ARM: pmu: add support for interrupt-affinity property
[linux/fpc-iii.git] / drivers / gpu / drm / drm_rect.c
blob631f5afd451c2bed39e94bde3e2ad71483c6e0ae
1 /*
2 * Copyright (C) 2011-2013 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
24 #include <linux/errno.h>
25 #include <linux/export.h>
26 #include <linux/kernel.h>
27 #include <drm/drmP.h>
28 #include <drm/drm_rect.h>
30 /**
31 * drm_rect_intersect - intersect two rectangles
32 * @r1: first rectangle
33 * @r2: second rectangle
35 * Calculate the intersection of rectangles @r1 and @r2.
36 * @r1 will be overwritten with the intersection.
38 * RETURNS:
39 * %true if rectangle @r1 is still visible after the operation,
40 * %false otherwise.
42 bool drm_rect_intersect(struct drm_rect *r1, const struct drm_rect *r2)
44 r1->x1 = max(r1->x1, r2->x1);
45 r1->y1 = max(r1->y1, r2->y1);
46 r1->x2 = min(r1->x2, r2->x2);
47 r1->y2 = min(r1->y2, r2->y2);
49 return drm_rect_visible(r1);
51 EXPORT_SYMBOL(drm_rect_intersect);
53 /**
54 * drm_rect_clip_scaled - perform a scaled clip operation
55 * @src: source window rectangle
56 * @dst: destination window rectangle
57 * @clip: clip rectangle
58 * @hscale: horizontal scaling factor
59 * @vscale: vertical scaling factor
61 * Clip rectangle @dst by rectangle @clip. Clip rectangle @src by the
62 * same amounts multiplied by @hscale and @vscale.
64 * RETURNS:
65 * %true if rectangle @dst is still visible after being clipped,
66 * %false otherwise
68 bool drm_rect_clip_scaled(struct drm_rect *src, struct drm_rect *dst,
69 const struct drm_rect *clip,
70 int hscale, int vscale)
72 int diff;
74 diff = clip->x1 - dst->x1;
75 if (diff > 0) {
76 int64_t tmp = src->x1 + (int64_t) diff * hscale;
77 src->x1 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX);
79 diff = clip->y1 - dst->y1;
80 if (diff > 0) {
81 int64_t tmp = src->y1 + (int64_t) diff * vscale;
82 src->y1 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX);
84 diff = dst->x2 - clip->x2;
85 if (diff > 0) {
86 int64_t tmp = src->x2 - (int64_t) diff * hscale;
87 src->x2 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX);
89 diff = dst->y2 - clip->y2;
90 if (diff > 0) {
91 int64_t tmp = src->y2 - (int64_t) diff * vscale;
92 src->y2 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX);
95 return drm_rect_intersect(dst, clip);
97 EXPORT_SYMBOL(drm_rect_clip_scaled);
99 static int drm_calc_scale(int src, int dst)
101 int scale = 0;
103 if (src < 0 || dst < 0)
104 return -EINVAL;
106 if (dst == 0)
107 return 0;
109 scale = src / dst;
111 return scale;
115 * drm_rect_calc_hscale - calculate the horizontal scaling factor
116 * @src: source window rectangle
117 * @dst: destination window rectangle
118 * @min_hscale: minimum allowed horizontal scaling factor
119 * @max_hscale: maximum allowed horizontal scaling factor
121 * Calculate the horizontal scaling factor as
122 * (@src width) / (@dst width).
124 * RETURNS:
125 * The horizontal scaling factor, or errno of out of limits.
127 int drm_rect_calc_hscale(const struct drm_rect *src,
128 const struct drm_rect *dst,
129 int min_hscale, int max_hscale)
131 int src_w = drm_rect_width(src);
132 int dst_w = drm_rect_width(dst);
133 int hscale = drm_calc_scale(src_w, dst_w);
135 if (hscale < 0 || dst_w == 0)
136 return hscale;
138 if (hscale < min_hscale || hscale > max_hscale)
139 return -ERANGE;
141 return hscale;
143 EXPORT_SYMBOL(drm_rect_calc_hscale);
146 * drm_rect_calc_vscale - calculate the vertical scaling factor
147 * @src: source window rectangle
148 * @dst: destination window rectangle
149 * @min_vscale: minimum allowed vertical scaling factor
150 * @max_vscale: maximum allowed vertical scaling factor
152 * Calculate the vertical scaling factor as
153 * (@src height) / (@dst height).
155 * RETURNS:
156 * The vertical scaling factor, or errno of out of limits.
158 int drm_rect_calc_vscale(const struct drm_rect *src,
159 const struct drm_rect *dst,
160 int min_vscale, int max_vscale)
162 int src_h = drm_rect_height(src);
163 int dst_h = drm_rect_height(dst);
164 int vscale = drm_calc_scale(src_h, dst_h);
166 if (vscale < 0 || dst_h == 0)
167 return vscale;
169 if (vscale < min_vscale || vscale > max_vscale)
170 return -ERANGE;
172 return vscale;
174 EXPORT_SYMBOL(drm_rect_calc_vscale);
177 * drm_calc_hscale_relaxed - calculate the horizontal scaling factor
178 * @src: source window rectangle
179 * @dst: destination window rectangle
180 * @min_hscale: minimum allowed horizontal scaling factor
181 * @max_hscale: maximum allowed horizontal scaling factor
183 * Calculate the horizontal scaling factor as
184 * (@src width) / (@dst width).
186 * If the calculated scaling factor is below @min_vscale,
187 * decrease the height of rectangle @dst to compensate.
189 * If the calculated scaling factor is above @max_vscale,
190 * decrease the height of rectangle @src to compensate.
192 * RETURNS:
193 * The horizontal scaling factor.
195 int drm_rect_calc_hscale_relaxed(struct drm_rect *src,
196 struct drm_rect *dst,
197 int min_hscale, int max_hscale)
199 int src_w = drm_rect_width(src);
200 int dst_w = drm_rect_width(dst);
201 int hscale = drm_calc_scale(src_w, dst_w);
203 if (hscale < 0 || dst_w == 0)
204 return hscale;
206 if (hscale < min_hscale) {
207 int max_dst_w = src_w / min_hscale;
209 drm_rect_adjust_size(dst, max_dst_w - dst_w, 0);
211 return min_hscale;
214 if (hscale > max_hscale) {
215 int max_src_w = dst_w * max_hscale;
217 drm_rect_adjust_size(src, max_src_w - src_w, 0);
219 return max_hscale;
222 return hscale;
224 EXPORT_SYMBOL(drm_rect_calc_hscale_relaxed);
227 * drm_rect_calc_vscale_relaxed - calculate the vertical scaling factor
228 * @src: source window rectangle
229 * @dst: destination window rectangle
230 * @min_vscale: minimum allowed vertical scaling factor
231 * @max_vscale: maximum allowed vertical scaling factor
233 * Calculate the vertical scaling factor as
234 * (@src height) / (@dst height).
236 * If the calculated scaling factor is below @min_vscale,
237 * decrease the height of rectangle @dst to compensate.
239 * If the calculated scaling factor is above @max_vscale,
240 * decrease the height of rectangle @src to compensate.
242 * RETURNS:
243 * The vertical scaling factor.
245 int drm_rect_calc_vscale_relaxed(struct drm_rect *src,
246 struct drm_rect *dst,
247 int min_vscale, int max_vscale)
249 int src_h = drm_rect_height(src);
250 int dst_h = drm_rect_height(dst);
251 int vscale = drm_calc_scale(src_h, dst_h);
253 if (vscale < 0 || dst_h == 0)
254 return vscale;
256 if (vscale < min_vscale) {
257 int max_dst_h = src_h / min_vscale;
259 drm_rect_adjust_size(dst, 0, max_dst_h - dst_h);
261 return min_vscale;
264 if (vscale > max_vscale) {
265 int max_src_h = dst_h * max_vscale;
267 drm_rect_adjust_size(src, 0, max_src_h - src_h);
269 return max_vscale;
272 return vscale;
274 EXPORT_SYMBOL(drm_rect_calc_vscale_relaxed);
277 * drm_rect_debug_print - print the rectangle information
278 * @r: rectangle to print
279 * @fixed_point: rectangle is in 16.16 fixed point format
281 void drm_rect_debug_print(const struct drm_rect *r, bool fixed_point)
283 int w = drm_rect_width(r);
284 int h = drm_rect_height(r);
286 if (fixed_point)
287 DRM_DEBUG_KMS("%d.%06ux%d.%06u%+d.%06u%+d.%06u\n",
288 w >> 16, ((w & 0xffff) * 15625) >> 10,
289 h >> 16, ((h & 0xffff) * 15625) >> 10,
290 r->x1 >> 16, ((r->x1 & 0xffff) * 15625) >> 10,
291 r->y1 >> 16, ((r->y1 & 0xffff) * 15625) >> 10);
292 else
293 DRM_DEBUG_KMS("%dx%d%+d%+d\n", w, h, r->x1, r->y1);
295 EXPORT_SYMBOL(drm_rect_debug_print);
298 * drm_rect_rotate - Rotate the rectangle
299 * @r: rectangle to be rotated
300 * @width: Width of the coordinate space
301 * @height: Height of the coordinate space
302 * @rotation: Transformation to be applied
304 * Apply @rotation to the coordinates of rectangle @r.
306 * @width and @height combined with @rotation define
307 * the location of the new origin.
309 * @width correcsponds to the horizontal and @height
310 * to the vertical axis of the untransformed coordinate
311 * space.
313 void drm_rect_rotate(struct drm_rect *r,
314 int width, int height,
315 unsigned int rotation)
317 struct drm_rect tmp;
319 if (rotation & (BIT(DRM_REFLECT_X) | BIT(DRM_REFLECT_Y))) {
320 tmp = *r;
322 if (rotation & BIT(DRM_REFLECT_X)) {
323 r->x1 = width - tmp.x2;
324 r->x2 = width - tmp.x1;
327 if (rotation & BIT(DRM_REFLECT_Y)) {
328 r->y1 = height - tmp.y2;
329 r->y2 = height - tmp.y1;
333 switch (rotation & 0xf) {
334 case BIT(DRM_ROTATE_0):
335 break;
336 case BIT(DRM_ROTATE_90):
337 tmp = *r;
338 r->x1 = tmp.y1;
339 r->x2 = tmp.y2;
340 r->y1 = width - tmp.x2;
341 r->y2 = width - tmp.x1;
342 break;
343 case BIT(DRM_ROTATE_180):
344 tmp = *r;
345 r->x1 = width - tmp.x2;
346 r->x2 = width - tmp.x1;
347 r->y1 = height - tmp.y2;
348 r->y2 = height - tmp.y1;
349 break;
350 case BIT(DRM_ROTATE_270):
351 tmp = *r;
352 r->x1 = height - tmp.y2;
353 r->x2 = height - tmp.y1;
354 r->y1 = tmp.x1;
355 r->y2 = tmp.x2;
356 break;
357 default:
358 break;
361 EXPORT_SYMBOL(drm_rect_rotate);
364 * drm_rect_rotate_inv - Inverse rotate the rectangle
365 * @r: rectangle to be rotated
366 * @width: Width of the coordinate space
367 * @height: Height of the coordinate space
368 * @rotation: Transformation whose inverse is to be applied
370 * Apply the inverse of @rotation to the coordinates
371 * of rectangle @r.
373 * @width and @height combined with @rotation define
374 * the location of the new origin.
376 * @width correcsponds to the horizontal and @height
377 * to the vertical axis of the original untransformed
378 * coordinate space, so that you never have to flip
379 * them when doing a rotatation and its inverse.
380 * That is, if you do:
382 * drm_rotate(&r, width, height, rotation);
383 * drm_rotate_inv(&r, width, height, rotation);
385 * you will always get back the original rectangle.
387 void drm_rect_rotate_inv(struct drm_rect *r,
388 int width, int height,
389 unsigned int rotation)
391 struct drm_rect tmp;
393 switch (rotation & 0xf) {
394 case BIT(DRM_ROTATE_0):
395 break;
396 case BIT(DRM_ROTATE_90):
397 tmp = *r;
398 r->x1 = width - tmp.y2;
399 r->x2 = width - tmp.y1;
400 r->y1 = tmp.x1;
401 r->y2 = tmp.x2;
402 break;
403 case BIT(DRM_ROTATE_180):
404 tmp = *r;
405 r->x1 = width - tmp.x2;
406 r->x2 = width - tmp.x1;
407 r->y1 = height - tmp.y2;
408 r->y2 = height - tmp.y1;
409 break;
410 case BIT(DRM_ROTATE_270):
411 tmp = *r;
412 r->x1 = tmp.y1;
413 r->x2 = tmp.y2;
414 r->y1 = height - tmp.x2;
415 r->y2 = height - tmp.x1;
416 break;
417 default:
418 break;
421 if (rotation & (BIT(DRM_REFLECT_X) | BIT(DRM_REFLECT_Y))) {
422 tmp = *r;
424 if (rotation & BIT(DRM_REFLECT_X)) {
425 r->x1 = width - tmp.x2;
426 r->x2 = width - tmp.x1;
429 if (rotation & BIT(DRM_REFLECT_Y)) {
430 r->y1 = height - tmp.y2;
431 r->y2 = height - tmp.y1;
435 EXPORT_SYMBOL(drm_rect_rotate_inv);