacement'
1826 * replaced it. rdev is not removed
1827 * until all requests are finished.
1829 rdev
= conf
->disks
[i
].rdev
;
1833 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1834 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1843 md_error(conf
->mddev
, rdev
);
1844 else if (is_badblock(rdev
, sh
->sector
,
1846 &first_bad
, &bad_sectors
))
1847 set_bit(R5_MadeGoodRepl
, &sh
->dev
[i
].flags
);
1850 set_bit(WriteErrorSeen
, &rdev
->flags
);
1851 set_bit(R5_WriteError
, &sh
->dev
[i
].flags
);
1852 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1853 set_bit(MD_RECOVERY_NEEDED
,
1854 &rdev
->mddev
->recovery
);
1855 } else if (is_badblock(rdev
, sh
->sector
,
1857 &first_bad
, &bad_sectors
))
1858 set_bit(R5_MadeGood
, &sh
->dev
[i
].flags
);
1860 rdev_dec_pending(rdev
, conf
->mddev
);
1862 if (!test_and_clear_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
))
1863 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1864 set_bit(STRIPE_HANDLE
, &sh
->state
);
1868 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
);
1870 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
)
1872 struct r5dev
*dev
= &sh
->dev
[i
];
1874 bio_init(&dev
->req
);
1875 dev
->req
.bi_io_vec
= &dev
->vec
;
1877 dev
->req
.bi_max_vecs
++;
1878 dev
->req
.bi_private
= sh
;
1879 dev
->vec
.bv_page
= dev
->page
;
1881 bio_init(&dev
->rreq
);
1882 dev
->rreq
.bi_io_vec
= &dev
->rvec
;
1883 dev
->rreq
.bi_vcnt
++;
1884 dev
->rreq
.bi_max_vecs
++;
1885 dev
->rreq
.bi_private
= sh
;
1886 dev
->rvec
.bv_page
= dev
->page
;
1889 dev
->sector
= compute_blocknr(sh
, i
, previous
);
1892 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1894 char b
[BDEVNAME_SIZE
];
1895 struct r5conf
*conf
= mddev
->private;
1896 unsigned long flags
;
1897 pr_debug("raid456: error called\n");
1899 spin_lock_irqsave(&conf
->device_lock
, flags
);
1900 clear_bit(In_sync
, &rdev
->flags
);
1901 mddev
->degraded
= calc_degraded(conf
);
1902 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1903 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1905 set_bit(Blocked
, &rdev
->flags
);
1906 set_bit(Faulty
, &rdev
->flags
);
1907 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1909 "md/raid:%s: Disk failure on %s, disabling device.\n"
1910 "md/raid:%s: Operation continuing on %d devices.\n",
1912 bdevname(rdev
->bdev
, b
),
1914 conf
->raid_disks
- mddev
->degraded
);
1918 * Input: a 'big' sector number,
1919 * Output: index of the data and parity disk, and the sector # in them.
1921 static sector_t
raid5_compute_sector(struct r5conf
*conf
, sector_t r_sector
,
1922 int previous
, int *dd_idx
,
1923 struct stripe_head
*sh
)
1925 sector_t stripe
, stripe2
;
1926 sector_t chunk_number
;
1927 unsigned int chunk_offset
;
1930 sector_t new_sector
;
1931 int algorithm
= previous
? conf
->prev_algo
1933 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
1934 : conf
->chunk_sectors
;
1935 int raid_disks
= previous
? conf
->previous_raid_disks
1937 int data_disks
= raid_disks
- conf
->max_degraded
;
1939 /* First compute the information on this sector */
1942 * Compute the chunk number and the sector offset inside the chunk
1944 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
1945 chunk_number
= r_sector
;
1948 * Compute the stripe number
1950 stripe
= chunk_number
;
1951 *dd_idx
= sector_div(stripe
, data_disks
);
1954 * Select the parity disk based on the user selected algorithm.
1956 pd_idx
= qd_idx
= -1;
1957 switch(conf
->level
) {
1959 pd_idx
= data_disks
;
1962 switch (algorithm
) {
1963 case ALGORITHM_LEFT_ASYMMETRIC
:
1964 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
1965 if (*dd_idx
>= pd_idx
)
1968 case ALGORITHM_RIGHT_ASYMMETRIC
:
1969 pd_idx
= sector_div(stripe2
, raid_disks
);
1970 if (*dd_idx
>= pd_idx
)
1973 case ALGORITHM_LEFT_SYMMETRIC
:
1974 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
1975 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1977 case ALGORITHM_RIGHT_SYMMETRIC
:
1978 pd_idx
= sector_div(stripe2
, raid_disks
);
1979 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1981 case ALGORITHM_PARITY_0
:
1985 case ALGORITHM_PARITY_N
:
1986 pd_idx
= data_disks
;
1994 switch (algorithm
) {
1995 case ALGORITHM_LEFT_ASYMMETRIC
:
1996 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1997 qd_idx
= pd_idx
+ 1;
1998 if (pd_idx
== raid_disks
-1) {
1999 (*dd_idx
)++; /* Q D D D P */
2001 } else if (*dd_idx
>= pd_idx
)
2002 (*dd_idx
) += 2; /* D D P Q D */
2004 case ALGORITHM_RIGHT_ASYMMETRIC
:
2005 pd_idx
= sector_div(stripe2
, raid_disks
);
2006 qd_idx
= pd_idx
+ 1;
2007 if (pd_idx
== raid_disks
-1) {
2008 (*dd_idx
)++; /* Q D D D P */
2010 } else if (*dd_idx
>= pd_idx
)
2011 (*dd_idx
) += 2; /* D D P Q D */
2013 case ALGORITHM_LEFT_SYMMETRIC
:
2014 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2015 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2016 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2018 case ALGORITHM_RIGHT_SYMMETRIC
:
2019 pd_idx
= sector_div(stripe2
, raid_disks
);
2020 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2021 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2024 case ALGORITHM_PARITY_0
:
2029 case ALGORITHM_PARITY_N
:
2030 pd_idx
= data_disks
;
2031 qd_idx
= data_disks
+ 1;
2034 case ALGORITHM_ROTATING_ZERO_RESTART
:
2035 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2036 * of blocks for computing Q is different.
2038 pd_idx
= sector_div(stripe2
, raid_disks
);
2039 qd_idx
= pd_idx
+ 1;
2040 if (pd_idx
== raid_disks
-1) {
2041 (*dd_idx
)++; /* Q D D D P */
2043 } else if (*dd_idx
>= pd_idx
)
2044 (*dd_idx
) += 2; /* D D P Q D */
2048 case ALGORITHM_ROTATING_N_RESTART
:
2049 /* Same a left_asymmetric, by first stripe is
2050 * D D D P Q rather than
2054 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2055 qd_idx
= pd_idx
+ 1;
2056 if (pd_idx
== raid_disks
-1) {
2057 (*dd_idx
)++; /* Q D D D P */
2059 } else if (*dd_idx
>= pd_idx
)
2060 (*dd_idx
) += 2; /* D D P Q D */
2064 case ALGORITHM_ROTATING_N_CONTINUE
:
2065 /* Same as left_symmetric but Q is before P */
2066 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2067 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
2068 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2072 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2073 /* RAID5 left_asymmetric, with Q on last device */
2074 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2075 if (*dd_idx
>= pd_idx
)
2077 qd_idx
= raid_disks
- 1;
2080 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2081 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2082 if (*dd_idx
>= pd_idx
)
2084 qd_idx
= raid_disks
- 1;
2087 case ALGORITHM_LEFT_SYMMETRIC_6
:
2088 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2089 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2090 qd_idx
= raid_disks
- 1;
2093 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2094 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2095 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2096 qd_idx
= raid_disks
- 1;
2099 case ALGORITHM_PARITY_0_6
:
2102 qd_idx
= raid_disks
- 1;
2112 sh
->pd_idx
= pd_idx
;
2113 sh
->qd_idx
= qd_idx
;
2114 sh
->ddf_layout
= ddf_layout
;
2117 * Finally, compute the new sector number
2119 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
2124 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
2126 struct r5conf
*conf
= sh
->raid_conf
;
2127 int raid_disks
= sh
->disks
;
2128 int data_disks
= raid_disks
- conf
->max_degraded
;
2129 sector_t new_sector
= sh
->sector
, check
;
2130 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2131 : conf
->chunk_sectors
;
2132 int algorithm
= previous
? conf
->prev_algo
2136 sector_t chunk_number
;
2137 int dummy1
, dd_idx
= i
;
2139 struct stripe_head sh2
;
2142 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
2143 stripe
= new_sector
;
2145 if (i
== sh
->pd_idx
)
2147 switch(conf
->level
) {
2150 switch (algorithm
) {
2151 case ALGORITHM_LEFT_ASYMMETRIC
:
2152 case ALGORITHM_RIGHT_ASYMMETRIC
:
2156 case ALGORITHM_LEFT_SYMMETRIC
:
2157 case ALGORITHM_RIGHT_SYMMETRIC
:
2160 i
-= (sh
->pd_idx
+ 1);
2162 case ALGORITHM_PARITY_0
:
2165 case ALGORITHM_PARITY_N
:
2172 if (i
== sh
->qd_idx
)
2173 return 0; /* It is the Q disk */
2174 switch (algorithm
) {
2175 case ALGORITHM_LEFT_ASYMMETRIC
:
2176 case ALGORITHM_RIGHT_ASYMMETRIC
:
2177 case ALGORITHM_ROTATING_ZERO_RESTART
:
2178 case ALGORITHM_ROTATING_N_RESTART
:
2179 if (sh
->pd_idx
== raid_disks
-1)
2180 i
--; /* Q D D D P */
2181 else if (i
> sh
->pd_idx
)
2182 i
-= 2; /* D D P Q D */
2184 case ALGORITHM_LEFT_SYMMETRIC
:
2185 case ALGORITHM_RIGHT_SYMMETRIC
:
2186 if (sh
->pd_idx
== raid_disks
-1)
2187 i
--; /* Q D D D P */
2192 i
-= (sh
->pd_idx
+ 2);
2195 case ALGORITHM_PARITY_0
:
2198 case ALGORITHM_PARITY_N
:
2200 case ALGORITHM_ROTATING_N_CONTINUE
:
2201 /* Like left_symmetric, but P is before Q */
2202 if (sh
->pd_idx
== 0)
2203 i
--; /* P D D D Q */
2208 i
-= (sh
->pd_idx
+ 1);
2211 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2212 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2216 case ALGORITHM_LEFT_SYMMETRIC_6
:
2217 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2219 i
+= data_disks
+ 1;
2220 i
-= (sh
->pd_idx
+ 1);
2222 case ALGORITHM_PARITY_0_6
:
2231 chunk_number
= stripe
* data_disks
+ i
;
2232 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
2234 check
= raid5_compute_sector(conf
, r_sector
,
2235 previous
, &dummy1
, &sh2
);
2236 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
2237 || sh2
.qd_idx
!= sh
->qd_idx
) {
2238 printk(KERN_ERR
"md/raid:%s: compute_blocknr: map not correct\n",
2239 mdname(conf
->mddev
));
2247 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2248 int rcw
, int expand
)
2250 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
2251 struct r5conf
*conf
= sh
->raid_conf
;
2252 int level
= conf
->level
;
2255 /* if we are not expanding this is a proper write request, and
2256 * there will be bios with new data to be drained into the
2260 sh
->reconstruct_state
= reconstruct_state_drain_run
;
2261 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2263 sh
->reconstruct_state
= reconstruct_state_run
;
2265 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2267 for (i
= disks
; i
--; ) {
2268 struct r5dev
*dev
= &sh
->dev
[i
];
2271 set_bit(R5_LOCKED
, &dev
->flags
);
2272 set_bit(R5_Wantdrain
, &dev
->flags
);
2274 clear_bit(R5_UPTODATE
, &dev
->flags
);
2278 if (s
->locked
+ conf
->max_degraded
== disks
)
2279 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2280 atomic_inc(&conf
->pending_full_writes
);
2283 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
2284 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
2286 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
2287 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
2288 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2289 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2291 for (i
= disks
; i
--; ) {
2292 struct r5dev
*dev
= &sh
->dev
[i
];
2297 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
2298 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2299 set_bit(R5_Wantdrain
, &dev
->flags
);
2300 set_bit(R5_LOCKED
, &dev
->flags
);
2301 clear_bit(R5_UPTODATE
, &dev
->flags
);
2307 /* keep the parity disk(s) locked while asynchronous operations
2310 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
2311 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2315 int qd_idx
= sh
->qd_idx
;
2316 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
2318 set_bit(R5_LOCKED
, &dev
->flags
);
2319 clear_bit(R5_UPTODATE
, &dev
->flags
);
2323 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2324 __func__
, (unsigned long long)sh
->sector
,
2325 s
->locked
, s
->ops_request
);
2329 * Each stripe/dev can have one or more bion attached.
2330 * toread/towrite point to the first in a chain.
2331 * The bi_next chain must be in order.
2333 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
2336 struct r5conf
*conf
= sh
->raid_conf
;
2339 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2340 (unsigned long long)bi
->bi_sector
,
2341 (unsigned long long)sh
->sector
);
2344 spin_lock_irq(&conf
->device_lock
);
2346 bip
= &sh
->dev
[dd_idx
].towrite
;
2347 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
2350 bip
= &sh
->dev
[dd_idx
].toread
;
2351 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
2352 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
2354 bip
= & (*bip
)->bi_next
;
2356 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
2359 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
2363 bi
->bi_phys_segments
++;
2366 /* check if page is covered */
2367 sector_t sector
= sh
->dev
[dd_idx
].sector
;
2368 for (bi
=sh
->dev
[dd_idx
].towrite
;
2369 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
2370 bi
&& bi
->bi_sector
<= sector
;
2371 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
2372 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
2373 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
2375 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
2376 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
2378 spin_unlock_irq(&conf
->device_lock
);
2380 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2381 (unsigned long long)(*bip
)->bi_sector
,
2382 (unsigned long long)sh
->sector
, dd_idx
);
2384 if (conf
->mddev
->bitmap
&& firstwrite
) {
2385 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
2387 sh
->bm_seq
= conf
->seq_flush
+1;
2388 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
2393 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
2394 spin_unlock_irq(&conf
->device_lock
);
2398 static void end_reshape(struct r5conf
*conf
);
2400 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
2401 struct stripe_head
*sh
)
2403 int sectors_per_chunk
=
2404 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
2406 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
2407 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
2409 raid5_compute_sector(conf
,
2410 stripe
* (disks
- conf
->max_degraded
)
2411 *sectors_per_chunk
+ chunk_offset
,
2417 handle_failed_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
2418 struct stripe_head_state
*s
, int disks
,
2419 struct bio
**return_bi
)
2422 for (i
= disks
; i
--; ) {
2426 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2427 struct md_rdev
*rdev
;
2429 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2430 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
2431 atomic_inc(&rdev
->nr_pending
);
2436 if (!rdev_set_badblocks(
2440 md_error(conf
->mddev
, rdev
);
2441 rdev_dec_pending(rdev
, conf
->mddev
);
2444 spin_lock_irq(&conf
->device_lock
);
2445 /* fail all writes first */
2446 bi
= sh
->dev
[i
].towrite
;
2447 sh
->dev
[i
].towrite
= NULL
;
2453 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2454 wake_up(&conf
->wait_for_overlap
);
2456 while (bi
&& bi
->bi_sector
<
2457 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2458 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2459 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2460 if (!raid5_dec_bi_phys_segments(bi
)) {
2461 md_write_end(conf
->mddev
);
2462 bi
->bi_next
= *return_bi
;
2467 /* and fail all 'written' */
2468 bi
= sh
->dev
[i
].written
;
2469 sh
->dev
[i
].written
= NULL
;
2470 if (bi
) bitmap_end
= 1;
2471 while (bi
&& bi
->bi_sector
<
2472 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2473 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2474 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2475 if (!raid5_dec_bi_phys_segments(bi
)) {
2476 md_write_end(conf
->mddev
);
2477 bi
->bi_next
= *return_bi
;
2483 /* fail any reads if this device is non-operational and
2484 * the data has not reached the cache yet.
2486 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
2487 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
2488 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
2489 bi
= sh
->dev
[i
].toread
;
2490 sh
->dev
[i
].toread
= NULL
;
2491 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2492 wake_up(&conf
->wait_for_overlap
);
2493 if (bi
) s
->to_read
--;
2494 while (bi
&& bi
->bi_sector
<
2495 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2496 struct bio
*nextbi
=
2497 r5_next_bio(bi
, sh
->dev
[i
].sector
);
2498 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2499 if (!raid5_dec_bi_phys_segments(bi
)) {
2500 bi
->bi_next
= *return_bi
;
2506 spin_unlock_irq(&conf
->device_lock
);
2508 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2509 STRIPE_SECTORS
, 0, 0);
2510 /* If we were in the middle of a write the parity block might
2511 * still be locked - so just clear all R5_LOCKED flags
2513 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2516 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2517 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2518 md_wakeup_thread(conf
->mddev
->thread
);
2522 handle_failed_sync(struct r5conf
*conf
, struct stripe_head
*sh
,
2523 struct stripe_head_state
*s
)
2528 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2531 /* There is nothing more to do for sync/check/repair.
2532 * Don't even need to abort as that is handled elsewhere
2533 * if needed, and not always wanted e.g. if there is a known
2535 * For recover/replace we need to record a bad block on all
2536 * non-sync devices, or abort the recovery
2538 if (test_bit(MD_RECOVERY_RECOVER
, &conf
->mddev
->recovery
)) {
2539 /* During recovery devices cannot be removed, so
2540 * locking and refcounting of rdevs is not needed
2542 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2543 struct md_rdev
*rdev
= conf
->disks
[i
].rdev
;
2545 && !test_bit(Faulty
, &rdev
->flags
)
2546 && !test_bit(In_sync
, &rdev
->flags
)
2547 && !rdev_set_badblocks(rdev
, sh
->sector
,
2550 rdev
= conf
->disks
[i
].replacement
;
2552 && !test_bit(Faulty
, &rdev
->flags
)
2553 && !test_bit(In_sync
, &rdev
->flags
)
2554 && !rdev_set_badblocks(rdev
, sh
->sector
,
2559 conf
->recovery_disabled
=
2560 conf
->mddev
->recovery_disabled
;
2562 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, !abort
);
2565 static int want_replace(struct stripe_head
*sh
, int disk_idx
)
2567 struct md_rdev
*rdev
;
2569 /* Doing recovery so rcu locking not required */
2570 rdev
= sh
->raid_conf
->disks
[disk_idx
].replacement
;
2572 && !test_bit(Faulty
, &rdev
->flags
)
2573 && !test_bit(In_sync
, &rdev
->flags
)
2574 && (rdev
->recovery_offset
<= sh
->sector
2575 || rdev
->mddev
->recovery_cp
<= sh
->sector
))
2581 /* fetch_block - checks the given member device to see if its data needs
2582 * to be read or computed to satisfy a request.
2584 * Returns 1 when no more member devices need to be checked, otherwise returns
2585 * 0 to tell the loop in handle_stripe_fill to continue
2587 static int fetch_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2588 int disk_idx
, int disks
)
2590 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2591 struct r5dev
*fdev
[2] = { &sh
->dev
[s
->failed_num
[0]],
2592 &sh
->dev
[s
->failed_num
[1]] };
2594 /* is the data in this block needed, and can we get it? */
2595 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2596 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2598 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2599 s
->syncing
|| s
->expanding
||
2600 (s
->replacing
&& want_replace(sh
, disk_idx
)) ||
2601 (s
->failed
>= 1 && fdev
[0]->toread
) ||
2602 (s
->failed
>= 2 && fdev
[1]->toread
) ||
2603 (sh
->raid_conf
->level
<= 5 && s
->failed
&& fdev
[0]->towrite
&&
2604 !test_bit(R5_OVERWRITE
, &fdev
[0]->flags
)) ||
2605 (sh
->raid_conf
->level
== 6 && s
->failed
&& s
->to_write
))) {
2606 /* we would like to get this block, possibly by computing it,
2607 * otherwise read it if the backing disk is insync
2609 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
2610 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
2611 if ((s
->uptodate
== disks
- 1) &&
2612 (s
->failed
&& (disk_idx
== s
->failed_num
[0] ||
2613 disk_idx
== s
->failed_num
[1]))) {
2614 /* have disk failed, and we're requested to fetch it;
2617 pr_debug("Computing stripe %llu block %d\n",
2618 (unsigned long long)sh
->sector
, disk_idx
);
2619 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2620 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2621 set_bit(R5_Wantcompute
, &dev
->flags
);
2622 sh
->ops
.target
= disk_idx
;
2623 sh
->ops
.target2
= -1; /* no 2nd target */
2625 /* Careful: from this point on 'uptodate' is in the eye
2626 * of raid_run_ops which services 'compute' operations
2627 * before writes. R5_Wantcompute flags a block that will
2628 * be R5_UPTODATE by the time it is needed for a
2629 * subsequent operation.
2633 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
2634 /* Computing 2-failure is *very* expensive; only
2635 * do it if failed >= 2
2638 for (other
= disks
; other
--; ) {
2639 if (other
== disk_idx
)
2641 if (!test_bit(R5_UPTODATE
,
2642 &sh
->dev
[other
].flags
))
2646 pr_debug("Computing stripe %llu blocks %d,%d\n",
2647 (unsigned long long)sh
->sector
,
2649 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2650 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2651 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
2652 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
2653 sh
->ops
.target
= disk_idx
;
2654 sh
->ops
.target2
= other
;
2658 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2659 set_bit(R5_LOCKED
, &dev
->flags
);
2660 set_bit(R5_Wantread
, &dev
->flags
);
2662 pr_debug("Reading block %d (sync=%d)\n",
2663 disk_idx
, s
->syncing
);
2671 * handle_stripe_fill - read or compute data to satisfy pending requests.
2673 static void handle_stripe_fill(struct stripe_head
*sh
,
2674 struct stripe_head_state
*s
,
2679 /* look for blocks to read/compute, skip this if a compute
2680 * is already in flight, or if the stripe contents are in the
2681 * midst of changing due to a write
2683 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
2684 !sh
->reconstruct_state
)
2685 for (i
= disks
; i
--; )
2686 if (fetch_block(sh
, s
, i
, disks
))
2688 set_bit(STRIPE_HANDLE
, &sh
->state
);
2692 /* handle_stripe_clean_event
2693 * any written block on an uptodate or failed drive can be returned.
2694 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2695 * never LOCKED, so we don't need to test 'failed' directly.
2697 static void handle_stripe_clean_event(struct r5conf
*conf
,
2698 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2703 for (i
= disks
; i
--; )
2704 if (sh
->dev
[i
].written
) {
2706 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2707 test_bit(R5_UPTODATE
, &dev
->flags
)) {
2708 /* We can return any write requests */
2709 struct bio
*wbi
, *wbi2
;
2711 pr_debug("Return write for disc %d\n", i
);
2712 spin_lock_irq(&conf
->device_lock
);
2714 dev
->written
= NULL
;
2715 while (wbi
&& wbi
->bi_sector
<
2716 dev
->sector
+ STRIPE_SECTORS
) {
2717 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2718 if (!raid5_dec_bi_phys_segments(wbi
)) {
2719 md_write_end(conf
->mddev
);
2720 wbi
->bi_next
= *return_bi
;
2725 if (dev
->towrite
== NULL
)
2727 spin_unlock_irq(&conf
->device_lock
);
2729 bitmap_endwrite(conf
->mddev
->bitmap
,
2732 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
2737 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2738 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2739 md_wakeup_thread(conf
->mddev
->thread
);
2742 static void handle_stripe_dirtying(struct r5conf
*conf
,
2743 struct stripe_head
*sh
,
2744 struct stripe_head_state
*s
,
2747 int rmw
= 0, rcw
= 0, i
;
2748 if (conf
->max_degraded
== 2) {
2749 /* RAID6 requires 'rcw' in current implementation
2750 * Calculate the real rcw later - for now fake it
2751 * look like rcw is cheaper
2754 } else for (i
= disks
; i
--; ) {
2755 /* would I have to read this buffer for read_modify_write */
2756 struct r5dev
*dev
= &sh
->dev
[i
];
2757 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2758 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2759 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2760 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2761 if (test_bit(R5_Insync
, &dev
->flags
))
2764 rmw
+= 2*disks
; /* cannot read it */
2766 /* Would I have to read this buffer for reconstruct_write */
2767 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
2768 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2769 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2770 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2771 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2776 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2777 (unsigned long long)sh
->sector
, rmw
, rcw
);
2778 set_bit(STRIPE_HANDLE
, &sh
->state
);
2779 if (rmw
< rcw
&& rmw
> 0)
2780 /* prefer read-modify-write, but need to get some data */
2781 for (i
= disks
; i
--; ) {
2782 struct r5dev
*dev
= &sh
->dev
[i
];
2783 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2784 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2785 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2786 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2787 test_bit(R5_Insync
, &dev
->flags
)) {
2789 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2790 pr_debug("Read_old block "
2791 "%d for r-m-w\n", i
);
2792 set_bit(R5_LOCKED
, &dev
->flags
);
2793 set_bit(R5_Wantread
, &dev
->flags
);
2796 set_bit(STRIPE_DELAYED
, &sh
->state
);
2797 set_bit(STRIPE_HANDLE
, &sh
->state
);
2801 if (rcw
<= rmw
&& rcw
> 0) {
2802 /* want reconstruct write, but need to get some data */
2804 for (i
= disks
; i
--; ) {
2805 struct r5dev
*dev
= &sh
->dev
[i
];
2806 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2807 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
2808 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2809 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2810 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2812 if (!test_bit(R5_Insync
, &dev
->flags
))
2813 continue; /* it's a failed drive */
2815 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2816 pr_debug("Read_old block "
2817 "%d for Reconstruct\n", i
);
2818 set_bit(R5_LOCKED
, &dev
->flags
);
2819 set_bit(R5_Wantread
, &dev
->flags
);
2822 set_bit(STRIPE_DELAYED
, &sh
->state
);
2823 set_bit(STRIPE_HANDLE
, &sh
->state
);
2828 /* now if nothing is locked, and if we have enough data,
2829 * we can start a write request
2831 /* since handle_stripe can be called at any time we need to handle the
2832 * case where a compute block operation has been submitted and then a
2833 * subsequent call wants to start a write request. raid_run_ops only
2834 * handles the case where compute block and reconstruct are requested
2835 * simultaneously. If this is not the case then new writes need to be
2836 * held off until the compute completes.
2838 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
2839 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
2840 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
2841 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
2844 static void handle_parity_checks5(struct r5conf
*conf
, struct stripe_head
*sh
,
2845 struct stripe_head_state
*s
, int disks
)
2847 struct r5dev
*dev
= NULL
;
2849 set_bit(STRIPE_HANDLE
, &sh
->state
);
2851 switch (sh
->check_state
) {
2852 case check_state_idle
:
2853 /* start a new check operation if there are no failures */
2854 if (s
->failed
== 0) {
2855 BUG_ON(s
->uptodate
!= disks
);
2856 sh
->check_state
= check_state_run
;
2857 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2858 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2862 dev
= &sh
->dev
[s
->failed_num
[0]];
2864 case check_state_compute_result
:
2865 sh
->check_state
= check_state_idle
;
2867 dev
= &sh
->dev
[sh
->pd_idx
];
2869 /* check that a write has not made the stripe insync */
2870 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2873 /* either failed parity check, or recovery is happening */
2874 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
2875 BUG_ON(s
->uptodate
!= disks
);
2877 set_bit(R5_LOCKED
, &dev
->flags
);
2879 set_bit(R5_Wantwrite
, &dev
->flags
);
2881 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2882 set_bit(STRIPE_INSYNC
, &sh
->state
);
2884 case check_state_run
:
2885 break; /* we will be called again upon completion */
2886 case check_state_check_result
:
2887 sh
->check_state
= check_state_idle
;
2889 /* if a failure occurred during the check operation, leave
2890 * STRIPE_INSYNC not set and let the stripe be handled again
2895 /* handle a successful check operation, if parity is correct
2896 * we are done. Otherwise update the mismatch count and repair
2897 * parity if !MD_RECOVERY_CHECK
2899 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
2900 /* parity is correct (on disc,
2901 * not in buffer any more)
2903 set_bit(STRIPE_INSYNC
, &sh
->state
);
2905 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2906 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2907 /* don't try to repair!! */
2908 set_bit(STRIPE_INSYNC
, &sh
->state
);
2910 sh
->check_state
= check_state_compute_run
;
2911 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2912 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2913 set_bit(R5_Wantcompute
,
2914 &sh
->dev
[sh
->pd_idx
].flags
);
2915 sh
->ops
.target
= sh
->pd_idx
;
2916 sh
->ops
.target2
= -1;
2921 case check_state_compute_run
:
2924 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2925 __func__
, sh
->check_state
,
2926 (unsigned long long) sh
->sector
);
2932 static void handle_parity_checks6(struct r5conf
*conf
, struct stripe_head
*sh
,
2933 struct stripe_head_state
*s
,
2936 int pd_idx
= sh
->pd_idx
;
2937 int qd_idx
= sh
->qd_idx
;
2940 set_bit(STRIPE_HANDLE
, &sh
->state
);
2942 BUG_ON(s
->failed
> 2);
2944 /* Want to check and possibly repair P and Q.
2945 * However there could be one 'failed' device, in which
2946 * case we can only check one of them, possibly using the
2947 * other to generate missing data
2950 switch (sh
->check_state
) {
2951 case check_state_idle
:
2952 /* start a new check operation if there are < 2 failures */
2953 if (s
->failed
== s
->q_failed
) {
2954 /* The only possible failed device holds Q, so it
2955 * makes sense to check P (If anything else were failed,
2956 * we would have used P to recreate it).
2958 sh
->check_state
= check_state_run
;
2960 if (!s
->q_failed
&& s
->failed
< 2) {
2961 /* Q is not failed, and we didn't use it to generate
2962 * anything, so it makes sense to check it
2964 if (sh
->check_state
== check_state_run
)
2965 sh
->check_state
= check_state_run_pq
;
2967 sh
->check_state
= check_state_run_q
;
2970 /* discard potentially stale zero_sum_result */
2971 sh
->ops
.zero_sum_result
= 0;
2973 if (sh
->check_state
== check_state_run
) {
2974 /* async_xor_zero_sum destroys the contents of P */
2975 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2978 if (sh
->check_state
>= check_state_run
&&
2979 sh
->check_state
<= check_state_run_pq
) {
2980 /* async_syndrome_zero_sum preserves P and Q, so
2981 * no need to mark them !uptodate here
2983 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2987 /* we have 2-disk failure */
2988 BUG_ON(s
->failed
!= 2);
2990 case check_state_compute_result
:
2991 sh
->check_state
= check_state_idle
;
2993 /* check that a write has not made the stripe insync */
2994 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2997 /* now write out any block on a failed drive,
2998 * or P or Q if they were recomputed
3000 BUG_ON(s
->uptodate
< disks
- 1); /* We don't need Q to recover */
3001 if (s
->failed
== 2) {
3002 dev
= &sh
->dev
[s
->failed_num
[1]];
3004 set_bit(R5_LOCKED
, &dev
->flags
);
3005 set_bit(R5_Wantwrite
, &dev
->flags
);
3007 if (s
->failed
>= 1) {
3008 dev
= &sh
->dev
[s
->failed_num
[0]];
3010 set_bit(R5_LOCKED
, &dev
->flags
);
3011 set_bit(R5_Wantwrite
, &dev
->flags
);
3013 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
3014 dev
= &sh
->dev
[pd_idx
];
3016 set_bit(R5_LOCKED
, &dev
->flags
);
3017 set_bit(R5_Wantwrite
, &dev
->flags
);
3019 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
3020 dev
= &sh
->dev
[qd_idx
];
3022 set_bit(R5_LOCKED
, &dev
->flags
);
3023 set_bit(R5_Wantwrite
, &dev
->flags
);
3025 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
3027 set_bit(STRIPE_INSYNC
, &sh
->state
);
3029 case check_state_run
:
3030 case check_state_run_q
:
3031 case check_state_run_pq
:
3032 break; /* we will be called again upon completion */
3033 case check_state_check_result
:
3034 sh
->check_state
= check_state_idle
;
3036 /* handle a successful check operation, if parity is correct
3037 * we are done. Otherwise update the mismatch count and repair
3038 * parity if !MD_RECOVERY_CHECK
3040 if (sh
->ops
.zero_sum_result
== 0) {
3041 /* both parities are correct */
3043 set_bit(STRIPE_INSYNC
, &sh
->state
);
3045 /* in contrast to the raid5 case we can validate
3046 * parity, but still have a failure to write
3049 sh
->check_state
= check_state_compute_result
;
3050 /* Returning at this point means that we may go
3051 * off and bring p and/or q uptodate again so
3052 * we make sure to check zero_sum_result again
3053 * to verify if p or q need writeback
3057 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
3058 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
3059 /* don't try to repair!! */
3060 set_bit(STRIPE_INSYNC
, &sh
->state
);
3062 int *target
= &sh
->ops
.target
;
3064 sh
->ops
.target
= -1;
3065 sh
->ops
.target2
= -1;
3066 sh
->check_state
= check_state_compute_run
;
3067 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3068 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3069 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
3070 set_bit(R5_Wantcompute
,
3071 &sh
->dev
[pd_idx
].flags
);
3073 target
= &sh
->ops
.target2
;
3076 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
3077 set_bit(R5_Wantcompute
,
3078 &sh
->dev
[qd_idx
].flags
);
3085 case check_state_compute_run
:
3088 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
3089 __func__
, sh
->check_state
,
3090 (unsigned long long) sh
->sector
);
3095 static void handle_stripe_expansion(struct r5conf
*conf
, struct stripe_head
*sh
)
3099 /* We have read all the blocks in this stripe and now we need to
3100 * copy some of them into a target stripe for expand.
3102 struct dma_async_tx_descriptor
*tx
= NULL
;
3103 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3104 for (i
= 0; i
< sh
->disks
; i
++)
3105 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
3107 struct stripe_head
*sh2
;
3108 struct async_submit_ctl submit
;
3110 sector_t bn
= compute_blocknr(sh
, i
, 1);
3111 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
3113 sh2
= get_active_stripe(conf
, s
, 0, 1, 1);
3115 /* so far only the early blocks of this stripe
3116 * have been requested. When later blocks
3117 * get requested, we will try again
3120 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
3121 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
3122 /* must have already done this block */
3123 release_stripe(sh2
);
3127 /* place all the copies on one channel */
3128 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
3129 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
3130 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
3133 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
3134 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
3135 for (j
= 0; j
< conf
->raid_disks
; j
++)
3136 if (j
!= sh2
->pd_idx
&&
3138 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
3140 if (j
== conf
->raid_disks
) {
3141 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
3142 set_bit(STRIPE_HANDLE
, &sh2
->state
);
3144 release_stripe(sh2
);
3147 /* done submitting copies, wait for them to complete */
3150 dma_wait_for_async_tx(tx
);
3155 * handle_stripe - do things to a stripe.
3157 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3158 * state of various bits to see what needs to be done.
3160 * return some read requests which now have data
3161 * return some write requests which are safely on storage
3162 * schedule a read on some buffers
3163 * schedule a write of some buffers
3164 * return confirmation of parity correctness
3168 static void analyse_stripe(struct stripe_head
*sh
, struct stripe_head_state
*s
)
3170 struct r5conf
*conf
= sh
->raid_conf
;
3171 int disks
= sh
->disks
;
3174 int do_recovery
= 0;
3176 memset(s
, 0, sizeof(*s
));
3178 s
->expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3179 s
->expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3180 s
->failed_num
[0] = -1;
3181 s
->failed_num
[1] = -1;
3183 /* Now to look around and see what can be done */
3185 spin_lock_irq(&conf
->device_lock
);
3186 for (i
=disks
; i
--; ) {
3187 struct md_rdev
*rdev
;
3194 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3196 dev
->toread
, dev
->towrite
, dev
->written
);
3197 /* maybe we can reply to a read
3199 * new wantfill requests are only permitted while
3200 * ops_complete_biofill is guaranteed to be inactive
3202 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
3203 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
3204 set_bit(R5_Wantfill
, &dev
->flags
);
3206 /* now count some things */
3207 if (test_bit(R5_LOCKED
, &dev
->flags
))
3209 if (test_bit(R5_UPTODATE
, &dev
->flags
))
3211 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
3213 BUG_ON(s
->compute
> 2);
3216 if (test_bit(R5_Wantfill
, &dev
->flags
))
3218 else if (dev
->toread
)
3222 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
3227 /* Prefer to use the replacement for reads, but only
3228 * if it is recovered enough and has no bad blocks.
3230 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
3231 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) &&
3232 rdev
->recovery_offset
>= sh
->sector
+ STRIPE_SECTORS
&&
3233 !is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
3234 &first_bad
, &bad_sectors
))
3235 set_bit(R5_ReadRepl
, &dev
->flags
);
3238 set_bit(R5_NeedReplace
, &dev
->flags
);
3239 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3240 clear_bit(R5_ReadRepl
, &dev
->flags
);
3242 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
3245 is_bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
3246 &first_bad
, &bad_sectors
);
3247 if (s
->blocked_rdev
== NULL
3248 && (test_bit(Blocked
, &rdev
->flags
)
3251 set_bit(BlockedBadBlocks
,
3253 s
->blocked_rdev
= rdev
;
3254 atomic_inc(&rdev
->nr_pending
);
3257 clear_bit(R5_Insync
, &dev
->flags
);
3261 /* also not in-sync */
3262 if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
3263 test_bit(R5_UPTODATE
, &dev
->flags
)) {
3264 /* treat as in-sync, but with a read error
3265 * which we can now try to correct
3267 set_bit(R5_Insync
, &dev
->flags
);
3268 set_bit(R5_ReadError
, &dev
->flags
);
3270 } else if (test_bit(In_sync
, &rdev
->flags
))
3271 set_bit(R5_Insync
, &dev
->flags
);
3272 else if (sh
->sector
+ STRIPE_SECTORS
<= rdev
->recovery_offset
)
3273 /* in sync if before recovery_offset */
3274 set_bit(R5_Insync
, &dev
->flags
);
3275 else if (test_bit(R5_UPTODATE
, &dev
->flags
) &&
3276 test_bit(R5_Expanded
, &dev
->flags
))
3277 /* If we've reshaped into here, we assume it is Insync.
3278 * We will shortly update recovery_offset to make
3281 set_bit(R5_Insync
, &dev
->flags
);
3283 if (rdev
&& test_bit(R5_WriteError
, &dev
->flags
)) {
3284 /* This flag does not apply to '.replacement'
3285 * only to .rdev, so make sure to check that*/
3286 struct md_rdev
*rdev2
= rcu_dereference(
3287 conf
->disks
[i
].rdev
);
3289 clear_bit(R5_Insync
, &dev
->flags
);
3290 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
3291 s
->handle_bad_blocks
= 1;
3292 atomic_inc(&rdev2
->nr_pending
);
3294 clear_bit(R5_WriteError
, &dev
->flags
);
3296 if (rdev
&& test_bit(R5_MadeGood
, &dev
->flags
)) {
3297 /* This flag does not apply to '.replacement'
3298 * only to .rdev, so make sure to check that*/
3299 struct md_rdev
*rdev2
= rcu_dereference(
3300 conf
->disks
[i
].rdev
);
3301 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
3302 s
->handle_bad_blocks
= 1;
3303 atomic_inc(&rdev2
->nr_pending
);
3305 clear_bit(R5_MadeGood
, &dev
->flags
);
3307 if (test_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
3308 struct md_rdev
*rdev2
= rcu_dereference(
3309 conf
->disks
[i
].replacement
);
3310 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
3311 s
->handle_bad_blocks
= 1;
3312 atomic_inc(&rdev2
->nr_pending
);
3314 clear_bit(R5_MadeGoodRepl
, &dev
->flags
);
3316 if (!test_bit(R5_Insync
, &dev
->flags
)) {
3317 /* The ReadError flag will just be confusing now */
3318 clear_bit(R5_ReadError
, &dev
->flags
);
3319 clear_bit(R5_ReWrite
, &dev
->flags
);
3321 if (test_bit(R5_ReadError
, &dev
->flags
))
3322 clear_bit(R5_Insync
, &dev
->flags
);
3323 if (!test_bit(R5_Insync
, &dev
->flags
)) {
3325 s
->failed_num
[s
->failed
] = i
;
3327 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
3331 spin_unlock_irq(&conf
->device_lock
);
3332 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
3333 /* If there is a failed device being replaced,
3334 * we must be recovering.
3335 * else if we are after recovery_cp, we must be syncing
3336 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3337 * else we can only be replacing
3338 * sync and recovery both need to read all devices, and so
3339 * use the same flag.
3342 sh
->sector
>= conf
->mddev
->recovery_cp
||
3343 test_bit(MD_RECOVERY_REQUESTED
, &(conf
->mddev
->recovery
)))
3351 static void handle_stripe(struct stripe_head
*sh
)
3353 struct stripe_head_state s
;
3354 struct r5conf
*conf
= sh
->raid_conf
;
3357 int disks
= sh
->disks
;
3358 struct r5dev
*pdev
, *qdev
;
3360 clear_bit(STRIPE_HANDLE
, &sh
->state
);
3361 if (test_and_set_bit_lock(STRIPE_ACTIVE
, &sh
->state
)) {
3362 /* already being handled, ensure it gets handled
3363 * again when current action finishes */
3364 set_bit(STRIPE_HANDLE
, &sh
->state
);
3368 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
)) {
3369 set_bit(STRIPE_SYNCING
, &sh
->state
);
3370 clear_bit(STRIPE_INSYNC
, &sh
->state
);
3372 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3374 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3375 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3376 (unsigned long long)sh
->sector
, sh
->state
,
3377 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->qd_idx
,
3378 sh
->check_state
, sh
->reconstruct_state
);
3380 analyse_stripe(sh
, &s
);
3382 if (s
.handle_bad_blocks
) {
3383 set_bit(STRIPE_HANDLE
, &sh
->state
);
3387 if (unlikely(s
.blocked_rdev
)) {
3388 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
3389 s
.replacing
|| s
.to_write
|| s
.written
) {
3390 set_bit(STRIPE_HANDLE
, &sh
->state
);
3393 /* There is nothing for the blocked_rdev to block */
3394 rdev_dec_pending(s
.blocked_rdev
, conf
->mddev
);
3395 s
.blocked_rdev
= NULL
;
3398 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
3399 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
3400 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
3403 pr_debug("locked=%d uptodate=%d to_read=%d"
3404 " to_write=%d failed=%d failed_num=%d,%d\n",
3405 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
3406 s
.failed_num
[0], s
.failed_num
[1]);
3407 /* check if the array has lost more than max_degraded devices and,
3408 * if so, some requests might need to be failed.
3410 if (s
.failed
> conf
->max_degraded
) {
3411 sh
->check_state
= 0;
3412 sh
->reconstruct_state
= 0;
3413 if (s
.to_read
+s
.to_write
+s
.written
)
3414 handle_failed_stripe(conf
, sh
, &s
, disks
, &s
.return_bi
);
3415 if (s
.syncing
+ s
.replacing
)
3416 handle_failed_sync(conf
, sh
, &s
);
3420 * might be able to return some write requests if the parity blocks
3421 * are safe, or on a failed drive
3423 pdev
= &sh
->dev
[sh
->pd_idx
];
3424 s
.p_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->pd_idx
)
3425 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->pd_idx
);
3426 qdev
= &sh
->dev
[sh
->qd_idx
];
3427 s
.q_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->qd_idx
)
3428 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->qd_idx
)
3432 (s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
3433 && !test_bit(R5_LOCKED
, &pdev
->flags
)
3434 && test_bit(R5_UPTODATE
, &pdev
->flags
)))) &&
3435 (s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
3436 && !test_bit(R5_LOCKED
, &qdev
->flags
)
3437 && test_bit(R5_UPTODATE
, &qdev
->flags
)))))
3438 handle_stripe_clean_event(conf
, sh
, disks
, &s
.return_bi
);
3440 /* Now we might consider reading some blocks, either to check/generate
3441 * parity, or to satisfy requests
3442 * or to load a block that is being partially written.
3444 if (s
.to_read
|| s
.non_overwrite
3445 || (conf
->level
== 6 && s
.to_write
&& s
.failed
)
3446 || (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
))
3449 handle_stripe_fill(sh
, &s
, disks
);
3451 /* Now we check to see if any write operations have recently
3455 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
3457 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
3458 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
3459 sh
->reconstruct_state
= reconstruct_state_idle
;
3461 /* All the 'written' buffers and the parity block are ready to
3462 * be written back to disk
3464 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
3465 BUG_ON(sh
->qd_idx
>= 0 &&
3466 !test_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
));
3467 for (i
= disks
; i
--; ) {
3468 struct r5dev
*dev
= &sh
->dev
[i
];
3469 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
3470 (i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
3472 pr_debug("Writing block %d\n", i
);
3473 set_bit(R5_Wantwrite
, &dev
->flags
);
3476 if (!test_bit(R5_Insync
, &dev
->flags
) ||
3477 ((i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
3479 set_bit(STRIPE_INSYNC
, &sh
->state
);
3482 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3483 s
.dec_preread_active
= 1;
3486 /* Now to consider new write requests and what else, if anything
3487 * should be read. We do not handle new writes when:
3488 * 1/ A 'write' operation (copy+xor) is already in flight.
3489 * 2/ A 'check' operation is in flight, as it may clobber the parity
3492 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
3493 handle_stripe_dirtying(conf
, sh
, &s
, disks
);
3495 /* maybe we need to check and possibly fix the parity for this stripe
3496 * Any reads will already have been scheduled, so we just see if enough
3497 * data is available. The parity check is held off while parity
3498 * dependent operations are in flight.
3500 if (sh
->check_state
||
3501 (s
.syncing
&& s
.locked
== 0 &&
3502 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
3503 !test_bit(STRIPE_INSYNC
, &sh
->state
))) {
3504 if (conf
->level
== 6)
3505 handle_parity_checks6(conf
, sh
, &s
, disks
);
3507 handle_parity_checks5(conf
, sh
, &s
, disks
);
3510 if (s
.replacing
&& s
.locked
== 0
3511 && !test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3512 /* Write out to replacement devices where possible */
3513 for (i
= 0; i
< conf
->raid_disks
; i
++)
3514 if (test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
) &&
3515 test_bit(R5_NeedReplace
, &sh
->dev
[i
].flags
)) {
3516 set_bit(R5_WantReplace
, &sh
->dev
[i
].flags
);
3517 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3520 set_bit(STRIPE_INSYNC
, &sh
->state
);
3522 if ((s
.syncing
|| s
.replacing
) && s
.locked
== 0 &&
3523 test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3524 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3525 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3528 /* If the failed drives are just a ReadError, then we might need
3529 * to progress the repair/check process
3531 if (s
.failed
<= conf
->max_degraded
&& !conf
->mddev
->ro
)
3532 for (i
= 0; i
< s
.failed
; i
++) {
3533 struct r5dev
*dev
= &sh
->dev
[s
.failed_num
[i
]];
3534 if (test_bit(R5_ReadError
, &dev
->flags
)
3535 && !test_bit(R5_LOCKED
, &dev
->flags
)
3536 && test_bit(R5_UPTODATE
, &dev
->flags
)
3538 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3539 set_bit(R5_Wantwrite
, &dev
->flags
);
3540 set_bit(R5_ReWrite
, &dev
->flags
);
3541 set_bit(R5_LOCKED
, &dev
->flags
);
3544 /* let's read it back */
3545 set_bit(R5_Wantread
, &dev
->flags
);
3546 set_bit(R5_LOCKED
, &dev
->flags
);
3553 /* Finish reconstruct operations initiated by the expansion process */
3554 if (sh
->reconstruct_state
== reconstruct_state_result
) {
3555 struct stripe_head
*sh_src
3556 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
3557 if (sh_src
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh_src
->state
)) {
3558 /* sh cannot be written until sh_src has been read.
3559 * so arrange for sh to be delayed a little
3561 set_bit(STRIPE_DELAYED
, &sh
->state
);
3562 set_bit(STRIPE_HANDLE
, &sh
->state
);
3563 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
3565 atomic_inc(&conf
->preread_active_stripes
);
3566 release_stripe(sh_src
);
3570 release_stripe(sh_src
);
3572 sh
->reconstruct_state
= reconstruct_state_idle
;
3573 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3574 for (i
= conf
->raid_disks
; i
--; ) {
3575 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3576 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3581 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
3582 !sh
->reconstruct_state
) {
3583 /* Need to write out all blocks after computing parity */
3584 sh
->disks
= conf
->raid_disks
;
3585 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
3586 schedule_reconstruction(sh
, &s
, 1, 1);
3587 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
3588 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3589 atomic_dec(&conf
->reshape_stripes
);
3590 wake_up(&conf
->wait_for_overlap
);
3591 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3594 if (s
.expanding
&& s
.locked
== 0 &&
3595 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3596 handle_stripe_expansion(conf
, sh
);
3599 /* wait for this device to become unblocked */
3600 if (unlikely(s
.blocked_rdev
)) {
3601 if (conf
->mddev
->external
)
3602 md_wait_for_blocked_rdev(s
.blocked_rdev
,
3605 /* Internal metadata will immediately
3606 * be written by raid5d, so we don't
3607 * need to wait here.
3609 rdev_dec_pending(s
.blocked_rdev
,
3613 if (s
.handle_bad_blocks
)
3614 for (i
= disks
; i
--; ) {
3615 struct md_rdev
*rdev
;
3616 struct r5dev
*dev
= &sh
->dev
[i
];
3617 if (test_and_clear_bit(R5_WriteError
, &dev
->flags
)) {
3618 /* We own a safe reference to the rdev */
3619 rdev
= conf
->disks
[i
].rdev
;
3620 if (!rdev_set_badblocks(rdev
, sh
->sector
,
3622 md_error(conf
->mddev
, rdev
);
3623 rdev_dec_pending(rdev
, conf
->mddev
);
3625 if (test_and_clear_bit(R5_MadeGood
, &dev
->flags
)) {
3626 rdev
= conf
->disks
[i
].rdev
;
3627 rdev_clear_badblocks(rdev
, sh
->sector
,
3629 rdev_dec_pending(rdev
, conf
->mddev
);
3631 if (test_and_clear_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
3632 rdev
= conf
->disks
[i
].replacement
;
3634 /* rdev have been moved down */
3635 rdev
= conf
->disks
[i
].rdev
;
3636 rdev_clear_badblocks(rdev
, sh
->sector
,
3638 rdev_dec_pending(rdev
, conf
->mddev
);
3643 raid_run_ops(sh
, s
.ops_request
);
3647 if (s
.dec_preread_active
) {
3648 /* We delay this until after ops_run_io so that if make_request
3649 * is waiting on a flush, it won't continue until the writes
3650 * have actually been submitted.
3652 atomic_dec(&conf
->preread_active_stripes
);
3653 if (atomic_read(&conf
->preread_active_stripes
) <
3655 md_wakeup_thread(conf
->mddev
->thread
);
3658 return_io(s
.return_bi
);
3660 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
3663 static void raid5_activate_delayed(struct r5conf
*conf
)
3665 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
3666 while (!list_empty(&conf
->delayed_list
)) {
3667 struct list_head
*l
= conf
->delayed_list
.next
;
3668 struct stripe_head
*sh
;
3669 sh
= list_entry(l
, struct stripe_head
, lru
);
3671 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3672 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3673 atomic_inc(&conf
->preread_active_stripes
);
3674 list_add_tail(&sh
->lru
, &conf
->hold_list
);
3679 static void activate_bit_delay(struct r5conf
*conf
)
3681 /* device_lock is held */
3682 struct list_head head
;
3683 list_add(&head
, &conf
->bitmap_list
);
3684 list_del_init(&conf
->bitmap_list
);
3685 while (!list_empty(&head
)) {
3686 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
3687 list_del_init(&sh
->lru
);
3688 atomic_inc(&sh
->count
);
3689 __release_stripe(conf
, sh
);
3693 int md_raid5_congested(struct mddev
*mddev
, int bits
)
3695 struct r5conf
*conf
= mddev
->private;
3697 /* No difference between reads and writes. Just check
3698 * how busy the stripe_cache is
3701 if (conf
->inactive_blocked
)
3705 if (list_empty_careful(&conf
->inactive_list
))
3710 EXPORT_SYMBOL_GPL(md_raid5_congested
);
3712 static int raid5_congested(void *data
, int bits
)
3714 struct mddev
*mddev
= data
;
3716 return mddev_congested(mddev
, bits
) ||
3717 md_raid5_congested(mddev
, bits
);
3720 /* We want read requests to align with chunks where possible,
3721 * but write requests don't need to.
3723 static int raid5_mergeable_bvec(struct request_queue
*q
,
3724 struct bvec_merge_data
*bvm
,
3725 struct bio_vec
*biovec
)
3727 struct mddev
*mddev
= q
->queuedata
;
3728 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
3730 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3731 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
3733 if ((bvm
->bi_rw
& 1) == WRITE
)
3734 return biovec
->bv_len
; /* always allow writes to be mergeable */
3736 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3737 chunk_sectors
= mddev
->new_chunk_sectors
;
3738 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
3739 if (max
< 0) max
= 0;
3740 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
3741 return biovec
->bv_len
;
3747 static int in_chunk_boundary(struct mddev
*mddev
, struct bio
*bio
)
3749 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3750 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3751 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3753 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3754 chunk_sectors
= mddev
->new_chunk_sectors
;
3755 return chunk_sectors
>=
3756 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
3760 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3761 * later sampled by raid5d.
3763 static void add_bio_to_retry(struct bio
*bi
,struct r5conf
*conf
)
3765 unsigned long flags
;
3767 spin_lock_irqsave(&conf
->device_lock
, flags
);
3769 bi
->bi_next
= conf
->retry_read_aligned_list
;
3770 conf
->retry_read_aligned_list
= bi
;
3772 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3773 md_wakeup_thread(conf
->mddev
->thread
);
3777 static struct bio
*remove_bio_from_retry(struct r5conf
*conf
)
3781 bi
= conf
->retry_read_aligned
;
3783 conf
->retry_read_aligned
= NULL
;
3786 bi
= conf
->retry_read_aligned_list
;
3788 conf
->retry_read_aligned_list
= bi
->bi_next
;
3791 * this sets the active strip count to 1 and the processed
3792 * strip count to zero (upper 8 bits)
3794 bi
->bi_phys_segments
= 1; /* biased count of active stripes */
3802 * The "raid5_align_endio" should check if the read succeeded and if it
3803 * did, call bio_endio on the original bio (having bio_put the new bio
3805 * If the read failed..
3807 static void raid5_align_endio(struct bio
*bi
, int error
)
3809 struct bio
* raid_bi
= bi
->bi_private
;
3810 struct mddev
*mddev
;
3811 struct r5conf
*conf
;
3812 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3813 struct md_rdev
*rdev
;
3817 rdev
= (void*)raid_bi
->bi_next
;
3818 raid_bi
->bi_next
= NULL
;
3819 mddev
= rdev
->mddev
;
3820 conf
= mddev
->private;
3822 rdev_dec_pending(rdev
, conf
->mddev
);
3824 if (!error
&& uptodate
) {
3825 bio_endio(raid_bi
, 0);
3826 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3827 wake_up(&conf
->wait_for_stripe
);
3832 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3834 add_bio_to_retry(raid_bi
, conf
);
3837 static int bio_fits_rdev(struct bio
*bi
)
3839 struct request_queue
*q
= bdev_get_queue(bi
->bi_bdev
);
3841 if ((bi
->bi_size
>>9) > queue_max_sectors(q
))
3843 blk_recount_segments(q
, bi
);
3844 if (bi
->bi_phys_segments
> queue_max_segments(q
))
3847 if (q
->merge_bvec_fn
)
3848 /* it's too hard to apply the merge_bvec_fn at this stage,
3857 static int chunk_aligned_read(struct mddev
*mddev
, struct bio
* raid_bio
)
3859 struct r5conf
*conf
= mddev
->private;
3861 struct bio
* align_bi
;
3862 struct md_rdev
*rdev
;
3863 sector_t end_sector
;
3865 if (!in_chunk_boundary(mddev
, raid_bio
)) {
3866 pr_debug("chunk_aligned_read : non aligned\n");
3870 * use bio_clone_mddev to make a copy of the bio
3872 align_bi
= bio_clone_mddev(raid_bio
, GFP_NOIO
, mddev
);
3876 * set bi_end_io to a new function, and set bi_private to the
3879 align_bi
->bi_end_io
= raid5_align_endio
;
3880 align_bi
->bi_private
= raid_bio
;
3884 align_bi
->bi_sector
= raid5_compute_sector(conf
, raid_bio
->bi_sector
,
3888 end_sector
= align_bi
->bi_sector
+ (align_bi
->bi_size
>> 9);
3890 rdev
= rcu_dereference(conf
->disks
[dd_idx
].replacement
);
3891 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
) ||
3892 rdev
->recovery_offset
< end_sector
) {
3893 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
3895 (test_bit(Faulty
, &rdev
->flags
) ||
3896 !(test_bit(In_sync
, &rdev
->flags
) ||
3897 rdev
->recovery_offset
>= end_sector
)))
3904 atomic_inc(&rdev
->nr_pending
);
3906 raid_bio
->bi_next
= (void*)rdev
;
3907 align_bi
->bi_bdev
= rdev
->bdev
;
3908 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3910 if (!bio_fits_rdev(align_bi
) ||
3911 is_badblock(rdev
, align_bi
->bi_sector
, align_bi
->bi_size
>>9,
3912 &first_bad
, &bad_sectors
)) {
3913 /* too big in some way, or has a known bad block */
3915 rdev_dec_pending(rdev
, mddev
);
3919 /* No reshape active, so we can trust rdev->data_offset */
3920 align_bi
->bi_sector
+= rdev
->data_offset
;
3922 spin_lock_irq(&conf
->device_lock
);
3923 wait_event_lock_irq(conf
->wait_for_stripe
,
3925 conf
->device_lock
, /* nothing */);
3926 atomic_inc(&conf
->active_aligned_reads
);
3927 spin_unlock_irq(&conf
->device_lock
);
3929 generic_make_request(align_bi
);
3938 /* __get_priority_stripe - get the next stripe to process
3940 * Full stripe writes are allowed to pass preread active stripes up until
3941 * the bypass_threshold is exceeded. In general the bypass_count
3942 * increments when the handle_list is handled before the hold_list; however, it
3943 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3944 * stripe with in flight i/o. The bypass_count will be reset when the
3945 * head of the hold_list has changed, i.e. the head was promoted to the
3948 static struct stripe_head
*__get_priority_stripe(struct r5conf
*conf
)
3950 struct stripe_head
*sh
;
3952 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3954 list_empty(&conf
->handle_list
) ? "empty" : "busy",
3955 list_empty(&conf
->hold_list
) ? "empty" : "busy",
3956 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
3958 if (!list_empty(&conf
->handle_list
)) {
3959 sh
= list_entry(conf
->handle_list
.next
, typeof(*sh
), lru
);
3961 if (list_empty(&conf
->hold_list
))
3962 conf
->bypass_count
= 0;
3963 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
3964 if (conf
->hold_list
.next
== conf
->last_hold
)
3965 conf
->bypass_count
++;
3967 conf
->last_hold
= conf
->hold_list
.next
;
3968 conf
->bypass_count
-= conf
->bypass_threshold
;
3969 if (conf
->bypass_count
< 0)
3970 conf
->bypass_count
= 0;
3973 } else if (!list_empty(&conf
->hold_list
) &&
3974 ((conf
->bypass_threshold
&&
3975 conf
->bypass_count
> conf
->bypass_threshold
) ||
3976 atomic_read(&conf
->pending_full_writes
) == 0)) {
3977 sh
= list_entry(conf
->hold_list
.next
,
3979 conf
->bypass_count
-= conf
->bypass_threshold
;
3980 if (conf
->bypass_count
< 0)
3981 conf
->bypass_count
= 0;
3985 list_del_init(&sh
->lru
);
3986 atomic_inc(&sh
->count
);
3987 BUG_ON(atomic_read(&sh
->count
) != 1);
3991 static void make_request(struct mddev
*mddev
, struct bio
* bi
)
3993 struct r5conf
*conf
= mddev
->private;
3995 sector_t new_sector
;
3996 sector_t logical_sector
, last_sector
;
3997 struct stripe_head
*sh
;
3998 const int rw
= bio_data_dir(bi
);
4001 if (unlikely(bi
->bi_rw
& REQ_FLUSH
)) {
4002 md_flush_request(mddev
, bi
);
4006 md_write_start(mddev
, bi
);
4009 mddev
->reshape_position
== MaxSector
&&
4010 chunk_aligned_read(mddev
,bi
))
4013 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
4014 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
4016 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
4018 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
4024 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
4025 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
4026 /* spinlock is needed as reshape_progress may be
4027 * 64bit on a 32bit platform, and so it might be
4028 * possible to see a half-updated value
4029 * Of course reshape_progress could change after
4030 * the lock is dropped, so once we get a reference
4031 * to the stripe that we think it is, we will have
4034 spin_lock_irq(&conf
->device_lock
);
4035 if (mddev
->reshape_backwards
4036 ? logical_sector
< conf
->reshape_progress
4037 : logical_sector
>= conf
->reshape_progress
) {
4040 if (mddev
->reshape_backwards
4041 ? logical_sector
< conf
->reshape_safe
4042 : logical_sector
>= conf
->reshape_safe
) {
4043 spin_unlock_irq(&conf
->device_lock
);
4048 spin_unlock_irq(&conf
->device_lock
);
4051 new_sector
= raid5_compute_sector(conf
, logical_sector
,
4054 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4055 (unsigned long long)new_sector
,
4056 (unsigned long long)logical_sector
);
4058 sh
= get_active_stripe(conf
, new_sector
, previous
,
4059 (bi
->bi_rw
&RWA_MASK
), 0);
4061 if (unlikely(previous
)) {
4062 /* expansion might have moved on while waiting for a
4063 * stripe, so we must do the range check again.
4064 * Expansion could still move past after this
4065 * test, but as we are holding a reference to
4066 * 'sh', we know that if that happens,
4067 * STRIPE_EXPANDING will get set and the expansion
4068 * won't proceed until we finish with the stripe.
4071 spin_lock_irq(&conf
->device_lock
);
4072 if (mddev
->reshape_backwards
4073 ? logical_sector
>= conf
->reshape_progress
4074 : logical_sector
< conf
->reshape_progress
)
4075 /* mismatch, need to try again */
4077 spin_unlock_irq(&conf
->device_lock
);
4086 logical_sector
>= mddev
->suspend_lo
&&
4087 logical_sector
< mddev
->suspend_hi
) {
4089 /* As the suspend_* range is controlled by
4090 * userspace, we want an interruptible
4093 flush_signals(current
);
4094 prepare_to_wait(&conf
->wait_for_overlap
,
4095 &w
, TASK_INTERRUPTIBLE
);
4096 if (logical_sector
>= mddev
->suspend_lo
&&
4097 logical_sector
< mddev
->suspend_hi
)
4102 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
4103 !add_stripe_bio(sh
, bi
, dd_idx
, rw
)) {
4104 /* Stripe is busy expanding or
4105 * add failed due to overlap. Flush everything
4108 md_wakeup_thread(mddev
->thread
);
4113 finish_wait(&conf
->wait_for_overlap
, &w
);
4114 set_bit(STRIPE_HANDLE
, &sh
->state
);
4115 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4116 if ((bi
->bi_rw
& REQ_SYNC
) &&
4117 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4118 atomic_inc(&conf
->preread_active_stripes
);
4119 mddev_check_plugged(mddev
);
4122 /* cannot get stripe for read-ahead, just give-up */
4123 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
4124 finish_wait(&conf
->wait_for_overlap
, &w
);
4129 spin_lock_irq(&conf
->device_lock
);
4130 remaining
= raid5_dec_bi_phys_segments(bi
);
4131 spin_unlock_irq(&conf
->device_lock
);
4132 if (remaining
== 0) {
4135 md_write_end(mddev
);
4141 static sector_t
raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
);
4143 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
)
4145 /* reshaping is quite different to recovery/resync so it is
4146 * handled quite separately ... here.
4148 * On each call to sync_request, we gather one chunk worth of
4149 * destination stripes and flag them as expanding.
4150 * Then we find all the source stripes and request reads.
4151 * As the reads complete, handle_stripe will copy the data
4152 * into the destination stripe and release that stripe.
4154 struct r5conf
*conf
= mddev
->private;
4155 struct stripe_head
*sh
;
4156 sector_t first_sector
, last_sector
;
4157 int raid_disks
= conf
->previous_raid_disks
;
4158 int data_disks
= raid_disks
- conf
->max_degraded
;
4159 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
4162 sector_t writepos
, readpos
, safepos
;
4163 sector_t stripe_addr
;
4164 int reshape_sectors
;
4165 struct list_head stripes
;
4167 if (sector_nr
== 0) {
4168 /* If restarting in the middle, skip the initial sectors */
4169 if (mddev
->reshape_backwards
&&
4170 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
4171 sector_nr
= raid5_size(mddev
, 0, 0)
4172 - conf
->reshape_progress
;
4173 } else if (!mddev
->reshape_backwards
&&
4174 conf
->reshape_progress
> 0)
4175 sector_nr
= conf
->reshape_progress
;
4176 sector_div(sector_nr
, new_data_disks
);
4178 mddev
->curr_resync_completed
= sector_nr
;
4179 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4185 /* We need to process a full chunk at a time.
4186 * If old and new chunk sizes differ, we need to process the
4189 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
)
4190 reshape_sectors
= mddev
->new_chunk_sectors
;
4192 reshape_sectors
= mddev
->chunk_sectors
;
4194 /* We update the metadata at least every 10 seconds, or when
4195 * the data about to be copied would over-write the source of
4196 * the data at the front of the range. i.e. one new_stripe
4197 * along from reshape_progress new_maps to after where
4198 * reshape_safe old_maps to
4200 writepos
= conf
->reshape_progress
;
4201 sector_div(writepos
, new_data_disks
);
4202 readpos
= conf
->reshape_progress
;
4203 sector_div(readpos
, data_disks
);
4204 safepos
= conf
->reshape_safe
;
4205 sector_div(safepos
, data_disks
);
4206 if (mddev
->reshape_backwards
) {
4207 writepos
-= min_t(sector_t
, reshape_sectors
, writepos
);
4208 readpos
+= reshape_sectors
;
4209 safepos
+= reshape_sectors
;
4211 writepos
+= reshape_sectors
;
4212 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
4213 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
4216 /* Having calculated the 'writepos' possibly use it
4217 * to set 'stripe_addr' which is where we will write to.
4219 if (mddev
->reshape_backwards
) {
4220 BUG_ON(conf
->reshape_progress
== 0);
4221 stripe_addr
= writepos
;
4222 BUG_ON((mddev
->dev_sectors
&
4223 ~((sector_t
)reshape_sectors
- 1))
4224 - reshape_sectors
- stripe_addr
4227 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
4228 stripe_addr
= sector_nr
;
4231 /* 'writepos' is the most advanced device address we might write.
4232 * 'readpos' is the least advanced device address we might read.
4233 * 'safepos' is the least address recorded in the metadata as having
4235 * If there is a min_offset_diff, these are adjusted either by
4236 * increasing the safepos/readpos if diff is negative, or
4237 * increasing writepos if diff is positive.
4238 * If 'readpos' is then behind 'writepos', there is no way that we can
4239 * ensure safety in the face of a crash - that must be done by userspace
4240 * making a backup of the data. So in that case there is no particular
4241 * rush to update metadata.
4242 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4243 * update the metadata to advance 'safepos' to match 'readpos' so that
4244 * we can be safe in the event of a crash.
4245 * So we insist on updating metadata if safepos is behind writepos and
4246 * readpos is beyond writepos.
4247 * In any case, update the metadata every 10 seconds.
4248 * Maybe that number should be configurable, but I'm not sure it is
4249 * worth it.... maybe it could be a multiple of safemode_delay???
4251 if (conf
->min_offset_diff
< 0) {
4252 safepos
+= -conf
->min_offset_diff
;
4253 readpos
+= -conf
->min_offset_diff
;
4255 writepos
+= conf
->min_offset_diff
;
4257 if ((mddev
->reshape_backwards
4258 ? (safepos
> writepos
&& readpos
< writepos
)
4259 : (safepos
< writepos
&& readpos
> writepos
)) ||
4260 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4261 /* Cannot proceed until we've updated the superblock... */
4262 wait_event(conf
->wait_for_overlap
,
4263 atomic_read(&conf
->reshape_stripes
)==0);
4264 mddev
->reshape_position
= conf
->reshape_progress
;
4265 mddev
->curr_resync_completed
= sector_nr
;
4266 conf
->reshape_checkpoint
= jiffies
;
4267 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4268 md_wakeup_thread(mddev
->thread
);
4269 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
4270 kthread_should_stop());
4271 spin_lock_irq(&conf
->device_lock
);
4272 conf
->reshape_safe
= mddev
->reshape_position
;
4273 spin_unlock_irq(&conf
->device_lock
);
4274 wake_up(&conf
->wait_for_overlap
);
4275 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4278 INIT_LIST_HEAD(&stripes
);
4279 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
4281 int skipped_disk
= 0;
4282 sh
= get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
4283 set_bit(STRIPE_EXPANDING
, &sh
->state
);
4284 atomic_inc(&conf
->reshape_stripes
);
4285 /* If any of this stripe is beyond the end of the old
4286 * array, then we need to zero those blocks
4288 for (j
=sh
->disks
; j
--;) {
4290 if (j
== sh
->pd_idx
)
4292 if (conf
->level
== 6 &&
4295 s
= compute_blocknr(sh
, j
, 0);
4296 if (s
< raid5_size(mddev
, 0, 0)) {
4300 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
4301 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
4302 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
4304 if (!skipped_disk
) {
4305 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4306 set_bit(STRIPE_HANDLE
, &sh
->state
);
4308 list_add(&sh
->lru
, &stripes
);
4310 spin_lock_irq(&conf
->device_lock
);
4311 if (mddev
->reshape_backwards
)
4312 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
4314 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
4315 spin_unlock_irq(&conf
->device_lock
);
4316 /* Ok, those stripe are ready. We can start scheduling
4317 * reads on the source stripes.
4318 * The source stripes are determined by mapping the first and last
4319 * block on the destination stripes.
4322 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
4325 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
4326 * new_data_disks
- 1),
4328 if (last_sector
>= mddev
->dev_sectors
)
4329 last_sector
= mddev
->dev_sectors
- 1;
4330 while (first_sector
<= last_sector
) {
4331 sh
= get_active_stripe(conf
, first_sector
, 1, 0, 1);
4332 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
4333 set_bit(STRIPE_HANDLE
, &sh
->state
);
4335 first_sector
+= STRIPE_SECTORS
;
4337 /* Now that the sources are clearly marked, we can release
4338 * the destination stripes
4340 while (!list_empty(&stripes
)) {
4341 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
4342 list_del_init(&sh
->lru
);
4345 /* If this takes us to the resync_max point where we have to pause,
4346 * then we need to write out the superblock.
4348 sector_nr
+= reshape_sectors
;
4349 if ((sector_nr
- mddev
->curr_resync_completed
) * 2
4350 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
4351 /* Cannot proceed until we've updated the superblock... */
4352 wait_event(conf
->wait_for_overlap
,
4353 atomic_read(&conf
->reshape_stripes
) == 0);
4354 mddev
->reshape_position
= conf
->reshape_progress
;
4355 mddev
->curr_resync_completed
= sector_nr
;
4356 conf
->reshape_checkpoint
= jiffies
;
4357 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4358 md_wakeup_thread(mddev
->thread
);
4359 wait_event(mddev
->sb_wait
,
4360 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
4361 || kthread_should_stop());
4362 spin_lock_irq(&conf
->device_lock
);
4363 conf
->reshape_safe
= mddev
->reshape_position
;
4364 spin_unlock_irq(&conf
->device_lock
);
4365 wake_up(&conf
->wait_for_overlap
);
4366 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4368 return reshape_sectors
;
4371 /* FIXME go_faster isn't used */
4372 static inline sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
4374 struct r5conf
*conf
= mddev
->private;
4375 struct stripe_head
*sh
;
4376 sector_t max_sector
= mddev
->dev_sectors
;
4377 sector_t sync_blocks
;
4378 int still_degraded
= 0;
4381 if (sector_nr
>= max_sector
) {
4382 /* just being told to finish up .. nothing much to do */
4384 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
4389 if (mddev
->curr_resync
< max_sector
) /* aborted */
4390 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
4392 else /* completed sync */
4394 bitmap_close_sync(mddev
->bitmap
);
4399 /* Allow raid5_quiesce to complete */
4400 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
4402 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
4403 return reshape_request(mddev
, sector_nr
, skipped
);
4405 /* No need to check resync_max as we never do more than one
4406 * stripe, and as resync_max will always be on a chunk boundary,
4407 * if the check in md_do_sync didn't fire, there is no chance
4408 * of overstepping resync_max here
4411 /* if there is too many failed drives and we are trying
4412 * to resync, then assert that we are finished, because there is
4413 * nothing we can do.
4415 if (mddev
->degraded
>= conf
->max_degraded
&&
4416 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
4417 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
4421 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
4422 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
4423 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
4424 /* we can skip this block, and probably more */
4425 sync_blocks
/= STRIPE_SECTORS
;
4427 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
4430 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
4432 sh
= get_active_stripe(conf
, sector_nr
, 0, 1, 0);
4434 sh
= get_active_stripe(conf
, sector_nr
, 0, 0, 0);
4435 /* make sure we don't swamp the stripe cache if someone else
4436 * is trying to get access
4438 schedule_timeout_uninterruptible(1);
4440 /* Need to check if array will still be degraded after recovery/resync
4441 * We don't need to check the 'failed' flag as when that gets set,
4444 for (i
= 0; i
< conf
->raid_disks
; i
++)
4445 if (conf
->disks
[i
].rdev
== NULL
)
4448 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
4450 set_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
);
4455 return STRIPE_SECTORS
;
4458 static int retry_aligned_read(struct r5conf
*conf
, struct bio
*raid_bio
)
4460 /* We may not be able to submit a whole bio at once as there
4461 * may not be enough stripe_heads available.
4462 * We cannot pre-allocate enough stripe_heads as we may need
4463 * more than exist in the cache (if we allow ever large chunks).
4464 * So we do one stripe head at a time and record in
4465 * ->bi_hw_segments how many have been done.
4467 * We *know* that this entire raid_bio is in one chunk, so
4468 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4470 struct stripe_head
*sh
;
4472 sector_t sector
, logical_sector
, last_sector
;
4477 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
4478 sector
= raid5_compute_sector(conf
, logical_sector
,
4480 last_sector
= raid_bio
->bi_sector
+ (raid_bio
->bi_size
>>9);
4482 for (; logical_sector
< last_sector
;
4483 logical_sector
+= STRIPE_SECTORS
,
4484 sector
+= STRIPE_SECTORS
,
4487 if (scnt
< raid5_bi_hw_segments(raid_bio
))
4488 /* already done this stripe */
4491 sh
= get_active_stripe(conf
, sector
, 0, 1, 0);
4494 /* failed to get a stripe - must wait */
4495 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4496 conf
->retry_read_aligned
= raid_bio
;
4500 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
4502 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4503 conf
->retry_read_aligned
= raid_bio
;
4511 spin_lock_irq(&conf
->device_lock
);
4512 remaining
= raid5_dec_bi_phys_segments(raid_bio
);
4513 spin_unlock_irq(&conf
->device_lock
);
4515 bio_endio(raid_bio
, 0);
4516 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4517 wake_up(&conf
->wait_for_stripe
);
4523 * This is our raid5 kernel thread.
4525 * We scan the hash table for stripes which can be handled now.
4526 * During the scan, completed stripes are saved for us by the interrupt
4527 * handler, so that they will not have to wait for our next wakeup.
4529 static void raid5d(struct mddev
*mddev
)
4531 struct stripe_head
*sh
;
4532 struct r5conf
*conf
= mddev
->private;
4534 struct blk_plug plug
;
4536 pr_debug("+++ raid5d active\n");
4538 md_check_recovery(mddev
);
4540 blk_start_plug(&plug
);
4542 spin_lock_irq(&conf
->device_lock
);
4546 if (atomic_read(&mddev
->plug_cnt
) == 0 &&
4547 !list_empty(&conf
->bitmap_list
)) {
4548 /* Now is a good time to flush some bitmap updates */
4550 spin_unlock_irq(&conf
->device_lock
);
4551 bitmap_unplug(mddev
->bitmap
);
4552 spin_lock_irq(&conf
->device_lock
);
4553 conf
->seq_write
= conf
->seq_flush
;
4554 activate_bit_delay(conf
);
4556 if (atomic_read(&mddev
->plug_cnt
) == 0)
4557 raid5_activate_delayed(conf
);
4559 while ((bio
= remove_bio_from_retry(conf
))) {
4561 spin_unlock_irq(&conf
->device_lock
);
4562 ok
= retry_aligned_read(conf
, bio
);
4563 spin_lock_irq(&conf
->device_lock
);
4569 sh
= __get_priority_stripe(conf
);
4573 spin_unlock_irq(&conf
->device_lock
);
4580 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
4581 md_check_recovery(mddev
);
4583 spin_lock_irq(&conf
->device_lock
);
4585 pr_debug("%d stripes handled\n", handled
);
4587 spin_unlock_irq(&conf
->device_lock
);
4589 async_tx_issue_pending_all();
4590 blk_finish_plug(&plug
);
4592 pr_debug("--- raid5d inactive\n");
4596 raid5_show_stripe_cache_size(struct mddev
*mddev
, char *page
)
4598 struct r5conf
*conf
= mddev
->private;
4600 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
4606 raid5_set_cache_size(struct mddev
*mddev
, int size
)
4608 struct r5conf
*conf
= mddev
->private;
4611 if (size
<= 16 || size
> 32768)
4613 while (size
< conf
->max_nr_stripes
) {
4614 if (drop_one_stripe(conf
))
4615 conf
->max_nr_stripes
--;
4619 err
= md_allow_write(mddev
);
4622 while (size
> conf
->max_nr_stripes
) {
4623 if (grow_one_stripe(conf
))
4624 conf
->max_nr_stripes
++;
4629 EXPORT_SYMBOL(raid5_set_cache_size
);
4632 raid5_store_stripe_cache_size(struct mddev
*mddev
, const char *page
, size_t len
)
4634 struct r5conf
*conf
= mddev
->private;
4638 if (len
>= PAGE_SIZE
)
4643 if (strict_strtoul(page
, 10, &new))
4645 err
= raid5_set_cache_size(mddev
, new);
4651 static struct md_sysfs_entry
4652 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
4653 raid5_show_stripe_cache_size
,
4654 raid5_store_stripe_cache_size
);
4657 raid5_show_preread_threshold(struct mddev
*mddev
, char *page
)
4659 struct r5conf
*conf
= mddev
->private;
4661 return sprintf(page
, "%d\n", conf
->bypass_threshold
);
4667 raid5_store_preread_threshold(struct mddev
*mddev
, const char *page
, size_t len
)
4669 struct r5conf
*conf
= mddev
->private;
4671 if (len
>= PAGE_SIZE
)
4676 if (strict_strtoul(page
, 10, &new))
4678 if (new > conf
->max_nr_stripes
)
4680 conf
->bypass_threshold
= new;
4684 static struct md_sysfs_entry
4685 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
4687 raid5_show_preread_threshold
,
4688 raid5_store_preread_threshold
);
4691 stripe_cache_active_show(struct mddev
*mddev
, char *page
)
4693 struct r5conf
*conf
= mddev
->private;
4695 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
4700 static struct md_sysfs_entry
4701 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
4703 static struct attribute
*raid5_attrs
[] = {
4704 &raid5_stripecache_size
.attr
,
4705 &raid5_stripecache_active
.attr
,
4706 &raid5_preread_bypass_threshold
.attr
,
4709 static struct attribute_group raid5_attrs_group
= {
4711 .attrs
= raid5_attrs
,
4715 raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
4717 struct r5conf
*conf
= mddev
->private;
4720 sectors
= mddev
->dev_sectors
;
4722 /* size is defined by the smallest of previous and new size */
4723 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
4725 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
4726 sectors
&= ~((sector_t
)mddev
->new_chunk_sectors
- 1);
4727 return sectors
* (raid_disks
- conf
->max_degraded
);
4730 static void raid5_free_percpu(struct r5conf
*conf
)
4732 struct raid5_percpu
*percpu
;
4739 for_each_possible_cpu(cpu
) {
4740 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
4741 safe_put_page(percpu
->spare_page
);
4742 kfree(percpu
->scribble
);
4744 #ifdef CONFIG_HOTPLUG_CPU
4745 unregister_cpu_notifier(&conf
->cpu_notify
);
4749 free_percpu(conf
->percpu
);
4752 static void free_conf(struct r5conf
*conf
)
4754 shrink_stripes(conf
);
4755 raid5_free_percpu(conf
);
4757 kfree(conf
->stripe_hashtbl
);
4761 #ifdef CONFIG_HOTPLUG_CPU
4762 static int raid456_cpu_notify(struct notifier_block
*nfb
, unsigned long action
,
4765 struct r5conf
*conf
= container_of(nfb
, struct r5conf
, cpu_notify
);
4766 long cpu
= (long)hcpu
;
4767 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
4770 case CPU_UP_PREPARE
:
4771 case CPU_UP_PREPARE_FROZEN
:
4772 if (conf
->level
== 6 && !percpu
->spare_page
)
4773 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
4774 if (!percpu
->scribble
)
4775 percpu
->scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
4777 if (!percpu
->scribble
||
4778 (conf
->level
== 6 && !percpu
->spare_page
)) {
4779 safe_put_page(percpu
->spare_page
);
4780 kfree(percpu
->scribble
);
4781 pr_err("%s: failed memory allocation for cpu%ld\n",
4783 return notifier_from_errno(-ENOMEM
);
4787 case CPU_DEAD_FROZEN
:
4788 safe_put_page(percpu
->spare_page
);
4789 kfree(percpu
->scribble
);
4790 percpu
->spare_page
= NULL
;
4791 percpu
->scribble
= NULL
;
4800 static int raid5_alloc_percpu(struct r5conf
*conf
)
4803 struct page
*spare_page
;
4804 struct raid5_percpu __percpu
*allcpus
;
4808 allcpus
= alloc_percpu(struct raid5_percpu
);
4811 conf
->percpu
= allcpus
;
4815 for_each_present_cpu(cpu
) {
4816 if (conf
->level
== 6) {
4817 spare_page
= alloc_page(GFP_KERNEL
);
4822 per_cpu_ptr(conf
->percpu
, cpu
)->spare_page
= spare_page
;
4824 scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
4829 per_cpu_ptr(conf
->percpu
, cpu
)->scribble
= scribble
;
4831 #ifdef CONFIG_HOTPLUG_CPU
4832 conf
->cpu_notify
.notifier_call
= raid456_cpu_notify
;
4833 conf
->cpu_notify
.priority
= 0;
4835 err
= register_cpu_notifier(&conf
->cpu_notify
);
4842 static struct r5conf
*setup_conf(struct mddev
*mddev
)
4844 struct r5conf
*conf
;
4845 int raid_disk
, memory
, max_disks
;
4846 struct md_rdev
*rdev
;
4847 struct disk_info
*disk
;
4850 if (mddev
->new_level
!= 5
4851 && mddev
->new_level
!= 4
4852 && mddev
->new_level
!= 6) {
4853 printk(KERN_ERR
"md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4854 mdname(mddev
), mddev
->new_level
);
4855 return ERR_PTR(-EIO
);
4857 if ((mddev
->new_level
== 5
4858 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
4859 (mddev
->new_level
== 6
4860 && !algorithm_valid_raid6(mddev
->new_layout
))) {
4861 printk(KERN_ERR
"md/raid:%s: layout %d not supported\n",
4862 mdname(mddev
), mddev
->new_layout
);
4863 return ERR_PTR(-EIO
);
4865 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
4866 printk(KERN_ERR
"md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4867 mdname(mddev
), mddev
->raid_disks
);
4868 return ERR_PTR(-EINVAL
);
4871 if (!mddev
->new_chunk_sectors
||
4872 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
4873 !is_power_of_2(mddev
->new_chunk_sectors
)) {
4874 printk(KERN_ERR
"md/raid:%s: invalid chunk size %d\n",
4875 mdname(mddev
), mddev
->new_chunk_sectors
<< 9);
4876 return ERR_PTR(-EINVAL
);
4879 conf
= kzalloc(sizeof(struct r5conf
), GFP_KERNEL
);
4882 spin_lock_init(&conf
->device_lock
);
4883 init_waitqueue_head(&conf
->wait_for_stripe
);
4884 init_waitqueue_head(&conf
->wait_for_overlap
);
4885 INIT_LIST_HEAD(&conf
->handle_list
);
4886 INIT_LIST_HEAD(&conf
->hold_list
);
4887 INIT_LIST_HEAD(&conf
->delayed_list
);
4888 INIT_LIST_HEAD(&conf
->bitmap_list
);
4889 INIT_LIST_HEAD(&conf
->inactive_list
);
4890 atomic_set(&conf
->active_stripes
, 0);
4891 atomic_set(&conf
->preread_active_stripes
, 0);
4892 atomic_set(&conf
->active_aligned_reads
, 0);
4893 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
4894 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
4896 conf
->raid_disks
= mddev
->raid_disks
;
4897 if (mddev
->reshape_position
== MaxSector
)
4898 conf
->previous_raid_disks
= mddev
->raid_disks
;
4900 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4901 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
4902 conf
->scribble_len
= scribble_len(max_disks
);
4904 conf
->disks
= kzalloc(max_disks
* sizeof(struct disk_info
),
4909 conf
->mddev
= mddev
;
4911 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
4914 conf
->level
= mddev
->new_level
;
4915 if (raid5_alloc_percpu(conf
) != 0)
4918 pr_debug("raid456: run(%s) called.\n", mdname(mddev
));
4920 rdev_for_each(rdev
, mddev
) {
4921 raid_disk
= rdev
->raid_disk
;
4922 if (raid_disk
>= max_disks
4925 disk
= conf
->disks
+ raid_disk
;
4927 if (test_bit(Replacement
, &rdev
->flags
)) {
4928 if (disk
->replacement
)
4930 disk
->replacement
= rdev
;
4937 if (test_bit(In_sync
, &rdev
->flags
)) {
4938 char b
[BDEVNAME_SIZE
];
4939 printk(KERN_INFO
"md/raid:%s: device %s operational as raid"
4941 mdname(mddev
), bdevname(rdev
->bdev
, b
), raid_disk
);
4942 } else if (rdev
->saved_raid_disk
!= raid_disk
)
4943 /* Cannot rely on bitmap to complete recovery */
4947 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
4948 conf
->level
= mddev
->new_level
;
4949 if (conf
->level
== 6)
4950 conf
->max_degraded
= 2;
4952 conf
->max_degraded
= 1;
4953 conf
->algorithm
= mddev
->new_layout
;
4954 conf
->max_nr_stripes
= NR_STRIPES
;
4955 conf
->reshape_progress
= mddev
->reshape_position
;
4956 if (conf
->reshape_progress
!= MaxSector
) {
4957 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
4958 conf
->prev_algo
= mddev
->layout
;
4961 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
4962 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
4963 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
4965 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4966 mdname(mddev
), memory
);
4969 printk(KERN_INFO
"md/raid:%s: allocated %dkB\n",
4970 mdname(mddev
), memory
);
4972 sprintf(pers_name
, "raid%d", mddev
->new_level
);
4973 conf
->thread
= md_register_thread(raid5d
, mddev
, pers_name
);
4974 if (!conf
->thread
) {
4976 "md/raid:%s: couldn't allocate thread.\n",
4986 return ERR_PTR(-EIO
);
4988 return ERR_PTR(-ENOMEM
);
4992 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
4995 case ALGORITHM_PARITY_0
:
4996 if (raid_disk
< max_degraded
)
4999 case ALGORITHM_PARITY_N
:
5000 if (raid_disk
>= raid_disks
- max_degraded
)
5003 case ALGORITHM_PARITY_0_6
:
5004 if (raid_disk
== 0 ||
5005 raid_disk
== raid_disks
- 1)
5008 case ALGORITHM_LEFT_ASYMMETRIC_6
:
5009 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
5010 case ALGORITHM_LEFT_SYMMETRIC_6
:
5011 case ALGORITHM_RIGHT_SYMMETRIC_6
:
5012 if (raid_disk
== raid_disks
- 1)
5018 static int run(struct mddev
*mddev
)
5020 struct r5conf
*conf
;
5021 int working_disks
= 0;
5022 int dirty_parity_disks
= 0;
5023 struct md_rdev
*rdev
;
5024 sector_t reshape_offset
= 0;
5026 long long min_offset_diff
= 0;
5029 if (mddev
->recovery_cp
!= MaxSector
)
5030 printk(KERN_NOTICE
"md/raid:%s: not clean"
5031 " -- starting background reconstruction\n",
5034 rdev_for_each(rdev
, mddev
) {
5036 if (rdev
->raid_disk
< 0)
5038 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
5040 min_offset_diff
= diff
;
5042 } else if (mddev
->reshape_backwards
&&
5043 diff
< min_offset_diff
)
5044 min_offset_diff
= diff
;
5045 else if (!mddev
->reshape_backwards
&&
5046 diff
> min_offset_diff
)
5047 min_offset_diff
= diff
;
5050 if (mddev
->reshape_position
!= MaxSector
) {
5051 /* Check that we can continue the reshape.
5052 * Difficulties arise if the stripe we would write to
5053 * next is at or after the stripe we would read from next.
5054 * For a reshape that changes the number of devices, this
5055 * is only possible for a very short time, and mdadm makes
5056 * sure that time appears to have past before assembling
5057 * the array. So we fail if that time hasn't passed.
5058 * For a reshape that keeps the number of devices the same
5059 * mdadm must be monitoring the reshape can keeping the
5060 * critical areas read-only and backed up. It will start
5061 * the array in read-only mode, so we check for that.
5063 sector_t here_new
, here_old
;
5065 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
5067 if (mddev
->new_level
!= mddev
->level
) {
5068 printk(KERN_ERR
"md/raid:%s: unsupported reshape "
5069 "required - aborting.\n",
5073 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
5074 /* reshape_position must be on a new-stripe boundary, and one
5075 * further up in new geometry must map after here in old
5078 here_new
= mddev
->reshape_position
;
5079 if (sector_div(here_new
, mddev
->new_chunk_sectors
*
5080 (mddev
->raid_disks
- max_degraded
))) {
5081 printk(KERN_ERR
"md/raid:%s: reshape_position not "
5082 "on a stripe boundary\n", mdname(mddev
));
5085 reshape_offset
= here_new
* mddev
->new_chunk_sectors
;
5086 /* here_new is the stripe we will write to */
5087 here_old
= mddev
->reshape_position
;
5088 sector_div(here_old
, mddev
->chunk_sectors
*
5089 (old_disks
-max_degraded
));
5090 /* here_old is the first stripe that we might need to read
5092 if (mddev
->delta_disks
== 0) {
5093 if ((here_new
* mddev
->new_chunk_sectors
!=
5094 here_old
* mddev
->chunk_sectors
)) {
5095 printk(KERN_ERR
"md/raid:%s: reshape position is"
5096 " confused - aborting\n", mdname(mddev
));
5099 /* We cannot be sure it is safe to start an in-place
5100 * reshape. It is only safe if user-space is monitoring
5101 * and taking constant backups.
5102 * mdadm always starts a situation like this in
5103 * readonly mode so it can take control before
5104 * allowing any writes. So just check for that.
5106 if (abs(min_offset_diff
) >= mddev
->chunk_sectors
&&
5107 abs(min_offset_diff
) >= mddev
->new_chunk_sectors
)
5108 /* not really in-place - so OK */;
5109 else if (mddev
->ro
== 0) {
5110 printk(KERN_ERR
"md/raid:%s: in-place reshape "
5111 "must be started in read-only mode "
5116 } else if (mddev
->reshape_backwards
5117 ? (here_new
* mddev
->new_chunk_sectors
+ min_offset_diff
<=
5118 here_old
* mddev
->chunk_sectors
)
5119 : (here_new
* mddev
->new_chunk_sectors
>=
5120 here_old
* mddev
->chunk_sectors
+ (-min_offset_diff
))) {
5121 /* Reading from the same stripe as writing to - bad */
5122 printk(KERN_ERR
"md/raid:%s: reshape_position too early for "
5123 "auto-recovery - aborting.\n",
5127 printk(KERN_INFO
"md/raid:%s: reshape will continue\n",
5129 /* OK, we should be able to continue; */
5131 BUG_ON(mddev
->level
!= mddev
->new_level
);
5132 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
5133 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
5134 BUG_ON(mddev
->delta_disks
!= 0);
5137 if (mddev
->private == NULL
)
5138 conf
= setup_conf(mddev
);
5140 conf
= mddev
->private;
5143 return PTR_ERR(conf
);
5145 conf
->min_offset_diff
= min_offset_diff
;
5146 mddev
->thread
= conf
->thread
;
5147 conf
->thread
= NULL
;
5148 mddev
->private = conf
;
5150 for (i
= 0; i
< conf
->raid_disks
&& conf
->previous_raid_disks
;
5152 rdev
= conf
->disks
[i
].rdev
;
5153 if (!rdev
&& conf
->disks
[i
].replacement
) {
5154 /* The replacement is all we have yet */
5155 rdev
= conf
->disks
[i
].replacement
;
5156 conf
->disks
[i
].replacement
= NULL
;
5157 clear_bit(Replacement
, &rdev
->flags
);
5158 conf
->disks
[i
].rdev
= rdev
;
5162 if (conf
->disks
[i
].replacement
&&
5163 conf
->reshape_progress
!= MaxSector
) {
5164 /* replacements and reshape simply do not mix. */
5165 printk(KERN_ERR
"md: cannot handle concurrent "
5166 "replacement and reshape.\n");
5169 if (test_bit(In_sync
, &rdev
->flags
)) {
5173 /* This disc is not fully in-sync. However if it
5174 * just stored parity (beyond the recovery_offset),
5175 * when we don't need to be concerned about the
5176 * array being dirty.
5177 * When reshape goes 'backwards', we never have
5178 * partially completed devices, so we only need
5179 * to worry about reshape going forwards.
5181 /* Hack because v0.91 doesn't store recovery_offset properly. */
5182 if (mddev
->major_version
== 0 &&
5183 mddev
->minor_version
> 90)
5184 rdev
->recovery_offset
= reshape_offset
;
5186 if (rdev
->recovery_offset
< reshape_offset
) {
5187 /* We need to check old and new layout */
5188 if (!only_parity(rdev
->raid_disk
,
5191 conf
->max_degraded
))
5194 if (!only_parity(rdev
->raid_disk
,
5196 conf
->previous_raid_disks
,
5197 conf
->max_degraded
))
5199 dirty_parity_disks
++;
5203 * 0 for a fully functional array, 1 or 2 for a degraded array.
5205 mddev
->degraded
= calc_degraded(conf
);
5207 if (has_failed(conf
)) {
5208 printk(KERN_ERR
"md/raid:%s: not enough operational devices"
5209 " (%d/%d failed)\n",
5210 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
5214 /* device size must be a multiple of chunk size */
5215 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
5216 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
5218 if (mddev
->degraded
> dirty_parity_disks
&&
5219 mddev
->recovery_cp
!= MaxSector
) {
5220 if (mddev
->ok_start_degraded
)
5222 "md/raid:%s: starting dirty degraded array"
5223 " - data corruption possible.\n",
5227 "md/raid:%s: cannot start dirty degraded array.\n",
5233 if (mddev
->degraded
== 0)
5234 printk(KERN_INFO
"md/raid:%s: raid level %d active with %d out of %d"
5235 " devices, algorithm %d\n", mdname(mddev
), conf
->level
,
5236 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
5239 printk(KERN_ALERT
"md/raid:%s: raid level %d active with %d"
5240 " out of %d devices, algorithm %d\n",
5241 mdname(mddev
), conf
->level
,
5242 mddev
->raid_disks
- mddev
->degraded
,
5243 mddev
->raid_disks
, mddev
->new_layout
);
5245 print_raid5_conf(conf
);
5247 if (conf
->reshape_progress
!= MaxSector
) {
5248 conf
->reshape_safe
= conf
->reshape_progress
;
5249 atomic_set(&conf
->reshape_stripes
, 0);
5250 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
5251 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
5252 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
5253 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
5254 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
5259 /* Ok, everything is just fine now */
5260 if (mddev
->to_remove
== &raid5_attrs_group
)
5261 mddev
->to_remove
= NULL
;
5262 else if (mddev
->kobj
.sd
&&
5263 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
5265 "raid5: failed to create sysfs attributes for %s\n",
5267 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
5271 /* read-ahead size must cover two whole stripes, which
5272 * is 2 * (datadisks) * chunksize where 'n' is the
5273 * number of raid devices
5275 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
5276 int stripe
= data_disks
*
5277 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
5278 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
5279 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
5281 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
5283 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
5284 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
5286 chunk_size
= mddev
->chunk_sectors
<< 9;
5287 blk_queue_io_min(mddev
->queue
, chunk_size
);
5288 blk_queue_io_opt(mddev
->queue
, chunk_size
*
5289 (conf
->raid_disks
- conf
->max_degraded
));
5291 rdev_for_each(rdev
, mddev
) {
5292 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
5293 rdev
->data_offset
<< 9);
5294 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
5295 rdev
->new_data_offset
<< 9);
5301 md_unregister_thread(&mddev
->thread
);
5302 print_raid5_conf(conf
);
5304 mddev
->private = NULL
;
5305 printk(KERN_ALERT
"md/raid:%s: failed to run raid set.\n", mdname(mddev
));
5309 static int stop(struct mddev
*mddev
)
5311 struct r5conf
*conf
= mddev
->private;
5313 md_unregister_thread(&mddev
->thread
);
5315 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
5317 mddev
->private = NULL
;
5318 mddev
->to_remove
= &raid5_attrs_group
;
5322 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
5324 struct r5conf
*conf
= mddev
->private;
5327 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
5328 mddev
->chunk_sectors
/ 2, mddev
->layout
);
5329 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
5330 for (i
= 0; i
< conf
->raid_disks
; i
++)
5331 seq_printf (seq
, "%s",
5332 conf
->disks
[i
].rdev
&&
5333 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
5334 seq_printf (seq
, "]");
5337 static void print_raid5_conf (struct r5conf
*conf
)
5340 struct disk_info
*tmp
;
5342 printk(KERN_DEBUG
"RAID conf printout:\n");
5344 printk("(conf==NULL)\n");
5347 printk(KERN_DEBUG
" --- level:%d rd:%d wd:%d\n", conf
->level
,
5349 conf
->raid_disks
- conf
->mddev
->degraded
);
5351 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5352 char b
[BDEVNAME_SIZE
];
5353 tmp
= conf
->disks
+ i
;
5355 printk(KERN_DEBUG
" disk %d, o:%d, dev:%s\n",
5356 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
5357 bdevname(tmp
->rdev
->bdev
, b
));
5361 static int raid5_spare_active(struct mddev
*mddev
)
5364 struct r5conf
*conf
= mddev
->private;
5365 struct disk_info
*tmp
;
5367 unsigned long flags
;
5369 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5370 tmp
= conf
->disks
+ i
;
5371 if (tmp
->replacement
5372 && tmp
->replacement
->recovery_offset
== MaxSector
5373 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
5374 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
5375 /* Replacement has just become active. */
5377 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
5380 /* Replaced device not technically faulty,
5381 * but we need to be sure it gets removed
5382 * and never re-added.
5384 set_bit(Faulty
, &tmp
->rdev
->flags
);
5385 sysfs_notify_dirent_safe(
5386 tmp
->rdev
->sysfs_state
);
5388 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
5389 } else if (tmp
->rdev
5390 && tmp
->rdev
->recovery_offset
== MaxSector
5391 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
5392 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
5394 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
5397 spin_lock_irqsave(&conf
->device_lock
, flags
);
5398 mddev
->degraded
= calc_degraded(conf
);
5399 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5400 print_raid5_conf(conf
);
5404 static int raid5_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
5406 struct r5conf
*conf
= mddev
->private;
5408 int number
= rdev
->raid_disk
;
5409 struct md_rdev
**rdevp
;
5410 struct disk_info
*p
= conf
->disks
+ number
;
5412 print_raid5_conf(conf
);
5413 if (rdev
== p
->rdev
)
5415 else if (rdev
== p
->replacement
)
5416 rdevp
= &p
->replacement
;
5420 if (number
>= conf
->raid_disks
&&
5421 conf
->reshape_progress
== MaxSector
)
5422 clear_bit(In_sync
, &rdev
->flags
);
5424 if (test_bit(In_sync
, &rdev
->flags
) ||
5425 atomic_read(&rdev
->nr_pending
)) {
5429 /* Only remove non-faulty devices if recovery
5432 if (!test_bit(Faulty
, &rdev
->flags
) &&
5433 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
5434 !has_failed(conf
) &&
5435 (!p
->replacement
|| p
->replacement
== rdev
) &&
5436 number
< conf
->raid_disks
) {
5442 if (atomic_read(&rdev
->nr_pending
)) {
5443 /* lost the race, try later */
5446 } else if (p
->replacement
) {
5447 /* We must have just cleared 'rdev' */
5448 p
->rdev
= p
->replacement
;
5449 clear_bit(Replacement
, &p
->replacement
->flags
);
5450 smp_mb(); /* Make sure other CPUs may see both as identical
5451 * but will never see neither - if they are careful
5453 p
->replacement
= NULL
;
5454 clear_bit(WantReplacement
, &rdev
->flags
);
5456 /* We might have just removed the Replacement as faulty-
5457 * clear the bit just in case
5459 clear_bit(WantReplacement
, &rdev
->flags
);
5462 print_raid5_conf(conf
);
5466 static int raid5_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
5468 struct r5conf
*conf
= mddev
->private;
5471 struct disk_info
*p
;
5473 int last
= conf
->raid_disks
- 1;
5475 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
5478 if (rdev
->saved_raid_disk
< 0 && has_failed(conf
))
5479 /* no point adding a device */
5482 if (rdev
->raid_disk
>= 0)
5483 first
= last
= rdev
->raid_disk
;
5486 * find the disk ... but prefer rdev->saved_raid_disk
5489 if (rdev
->saved_raid_disk
>= 0 &&
5490 rdev
->saved_raid_disk
>= first
&&
5491 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
5492 first
= rdev
->saved_raid_disk
;
5494 for (disk
= first
; disk
<= last
; disk
++) {
5495 p
= conf
->disks
+ disk
;
5496 if (p
->rdev
== NULL
) {
5497 clear_bit(In_sync
, &rdev
->flags
);
5498 rdev
->raid_disk
= disk
;
5500 if (rdev
->saved_raid_disk
!= disk
)
5502 rcu_assign_pointer(p
->rdev
, rdev
);
5506 for (disk
= first
; disk
<= last
; disk
++) {
5507 p
= conf
->disks
+ disk
;
5508 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
5509 p
->replacement
== NULL
) {
5510 clear_bit(In_sync
, &rdev
->flags
);
5511 set_bit(Replacement
, &rdev
->flags
);
5512 rdev
->raid_disk
= disk
;
5515 rcu_assign_pointer(p
->replacement
, rdev
);
5520 print_raid5_conf(conf
);
5524 static int raid5_resize(struct mddev
*mddev
, sector_t sectors
)
5526 /* no resync is happening, and there is enough space
5527 * on all devices, so we can resize.
5528 * We need to make sure resync covers any new space.
5529 * If the array is shrinking we should possibly wait until
5530 * any io in the removed space completes, but it hardly seems
5534 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
5535 newsize
= raid5_size(mddev
, sectors
, mddev
->raid_disks
);
5536 if (mddev
->external_size
&&
5537 mddev
->array_sectors
> newsize
)
5539 if (mddev
->bitmap
) {
5540 int ret
= bitmap_resize(mddev
->bitmap
, sectors
, 0, 0);
5544 md_set_array_sectors(mddev
, newsize
);
5545 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5546 revalidate_disk(mddev
->gendisk
);
5547 if (sectors
> mddev
->dev_sectors
&&
5548 mddev
->recovery_cp
> mddev
->dev_sectors
) {
5549 mddev
->recovery_cp
= mddev
->dev_sectors
;
5550 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
5552 mddev
->dev_sectors
= sectors
;
5553 mddev
->resync_max_sectors
= sectors
;
5557 static int check_stripe_cache(struct mddev
*mddev
)
5559 /* Can only proceed if there are plenty of stripe_heads.
5560 * We need a minimum of one full stripe,, and for sensible progress
5561 * it is best to have about 4 times that.
5562 * If we require 4 times, then the default 256 4K stripe_heads will
5563 * allow for chunk sizes up to 256K, which is probably OK.
5564 * If the chunk size is greater, user-space should request more
5565 * stripe_heads first.
5567 struct r5conf
*conf
= mddev
->private;
5568 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
5569 > conf
->max_nr_stripes
||
5570 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
5571 > conf
->max_nr_stripes
) {
5572 printk(KERN_WARNING
"md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5574 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
5581 static int check_reshape(struct mddev
*mddev
)
5583 struct r5conf
*conf
= mddev
->private;
5585 if (mddev
->delta_disks
== 0 &&
5586 mddev
->new_layout
== mddev
->layout
&&
5587 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
5588 return 0; /* nothing to do */
5589 if (has_failed(conf
))
5591 if (mddev
->delta_disks
< 0) {
5592 /* We might be able to shrink, but the devices must
5593 * be made bigger first.
5594 * For raid6, 4 is the minimum size.
5595 * Otherwise 2 is the minimum
5598 if (mddev
->level
== 6)
5600 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
5604 if (!check_stripe_cache(mddev
))
5607 return resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
5610 static int raid5_start_reshape(struct mddev
*mddev
)
5612 struct r5conf
*conf
= mddev
->private;
5613 struct md_rdev
*rdev
;
5615 unsigned long flags
;
5617 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
5620 if (!check_stripe_cache(mddev
))
5623 if (has_failed(conf
))
5626 rdev_for_each(rdev
, mddev
) {
5627 if (!test_bit(In_sync
, &rdev
->flags
)
5628 && !test_bit(Faulty
, &rdev
->flags
))
5632 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
5633 /* Not enough devices even to make a degraded array
5638 /* Refuse to reduce size of the array. Any reductions in
5639 * array size must be through explicit setting of array_size
5642 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
5643 < mddev
->array_sectors
) {
5644 printk(KERN_ERR
"md/raid:%s: array size must be reduced "
5645 "before number of disks\n", mdname(mddev
));
5649 atomic_set(&conf
->reshape_stripes
, 0);
5650 spin_lock_irq(&conf
->device_lock
);
5651 conf
->previous_raid_disks
= conf
->raid_disks
;
5652 conf
->raid_disks
+= mddev
->delta_disks
;
5653 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
5654 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
5655 conf
->prev_algo
= conf
->algorithm
;
5656 conf
->algorithm
= mddev
->new_layout
;
5658 /* Code that selects data_offset needs to see the generation update
5659 * if reshape_progress has been set - so a memory barrier needed.
5662 if (mddev
->reshape_backwards
)
5663 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
5665 conf
->reshape_progress
= 0;
5666 conf
->reshape_safe
= conf
->reshape_progress
;
5667 spin_unlock_irq(&conf
->device_lock
);
5669 /* Add some new drives, as many as will fit.
5670 * We know there are enough to make the newly sized array work.
5671 * Don't add devices if we are reducing the number of
5672 * devices in the array. This is because it is not possible
5673 * to correctly record the "partially reconstructed" state of
5674 * such devices during the reshape and confusion could result.
5676 if (mddev
->delta_disks
>= 0) {
5677 rdev_for_each(rdev
, mddev
)
5678 if (rdev
->raid_disk
< 0 &&
5679 !test_bit(Faulty
, &rdev
->flags
)) {
5680 if (raid5_add_disk(mddev
, rdev
) == 0) {
5682 >= conf
->previous_raid_disks
)
5683 set_bit(In_sync
, &rdev
->flags
);
5685 rdev
->recovery_offset
= 0;
5687 if (sysfs_link_rdev(mddev
, rdev
))
5688 /* Failure here is OK */;
5690 } else if (rdev
->raid_disk
>= conf
->previous_raid_disks
5691 && !test_bit(Faulty
, &rdev
->flags
)) {
5692 /* This is a spare that was manually added */
5693 set_bit(In_sync
, &rdev
->flags
);
5696 /* When a reshape changes the number of devices,
5697 * ->degraded is measured against the larger of the
5698 * pre and post number of devices.
5700 spin_lock_irqsave(&conf
->device_lock
, flags
);
5701 mddev
->degraded
= calc_degraded(conf
);
5702 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5704 mddev
->raid_disks
= conf
->raid_disks
;
5705 mddev
->reshape_position
= conf
->reshape_progress
;
5706 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5708 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
5709 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
5710 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
5711 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
5712 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
5714 if (!mddev
->sync_thread
) {
5715 mddev
->recovery
= 0;
5716 spin_lock_irq(&conf
->device_lock
);
5717 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
5718 rdev_for_each(rdev
, mddev
)
5719 rdev
->new_data_offset
= rdev
->data_offset
;
5721 conf
->reshape_progress
= MaxSector
;
5722 mddev
->reshape_position
= MaxSector
;
5723 spin_unlock_irq(&conf
->device_lock
);
5726 conf
->reshape_checkpoint
= jiffies
;
5727 md_wakeup_thread(mddev
->sync_thread
);
5728 md_new_event(mddev
);
5732 /* This is called from the reshape thread and should make any
5733 * changes needed in 'conf'
5735 static void end_reshape(struct r5conf
*conf
)
5738 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
5739 struct md_rdev
*rdev
;
5741 spin_lock_irq(&conf
->device_lock
);
5742 conf
->previous_raid_disks
= conf
->raid_disks
;
5743 rdev_for_each(rdev
, conf
->mddev
)
5744 rdev
->data_offset
= rdev
->new_data_offset
;
5746 conf
->reshape_progress
= MaxSector
;
5747 spin_unlock_irq(&conf
->device_lock
);
5748 wake_up(&conf
->wait_for_overlap
);
5750 /* read-ahead size must cover two whole stripes, which is
5751 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5753 if (conf
->mddev
->queue
) {
5754 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5755 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
5757 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
5758 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
5763 /* This is called from the raid5d thread with mddev_lock held.
5764 * It makes config changes to the device.
5766 static void raid5_finish_reshape(struct mddev
*mddev
)
5768 struct r5conf
*conf
= mddev
->private;
5770 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
5772 if (mddev
->delta_disks
> 0) {
5773 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
5774 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5775 revalidate_disk(mddev
->gendisk
);
5778 spin_lock_irq(&conf
->device_lock
);
5779 mddev
->degraded
= calc_degraded(conf
);
5780 spin_unlock_irq(&conf
->device_lock
);
5781 for (d
= conf
->raid_disks
;
5782 d
< conf
->raid_disks
- mddev
->delta_disks
;
5784 struct md_rdev
*rdev
= conf
->disks
[d
].rdev
;
5786 clear_bit(In_sync
, &rdev
->flags
);
5787 rdev
= conf
->disks
[d
].replacement
;
5789 clear_bit(In_sync
, &rdev
->flags
);
5792 mddev
->layout
= conf
->algorithm
;
5793 mddev
->chunk_sectors
= conf
->chunk_sectors
;
5794 mddev
->reshape_position
= MaxSector
;
5795 mddev
->delta_disks
= 0;
5796 mddev
->reshape_backwards
= 0;
5800 static void raid5_quiesce(struct mddev
*mddev
, int state
)
5802 struct r5conf
*conf
= mddev
->private;
5805 case 2: /* resume for a suspend */
5806 wake_up(&conf
->wait_for_overlap
);
5809 case 1: /* stop all writes */
5810 spin_lock_irq(&conf
->device_lock
);
5811 /* '2' tells resync/reshape to pause so that all
5812 * active stripes can drain
5815 wait_event_lock_irq(conf
->wait_for_stripe
,
5816 atomic_read(&conf
->active_stripes
) == 0 &&
5817 atomic_read(&conf
->active_aligned_reads
) == 0,
5818 conf
->device_lock
, /* nothing */);
5820 spin_unlock_irq(&conf
->device_lock
);
5821 /* allow reshape to continue */
5822 wake_up(&conf
->wait_for_overlap
);
5825 case 0: /* re-enable writes */
5826 spin_lock_irq(&conf
->device_lock
);
5828 wake_up(&conf
->wait_for_stripe
);
5829 wake_up(&conf
->wait_for_overlap
);
5830 spin_unlock_irq(&conf
->device_lock
);
5836 static void *raid45_takeover_raid0(struct mddev
*mddev
, int level
)
5838 struct r0conf
*raid0_conf
= mddev
->private;
5841 /* for raid0 takeover only one zone is supported */
5842 if (raid0_conf
->nr_strip_zones
> 1) {
5843 printk(KERN_ERR
"md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5845 return ERR_PTR(-EINVAL
);
5848 sectors
= raid0_conf
->strip_zone
[0].zone_end
;
5849 sector_div(sectors
, raid0_conf
->strip_zone
[0].nb_dev
);
5850 mddev
->dev_sectors
= sectors
;
5851 mddev
->new_level
= level
;
5852 mddev
->new_layout
= ALGORITHM_PARITY_N
;
5853 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
5854 mddev
->raid_disks
+= 1;
5855 mddev
->delta_disks
= 1;
5856 /* make sure it will be not marked as dirty */
5857 mddev
->recovery_cp
= MaxSector
;
5859 return setup_conf(mddev
);
5863 static void *raid5_takeover_raid1(struct mddev
*mddev
)
5867 if (mddev
->raid_disks
!= 2 ||
5868 mddev
->degraded
> 1)
5869 return ERR_PTR(-EINVAL
);
5871 /* Should check if there are write-behind devices? */
5873 chunksect
= 64*2; /* 64K by default */
5875 /* The array must be an exact multiple of chunksize */
5876 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
5879 if ((chunksect
<<9) < STRIPE_SIZE
)
5880 /* array size does not allow a suitable chunk size */
5881 return ERR_PTR(-EINVAL
);
5883 mddev
->new_level
= 5;
5884 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5885 mddev
->new_chunk_sectors
= chunksect
;
5887 return setup_conf(mddev
);
5890 static void *raid5_takeover_raid6(struct mddev
*mddev
)
5894 switch (mddev
->layout
) {
5895 case ALGORITHM_LEFT_ASYMMETRIC_6
:
5896 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
5898 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
5899 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
5901 case ALGORITHM_LEFT_SYMMETRIC_6
:
5902 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5904 case ALGORITHM_RIGHT_SYMMETRIC_6
:
5905 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
5907 case ALGORITHM_PARITY_0_6
:
5908 new_layout
= ALGORITHM_PARITY_0
;
5910 case ALGORITHM_PARITY_N
:
5911 new_layout
= ALGORITHM_PARITY_N
;
5914 return ERR_PTR(-EINVAL
);
5916 mddev
->new_level
= 5;
5917 mddev
->new_layout
= new_layout
;
5918 mddev
->delta_disks
= -1;
5919 mddev
->raid_disks
-= 1;
5920 return setup_conf(mddev
);
5924 static int raid5_check_reshape(struct mddev
*mddev
)
5926 /* For a 2-drive array, the layout and chunk size can be changed
5927 * immediately as not restriping is needed.
5928 * For larger arrays we record the new value - after validation
5929 * to be used by a reshape pass.
5931 struct r5conf
*conf
= mddev
->private;
5932 int new_chunk
= mddev
->new_chunk_sectors
;
5934 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
5936 if (new_chunk
> 0) {
5937 if (!is_power_of_2(new_chunk
))
5939 if (new_chunk
< (PAGE_SIZE
>>9))
5941 if (mddev
->array_sectors
& (new_chunk
-1))
5942 /* not factor of array size */
5946 /* They look valid */
5948 if (mddev
->raid_disks
== 2) {
5949 /* can make the change immediately */
5950 if (mddev
->new_layout
>= 0) {
5951 conf
->algorithm
= mddev
->new_layout
;
5952 mddev
->layout
= mddev
->new_layout
;
5954 if (new_chunk
> 0) {
5955 conf
->chunk_sectors
= new_chunk
;
5956 mddev
->chunk_sectors
= new_chunk
;
5958 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5959 md_wakeup_thread(mddev
->thread
);
5961 return check_reshape(mddev
);
5964 static int raid6_check_reshape(struct mddev
*mddev
)
5966 int new_chunk
= mddev
->new_chunk_sectors
;
5968 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
5970 if (new_chunk
> 0) {
5971 if (!is_power_of_2(new_chunk
))
5973 if (new_chunk
< (PAGE_SIZE
>> 9))
5975 if (mddev
->array_sectors
& (new_chunk
-1))
5976 /* not factor of array size */
5980 /* They look valid */
5981 return check_reshape(mddev
);
5984 static void *raid5_takeover(struct mddev
*mddev
)
5986 /* raid5 can take over:
5987 * raid0 - if there is only one strip zone - make it a raid4 layout
5988 * raid1 - if there are two drives. We need to know the chunk size
5989 * raid4 - trivial - just use a raid4 layout.
5990 * raid6 - Providing it is a *_6 layout
5992 if (mddev
->level
== 0)
5993 return raid45_takeover_raid0(mddev
, 5);
5994 if (mddev
->level
== 1)
5995 return raid5_takeover_raid1(mddev
);
5996 if (mddev
->level
== 4) {
5997 mddev
->new_layout
= ALGORITHM_PARITY_N
;
5998 mddev
->new_level
= 5;
5999 return setup_conf(mddev
);
6001 if (mddev
->level
== 6)
6002 return raid5_takeover_raid6(mddev
);
6004 return ERR_PTR(-EINVAL
);
6007 static void *raid4_takeover(struct mddev
*mddev
)
6009 /* raid4 can take over:
6010 * raid0 - if there is only one strip zone
6011 * raid5 - if layout is right
6013 if (mddev
->level
== 0)
6014 return raid45_takeover_raid0(mddev
, 4);
6015 if (mddev
->level
== 5 &&
6016 mddev
->layout
== ALGORITHM_PARITY_N
) {
6017 mddev
->new_layout
= 0;
6018 mddev
->new_level
= 4;
6019 return setup_conf(mddev
);
6021 return ERR_PTR(-EINVAL
);
6024 static struct md_personality raid5_personality
;
6026 static void *raid6_takeover(struct mddev
*mddev
)
6028 /* Currently can only take over a raid5. We map the
6029 * personality to an equivalent raid6 personality
6030 * with the Q block at the end.
6034 if (mddev
->pers
!= &raid5_personality
)
6035 return ERR_PTR(-EINVAL
);
6036 if (mddev
->degraded
> 1)
6037 return ERR_PTR(-EINVAL
);
6038 if (mddev
->raid_disks
> 253)
6039 return ERR_PTR(-EINVAL
);
6040 if (mddev
->raid_disks
< 3)
6041 return ERR_PTR(-EINVAL
);
6043 switch (mddev
->layout
) {
6044 case ALGORITHM_LEFT_ASYMMETRIC
:
6045 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
6047 case ALGORITHM_RIGHT_ASYMMETRIC
:
6048 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
6050 case ALGORITHM_LEFT_SYMMETRIC
:
6051 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
6053 case ALGORITHM_RIGHT_SYMMETRIC
:
6054 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
6056 case ALGORITHM_PARITY_0
:
6057 new_layout
= ALGORITHM_PARITY_0_6
;
6059 case ALGORITHM_PARITY_N
:
6060 new_layout
= ALGORITHM_PARITY_N
;
6063 return ERR_PTR(-EINVAL
);
6065 mddev
->new_level
= 6;
6066 mddev
->new_layout
= new_layout
;
6067 mddev
->delta_disks
= 1;
6068 mddev
->raid_disks
+= 1;
6069 return setup_conf(mddev
);
6073 static struct md_personality raid6_personality
=
6077 .owner
= THIS_MODULE
,
6078 .make_request
= make_request
,
6082 .error_handler
= error
,
6083 .hot_add_disk
= raid5_add_disk
,
6084 .hot_remove_disk
= raid5_remove_disk
,
6085 .spare_active
= raid5_spare_active
,
6086 .sync_request
= sync_request
,
6087 .resize
= raid5_resize
,
6089 .check_reshape
= raid6_check_reshape
,
6090 .start_reshape
= raid5_start_reshape
,
6091 .finish_reshape
= raid5_finish_reshape
,
6092 .quiesce
= raid5_quiesce
,
6093 .takeover
= raid6_takeover
,
6095 static struct md_personality raid5_personality
=
6099 .owner
= THIS_MODULE
,
6100 .make_request
= make_request
,
6104 .error_handler
= error
,
6105 .hot_add_disk
= raid5_add_disk
,
6106 .hot_remove_disk
= raid5_remove_disk
,
6107 .spare_active
= raid5_spare_active
,
6108 .sync_request
= sync_request
,
6109 .resize
= raid5_resize
,
6111 .check_reshape
= raid5_check_reshape
,
6112 .start_reshape
= raid5_start_reshape
,
6113 .finish_reshape
= raid5_finish_reshape
,
6114 .quiesce
= raid5_quiesce
,
6115 .takeover
= raid5_takeover
,
6118 static struct md_personality raid4_personality
=
6122 .owner
= THIS_MODULE
,
6123 .make_request
= make_request
,
6127 .error_handler
= error
,
6128 .hot_add_disk
= raid5_add_disk
,
6129 .hot_remove_disk
= raid5_remove_disk
,
6130 .spare_active
= raid5_spare_active
,
6131 .sync_request
= sync_request
,
6132 .resize
= raid5_resize
,
6134 .check_reshape
= raid5_check_reshape
,
6135 .start_reshape
= raid5_start_reshape
,
6136 .finish_reshape
= raid5_finish_reshape
,
6137 .quiesce
= raid5_quiesce
,
6138 .takeover
= raid4_takeover
,
6141 static int __init
raid5_init(void)
6143 register_md_personality(&raid6_personality
);
6144 register_md_personality(&raid5_personality
);
6145 register_md_personality(&raid4_personality
);
6149 static void raid5_exit(void)
6151 unregister_md_personality(&raid6_personality
);
6152 unregister_md_personality(&raid5_personality
);
6153 unregister_md_personality(&raid4_personality
);
6156 module_init(raid5_init
);
6157 module_exit(raid5_exit
);
6158 MODULE_LICENSE("GPL");
6159 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6160 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6161 MODULE_ALIAS("md-raid5");
6162 MODULE_ALIAS("md-raid4");
6163 MODULE_ALIAS("md-level-5");
6164 MODULE_ALIAS("md-level-4");
6165 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6166 MODULE_ALIAS("md-raid6");
6167 MODULE_ALIAS("md-level-6");
6169 /* This used to be two separate modules, they were: */
6170 MODULE_ALIAS("raid5");
6171 MODULE_ALIAS("raid6");