WIP FPC-III support
[linux/fpc-iii.git] / arch / arm64 / mm / mmu.c
blobae0c3d023824e070fbd4d29d73e2dc2def64a785
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/mm/mmu.c
5 * Copyright (C) 1995-2005 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
9 #include <linux/cache.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/kexec.h>
16 #include <linux/libfdt.h>
17 #include <linux/mman.h>
18 #include <linux/nodemask.h>
19 #include <linux/memblock.h>
20 #include <linux/memory.h>
21 #include <linux/fs.h>
22 #include <linux/io.h>
23 #include <linux/mm.h>
24 #include <linux/vmalloc.h>
26 #include <asm/barrier.h>
27 #include <asm/cputype.h>
28 #include <asm/fixmap.h>
29 #include <asm/kasan.h>
30 #include <asm/kernel-pgtable.h>
31 #include <asm/sections.h>
32 #include <asm/setup.h>
33 #include <linux/sizes.h>
34 #include <asm/tlb.h>
35 #include <asm/mmu_context.h>
36 #include <asm/ptdump.h>
37 #include <asm/tlbflush.h>
38 #include <asm/pgalloc.h>
40 #define NO_BLOCK_MAPPINGS BIT(0)
41 #define NO_CONT_MAPPINGS BIT(1)
43 u64 idmap_t0sz = TCR_T0SZ(VA_BITS);
44 u64 idmap_ptrs_per_pgd = PTRS_PER_PGD;
46 u64 __section(".mmuoff.data.write") vabits_actual;
47 EXPORT_SYMBOL(vabits_actual);
49 u64 kimage_voffset __ro_after_init;
50 EXPORT_SYMBOL(kimage_voffset);
53 * Empty_zero_page is a special page that is used for zero-initialized data
54 * and COW.
56 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
57 EXPORT_SYMBOL(empty_zero_page);
59 static pte_t bm_pte[PTRS_PER_PTE] __page_aligned_bss;
60 static pmd_t bm_pmd[PTRS_PER_PMD] __page_aligned_bss __maybe_unused;
61 static pud_t bm_pud[PTRS_PER_PUD] __page_aligned_bss __maybe_unused;
63 static DEFINE_SPINLOCK(swapper_pgdir_lock);
65 void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd)
67 pgd_t *fixmap_pgdp;
69 spin_lock(&swapper_pgdir_lock);
70 fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp));
71 WRITE_ONCE(*fixmap_pgdp, pgd);
73 * We need dsb(ishst) here to ensure the page-table-walker sees
74 * our new entry before set_p?d() returns. The fixmap's
75 * flush_tlb_kernel_range() via clear_fixmap() does this for us.
77 pgd_clear_fixmap();
78 spin_unlock(&swapper_pgdir_lock);
81 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
82 unsigned long size, pgprot_t vma_prot)
84 if (!pfn_valid(pfn))
85 return pgprot_noncached(vma_prot);
86 else if (file->f_flags & O_SYNC)
87 return pgprot_writecombine(vma_prot);
88 return vma_prot;
90 EXPORT_SYMBOL(phys_mem_access_prot);
92 static phys_addr_t __init early_pgtable_alloc(int shift)
94 phys_addr_t phys;
95 void *ptr;
97 phys = memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
98 if (!phys)
99 panic("Failed to allocate page table page\n");
102 * The FIX_{PGD,PUD,PMD} slots may be in active use, but the FIX_PTE
103 * slot will be free, so we can (ab)use the FIX_PTE slot to initialise
104 * any level of table.
106 ptr = pte_set_fixmap(phys);
108 memset(ptr, 0, PAGE_SIZE);
111 * Implicit barriers also ensure the zeroed page is visible to the page
112 * table walker
114 pte_clear_fixmap();
116 return phys;
119 static bool pgattr_change_is_safe(u64 old, u64 new)
122 * The following mapping attributes may be updated in live
123 * kernel mappings without the need for break-before-make.
125 pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG;
127 /* creating or taking down mappings is always safe */
128 if (old == 0 || new == 0)
129 return true;
131 /* live contiguous mappings may not be manipulated at all */
132 if ((old | new) & PTE_CONT)
133 return false;
135 /* Transitioning from Non-Global to Global is unsafe */
136 if (old & ~new & PTE_NG)
137 return false;
140 * Changing the memory type between Normal and Normal-Tagged is safe
141 * since Tagged is considered a permission attribute from the
142 * mismatched attribute aliases perspective.
144 if (((old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
145 (old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)) &&
146 ((new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
147 (new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)))
148 mask |= PTE_ATTRINDX_MASK;
150 return ((old ^ new) & ~mask) == 0;
153 static void init_pte(pmd_t *pmdp, unsigned long addr, unsigned long end,
154 phys_addr_t phys, pgprot_t prot)
156 pte_t *ptep;
158 ptep = pte_set_fixmap_offset(pmdp, addr);
159 do {
160 pte_t old_pte = READ_ONCE(*ptep);
162 set_pte(ptep, pfn_pte(__phys_to_pfn(phys), prot));
165 * After the PTE entry has been populated once, we
166 * only allow updates to the permission attributes.
168 BUG_ON(!pgattr_change_is_safe(pte_val(old_pte),
169 READ_ONCE(pte_val(*ptep))));
171 phys += PAGE_SIZE;
172 } while (ptep++, addr += PAGE_SIZE, addr != end);
174 pte_clear_fixmap();
177 static void alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr,
178 unsigned long end, phys_addr_t phys,
179 pgprot_t prot,
180 phys_addr_t (*pgtable_alloc)(int),
181 int flags)
183 unsigned long next;
184 pmd_t pmd = READ_ONCE(*pmdp);
186 BUG_ON(pmd_sect(pmd));
187 if (pmd_none(pmd)) {
188 phys_addr_t pte_phys;
189 BUG_ON(!pgtable_alloc);
190 pte_phys = pgtable_alloc(PAGE_SHIFT);
191 __pmd_populate(pmdp, pte_phys, PMD_TYPE_TABLE);
192 pmd = READ_ONCE(*pmdp);
194 BUG_ON(pmd_bad(pmd));
196 do {
197 pgprot_t __prot = prot;
199 next = pte_cont_addr_end(addr, end);
201 /* use a contiguous mapping if the range is suitably aligned */
202 if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
203 (flags & NO_CONT_MAPPINGS) == 0)
204 __prot = __pgprot(pgprot_val(prot) | PTE_CONT);
206 init_pte(pmdp, addr, next, phys, __prot);
208 phys += next - addr;
209 } while (addr = next, addr != end);
212 static void init_pmd(pud_t *pudp, unsigned long addr, unsigned long end,
213 phys_addr_t phys, pgprot_t prot,
214 phys_addr_t (*pgtable_alloc)(int), int flags)
216 unsigned long next;
217 pmd_t *pmdp;
219 pmdp = pmd_set_fixmap_offset(pudp, addr);
220 do {
221 pmd_t old_pmd = READ_ONCE(*pmdp);
223 next = pmd_addr_end(addr, end);
225 /* try section mapping first */
226 if (((addr | next | phys) & ~SECTION_MASK) == 0 &&
227 (flags & NO_BLOCK_MAPPINGS) == 0) {
228 pmd_set_huge(pmdp, phys, prot);
231 * After the PMD entry has been populated once, we
232 * only allow updates to the permission attributes.
234 BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
235 READ_ONCE(pmd_val(*pmdp))));
236 } else {
237 alloc_init_cont_pte(pmdp, addr, next, phys, prot,
238 pgtable_alloc, flags);
240 BUG_ON(pmd_val(old_pmd) != 0 &&
241 pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp)));
243 phys += next - addr;
244 } while (pmdp++, addr = next, addr != end);
246 pmd_clear_fixmap();
249 static void alloc_init_cont_pmd(pud_t *pudp, unsigned long addr,
250 unsigned long end, phys_addr_t phys,
251 pgprot_t prot,
252 phys_addr_t (*pgtable_alloc)(int), int flags)
254 unsigned long next;
255 pud_t pud = READ_ONCE(*pudp);
258 * Check for initial section mappings in the pgd/pud.
260 BUG_ON(pud_sect(pud));
261 if (pud_none(pud)) {
262 phys_addr_t pmd_phys;
263 BUG_ON(!pgtable_alloc);
264 pmd_phys = pgtable_alloc(PMD_SHIFT);
265 __pud_populate(pudp, pmd_phys, PUD_TYPE_TABLE);
266 pud = READ_ONCE(*pudp);
268 BUG_ON(pud_bad(pud));
270 do {
271 pgprot_t __prot = prot;
273 next = pmd_cont_addr_end(addr, end);
275 /* use a contiguous mapping if the range is suitably aligned */
276 if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
277 (flags & NO_CONT_MAPPINGS) == 0)
278 __prot = __pgprot(pgprot_val(prot) | PTE_CONT);
280 init_pmd(pudp, addr, next, phys, __prot, pgtable_alloc, flags);
282 phys += next - addr;
283 } while (addr = next, addr != end);
286 static inline bool use_1G_block(unsigned long addr, unsigned long next,
287 unsigned long phys)
289 if (PAGE_SHIFT != 12)
290 return false;
292 if (((addr | next | phys) & ~PUD_MASK) != 0)
293 return false;
295 return true;
298 static void alloc_init_pud(pgd_t *pgdp, unsigned long addr, unsigned long end,
299 phys_addr_t phys, pgprot_t prot,
300 phys_addr_t (*pgtable_alloc)(int),
301 int flags)
303 unsigned long next;
304 pud_t *pudp;
305 p4d_t *p4dp = p4d_offset(pgdp, addr);
306 p4d_t p4d = READ_ONCE(*p4dp);
308 if (p4d_none(p4d)) {
309 phys_addr_t pud_phys;
310 BUG_ON(!pgtable_alloc);
311 pud_phys = pgtable_alloc(PUD_SHIFT);
312 __p4d_populate(p4dp, pud_phys, PUD_TYPE_TABLE);
313 p4d = READ_ONCE(*p4dp);
315 BUG_ON(p4d_bad(p4d));
317 pudp = pud_set_fixmap_offset(p4dp, addr);
318 do {
319 pud_t old_pud = READ_ONCE(*pudp);
321 next = pud_addr_end(addr, end);
324 * For 4K granule only, attempt to put down a 1GB block
326 if (use_1G_block(addr, next, phys) &&
327 (flags & NO_BLOCK_MAPPINGS) == 0) {
328 pud_set_huge(pudp, phys, prot);
331 * After the PUD entry has been populated once, we
332 * only allow updates to the permission attributes.
334 BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
335 READ_ONCE(pud_val(*pudp))));
336 } else {
337 alloc_init_cont_pmd(pudp, addr, next, phys, prot,
338 pgtable_alloc, flags);
340 BUG_ON(pud_val(old_pud) != 0 &&
341 pud_val(old_pud) != READ_ONCE(pud_val(*pudp)));
343 phys += next - addr;
344 } while (pudp++, addr = next, addr != end);
346 pud_clear_fixmap();
349 static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
350 unsigned long virt, phys_addr_t size,
351 pgprot_t prot,
352 phys_addr_t (*pgtable_alloc)(int),
353 int flags)
355 unsigned long addr, end, next;
356 pgd_t *pgdp = pgd_offset_pgd(pgdir, virt);
359 * If the virtual and physical address don't have the same offset
360 * within a page, we cannot map the region as the caller expects.
362 if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
363 return;
365 phys &= PAGE_MASK;
366 addr = virt & PAGE_MASK;
367 end = PAGE_ALIGN(virt + size);
369 do {
370 next = pgd_addr_end(addr, end);
371 alloc_init_pud(pgdp, addr, next, phys, prot, pgtable_alloc,
372 flags);
373 phys += next - addr;
374 } while (pgdp++, addr = next, addr != end);
377 static phys_addr_t __pgd_pgtable_alloc(int shift)
379 void *ptr = (void *)__get_free_page(GFP_PGTABLE_KERNEL);
380 BUG_ON(!ptr);
382 /* Ensure the zeroed page is visible to the page table walker */
383 dsb(ishst);
384 return __pa(ptr);
387 static phys_addr_t pgd_pgtable_alloc(int shift)
389 phys_addr_t pa = __pgd_pgtable_alloc(shift);
392 * Call proper page table ctor in case later we need to
393 * call core mm functions like apply_to_page_range() on
394 * this pre-allocated page table.
396 * We don't select ARCH_ENABLE_SPLIT_PMD_PTLOCK if pmd is
397 * folded, and if so pgtable_pmd_page_ctor() becomes nop.
399 if (shift == PAGE_SHIFT)
400 BUG_ON(!pgtable_pte_page_ctor(phys_to_page(pa)));
401 else if (shift == PMD_SHIFT)
402 BUG_ON(!pgtable_pmd_page_ctor(phys_to_page(pa)));
404 return pa;
408 * This function can only be used to modify existing table entries,
409 * without allocating new levels of table. Note that this permits the
410 * creation of new section or page entries.
412 static void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
413 phys_addr_t size, pgprot_t prot)
415 if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
416 pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
417 &phys, virt);
418 return;
420 __create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
421 NO_CONT_MAPPINGS);
424 void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
425 unsigned long virt, phys_addr_t size,
426 pgprot_t prot, bool page_mappings_only)
428 int flags = 0;
430 BUG_ON(mm == &init_mm);
432 if (page_mappings_only)
433 flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
435 __create_pgd_mapping(mm->pgd, phys, virt, size, prot,
436 pgd_pgtable_alloc, flags);
439 static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
440 phys_addr_t size, pgprot_t prot)
442 if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
443 pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
444 &phys, virt);
445 return;
448 __create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
449 NO_CONT_MAPPINGS);
451 /* flush the TLBs after updating live kernel mappings */
452 flush_tlb_kernel_range(virt, virt + size);
455 static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start,
456 phys_addr_t end, pgprot_t prot, int flags)
458 __create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start,
459 prot, early_pgtable_alloc, flags);
462 void __init mark_linear_text_alias_ro(void)
465 * Remove the write permissions from the linear alias of .text/.rodata
467 update_mapping_prot(__pa_symbol(_stext), (unsigned long)lm_alias(_stext),
468 (unsigned long)__init_begin - (unsigned long)_stext,
469 PAGE_KERNEL_RO);
472 static bool crash_mem_map __initdata;
474 static int __init enable_crash_mem_map(char *arg)
477 * Proper parameter parsing is done by reserve_crashkernel(). We only
478 * need to know if the linear map has to avoid block mappings so that
479 * the crashkernel reservations can be unmapped later.
481 crash_mem_map = true;
483 return 0;
485 early_param("crashkernel", enable_crash_mem_map);
487 static void __init map_mem(pgd_t *pgdp)
489 phys_addr_t kernel_start = __pa_symbol(_stext);
490 phys_addr_t kernel_end = __pa_symbol(__init_begin);
491 phys_addr_t start, end;
492 int flags = 0;
493 u64 i;
495 if (rodata_full || crash_mem_map || debug_pagealloc_enabled())
496 flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
499 * Take care not to create a writable alias for the
500 * read-only text and rodata sections of the kernel image.
501 * So temporarily mark them as NOMAP to skip mappings in
502 * the following for-loop
504 memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
506 /* map all the memory banks */
507 for_each_mem_range(i, &start, &end) {
508 if (start >= end)
509 break;
511 * The linear map must allow allocation tags reading/writing
512 * if MTE is present. Otherwise, it has the same attributes as
513 * PAGE_KERNEL.
515 __map_memblock(pgdp, start, end, PAGE_KERNEL_TAGGED, flags);
519 * Map the linear alias of the [_stext, __init_begin) interval
520 * as non-executable now, and remove the write permission in
521 * mark_linear_text_alias_ro() below (which will be called after
522 * alternative patching has completed). This makes the contents
523 * of the region accessible to subsystems such as hibernate,
524 * but protects it from inadvertent modification or execution.
525 * Note that contiguous mappings cannot be remapped in this way,
526 * so we should avoid them here.
528 __map_memblock(pgdp, kernel_start, kernel_end,
529 PAGE_KERNEL, NO_CONT_MAPPINGS);
530 memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
533 void mark_rodata_ro(void)
535 unsigned long section_size;
538 * mark .rodata as read only. Use __init_begin rather than __end_rodata
539 * to cover NOTES and EXCEPTION_TABLE.
541 section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
542 update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
543 section_size, PAGE_KERNEL_RO);
545 debug_checkwx();
548 static void __init map_kernel_segment(pgd_t *pgdp, void *va_start, void *va_end,
549 pgprot_t prot, struct vm_struct *vma,
550 int flags, unsigned long vm_flags)
552 phys_addr_t pa_start = __pa_symbol(va_start);
553 unsigned long size = va_end - va_start;
555 BUG_ON(!PAGE_ALIGNED(pa_start));
556 BUG_ON(!PAGE_ALIGNED(size));
558 __create_pgd_mapping(pgdp, pa_start, (unsigned long)va_start, size, prot,
559 early_pgtable_alloc, flags);
561 if (!(vm_flags & VM_NO_GUARD))
562 size += PAGE_SIZE;
564 vma->addr = va_start;
565 vma->phys_addr = pa_start;
566 vma->size = size;
567 vma->flags = VM_MAP | vm_flags;
568 vma->caller = __builtin_return_address(0);
570 vm_area_add_early(vma);
573 static int __init parse_rodata(char *arg)
575 int ret = strtobool(arg, &rodata_enabled);
576 if (!ret) {
577 rodata_full = false;
578 return 0;
581 /* permit 'full' in addition to boolean options */
582 if (strcmp(arg, "full"))
583 return -EINVAL;
585 rodata_enabled = true;
586 rodata_full = true;
587 return 0;
589 early_param("rodata", parse_rodata);
591 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
592 static int __init map_entry_trampoline(void)
594 pgprot_t prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
595 phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
597 /* The trampoline is always mapped and can therefore be global */
598 pgprot_val(prot) &= ~PTE_NG;
600 /* Map only the text into the trampoline page table */
601 memset(tramp_pg_dir, 0, PGD_SIZE);
602 __create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS, PAGE_SIZE,
603 prot, __pgd_pgtable_alloc, 0);
605 /* Map both the text and data into the kernel page table */
606 __set_fixmap(FIX_ENTRY_TRAMP_TEXT, pa_start, prot);
607 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
608 extern char __entry_tramp_data_start[];
610 __set_fixmap(FIX_ENTRY_TRAMP_DATA,
611 __pa_symbol(__entry_tramp_data_start),
612 PAGE_KERNEL_RO);
615 return 0;
617 core_initcall(map_entry_trampoline);
618 #endif
621 * Open coded check for BTI, only for use to determine configuration
622 * for early mappings for before the cpufeature code has run.
624 static bool arm64_early_this_cpu_has_bti(void)
626 u64 pfr1;
628 if (!IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
629 return false;
631 pfr1 = read_sysreg_s(SYS_ID_AA64PFR1_EL1);
632 return cpuid_feature_extract_unsigned_field(pfr1,
633 ID_AA64PFR1_BT_SHIFT);
637 * Create fine-grained mappings for the kernel.
639 static void __init map_kernel(pgd_t *pgdp)
641 static struct vm_struct vmlinux_text, vmlinux_rodata, vmlinux_inittext,
642 vmlinux_initdata, vmlinux_data;
645 * External debuggers may need to write directly to the text
646 * mapping to install SW breakpoints. Allow this (only) when
647 * explicitly requested with rodata=off.
649 pgprot_t text_prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
652 * If we have a CPU that supports BTI and a kernel built for
653 * BTI then mark the kernel executable text as guarded pages
654 * now so we don't have to rewrite the page tables later.
656 if (arm64_early_this_cpu_has_bti())
657 text_prot = __pgprot_modify(text_prot, PTE_GP, PTE_GP);
660 * Only rodata will be remapped with different permissions later on,
661 * all other segments are allowed to use contiguous mappings.
663 map_kernel_segment(pgdp, _stext, _etext, text_prot, &vmlinux_text, 0,
664 VM_NO_GUARD);
665 map_kernel_segment(pgdp, __start_rodata, __inittext_begin, PAGE_KERNEL,
666 &vmlinux_rodata, NO_CONT_MAPPINGS, VM_NO_GUARD);
667 map_kernel_segment(pgdp, __inittext_begin, __inittext_end, text_prot,
668 &vmlinux_inittext, 0, VM_NO_GUARD);
669 map_kernel_segment(pgdp, __initdata_begin, __initdata_end, PAGE_KERNEL,
670 &vmlinux_initdata, 0, VM_NO_GUARD);
671 map_kernel_segment(pgdp, _data, _end, PAGE_KERNEL, &vmlinux_data, 0, 0);
673 if (!READ_ONCE(pgd_val(*pgd_offset_pgd(pgdp, FIXADDR_START)))) {
675 * The fixmap falls in a separate pgd to the kernel, and doesn't
676 * live in the carveout for the swapper_pg_dir. We can simply
677 * re-use the existing dir for the fixmap.
679 set_pgd(pgd_offset_pgd(pgdp, FIXADDR_START),
680 READ_ONCE(*pgd_offset_k(FIXADDR_START)));
681 } else if (CONFIG_PGTABLE_LEVELS > 3) {
682 pgd_t *bm_pgdp;
683 p4d_t *bm_p4dp;
684 pud_t *bm_pudp;
686 * The fixmap shares its top level pgd entry with the kernel
687 * mapping. This can really only occur when we are running
688 * with 16k/4 levels, so we can simply reuse the pud level
689 * entry instead.
691 BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
692 bm_pgdp = pgd_offset_pgd(pgdp, FIXADDR_START);
693 bm_p4dp = p4d_offset(bm_pgdp, FIXADDR_START);
694 bm_pudp = pud_set_fixmap_offset(bm_p4dp, FIXADDR_START);
695 pud_populate(&init_mm, bm_pudp, lm_alias(bm_pmd));
696 pud_clear_fixmap();
697 } else {
698 BUG();
701 kasan_copy_shadow(pgdp);
704 void __init paging_init(void)
706 pgd_t *pgdp = pgd_set_fixmap(__pa_symbol(swapper_pg_dir));
708 map_kernel(pgdp);
709 map_mem(pgdp);
711 pgd_clear_fixmap();
713 cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
714 init_mm.pgd = swapper_pg_dir;
716 memblock_free(__pa_symbol(init_pg_dir),
717 __pa_symbol(init_pg_end) - __pa_symbol(init_pg_dir));
719 memblock_allow_resize();
723 * Check whether a kernel address is valid (derived from arch/x86/).
725 int kern_addr_valid(unsigned long addr)
727 pgd_t *pgdp;
728 p4d_t *p4dp;
729 pud_t *pudp, pud;
730 pmd_t *pmdp, pmd;
731 pte_t *ptep, pte;
733 addr = arch_kasan_reset_tag(addr);
734 if ((((long)addr) >> VA_BITS) != -1UL)
735 return 0;
737 pgdp = pgd_offset_k(addr);
738 if (pgd_none(READ_ONCE(*pgdp)))
739 return 0;
741 p4dp = p4d_offset(pgdp, addr);
742 if (p4d_none(READ_ONCE(*p4dp)))
743 return 0;
745 pudp = pud_offset(p4dp, addr);
746 pud = READ_ONCE(*pudp);
747 if (pud_none(pud))
748 return 0;
750 if (pud_sect(pud))
751 return pfn_valid(pud_pfn(pud));
753 pmdp = pmd_offset(pudp, addr);
754 pmd = READ_ONCE(*pmdp);
755 if (pmd_none(pmd))
756 return 0;
758 if (pmd_sect(pmd))
759 return pfn_valid(pmd_pfn(pmd));
761 ptep = pte_offset_kernel(pmdp, addr);
762 pte = READ_ONCE(*ptep);
763 if (pte_none(pte))
764 return 0;
766 return pfn_valid(pte_pfn(pte));
769 #ifdef CONFIG_MEMORY_HOTPLUG
770 static void free_hotplug_page_range(struct page *page, size_t size,
771 struct vmem_altmap *altmap)
773 if (altmap) {
774 vmem_altmap_free(altmap, size >> PAGE_SHIFT);
775 } else {
776 WARN_ON(PageReserved(page));
777 free_pages((unsigned long)page_address(page), get_order(size));
781 static void free_hotplug_pgtable_page(struct page *page)
783 free_hotplug_page_range(page, PAGE_SIZE, NULL);
786 static bool pgtable_range_aligned(unsigned long start, unsigned long end,
787 unsigned long floor, unsigned long ceiling,
788 unsigned long mask)
790 start &= mask;
791 if (start < floor)
792 return false;
794 if (ceiling) {
795 ceiling &= mask;
796 if (!ceiling)
797 return false;
800 if (end - 1 > ceiling - 1)
801 return false;
802 return true;
805 static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr,
806 unsigned long end, bool free_mapped,
807 struct vmem_altmap *altmap)
809 pte_t *ptep, pte;
811 do {
812 ptep = pte_offset_kernel(pmdp, addr);
813 pte = READ_ONCE(*ptep);
814 if (pte_none(pte))
815 continue;
817 WARN_ON(!pte_present(pte));
818 pte_clear(&init_mm, addr, ptep);
819 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
820 if (free_mapped)
821 free_hotplug_page_range(pte_page(pte),
822 PAGE_SIZE, altmap);
823 } while (addr += PAGE_SIZE, addr < end);
826 static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr,
827 unsigned long end, bool free_mapped,
828 struct vmem_altmap *altmap)
830 unsigned long next;
831 pmd_t *pmdp, pmd;
833 do {
834 next = pmd_addr_end(addr, end);
835 pmdp = pmd_offset(pudp, addr);
836 pmd = READ_ONCE(*pmdp);
837 if (pmd_none(pmd))
838 continue;
840 WARN_ON(!pmd_present(pmd));
841 if (pmd_sect(pmd)) {
842 pmd_clear(pmdp);
845 * One TLBI should be sufficient here as the PMD_SIZE
846 * range is mapped with a single block entry.
848 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
849 if (free_mapped)
850 free_hotplug_page_range(pmd_page(pmd),
851 PMD_SIZE, altmap);
852 continue;
854 WARN_ON(!pmd_table(pmd));
855 unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap);
856 } while (addr = next, addr < end);
859 static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr,
860 unsigned long end, bool free_mapped,
861 struct vmem_altmap *altmap)
863 unsigned long next;
864 pud_t *pudp, pud;
866 do {
867 next = pud_addr_end(addr, end);
868 pudp = pud_offset(p4dp, addr);
869 pud = READ_ONCE(*pudp);
870 if (pud_none(pud))
871 continue;
873 WARN_ON(!pud_present(pud));
874 if (pud_sect(pud)) {
875 pud_clear(pudp);
878 * One TLBI should be sufficient here as the PUD_SIZE
879 * range is mapped with a single block entry.
881 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
882 if (free_mapped)
883 free_hotplug_page_range(pud_page(pud),
884 PUD_SIZE, altmap);
885 continue;
887 WARN_ON(!pud_table(pud));
888 unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap);
889 } while (addr = next, addr < end);
892 static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr,
893 unsigned long end, bool free_mapped,
894 struct vmem_altmap *altmap)
896 unsigned long next;
897 p4d_t *p4dp, p4d;
899 do {
900 next = p4d_addr_end(addr, end);
901 p4dp = p4d_offset(pgdp, addr);
902 p4d = READ_ONCE(*p4dp);
903 if (p4d_none(p4d))
904 continue;
906 WARN_ON(!p4d_present(p4d));
907 unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap);
908 } while (addr = next, addr < end);
911 static void unmap_hotplug_range(unsigned long addr, unsigned long end,
912 bool free_mapped, struct vmem_altmap *altmap)
914 unsigned long next;
915 pgd_t *pgdp, pgd;
918 * altmap can only be used as vmemmap mapping backing memory.
919 * In case the backing memory itself is not being freed, then
920 * altmap is irrelevant. Warn about this inconsistency when
921 * encountered.
923 WARN_ON(!free_mapped && altmap);
925 do {
926 next = pgd_addr_end(addr, end);
927 pgdp = pgd_offset_k(addr);
928 pgd = READ_ONCE(*pgdp);
929 if (pgd_none(pgd))
930 continue;
932 WARN_ON(!pgd_present(pgd));
933 unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap);
934 } while (addr = next, addr < end);
937 static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr,
938 unsigned long end, unsigned long floor,
939 unsigned long ceiling)
941 pte_t *ptep, pte;
942 unsigned long i, start = addr;
944 do {
945 ptep = pte_offset_kernel(pmdp, addr);
946 pte = READ_ONCE(*ptep);
949 * This is just a sanity check here which verifies that
950 * pte clearing has been done by earlier unmap loops.
952 WARN_ON(!pte_none(pte));
953 } while (addr += PAGE_SIZE, addr < end);
955 if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK))
956 return;
959 * Check whether we can free the pte page if the rest of the
960 * entries are empty. Overlap with other regions have been
961 * handled by the floor/ceiling check.
963 ptep = pte_offset_kernel(pmdp, 0UL);
964 for (i = 0; i < PTRS_PER_PTE; i++) {
965 if (!pte_none(READ_ONCE(ptep[i])))
966 return;
969 pmd_clear(pmdp);
970 __flush_tlb_kernel_pgtable(start);
971 free_hotplug_pgtable_page(virt_to_page(ptep));
974 static void free_empty_pmd_table(pud_t *pudp, unsigned long addr,
975 unsigned long end, unsigned long floor,
976 unsigned long ceiling)
978 pmd_t *pmdp, pmd;
979 unsigned long i, next, start = addr;
981 do {
982 next = pmd_addr_end(addr, end);
983 pmdp = pmd_offset(pudp, addr);
984 pmd = READ_ONCE(*pmdp);
985 if (pmd_none(pmd))
986 continue;
988 WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd));
989 free_empty_pte_table(pmdp, addr, next, floor, ceiling);
990 } while (addr = next, addr < end);
992 if (CONFIG_PGTABLE_LEVELS <= 2)
993 return;
995 if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK))
996 return;
999 * Check whether we can free the pmd page if the rest of the
1000 * entries are empty. Overlap with other regions have been
1001 * handled by the floor/ceiling check.
1003 pmdp = pmd_offset(pudp, 0UL);
1004 for (i = 0; i < PTRS_PER_PMD; i++) {
1005 if (!pmd_none(READ_ONCE(pmdp[i])))
1006 return;
1009 pud_clear(pudp);
1010 __flush_tlb_kernel_pgtable(start);
1011 free_hotplug_pgtable_page(virt_to_page(pmdp));
1014 static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr,
1015 unsigned long end, unsigned long floor,
1016 unsigned long ceiling)
1018 pud_t *pudp, pud;
1019 unsigned long i, next, start = addr;
1021 do {
1022 next = pud_addr_end(addr, end);
1023 pudp = pud_offset(p4dp, addr);
1024 pud = READ_ONCE(*pudp);
1025 if (pud_none(pud))
1026 continue;
1028 WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud));
1029 free_empty_pmd_table(pudp, addr, next, floor, ceiling);
1030 } while (addr = next, addr < end);
1032 if (CONFIG_PGTABLE_LEVELS <= 3)
1033 return;
1035 if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK))
1036 return;
1039 * Check whether we can free the pud page if the rest of the
1040 * entries are empty. Overlap with other regions have been
1041 * handled by the floor/ceiling check.
1043 pudp = pud_offset(p4dp, 0UL);
1044 for (i = 0; i < PTRS_PER_PUD; i++) {
1045 if (!pud_none(READ_ONCE(pudp[i])))
1046 return;
1049 p4d_clear(p4dp);
1050 __flush_tlb_kernel_pgtable(start);
1051 free_hotplug_pgtable_page(virt_to_page(pudp));
1054 static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr,
1055 unsigned long end, unsigned long floor,
1056 unsigned long ceiling)
1058 unsigned long next;
1059 p4d_t *p4dp, p4d;
1061 do {
1062 next = p4d_addr_end(addr, end);
1063 p4dp = p4d_offset(pgdp, addr);
1064 p4d = READ_ONCE(*p4dp);
1065 if (p4d_none(p4d))
1066 continue;
1068 WARN_ON(!p4d_present(p4d));
1069 free_empty_pud_table(p4dp, addr, next, floor, ceiling);
1070 } while (addr = next, addr < end);
1073 static void free_empty_tables(unsigned long addr, unsigned long end,
1074 unsigned long floor, unsigned long ceiling)
1076 unsigned long next;
1077 pgd_t *pgdp, pgd;
1079 do {
1080 next = pgd_addr_end(addr, end);
1081 pgdp = pgd_offset_k(addr);
1082 pgd = READ_ONCE(*pgdp);
1083 if (pgd_none(pgd))
1084 continue;
1086 WARN_ON(!pgd_present(pgd));
1087 free_empty_p4d_table(pgdp, addr, next, floor, ceiling);
1088 } while (addr = next, addr < end);
1090 #endif
1092 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1093 #if !ARM64_SWAPPER_USES_SECTION_MAPS
1094 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1095 struct vmem_altmap *altmap)
1097 return vmemmap_populate_basepages(start, end, node, altmap);
1099 #else /* !ARM64_SWAPPER_USES_SECTION_MAPS */
1100 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1101 struct vmem_altmap *altmap)
1103 unsigned long addr = start;
1104 unsigned long next;
1105 pgd_t *pgdp;
1106 p4d_t *p4dp;
1107 pud_t *pudp;
1108 pmd_t *pmdp;
1110 do {
1111 next = pmd_addr_end(addr, end);
1113 pgdp = vmemmap_pgd_populate(addr, node);
1114 if (!pgdp)
1115 return -ENOMEM;
1117 p4dp = vmemmap_p4d_populate(pgdp, addr, node);
1118 if (!p4dp)
1119 return -ENOMEM;
1121 pudp = vmemmap_pud_populate(p4dp, addr, node);
1122 if (!pudp)
1123 return -ENOMEM;
1125 pmdp = pmd_offset(pudp, addr);
1126 if (pmd_none(READ_ONCE(*pmdp))) {
1127 void *p = NULL;
1129 p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1130 if (!p) {
1131 if (vmemmap_populate_basepages(addr, next, node, altmap))
1132 return -ENOMEM;
1133 continue;
1136 pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL));
1137 } else
1138 vmemmap_verify((pte_t *)pmdp, node, addr, next);
1139 } while (addr = next, addr != end);
1141 return 0;
1143 #endif /* !ARM64_SWAPPER_USES_SECTION_MAPS */
1144 void vmemmap_free(unsigned long start, unsigned long end,
1145 struct vmem_altmap *altmap)
1147 #ifdef CONFIG_MEMORY_HOTPLUG
1148 WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1150 unmap_hotplug_range(start, end, true, altmap);
1151 free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END);
1152 #endif
1154 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
1156 static inline pud_t * fixmap_pud(unsigned long addr)
1158 pgd_t *pgdp = pgd_offset_k(addr);
1159 p4d_t *p4dp = p4d_offset(pgdp, addr);
1160 p4d_t p4d = READ_ONCE(*p4dp);
1162 BUG_ON(p4d_none(p4d) || p4d_bad(p4d));
1164 return pud_offset_kimg(p4dp, addr);
1167 static inline pmd_t * fixmap_pmd(unsigned long addr)
1169 pud_t *pudp = fixmap_pud(addr);
1170 pud_t pud = READ_ONCE(*pudp);
1172 BUG_ON(pud_none(pud) || pud_bad(pud));
1174 return pmd_offset_kimg(pudp, addr);
1177 static inline pte_t * fixmap_pte(unsigned long addr)
1179 return &bm_pte[pte_index(addr)];
1183 * The p*d_populate functions call virt_to_phys implicitly so they can't be used
1184 * directly on kernel symbols (bm_p*d). This function is called too early to use
1185 * lm_alias so __p*d_populate functions must be used to populate with the
1186 * physical address from __pa_symbol.
1188 void __init early_fixmap_init(void)
1190 pgd_t *pgdp;
1191 p4d_t *p4dp, p4d;
1192 pud_t *pudp;
1193 pmd_t *pmdp;
1194 unsigned long addr = FIXADDR_START;
1196 pgdp = pgd_offset_k(addr);
1197 p4dp = p4d_offset(pgdp, addr);
1198 p4d = READ_ONCE(*p4dp);
1199 if (CONFIG_PGTABLE_LEVELS > 3 &&
1200 !(p4d_none(p4d) || p4d_page_paddr(p4d) == __pa_symbol(bm_pud))) {
1202 * We only end up here if the kernel mapping and the fixmap
1203 * share the top level pgd entry, which should only happen on
1204 * 16k/4 levels configurations.
1206 BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
1207 pudp = pud_offset_kimg(p4dp, addr);
1208 } else {
1209 if (p4d_none(p4d))
1210 __p4d_populate(p4dp, __pa_symbol(bm_pud), PUD_TYPE_TABLE);
1211 pudp = fixmap_pud(addr);
1213 if (pud_none(READ_ONCE(*pudp)))
1214 __pud_populate(pudp, __pa_symbol(bm_pmd), PMD_TYPE_TABLE);
1215 pmdp = fixmap_pmd(addr);
1216 __pmd_populate(pmdp, __pa_symbol(bm_pte), PMD_TYPE_TABLE);
1219 * The boot-ioremap range spans multiple pmds, for which
1220 * we are not prepared:
1222 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
1223 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
1225 if ((pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)))
1226 || pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_END))) {
1227 WARN_ON(1);
1228 pr_warn("pmdp %p != %p, %p\n",
1229 pmdp, fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)),
1230 fixmap_pmd(fix_to_virt(FIX_BTMAP_END)));
1231 pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
1232 fix_to_virt(FIX_BTMAP_BEGIN));
1233 pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n",
1234 fix_to_virt(FIX_BTMAP_END));
1236 pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
1237 pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN);
1242 * Unusually, this is also called in IRQ context (ghes_iounmap_irq) so if we
1243 * ever need to use IPIs for TLB broadcasting, then we're in trouble here.
1245 void __set_fixmap(enum fixed_addresses idx,
1246 phys_addr_t phys, pgprot_t flags)
1248 unsigned long addr = __fix_to_virt(idx);
1249 pte_t *ptep;
1251 BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
1253 ptep = fixmap_pte(addr);
1255 if (pgprot_val(flags)) {
1256 set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, flags));
1257 } else {
1258 pte_clear(&init_mm, addr, ptep);
1259 flush_tlb_kernel_range(addr, addr+PAGE_SIZE);
1263 void *__init fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot)
1265 const u64 dt_virt_base = __fix_to_virt(FIX_FDT);
1266 int offset;
1267 void *dt_virt;
1270 * Check whether the physical FDT address is set and meets the minimum
1271 * alignment requirement. Since we are relying on MIN_FDT_ALIGN to be
1272 * at least 8 bytes so that we can always access the magic and size
1273 * fields of the FDT header after mapping the first chunk, double check
1274 * here if that is indeed the case.
1276 BUILD_BUG_ON(MIN_FDT_ALIGN < 8);
1277 if (!dt_phys || dt_phys % MIN_FDT_ALIGN)
1278 return NULL;
1281 * Make sure that the FDT region can be mapped without the need to
1282 * allocate additional translation table pages, so that it is safe
1283 * to call create_mapping_noalloc() this early.
1285 * On 64k pages, the FDT will be mapped using PTEs, so we need to
1286 * be in the same PMD as the rest of the fixmap.
1287 * On 4k pages, we'll use section mappings for the FDT so we only
1288 * have to be in the same PUD.
1290 BUILD_BUG_ON(dt_virt_base % SZ_2M);
1292 BUILD_BUG_ON(__fix_to_virt(FIX_FDT_END) >> SWAPPER_TABLE_SHIFT !=
1293 __fix_to_virt(FIX_BTMAP_BEGIN) >> SWAPPER_TABLE_SHIFT);
1295 offset = dt_phys % SWAPPER_BLOCK_SIZE;
1296 dt_virt = (void *)dt_virt_base + offset;
1298 /* map the first chunk so we can read the size from the header */
1299 create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE),
1300 dt_virt_base, SWAPPER_BLOCK_SIZE, prot);
1302 if (fdt_magic(dt_virt) != FDT_MAGIC)
1303 return NULL;
1305 *size = fdt_totalsize(dt_virt);
1306 if (*size > MAX_FDT_SIZE)
1307 return NULL;
1309 if (offset + *size > SWAPPER_BLOCK_SIZE)
1310 create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE), dt_virt_base,
1311 round_up(offset + *size, SWAPPER_BLOCK_SIZE), prot);
1313 return dt_virt;
1316 int __init arch_ioremap_p4d_supported(void)
1318 return 0;
1321 int __init arch_ioremap_pud_supported(void)
1324 * Only 4k granule supports level 1 block mappings.
1325 * SW table walks can't handle removal of intermediate entries.
1327 return IS_ENABLED(CONFIG_ARM64_4K_PAGES) &&
1328 !IS_ENABLED(CONFIG_PTDUMP_DEBUGFS);
1331 int __init arch_ioremap_pmd_supported(void)
1333 /* See arch_ioremap_pud_supported() */
1334 return !IS_ENABLED(CONFIG_PTDUMP_DEBUGFS);
1337 int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot)
1339 pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot));
1341 /* Only allow permission changes for now */
1342 if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)),
1343 pud_val(new_pud)))
1344 return 0;
1346 VM_BUG_ON(phys & ~PUD_MASK);
1347 set_pud(pudp, new_pud);
1348 return 1;
1351 int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot)
1353 pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot));
1355 /* Only allow permission changes for now */
1356 if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)),
1357 pmd_val(new_pmd)))
1358 return 0;
1360 VM_BUG_ON(phys & ~PMD_MASK);
1361 set_pmd(pmdp, new_pmd);
1362 return 1;
1365 int pud_clear_huge(pud_t *pudp)
1367 if (!pud_sect(READ_ONCE(*pudp)))
1368 return 0;
1369 pud_clear(pudp);
1370 return 1;
1373 int pmd_clear_huge(pmd_t *pmdp)
1375 if (!pmd_sect(READ_ONCE(*pmdp)))
1376 return 0;
1377 pmd_clear(pmdp);
1378 return 1;
1381 int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr)
1383 pte_t *table;
1384 pmd_t pmd;
1386 pmd = READ_ONCE(*pmdp);
1388 if (!pmd_table(pmd)) {
1389 VM_WARN_ON(1);
1390 return 1;
1393 table = pte_offset_kernel(pmdp, addr);
1394 pmd_clear(pmdp);
1395 __flush_tlb_kernel_pgtable(addr);
1396 pte_free_kernel(NULL, table);
1397 return 1;
1400 int pud_free_pmd_page(pud_t *pudp, unsigned long addr)
1402 pmd_t *table;
1403 pmd_t *pmdp;
1404 pud_t pud;
1405 unsigned long next, end;
1407 pud = READ_ONCE(*pudp);
1409 if (!pud_table(pud)) {
1410 VM_WARN_ON(1);
1411 return 1;
1414 table = pmd_offset(pudp, addr);
1415 pmdp = table;
1416 next = addr;
1417 end = addr + PUD_SIZE;
1418 do {
1419 pmd_free_pte_page(pmdp, next);
1420 } while (pmdp++, next += PMD_SIZE, next != end);
1422 pud_clear(pudp);
1423 __flush_tlb_kernel_pgtable(addr);
1424 pmd_free(NULL, table);
1425 return 1;
1428 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1430 return 0; /* Don't attempt a block mapping */
1433 #ifdef CONFIG_MEMORY_HOTPLUG
1434 static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size)
1436 unsigned long end = start + size;
1438 WARN_ON(pgdir != init_mm.pgd);
1439 WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END));
1441 unmap_hotplug_range(start, end, false, NULL);
1442 free_empty_tables(start, end, PAGE_OFFSET, PAGE_END);
1445 static bool inside_linear_region(u64 start, u64 size)
1448 * Linear mapping region is the range [PAGE_OFFSET..(PAGE_END - 1)]
1449 * accommodating both its ends but excluding PAGE_END. Max physical
1450 * range which can be mapped inside this linear mapping range, must
1451 * also be derived from its end points.
1453 return start >= __pa(_PAGE_OFFSET(vabits_actual)) &&
1454 (start + size - 1) <= __pa(PAGE_END - 1);
1457 int arch_add_memory(int nid, u64 start, u64 size,
1458 struct mhp_params *params)
1460 int ret, flags = 0;
1462 if (!inside_linear_region(start, size)) {
1463 pr_err("[%llx %llx] is outside linear mapping region\n", start, start + size);
1464 return -EINVAL;
1467 if (rodata_full || debug_pagealloc_enabled())
1468 flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1470 __create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start),
1471 size, params->pgprot, __pgd_pgtable_alloc,
1472 flags);
1474 memblock_clear_nomap(start, size);
1476 ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT,
1477 params);
1478 if (ret)
1479 __remove_pgd_mapping(swapper_pg_dir,
1480 __phys_to_virt(start), size);
1481 return ret;
1484 void arch_remove_memory(int nid, u64 start, u64 size,
1485 struct vmem_altmap *altmap)
1487 unsigned long start_pfn = start >> PAGE_SHIFT;
1488 unsigned long nr_pages = size >> PAGE_SHIFT;
1490 __remove_pages(start_pfn, nr_pages, altmap);
1491 __remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size);
1495 * This memory hotplug notifier helps prevent boot memory from being
1496 * inadvertently removed as it blocks pfn range offlining process in
1497 * __offline_pages(). Hence this prevents both offlining as well as
1498 * removal process for boot memory which is initially always online.
1499 * In future if and when boot memory could be removed, this notifier
1500 * should be dropped and free_hotplug_page_range() should handle any
1501 * reserved pages allocated during boot.
1503 static int prevent_bootmem_remove_notifier(struct notifier_block *nb,
1504 unsigned long action, void *data)
1506 struct mem_section *ms;
1507 struct memory_notify *arg = data;
1508 unsigned long end_pfn = arg->start_pfn + arg->nr_pages;
1509 unsigned long pfn = arg->start_pfn;
1511 if ((action != MEM_GOING_OFFLINE) && (action != MEM_OFFLINE))
1512 return NOTIFY_OK;
1514 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1515 unsigned long start = PFN_PHYS(pfn);
1516 unsigned long end = start + (1UL << PA_SECTION_SHIFT);
1518 ms = __pfn_to_section(pfn);
1519 if (!early_section(ms))
1520 continue;
1522 if (action == MEM_GOING_OFFLINE) {
1524 * Boot memory removal is not supported. Prevent
1525 * it via blocking any attempted offline request
1526 * for the boot memory and just report it.
1528 pr_warn("Boot memory [%lx %lx] offlining attempted\n", start, end);
1529 return NOTIFY_BAD;
1530 } else if (action == MEM_OFFLINE) {
1532 * This should have never happened. Boot memory
1533 * offlining should have been prevented by this
1534 * very notifier. Probably some memory removal
1535 * procedure might have changed which would then
1536 * require further debug.
1538 pr_err("Boot memory [%lx %lx] offlined\n", start, end);
1541 * Core memory hotplug does not process a return
1542 * code from the notifier for MEM_OFFLINE events.
1543 * The error condition has been reported. Return
1544 * from here as if ignored.
1546 return NOTIFY_DONE;
1549 return NOTIFY_OK;
1552 static struct notifier_block prevent_bootmem_remove_nb = {
1553 .notifier_call = prevent_bootmem_remove_notifier,
1557 * This ensures that boot memory sections on the platform are online
1558 * from early boot. Memory sections could not be prevented from being
1559 * offlined, unless for some reason they are not online to begin with.
1560 * This helps validate the basic assumption on which the above memory
1561 * event notifier works to prevent boot memory section offlining and
1562 * its possible removal.
1564 static void validate_bootmem_online(void)
1566 phys_addr_t start, end, addr;
1567 struct mem_section *ms;
1568 u64 i;
1571 * Scanning across all memblock might be expensive
1572 * on some big memory systems. Hence enable this
1573 * validation only with DEBUG_VM.
1575 if (!IS_ENABLED(CONFIG_DEBUG_VM))
1576 return;
1578 for_each_mem_range(i, &start, &end) {
1579 for (addr = start; addr < end; addr += (1UL << PA_SECTION_SHIFT)) {
1580 ms = __pfn_to_section(PHYS_PFN(addr));
1583 * All memory ranges in the system at this point
1584 * should have been marked as early sections.
1586 WARN_ON(!early_section(ms));
1589 * Memory notifier mechanism here to prevent boot
1590 * memory offlining depends on the fact that each
1591 * early section memory on the system is initially
1592 * online. Otherwise a given memory section which
1593 * is already offline will be overlooked and can
1594 * be removed completely. Call out such sections.
1596 if (!online_section(ms))
1597 pr_err("Boot memory [%llx %llx] is offline, can be removed\n",
1598 addr, addr + (1UL << PA_SECTION_SHIFT));
1603 static int __init prevent_bootmem_remove_init(void)
1605 int ret = 0;
1607 if (!IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
1608 return ret;
1610 validate_bootmem_online();
1611 ret = register_memory_notifier(&prevent_bootmem_remove_nb);
1612 if (ret)
1613 pr_err("%s: Notifier registration failed %d\n", __func__, ret);
1615 return ret;
1617 early_initcall(prevent_bootmem_remove_init);
1618 #endif