2 * Device State Control Registers driver
4 * Copyright (C) 2011 Texas Instruments Incorporated
5 * Author: Mark Salter <msalter@redhat.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
13 * The Device State Control Registers (DSCR) provide SoC level control over
14 * a number of peripherals. Details vary considerably among the various SoC
15 * parts. In general, the DSCR block will provide one or more configuration
16 * registers often protected by a lock register. One or more key values must
17 * be written to a lock register in order to unlock the configuration register.
18 * The configuration register may be used to enable (and disable in some
19 * cases) SoC pin drivers, peripheral clock sources (internal or pin), etc.
20 * In some cases, a configuration register is write once or the individual
21 * bits are write once. That is, you may be able to enable a device, but
22 * will not be able to disable it.
24 * In addition to device configuration, the DSCR block may provide registers
25 * which are used to reset SoC peripherals, provide device ID information,
26 * provide MAC addresses, and other miscellaneous functions.
30 #include <linux/of_address.h>
31 #include <linux/of_platform.h>
32 #include <linux/module.h>
34 #include <linux/delay.h>
38 #define MAX_DEVSTATE_IDS 32
39 #define MAX_DEVCTL_REGS 8
40 #define MAX_DEVSTAT_REGS 8
41 #define MAX_LOCKED_REGS 4
42 #define MAX_SOC_EMACS 2
44 struct rmii_reset_reg
{
50 * Some registerd may be locked. In order to write to these
51 * registers, the key value must first be written to the lockreg.
54 u32 reg
; /* offset from base */
55 u32 lockreg
; /* offset from base */
56 u32 key
; /* unlock key */
60 * This describes a contiguous area of like control bits used to enable/disable
61 * SoC devices. Each controllable device is given an ID which is used by the
62 * individual device drivers to control the device state. These IDs start at
63 * zero and are assigned sequentially to the control bitfield ranges described
66 struct devstate_ctl_reg
{
67 u32 reg
; /* register holding the control bits */
68 u8 start_id
; /* start id of this range */
69 u8 num_ids
; /* number of devices in this range */
70 u8 enable_only
; /* bits are write-once to enable only */
71 u8 enable
; /* value used to enable device */
72 u8 disable
; /* value used to disable device */
73 u8 shift
; /* starting (rightmost) bit in range */
74 u8 nbits
; /* number of bits per device */
79 * This describes a region of status bits indicating the state of
80 * various devices. This is used internally to wait for status
81 * change completion when enabling/disabling a device. Status is
82 * optional and not all device controls will have a corresponding
85 struct devstate_stat_reg
{
86 u32 reg
; /* register holding the status bits */
87 u8 start_id
; /* start id of this range */
88 u8 num_ids
; /* number of devices in this range */
89 u8 enable
; /* value indicating enabled state */
90 u8 disable
; /* value indicating disabled state */
91 u8 shift
; /* starting (rightmost) bit in range */
92 u8 nbits
; /* number of bits per device */
95 struct devstate_info
{
96 struct devstate_ctl_reg
*ctl
;
97 struct devstate_stat_reg
*stat
;
100 /* These are callbacks to SOC-specific code. */
102 void (*init
)(struct device_node
*node
);
110 struct locked_reg locked
[MAX_LOCKED_REGS
];
111 struct devstate_info devstate_info
[MAX_DEVSTATE_IDS
];
112 struct rmii_reset_reg rmii_resets
[MAX_SOC_EMACS
];
113 struct devstate_ctl_reg devctl
[MAX_DEVCTL_REGS
];
114 struct devstate_stat_reg devstat
[MAX_DEVSTAT_REGS
];
117 static struct dscr_regs dscr
;
119 static struct locked_reg
*find_locked_reg(u32 reg
)
123 for (i
= 0; i
< MAX_LOCKED_REGS
; i
++)
124 if (dscr
.locked
[i
].key
&& reg
== dscr
.locked
[i
].reg
)
125 return &dscr
.locked
[i
];
130 * Write to a register with one lock
132 static void dscr_write_locked1(u32 reg
, u32 val
,
135 void __iomem
*reg_addr
= dscr
.base
+ reg
;
136 void __iomem
*lock_addr
= dscr
.base
+ lock
;
139 * For some registers, the lock is relocked after a short number
140 * of cycles. We have to put the lock write and register write in
141 * the same fetch packet to meet this timing. The .align ensures
142 * the two stw instructions are in the same fetch packet.
144 asm volatile ("b .s2 0f\n"
151 : "a"(reg_addr
), "b"(val
), "a"(lock_addr
), "b"(key
)
154 /* in case the hw doesn't reset the lock */
155 soc_writel(0, lock_addr
);
159 * Write to a register protected by two lock registers
161 static void dscr_write_locked2(u32 reg
, u32 val
,
165 soc_writel(key0
, dscr
.base
+ lock0
);
166 soc_writel(key1
, dscr
.base
+ lock1
);
167 soc_writel(val
, dscr
.base
+ reg
);
168 soc_writel(0, dscr
.base
+ lock0
);
169 soc_writel(0, dscr
.base
+ lock1
);
172 static void dscr_write(u32 reg
, u32 val
)
174 struct locked_reg
*lock
;
176 lock
= find_locked_reg(reg
);
178 dscr_write_locked1(reg
, val
, lock
->lockreg
, lock
->key
);
179 else if (dscr
.kick_key
[0])
180 dscr_write_locked2(reg
, val
, dscr
.kick_reg
[0], dscr
.kick_key
[0],
181 dscr
.kick_reg
[1], dscr
.kick_key
[1]);
183 soc_writel(val
, dscr
.base
+ reg
);
188 * Drivers can use this interface to enable/disable SoC IP blocks.
190 void dscr_set_devstate(int id
, enum dscr_devstate_t state
)
192 struct devstate_ctl_reg
*ctl
;
193 struct devstate_stat_reg
*stat
;
194 struct devstate_info
*info
;
196 int ctl_shift
, ctl_mask
;
202 if (id
< 0 || id
>= MAX_DEVSTATE_IDS
)
205 info
= &dscr
.devstate_info
[id
];
212 ctl_shift
= ctl
->shift
+ ctl
->nbits
* (id
- ctl
->start_id
);
213 ctl_mask
= ((1 << ctl
->nbits
) - 1) << ctl_shift
;
216 case DSCR_DEVSTATE_ENABLED
:
217 ctl_val
= ctl
->enable
<< ctl_shift
;
219 case DSCR_DEVSTATE_DISABLED
:
220 if (ctl
->enable_only
)
222 ctl_val
= ctl
->disable
<< ctl_shift
;
228 spin_lock_irqsave(&dscr
.lock
, flags
);
230 val
= soc_readl(dscr
.base
+ ctl
->reg
);
234 dscr_write(ctl
->reg
, val
);
236 spin_unlock_irqrestore(&dscr
.lock
, flags
);
241 ctl_shift
= stat
->shift
+ stat
->nbits
* (id
- stat
->start_id
);
243 if (state
== DSCR_DEVSTATE_ENABLED
)
244 ctl_val
= stat
->enable
;
246 ctl_val
= stat
->disable
;
249 val
= soc_readl(dscr
.base
+ stat
->reg
);
251 val
&= ((1 << stat
->nbits
) - 1);
252 } while (val
!= ctl_val
);
254 EXPORT_SYMBOL(dscr_set_devstate
);
257 * Drivers can use this to reset RMII module.
259 void dscr_rmii_reset(int id
, int assert)
261 struct rmii_reset_reg
*r
;
265 if (id
< 0 || id
>= MAX_SOC_EMACS
)
268 r
= &dscr
.rmii_resets
[id
];
272 spin_lock_irqsave(&dscr
.lock
, flags
);
274 val
= soc_readl(dscr
.base
+ r
->reg
);
276 dscr_write(r
->reg
, val
| r
->mask
);
278 dscr_write(r
->reg
, val
& ~(r
->mask
));
280 spin_unlock_irqrestore(&dscr
.lock
, flags
);
282 EXPORT_SYMBOL(dscr_rmii_reset
);
284 static void __init
dscr_parse_devstat(struct device_node
*node
,
290 err
= of_property_read_u32_array(node
, "ti,dscr-devstat", &val
, 1);
292 c6x_devstat
= soc_readl(base
+ val
);
293 printk(KERN_INFO
"DEVSTAT: %08x\n", c6x_devstat
);
296 static void __init
dscr_parse_silicon_rev(struct device_node
*node
,
302 err
= of_property_read_u32_array(node
, "ti,dscr-silicon-rev", vals
, 3);
304 c6x_silicon_rev
= soc_readl(base
+ vals
[0]);
305 c6x_silicon_rev
>>= vals
[1];
306 c6x_silicon_rev
&= vals
[2];
311 * Some SoCs will have a pair of fuse registers which hold
312 * an ethernet MAC address. The "ti,dscr-mac-fuse-regs"
313 * property is a mapping from fuse register bytes to MAC
314 * address bytes. The expected format is:
316 * ti,dscr-mac-fuse-regs = <reg0 b3 b2 b1 b0
319 * reg0 and reg1 are the offsets of the two fuse registers.
320 * b3-b0 positionally represent bytes within the fuse register.
321 * b3 is the most significant byte and b0 is the least.
322 * Allowable values for b3-b0 are:
324 * 0 = fuse register byte not used in MAC address
325 * 1-6 = index+1 into c6x_fuse_mac[]
327 static void __init
dscr_parse_mac_fuse(struct device_node
*node
,
333 err
= of_property_read_u32_array(node
, "ti,dscr-mac-fuse-regs",
338 for (f
= 0; f
< 2; f
++) {
339 fuse
= soc_readl(base
+ vals
[f
* 5]);
340 for (j
= (f
* 5) + 1, i
= 24; i
>= 0; i
-= 8, j
++)
341 if (vals
[j
] && vals
[j
] <= 6)
342 c6x_fuse_mac
[vals
[j
] - 1] = fuse
>> i
;
346 static void __init
dscr_parse_rmii_resets(struct device_node
*node
,
352 /* look for RMII reset registers */
353 p
= of_get_property(node
, "ti,dscr-rmii-resets", &size
);
355 /* parse all the reg/mask pairs we can handle */
356 size
/= (sizeof(*p
) * 2);
357 if (size
> MAX_SOC_EMACS
)
358 size
= MAX_SOC_EMACS
;
360 for (i
= 0; i
< size
; i
++) {
361 dscr
.rmii_resets
[i
].reg
= be32_to_cpup(p
++);
362 dscr
.rmii_resets
[i
].mask
= be32_to_cpup(p
++);
368 static void __init
dscr_parse_privperm(struct device_node
*node
,
374 err
= of_property_read_u32_array(node
, "ti,dscr-privperm", vals
, 2);
377 dscr_write(vals
[0], vals
[1]);
381 * SoCs may have "locked" DSCR registers which can only be written
382 * to only after writing a key value to a lock registers. These
383 * regisers can be described with the "ti,dscr-locked-regs" property.
384 * This property provides a list of register descriptions with each
385 * description consisting of three values.
387 * ti,dscr-locked-regs = <reg0 lockreg0 key0
389 * regN lockregN keyN>;
391 * reg is the offset of the locked register
392 * lockreg is the offset of the lock register
393 * key is the unlock key written to lockreg
396 static void __init
dscr_parse_locked_regs(struct device_node
*node
,
399 struct locked_reg
*r
;
403 p
= of_get_property(node
, "ti,dscr-locked-regs", &size
);
405 /* parse all the register descriptions we can handle */
406 size
/= (sizeof(*p
) * 3);
407 if (size
> MAX_LOCKED_REGS
)
408 size
= MAX_LOCKED_REGS
;
410 for (i
= 0; i
< size
; i
++) {
413 r
->reg
= be32_to_cpup(p
++);
414 r
->lockreg
= be32_to_cpup(p
++);
415 r
->key
= be32_to_cpup(p
++);
421 * SoCs may have DSCR registers which are only write enabled after
422 * writing specific key values to two registers. The two key registers
423 * and the key values can be parsed from a "ti,dscr-kick-regs"
424 * propety with the following layout:
426 * ti,dscr-kick-regs = <kickreg0 key0 kickreg1 key1>
428 * kickreg is the offset of the "kick" register
429 * key is the value which unlocks writing for protected regs
431 static void __init
dscr_parse_kick_regs(struct device_node
*node
,
437 err
= of_property_read_u32_array(node
, "ti,dscr-kick-regs", vals
, 4);
439 dscr
.kick_reg
[0] = vals
[0];
440 dscr
.kick_key
[0] = vals
[1];
441 dscr
.kick_reg
[1] = vals
[2];
442 dscr
.kick_key
[1] = vals
[3];
448 * SoCs may provide controls to enable/disable individual IP blocks. These
449 * controls in the DSCR usually control pin drivers but also may control
450 * clocking and or resets. The device tree is used to describe the bitfields
451 * in registers used to control device state. The number of bits and their
452 * values may vary even within the same register.
454 * The layout of these bitfields is described by the ti,dscr-devstate-ctl-regs
455 * property. This property is a list where each element describes a contiguous
456 * range of control fields with like properties. Each element of the list
457 * consists of 7 cells with the following values:
459 * start_id num_ids reg enable disable start_bit nbits
461 * start_id is device id for the first device control in the range
462 * num_ids is the number of device controls in the range
463 * reg is the offset of the register holding the control bits
464 * enable is the value to enable a device
465 * disable is the value to disable a device (0xffffffff if cannot disable)
466 * start_bit is the bit number of the first bit in the range
467 * nbits is the number of bits per device control
469 static void __init
dscr_parse_devstate_ctl_regs(struct device_node
*node
,
472 struct devstate_ctl_reg
*r
;
476 p
= of_get_property(node
, "ti,dscr-devstate-ctl-regs", &size
);
478 /* parse all the ranges we can handle */
479 size
/= (sizeof(*p
) * 7);
480 if (size
> MAX_DEVCTL_REGS
)
481 size
= MAX_DEVCTL_REGS
;
483 for (i
= 0; i
< size
; i
++) {
486 r
->start_id
= be32_to_cpup(p
++);
487 r
->num_ids
= be32_to_cpup(p
++);
488 r
->reg
= be32_to_cpup(p
++);
489 r
->enable
= be32_to_cpup(p
++);
490 r
->disable
= be32_to_cpup(p
++);
491 if (r
->disable
== 0xffffffff)
493 r
->shift
= be32_to_cpup(p
++);
494 r
->nbits
= be32_to_cpup(p
++);
496 for (j
= r
->start_id
;
497 j
< (r
->start_id
+ r
->num_ids
);
499 dscr
.devstate_info
[j
].ctl
= r
;
505 * SoCs may provide status registers indicating the state (enabled/disabled) of
506 * devices on the SoC. The device tree is used to describe the bitfields in
507 * registers used to provide device status. The number of bits and their
508 * values used to provide status may vary even within the same register.
510 * The layout of these bitfields is described by the ti,dscr-devstate-stat-regs
511 * property. This property is a list where each element describes a contiguous
512 * range of status fields with like properties. Each element of the list
513 * consists of 7 cells with the following values:
515 * start_id num_ids reg enable disable start_bit nbits
517 * start_id is device id for the first device status in the range
518 * num_ids is the number of devices covered by the range
519 * reg is the offset of the register holding the status bits
520 * enable is the value indicating device is enabled
521 * disable is the value indicating device is disabled
522 * start_bit is the bit number of the first bit in the range
523 * nbits is the number of bits per device status
525 static void __init
dscr_parse_devstate_stat_regs(struct device_node
*node
,
528 struct devstate_stat_reg
*r
;
532 p
= of_get_property(node
, "ti,dscr-devstate-stat-regs", &size
);
534 /* parse all the ranges we can handle */
535 size
/= (sizeof(*p
) * 7);
536 if (size
> MAX_DEVSTAT_REGS
)
537 size
= MAX_DEVSTAT_REGS
;
539 for (i
= 0; i
< size
; i
++) {
540 r
= &dscr
.devstat
[i
];
542 r
->start_id
= be32_to_cpup(p
++);
543 r
->num_ids
= be32_to_cpup(p
++);
544 r
->reg
= be32_to_cpup(p
++);
545 r
->enable
= be32_to_cpup(p
++);
546 r
->disable
= be32_to_cpup(p
++);
547 r
->shift
= be32_to_cpup(p
++);
548 r
->nbits
= be32_to_cpup(p
++);
550 for (j
= r
->start_id
;
551 j
< (r
->start_id
+ r
->num_ids
);
553 dscr
.devstate_info
[j
].stat
= r
;
558 static struct of_device_id dscr_ids
[] __initdata
= {
559 { .compatible
= "ti,c64x+dscr" },
564 * Probe for DSCR area.
566 * This has to be done early on in case timer or interrupt controller
567 * needs something. e.g. On C6455 SoC, timer must be enabled through
568 * DSCR before it is functional.
570 void __init
dscr_probe(void)
572 struct device_node
*node
;
575 spin_lock_init(&dscr
.lock
);
577 node
= of_find_matching_node(NULL
, dscr_ids
);
581 base
= of_iomap(node
, 0);
589 dscr_parse_devstat(node
, base
);
590 dscr_parse_silicon_rev(node
, base
);
591 dscr_parse_mac_fuse(node
, base
);
592 dscr_parse_rmii_resets(node
, base
);
593 dscr_parse_locked_regs(node
, base
);
594 dscr_parse_kick_regs(node
, base
);
595 dscr_parse_devstate_ctl_regs(node
, base
);
596 dscr_parse_devstate_stat_regs(node
, base
);
597 dscr_parse_privperm(node
, base
);