2 * Copyright 2009 Red Hat Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
25 /* NVIDIA context programs handle a number of other conditions which are
26 * not implemented in our versions. It's not clear why NVIDIA context
27 * programs have this code, nor whether it's strictly necessary for
28 * correct operation. We'll implement additional handling if/when we
29 * discover it's necessary.
31 * - On context save, NVIDIA set 0x400314 bit 0 to 1 if the "3D state"
32 * flag is set, this gets saved into the context.
33 * - On context save, the context program for all cards load nsource
34 * into a flag register and check for ILLEGAL_MTHD. If it's set,
35 * opcode 0x60000d is called before resuming normal operation.
36 * - Some context programs check more conditions than the above. NV44
37 * checks: ((nsource & 0x0857) || (0x400718 & 0x0100) || (intr & 0x0001))
38 * and calls 0x60000d before resuming normal operation.
39 * - At the very beginning of NVIDIA's context programs, flag 9 is checked
40 * and if true 0x800001 is called with count=0, pos=0, the flag is cleared
41 * and then the ctxprog is aborted. It looks like a complicated NOP,
42 * its purpose is unknown.
43 * - In the section of code that loads the per-vs state, NVIDIA check
44 * flag 10. If it's set, they only transfer the small 0x300 byte block
45 * of state + the state for a single vs as opposed to the state for
46 * all vs units. It doesn't seem likely that it'll occur in normal
47 * operation, especially seeing as it appears NVIDIA may have screwed
48 * up the ctxprogs for some cards and have an invalid instruction
49 * rather than a cp_lsr(ctx, dwords_for_1_vs_unit) instruction.
50 * - There's a number of places where context offset 0 (where we place
51 * the PRAMIN offset of the context) is loaded into either 0x408000,
52 * 0x408004 or 0x408008. Not sure what's up there either.
53 * - The ctxprogs for some cards save 0x400a00 again during the cleanup
54 * path for auto-loadctx.
57 #define CP_FLAG_CLEAR 0
59 #define CP_FLAG_SWAP_DIRECTION ((0 * 32) + 0)
60 #define CP_FLAG_SWAP_DIRECTION_LOAD 0
61 #define CP_FLAG_SWAP_DIRECTION_SAVE 1
62 #define CP_FLAG_USER_SAVE ((0 * 32) + 5)
63 #define CP_FLAG_USER_SAVE_NOT_PENDING 0
64 #define CP_FLAG_USER_SAVE_PENDING 1
65 #define CP_FLAG_USER_LOAD ((0 * 32) + 6)
66 #define CP_FLAG_USER_LOAD_NOT_PENDING 0
67 #define CP_FLAG_USER_LOAD_PENDING 1
68 #define CP_FLAG_STATUS ((3 * 32) + 0)
69 #define CP_FLAG_STATUS_IDLE 0
70 #define CP_FLAG_STATUS_BUSY 1
71 #define CP_FLAG_AUTO_SAVE ((3 * 32) + 4)
72 #define CP_FLAG_AUTO_SAVE_NOT_PENDING 0
73 #define CP_FLAG_AUTO_SAVE_PENDING 1
74 #define CP_FLAG_AUTO_LOAD ((3 * 32) + 5)
75 #define CP_FLAG_AUTO_LOAD_NOT_PENDING 0
76 #define CP_FLAG_AUTO_LOAD_PENDING 1
77 #define CP_FLAG_UNK54 ((3 * 32) + 6)
78 #define CP_FLAG_UNK54_CLEAR 0
79 #define CP_FLAG_UNK54_SET 1
80 #define CP_FLAG_ALWAYS ((3 * 32) + 8)
81 #define CP_FLAG_ALWAYS_FALSE 0
82 #define CP_FLAG_ALWAYS_TRUE 1
83 #define CP_FLAG_UNK57 ((3 * 32) + 9)
84 #define CP_FLAG_UNK57_CLEAR 0
85 #define CP_FLAG_UNK57_SET 1
87 #define CP_CTX 0x00100000
88 #define CP_CTX_COUNT 0x000fc000
89 #define CP_CTX_COUNT_SHIFT 14
90 #define CP_CTX_REG 0x00003fff
91 #define CP_LOAD_SR 0x00200000
92 #define CP_LOAD_SR_VALUE 0x000fffff
93 #define CP_BRA 0x00400000
94 #define CP_BRA_IP 0x0000ff00
95 #define CP_BRA_IP_SHIFT 8
96 #define CP_BRA_IF_CLEAR 0x00000080
97 #define CP_BRA_FLAG 0x0000007f
98 #define CP_WAIT 0x00500000
99 #define CP_WAIT_SET 0x00000080
100 #define CP_WAIT_FLAG 0x0000007f
101 #define CP_SET 0x00700000
102 #define CP_SET_1 0x00000080
103 #define CP_SET_FLAG 0x0000007f
104 #define CP_NEXT_TO_SWAP 0x00600007
105 #define CP_NEXT_TO_CURRENT 0x00600009
106 #define CP_SET_CONTEXT_POINTER 0x0060000a
107 #define CP_END 0x0060000e
108 #define CP_LOAD_MAGIC_UNK01 0x00800001 /* unknown */
109 #define CP_LOAD_MAGIC_NV44TCL 0x00800029 /* per-vs state (0x4497) */
110 #define CP_LOAD_MAGIC_NV40TCL 0x00800041 /* per-vs state (0x4097) */
114 #include <core/device.h>
117 * - get vs count from 0x1540
121 nv40_gr_vs_count(struct nvkm_device
*device
)
124 switch (device
->chipset
) {
154 cp_swap_state3d_3_is_save
,
160 nv40_gr_construct_general(struct nvkm_grctx
*ctx
)
162 struct nvkm_device
*device
= ctx
->device
;
165 cp_ctx(ctx
, 0x4000a4, 1);
166 gr_def(ctx
, 0x4000a4, 0x00000008);
167 cp_ctx(ctx
, 0x400144, 58);
168 gr_def(ctx
, 0x400144, 0x00000001);
169 cp_ctx(ctx
, 0x400314, 1);
170 gr_def(ctx
, 0x400314, 0x00000000);
171 cp_ctx(ctx
, 0x400400, 10);
172 cp_ctx(ctx
, 0x400480, 10);
173 cp_ctx(ctx
, 0x400500, 19);
174 gr_def(ctx
, 0x400514, 0x00040000);
175 gr_def(ctx
, 0x400524, 0x55555555);
176 gr_def(ctx
, 0x400528, 0x55555555);
177 gr_def(ctx
, 0x40052c, 0x55555555);
178 gr_def(ctx
, 0x400530, 0x55555555);
179 cp_ctx(ctx
, 0x400560, 6);
180 gr_def(ctx
, 0x400568, 0x0000ffff);
181 gr_def(ctx
, 0x40056c, 0x0000ffff);
182 cp_ctx(ctx
, 0x40057c, 5);
183 cp_ctx(ctx
, 0x400710, 3);
184 gr_def(ctx
, 0x400710, 0x20010001);
185 gr_def(ctx
, 0x400714, 0x0f73ef00);
186 cp_ctx(ctx
, 0x400724, 1);
187 gr_def(ctx
, 0x400724, 0x02008821);
188 cp_ctx(ctx
, 0x400770, 3);
189 if (device
->chipset
== 0x40) {
190 cp_ctx(ctx
, 0x400814, 4);
191 cp_ctx(ctx
, 0x400828, 5);
192 cp_ctx(ctx
, 0x400840, 5);
193 gr_def(ctx
, 0x400850, 0x00000040);
194 cp_ctx(ctx
, 0x400858, 4);
195 gr_def(ctx
, 0x400858, 0x00000040);
196 gr_def(ctx
, 0x40085c, 0x00000040);
197 gr_def(ctx
, 0x400864, 0x80000000);
198 cp_ctx(ctx
, 0x40086c, 9);
199 gr_def(ctx
, 0x40086c, 0x80000000);
200 gr_def(ctx
, 0x400870, 0x80000000);
201 gr_def(ctx
, 0x400874, 0x80000000);
202 gr_def(ctx
, 0x400878, 0x80000000);
203 gr_def(ctx
, 0x400888, 0x00000040);
204 gr_def(ctx
, 0x40088c, 0x80000000);
205 cp_ctx(ctx
, 0x4009c0, 8);
206 gr_def(ctx
, 0x4009cc, 0x80000000);
207 gr_def(ctx
, 0x4009dc, 0x80000000);
209 cp_ctx(ctx
, 0x400840, 20);
210 if (nv44_gr_class(ctx
->device
)) {
211 for (i
= 0; i
< 8; i
++)
212 gr_def(ctx
, 0x400860 + (i
* 4), 0x00000001);
214 gr_def(ctx
, 0x400880, 0x00000040);
215 gr_def(ctx
, 0x400884, 0x00000040);
216 gr_def(ctx
, 0x400888, 0x00000040);
217 cp_ctx(ctx
, 0x400894, 11);
218 gr_def(ctx
, 0x400894, 0x00000040);
219 if (!nv44_gr_class(ctx
->device
)) {
220 for (i
= 0; i
< 8; i
++)
221 gr_def(ctx
, 0x4008a0 + (i
* 4), 0x80000000);
223 cp_ctx(ctx
, 0x4008e0, 2);
224 cp_ctx(ctx
, 0x4008f8, 2);
225 if (device
->chipset
== 0x4c ||
226 (device
->chipset
& 0xf0) == 0x60)
227 cp_ctx(ctx
, 0x4009f8, 1);
229 cp_ctx(ctx
, 0x400a00, 73);
230 gr_def(ctx
, 0x400b0c, 0x0b0b0b0c);
231 cp_ctx(ctx
, 0x401000, 4);
232 cp_ctx(ctx
, 0x405004, 1);
233 switch (device
->chipset
) {
237 cp_ctx(ctx
, 0x403448, 1);
238 gr_def(ctx
, 0x403448, 0x00001010);
241 cp_ctx(ctx
, 0x403440, 1);
242 switch (device
->chipset
) {
244 gr_def(ctx
, 0x403440, 0x00000010);
249 gr_def(ctx
, 0x403440, 0x00003010);
258 gr_def(ctx
, 0x403440, 0x00001010);
266 nv40_gr_construct_state3d(struct nvkm_grctx
*ctx
)
268 struct nvkm_device
*device
= ctx
->device
;
271 if (device
->chipset
== 0x40) {
272 cp_ctx(ctx
, 0x401880, 51);
273 gr_def(ctx
, 0x401940, 0x00000100);
275 if (device
->chipset
== 0x46 || device
->chipset
== 0x47 ||
276 device
->chipset
== 0x49 || device
->chipset
== 0x4b) {
277 cp_ctx(ctx
, 0x401880, 32);
278 for (i
= 0; i
< 16; i
++)
279 gr_def(ctx
, 0x401880 + (i
* 4), 0x00000111);
280 if (device
->chipset
== 0x46)
281 cp_ctx(ctx
, 0x401900, 16);
282 cp_ctx(ctx
, 0x401940, 3);
284 cp_ctx(ctx
, 0x40194c, 18);
285 gr_def(ctx
, 0x401954, 0x00000111);
286 gr_def(ctx
, 0x401958, 0x00080060);
287 gr_def(ctx
, 0x401974, 0x00000080);
288 gr_def(ctx
, 0x401978, 0xffff0000);
289 gr_def(ctx
, 0x40197c, 0x00000001);
290 gr_def(ctx
, 0x401990, 0x46400000);
291 if (device
->chipset
== 0x40) {
292 cp_ctx(ctx
, 0x4019a0, 2);
293 cp_ctx(ctx
, 0x4019ac, 5);
295 cp_ctx(ctx
, 0x4019a0, 1);
296 cp_ctx(ctx
, 0x4019b4, 3);
298 gr_def(ctx
, 0x4019bc, 0xffff0000);
299 switch (device
->chipset
) {
304 cp_ctx(ctx
, 0x4019c0, 18);
305 for (i
= 0; i
< 16; i
++)
306 gr_def(ctx
, 0x4019c0 + (i
* 4), 0x88888888);
309 cp_ctx(ctx
, 0x401a08, 8);
310 gr_def(ctx
, 0x401a10, 0x0fff0000);
311 gr_def(ctx
, 0x401a14, 0x0fff0000);
312 gr_def(ctx
, 0x401a1c, 0x00011100);
313 cp_ctx(ctx
, 0x401a2c, 4);
314 cp_ctx(ctx
, 0x401a44, 26);
315 for (i
= 0; i
< 16; i
++)
316 gr_def(ctx
, 0x401a44 + (i
* 4), 0x07ff0000);
317 gr_def(ctx
, 0x401a8c, 0x4b7fffff);
318 if (device
->chipset
== 0x40) {
319 cp_ctx(ctx
, 0x401ab8, 3);
321 cp_ctx(ctx
, 0x401ab8, 1);
322 cp_ctx(ctx
, 0x401ac0, 1);
324 cp_ctx(ctx
, 0x401ad0, 8);
325 gr_def(ctx
, 0x401ad0, 0x30201000);
326 gr_def(ctx
, 0x401ad4, 0x70605040);
327 gr_def(ctx
, 0x401ad8, 0xb8a89888);
328 gr_def(ctx
, 0x401adc, 0xf8e8d8c8);
329 cp_ctx(ctx
, 0x401b10, device
->chipset
== 0x40 ? 2 : 1);
330 gr_def(ctx
, 0x401b10, 0x40100000);
331 cp_ctx(ctx
, 0x401b18, device
->chipset
== 0x40 ? 6 : 5);
332 gr_def(ctx
, 0x401b28, device
->chipset
== 0x40 ?
333 0x00000004 : 0x00000000);
334 cp_ctx(ctx
, 0x401b30, 25);
335 gr_def(ctx
, 0x401b34, 0x0000ffff);
336 gr_def(ctx
, 0x401b68, 0x435185d6);
337 gr_def(ctx
, 0x401b6c, 0x2155b699);
338 gr_def(ctx
, 0x401b70, 0xfedcba98);
339 gr_def(ctx
, 0x401b74, 0x00000098);
340 gr_def(ctx
, 0x401b84, 0xffffffff);
341 gr_def(ctx
, 0x401b88, 0x00ff7000);
342 gr_def(ctx
, 0x401b8c, 0x0000ffff);
343 if (device
->chipset
!= 0x44 && device
->chipset
!= 0x4a &&
344 device
->chipset
!= 0x4e)
345 cp_ctx(ctx
, 0x401b94, 1);
346 cp_ctx(ctx
, 0x401b98, 8);
347 gr_def(ctx
, 0x401b9c, 0x00ff0000);
348 cp_ctx(ctx
, 0x401bc0, 9);
349 gr_def(ctx
, 0x401be0, 0x00ffff00);
350 cp_ctx(ctx
, 0x401c00, 192);
351 for (i
= 0; i
< 16; i
++) { /* fragment texture units */
352 gr_def(ctx
, 0x401c40 + (i
* 4), 0x00018488);
353 gr_def(ctx
, 0x401c80 + (i
* 4), 0x00028202);
354 gr_def(ctx
, 0x401d00 + (i
* 4), 0x0000aae4);
355 gr_def(ctx
, 0x401d40 + (i
* 4), 0x01012000);
356 gr_def(ctx
, 0x401d80 + (i
* 4), 0x00080008);
357 gr_def(ctx
, 0x401e00 + (i
* 4), 0x00100008);
359 for (i
= 0; i
< 4; i
++) { /* vertex texture units */
360 gr_def(ctx
, 0x401e90 + (i
* 4), 0x0001bc80);
361 gr_def(ctx
, 0x401ea0 + (i
* 4), 0x00000202);
362 gr_def(ctx
, 0x401ec0 + (i
* 4), 0x00000008);
363 gr_def(ctx
, 0x401ee0 + (i
* 4), 0x00080008);
365 cp_ctx(ctx
, 0x400f5c, 3);
366 gr_def(ctx
, 0x400f5c, 0x00000002);
367 cp_ctx(ctx
, 0x400f84, 1);
371 nv40_gr_construct_state3d_2(struct nvkm_grctx
*ctx
)
373 struct nvkm_device
*device
= ctx
->device
;
376 cp_ctx(ctx
, 0x402000, 1);
377 cp_ctx(ctx
, 0x402404, device
->chipset
== 0x40 ? 1 : 2);
378 switch (device
->chipset
) {
380 gr_def(ctx
, 0x402404, 0x00000001);
385 gr_def(ctx
, 0x402404, 0x00000020);
390 gr_def(ctx
, 0x402404, 0x00000421);
393 gr_def(ctx
, 0x402404, 0x00000021);
395 if (device
->chipset
!= 0x40)
396 gr_def(ctx
, 0x402408, 0x030c30c3);
397 switch (device
->chipset
) {
404 cp_ctx(ctx
, 0x402440, 1);
405 gr_def(ctx
, 0x402440, 0x00011001);
410 cp_ctx(ctx
, 0x402480, device
->chipset
== 0x40 ? 8 : 9);
411 gr_def(ctx
, 0x402488, 0x3e020200);
412 gr_def(ctx
, 0x40248c, 0x00ffffff);
413 switch (device
->chipset
) {
415 gr_def(ctx
, 0x402490, 0x60103f00);
418 gr_def(ctx
, 0x402490, 0x40103f00);
424 gr_def(ctx
, 0x402490, 0x20103f00);
427 gr_def(ctx
, 0x402490, 0x0c103f00);
430 gr_def(ctx
, 0x40249c, device
->chipset
<= 0x43 ?
431 0x00020000 : 0x00040000);
432 cp_ctx(ctx
, 0x402500, 31);
433 gr_def(ctx
, 0x402530, 0x00008100);
434 if (device
->chipset
== 0x40)
435 cp_ctx(ctx
, 0x40257c, 6);
436 cp_ctx(ctx
, 0x402594, 16);
437 cp_ctx(ctx
, 0x402800, 17);
438 gr_def(ctx
, 0x402800, 0x00000001);
439 switch (device
->chipset
) {
443 cp_ctx(ctx
, 0x402864, 1);
444 gr_def(ctx
, 0x402864, 0x00001001);
445 cp_ctx(ctx
, 0x402870, 3);
446 gr_def(ctx
, 0x402878, 0x00000003);
447 if (device
->chipset
!= 0x47) { /* belong at end!! */
448 cp_ctx(ctx
, 0x402900, 1);
449 cp_ctx(ctx
, 0x402940, 1);
450 cp_ctx(ctx
, 0x402980, 1);
451 cp_ctx(ctx
, 0x4029c0, 1);
452 cp_ctx(ctx
, 0x402a00, 1);
453 cp_ctx(ctx
, 0x402a40, 1);
454 cp_ctx(ctx
, 0x402a80, 1);
455 cp_ctx(ctx
, 0x402ac0, 1);
459 cp_ctx(ctx
, 0x402844, 1);
460 gr_def(ctx
, 0x402844, 0x00000001);
461 cp_ctx(ctx
, 0x402850, 1);
464 cp_ctx(ctx
, 0x402844, 1);
465 gr_def(ctx
, 0x402844, 0x00001001);
466 cp_ctx(ctx
, 0x402850, 2);
467 gr_def(ctx
, 0x402854, 0x00000003);
471 cp_ctx(ctx
, 0x402c00, 4);
472 gr_def(ctx
, 0x402c00, device
->chipset
== 0x40 ?
473 0x80800001 : 0x00888001);
474 switch (device
->chipset
) {
478 cp_ctx(ctx
, 0x402c20, 40);
479 for (i
= 0; i
< 32; i
++)
480 gr_def(ctx
, 0x402c40 + (i
* 4), 0xffffffff);
481 cp_ctx(ctx
, 0x4030b8, 13);
482 gr_def(ctx
, 0x4030dc, 0x00000005);
483 gr_def(ctx
, 0x4030e8, 0x0000ffff);
486 cp_ctx(ctx
, 0x402c10, 4);
487 if (device
->chipset
== 0x40)
488 cp_ctx(ctx
, 0x402c20, 36);
490 if (device
->chipset
<= 0x42)
491 cp_ctx(ctx
, 0x402c20, 24);
493 if (device
->chipset
<= 0x4a)
494 cp_ctx(ctx
, 0x402c20, 16);
496 cp_ctx(ctx
, 0x402c20, 8);
497 cp_ctx(ctx
, 0x402cb0, device
->chipset
== 0x40 ? 12 : 13);
498 gr_def(ctx
, 0x402cd4, 0x00000005);
499 if (device
->chipset
!= 0x40)
500 gr_def(ctx
, 0x402ce0, 0x0000ffff);
504 cp_ctx(ctx
, 0x403400, device
->chipset
== 0x40 ? 4 : 3);
505 cp_ctx(ctx
, 0x403410, device
->chipset
== 0x40 ? 4 : 3);
506 cp_ctx(ctx
, 0x403420, nv40_gr_vs_count(ctx
->device
));
507 for (i
= 0; i
< nv40_gr_vs_count(ctx
->device
); i
++)
508 gr_def(ctx
, 0x403420 + (i
* 4), 0x00005555);
510 if (device
->chipset
!= 0x40) {
511 cp_ctx(ctx
, 0x403600, 1);
512 gr_def(ctx
, 0x403600, 0x00000001);
514 cp_ctx(ctx
, 0x403800, 1);
516 cp_ctx(ctx
, 0x403c18, 1);
517 gr_def(ctx
, 0x403c18, 0x00000001);
518 switch (device
->chipset
) {
523 cp_ctx(ctx
, 0x405018, 1);
524 gr_def(ctx
, 0x405018, 0x08e00001);
525 cp_ctx(ctx
, 0x405c24, 1);
526 gr_def(ctx
, 0x405c24, 0x000e3000);
529 if (device
->chipset
!= 0x4e)
530 cp_ctx(ctx
, 0x405800, 11);
531 cp_ctx(ctx
, 0x407000, 1);
535 nv40_gr_construct_state3d_3(struct nvkm_grctx
*ctx
)
537 int len
= nv44_gr_class(ctx
->device
) ? 0x0084 : 0x0684;
539 cp_out (ctx
, 0x300000);
540 cp_lsr (ctx
, len
- 4);
541 cp_bra (ctx
, SWAP_DIRECTION
, SAVE
, cp_swap_state3d_3_is_save
);
543 cp_name(ctx
, cp_swap_state3d_3_is_save
);
544 cp_out (ctx
, 0x800001);
546 ctx
->ctxvals_pos
+= len
;
550 nv40_gr_construct_shader(struct nvkm_grctx
*ctx
)
552 struct nvkm_device
*device
= ctx
->device
;
553 struct nvkm_gpuobj
*obj
= ctx
->data
;
554 int vs
, vs_nr
, vs_len
, vs_nr_b0
, vs_nr_b1
, b0_offset
, b1_offset
;
557 vs_nr
= nv40_gr_vs_count(ctx
->device
);
559 vs_nr_b1
= device
->chipset
== 0x40 ? 128 : 64;
560 if (device
->chipset
== 0x40) {
561 b0_offset
= 0x2200/4; /* 33a0 */
562 b1_offset
= 0x55a0/4; /* 1500 */
565 if (device
->chipset
== 0x41 || device
->chipset
== 0x42) {
566 b0_offset
= 0x2200/4; /* 2200 */
567 b1_offset
= 0x4400/4; /* 0b00 */
570 b0_offset
= 0x1d40/4; /* 2200 */
571 b1_offset
= 0x3f40/4; /* 0b00 : 0a40 */
572 vs_len
= nv44_gr_class(device
) ? 0x4980/4 : 0x4a40/4;
575 cp_lsr(ctx
, vs_len
* vs_nr
+ 0x300/4);
576 cp_out(ctx
, nv44_gr_class(device
) ? 0x800029 : 0x800041);
578 offset
= ctx
->ctxvals_pos
;
579 ctx
->ctxvals_pos
+= (0x0300/4 + (vs_nr
* vs_len
));
581 if (ctx
->mode
!= NVKM_GRCTX_VALS
)
585 for (i
= 0; i
< 16; i
++, offset
+= 2)
586 nv_wo32(obj
, offset
* 4, 0x3f800000);
588 for (vs
= 0; vs
< vs_nr
; vs
++, offset
+= vs_len
) {
589 for (i
= 0; i
< vs_nr_b0
* 6; i
+= 6)
590 nv_wo32(obj
, (offset
+ b0_offset
+ i
) * 4, 0x00000001);
591 for (i
= 0; i
< vs_nr_b1
* 4; i
+= 4)
592 nv_wo32(obj
, (offset
+ b1_offset
+ i
) * 4, 0x3f800000);
597 nv40_grctx_generate(struct nvkm_grctx
*ctx
)
599 /* decide whether we're loading/unloading the context */
600 cp_bra (ctx
, AUTO_SAVE
, PENDING
, cp_setup_save
);
601 cp_bra (ctx
, USER_SAVE
, PENDING
, cp_setup_save
);
603 cp_name(ctx
, cp_check_load
);
604 cp_bra (ctx
, AUTO_LOAD
, PENDING
, cp_setup_auto_load
);
605 cp_bra (ctx
, USER_LOAD
, PENDING
, cp_setup_load
);
606 cp_bra (ctx
, ALWAYS
, TRUE
, cp_exit
);
608 /* setup for context load */
609 cp_name(ctx
, cp_setup_auto_load
);
610 cp_wait(ctx
, STATUS
, IDLE
);
611 cp_out (ctx
, CP_NEXT_TO_SWAP
);
612 cp_name(ctx
, cp_setup_load
);
613 cp_wait(ctx
, STATUS
, IDLE
);
614 cp_set (ctx
, SWAP_DIRECTION
, LOAD
);
615 cp_out (ctx
, 0x00910880); /* ?? */
616 cp_out (ctx
, 0x00901ffe); /* ?? */
617 cp_out (ctx
, 0x01940000); /* ?? */
619 cp_out (ctx
, 0x0060000b); /* ?? */
620 cp_wait(ctx
, UNK57
, CLEAR
);
621 cp_out (ctx
, 0x0060000c); /* ?? */
622 cp_bra (ctx
, ALWAYS
, TRUE
, cp_swap_state
);
624 /* setup for context save */
625 cp_name(ctx
, cp_setup_save
);
626 cp_set (ctx
, SWAP_DIRECTION
, SAVE
);
628 /* general PGRAPH state */
629 cp_name(ctx
, cp_swap_state
);
630 cp_pos (ctx
, 0x00020/4);
631 nv40_gr_construct_general(ctx
);
632 cp_wait(ctx
, STATUS
, IDLE
);
634 /* 3D state, block 1 */
635 cp_bra (ctx
, UNK54
, CLEAR
, cp_prepare_exit
);
636 nv40_gr_construct_state3d(ctx
);
637 cp_wait(ctx
, STATUS
, IDLE
);
639 /* 3D state, block 2 */
640 nv40_gr_construct_state3d_2(ctx
);
642 /* Some other block of "random" state */
643 nv40_gr_construct_state3d_3(ctx
);
645 /* Per-vertex shader state */
646 cp_pos (ctx
, ctx
->ctxvals_pos
);
647 nv40_gr_construct_shader(ctx
);
649 /* pre-exit state updates */
650 cp_name(ctx
, cp_prepare_exit
);
651 cp_bra (ctx
, SWAP_DIRECTION
, SAVE
, cp_check_load
);
652 cp_bra (ctx
, USER_SAVE
, PENDING
, cp_exit
);
653 cp_out (ctx
, CP_NEXT_TO_CURRENT
);
655 cp_name(ctx
, cp_exit
);
656 cp_set (ctx
, USER_SAVE
, NOT_PENDING
);
657 cp_set (ctx
, USER_LOAD
, NOT_PENDING
);
658 cp_out (ctx
, CP_END
);
662 nv40_grctx_fill(struct nvkm_device
*device
, struct nvkm_gpuobj
*mem
)
664 nv40_grctx_generate(&(struct nvkm_grctx
) {
666 .mode
= NVKM_GRCTX_VALS
,
672 nv40_grctx_init(struct nvkm_device
*device
, u32
*size
)
674 u32
*ctxprog
= kmalloc(256 * 4, GFP_KERNEL
), i
;
675 struct nvkm_grctx ctx
= {
677 .mode
= NVKM_GRCTX_PROG
,
685 nv40_grctx_generate(&ctx
);
687 nv_wr32(device
, 0x400324, 0);
688 for (i
= 0; i
< ctx
.ctxprog_len
; i
++)
689 nv_wr32(device
, 0x400328, ctxprog
[i
]);
690 *size
= ctx
.ctxvals_pos
* 4;