1 // SPDX-License-Identifier: GPL-2.0-only
3 * Time related functions for Hexagon architecture
5 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
8 #include <linux/init.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/interrupt.h>
12 #include <linux/err.h>
13 #include <linux/platform_device.h>
14 #include <linux/ioport.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/module.h>
20 #include <asm/timer-regs.h>
21 #include <asm/hexagon_vm.h>
24 * For the clocksource we need:
25 * pcycle frequency (600MHz)
26 * For the loops_per_jiffy we need:
27 * thread/cpu frequency (100MHz)
28 * And for the timer, we need:
32 cycles_t pcycle_freq_mhz
;
33 cycles_t thread_freq_mhz
;
34 cycles_t sleep_clk_freq
;
36 static struct resource rtos_timer_resources
[] = {
38 .start
= RTOS_TIMER_REGS_ADDR
,
39 .end
= RTOS_TIMER_REGS_ADDR
+PAGE_SIZE
-1,
40 .flags
= IORESOURCE_MEM
,
44 static struct platform_device rtos_timer_device
= {
47 .num_resources
= ARRAY_SIZE(rtos_timer_resources
),
48 .resource
= rtos_timer_resources
,
51 /* A lot of this stuff should move into a platform specific section. */
52 struct adsp_hw_timer_struct
{
53 u32 match
; /* Match value */
55 u32 enable
; /* [1] - CLR_ON_MATCH_EN, [0] - EN */
56 u32 clear
; /* one-shot register that clears the count */
59 /* Look for "TCX0" for related constants. */
60 static __iomem
struct adsp_hw_timer_struct
*rtos_timer
;
62 static u64
timer_get_cycles(struct clocksource
*cs
)
64 return (u64
) __vmgettime();
67 static struct clocksource hexagon_clocksource
= {
70 .read
= timer_get_cycles
,
71 .mask
= CLOCKSOURCE_MASK(64),
72 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
75 static int set_next_event(unsigned long delta
, struct clock_event_device
*evt
)
77 /* Assuming the timer will be disabled when we enter here. */
79 iowrite32(1, &rtos_timer
->clear
);
80 iowrite32(0, &rtos_timer
->clear
);
82 iowrite32(delta
, &rtos_timer
->match
);
83 iowrite32(1 << TIMER_ENABLE
, &rtos_timer
->enable
);
88 /* Broadcast mechanism */
89 static void broadcast(const struct cpumask
*mask
)
91 send_ipi(mask
, IPI_TIMER
);
95 /* XXX Implement set_state_shutdown() */
96 static struct clock_event_device hexagon_clockevent_dev
= {
98 .features
= CLOCK_EVT_FEAT_ONESHOT
,
100 .irq
= RTOS_TIMER_INT
,
101 .set_next_event
= set_next_event
,
103 .broadcast
= broadcast
,
108 static DEFINE_PER_CPU(struct clock_event_device
, clock_events
);
110 void setup_percpu_clockdev(void)
112 int cpu
= smp_processor_id();
113 struct clock_event_device
*ce_dev
= &hexagon_clockevent_dev
;
114 struct clock_event_device
*dummy_clock_dev
=
115 &per_cpu(clock_events
, cpu
);
117 memcpy(dummy_clock_dev
, ce_dev
, sizeof(*dummy_clock_dev
));
118 INIT_LIST_HEAD(&dummy_clock_dev
->list
);
120 dummy_clock_dev
->features
= CLOCK_EVT_FEAT_DUMMY
;
121 dummy_clock_dev
->cpumask
= cpumask_of(cpu
);
123 clockevents_register_device(dummy_clock_dev
);
126 /* Called from smp.c for each CPU's timer ipi call */
129 int cpu
= smp_processor_id();
130 struct clock_event_device
*ce_dev
= &per_cpu(clock_events
, cpu
);
132 ce_dev
->event_handler(ce_dev
);
134 #endif /* CONFIG_SMP */
136 static irqreturn_t
timer_interrupt(int irq
, void *devid
)
138 struct clock_event_device
*ce_dev
= &hexagon_clockevent_dev
;
140 iowrite32(0, &rtos_timer
->enable
);
141 ce_dev
->event_handler(ce_dev
);
147 * time_init_deferred - called by start_kernel to set up timer/clock source
149 * Install the IRQ handler for the clock, setup timers.
150 * This is done late, as that way, we can use ioremap().
152 * This runs just before the delay loop is calibrated, and
153 * is used for delay calibration.
155 void __init
time_init_deferred(void)
157 struct resource
*resource
= NULL
;
158 struct clock_event_device
*ce_dev
= &hexagon_clockevent_dev
;
159 unsigned long flag
= IRQF_TIMER
| IRQF_TRIGGER_RISING
;
161 ce_dev
->cpumask
= cpu_all_mask
;
164 resource
= rtos_timer_device
.resource
;
166 /* ioremap here means this has to run later, after paging init */
167 rtos_timer
= ioremap(resource
->start
, resource_size(resource
));
170 release_mem_region(resource
->start
, resource_size(resource
));
172 clocksource_register_khz(&hexagon_clocksource
, pcycle_freq_mhz
* 1000);
174 /* Note: the sim generic RTOS clock is apparently really 18750Hz */
177 * Last arg is some guaranteed seconds for which the conversion will
178 * work without overflow.
180 clockevents_calc_mult_shift(ce_dev
, sleep_clk_freq
, 4);
182 ce_dev
->max_delta_ns
= clockevent_delta2ns(0x7fffffff, ce_dev
);
183 ce_dev
->max_delta_ticks
= 0x7fffffff;
184 ce_dev
->min_delta_ns
= clockevent_delta2ns(0xf, ce_dev
);
185 ce_dev
->min_delta_ticks
= 0xf;
188 setup_percpu_clockdev();
191 clockevents_register_device(ce_dev
);
192 if (request_irq(ce_dev
->irq
, timer_interrupt
, flag
, "rtos_timer", NULL
))
193 pr_err("Failed to register rtos_timer interrupt\n");
196 void __init
time_init(void)
198 late_time_init
= time_init_deferred
;
201 void __delay(unsigned long cycles
)
203 unsigned long long start
= __vmgettime();
205 while ((__vmgettime() - start
) < cycles
)
208 EXPORT_SYMBOL(__delay
);
211 * This could become parametric or perhaps even computed at run-time,
212 * but for now we take the observed simulator jitter.
214 static long long fudgefactor
= 350; /* Maybe lower if kernel optimized. */
216 void __udelay(unsigned long usecs
)
218 unsigned long long start
= __vmgettime();
219 unsigned long long finish
= (pcycle_freq_mhz
* usecs
) - fudgefactor
;
221 while ((__vmgettime() - start
) < finish
)
222 cpu_relax(); /* not sure how this improves readability */
224 EXPORT_SYMBOL(__udelay
);