2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Changes: Pedro Roque : Retransmit queue handled by TCP.
25 * : Fragmentation on mtu decrease
26 * : Segment collapse on retransmit
29 * Linus Torvalds : send_delayed_ack
30 * David S. Miller : Charge memory using the right skb
31 * during syn/ack processing.
32 * David S. Miller : Output engine completely rewritten.
33 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
34 * Cacophonix Gaul : draft-minshall-nagle-01
35 * J Hadi Salim : ECN support
41 #include <linux/compiler.h>
42 #include <linux/module.h>
43 #include <linux/smp_lock.h>
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse
= 1;
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
51 int sysctl_tcp_workaround_signed_windows
= 0;
53 /* This limits the percentage of the congestion window which we
54 * will allow a single TSO frame to consume. Building TSO frames
55 * which are too large can cause TCP streams to be bursty.
57 int sysctl_tcp_tso_win_divisor
= 3;
59 int sysctl_tcp_mtu_probing
= 0;
60 int sysctl_tcp_base_mss
= 512;
62 static void update_send_head(struct sock
*sk
, struct tcp_sock
*tp
,
65 sk
->sk_send_head
= skb
->next
;
66 if (sk
->sk_send_head
== (struct sk_buff
*)&sk
->sk_write_queue
)
67 sk
->sk_send_head
= NULL
;
68 tp
->snd_nxt
= TCP_SKB_CB(skb
)->end_seq
;
69 tcp_packets_out_inc(sk
, tp
, skb
);
72 /* SND.NXT, if window was not shrunk.
73 * If window has been shrunk, what should we make? It is not clear at all.
74 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
75 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
76 * invalid. OK, let's make this for now:
78 static inline __u32
tcp_acceptable_seq(struct sock
*sk
, struct tcp_sock
*tp
)
80 if (!before(tp
->snd_una
+tp
->snd_wnd
, tp
->snd_nxt
))
83 return tp
->snd_una
+tp
->snd_wnd
;
86 /* Calculate mss to advertise in SYN segment.
87 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
89 * 1. It is independent of path mtu.
90 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
91 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
92 * attached devices, because some buggy hosts are confused by
94 * 4. We do not make 3, we advertise MSS, calculated from first
95 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
96 * This may be overridden via information stored in routing table.
97 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
98 * probably even Jumbo".
100 static __u16
tcp_advertise_mss(struct sock
*sk
)
102 struct tcp_sock
*tp
= tcp_sk(sk
);
103 struct dst_entry
*dst
= __sk_dst_get(sk
);
104 int mss
= tp
->advmss
;
106 if (dst
&& dst_metric(dst
, RTAX_ADVMSS
) < mss
) {
107 mss
= dst_metric(dst
, RTAX_ADVMSS
);
114 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
115 * This is the first part of cwnd validation mechanism. */
116 static void tcp_cwnd_restart(struct sock
*sk
, struct dst_entry
*dst
)
118 struct tcp_sock
*tp
= tcp_sk(sk
);
119 s32 delta
= tcp_time_stamp
- tp
->lsndtime
;
120 u32 restart_cwnd
= tcp_init_cwnd(tp
, dst
);
121 u32 cwnd
= tp
->snd_cwnd
;
123 tcp_ca_event(sk
, CA_EVENT_CWND_RESTART
);
125 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
126 restart_cwnd
= min(restart_cwnd
, cwnd
);
128 while ((delta
-= inet_csk(sk
)->icsk_rto
) > 0 && cwnd
> restart_cwnd
)
130 tp
->snd_cwnd
= max(cwnd
, restart_cwnd
);
131 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
132 tp
->snd_cwnd_used
= 0;
135 static void tcp_event_data_sent(struct tcp_sock
*tp
,
136 struct sk_buff
*skb
, struct sock
*sk
)
138 struct inet_connection_sock
*icsk
= inet_csk(sk
);
139 const u32 now
= tcp_time_stamp
;
141 if (!tp
->packets_out
&& (s32
)(now
- tp
->lsndtime
) > icsk
->icsk_rto
)
142 tcp_cwnd_restart(sk
, __sk_dst_get(sk
));
146 /* If it is a reply for ato after last received
147 * packet, enter pingpong mode.
149 if ((u32
)(now
- icsk
->icsk_ack
.lrcvtime
) < icsk
->icsk_ack
.ato
)
150 icsk
->icsk_ack
.pingpong
= 1;
153 static inline void tcp_event_ack_sent(struct sock
*sk
, unsigned int pkts
)
155 tcp_dec_quickack_mode(sk
, pkts
);
156 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_DACK
);
159 /* Determine a window scaling and initial window to offer.
160 * Based on the assumption that the given amount of space
161 * will be offered. Store the results in the tp structure.
162 * NOTE: for smooth operation initial space offering should
163 * be a multiple of mss if possible. We assume here that mss >= 1.
164 * This MUST be enforced by all callers.
166 void tcp_select_initial_window(int __space
, __u32 mss
,
167 __u32
*rcv_wnd
, __u32
*window_clamp
,
168 int wscale_ok
, __u8
*rcv_wscale
)
170 unsigned int space
= (__space
< 0 ? 0 : __space
);
172 /* If no clamp set the clamp to the max possible scaled window */
173 if (*window_clamp
== 0)
174 (*window_clamp
) = (65535 << 14);
175 space
= min(*window_clamp
, space
);
177 /* Quantize space offering to a multiple of mss if possible. */
179 space
= (space
/ mss
) * mss
;
181 /* NOTE: offering an initial window larger than 32767
182 * will break some buggy TCP stacks. If the admin tells us
183 * it is likely we could be speaking with such a buggy stack
184 * we will truncate our initial window offering to 32K-1
185 * unless the remote has sent us a window scaling option,
186 * which we interpret as a sign the remote TCP is not
187 * misinterpreting the window field as a signed quantity.
189 if (sysctl_tcp_workaround_signed_windows
)
190 (*rcv_wnd
) = min(space
, MAX_TCP_WINDOW
);
196 /* Set window scaling on max possible window
197 * See RFC1323 for an explanation of the limit to 14
199 space
= max_t(u32
, sysctl_tcp_rmem
[2], sysctl_rmem_max
);
200 while (space
> 65535 && (*rcv_wscale
) < 14) {
206 /* Set initial window to value enough for senders,
207 * following RFC2414. Senders, not following this RFC,
208 * will be satisfied with 2.
210 if (mss
> (1<<*rcv_wscale
)) {
216 if (*rcv_wnd
> init_cwnd
*mss
)
217 *rcv_wnd
= init_cwnd
*mss
;
220 /* Set the clamp no higher than max representable value */
221 (*window_clamp
) = min(65535U << (*rcv_wscale
), *window_clamp
);
224 /* Chose a new window to advertise, update state in tcp_sock for the
225 * socket, and return result with RFC1323 scaling applied. The return
226 * value can be stuffed directly into th->window for an outgoing
229 static u16
tcp_select_window(struct sock
*sk
)
231 struct tcp_sock
*tp
= tcp_sk(sk
);
232 u32 cur_win
= tcp_receive_window(tp
);
233 u32 new_win
= __tcp_select_window(sk
);
235 /* Never shrink the offered window */
236 if(new_win
< cur_win
) {
237 /* Danger Will Robinson!
238 * Don't update rcv_wup/rcv_wnd here or else
239 * we will not be able to advertise a zero
240 * window in time. --DaveM
242 * Relax Will Robinson.
246 tp
->rcv_wnd
= new_win
;
247 tp
->rcv_wup
= tp
->rcv_nxt
;
249 /* Make sure we do not exceed the maximum possible
252 if (!tp
->rx_opt
.rcv_wscale
&& sysctl_tcp_workaround_signed_windows
)
253 new_win
= min(new_win
, MAX_TCP_WINDOW
);
255 new_win
= min(new_win
, (65535U << tp
->rx_opt
.rcv_wscale
));
257 /* RFC1323 scaling applied */
258 new_win
>>= tp
->rx_opt
.rcv_wscale
;
260 /* If we advertise zero window, disable fast path. */
267 static void tcp_build_and_update_options(__u32
*ptr
, struct tcp_sock
*tp
,
270 if (tp
->rx_opt
.tstamp_ok
) {
271 *ptr
++ = __constant_htonl((TCPOPT_NOP
<< 24) |
273 (TCPOPT_TIMESTAMP
<< 8) |
275 *ptr
++ = htonl(tstamp
);
276 *ptr
++ = htonl(tp
->rx_opt
.ts_recent
);
278 if (tp
->rx_opt
.eff_sacks
) {
279 struct tcp_sack_block
*sp
= tp
->rx_opt
.dsack
? tp
->duplicate_sack
: tp
->selective_acks
;
282 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
285 (TCPOLEN_SACK_BASE
+ (tp
->rx_opt
.eff_sacks
*
286 TCPOLEN_SACK_PERBLOCK
)));
287 for(this_sack
= 0; this_sack
< tp
->rx_opt
.eff_sacks
; this_sack
++) {
288 *ptr
++ = htonl(sp
[this_sack
].start_seq
);
289 *ptr
++ = htonl(sp
[this_sack
].end_seq
);
291 if (tp
->rx_opt
.dsack
) {
292 tp
->rx_opt
.dsack
= 0;
293 tp
->rx_opt
.eff_sacks
--;
298 /* Construct a tcp options header for a SYN or SYN_ACK packet.
299 * If this is every changed make sure to change the definition of
300 * MAX_SYN_SIZE to match the new maximum number of options that you
303 static void tcp_syn_build_options(__u32
*ptr
, int mss
, int ts
, int sack
,
304 int offer_wscale
, int wscale
, __u32 tstamp
,
307 /* We always get an MSS option.
308 * The option bytes which will be seen in normal data
309 * packets should timestamps be used, must be in the MSS
310 * advertised. But we subtract them from tp->mss_cache so
311 * that calculations in tcp_sendmsg are simpler etc.
312 * So account for this fact here if necessary. If we
313 * don't do this correctly, as a receiver we won't
314 * recognize data packets as being full sized when we
315 * should, and thus we won't abide by the delayed ACK
317 * SACKs don't matter, we never delay an ACK when we
318 * have any of those going out.
320 *ptr
++ = htonl((TCPOPT_MSS
<< 24) | (TCPOLEN_MSS
<< 16) | mss
);
323 *ptr
++ = __constant_htonl((TCPOPT_SACK_PERM
<< 24) | (TCPOLEN_SACK_PERM
<< 16) |
324 (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
);
326 *ptr
++ = __constant_htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
327 (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
);
328 *ptr
++ = htonl(tstamp
); /* TSVAL */
329 *ptr
++ = htonl(ts_recent
); /* TSECR */
331 *ptr
++ = __constant_htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
332 (TCPOPT_SACK_PERM
<< 8) | TCPOLEN_SACK_PERM
);
334 *ptr
++ = htonl((TCPOPT_NOP
<< 24) | (TCPOPT_WINDOW
<< 16) | (TCPOLEN_WINDOW
<< 8) | (wscale
));
337 /* This routine actually transmits TCP packets queued in by
338 * tcp_do_sendmsg(). This is used by both the initial
339 * transmission and possible later retransmissions.
340 * All SKB's seen here are completely headerless. It is our
341 * job to build the TCP header, and pass the packet down to
342 * IP so it can do the same plus pass the packet off to the
345 * We are working here with either a clone of the original
346 * SKB, or a fresh unique copy made by the retransmit engine.
348 static int tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int clone_it
, gfp_t gfp_mask
)
350 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
351 struct inet_sock
*inet
;
353 struct tcp_skb_cb
*tcb
;
359 BUG_ON(!skb
|| !tcp_skb_pcount(skb
));
361 /* If congestion control is doing timestamping, we must
362 * take such a timestamp before we potentially clone/copy.
364 if (icsk
->icsk_ca_ops
->rtt_sample
)
365 __net_timestamp(skb
);
367 if (likely(clone_it
)) {
368 if (unlikely(skb_cloned(skb
)))
369 skb
= pskb_copy(skb
, gfp_mask
);
371 skb
= skb_clone(skb
, gfp_mask
);
378 tcb
= TCP_SKB_CB(skb
);
379 tcp_header_size
= tp
->tcp_header_len
;
381 #define SYSCTL_FLAG_TSTAMPS 0x1
382 #define SYSCTL_FLAG_WSCALE 0x2
383 #define SYSCTL_FLAG_SACK 0x4
386 if (unlikely(tcb
->flags
& TCPCB_FLAG_SYN
)) {
387 tcp_header_size
= sizeof(struct tcphdr
) + TCPOLEN_MSS
;
388 if(sysctl_tcp_timestamps
) {
389 tcp_header_size
+= TCPOLEN_TSTAMP_ALIGNED
;
390 sysctl_flags
|= SYSCTL_FLAG_TSTAMPS
;
392 if (sysctl_tcp_window_scaling
) {
393 tcp_header_size
+= TCPOLEN_WSCALE_ALIGNED
;
394 sysctl_flags
|= SYSCTL_FLAG_WSCALE
;
396 if (sysctl_tcp_sack
) {
397 sysctl_flags
|= SYSCTL_FLAG_SACK
;
398 if (!(sysctl_flags
& SYSCTL_FLAG_TSTAMPS
))
399 tcp_header_size
+= TCPOLEN_SACKPERM_ALIGNED
;
401 } else if (unlikely(tp
->rx_opt
.eff_sacks
)) {
402 /* A SACK is 2 pad bytes, a 2 byte header, plus
403 * 2 32-bit sequence numbers for each SACK block.
405 tcp_header_size
+= (TCPOLEN_SACK_BASE_ALIGNED
+
406 (tp
->rx_opt
.eff_sacks
*
407 TCPOLEN_SACK_PERBLOCK
));
410 if (tcp_packets_in_flight(tp
) == 0)
411 tcp_ca_event(sk
, CA_EVENT_TX_START
);
413 th
= (struct tcphdr
*) skb_push(skb
, tcp_header_size
);
415 skb_set_owner_w(skb
, sk
);
417 /* Build TCP header and checksum it. */
418 th
->source
= inet
->sport
;
419 th
->dest
= inet
->dport
;
420 th
->seq
= htonl(tcb
->seq
);
421 th
->ack_seq
= htonl(tp
->rcv_nxt
);
422 *(((__u16
*)th
) + 6) = htons(((tcp_header_size
>> 2) << 12) |
425 if (unlikely(tcb
->flags
& TCPCB_FLAG_SYN
)) {
426 /* RFC1323: The window in SYN & SYN/ACK segments
429 th
->window
= htons(tp
->rcv_wnd
);
431 th
->window
= htons(tcp_select_window(sk
));
436 if (unlikely(tp
->urg_mode
&&
437 between(tp
->snd_up
, tcb
->seq
+1, tcb
->seq
+0xFFFF))) {
438 th
->urg_ptr
= htons(tp
->snd_up
-tcb
->seq
);
442 if (unlikely(tcb
->flags
& TCPCB_FLAG_SYN
)) {
443 tcp_syn_build_options((__u32
*)(th
+ 1),
444 tcp_advertise_mss(sk
),
445 (sysctl_flags
& SYSCTL_FLAG_TSTAMPS
),
446 (sysctl_flags
& SYSCTL_FLAG_SACK
),
447 (sysctl_flags
& SYSCTL_FLAG_WSCALE
),
448 tp
->rx_opt
.rcv_wscale
,
450 tp
->rx_opt
.ts_recent
);
452 tcp_build_and_update_options((__u32
*)(th
+ 1),
454 TCP_ECN_send(sk
, tp
, skb
, tcp_header_size
);
457 icsk
->icsk_af_ops
->send_check(sk
, skb
->len
, skb
);
459 if (likely(tcb
->flags
& TCPCB_FLAG_ACK
))
460 tcp_event_ack_sent(sk
, tcp_skb_pcount(skb
));
462 if (skb
->len
!= tcp_header_size
)
463 tcp_event_data_sent(tp
, skb
, sk
);
465 TCP_INC_STATS(TCP_MIB_OUTSEGS
);
467 err
= icsk
->icsk_af_ops
->queue_xmit(skb
, 0);
468 if (likely(err
<= 0))
473 /* NET_XMIT_CN is special. It does not guarantee,
474 * that this packet is lost. It tells that device
475 * is about to start to drop packets or already
476 * drops some packets of the same priority and
477 * invokes us to send less aggressively.
479 return err
== NET_XMIT_CN
? 0 : err
;
481 #undef SYSCTL_FLAG_TSTAMPS
482 #undef SYSCTL_FLAG_WSCALE
483 #undef SYSCTL_FLAG_SACK
487 /* This routine just queue's the buffer
489 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
490 * otherwise socket can stall.
492 static void tcp_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
494 struct tcp_sock
*tp
= tcp_sk(sk
);
496 /* Advance write_seq and place onto the write_queue. */
497 tp
->write_seq
= TCP_SKB_CB(skb
)->end_seq
;
498 skb_header_release(skb
);
499 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
500 sk_charge_skb(sk
, skb
);
502 /* Queue it, remembering where we must start sending. */
503 if (sk
->sk_send_head
== NULL
)
504 sk
->sk_send_head
= skb
;
507 static void tcp_set_skb_tso_segs(struct sock
*sk
, struct sk_buff
*skb
, unsigned int mss_now
)
509 if (skb
->len
<= mss_now
||
510 !(sk
->sk_route_caps
& NETIF_F_TSO
)) {
511 /* Avoid the costly divide in the normal
514 skb_shinfo(skb
)->tso_segs
= 1;
515 skb_shinfo(skb
)->tso_size
= 0;
519 factor
= skb
->len
+ (mss_now
- 1);
521 skb_shinfo(skb
)->tso_segs
= factor
;
522 skb_shinfo(skb
)->tso_size
= mss_now
;
526 /* Function to create two new TCP segments. Shrinks the given segment
527 * to the specified size and appends a new segment with the rest of the
528 * packet to the list. This won't be called frequently, I hope.
529 * Remember, these are still headerless SKBs at this point.
531 int tcp_fragment(struct sock
*sk
, struct sk_buff
*skb
, u32 len
, unsigned int mss_now
)
533 struct tcp_sock
*tp
= tcp_sk(sk
);
534 struct sk_buff
*buff
;
535 int nsize
, old_factor
;
539 BUG_ON(len
> skb
->len
);
541 clear_all_retrans_hints(tp
);
542 nsize
= skb_headlen(skb
) - len
;
546 if (skb_cloned(skb
) &&
547 skb_is_nonlinear(skb
) &&
548 pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))
551 /* Get a new skb... force flag on. */
552 buff
= sk_stream_alloc_skb(sk
, nsize
, GFP_ATOMIC
);
554 return -ENOMEM
; /* We'll just try again later. */
556 sk_charge_skb(sk
, buff
);
557 nlen
= skb
->len
- len
- nsize
;
558 buff
->truesize
+= nlen
;
559 skb
->truesize
-= nlen
;
561 /* Correct the sequence numbers. */
562 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
563 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
564 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
566 /* PSH and FIN should only be set in the second packet. */
567 flags
= TCP_SKB_CB(skb
)->flags
;
568 TCP_SKB_CB(skb
)->flags
= flags
& ~(TCPCB_FLAG_FIN
|TCPCB_FLAG_PSH
);
569 TCP_SKB_CB(buff
)->flags
= flags
;
570 TCP_SKB_CB(buff
)->sacked
= TCP_SKB_CB(skb
)->sacked
;
571 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_AT_TAIL
;
573 if (!skb_shinfo(skb
)->nr_frags
&& skb
->ip_summed
!= CHECKSUM_HW
) {
574 /* Copy and checksum data tail into the new buffer. */
575 buff
->csum
= csum_partial_copy_nocheck(skb
->data
+ len
, skb_put(buff
, nsize
),
580 skb
->csum
= csum_block_sub(skb
->csum
, buff
->csum
, len
);
582 skb
->ip_summed
= CHECKSUM_HW
;
583 skb_split(skb
, buff
, len
);
586 buff
->ip_summed
= skb
->ip_summed
;
588 /* Looks stupid, but our code really uses when of
589 * skbs, which it never sent before. --ANK
591 TCP_SKB_CB(buff
)->when
= TCP_SKB_CB(skb
)->when
;
592 buff
->tstamp
= skb
->tstamp
;
594 old_factor
= tcp_skb_pcount(skb
);
596 /* Fix up tso_factor for both original and new SKB. */
597 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
598 tcp_set_skb_tso_segs(sk
, buff
, mss_now
);
600 /* If this packet has been sent out already, we must
601 * adjust the various packet counters.
603 if (!before(tp
->snd_nxt
, TCP_SKB_CB(buff
)->end_seq
)) {
604 int diff
= old_factor
- tcp_skb_pcount(skb
) -
605 tcp_skb_pcount(buff
);
607 tp
->packets_out
-= diff
;
609 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
610 tp
->sacked_out
-= diff
;
611 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
612 tp
->retrans_out
-= diff
;
614 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
) {
615 tp
->lost_out
-= diff
;
616 tp
->left_out
-= diff
;
620 /* Adjust Reno SACK estimate. */
621 if (!tp
->rx_opt
.sack_ok
) {
622 tp
->sacked_out
-= diff
;
623 if ((int)tp
->sacked_out
< 0)
625 tcp_sync_left_out(tp
);
628 tp
->fackets_out
-= diff
;
629 if ((int)tp
->fackets_out
< 0)
634 /* Link BUFF into the send queue. */
635 skb_header_release(buff
);
636 __skb_append(skb
, buff
, &sk
->sk_write_queue
);
641 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
642 * eventually). The difference is that pulled data not copied, but
643 * immediately discarded.
645 static void __pskb_trim_head(struct sk_buff
*skb
, int len
)
651 for (i
=0; i
<skb_shinfo(skb
)->nr_frags
; i
++) {
652 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
653 put_page(skb_shinfo(skb
)->frags
[i
].page
);
654 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
656 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
658 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
659 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
665 skb_shinfo(skb
)->nr_frags
= k
;
667 skb
->tail
= skb
->data
;
668 skb
->data_len
-= len
;
669 skb
->len
= skb
->data_len
;
672 int tcp_trim_head(struct sock
*sk
, struct sk_buff
*skb
, u32 len
)
674 if (skb_cloned(skb
) &&
675 pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))
678 /* If len == headlen, we avoid __skb_pull to preserve alignment. */
679 if (unlikely(len
< skb_headlen(skb
)))
680 __skb_pull(skb
, len
);
682 __pskb_trim_head(skb
, len
- skb_headlen(skb
));
684 TCP_SKB_CB(skb
)->seq
+= len
;
685 skb
->ip_summed
= CHECKSUM_HW
;
687 skb
->truesize
-= len
;
688 sk
->sk_wmem_queued
-= len
;
689 sk
->sk_forward_alloc
+= len
;
690 sock_set_flag(sk
, SOCK_QUEUE_SHRUNK
);
692 /* Any change of skb->len requires recalculation of tso
695 if (tcp_skb_pcount(skb
) > 1)
696 tcp_set_skb_tso_segs(sk
, skb
, tcp_current_mss(sk
, 1));
701 /* Not accounting for SACKs here. */
702 int tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
704 struct tcp_sock
*tp
= tcp_sk(sk
);
705 struct inet_connection_sock
*icsk
= inet_csk(sk
);
708 /* Calculate base mss without TCP options:
709 It is MMS_S - sizeof(tcphdr) of rfc1122
711 mss_now
= pmtu
- icsk
->icsk_af_ops
->net_header_len
- sizeof(struct tcphdr
);
713 /* Clamp it (mss_clamp does not include tcp options) */
714 if (mss_now
> tp
->rx_opt
.mss_clamp
)
715 mss_now
= tp
->rx_opt
.mss_clamp
;
717 /* Now subtract optional transport overhead */
718 mss_now
-= icsk
->icsk_ext_hdr_len
;
720 /* Then reserve room for full set of TCP options and 8 bytes of data */
724 /* Now subtract TCP options size, not including SACKs */
725 mss_now
-= tp
->tcp_header_len
- sizeof(struct tcphdr
);
730 /* Inverse of above */
731 int tcp_mss_to_mtu(struct sock
*sk
, int mss
)
733 struct tcp_sock
*tp
= tcp_sk(sk
);
734 struct inet_connection_sock
*icsk
= inet_csk(sk
);
739 icsk
->icsk_ext_hdr_len
+
740 icsk
->icsk_af_ops
->net_header_len
;
745 void tcp_mtup_init(struct sock
*sk
)
747 struct tcp_sock
*tp
= tcp_sk(sk
);
748 struct inet_connection_sock
*icsk
= inet_csk(sk
);
750 icsk
->icsk_mtup
.enabled
= sysctl_tcp_mtu_probing
> 1;
751 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+ sizeof(struct tcphdr
) +
752 icsk
->icsk_af_ops
->net_header_len
;
753 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, sysctl_tcp_base_mss
);
754 icsk
->icsk_mtup
.probe_size
= 0;
757 /* This function synchronize snd mss to current pmtu/exthdr set.
759 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
760 for TCP options, but includes only bare TCP header.
762 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
763 It is minimum of user_mss and mss received with SYN.
764 It also does not include TCP options.
766 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
768 tp->mss_cache is current effective sending mss, including
769 all tcp options except for SACKs. It is evaluated,
770 taking into account current pmtu, but never exceeds
771 tp->rx_opt.mss_clamp.
773 NOTE1. rfc1122 clearly states that advertised MSS
774 DOES NOT include either tcp or ip options.
776 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
777 are READ ONLY outside this function. --ANK (980731)
780 unsigned int tcp_sync_mss(struct sock
*sk
, u32 pmtu
)
782 struct tcp_sock
*tp
= tcp_sk(sk
);
783 struct inet_connection_sock
*icsk
= inet_csk(sk
);
786 if (icsk
->icsk_mtup
.search_high
> pmtu
)
787 icsk
->icsk_mtup
.search_high
= pmtu
;
789 mss_now
= tcp_mtu_to_mss(sk
, pmtu
);
791 /* Bound mss with half of window */
792 if (tp
->max_window
&& mss_now
> (tp
->max_window
>>1))
793 mss_now
= max((tp
->max_window
>>1), 68U - tp
->tcp_header_len
);
795 /* And store cached results */
796 icsk
->icsk_pmtu_cookie
= pmtu
;
797 if (icsk
->icsk_mtup
.enabled
)
798 mss_now
= min(mss_now
, tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_low
));
799 tp
->mss_cache
= mss_now
;
804 /* Compute the current effective MSS, taking SACKs and IP options,
805 * and even PMTU discovery events into account.
807 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
808 * cannot be large. However, taking into account rare use of URG, this
811 unsigned int tcp_current_mss(struct sock
*sk
, int large_allowed
)
813 struct tcp_sock
*tp
= tcp_sk(sk
);
814 struct dst_entry
*dst
= __sk_dst_get(sk
);
819 mss_now
= tp
->mss_cache
;
822 (sk
->sk_route_caps
& NETIF_F_TSO
) &&
827 u32 mtu
= dst_mtu(dst
);
828 if (mtu
!= inet_csk(sk
)->icsk_pmtu_cookie
)
829 mss_now
= tcp_sync_mss(sk
, mtu
);
832 if (tp
->rx_opt
.eff_sacks
)
833 mss_now
-= (TCPOLEN_SACK_BASE_ALIGNED
+
834 (tp
->rx_opt
.eff_sacks
* TCPOLEN_SACK_PERBLOCK
));
836 xmit_size_goal
= mss_now
;
839 xmit_size_goal
= (65535 -
840 inet_csk(sk
)->icsk_af_ops
->net_header_len
-
841 inet_csk(sk
)->icsk_ext_hdr_len
-
844 if (tp
->max_window
&&
845 (xmit_size_goal
> (tp
->max_window
>> 1)))
846 xmit_size_goal
= max((tp
->max_window
>> 1),
847 68U - tp
->tcp_header_len
);
849 xmit_size_goal
-= (xmit_size_goal
% mss_now
);
851 tp
->xmit_size_goal
= xmit_size_goal
;
856 /* Congestion window validation. (RFC2861) */
858 static void tcp_cwnd_validate(struct sock
*sk
, struct tcp_sock
*tp
)
860 __u32 packets_out
= tp
->packets_out
;
862 if (packets_out
>= tp
->snd_cwnd
) {
863 /* Network is feed fully. */
864 tp
->snd_cwnd_used
= 0;
865 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
867 /* Network starves. */
868 if (tp
->packets_out
> tp
->snd_cwnd_used
)
869 tp
->snd_cwnd_used
= tp
->packets_out
;
871 if ((s32
)(tcp_time_stamp
- tp
->snd_cwnd_stamp
) >= inet_csk(sk
)->icsk_rto
)
872 tcp_cwnd_application_limited(sk
);
876 static unsigned int tcp_window_allows(struct tcp_sock
*tp
, struct sk_buff
*skb
, unsigned int mss_now
, unsigned int cwnd
)
878 u32 window
, cwnd_len
;
880 window
= (tp
->snd_una
+ tp
->snd_wnd
- TCP_SKB_CB(skb
)->seq
);
881 cwnd_len
= mss_now
* cwnd
;
882 return min(window
, cwnd_len
);
885 /* Can at least one segment of SKB be sent right now, according to the
886 * congestion window rules? If so, return how many segments are allowed.
888 static inline unsigned int tcp_cwnd_test(struct tcp_sock
*tp
, struct sk_buff
*skb
)
892 /* Don't be strict about the congestion window for the final FIN. */
893 if (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
)
896 in_flight
= tcp_packets_in_flight(tp
);
898 if (in_flight
< cwnd
)
899 return (cwnd
- in_flight
);
904 /* This must be invoked the first time we consider transmitting
907 static int tcp_init_tso_segs(struct sock
*sk
, struct sk_buff
*skb
, unsigned int mss_now
)
909 int tso_segs
= tcp_skb_pcount(skb
);
913 skb_shinfo(skb
)->tso_size
!= mss_now
)) {
914 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
915 tso_segs
= tcp_skb_pcount(skb
);
920 static inline int tcp_minshall_check(const struct tcp_sock
*tp
)
922 return after(tp
->snd_sml
,tp
->snd_una
) &&
923 !after(tp
->snd_sml
, tp
->snd_nxt
);
926 /* Return 0, if packet can be sent now without violation Nagle's rules:
927 * 1. It is full sized.
928 * 2. Or it contains FIN. (already checked by caller)
929 * 3. Or TCP_NODELAY was set.
930 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
931 * With Minshall's modification: all sent small packets are ACKed.
934 static inline int tcp_nagle_check(const struct tcp_sock
*tp
,
935 const struct sk_buff
*skb
,
936 unsigned mss_now
, int nonagle
)
938 return (skb
->len
< mss_now
&&
939 ((nonagle
&TCP_NAGLE_CORK
) ||
942 tcp_minshall_check(tp
))));
945 /* Return non-zero if the Nagle test allows this packet to be
948 static inline int tcp_nagle_test(struct tcp_sock
*tp
, struct sk_buff
*skb
,
949 unsigned int cur_mss
, int nonagle
)
951 /* Nagle rule does not apply to frames, which sit in the middle of the
952 * write_queue (they have no chances to get new data).
954 * This is implemented in the callers, where they modify the 'nonagle'
955 * argument based upon the location of SKB in the send queue.
957 if (nonagle
& TCP_NAGLE_PUSH
)
960 /* Don't use the nagle rule for urgent data (or for the final FIN). */
962 (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
))
965 if (!tcp_nagle_check(tp
, skb
, cur_mss
, nonagle
))
971 /* Does at least the first segment of SKB fit into the send window? */
972 static inline int tcp_snd_wnd_test(struct tcp_sock
*tp
, struct sk_buff
*skb
, unsigned int cur_mss
)
974 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
976 if (skb
->len
> cur_mss
)
977 end_seq
= TCP_SKB_CB(skb
)->seq
+ cur_mss
;
979 return !after(end_seq
, tp
->snd_una
+ tp
->snd_wnd
);
982 /* This checks if the data bearing packet SKB (usually sk->sk_send_head)
983 * should be put on the wire right now. If so, it returns the number of
984 * packets allowed by the congestion window.
986 static unsigned int tcp_snd_test(struct sock
*sk
, struct sk_buff
*skb
,
987 unsigned int cur_mss
, int nonagle
)
989 struct tcp_sock
*tp
= tcp_sk(sk
);
990 unsigned int cwnd_quota
;
992 tcp_init_tso_segs(sk
, skb
, cur_mss
);
994 if (!tcp_nagle_test(tp
, skb
, cur_mss
, nonagle
))
997 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
999 !tcp_snd_wnd_test(tp
, skb
, cur_mss
))
1005 static inline int tcp_skb_is_last(const struct sock
*sk
,
1006 const struct sk_buff
*skb
)
1008 return skb
->next
== (struct sk_buff
*)&sk
->sk_write_queue
;
1011 int tcp_may_send_now(struct sock
*sk
, struct tcp_sock
*tp
)
1013 struct sk_buff
*skb
= sk
->sk_send_head
;
1016 tcp_snd_test(sk
, skb
, tcp_current_mss(sk
, 1),
1017 (tcp_skb_is_last(sk
, skb
) ?
1022 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1023 * which is put after SKB on the list. It is very much like
1024 * tcp_fragment() except that it may make several kinds of assumptions
1025 * in order to speed up the splitting operation. In particular, we
1026 * know that all the data is in scatter-gather pages, and that the
1027 * packet has never been sent out before (and thus is not cloned).
1029 static int tso_fragment(struct sock
*sk
, struct sk_buff
*skb
, unsigned int len
, unsigned int mss_now
)
1031 struct sk_buff
*buff
;
1032 int nlen
= skb
->len
- len
;
1035 /* All of a TSO frame must be composed of paged data. */
1036 if (skb
->len
!= skb
->data_len
)
1037 return tcp_fragment(sk
, skb
, len
, mss_now
);
1039 buff
= sk_stream_alloc_pskb(sk
, 0, 0, GFP_ATOMIC
);
1040 if (unlikely(buff
== NULL
))
1043 sk_charge_skb(sk
, buff
);
1044 buff
->truesize
+= nlen
;
1045 skb
->truesize
-= nlen
;
1047 /* Correct the sequence numbers. */
1048 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1049 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1050 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1052 /* PSH and FIN should only be set in the second packet. */
1053 flags
= TCP_SKB_CB(skb
)->flags
;
1054 TCP_SKB_CB(skb
)->flags
= flags
& ~(TCPCB_FLAG_FIN
|TCPCB_FLAG_PSH
);
1055 TCP_SKB_CB(buff
)->flags
= flags
;
1057 /* This packet was never sent out yet, so no SACK bits. */
1058 TCP_SKB_CB(buff
)->sacked
= 0;
1060 buff
->ip_summed
= skb
->ip_summed
= CHECKSUM_HW
;
1061 skb_split(skb
, buff
, len
);
1063 /* Fix up tso_factor for both original and new SKB. */
1064 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1065 tcp_set_skb_tso_segs(sk
, buff
, mss_now
);
1067 /* Link BUFF into the send queue. */
1068 skb_header_release(buff
);
1069 __skb_append(skb
, buff
, &sk
->sk_write_queue
);
1074 /* Try to defer sending, if possible, in order to minimize the amount
1075 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1077 * This algorithm is from John Heffner.
1079 static int tcp_tso_should_defer(struct sock
*sk
, struct tcp_sock
*tp
, struct sk_buff
*skb
)
1081 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1082 u32 send_win
, cong_win
, limit
, in_flight
;
1084 if (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
)
1087 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
1090 in_flight
= tcp_packets_in_flight(tp
);
1092 BUG_ON(tcp_skb_pcount(skb
) <= 1 ||
1093 (tp
->snd_cwnd
<= in_flight
));
1095 send_win
= (tp
->snd_una
+ tp
->snd_wnd
) - TCP_SKB_CB(skb
)->seq
;
1097 /* From in_flight test above, we know that cwnd > in_flight. */
1098 cong_win
= (tp
->snd_cwnd
- in_flight
) * tp
->mss_cache
;
1100 limit
= min(send_win
, cong_win
);
1102 /* If a full-sized TSO skb can be sent, do it. */
1106 if (sysctl_tcp_tso_win_divisor
) {
1107 u32 chunk
= min(tp
->snd_wnd
, tp
->snd_cwnd
* tp
->mss_cache
);
1109 /* If at least some fraction of a window is available,
1112 chunk
/= sysctl_tcp_tso_win_divisor
;
1116 /* Different approach, try not to defer past a single
1117 * ACK. Receiver should ACK every other full sized
1118 * frame, so if we have space for more than 3 frames
1121 if (limit
> tcp_max_burst(tp
) * tp
->mss_cache
)
1125 /* Ok, it looks like it is advisable to defer. */
1129 /* Create a new MTU probe if we are ready.
1130 * Returns 0 if we should wait to probe (no cwnd available),
1131 * 1 if a probe was sent,
1133 static int tcp_mtu_probe(struct sock
*sk
)
1135 struct tcp_sock
*tp
= tcp_sk(sk
);
1136 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1137 struct sk_buff
*skb
, *nskb
, *next
;
1144 /* Not currently probing/verifying,
1146 * have enough cwnd, and
1147 * not SACKing (the variable headers throw things off) */
1148 if (!icsk
->icsk_mtup
.enabled
||
1149 icsk
->icsk_mtup
.probe_size
||
1150 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
||
1151 tp
->snd_cwnd
< 11 ||
1152 tp
->rx_opt
.eff_sacks
)
1155 /* Very simple search strategy: just double the MSS. */
1156 mss_now
= tcp_current_mss(sk
, 0);
1157 probe_size
= 2*tp
->mss_cache
;
1158 if (probe_size
> tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_high
)) {
1159 /* TODO: set timer for probe_converge_event */
1163 /* Have enough data in the send queue to probe? */
1165 if ((skb
= sk
->sk_send_head
) == NULL
)
1167 while ((len
+= skb
->len
) < probe_size
&& !tcp_skb_is_last(sk
, skb
))
1169 if (len
< probe_size
)
1172 /* Receive window check. */
1173 if (after(TCP_SKB_CB(skb
)->seq
+ probe_size
, tp
->snd_una
+ tp
->snd_wnd
)) {
1174 if (tp
->snd_wnd
< probe_size
)
1180 /* Do we need to wait to drain cwnd? */
1181 pif
= tcp_packets_in_flight(tp
);
1182 if (pif
+ 2 > tp
->snd_cwnd
) {
1183 /* With no packets in flight, don't stall. */
1190 /* We're allowed to probe. Build it now. */
1191 if ((nskb
= sk_stream_alloc_skb(sk
, probe_size
, GFP_ATOMIC
)) == NULL
)
1193 sk_charge_skb(sk
, nskb
);
1195 skb
= sk
->sk_send_head
;
1196 __skb_insert(nskb
, skb
->prev
, skb
, &sk
->sk_write_queue
);
1197 sk
->sk_send_head
= nskb
;
1199 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(skb
)->seq
;
1200 TCP_SKB_CB(nskb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ probe_size
;
1201 TCP_SKB_CB(nskb
)->flags
= TCPCB_FLAG_ACK
;
1202 TCP_SKB_CB(nskb
)->sacked
= 0;
1204 if (skb
->ip_summed
== CHECKSUM_HW
)
1205 nskb
->ip_summed
= CHECKSUM_HW
;
1208 while (len
< probe_size
) {
1211 copy
= min_t(int, skb
->len
, probe_size
- len
);
1212 if (nskb
->ip_summed
)
1213 skb_copy_bits(skb
, 0, skb_put(nskb
, copy
), copy
);
1215 nskb
->csum
= skb_copy_and_csum_bits(skb
, 0,
1216 skb_put(nskb
, copy
), copy
, nskb
->csum
);
1218 if (skb
->len
<= copy
) {
1219 /* We've eaten all the data from this skb.
1221 TCP_SKB_CB(nskb
)->flags
|= TCP_SKB_CB(skb
)->flags
;
1222 __skb_unlink(skb
, &sk
->sk_write_queue
);
1223 sk_stream_free_skb(sk
, skb
);
1225 TCP_SKB_CB(nskb
)->flags
|= TCP_SKB_CB(skb
)->flags
&
1226 ~(TCPCB_FLAG_FIN
|TCPCB_FLAG_PSH
);
1227 if (!skb_shinfo(skb
)->nr_frags
) {
1228 skb_pull(skb
, copy
);
1229 if (skb
->ip_summed
!= CHECKSUM_HW
)
1230 skb
->csum
= csum_partial(skb
->data
, skb
->len
, 0);
1232 __pskb_trim_head(skb
, copy
);
1233 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1235 TCP_SKB_CB(skb
)->seq
+= copy
;
1241 tcp_init_tso_segs(sk
, nskb
, nskb
->len
);
1243 /* We're ready to send. If this fails, the probe will
1244 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1245 TCP_SKB_CB(nskb
)->when
= tcp_time_stamp
;
1246 if (!tcp_transmit_skb(sk
, nskb
, 1, GFP_ATOMIC
)) {
1247 /* Decrement cwnd here because we are sending
1248 * effectively two packets. */
1250 update_send_head(sk
, tp
, nskb
);
1252 icsk
->icsk_mtup
.probe_size
= tcp_mss_to_mtu(sk
, nskb
->len
);
1253 tp
->mtu_probe
.probe_seq_start
= TCP_SKB_CB(nskb
)->seq
;
1254 tp
->mtu_probe
.probe_seq_end
= TCP_SKB_CB(nskb
)->end_seq
;
1263 /* This routine writes packets to the network. It advances the
1264 * send_head. This happens as incoming acks open up the remote
1267 * Returns 1, if no segments are in flight and we have queued segments, but
1268 * cannot send anything now because of SWS or another problem.
1270 static int tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
)
1272 struct tcp_sock
*tp
= tcp_sk(sk
);
1273 struct sk_buff
*skb
;
1274 unsigned int tso_segs
, sent_pkts
;
1278 /* If we are closed, the bytes will have to remain here.
1279 * In time closedown will finish, we empty the write queue and all
1282 if (unlikely(sk
->sk_state
== TCP_CLOSE
))
1287 /* Do MTU probing. */
1288 if ((result
= tcp_mtu_probe(sk
)) == 0) {
1290 } else if (result
> 0) {
1294 while ((skb
= sk
->sk_send_head
)) {
1297 tso_segs
= tcp_init_tso_segs(sk
, skb
, mss_now
);
1300 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
1304 if (unlikely(!tcp_snd_wnd_test(tp
, skb
, mss_now
)))
1307 if (tso_segs
== 1) {
1308 if (unlikely(!tcp_nagle_test(tp
, skb
, mss_now
,
1309 (tcp_skb_is_last(sk
, skb
) ?
1310 nonagle
: TCP_NAGLE_PUSH
))))
1313 if (tcp_tso_should_defer(sk
, tp
, skb
))
1319 limit
= tcp_window_allows(tp
, skb
,
1320 mss_now
, cwnd_quota
);
1322 if (skb
->len
< limit
) {
1323 unsigned int trim
= skb
->len
% mss_now
;
1326 limit
= skb
->len
- trim
;
1330 if (skb
->len
> limit
&&
1331 unlikely(tso_fragment(sk
, skb
, limit
, mss_now
)))
1334 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1336 if (unlikely(tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
)))
1339 /* Advance the send_head. This one is sent out.
1340 * This call will increment packets_out.
1342 update_send_head(sk
, tp
, skb
);
1344 tcp_minshall_update(tp
, mss_now
, skb
);
1348 if (likely(sent_pkts
)) {
1349 tcp_cwnd_validate(sk
, tp
);
1352 return !tp
->packets_out
&& sk
->sk_send_head
;
1355 /* Push out any pending frames which were held back due to
1356 * TCP_CORK or attempt at coalescing tiny packets.
1357 * The socket must be locked by the caller.
1359 void __tcp_push_pending_frames(struct sock
*sk
, struct tcp_sock
*tp
,
1360 unsigned int cur_mss
, int nonagle
)
1362 struct sk_buff
*skb
= sk
->sk_send_head
;
1365 if (tcp_write_xmit(sk
, cur_mss
, nonagle
))
1366 tcp_check_probe_timer(sk
, tp
);
1370 /* Send _single_ skb sitting at the send head. This function requires
1371 * true push pending frames to setup probe timer etc.
1373 void tcp_push_one(struct sock
*sk
, unsigned int mss_now
)
1375 struct tcp_sock
*tp
= tcp_sk(sk
);
1376 struct sk_buff
*skb
= sk
->sk_send_head
;
1377 unsigned int tso_segs
, cwnd_quota
;
1379 BUG_ON(!skb
|| skb
->len
< mss_now
);
1381 tso_segs
= tcp_init_tso_segs(sk
, skb
, mss_now
);
1382 cwnd_quota
= tcp_snd_test(sk
, skb
, mss_now
, TCP_NAGLE_PUSH
);
1384 if (likely(cwnd_quota
)) {
1391 limit
= tcp_window_allows(tp
, skb
,
1392 mss_now
, cwnd_quota
);
1394 if (skb
->len
< limit
) {
1395 unsigned int trim
= skb
->len
% mss_now
;
1398 limit
= skb
->len
- trim
;
1402 if (skb
->len
> limit
&&
1403 unlikely(tso_fragment(sk
, skb
, limit
, mss_now
)))
1406 /* Send it out now. */
1407 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1409 if (likely(!tcp_transmit_skb(sk
, skb
, 1, sk
->sk_allocation
))) {
1410 update_send_head(sk
, tp
, skb
);
1411 tcp_cwnd_validate(sk
, tp
);
1417 /* This function returns the amount that we can raise the
1418 * usable window based on the following constraints
1420 * 1. The window can never be shrunk once it is offered (RFC 793)
1421 * 2. We limit memory per socket
1424 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1425 * RECV.NEXT + RCV.WIN fixed until:
1426 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1428 * i.e. don't raise the right edge of the window until you can raise
1429 * it at least MSS bytes.
1431 * Unfortunately, the recommended algorithm breaks header prediction,
1432 * since header prediction assumes th->window stays fixed.
1434 * Strictly speaking, keeping th->window fixed violates the receiver
1435 * side SWS prevention criteria. The problem is that under this rule
1436 * a stream of single byte packets will cause the right side of the
1437 * window to always advance by a single byte.
1439 * Of course, if the sender implements sender side SWS prevention
1440 * then this will not be a problem.
1442 * BSD seems to make the following compromise:
1444 * If the free space is less than the 1/4 of the maximum
1445 * space available and the free space is less than 1/2 mss,
1446 * then set the window to 0.
1447 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1448 * Otherwise, just prevent the window from shrinking
1449 * and from being larger than the largest representable value.
1451 * This prevents incremental opening of the window in the regime
1452 * where TCP is limited by the speed of the reader side taking
1453 * data out of the TCP receive queue. It does nothing about
1454 * those cases where the window is constrained on the sender side
1455 * because the pipeline is full.
1457 * BSD also seems to "accidentally" limit itself to windows that are a
1458 * multiple of MSS, at least until the free space gets quite small.
1459 * This would appear to be a side effect of the mbuf implementation.
1460 * Combining these two algorithms results in the observed behavior
1461 * of having a fixed window size at almost all times.
1463 * Below we obtain similar behavior by forcing the offered window to
1464 * a multiple of the mss when it is feasible to do so.
1466 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1467 * Regular options like TIMESTAMP are taken into account.
1469 u32
__tcp_select_window(struct sock
*sk
)
1471 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1472 struct tcp_sock
*tp
= tcp_sk(sk
);
1473 /* MSS for the peer's data. Previous versions used mss_clamp
1474 * here. I don't know if the value based on our guesses
1475 * of peer's MSS is better for the performance. It's more correct
1476 * but may be worse for the performance because of rcv_mss
1477 * fluctuations. --SAW 1998/11/1
1479 int mss
= icsk
->icsk_ack
.rcv_mss
;
1480 int free_space
= tcp_space(sk
);
1481 int full_space
= min_t(int, tp
->window_clamp
, tcp_full_space(sk
));
1484 if (mss
> full_space
)
1487 if (free_space
< full_space
/2) {
1488 icsk
->icsk_ack
.quick
= 0;
1490 if (tcp_memory_pressure
)
1491 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U*tp
->advmss
);
1493 if (free_space
< mss
)
1497 if (free_space
> tp
->rcv_ssthresh
)
1498 free_space
= tp
->rcv_ssthresh
;
1500 /* Don't do rounding if we are using window scaling, since the
1501 * scaled window will not line up with the MSS boundary anyway.
1503 window
= tp
->rcv_wnd
;
1504 if (tp
->rx_opt
.rcv_wscale
) {
1505 window
= free_space
;
1507 /* Advertise enough space so that it won't get scaled away.
1508 * Import case: prevent zero window announcement if
1509 * 1<<rcv_wscale > mss.
1511 if (((window
>> tp
->rx_opt
.rcv_wscale
) << tp
->rx_opt
.rcv_wscale
) != window
)
1512 window
= (((window
>> tp
->rx_opt
.rcv_wscale
) + 1)
1513 << tp
->rx_opt
.rcv_wscale
);
1515 /* Get the largest window that is a nice multiple of mss.
1516 * Window clamp already applied above.
1517 * If our current window offering is within 1 mss of the
1518 * free space we just keep it. This prevents the divide
1519 * and multiply from happening most of the time.
1520 * We also don't do any window rounding when the free space
1523 if (window
<= free_space
- mss
|| window
> free_space
)
1524 window
= (free_space
/mss
)*mss
;
1530 /* Attempt to collapse two adjacent SKB's during retransmission. */
1531 static void tcp_retrans_try_collapse(struct sock
*sk
, struct sk_buff
*skb
, int mss_now
)
1533 struct tcp_sock
*tp
= tcp_sk(sk
);
1534 struct sk_buff
*next_skb
= skb
->next
;
1536 /* The first test we must make is that neither of these two
1537 * SKB's are still referenced by someone else.
1539 if (!skb_cloned(skb
) && !skb_cloned(next_skb
)) {
1540 int skb_size
= skb
->len
, next_skb_size
= next_skb
->len
;
1541 u16 flags
= TCP_SKB_CB(skb
)->flags
;
1543 /* Also punt if next skb has been SACK'd. */
1544 if(TCP_SKB_CB(next_skb
)->sacked
& TCPCB_SACKED_ACKED
)
1547 /* Next skb is out of window. */
1548 if (after(TCP_SKB_CB(next_skb
)->end_seq
, tp
->snd_una
+tp
->snd_wnd
))
1551 /* Punt if not enough space exists in the first SKB for
1552 * the data in the second, or the total combined payload
1553 * would exceed the MSS.
1555 if ((next_skb_size
> skb_tailroom(skb
)) ||
1556 ((skb_size
+ next_skb_size
) > mss_now
))
1559 BUG_ON(tcp_skb_pcount(skb
) != 1 ||
1560 tcp_skb_pcount(next_skb
) != 1);
1562 /* changing transmit queue under us so clear hints */
1563 clear_all_retrans_hints(tp
);
1565 /* Ok. We will be able to collapse the packet. */
1566 __skb_unlink(next_skb
, &sk
->sk_write_queue
);
1568 memcpy(skb_put(skb
, next_skb_size
), next_skb
->data
, next_skb_size
);
1570 if (next_skb
->ip_summed
== CHECKSUM_HW
)
1571 skb
->ip_summed
= CHECKSUM_HW
;
1573 if (skb
->ip_summed
!= CHECKSUM_HW
)
1574 skb
->csum
= csum_block_add(skb
->csum
, next_skb
->csum
, skb_size
);
1576 /* Update sequence range on original skb. */
1577 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(next_skb
)->end_seq
;
1579 /* Merge over control information. */
1580 flags
|= TCP_SKB_CB(next_skb
)->flags
; /* This moves PSH/FIN etc. over */
1581 TCP_SKB_CB(skb
)->flags
= flags
;
1583 /* All done, get rid of second SKB and account for it so
1584 * packet counting does not break.
1586 TCP_SKB_CB(skb
)->sacked
|= TCP_SKB_CB(next_skb
)->sacked
&(TCPCB_EVER_RETRANS
|TCPCB_AT_TAIL
);
1587 if (TCP_SKB_CB(next_skb
)->sacked
&TCPCB_SACKED_RETRANS
)
1588 tp
->retrans_out
-= tcp_skb_pcount(next_skb
);
1589 if (TCP_SKB_CB(next_skb
)->sacked
&TCPCB_LOST
) {
1590 tp
->lost_out
-= tcp_skb_pcount(next_skb
);
1591 tp
->left_out
-= tcp_skb_pcount(next_skb
);
1593 /* Reno case is special. Sigh... */
1594 if (!tp
->rx_opt
.sack_ok
&& tp
->sacked_out
) {
1595 tcp_dec_pcount_approx(&tp
->sacked_out
, next_skb
);
1596 tp
->left_out
-= tcp_skb_pcount(next_skb
);
1599 /* Not quite right: it can be > snd.fack, but
1600 * it is better to underestimate fackets.
1602 tcp_dec_pcount_approx(&tp
->fackets_out
, next_skb
);
1603 tcp_packets_out_dec(tp
, next_skb
);
1604 sk_stream_free_skb(sk
, next_skb
);
1608 /* Do a simple retransmit without using the backoff mechanisms in
1609 * tcp_timer. This is used for path mtu discovery.
1610 * The socket is already locked here.
1612 void tcp_simple_retransmit(struct sock
*sk
)
1614 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1615 struct tcp_sock
*tp
= tcp_sk(sk
);
1616 struct sk_buff
*skb
;
1617 unsigned int mss
= tcp_current_mss(sk
, 0);
1620 sk_stream_for_retrans_queue(skb
, sk
) {
1621 if (skb
->len
> mss
&&
1622 !(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
)) {
1623 if (TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_RETRANS
) {
1624 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1625 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1627 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_LOST
)) {
1628 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1629 tp
->lost_out
+= tcp_skb_pcount(skb
);
1635 clear_all_retrans_hints(tp
);
1640 tcp_sync_left_out(tp
);
1642 /* Don't muck with the congestion window here.
1643 * Reason is that we do not increase amount of _data_
1644 * in network, but units changed and effective
1645 * cwnd/ssthresh really reduced now.
1647 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
1648 tp
->high_seq
= tp
->snd_nxt
;
1649 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
1650 tp
->prior_ssthresh
= 0;
1651 tp
->undo_marker
= 0;
1652 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1654 tcp_xmit_retransmit_queue(sk
);
1657 /* This retransmits one SKB. Policy decisions and retransmit queue
1658 * state updates are done by the caller. Returns non-zero if an
1659 * error occurred which prevented the send.
1661 int tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
)
1663 struct tcp_sock
*tp
= tcp_sk(sk
);
1664 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1665 unsigned int cur_mss
= tcp_current_mss(sk
, 0);
1668 /* Inconslusive MTU probe */
1669 if (icsk
->icsk_mtup
.probe_size
) {
1670 icsk
->icsk_mtup
.probe_size
= 0;
1673 /* Do not sent more than we queued. 1/4 is reserved for possible
1674 * copying overhead: fragmentation, tunneling, mangling etc.
1676 if (atomic_read(&sk
->sk_wmem_alloc
) >
1677 min(sk
->sk_wmem_queued
+ (sk
->sk_wmem_queued
>> 2), sk
->sk_sndbuf
))
1680 if (before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
)) {
1681 if (before(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1683 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
1687 /* If receiver has shrunk his window, and skb is out of
1688 * new window, do not retransmit it. The exception is the
1689 * case, when window is shrunk to zero. In this case
1690 * our retransmit serves as a zero window probe.
1692 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
+tp
->snd_wnd
)
1693 && TCP_SKB_CB(skb
)->seq
!= tp
->snd_una
)
1696 if (skb
->len
> cur_mss
) {
1697 if (tcp_fragment(sk
, skb
, cur_mss
, cur_mss
))
1698 return -ENOMEM
; /* We'll try again later. */
1701 /* Collapse two adjacent packets if worthwhile and we can. */
1702 if(!(TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_SYN
) &&
1703 (skb
->len
< (cur_mss
>> 1)) &&
1704 (skb
->next
!= sk
->sk_send_head
) &&
1705 (skb
->next
!= (struct sk_buff
*)&sk
->sk_write_queue
) &&
1706 (skb_shinfo(skb
)->nr_frags
== 0 && skb_shinfo(skb
->next
)->nr_frags
== 0) &&
1707 (tcp_skb_pcount(skb
) == 1 && tcp_skb_pcount(skb
->next
) == 1) &&
1708 (sysctl_tcp_retrans_collapse
!= 0))
1709 tcp_retrans_try_collapse(sk
, skb
, cur_mss
);
1711 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
1712 return -EHOSTUNREACH
; /* Routing failure or similar. */
1714 /* Some Solaris stacks overoptimize and ignore the FIN on a
1715 * retransmit when old data is attached. So strip it off
1716 * since it is cheap to do so and saves bytes on the network.
1719 (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
) &&
1720 tp
->snd_una
== (TCP_SKB_CB(skb
)->end_seq
- 1)) {
1721 if (!pskb_trim(skb
, 0)) {
1722 TCP_SKB_CB(skb
)->seq
= TCP_SKB_CB(skb
)->end_seq
- 1;
1723 skb_shinfo(skb
)->tso_segs
= 1;
1724 skb_shinfo(skb
)->tso_size
= 0;
1725 skb
->ip_summed
= CHECKSUM_NONE
;
1730 /* Make a copy, if the first transmission SKB clone we made
1731 * is still in somebody's hands, else make a clone.
1733 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1735 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
1738 /* Update global TCP statistics. */
1739 TCP_INC_STATS(TCP_MIB_RETRANSSEGS
);
1741 tp
->total_retrans
++;
1743 #if FASTRETRANS_DEBUG > 0
1744 if (TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_RETRANS
) {
1745 if (net_ratelimit())
1746 printk(KERN_DEBUG
"retrans_out leaked.\n");
1749 TCP_SKB_CB(skb
)->sacked
|= TCPCB_RETRANS
;
1750 tp
->retrans_out
+= tcp_skb_pcount(skb
);
1752 /* Save stamp of the first retransmit. */
1753 if (!tp
->retrans_stamp
)
1754 tp
->retrans_stamp
= TCP_SKB_CB(skb
)->when
;
1758 /* snd_nxt is stored to detect loss of retransmitted segment,
1759 * see tcp_input.c tcp_sacktag_write_queue().
1761 TCP_SKB_CB(skb
)->ack_seq
= tp
->snd_nxt
;
1766 /* This gets called after a retransmit timeout, and the initially
1767 * retransmitted data is acknowledged. It tries to continue
1768 * resending the rest of the retransmit queue, until either
1769 * we've sent it all or the congestion window limit is reached.
1770 * If doing SACK, the first ACK which comes back for a timeout
1771 * based retransmit packet might feed us FACK information again.
1772 * If so, we use it to avoid unnecessarily retransmissions.
1774 void tcp_xmit_retransmit_queue(struct sock
*sk
)
1776 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1777 struct tcp_sock
*tp
= tcp_sk(sk
);
1778 struct sk_buff
*skb
;
1781 if (tp
->retransmit_skb_hint
) {
1782 skb
= tp
->retransmit_skb_hint
;
1783 packet_cnt
= tp
->retransmit_cnt_hint
;
1785 skb
= sk
->sk_write_queue
.next
;
1789 /* First pass: retransmit lost packets. */
1791 sk_stream_for_retrans_queue_from(skb
, sk
) {
1792 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
1794 /* we could do better than to assign each time */
1795 tp
->retransmit_skb_hint
= skb
;
1796 tp
->retransmit_cnt_hint
= packet_cnt
;
1798 /* Assume this retransmit will generate
1799 * only one packet for congestion window
1800 * calculation purposes. This works because
1801 * tcp_retransmit_skb() will chop up the
1802 * packet to be MSS sized and all the
1803 * packet counting works out.
1805 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
1808 if (sacked
& TCPCB_LOST
) {
1809 if (!(sacked
&(TCPCB_SACKED_ACKED
|TCPCB_SACKED_RETRANS
))) {
1810 if (tcp_retransmit_skb(sk
, skb
)) {
1811 tp
->retransmit_skb_hint
= NULL
;
1814 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
)
1815 NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS
);
1817 NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS
);
1820 skb_peek(&sk
->sk_write_queue
))
1821 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
1822 inet_csk(sk
)->icsk_rto
,
1826 packet_cnt
+= tcp_skb_pcount(skb
);
1827 if (packet_cnt
>= tp
->lost_out
)
1833 /* OK, demanded retransmission is finished. */
1835 /* Forward retransmissions are possible only during Recovery. */
1836 if (icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
1839 /* No forward retransmissions in Reno are possible. */
1840 if (!tp
->rx_opt
.sack_ok
)
1843 /* Yeah, we have to make difficult choice between forward transmission
1844 * and retransmission... Both ways have their merits...
1846 * For now we do not retransmit anything, while we have some new
1850 if (tcp_may_send_now(sk
, tp
))
1853 if (tp
->forward_skb_hint
) {
1854 skb
= tp
->forward_skb_hint
;
1855 packet_cnt
= tp
->forward_cnt_hint
;
1857 skb
= sk
->sk_write_queue
.next
;
1861 sk_stream_for_retrans_queue_from(skb
, sk
) {
1862 tp
->forward_cnt_hint
= packet_cnt
;
1863 tp
->forward_skb_hint
= skb
;
1865 /* Similar to the retransmit loop above we
1866 * can pretend that the retransmitted SKB
1867 * we send out here will be composed of one
1868 * real MSS sized packet because tcp_retransmit_skb()
1869 * will fragment it if necessary.
1871 if (++packet_cnt
> tp
->fackets_out
)
1874 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
1877 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
)
1880 /* Ok, retransmit it. */
1881 if (tcp_retransmit_skb(sk
, skb
)) {
1882 tp
->forward_skb_hint
= NULL
;
1886 if (skb
== skb_peek(&sk
->sk_write_queue
))
1887 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
1888 inet_csk(sk
)->icsk_rto
,
1891 NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS
);
1896 /* Send a fin. The caller locks the socket for us. This cannot be
1897 * allowed to fail queueing a FIN frame under any circumstances.
1899 void tcp_send_fin(struct sock
*sk
)
1901 struct tcp_sock
*tp
= tcp_sk(sk
);
1902 struct sk_buff
*skb
= skb_peek_tail(&sk
->sk_write_queue
);
1905 /* Optimization, tack on the FIN if we have a queue of
1906 * unsent frames. But be careful about outgoing SACKS
1909 mss_now
= tcp_current_mss(sk
, 1);
1911 if (sk
->sk_send_head
!= NULL
) {
1912 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_FIN
;
1913 TCP_SKB_CB(skb
)->end_seq
++;
1916 /* Socket is locked, keep trying until memory is available. */
1918 skb
= alloc_skb_fclone(MAX_TCP_HEADER
, GFP_KERNEL
);
1924 /* Reserve space for headers and prepare control bits. */
1925 skb_reserve(skb
, MAX_TCP_HEADER
);
1927 TCP_SKB_CB(skb
)->flags
= (TCPCB_FLAG_ACK
| TCPCB_FLAG_FIN
);
1928 TCP_SKB_CB(skb
)->sacked
= 0;
1929 skb_shinfo(skb
)->tso_segs
= 1;
1930 skb_shinfo(skb
)->tso_size
= 0;
1932 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
1933 TCP_SKB_CB(skb
)->seq
= tp
->write_seq
;
1934 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ 1;
1935 tcp_queue_skb(sk
, skb
);
1937 __tcp_push_pending_frames(sk
, tp
, mss_now
, TCP_NAGLE_OFF
);
1940 /* We get here when a process closes a file descriptor (either due to
1941 * an explicit close() or as a byproduct of exit()'ing) and there
1942 * was unread data in the receive queue. This behavior is recommended
1943 * by draft-ietf-tcpimpl-prob-03.txt section 3.10. -DaveM
1945 void tcp_send_active_reset(struct sock
*sk
, gfp_t priority
)
1947 struct tcp_sock
*tp
= tcp_sk(sk
);
1948 struct sk_buff
*skb
;
1950 /* NOTE: No TCP options attached and we never retransmit this. */
1951 skb
= alloc_skb(MAX_TCP_HEADER
, priority
);
1953 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED
);
1957 /* Reserve space for headers and prepare control bits. */
1958 skb_reserve(skb
, MAX_TCP_HEADER
);
1960 TCP_SKB_CB(skb
)->flags
= (TCPCB_FLAG_ACK
| TCPCB_FLAG_RST
);
1961 TCP_SKB_CB(skb
)->sacked
= 0;
1962 skb_shinfo(skb
)->tso_segs
= 1;
1963 skb_shinfo(skb
)->tso_size
= 0;
1966 TCP_SKB_CB(skb
)->seq
= tcp_acceptable_seq(sk
, tp
);
1967 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
;
1968 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1969 if (tcp_transmit_skb(sk
, skb
, 0, priority
))
1970 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED
);
1973 /* WARNING: This routine must only be called when we have already sent
1974 * a SYN packet that crossed the incoming SYN that caused this routine
1975 * to get called. If this assumption fails then the initial rcv_wnd
1976 * and rcv_wscale values will not be correct.
1978 int tcp_send_synack(struct sock
*sk
)
1980 struct sk_buff
* skb
;
1982 skb
= skb_peek(&sk
->sk_write_queue
);
1983 if (skb
== NULL
|| !(TCP_SKB_CB(skb
)->flags
&TCPCB_FLAG_SYN
)) {
1984 printk(KERN_DEBUG
"tcp_send_synack: wrong queue state\n");
1987 if (!(TCP_SKB_CB(skb
)->flags
&TCPCB_FLAG_ACK
)) {
1988 if (skb_cloned(skb
)) {
1989 struct sk_buff
*nskb
= skb_copy(skb
, GFP_ATOMIC
);
1992 __skb_unlink(skb
, &sk
->sk_write_queue
);
1993 skb_header_release(nskb
);
1994 __skb_queue_head(&sk
->sk_write_queue
, nskb
);
1995 sk_stream_free_skb(sk
, skb
);
1996 sk_charge_skb(sk
, nskb
);
2000 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_ACK
;
2001 TCP_ECN_send_synack(tcp_sk(sk
), skb
);
2003 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2004 return tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2008 * Prepare a SYN-ACK.
2010 struct sk_buff
* tcp_make_synack(struct sock
*sk
, struct dst_entry
*dst
,
2011 struct request_sock
*req
)
2013 struct inet_request_sock
*ireq
= inet_rsk(req
);
2014 struct tcp_sock
*tp
= tcp_sk(sk
);
2016 int tcp_header_size
;
2017 struct sk_buff
*skb
;
2019 skb
= sock_wmalloc(sk
, MAX_TCP_HEADER
+ 15, 1, GFP_ATOMIC
);
2023 /* Reserve space for headers. */
2024 skb_reserve(skb
, MAX_TCP_HEADER
);
2026 skb
->dst
= dst_clone(dst
);
2028 tcp_header_size
= (sizeof(struct tcphdr
) + TCPOLEN_MSS
+
2029 (ireq
->tstamp_ok
? TCPOLEN_TSTAMP_ALIGNED
: 0) +
2030 (ireq
->wscale_ok
? TCPOLEN_WSCALE_ALIGNED
: 0) +
2031 /* SACK_PERM is in the place of NOP NOP of TS */
2032 ((ireq
->sack_ok
&& !ireq
->tstamp_ok
) ? TCPOLEN_SACKPERM_ALIGNED
: 0));
2033 skb
->h
.th
= th
= (struct tcphdr
*) skb_push(skb
, tcp_header_size
);
2035 memset(th
, 0, sizeof(struct tcphdr
));
2038 if (dst
->dev
->features
&NETIF_F_TSO
)
2040 TCP_ECN_make_synack(req
, th
);
2041 th
->source
= inet_sk(sk
)->sport
;
2042 th
->dest
= ireq
->rmt_port
;
2043 TCP_SKB_CB(skb
)->seq
= tcp_rsk(req
)->snt_isn
;
2044 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ 1;
2045 TCP_SKB_CB(skb
)->sacked
= 0;
2046 skb_shinfo(skb
)->tso_segs
= 1;
2047 skb_shinfo(skb
)->tso_size
= 0;
2048 th
->seq
= htonl(TCP_SKB_CB(skb
)->seq
);
2049 th
->ack_seq
= htonl(tcp_rsk(req
)->rcv_isn
+ 1);
2050 if (req
->rcv_wnd
== 0) { /* ignored for retransmitted syns */
2052 /* Set this up on the first call only */
2053 req
->window_clamp
= tp
->window_clamp
? : dst_metric(dst
, RTAX_WINDOW
);
2054 /* tcp_full_space because it is guaranteed to be the first packet */
2055 tcp_select_initial_window(tcp_full_space(sk
),
2056 dst_metric(dst
, RTAX_ADVMSS
) - (ireq
->tstamp_ok
? TCPOLEN_TSTAMP_ALIGNED
: 0),
2061 ireq
->rcv_wscale
= rcv_wscale
;
2064 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2065 th
->window
= htons(req
->rcv_wnd
);
2067 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2068 tcp_syn_build_options((__u32
*)(th
+ 1), dst_metric(dst
, RTAX_ADVMSS
), ireq
->tstamp_ok
,
2069 ireq
->sack_ok
, ireq
->wscale_ok
, ireq
->rcv_wscale
,
2070 TCP_SKB_CB(skb
)->when
,
2074 th
->doff
= (tcp_header_size
>> 2);
2075 TCP_INC_STATS(TCP_MIB_OUTSEGS
);
2080 * Do all connect socket setups that can be done AF independent.
2082 static void tcp_connect_init(struct sock
*sk
)
2084 struct dst_entry
*dst
= __sk_dst_get(sk
);
2085 struct tcp_sock
*tp
= tcp_sk(sk
);
2088 /* We'll fix this up when we get a response from the other end.
2089 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2091 tp
->tcp_header_len
= sizeof(struct tcphdr
) +
2092 (sysctl_tcp_timestamps
? TCPOLEN_TSTAMP_ALIGNED
: 0);
2094 /* If user gave his TCP_MAXSEG, record it to clamp */
2095 if (tp
->rx_opt
.user_mss
)
2096 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
2099 tcp_sync_mss(sk
, dst_mtu(dst
));
2101 if (!tp
->window_clamp
)
2102 tp
->window_clamp
= dst_metric(dst
, RTAX_WINDOW
);
2103 tp
->advmss
= dst_metric(dst
, RTAX_ADVMSS
);
2104 tcp_initialize_rcv_mss(sk
);
2106 tcp_select_initial_window(tcp_full_space(sk
),
2107 tp
->advmss
- (tp
->rx_opt
.ts_recent_stamp
? tp
->tcp_header_len
- sizeof(struct tcphdr
) : 0),
2110 sysctl_tcp_window_scaling
,
2113 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
2114 tp
->rcv_ssthresh
= tp
->rcv_wnd
;
2117 sock_reset_flag(sk
, SOCK_DONE
);
2119 tcp_init_wl(tp
, tp
->write_seq
, 0);
2120 tp
->snd_una
= tp
->write_seq
;
2121 tp
->snd_sml
= tp
->write_seq
;
2126 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
2127 inet_csk(sk
)->icsk_retransmits
= 0;
2128 tcp_clear_retrans(tp
);
2132 * Build a SYN and send it off.
2134 int tcp_connect(struct sock
*sk
)
2136 struct tcp_sock
*tp
= tcp_sk(sk
);
2137 struct sk_buff
*buff
;
2139 tcp_connect_init(sk
);
2141 buff
= alloc_skb_fclone(MAX_TCP_HEADER
+ 15, sk
->sk_allocation
);
2142 if (unlikely(buff
== NULL
))
2145 /* Reserve space for headers. */
2146 skb_reserve(buff
, MAX_TCP_HEADER
);
2148 TCP_SKB_CB(buff
)->flags
= TCPCB_FLAG_SYN
;
2149 TCP_ECN_send_syn(sk
, tp
, buff
);
2150 TCP_SKB_CB(buff
)->sacked
= 0;
2151 skb_shinfo(buff
)->tso_segs
= 1;
2152 skb_shinfo(buff
)->tso_size
= 0;
2154 TCP_SKB_CB(buff
)->seq
= tp
->write_seq
++;
2155 TCP_SKB_CB(buff
)->end_seq
= tp
->write_seq
;
2156 tp
->snd_nxt
= tp
->write_seq
;
2157 tp
->pushed_seq
= tp
->write_seq
;
2160 TCP_SKB_CB(buff
)->when
= tcp_time_stamp
;
2161 tp
->retrans_stamp
= TCP_SKB_CB(buff
)->when
;
2162 skb_header_release(buff
);
2163 __skb_queue_tail(&sk
->sk_write_queue
, buff
);
2164 sk_charge_skb(sk
, buff
);
2165 tp
->packets_out
+= tcp_skb_pcount(buff
);
2166 tcp_transmit_skb(sk
, buff
, 1, GFP_KERNEL
);
2167 TCP_INC_STATS(TCP_MIB_ACTIVEOPENS
);
2169 /* Timer for repeating the SYN until an answer. */
2170 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2171 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
2175 /* Send out a delayed ack, the caller does the policy checking
2176 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
2179 void tcp_send_delayed_ack(struct sock
*sk
)
2181 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2182 int ato
= icsk
->icsk_ack
.ato
;
2183 unsigned long timeout
;
2185 if (ato
> TCP_DELACK_MIN
) {
2186 const struct tcp_sock
*tp
= tcp_sk(sk
);
2189 if (icsk
->icsk_ack
.pingpong
|| (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
))
2190 max_ato
= TCP_DELACK_MAX
;
2192 /* Slow path, intersegment interval is "high". */
2194 /* If some rtt estimate is known, use it to bound delayed ack.
2195 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2199 int rtt
= max(tp
->srtt
>>3, TCP_DELACK_MIN
);
2205 ato
= min(ato
, max_ato
);
2208 /* Stay within the limit we were given */
2209 timeout
= jiffies
+ ato
;
2211 /* Use new timeout only if there wasn't a older one earlier. */
2212 if (icsk
->icsk_ack
.pending
& ICSK_ACK_TIMER
) {
2213 /* If delack timer was blocked or is about to expire,
2216 if (icsk
->icsk_ack
.blocked
||
2217 time_before_eq(icsk
->icsk_ack
.timeout
, jiffies
+ (ato
>> 2))) {
2222 if (!time_before(timeout
, icsk
->icsk_ack
.timeout
))
2223 timeout
= icsk
->icsk_ack
.timeout
;
2225 icsk
->icsk_ack
.pending
|= ICSK_ACK_SCHED
| ICSK_ACK_TIMER
;
2226 icsk
->icsk_ack
.timeout
= timeout
;
2227 sk_reset_timer(sk
, &icsk
->icsk_delack_timer
, timeout
);
2230 /* This routine sends an ack and also updates the window. */
2231 void tcp_send_ack(struct sock
*sk
)
2233 /* If we have been reset, we may not send again. */
2234 if (sk
->sk_state
!= TCP_CLOSE
) {
2235 struct tcp_sock
*tp
= tcp_sk(sk
);
2236 struct sk_buff
*buff
;
2238 /* We are not putting this on the write queue, so
2239 * tcp_transmit_skb() will set the ownership to this
2242 buff
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
2244 inet_csk_schedule_ack(sk
);
2245 inet_csk(sk
)->icsk_ack
.ato
= TCP_ATO_MIN
;
2246 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
2247 TCP_DELACK_MAX
, TCP_RTO_MAX
);
2251 /* Reserve space for headers and prepare control bits. */
2252 skb_reserve(buff
, MAX_TCP_HEADER
);
2254 TCP_SKB_CB(buff
)->flags
= TCPCB_FLAG_ACK
;
2255 TCP_SKB_CB(buff
)->sacked
= 0;
2256 skb_shinfo(buff
)->tso_segs
= 1;
2257 skb_shinfo(buff
)->tso_size
= 0;
2259 /* Send it off, this clears delayed acks for us. */
2260 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(buff
)->end_seq
= tcp_acceptable_seq(sk
, tp
);
2261 TCP_SKB_CB(buff
)->when
= tcp_time_stamp
;
2262 tcp_transmit_skb(sk
, buff
, 0, GFP_ATOMIC
);
2266 /* This routine sends a packet with an out of date sequence
2267 * number. It assumes the other end will try to ack it.
2269 * Question: what should we make while urgent mode?
2270 * 4.4BSD forces sending single byte of data. We cannot send
2271 * out of window data, because we have SND.NXT==SND.MAX...
2273 * Current solution: to send TWO zero-length segments in urgent mode:
2274 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
2275 * out-of-date with SND.UNA-1 to probe window.
2277 static int tcp_xmit_probe_skb(struct sock
*sk
, int urgent
)
2279 struct tcp_sock
*tp
= tcp_sk(sk
);
2280 struct sk_buff
*skb
;
2282 /* We don't queue it, tcp_transmit_skb() sets ownership. */
2283 skb
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
2287 /* Reserve space for headers and set control bits. */
2288 skb_reserve(skb
, MAX_TCP_HEADER
);
2290 TCP_SKB_CB(skb
)->flags
= TCPCB_FLAG_ACK
;
2291 TCP_SKB_CB(skb
)->sacked
= urgent
;
2292 skb_shinfo(skb
)->tso_segs
= 1;
2293 skb_shinfo(skb
)->tso_size
= 0;
2295 /* Use a previous sequence. This should cause the other
2296 * end to send an ack. Don't queue or clone SKB, just
2299 TCP_SKB_CB(skb
)->seq
= urgent
? tp
->snd_una
: tp
->snd_una
- 1;
2300 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
;
2301 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2302 return tcp_transmit_skb(sk
, skb
, 0, GFP_ATOMIC
);
2305 int tcp_write_wakeup(struct sock
*sk
)
2307 if (sk
->sk_state
!= TCP_CLOSE
) {
2308 struct tcp_sock
*tp
= tcp_sk(sk
);
2309 struct sk_buff
*skb
;
2311 if ((skb
= sk
->sk_send_head
) != NULL
&&
2312 before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
+tp
->snd_wnd
)) {
2314 unsigned int mss
= tcp_current_mss(sk
, 0);
2315 unsigned int seg_size
= tp
->snd_una
+tp
->snd_wnd
-TCP_SKB_CB(skb
)->seq
;
2317 if (before(tp
->pushed_seq
, TCP_SKB_CB(skb
)->end_seq
))
2318 tp
->pushed_seq
= TCP_SKB_CB(skb
)->end_seq
;
2320 /* We are probing the opening of a window
2321 * but the window size is != 0
2322 * must have been a result SWS avoidance ( sender )
2324 if (seg_size
< TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
||
2326 seg_size
= min(seg_size
, mss
);
2327 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_PSH
;
2328 if (tcp_fragment(sk
, skb
, seg_size
, mss
))
2330 } else if (!tcp_skb_pcount(skb
))
2331 tcp_set_skb_tso_segs(sk
, skb
, mss
);
2333 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_PSH
;
2334 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2335 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2337 update_send_head(sk
, tp
, skb
);
2342 between(tp
->snd_up
, tp
->snd_una
+1, tp
->snd_una
+0xFFFF))
2343 tcp_xmit_probe_skb(sk
, TCPCB_URG
);
2344 return tcp_xmit_probe_skb(sk
, 0);
2350 /* A window probe timeout has occurred. If window is not closed send
2351 * a partial packet else a zero probe.
2353 void tcp_send_probe0(struct sock
*sk
)
2355 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2356 struct tcp_sock
*tp
= tcp_sk(sk
);
2359 err
= tcp_write_wakeup(sk
);
2361 if (tp
->packets_out
|| !sk
->sk_send_head
) {
2362 /* Cancel probe timer, if it is not required. */
2363 icsk
->icsk_probes_out
= 0;
2364 icsk
->icsk_backoff
= 0;
2369 if (icsk
->icsk_backoff
< sysctl_tcp_retries2
)
2370 icsk
->icsk_backoff
++;
2371 icsk
->icsk_probes_out
++;
2372 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
2373 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
2376 /* If packet was not sent due to local congestion,
2377 * do not backoff and do not remember icsk_probes_out.
2378 * Let local senders to fight for local resources.
2380 * Use accumulated backoff yet.
2382 if (!icsk
->icsk_probes_out
)
2383 icsk
->icsk_probes_out
= 1;
2384 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
2385 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
,
2386 TCP_RESOURCE_PROBE_INTERVAL
),
2391 EXPORT_SYMBOL(tcp_connect
);
2392 EXPORT_SYMBOL(tcp_make_synack
);
2393 EXPORT_SYMBOL(tcp_simple_retransmit
);
2394 EXPORT_SYMBOL(tcp_sync_mss
);
2395 EXPORT_SYMBOL(sysctl_tcp_tso_win_divisor
);
2396 EXPORT_SYMBOL(tcp_mtup_init
);