1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Performance event support - powerpc architecture code
5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/perf_event.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/uaccess.h>
16 #include <asm/machdep.h>
17 #include <asm/firmware.h>
18 #include <asm/ptrace.h>
19 #include <asm/code-patching.h>
25 #define BHRB_MAX_ENTRIES 32
26 #define BHRB_TARGET 0x0000000000000002
27 #define BHRB_PREDICTION 0x0000000000000001
28 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
30 struct cpu_hw_events
{
37 struct perf_event
*event
[MAX_HWEVENTS
];
38 u64 events
[MAX_HWEVENTS
];
39 unsigned int flags
[MAX_HWEVENTS
];
40 struct mmcr_regs mmcr
;
41 struct perf_event
*limited_counter
[MAX_LIMITED_HWCOUNTERS
];
42 u8 limited_hwidx
[MAX_LIMITED_HWCOUNTERS
];
43 u64 alternatives
[MAX_HWEVENTS
][MAX_EVENT_ALTERNATIVES
];
44 unsigned long amasks
[MAX_HWEVENTS
][MAX_EVENT_ALTERNATIVES
];
45 unsigned long avalues
[MAX_HWEVENTS
][MAX_EVENT_ALTERNATIVES
];
47 unsigned int txn_flags
;
51 u64 bhrb_filter
; /* BHRB HW branch filter */
52 unsigned int bhrb_users
;
54 struct perf_branch_stack bhrb_stack
;
55 struct perf_branch_entry bhrb_entries
[BHRB_MAX_ENTRIES
];
59 static DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
);
61 static struct power_pmu
*ppmu
;
64 * Normally, to ignore kernel events we set the FCS (freeze counters
65 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
66 * hypervisor bit set in the MSR, or if we are running on a processor
67 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
68 * then we need to use the FCHV bit to ignore kernel events.
70 static unsigned int freeze_events_kernel
= MMCR0_FCS
;
73 * 32-bit doesn't have MMCRA but does have an MMCR2,
74 * and a few other names are different.
75 * Also 32-bit doesn't have MMCR3, SIER2 and SIER3.
76 * Define them as zero knowing that any code path accessing
77 * these registers (via mtspr/mfspr) are done under ppmu flag
78 * check for PPMU_ARCH_31 and we will not enter that code path
84 #define MMCR0_PMCjCE MMCR0_PMCnCE
90 #define MMCR0_PMCC_U6 0
92 #define SPRN_MMCRA SPRN_MMCR2
96 #define MMCRA_SAMPLE_ENABLE 0
97 #define MMCRA_BHRB_DISABLE 0
98 #define MMCR0_PMCCEXT 0
100 static inline unsigned long perf_ip_adjust(struct pt_regs
*regs
)
104 static inline void perf_get_data_addr(struct perf_event
*event
, struct pt_regs
*regs
, u64
*addrp
) { }
105 static inline u32
perf_get_misc_flags(struct pt_regs
*regs
)
109 static inline void perf_read_regs(struct pt_regs
*regs
)
113 static inline int perf_intr_is_nmi(struct pt_regs
*regs
)
118 static inline int siar_valid(struct pt_regs
*regs
)
123 static bool is_ebb_event(struct perf_event
*event
) { return false; }
124 static int ebb_event_check(struct perf_event
*event
) { return 0; }
125 static void ebb_event_add(struct perf_event
*event
) { }
126 static void ebb_switch_out(unsigned long mmcr0
) { }
127 static unsigned long ebb_switch_in(bool ebb
, struct cpu_hw_events
*cpuhw
)
129 return cpuhw
->mmcr
.mmcr0
;
132 static inline void power_pmu_bhrb_enable(struct perf_event
*event
) {}
133 static inline void power_pmu_bhrb_disable(struct perf_event
*event
) {}
134 static void power_pmu_sched_task(struct perf_event_context
*ctx
, bool sched_in
) {}
135 static inline void power_pmu_bhrb_read(struct perf_event
*event
, struct cpu_hw_events
*cpuhw
) {}
136 static void pmao_restore_workaround(bool ebb
) { }
137 #endif /* CONFIG_PPC32 */
139 bool is_sier_available(void)
144 if (ppmu
->flags
& PPMU_HAS_SIER
)
150 static bool regs_use_siar(struct pt_regs
*regs
)
153 * When we take a performance monitor exception the regs are setup
154 * using perf_read_regs() which overloads some fields, in particular
155 * regs->result to tell us whether to use SIAR.
157 * However if the regs are from another exception, eg. a syscall, then
158 * they have not been setup using perf_read_regs() and so regs->result
159 * is something random.
161 return ((TRAP(regs
) == 0xf00) && regs
->result
);
165 * Things that are specific to 64-bit implementations.
169 static inline unsigned long perf_ip_adjust(struct pt_regs
*regs
)
171 unsigned long mmcra
= regs
->dsisr
;
173 if ((ppmu
->flags
& PPMU_HAS_SSLOT
) && (mmcra
& MMCRA_SAMPLE_ENABLE
)) {
174 unsigned long slot
= (mmcra
& MMCRA_SLOT
) >> MMCRA_SLOT_SHIFT
;
176 return 4 * (slot
- 1);
183 * The user wants a data address recorded.
184 * If we're not doing instruction sampling, give them the SDAR
185 * (sampled data address). If we are doing instruction sampling, then
186 * only give them the SDAR if it corresponds to the instruction
187 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
188 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
190 static inline void perf_get_data_addr(struct perf_event
*event
, struct pt_regs
*regs
, u64
*addrp
)
192 unsigned long mmcra
= regs
->dsisr
;
195 if (ppmu
->flags
& PPMU_HAS_SIER
)
196 sdar_valid
= regs
->dar
& SIER_SDAR_VALID
;
198 unsigned long sdsync
;
200 if (ppmu
->flags
& PPMU_SIAR_VALID
)
201 sdsync
= POWER7P_MMCRA_SDAR_VALID
;
202 else if (ppmu
->flags
& PPMU_ALT_SIPR
)
203 sdsync
= POWER6_MMCRA_SDSYNC
;
204 else if (ppmu
->flags
& PPMU_NO_SIAR
)
205 sdsync
= MMCRA_SAMPLE_ENABLE
;
207 sdsync
= MMCRA_SDSYNC
;
209 sdar_valid
= mmcra
& sdsync
;
212 if (!(mmcra
& MMCRA_SAMPLE_ENABLE
) || sdar_valid
)
213 *addrp
= mfspr(SPRN_SDAR
);
215 if (is_kernel_addr(mfspr(SPRN_SDAR
)) && perf_allow_kernel(&event
->attr
) != 0)
219 static bool regs_sihv(struct pt_regs
*regs
)
221 unsigned long sihv
= MMCRA_SIHV
;
223 if (ppmu
->flags
& PPMU_HAS_SIER
)
224 return !!(regs
->dar
& SIER_SIHV
);
226 if (ppmu
->flags
& PPMU_ALT_SIPR
)
227 sihv
= POWER6_MMCRA_SIHV
;
229 return !!(regs
->dsisr
& sihv
);
232 static bool regs_sipr(struct pt_regs
*regs
)
234 unsigned long sipr
= MMCRA_SIPR
;
236 if (ppmu
->flags
& PPMU_HAS_SIER
)
237 return !!(regs
->dar
& SIER_SIPR
);
239 if (ppmu
->flags
& PPMU_ALT_SIPR
)
240 sipr
= POWER6_MMCRA_SIPR
;
242 return !!(regs
->dsisr
& sipr
);
245 static inline u32
perf_flags_from_msr(struct pt_regs
*regs
)
247 if (regs
->msr
& MSR_PR
)
248 return PERF_RECORD_MISC_USER
;
249 if ((regs
->msr
& MSR_HV
) && freeze_events_kernel
!= MMCR0_FCHV
)
250 return PERF_RECORD_MISC_HYPERVISOR
;
251 return PERF_RECORD_MISC_KERNEL
;
254 static inline u32
perf_get_misc_flags(struct pt_regs
*regs
)
256 bool use_siar
= regs_use_siar(regs
);
257 unsigned long mmcra
= regs
->dsisr
;
258 int marked
= mmcra
& MMCRA_SAMPLE_ENABLE
;
261 return perf_flags_from_msr(regs
);
264 * Check the address in SIAR to identify the
265 * privilege levels since the SIER[MSR_HV, MSR_PR]
266 * bits are not set for marked events in power10
269 if (marked
&& (ppmu
->flags
& PPMU_P10_DD1
)) {
270 unsigned long siar
= mfspr(SPRN_SIAR
);
272 if (is_kernel_addr(siar
))
273 return PERF_RECORD_MISC_KERNEL
;
274 return PERF_RECORD_MISC_USER
;
276 if (is_kernel_addr(regs
->nip
))
277 return PERF_RECORD_MISC_KERNEL
;
278 return PERF_RECORD_MISC_USER
;
283 * If we don't have flags in MMCRA, rather than using
284 * the MSR, we intuit the flags from the address in
285 * SIAR which should give slightly more reliable
288 if (ppmu
->flags
& PPMU_NO_SIPR
) {
289 unsigned long siar
= mfspr(SPRN_SIAR
);
290 if (is_kernel_addr(siar
))
291 return PERF_RECORD_MISC_KERNEL
;
292 return PERF_RECORD_MISC_USER
;
295 /* PR has priority over HV, so order below is important */
297 return PERF_RECORD_MISC_USER
;
299 if (regs_sihv(regs
) && (freeze_events_kernel
!= MMCR0_FCHV
))
300 return PERF_RECORD_MISC_HYPERVISOR
;
302 return PERF_RECORD_MISC_KERNEL
;
306 * Overload regs->dsisr to store MMCRA so we only need to read it once
308 * Overload regs->dar to store SIER if we have it.
309 * Overload regs->result to specify whether we should use the MSR (result
310 * is zero) or the SIAR (result is non zero).
312 static inline void perf_read_regs(struct pt_regs
*regs
)
314 unsigned long mmcra
= mfspr(SPRN_MMCRA
);
315 int marked
= mmcra
& MMCRA_SAMPLE_ENABLE
;
320 if (ppmu
->flags
& PPMU_HAS_SIER
)
321 regs
->dar
= mfspr(SPRN_SIER
);
324 * If this isn't a PMU exception (eg a software event) the SIAR is
325 * not valid. Use pt_regs.
327 * If it is a marked event use the SIAR.
329 * If the PMU doesn't update the SIAR for non marked events use
332 * If the PMU has HV/PR flags then check to see if they
333 * place the exception in userspace. If so, use pt_regs. In
334 * continuous sampling mode the SIAR and the PMU exception are
335 * not synchronised, so they may be many instructions apart.
336 * This can result in confusing backtraces. We still want
337 * hypervisor samples as well as samples in the kernel with
338 * interrupts off hence the userspace check.
340 if (TRAP(regs
) != 0xf00)
342 else if ((ppmu
->flags
& PPMU_NO_SIAR
))
346 else if ((ppmu
->flags
& PPMU_NO_CONT_SAMPLING
))
348 else if (!(ppmu
->flags
& PPMU_NO_SIPR
) && regs_sipr(regs
))
353 regs
->result
= use_siar
;
357 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
360 static inline int perf_intr_is_nmi(struct pt_regs
*regs
)
362 return (regs
->softe
& IRQS_DISABLED
);
366 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
367 * must be sampled only if the SIAR-valid bit is set.
369 * For unmarked instructions and for processors that don't have the SIAR-Valid
370 * bit, assume that SIAR is valid.
372 static inline int siar_valid(struct pt_regs
*regs
)
374 unsigned long mmcra
= regs
->dsisr
;
375 int marked
= mmcra
& MMCRA_SAMPLE_ENABLE
;
379 * SIER[SIAR_VALID] is not set for some
380 * marked events on power10 DD1, so drop
381 * the check for SIER[SIAR_VALID] and return true.
383 if (ppmu
->flags
& PPMU_P10_DD1
)
385 else if (ppmu
->flags
& PPMU_HAS_SIER
)
386 return regs
->dar
& SIER_SIAR_VALID
;
388 if (ppmu
->flags
& PPMU_SIAR_VALID
)
389 return mmcra
& POWER7P_MMCRA_SIAR_VALID
;
396 /* Reset all possible BHRB entries */
397 static void power_pmu_bhrb_reset(void)
399 asm volatile(PPC_CLRBHRB
);
402 static void power_pmu_bhrb_enable(struct perf_event
*event
)
404 struct cpu_hw_events
*cpuhw
= this_cpu_ptr(&cpu_hw_events
);
409 /* Clear BHRB if we changed task context to avoid data leaks */
410 if (event
->ctx
->task
&& cpuhw
->bhrb_context
!= event
->ctx
) {
411 power_pmu_bhrb_reset();
412 cpuhw
->bhrb_context
= event
->ctx
;
415 perf_sched_cb_inc(event
->ctx
->pmu
);
418 static void power_pmu_bhrb_disable(struct perf_event
*event
)
420 struct cpu_hw_events
*cpuhw
= this_cpu_ptr(&cpu_hw_events
);
425 WARN_ON_ONCE(!cpuhw
->bhrb_users
);
427 perf_sched_cb_dec(event
->ctx
->pmu
);
429 if (!cpuhw
->disabled
&& !cpuhw
->bhrb_users
) {
430 /* BHRB cannot be turned off when other
431 * events are active on the PMU.
434 /* avoid stale pointer */
435 cpuhw
->bhrb_context
= NULL
;
439 /* Called from ctxsw to prevent one process's branch entries to
440 * mingle with the other process's entries during context switch.
442 static void power_pmu_sched_task(struct perf_event_context
*ctx
, bool sched_in
)
448 power_pmu_bhrb_reset();
450 /* Calculate the to address for a branch */
451 static __u64
power_pmu_bhrb_to(u64 addr
)
456 if (is_kernel_addr(addr
)) {
457 if (copy_from_kernel_nofault(&instr
, (void *)addr
,
461 return branch_target((struct ppc_inst
*)&instr
);
464 /* Userspace: need copy instruction here then translate it */
465 if (copy_from_user_nofault(&instr
, (unsigned int __user
*)addr
,
469 target
= branch_target((struct ppc_inst
*)&instr
);
470 if ((!target
) || (instr
& BRANCH_ABSOLUTE
))
473 /* Translate relative branch target from kernel to user address */
474 return target
- (unsigned long)&instr
+ addr
;
477 /* Processing BHRB entries */
478 static void power_pmu_bhrb_read(struct perf_event
*event
, struct cpu_hw_events
*cpuhw
)
482 int r_index
, u_index
, pred
;
486 while (r_index
< ppmu
->bhrb_nr
) {
487 /* Assembly read function */
488 val
= read_bhrb(r_index
++);
490 /* Terminal marker: End of valid BHRB entries */
493 addr
= val
& BHRB_EA
;
494 pred
= val
& BHRB_PREDICTION
;
501 * BHRB rolling buffer could very much contain the kernel
502 * addresses at this point. Check the privileges before
503 * exporting it to userspace (avoid exposure of regions
504 * where we could have speculative execution)
505 * Incase of ISA v3.1, BHRB will capture only user-space
506 * addresses, hence include a check before filtering code
508 if (!(ppmu
->flags
& PPMU_ARCH_31
) &&
509 is_kernel_addr(addr
) && perf_allow_kernel(&event
->attr
) != 0)
512 /* Branches are read most recent first (ie. mfbhrb 0 is
513 * the most recent branch).
514 * There are two types of valid entries:
515 * 1) a target entry which is the to address of a
516 * computed goto like a blr,bctr,btar. The next
517 * entry read from the bhrb will be branch
518 * corresponding to this target (ie. the actual
519 * blr/bctr/btar instruction).
520 * 2) a from address which is an actual branch. If a
521 * target entry proceeds this, then this is the
522 * matching branch for that target. If this is not
523 * following a target entry, then this is a branch
524 * where the target is given as an immediate field
525 * in the instruction (ie. an i or b form branch).
526 * In this case we need to read the instruction from
527 * memory to determine the target/to address.
530 if (val
& BHRB_TARGET
) {
531 /* Target branches use two entries
532 * (ie. computed gotos/XL form)
534 cpuhw
->bhrb_entries
[u_index
].to
= addr
;
535 cpuhw
->bhrb_entries
[u_index
].mispred
= pred
;
536 cpuhw
->bhrb_entries
[u_index
].predicted
= ~pred
;
538 /* Get from address in next entry */
539 val
= read_bhrb(r_index
++);
540 addr
= val
& BHRB_EA
;
541 if (val
& BHRB_TARGET
) {
542 /* Shouldn't have two targets in a
543 row.. Reset index and try again */
547 cpuhw
->bhrb_entries
[u_index
].from
= addr
;
549 /* Branches to immediate field
551 cpuhw
->bhrb_entries
[u_index
].from
= addr
;
552 cpuhw
->bhrb_entries
[u_index
].to
=
553 power_pmu_bhrb_to(addr
);
554 cpuhw
->bhrb_entries
[u_index
].mispred
= pred
;
555 cpuhw
->bhrb_entries
[u_index
].predicted
= ~pred
;
561 cpuhw
->bhrb_stack
.nr
= u_index
;
562 cpuhw
->bhrb_stack
.hw_idx
= -1ULL;
566 static bool is_ebb_event(struct perf_event
*event
)
569 * This could be a per-PMU callback, but we'd rather avoid the cost. We
570 * check that the PMU supports EBB, meaning those that don't can still
571 * use bit 63 of the event code for something else if they wish.
573 return (ppmu
->flags
& PPMU_ARCH_207S
) &&
574 ((event
->attr
.config
>> PERF_EVENT_CONFIG_EBB_SHIFT
) & 1);
577 static int ebb_event_check(struct perf_event
*event
)
579 struct perf_event
*leader
= event
->group_leader
;
581 /* Event and group leader must agree on EBB */
582 if (is_ebb_event(leader
) != is_ebb_event(event
))
585 if (is_ebb_event(event
)) {
586 if (!(event
->attach_state
& PERF_ATTACH_TASK
))
589 if (!leader
->attr
.pinned
|| !leader
->attr
.exclusive
)
592 if (event
->attr
.freq
||
593 event
->attr
.inherit
||
594 event
->attr
.sample_type
||
595 event
->attr
.sample_period
||
596 event
->attr
.enable_on_exec
)
603 static void ebb_event_add(struct perf_event
*event
)
605 if (!is_ebb_event(event
) || current
->thread
.used_ebb
)
609 * IFF this is the first time we've added an EBB event, set
610 * PMXE in the user MMCR0 so we can detect when it's cleared by
611 * userspace. We need this so that we can context switch while
612 * userspace is in the EBB handler (where PMXE is 0).
614 current
->thread
.used_ebb
= 1;
615 current
->thread
.mmcr0
|= MMCR0_PMXE
;
618 static void ebb_switch_out(unsigned long mmcr0
)
620 if (!(mmcr0
& MMCR0_EBE
))
623 current
->thread
.siar
= mfspr(SPRN_SIAR
);
624 current
->thread
.sier
= mfspr(SPRN_SIER
);
625 current
->thread
.sdar
= mfspr(SPRN_SDAR
);
626 current
->thread
.mmcr0
= mmcr0
& MMCR0_USER_MASK
;
627 current
->thread
.mmcr2
= mfspr(SPRN_MMCR2
) & MMCR2_USER_MASK
;
628 if (ppmu
->flags
& PPMU_ARCH_31
) {
629 current
->thread
.mmcr3
= mfspr(SPRN_MMCR3
);
630 current
->thread
.sier2
= mfspr(SPRN_SIER2
);
631 current
->thread
.sier3
= mfspr(SPRN_SIER3
);
635 static unsigned long ebb_switch_in(bool ebb
, struct cpu_hw_events
*cpuhw
)
637 unsigned long mmcr0
= cpuhw
->mmcr
.mmcr0
;
642 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
643 mmcr0
|= MMCR0_EBE
| MMCR0_BHRBA
| MMCR0_PMCC_U6
;
646 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
647 * with pmao_restore_workaround() because we may add PMAO but we never
650 mmcr0
|= current
->thread
.mmcr0
;
653 * Be careful not to set PMXE if userspace had it cleared. This is also
654 * compatible with pmao_restore_workaround() because it has already
655 * cleared PMXE and we leave PMAO alone.
657 if (!(current
->thread
.mmcr0
& MMCR0_PMXE
))
658 mmcr0
&= ~MMCR0_PMXE
;
660 mtspr(SPRN_SIAR
, current
->thread
.siar
);
661 mtspr(SPRN_SIER
, current
->thread
.sier
);
662 mtspr(SPRN_SDAR
, current
->thread
.sdar
);
665 * Merge the kernel & user values of MMCR2. The semantics we implement
666 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
667 * but not clear bits. If a task wants to be able to clear bits, ie.
668 * unfreeze counters, it should not set exclude_xxx in its events and
669 * instead manage the MMCR2 entirely by itself.
671 mtspr(SPRN_MMCR2
, cpuhw
->mmcr
.mmcr2
| current
->thread
.mmcr2
);
673 if (ppmu
->flags
& PPMU_ARCH_31
) {
674 mtspr(SPRN_MMCR3
, current
->thread
.mmcr3
);
675 mtspr(SPRN_SIER2
, current
->thread
.sier2
);
676 mtspr(SPRN_SIER3
, current
->thread
.sier3
);
682 static void pmao_restore_workaround(bool ebb
)
686 if (!cpu_has_feature(CPU_FTR_PMAO_BUG
))
690 * On POWER8E there is a hardware defect which affects the PMU context
691 * switch logic, ie. power_pmu_disable/enable().
693 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
694 * by the hardware. Sometime later the actual PMU exception is
697 * If we context switch, or simply disable/enable, the PMU prior to the
698 * exception arriving, the exception will be lost when we clear PMAO.
700 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
701 * set, and this _should_ generate an exception. However because of the
702 * defect no exception is generated when we write PMAO, and we get
703 * stuck with no counters counting but no exception delivered.
705 * The workaround is to detect this case and tweak the hardware to
706 * create another pending PMU exception.
708 * We do that by setting up PMC6 (cycles) for an imminent overflow and
709 * enabling the PMU. That causes a new exception to be generated in the
710 * chip, but we don't take it yet because we have interrupts hard
711 * disabled. We then write back the PMU state as we want it to be seen
712 * by the exception handler. When we reenable interrupts the exception
713 * handler will be called and see the correct state.
715 * The logic is the same for EBB, except that the exception is gated by
716 * us having interrupts hard disabled as well as the fact that we are
717 * not in userspace. The exception is finally delivered when we return
721 /* Only if PMAO is set and PMAO_SYNC is clear */
722 if ((current
->thread
.mmcr0
& (MMCR0_PMAO
| MMCR0_PMAO_SYNC
)) != MMCR0_PMAO
)
725 /* If we're doing EBB, only if BESCR[GE] is set */
726 if (ebb
&& !(current
->thread
.bescr
& BESCR_GE
))
730 * We are already soft-disabled in power_pmu_enable(). We need to hard
731 * disable to actually prevent the PMU exception from firing.
736 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
737 * Using read/write_pmc() in a for loop adds 12 function calls and
738 * almost doubles our code size.
740 pmcs
[0] = mfspr(SPRN_PMC1
);
741 pmcs
[1] = mfspr(SPRN_PMC2
);
742 pmcs
[2] = mfspr(SPRN_PMC3
);
743 pmcs
[3] = mfspr(SPRN_PMC4
);
744 pmcs
[4] = mfspr(SPRN_PMC5
);
745 pmcs
[5] = mfspr(SPRN_PMC6
);
747 /* Ensure all freeze bits are unset */
748 mtspr(SPRN_MMCR2
, 0);
750 /* Set up PMC6 to overflow in one cycle */
751 mtspr(SPRN_PMC6
, 0x7FFFFFFE);
753 /* Enable exceptions and unfreeze PMC6 */
754 mtspr(SPRN_MMCR0
, MMCR0_PMXE
| MMCR0_PMCjCE
| MMCR0_PMAO
);
756 /* Now we need to refreeze and restore the PMCs */
757 mtspr(SPRN_MMCR0
, MMCR0_FC
| MMCR0_PMAO
);
759 mtspr(SPRN_PMC1
, pmcs
[0]);
760 mtspr(SPRN_PMC2
, pmcs
[1]);
761 mtspr(SPRN_PMC3
, pmcs
[2]);
762 mtspr(SPRN_PMC4
, pmcs
[3]);
763 mtspr(SPRN_PMC5
, pmcs
[4]);
764 mtspr(SPRN_PMC6
, pmcs
[5]);
767 #endif /* CONFIG_PPC64 */
769 static void perf_event_interrupt(struct pt_regs
*regs
);
772 * Read one performance monitor counter (PMC).
774 static unsigned long read_pmc(int idx
)
780 val
= mfspr(SPRN_PMC1
);
783 val
= mfspr(SPRN_PMC2
);
786 val
= mfspr(SPRN_PMC3
);
789 val
= mfspr(SPRN_PMC4
);
792 val
= mfspr(SPRN_PMC5
);
795 val
= mfspr(SPRN_PMC6
);
799 val
= mfspr(SPRN_PMC7
);
802 val
= mfspr(SPRN_PMC8
);
804 #endif /* CONFIG_PPC64 */
806 printk(KERN_ERR
"oops trying to read PMC%d\n", idx
);
815 static void write_pmc(int idx
, unsigned long val
)
819 mtspr(SPRN_PMC1
, val
);
822 mtspr(SPRN_PMC2
, val
);
825 mtspr(SPRN_PMC3
, val
);
828 mtspr(SPRN_PMC4
, val
);
831 mtspr(SPRN_PMC5
, val
);
834 mtspr(SPRN_PMC6
, val
);
838 mtspr(SPRN_PMC7
, val
);
841 mtspr(SPRN_PMC8
, val
);
843 #endif /* CONFIG_PPC64 */
845 printk(KERN_ERR
"oops trying to write PMC%d\n", idx
);
849 /* Called from sysrq_handle_showregs() */
850 void perf_event_print_debug(void)
852 unsigned long sdar
, sier
, flags
;
853 u32 pmcs
[MAX_HWEVENTS
];
857 pr_info("Performance monitor hardware not registered.\n");
861 if (!ppmu
->n_counter
)
864 local_irq_save(flags
);
866 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
867 smp_processor_id(), ppmu
->name
, ppmu
->n_counter
);
869 for (i
= 0; i
< ppmu
->n_counter
; i
++)
870 pmcs
[i
] = read_pmc(i
+ 1);
872 for (; i
< MAX_HWEVENTS
; i
++)
873 pmcs
[i
] = 0xdeadbeef;
875 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
876 pmcs
[0], pmcs
[1], pmcs
[2], pmcs
[3]);
878 if (ppmu
->n_counter
> 4)
879 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
880 pmcs
[4], pmcs
[5], pmcs
[6], pmcs
[7]);
882 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
883 mfspr(SPRN_MMCR0
), mfspr(SPRN_MMCR1
), mfspr(SPRN_MMCRA
));
887 sdar
= mfspr(SPRN_SDAR
);
889 if (ppmu
->flags
& PPMU_HAS_SIER
)
890 sier
= mfspr(SPRN_SIER
);
892 if (ppmu
->flags
& PPMU_ARCH_207S
) {
893 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
894 mfspr(SPRN_MMCR2
), mfspr(SPRN_EBBHR
));
895 pr_info("EBBRR: %016lx BESCR: %016lx\n",
896 mfspr(SPRN_EBBRR
), mfspr(SPRN_BESCR
));
899 if (ppmu
->flags
& PPMU_ARCH_31
) {
900 pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n",
901 mfspr(SPRN_MMCR3
), mfspr(SPRN_SIER2
), mfspr(SPRN_SIER3
));
904 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
905 mfspr(SPRN_SIAR
), sdar
, sier
);
907 local_irq_restore(flags
);
911 * Check if a set of events can all go on the PMU at once.
912 * If they can't, this will look at alternative codes for the events
913 * and see if any combination of alternative codes is feasible.
914 * The feasible set is returned in event_id[].
916 static int power_check_constraints(struct cpu_hw_events
*cpuhw
,
917 u64 event_id
[], unsigned int cflags
[],
920 unsigned long mask
, value
, nv
;
921 unsigned long smasks
[MAX_HWEVENTS
], svalues
[MAX_HWEVENTS
];
922 int n_alt
[MAX_HWEVENTS
], choice
[MAX_HWEVENTS
];
924 unsigned long addf
= ppmu
->add_fields
;
925 unsigned long tadd
= ppmu
->test_adder
;
926 unsigned long grp_mask
= ppmu
->group_constraint_mask
;
927 unsigned long grp_val
= ppmu
->group_constraint_val
;
929 if (n_ev
> ppmu
->n_counter
)
932 /* First see if the events will go on as-is */
933 for (i
= 0; i
< n_ev
; ++i
) {
934 if ((cflags
[i
] & PPMU_LIMITED_PMC_REQD
)
935 && !ppmu
->limited_pmc_event(event_id
[i
])) {
936 ppmu
->get_alternatives(event_id
[i
], cflags
[i
],
937 cpuhw
->alternatives
[i
]);
938 event_id
[i
] = cpuhw
->alternatives
[i
][0];
940 if (ppmu
->get_constraint(event_id
[i
], &cpuhw
->amasks
[i
][0],
941 &cpuhw
->avalues
[i
][0]))
945 for (i
= 0; i
< n_ev
; ++i
) {
946 nv
= (value
| cpuhw
->avalues
[i
][0]) +
947 (value
& cpuhw
->avalues
[i
][0] & addf
);
949 if (((((nv
+ tadd
) ^ value
) & mask
) & (~grp_mask
)) != 0)
952 if (((((nv
+ tadd
) ^ cpuhw
->avalues
[i
][0]) & cpuhw
->amasks
[i
][0])
957 mask
|= cpuhw
->amasks
[i
][0];
960 if ((value
& mask
& grp_mask
) != (mask
& grp_val
))
963 return 0; /* all OK */
966 /* doesn't work, gather alternatives... */
967 if (!ppmu
->get_alternatives
)
969 for (i
= 0; i
< n_ev
; ++i
) {
971 n_alt
[i
] = ppmu
->get_alternatives(event_id
[i
], cflags
[i
],
972 cpuhw
->alternatives
[i
]);
973 for (j
= 1; j
< n_alt
[i
]; ++j
)
974 ppmu
->get_constraint(cpuhw
->alternatives
[i
][j
],
975 &cpuhw
->amasks
[i
][j
],
976 &cpuhw
->avalues
[i
][j
]);
979 /* enumerate all possibilities and see if any will work */
982 value
= mask
= nv
= 0;
985 /* we're backtracking, restore context */
991 * See if any alternative k for event_id i,
992 * where k > j, will satisfy the constraints.
994 while (++j
< n_alt
[i
]) {
995 nv
= (value
| cpuhw
->avalues
[i
][j
]) +
996 (value
& cpuhw
->avalues
[i
][j
] & addf
);
997 if ((((nv
+ tadd
) ^ value
) & mask
) == 0 &&
998 (((nv
+ tadd
) ^ cpuhw
->avalues
[i
][j
])
999 & cpuhw
->amasks
[i
][j
]) == 0)
1002 if (j
>= n_alt
[i
]) {
1004 * No feasible alternative, backtrack
1005 * to event_id i-1 and continue enumerating its
1006 * alternatives from where we got up to.
1012 * Found a feasible alternative for event_id i,
1013 * remember where we got up to with this event_id,
1014 * go on to the next event_id, and start with
1015 * the first alternative for it.
1021 mask
|= cpuhw
->amasks
[i
][j
];
1027 /* OK, we have a feasible combination, tell the caller the solution */
1028 for (i
= 0; i
< n_ev
; ++i
)
1029 event_id
[i
] = cpuhw
->alternatives
[i
][choice
[i
]];
1034 * Check if newly-added events have consistent settings for
1035 * exclude_{user,kernel,hv} with each other and any previously
1038 static int check_excludes(struct perf_event
**ctrs
, unsigned int cflags
[],
1039 int n_prev
, int n_new
)
1041 int eu
= 0, ek
= 0, eh
= 0;
1043 struct perf_event
*event
;
1046 * If the PMU we're on supports per event exclude settings then we
1047 * don't need to do any of this logic. NB. This assumes no PMU has both
1048 * per event exclude and limited PMCs.
1050 if (ppmu
->flags
& PPMU_ARCH_207S
)
1058 for (i
= 0; i
< n
; ++i
) {
1059 if (cflags
[i
] & PPMU_LIMITED_PMC_OK
) {
1060 cflags
[i
] &= ~PPMU_LIMITED_PMC_REQD
;
1065 eu
= event
->attr
.exclude_user
;
1066 ek
= event
->attr
.exclude_kernel
;
1067 eh
= event
->attr
.exclude_hv
;
1069 } else if (event
->attr
.exclude_user
!= eu
||
1070 event
->attr
.exclude_kernel
!= ek
||
1071 event
->attr
.exclude_hv
!= eh
) {
1077 for (i
= 0; i
< n
; ++i
)
1078 if (cflags
[i
] & PPMU_LIMITED_PMC_OK
)
1079 cflags
[i
] |= PPMU_LIMITED_PMC_REQD
;
1084 static u64
check_and_compute_delta(u64 prev
, u64 val
)
1086 u64 delta
= (val
- prev
) & 0xfffffffful
;
1089 * POWER7 can roll back counter values, if the new value is smaller
1090 * than the previous value it will cause the delta and the counter to
1091 * have bogus values unless we rolled a counter over. If a coutner is
1092 * rolled back, it will be smaller, but within 256, which is the maximum
1093 * number of events to rollback at once. If we detect a rollback
1094 * return 0. This can lead to a small lack of precision in the
1097 if (prev
> val
&& (prev
- val
) < 256)
1103 static void power_pmu_read(struct perf_event
*event
)
1105 s64 val
, delta
, prev
;
1107 if (event
->hw
.state
& PERF_HES_STOPPED
)
1113 if (is_ebb_event(event
)) {
1114 val
= read_pmc(event
->hw
.idx
);
1115 local64_set(&event
->hw
.prev_count
, val
);
1120 * Performance monitor interrupts come even when interrupts
1121 * are soft-disabled, as long as interrupts are hard-enabled.
1122 * Therefore we treat them like NMIs.
1125 prev
= local64_read(&event
->hw
.prev_count
);
1127 val
= read_pmc(event
->hw
.idx
);
1128 delta
= check_and_compute_delta(prev
, val
);
1131 } while (local64_cmpxchg(&event
->hw
.prev_count
, prev
, val
) != prev
);
1133 local64_add(delta
, &event
->count
);
1136 * A number of places program the PMC with (0x80000000 - period_left).
1137 * We never want period_left to be less than 1 because we will program
1138 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1139 * roll around to 0 before taking an exception. We have seen this
1142 * To fix this, clamp the minimum value of period_left to 1.
1145 prev
= local64_read(&event
->hw
.period_left
);
1149 } while (local64_cmpxchg(&event
->hw
.period_left
, prev
, val
) != prev
);
1153 * On some machines, PMC5 and PMC6 can't be written, don't respect
1154 * the freeze conditions, and don't generate interrupts. This tells
1155 * us if `event' is using such a PMC.
1157 static int is_limited_pmc(int pmcnum
)
1159 return (ppmu
->flags
& PPMU_LIMITED_PMC5_6
)
1160 && (pmcnum
== 5 || pmcnum
== 6);
1163 static void freeze_limited_counters(struct cpu_hw_events
*cpuhw
,
1164 unsigned long pmc5
, unsigned long pmc6
)
1166 struct perf_event
*event
;
1167 u64 val
, prev
, delta
;
1170 for (i
= 0; i
< cpuhw
->n_limited
; ++i
) {
1171 event
= cpuhw
->limited_counter
[i
];
1174 val
= (event
->hw
.idx
== 5) ? pmc5
: pmc6
;
1175 prev
= local64_read(&event
->hw
.prev_count
);
1177 delta
= check_and_compute_delta(prev
, val
);
1179 local64_add(delta
, &event
->count
);
1183 static void thaw_limited_counters(struct cpu_hw_events
*cpuhw
,
1184 unsigned long pmc5
, unsigned long pmc6
)
1186 struct perf_event
*event
;
1190 for (i
= 0; i
< cpuhw
->n_limited
; ++i
) {
1191 event
= cpuhw
->limited_counter
[i
];
1192 event
->hw
.idx
= cpuhw
->limited_hwidx
[i
];
1193 val
= (event
->hw
.idx
== 5) ? pmc5
: pmc6
;
1194 prev
= local64_read(&event
->hw
.prev_count
);
1195 if (check_and_compute_delta(prev
, val
))
1196 local64_set(&event
->hw
.prev_count
, val
);
1197 perf_event_update_userpage(event
);
1202 * Since limited events don't respect the freeze conditions, we
1203 * have to read them immediately after freezing or unfreezing the
1204 * other events. We try to keep the values from the limited
1205 * events as consistent as possible by keeping the delay (in
1206 * cycles and instructions) between freezing/unfreezing and reading
1207 * the limited events as small and consistent as possible.
1208 * Therefore, if any limited events are in use, we read them
1209 * both, and always in the same order, to minimize variability,
1210 * and do it inside the same asm that writes MMCR0.
1212 static void write_mmcr0(struct cpu_hw_events
*cpuhw
, unsigned long mmcr0
)
1214 unsigned long pmc5
, pmc6
;
1216 if (!cpuhw
->n_limited
) {
1217 mtspr(SPRN_MMCR0
, mmcr0
);
1222 * Write MMCR0, then read PMC5 and PMC6 immediately.
1223 * To ensure we don't get a performance monitor interrupt
1224 * between writing MMCR0 and freezing/thawing the limited
1225 * events, we first write MMCR0 with the event overflow
1226 * interrupt enable bits turned off.
1228 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1229 : "=&r" (pmc5
), "=&r" (pmc6
)
1230 : "r" (mmcr0
& ~(MMCR0_PMC1CE
| MMCR0_PMCjCE
)),
1232 "i" (SPRN_PMC5
), "i" (SPRN_PMC6
));
1234 if (mmcr0
& MMCR0_FC
)
1235 freeze_limited_counters(cpuhw
, pmc5
, pmc6
);
1237 thaw_limited_counters(cpuhw
, pmc5
, pmc6
);
1240 * Write the full MMCR0 including the event overflow interrupt
1241 * enable bits, if necessary.
1243 if (mmcr0
& (MMCR0_PMC1CE
| MMCR0_PMCjCE
))
1244 mtspr(SPRN_MMCR0
, mmcr0
);
1248 * Disable all events to prevent PMU interrupts and to allow
1249 * events to be added or removed.
1251 static void power_pmu_disable(struct pmu
*pmu
)
1253 struct cpu_hw_events
*cpuhw
;
1254 unsigned long flags
, mmcr0
, val
, mmcra
;
1258 local_irq_save(flags
);
1259 cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1261 if (!cpuhw
->disabled
) {
1263 * Check if we ever enabled the PMU on this cpu.
1265 if (!cpuhw
->pmcs_enabled
) {
1267 cpuhw
->pmcs_enabled
= 1;
1271 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1273 val
= mmcr0
= mfspr(SPRN_MMCR0
);
1275 val
&= ~(MMCR0_EBE
| MMCR0_BHRBA
| MMCR0_PMCC
| MMCR0_PMAO
|
1277 /* Set mmcr0 PMCCEXT for p10 */
1278 if (ppmu
->flags
& PPMU_ARCH_31
)
1279 val
|= MMCR0_PMCCEXT
;
1282 * The barrier is to make sure the mtspr has been
1283 * executed and the PMU has frozen the events etc.
1286 write_mmcr0(cpuhw
, val
);
1290 val
= mmcra
= cpuhw
->mmcr
.mmcra
;
1293 * Disable instruction sampling if it was enabled
1295 if (cpuhw
->mmcr
.mmcra
& MMCRA_SAMPLE_ENABLE
)
1296 val
&= ~MMCRA_SAMPLE_ENABLE
;
1298 /* Disable BHRB via mmcra (BHRBRD) for p10 */
1299 if (ppmu
->flags
& PPMU_ARCH_31
)
1300 val
|= MMCRA_BHRB_DISABLE
;
1303 * Write SPRN_MMCRA if mmcra has either disabled
1304 * instruction sampling or BHRB.
1307 mtspr(SPRN_MMCRA
, mmcra
);
1312 cpuhw
->disabled
= 1;
1315 ebb_switch_out(mmcr0
);
1319 * These are readable by userspace, may contain kernel
1320 * addresses and are not switched by context switch, so clear
1321 * them now to avoid leaking anything to userspace in general
1322 * including to another process.
1324 if (ppmu
->flags
& PPMU_ARCH_207S
) {
1325 mtspr(SPRN_SDAR
, 0);
1326 mtspr(SPRN_SIAR
, 0);
1331 local_irq_restore(flags
);
1335 * Re-enable all events if disable == 0.
1336 * If we were previously disabled and events were added, then
1337 * put the new config on the PMU.
1339 static void power_pmu_enable(struct pmu
*pmu
)
1341 struct perf_event
*event
;
1342 struct cpu_hw_events
*cpuhw
;
1343 unsigned long flags
;
1345 unsigned long val
, mmcr0
;
1347 unsigned int hwc_index
[MAX_HWEVENTS
];
1354 local_irq_save(flags
);
1356 cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1357 if (!cpuhw
->disabled
)
1360 if (cpuhw
->n_events
== 0) {
1361 ppc_set_pmu_inuse(0);
1365 cpuhw
->disabled
= 0;
1368 * EBB requires an exclusive group and all events must have the EBB
1369 * flag set, or not set, so we can just check a single event. Also we
1370 * know we have at least one event.
1372 ebb
= is_ebb_event(cpuhw
->event
[0]);
1375 * If we didn't change anything, or only removed events,
1376 * no need to recalculate MMCR* settings and reset the PMCs.
1377 * Just reenable the PMU with the current MMCR* settings
1378 * (possibly updated for removal of events).
1380 if (!cpuhw
->n_added
) {
1381 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
.mmcra
& ~MMCRA_SAMPLE_ENABLE
);
1382 mtspr(SPRN_MMCR1
, cpuhw
->mmcr
.mmcr1
);
1383 if (ppmu
->flags
& PPMU_ARCH_31
)
1384 mtspr(SPRN_MMCR3
, cpuhw
->mmcr
.mmcr3
);
1389 * Clear all MMCR settings and recompute them for the new set of events.
1391 memset(&cpuhw
->mmcr
, 0, sizeof(cpuhw
->mmcr
));
1393 if (ppmu
->compute_mmcr(cpuhw
->events
, cpuhw
->n_events
, hwc_index
,
1394 &cpuhw
->mmcr
, cpuhw
->event
)) {
1395 /* shouldn't ever get here */
1396 printk(KERN_ERR
"oops compute_mmcr failed\n");
1400 if (!(ppmu
->flags
& PPMU_ARCH_207S
)) {
1402 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1403 * bits for the first event. We have already checked that all
1404 * events have the same value for these bits as the first event.
1406 event
= cpuhw
->event
[0];
1407 if (event
->attr
.exclude_user
)
1408 cpuhw
->mmcr
.mmcr0
|= MMCR0_FCP
;
1409 if (event
->attr
.exclude_kernel
)
1410 cpuhw
->mmcr
.mmcr0
|= freeze_events_kernel
;
1411 if (event
->attr
.exclude_hv
)
1412 cpuhw
->mmcr
.mmcr0
|= MMCR0_FCHV
;
1416 * Write the new configuration to MMCR* with the freeze
1417 * bit set and set the hardware events to their initial values.
1418 * Then unfreeze the events.
1420 ppc_set_pmu_inuse(1);
1421 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
.mmcra
& ~MMCRA_SAMPLE_ENABLE
);
1422 mtspr(SPRN_MMCR1
, cpuhw
->mmcr
.mmcr1
);
1423 mtspr(SPRN_MMCR0
, (cpuhw
->mmcr
.mmcr0
& ~(MMCR0_PMC1CE
| MMCR0_PMCjCE
))
1425 if (ppmu
->flags
& PPMU_ARCH_207S
)
1426 mtspr(SPRN_MMCR2
, cpuhw
->mmcr
.mmcr2
);
1428 if (ppmu
->flags
& PPMU_ARCH_31
)
1429 mtspr(SPRN_MMCR3
, cpuhw
->mmcr
.mmcr3
);
1432 * Read off any pre-existing events that need to move
1435 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
1436 event
= cpuhw
->event
[i
];
1437 if (event
->hw
.idx
&& event
->hw
.idx
!= hwc_index
[i
] + 1) {
1438 power_pmu_read(event
);
1439 write_pmc(event
->hw
.idx
, 0);
1445 * Initialize the PMCs for all the new and moved events.
1447 cpuhw
->n_limited
= n_lim
= 0;
1448 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
1449 event
= cpuhw
->event
[i
];
1452 idx
= hwc_index
[i
] + 1;
1453 if (is_limited_pmc(idx
)) {
1454 cpuhw
->limited_counter
[n_lim
] = event
;
1455 cpuhw
->limited_hwidx
[n_lim
] = idx
;
1461 val
= local64_read(&event
->hw
.prev_count
);
1464 if (event
->hw
.sample_period
) {
1465 left
= local64_read(&event
->hw
.period_left
);
1466 if (left
< 0x80000000L
)
1467 val
= 0x80000000L
- left
;
1469 local64_set(&event
->hw
.prev_count
, val
);
1472 event
->hw
.idx
= idx
;
1473 if (event
->hw
.state
& PERF_HES_STOPPED
)
1475 write_pmc(idx
, val
);
1477 perf_event_update_userpage(event
);
1479 cpuhw
->n_limited
= n_lim
;
1480 cpuhw
->mmcr
.mmcr0
|= MMCR0_PMXE
| MMCR0_FCECE
;
1483 pmao_restore_workaround(ebb
);
1485 mmcr0
= ebb_switch_in(ebb
, cpuhw
);
1488 if (cpuhw
->bhrb_users
)
1489 ppmu
->config_bhrb(cpuhw
->bhrb_filter
);
1491 write_mmcr0(cpuhw
, mmcr0
);
1494 * Enable instruction sampling if necessary
1496 if (cpuhw
->mmcr
.mmcra
& MMCRA_SAMPLE_ENABLE
) {
1498 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
.mmcra
);
1503 local_irq_restore(flags
);
1506 static int collect_events(struct perf_event
*group
, int max_count
,
1507 struct perf_event
*ctrs
[], u64
*events
,
1508 unsigned int *flags
)
1511 struct perf_event
*event
;
1513 if (group
->pmu
->task_ctx_nr
== perf_hw_context
) {
1517 flags
[n
] = group
->hw
.event_base
;
1518 events
[n
++] = group
->hw
.config
;
1520 for_each_sibling_event(event
, group
) {
1521 if (event
->pmu
->task_ctx_nr
== perf_hw_context
&&
1522 event
->state
!= PERF_EVENT_STATE_OFF
) {
1526 flags
[n
] = event
->hw
.event_base
;
1527 events
[n
++] = event
->hw
.config
;
1534 * Add an event to the PMU.
1535 * If all events are not already frozen, then we disable and
1536 * re-enable the PMU in order to get hw_perf_enable to do the
1537 * actual work of reconfiguring the PMU.
1539 static int power_pmu_add(struct perf_event
*event
, int ef_flags
)
1541 struct cpu_hw_events
*cpuhw
;
1542 unsigned long flags
;
1546 local_irq_save(flags
);
1547 perf_pmu_disable(event
->pmu
);
1550 * Add the event to the list (if there is room)
1551 * and check whether the total set is still feasible.
1553 cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1554 n0
= cpuhw
->n_events
;
1555 if (n0
>= ppmu
->n_counter
)
1557 cpuhw
->event
[n0
] = event
;
1558 cpuhw
->events
[n0
] = event
->hw
.config
;
1559 cpuhw
->flags
[n0
] = event
->hw
.event_base
;
1562 * This event may have been disabled/stopped in record_and_restart()
1563 * because we exceeded the ->event_limit. If re-starting the event,
1564 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1565 * notification is re-enabled.
1567 if (!(ef_flags
& PERF_EF_START
))
1568 event
->hw
.state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
1570 event
->hw
.state
= 0;
1573 * If group events scheduling transaction was started,
1574 * skip the schedulability test here, it will be performed
1575 * at commit time(->commit_txn) as a whole
1577 if (cpuhw
->txn_flags
& PERF_PMU_TXN_ADD
)
1580 if (check_excludes(cpuhw
->event
, cpuhw
->flags
, n0
, 1))
1582 if (power_check_constraints(cpuhw
, cpuhw
->events
, cpuhw
->flags
, n0
+ 1))
1584 event
->hw
.config
= cpuhw
->events
[n0
];
1587 ebb_event_add(event
);
1594 if (has_branch_stack(event
)) {
1595 u64 bhrb_filter
= -1;
1597 if (ppmu
->bhrb_filter_map
)
1598 bhrb_filter
= ppmu
->bhrb_filter_map(
1599 event
->attr
.branch_sample_type
);
1601 if (bhrb_filter
!= -1) {
1602 cpuhw
->bhrb_filter
= bhrb_filter
;
1603 power_pmu_bhrb_enable(event
);
1607 perf_pmu_enable(event
->pmu
);
1608 local_irq_restore(flags
);
1613 * Remove an event from the PMU.
1615 static void power_pmu_del(struct perf_event
*event
, int ef_flags
)
1617 struct cpu_hw_events
*cpuhw
;
1619 unsigned long flags
;
1621 local_irq_save(flags
);
1622 perf_pmu_disable(event
->pmu
);
1624 power_pmu_read(event
);
1626 cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1627 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
1628 if (event
== cpuhw
->event
[i
]) {
1629 while (++i
< cpuhw
->n_events
) {
1630 cpuhw
->event
[i
-1] = cpuhw
->event
[i
];
1631 cpuhw
->events
[i
-1] = cpuhw
->events
[i
];
1632 cpuhw
->flags
[i
-1] = cpuhw
->flags
[i
];
1635 ppmu
->disable_pmc(event
->hw
.idx
- 1, &cpuhw
->mmcr
);
1636 if (event
->hw
.idx
) {
1637 write_pmc(event
->hw
.idx
, 0);
1640 perf_event_update_userpage(event
);
1644 for (i
= 0; i
< cpuhw
->n_limited
; ++i
)
1645 if (event
== cpuhw
->limited_counter
[i
])
1647 if (i
< cpuhw
->n_limited
) {
1648 while (++i
< cpuhw
->n_limited
) {
1649 cpuhw
->limited_counter
[i
-1] = cpuhw
->limited_counter
[i
];
1650 cpuhw
->limited_hwidx
[i
-1] = cpuhw
->limited_hwidx
[i
];
1654 if (cpuhw
->n_events
== 0) {
1655 /* disable exceptions if no events are running */
1656 cpuhw
->mmcr
.mmcr0
&= ~(MMCR0_PMXE
| MMCR0_FCECE
);
1659 if (has_branch_stack(event
))
1660 power_pmu_bhrb_disable(event
);
1662 perf_pmu_enable(event
->pmu
);
1663 local_irq_restore(flags
);
1667 * POWER-PMU does not support disabling individual counters, hence
1668 * program their cycle counter to their max value and ignore the interrupts.
1671 static void power_pmu_start(struct perf_event
*event
, int ef_flags
)
1673 unsigned long flags
;
1677 if (!event
->hw
.idx
|| !event
->hw
.sample_period
)
1680 if (!(event
->hw
.state
& PERF_HES_STOPPED
))
1683 if (ef_flags
& PERF_EF_RELOAD
)
1684 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
1686 local_irq_save(flags
);
1687 perf_pmu_disable(event
->pmu
);
1689 event
->hw
.state
= 0;
1690 left
= local64_read(&event
->hw
.period_left
);
1693 if (left
< 0x80000000L
)
1694 val
= 0x80000000L
- left
;
1696 write_pmc(event
->hw
.idx
, val
);
1698 perf_event_update_userpage(event
);
1699 perf_pmu_enable(event
->pmu
);
1700 local_irq_restore(flags
);
1703 static void power_pmu_stop(struct perf_event
*event
, int ef_flags
)
1705 unsigned long flags
;
1707 if (!event
->hw
.idx
|| !event
->hw
.sample_period
)
1710 if (event
->hw
.state
& PERF_HES_STOPPED
)
1713 local_irq_save(flags
);
1714 perf_pmu_disable(event
->pmu
);
1716 power_pmu_read(event
);
1717 event
->hw
.state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
1718 write_pmc(event
->hw
.idx
, 0);
1720 perf_event_update_userpage(event
);
1721 perf_pmu_enable(event
->pmu
);
1722 local_irq_restore(flags
);
1726 * Start group events scheduling transaction
1727 * Set the flag to make pmu::enable() not perform the
1728 * schedulability test, it will be performed at commit time
1730 * We only support PERF_PMU_TXN_ADD transactions. Save the
1731 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1734 static void power_pmu_start_txn(struct pmu
*pmu
, unsigned int txn_flags
)
1736 struct cpu_hw_events
*cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1738 WARN_ON_ONCE(cpuhw
->txn_flags
); /* txn already in flight */
1740 cpuhw
->txn_flags
= txn_flags
;
1741 if (txn_flags
& ~PERF_PMU_TXN_ADD
)
1744 perf_pmu_disable(pmu
);
1745 cpuhw
->n_txn_start
= cpuhw
->n_events
;
1749 * Stop group events scheduling transaction
1750 * Clear the flag and pmu::enable() will perform the
1751 * schedulability test.
1753 static void power_pmu_cancel_txn(struct pmu
*pmu
)
1755 struct cpu_hw_events
*cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1756 unsigned int txn_flags
;
1758 WARN_ON_ONCE(!cpuhw
->txn_flags
); /* no txn in flight */
1760 txn_flags
= cpuhw
->txn_flags
;
1761 cpuhw
->txn_flags
= 0;
1762 if (txn_flags
& ~PERF_PMU_TXN_ADD
)
1765 perf_pmu_enable(pmu
);
1769 * Commit group events scheduling transaction
1770 * Perform the group schedulability test as a whole
1771 * Return 0 if success
1773 static int power_pmu_commit_txn(struct pmu
*pmu
)
1775 struct cpu_hw_events
*cpuhw
;
1781 cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1782 WARN_ON_ONCE(!cpuhw
->txn_flags
); /* no txn in flight */
1784 if (cpuhw
->txn_flags
& ~PERF_PMU_TXN_ADD
) {
1785 cpuhw
->txn_flags
= 0;
1789 n
= cpuhw
->n_events
;
1790 if (check_excludes(cpuhw
->event
, cpuhw
->flags
, 0, n
))
1792 i
= power_check_constraints(cpuhw
, cpuhw
->events
, cpuhw
->flags
, n
);
1796 for (i
= cpuhw
->n_txn_start
; i
< n
; ++i
)
1797 cpuhw
->event
[i
]->hw
.config
= cpuhw
->events
[i
];
1799 cpuhw
->txn_flags
= 0;
1800 perf_pmu_enable(pmu
);
1805 * Return 1 if we might be able to put event on a limited PMC,
1807 * An event can only go on a limited PMC if it counts something
1808 * that a limited PMC can count, doesn't require interrupts, and
1809 * doesn't exclude any processor mode.
1811 static int can_go_on_limited_pmc(struct perf_event
*event
, u64 ev
,
1815 u64 alt
[MAX_EVENT_ALTERNATIVES
];
1817 if (event
->attr
.exclude_user
1818 || event
->attr
.exclude_kernel
1819 || event
->attr
.exclude_hv
1820 || event
->attr
.sample_period
)
1823 if (ppmu
->limited_pmc_event(ev
))
1827 * The requested event_id isn't on a limited PMC already;
1828 * see if any alternative code goes on a limited PMC.
1830 if (!ppmu
->get_alternatives
)
1833 flags
|= PPMU_LIMITED_PMC_OK
| PPMU_LIMITED_PMC_REQD
;
1834 n
= ppmu
->get_alternatives(ev
, flags
, alt
);
1840 * Find an alternative event_id that goes on a normal PMC, if possible,
1841 * and return the event_id code, or 0 if there is no such alternative.
1842 * (Note: event_id code 0 is "don't count" on all machines.)
1844 static u64
normal_pmc_alternative(u64 ev
, unsigned long flags
)
1846 u64 alt
[MAX_EVENT_ALTERNATIVES
];
1849 flags
&= ~(PPMU_LIMITED_PMC_OK
| PPMU_LIMITED_PMC_REQD
);
1850 n
= ppmu
->get_alternatives(ev
, flags
, alt
);
1856 /* Number of perf_events counting hardware events */
1857 static atomic_t num_events
;
1858 /* Used to avoid races in calling reserve/release_pmc_hardware */
1859 static DEFINE_MUTEX(pmc_reserve_mutex
);
1862 * Release the PMU if this is the last perf_event.
1864 static void hw_perf_event_destroy(struct perf_event
*event
)
1866 if (!atomic_add_unless(&num_events
, -1, 1)) {
1867 mutex_lock(&pmc_reserve_mutex
);
1868 if (atomic_dec_return(&num_events
) == 0)
1869 release_pmc_hardware();
1870 mutex_unlock(&pmc_reserve_mutex
);
1875 * Translate a generic cache event_id config to a raw event_id code.
1877 static int hw_perf_cache_event(u64 config
, u64
*eventp
)
1879 unsigned long type
, op
, result
;
1882 if (!ppmu
->cache_events
)
1886 type
= config
& 0xff;
1887 op
= (config
>> 8) & 0xff;
1888 result
= (config
>> 16) & 0xff;
1890 if (type
>= PERF_COUNT_HW_CACHE_MAX
||
1891 op
>= PERF_COUNT_HW_CACHE_OP_MAX
||
1892 result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
1895 ev
= (*ppmu
->cache_events
)[type
][op
][result
];
1904 static bool is_event_blacklisted(u64 ev
)
1908 for (i
=0; i
< ppmu
->n_blacklist_ev
; i
++) {
1909 if (ppmu
->blacklist_ev
[i
] == ev
)
1916 static int power_pmu_event_init(struct perf_event
*event
)
1919 unsigned long flags
, irq_flags
;
1920 struct perf_event
*ctrs
[MAX_HWEVENTS
];
1921 u64 events
[MAX_HWEVENTS
];
1922 unsigned int cflags
[MAX_HWEVENTS
];
1925 struct cpu_hw_events
*cpuhw
;
1930 if (has_branch_stack(event
)) {
1931 /* PMU has BHRB enabled */
1932 if (!(ppmu
->flags
& PPMU_ARCH_207S
))
1936 switch (event
->attr
.type
) {
1937 case PERF_TYPE_HARDWARE
:
1938 ev
= event
->attr
.config
;
1939 if (ev
>= ppmu
->n_generic
|| ppmu
->generic_events
[ev
] == 0)
1942 if (ppmu
->blacklist_ev
&& is_event_blacklisted(ev
))
1944 ev
= ppmu
->generic_events
[ev
];
1946 case PERF_TYPE_HW_CACHE
:
1947 err
= hw_perf_cache_event(event
->attr
.config
, &ev
);
1951 if (ppmu
->blacklist_ev
&& is_event_blacklisted(ev
))
1955 ev
= event
->attr
.config
;
1957 if (ppmu
->blacklist_ev
&& is_event_blacklisted(ev
))
1964 event
->hw
.config_base
= ev
;
1968 * If we are not running on a hypervisor, force the
1969 * exclude_hv bit to 0 so that we don't care what
1970 * the user set it to.
1972 if (!firmware_has_feature(FW_FEATURE_LPAR
))
1973 event
->attr
.exclude_hv
= 0;
1976 * If this is a per-task event, then we can use
1977 * PM_RUN_* events interchangeably with their non RUN_*
1978 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1979 * XXX we should check if the task is an idle task.
1982 if (event
->attach_state
& PERF_ATTACH_TASK
)
1983 flags
|= PPMU_ONLY_COUNT_RUN
;
1986 * If this machine has limited events, check whether this
1987 * event_id could go on a limited event.
1989 if (ppmu
->flags
& PPMU_LIMITED_PMC5_6
) {
1990 if (can_go_on_limited_pmc(event
, ev
, flags
)) {
1991 flags
|= PPMU_LIMITED_PMC_OK
;
1992 } else if (ppmu
->limited_pmc_event(ev
)) {
1994 * The requested event_id is on a limited PMC,
1995 * but we can't use a limited PMC; see if any
1996 * alternative goes on a normal PMC.
1998 ev
= normal_pmc_alternative(ev
, flags
);
2004 /* Extra checks for EBB */
2005 err
= ebb_event_check(event
);
2010 * If this is in a group, check if it can go on with all the
2011 * other hardware events in the group. We assume the event
2012 * hasn't been linked into its leader's sibling list at this point.
2015 if (event
->group_leader
!= event
) {
2016 n
= collect_events(event
->group_leader
, ppmu
->n_counter
- 1,
2017 ctrs
, events
, cflags
);
2024 if (check_excludes(ctrs
, cflags
, n
, 1))
2027 local_irq_save(irq_flags
);
2028 cpuhw
= this_cpu_ptr(&cpu_hw_events
);
2030 err
= power_check_constraints(cpuhw
, events
, cflags
, n
+ 1);
2032 if (has_branch_stack(event
)) {
2033 u64 bhrb_filter
= -1;
2035 if (ppmu
->bhrb_filter_map
)
2036 bhrb_filter
= ppmu
->bhrb_filter_map(
2037 event
->attr
.branch_sample_type
);
2039 if (bhrb_filter
== -1) {
2040 local_irq_restore(irq_flags
);
2043 cpuhw
->bhrb_filter
= bhrb_filter
;
2046 local_irq_restore(irq_flags
);
2050 event
->hw
.config
= events
[n
];
2051 event
->hw
.event_base
= cflags
[n
];
2052 event
->hw
.last_period
= event
->hw
.sample_period
;
2053 local64_set(&event
->hw
.period_left
, event
->hw
.last_period
);
2056 * For EBB events we just context switch the PMC value, we don't do any
2057 * of the sample_period logic. We use hw.prev_count for this.
2059 if (is_ebb_event(event
))
2060 local64_set(&event
->hw
.prev_count
, 0);
2063 * See if we need to reserve the PMU.
2064 * If no events are currently in use, then we have to take a
2065 * mutex to ensure that we don't race with another task doing
2066 * reserve_pmc_hardware or release_pmc_hardware.
2069 if (!atomic_inc_not_zero(&num_events
)) {
2070 mutex_lock(&pmc_reserve_mutex
);
2071 if (atomic_read(&num_events
) == 0 &&
2072 reserve_pmc_hardware(perf_event_interrupt
))
2075 atomic_inc(&num_events
);
2076 mutex_unlock(&pmc_reserve_mutex
);
2078 event
->destroy
= hw_perf_event_destroy
;
2083 static int power_pmu_event_idx(struct perf_event
*event
)
2085 return event
->hw
.idx
;
2088 ssize_t
power_events_sysfs_show(struct device
*dev
,
2089 struct device_attribute
*attr
, char *page
)
2091 struct perf_pmu_events_attr
*pmu_attr
;
2093 pmu_attr
= container_of(attr
, struct perf_pmu_events_attr
, attr
);
2095 return sprintf(page
, "event=0x%02llx\n", pmu_attr
->id
);
2098 static struct pmu power_pmu
= {
2099 .pmu_enable
= power_pmu_enable
,
2100 .pmu_disable
= power_pmu_disable
,
2101 .event_init
= power_pmu_event_init
,
2102 .add
= power_pmu_add
,
2103 .del
= power_pmu_del
,
2104 .start
= power_pmu_start
,
2105 .stop
= power_pmu_stop
,
2106 .read
= power_pmu_read
,
2107 .start_txn
= power_pmu_start_txn
,
2108 .cancel_txn
= power_pmu_cancel_txn
,
2109 .commit_txn
= power_pmu_commit_txn
,
2110 .event_idx
= power_pmu_event_idx
,
2111 .sched_task
= power_pmu_sched_task
,
2114 #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \
2115 PERF_SAMPLE_PHYS_ADDR | \
2116 PERF_SAMPLE_DATA_PAGE_SIZE)
2118 * A counter has overflowed; update its count and record
2119 * things if requested. Note that interrupts are hard-disabled
2120 * here so there is no possibility of being interrupted.
2122 static void record_and_restart(struct perf_event
*event
, unsigned long val
,
2123 struct pt_regs
*regs
)
2125 u64 period
= event
->hw
.sample_period
;
2126 s64 prev
, delta
, left
;
2129 if (event
->hw
.state
& PERF_HES_STOPPED
) {
2130 write_pmc(event
->hw
.idx
, 0);
2134 /* we don't have to worry about interrupts here */
2135 prev
= local64_read(&event
->hw
.prev_count
);
2136 delta
= check_and_compute_delta(prev
, val
);
2137 local64_add(delta
, &event
->count
);
2140 * See if the total period for this event has expired,
2141 * and update for the next period.
2144 left
= local64_read(&event
->hw
.period_left
) - delta
;
2152 record
= siar_valid(regs
);
2153 event
->hw
.last_period
= event
->hw
.sample_period
;
2155 if (left
< 0x80000000LL
)
2156 val
= 0x80000000LL
- left
;
2159 write_pmc(event
->hw
.idx
, val
);
2160 local64_set(&event
->hw
.prev_count
, val
);
2161 local64_set(&event
->hw
.period_left
, left
);
2162 perf_event_update_userpage(event
);
2165 * Due to hardware limitation, sometimes SIAR could sample a kernel
2166 * address even when freeze on supervisor state (kernel) is set in
2167 * MMCR2. Check attr.exclude_kernel and address to drop the sample in
2170 if (event
->attr
.exclude_kernel
&& record
)
2171 if (is_kernel_addr(mfspr(SPRN_SIAR
)))
2175 * Finally record data if requested.
2178 struct perf_sample_data data
;
2180 perf_sample_data_init(&data
, ~0ULL, event
->hw
.last_period
);
2182 if (event
->attr
.sample_type
& PERF_SAMPLE_ADDR_TYPE
)
2183 perf_get_data_addr(event
, regs
, &data
.addr
);
2185 if (event
->attr
.sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
2186 struct cpu_hw_events
*cpuhw
;
2187 cpuhw
= this_cpu_ptr(&cpu_hw_events
);
2188 power_pmu_bhrb_read(event
, cpuhw
);
2189 data
.br_stack
= &cpuhw
->bhrb_stack
;
2192 if (event
->attr
.sample_type
& PERF_SAMPLE_DATA_SRC
&&
2193 ppmu
->get_mem_data_src
)
2194 ppmu
->get_mem_data_src(&data
.data_src
, ppmu
->flags
, regs
);
2196 if (event
->attr
.sample_type
& PERF_SAMPLE_WEIGHT
&&
2197 ppmu
->get_mem_weight
)
2198 ppmu
->get_mem_weight(&data
.weight
);
2200 if (perf_event_overflow(event
, &data
, regs
))
2201 power_pmu_stop(event
, 0);
2202 } else if (period
) {
2203 /* Account for interrupt in case of invalid SIAR */
2204 if (perf_event_account_interrupt(event
))
2205 power_pmu_stop(event
, 0);
2210 * Called from generic code to get the misc flags (i.e. processor mode)
2213 unsigned long perf_misc_flags(struct pt_regs
*regs
)
2215 u32 flags
= perf_get_misc_flags(regs
);
2219 return user_mode(regs
) ? PERF_RECORD_MISC_USER
:
2220 PERF_RECORD_MISC_KERNEL
;
2224 * Called from generic code to get the instruction pointer
2227 unsigned long perf_instruction_pointer(struct pt_regs
*regs
)
2229 bool use_siar
= regs_use_siar(regs
);
2230 unsigned long siar
= mfspr(SPRN_SIAR
);
2232 if (ppmu
->flags
& PPMU_P10_DD1
) {
2237 } else if (use_siar
&& siar_valid(regs
))
2238 return mfspr(SPRN_SIAR
) + perf_ip_adjust(regs
);
2240 return 0; // no valid instruction pointer
2245 static bool pmc_overflow_power7(unsigned long val
)
2248 * Events on POWER7 can roll back if a speculative event doesn't
2249 * eventually complete. Unfortunately in some rare cases they will
2250 * raise a performance monitor exception. We need to catch this to
2251 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2252 * cycles from overflow.
2254 * We only do this if the first pass fails to find any overflowing
2255 * PMCs because a user might set a period of less than 256 and we
2256 * don't want to mistakenly reset them.
2258 if ((0x80000000 - val
) <= 256)
2264 static bool pmc_overflow(unsigned long val
)
2273 * Performance monitor interrupt stuff
2275 static void __perf_event_interrupt(struct pt_regs
*regs
)
2278 struct cpu_hw_events
*cpuhw
= this_cpu_ptr(&cpu_hw_events
);
2279 struct perf_event
*event
;
2280 unsigned long val
[8];
2284 if (cpuhw
->n_limited
)
2285 freeze_limited_counters(cpuhw
, mfspr(SPRN_PMC5
),
2288 perf_read_regs(regs
);
2291 * If perf interrupts hit in a local_irq_disable (soft-masked) region,
2292 * we consider them as NMIs. This is required to prevent hash faults on
2293 * user addresses when reading callchains. See the NMI test in
2296 nmi
= perf_intr_is_nmi(regs
);
2302 /* Read all the PMCs since we'll need them a bunch of times */
2303 for (i
= 0; i
< ppmu
->n_counter
; ++i
)
2304 val
[i
] = read_pmc(i
+ 1);
2306 /* Try to find what caused the IRQ */
2308 for (i
= 0; i
< ppmu
->n_counter
; ++i
) {
2309 if (!pmc_overflow(val
[i
]))
2311 if (is_limited_pmc(i
+ 1))
2312 continue; /* these won't generate IRQs */
2314 * We've found one that's overflowed. For active
2315 * counters we need to log this. For inactive
2316 * counters, we need to reset it anyway
2320 for (j
= 0; j
< cpuhw
->n_events
; ++j
) {
2321 event
= cpuhw
->event
[j
];
2322 if (event
->hw
.idx
== (i
+ 1)) {
2324 record_and_restart(event
, val
[i
], regs
);
2329 /* reset non active counters that have overflowed */
2330 write_pmc(i
+ 1, 0);
2332 if (!found
&& pvr_version_is(PVR_POWER7
)) {
2333 /* check active counters for special buggy p7 overflow */
2334 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
2335 event
= cpuhw
->event
[i
];
2336 if (!event
->hw
.idx
|| is_limited_pmc(event
->hw
.idx
))
2338 if (pmc_overflow_power7(val
[event
->hw
.idx
- 1])) {
2339 /* event has overflowed in a buggy way*/
2341 record_and_restart(event
,
2342 val
[event
->hw
.idx
- 1],
2347 if (!found
&& !nmi
&& printk_ratelimit())
2348 printk(KERN_WARNING
"Can't find PMC that caused IRQ\n");
2351 * Reset MMCR0 to its normal value. This will set PMXE and
2352 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2353 * and thus allow interrupts to occur again.
2354 * XXX might want to use MSR.PM to keep the events frozen until
2355 * we get back out of this interrupt.
2357 write_mmcr0(cpuhw
, cpuhw
->mmcr
.mmcr0
);
2365 static void perf_event_interrupt(struct pt_regs
*regs
)
2367 u64 start_clock
= sched_clock();
2369 __perf_event_interrupt(regs
);
2370 perf_sample_event_took(sched_clock() - start_clock
);
2373 static int power_pmu_prepare_cpu(unsigned int cpu
)
2375 struct cpu_hw_events
*cpuhw
= &per_cpu(cpu_hw_events
, cpu
);
2378 memset(cpuhw
, 0, sizeof(*cpuhw
));
2379 cpuhw
->mmcr
.mmcr0
= MMCR0_FC
;
2384 int register_power_pmu(struct power_pmu
*pmu
)
2387 return -EBUSY
; /* something's already registered */
2390 pr_info("%s performance monitor hardware support registered\n",
2393 power_pmu
.attr_groups
= ppmu
->attr_groups
;
2394 power_pmu
.capabilities
|= (ppmu
->capabilities
& PERF_PMU_CAP_EXTENDED_REGS
);
2398 * Use FCHV to ignore kernel events if MSR.HV is set.
2400 if (mfmsr() & MSR_HV
)
2401 freeze_events_kernel
= MMCR0_FCHV
;
2402 #endif /* CONFIG_PPC64 */
2404 perf_pmu_register(&power_pmu
, "cpu", PERF_TYPE_RAW
);
2405 cpuhp_setup_state(CPUHP_PERF_POWER
, "perf/powerpc:prepare",
2406 power_pmu_prepare_cpu
, NULL
);
2411 static int __init
init_ppc64_pmu(void)
2413 /* run through all the pmu drivers one at a time */
2414 if (!init_power5_pmu())
2416 else if (!init_power5p_pmu())
2418 else if (!init_power6_pmu())
2420 else if (!init_power7_pmu())
2422 else if (!init_power8_pmu())
2424 else if (!init_power9_pmu())
2426 else if (!init_power10_pmu())
2428 else if (!init_ppc970_pmu())
2431 return init_generic_compat_pmu();
2433 early_initcall(init_ppc64_pmu
);