WIP FPC-III support
[linux/fpc-iii.git] / arch / x86 / net / bpf_jit_comp32.c
blob96fde03aa9877a68f978cbef19b35a222baef633
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Just-In-Time compiler for eBPF filters on IA32 (32bit x86)
5 * Author: Wang YanQing (udknight@gmail.com)
6 * The code based on code and ideas from:
7 * Eric Dumazet (eric.dumazet@gmail.com)
8 * and from:
9 * Shubham Bansal <illusionist.neo@gmail.com>
12 #include <linux/netdevice.h>
13 #include <linux/filter.h>
14 #include <linux/if_vlan.h>
15 #include <asm/cacheflush.h>
16 #include <asm/set_memory.h>
17 #include <asm/nospec-branch.h>
18 #include <linux/bpf.h>
21 * eBPF prog stack layout:
23 * high
24 * original ESP => +-----+
25 * | | callee saved registers
26 * +-----+
27 * | ... | eBPF JIT scratch space
28 * BPF_FP,IA32_EBP => +-----+
29 * | ... | eBPF prog stack
30 * +-----+
31 * |RSVD | JIT scratchpad
32 * current ESP => +-----+
33 * | |
34 * | ... | Function call stack
35 * | |
36 * +-----+
37 * low
39 * The callee saved registers:
41 * high
42 * original ESP => +------------------+ \
43 * | ebp | |
44 * current EBP => +------------------+ } callee saved registers
45 * | ebx,esi,edi | |
46 * +------------------+ /
47 * low
50 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
52 if (len == 1)
53 *ptr = bytes;
54 else if (len == 2)
55 *(u16 *)ptr = bytes;
56 else {
57 *(u32 *)ptr = bytes;
58 barrier();
60 return ptr + len;
63 #define EMIT(bytes, len) \
64 do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
66 #define EMIT1(b1) EMIT(b1, 1)
67 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
68 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
69 #define EMIT4(b1, b2, b3, b4) \
70 EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
72 #define EMIT1_off32(b1, off) \
73 do { EMIT1(b1); EMIT(off, 4); } while (0)
74 #define EMIT2_off32(b1, b2, off) \
75 do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
76 #define EMIT3_off32(b1, b2, b3, off) \
77 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
78 #define EMIT4_off32(b1, b2, b3, b4, off) \
79 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
81 #define jmp_label(label, jmp_insn_len) (label - cnt - jmp_insn_len)
83 static bool is_imm8(int value)
85 return value <= 127 && value >= -128;
88 static bool is_simm32(s64 value)
90 return value == (s64) (s32) value;
93 #define STACK_OFFSET(k) (k)
94 #define TCALL_CNT (MAX_BPF_JIT_REG + 0) /* Tail Call Count */
96 #define IA32_EAX (0x0)
97 #define IA32_EBX (0x3)
98 #define IA32_ECX (0x1)
99 #define IA32_EDX (0x2)
100 #define IA32_ESI (0x6)
101 #define IA32_EDI (0x7)
102 #define IA32_EBP (0x5)
103 #define IA32_ESP (0x4)
106 * List of x86 cond jumps opcodes (. + s8)
107 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
109 #define IA32_JB 0x72
110 #define IA32_JAE 0x73
111 #define IA32_JE 0x74
112 #define IA32_JNE 0x75
113 #define IA32_JBE 0x76
114 #define IA32_JA 0x77
115 #define IA32_JL 0x7C
116 #define IA32_JGE 0x7D
117 #define IA32_JLE 0x7E
118 #define IA32_JG 0x7F
120 #define COND_JMP_OPCODE_INVALID (0xFF)
123 * Map eBPF registers to IA32 32bit registers or stack scratch space.
125 * 1. All the registers, R0-R10, are mapped to scratch space on stack.
126 * 2. We need two 64 bit temp registers to do complex operations on eBPF
127 * registers.
128 * 3. For performance reason, the BPF_REG_AX for blinding constant, is
129 * mapped to real hardware register pair, IA32_ESI and IA32_EDI.
131 * As the eBPF registers are all 64 bit registers and IA32 has only 32 bit
132 * registers, we have to map each eBPF registers with two IA32 32 bit regs
133 * or scratch memory space and we have to build eBPF 64 bit register from those.
135 * We use IA32_EAX, IA32_EDX, IA32_ECX, IA32_EBX as temporary registers.
137 static const u8 bpf2ia32[][2] = {
138 /* Return value from in-kernel function, and exit value from eBPF */
139 [BPF_REG_0] = {STACK_OFFSET(0), STACK_OFFSET(4)},
141 /* The arguments from eBPF program to in-kernel function */
142 /* Stored on stack scratch space */
143 [BPF_REG_1] = {STACK_OFFSET(8), STACK_OFFSET(12)},
144 [BPF_REG_2] = {STACK_OFFSET(16), STACK_OFFSET(20)},
145 [BPF_REG_3] = {STACK_OFFSET(24), STACK_OFFSET(28)},
146 [BPF_REG_4] = {STACK_OFFSET(32), STACK_OFFSET(36)},
147 [BPF_REG_5] = {STACK_OFFSET(40), STACK_OFFSET(44)},
149 /* Callee saved registers that in-kernel function will preserve */
150 /* Stored on stack scratch space */
151 [BPF_REG_6] = {STACK_OFFSET(48), STACK_OFFSET(52)},
152 [BPF_REG_7] = {STACK_OFFSET(56), STACK_OFFSET(60)},
153 [BPF_REG_8] = {STACK_OFFSET(64), STACK_OFFSET(68)},
154 [BPF_REG_9] = {STACK_OFFSET(72), STACK_OFFSET(76)},
156 /* Read only Frame Pointer to access Stack */
157 [BPF_REG_FP] = {STACK_OFFSET(80), STACK_OFFSET(84)},
159 /* Temporary register for blinding constants. */
160 [BPF_REG_AX] = {IA32_ESI, IA32_EDI},
162 /* Tail call count. Stored on stack scratch space. */
163 [TCALL_CNT] = {STACK_OFFSET(88), STACK_OFFSET(92)},
166 #define dst_lo dst[0]
167 #define dst_hi dst[1]
168 #define src_lo src[0]
169 #define src_hi src[1]
171 #define STACK_ALIGNMENT 8
173 * Stack space for BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4,
174 * BPF_REG_5, BPF_REG_6, BPF_REG_7, BPF_REG_8, BPF_REG_9,
175 * BPF_REG_FP, BPF_REG_AX and Tail call counts.
177 #define SCRATCH_SIZE 96
179 /* Total stack size used in JITed code */
180 #define _STACK_SIZE (stack_depth + SCRATCH_SIZE)
182 #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
184 /* Get the offset of eBPF REGISTERs stored on scratch space. */
185 #define STACK_VAR(off) (off)
187 /* Encode 'dst_reg' register into IA32 opcode 'byte' */
188 static u8 add_1reg(u8 byte, u32 dst_reg)
190 return byte + dst_reg;
193 /* Encode 'dst_reg' and 'src_reg' registers into IA32 opcode 'byte' */
194 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
196 return byte + dst_reg + (src_reg << 3);
199 static void jit_fill_hole(void *area, unsigned int size)
201 /* Fill whole space with int3 instructions */
202 memset(area, 0xcc, size);
205 static inline void emit_ia32_mov_i(const u8 dst, const u32 val, bool dstk,
206 u8 **pprog)
208 u8 *prog = *pprog;
209 int cnt = 0;
211 if (dstk) {
212 if (val == 0) {
213 /* xor eax,eax */
214 EMIT2(0x33, add_2reg(0xC0, IA32_EAX, IA32_EAX));
215 /* mov dword ptr [ebp+off],eax */
216 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
217 STACK_VAR(dst));
218 } else {
219 EMIT3_off32(0xC7, add_1reg(0x40, IA32_EBP),
220 STACK_VAR(dst), val);
222 } else {
223 if (val == 0)
224 EMIT2(0x33, add_2reg(0xC0, dst, dst));
225 else
226 EMIT2_off32(0xC7, add_1reg(0xC0, dst),
227 val);
229 *pprog = prog;
232 /* dst = imm (4 bytes)*/
233 static inline void emit_ia32_mov_r(const u8 dst, const u8 src, bool dstk,
234 bool sstk, u8 **pprog)
236 u8 *prog = *pprog;
237 int cnt = 0;
238 u8 sreg = sstk ? IA32_EAX : src;
240 if (sstk)
241 /* mov eax,dword ptr [ebp+off] */
242 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(src));
243 if (dstk)
244 /* mov dword ptr [ebp+off],eax */
245 EMIT3(0x89, add_2reg(0x40, IA32_EBP, sreg), STACK_VAR(dst));
246 else
247 /* mov dst,sreg */
248 EMIT2(0x89, add_2reg(0xC0, dst, sreg));
250 *pprog = prog;
253 /* dst = src */
254 static inline void emit_ia32_mov_r64(const bool is64, const u8 dst[],
255 const u8 src[], bool dstk,
256 bool sstk, u8 **pprog,
257 const struct bpf_prog_aux *aux)
259 emit_ia32_mov_r(dst_lo, src_lo, dstk, sstk, pprog);
260 if (is64)
261 /* complete 8 byte move */
262 emit_ia32_mov_r(dst_hi, src_hi, dstk, sstk, pprog);
263 else if (!aux->verifier_zext)
264 /* zero out high 4 bytes */
265 emit_ia32_mov_i(dst_hi, 0, dstk, pprog);
268 /* Sign extended move */
269 static inline void emit_ia32_mov_i64(const bool is64, const u8 dst[],
270 const u32 val, bool dstk, u8 **pprog)
272 u32 hi = 0;
274 if (is64 && (val & (1<<31)))
275 hi = (u32)~0;
276 emit_ia32_mov_i(dst_lo, val, dstk, pprog);
277 emit_ia32_mov_i(dst_hi, hi, dstk, pprog);
281 * ALU operation (32 bit)
282 * dst = dst * src
284 static inline void emit_ia32_mul_r(const u8 dst, const u8 src, bool dstk,
285 bool sstk, u8 **pprog)
287 u8 *prog = *pprog;
288 int cnt = 0;
289 u8 sreg = sstk ? IA32_ECX : src;
291 if (sstk)
292 /* mov ecx,dword ptr [ebp+off] */
293 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src));
295 if (dstk)
296 /* mov eax,dword ptr [ebp+off] */
297 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
298 else
299 /* mov eax,dst */
300 EMIT2(0x8B, add_2reg(0xC0, dst, IA32_EAX));
303 EMIT2(0xF7, add_1reg(0xE0, sreg));
305 if (dstk)
306 /* mov dword ptr [ebp+off],eax */
307 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
308 STACK_VAR(dst));
309 else
310 /* mov dst,eax */
311 EMIT2(0x89, add_2reg(0xC0, dst, IA32_EAX));
313 *pprog = prog;
316 static inline void emit_ia32_to_le_r64(const u8 dst[], s32 val,
317 bool dstk, u8 **pprog,
318 const struct bpf_prog_aux *aux)
320 u8 *prog = *pprog;
321 int cnt = 0;
322 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
323 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
325 if (dstk && val != 64) {
326 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
327 STACK_VAR(dst_lo));
328 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
329 STACK_VAR(dst_hi));
331 switch (val) {
332 case 16:
334 * Emit 'movzwl eax,ax' to zero extend 16-bit
335 * into 64 bit
337 EMIT2(0x0F, 0xB7);
338 EMIT1(add_2reg(0xC0, dreg_lo, dreg_lo));
339 if (!aux->verifier_zext)
340 /* xor dreg_hi,dreg_hi */
341 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
342 break;
343 case 32:
344 if (!aux->verifier_zext)
345 /* xor dreg_hi,dreg_hi */
346 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
347 break;
348 case 64:
349 /* nop */
350 break;
353 if (dstk && val != 64) {
354 /* mov dword ptr [ebp+off],dreg_lo */
355 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
356 STACK_VAR(dst_lo));
357 /* mov dword ptr [ebp+off],dreg_hi */
358 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
359 STACK_VAR(dst_hi));
361 *pprog = prog;
364 static inline void emit_ia32_to_be_r64(const u8 dst[], s32 val,
365 bool dstk, u8 **pprog,
366 const struct bpf_prog_aux *aux)
368 u8 *prog = *pprog;
369 int cnt = 0;
370 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
371 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
373 if (dstk) {
374 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
375 STACK_VAR(dst_lo));
376 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
377 STACK_VAR(dst_hi));
379 switch (val) {
380 case 16:
381 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
382 EMIT1(0x66);
383 EMIT3(0xC1, add_1reg(0xC8, dreg_lo), 8);
385 EMIT2(0x0F, 0xB7);
386 EMIT1(add_2reg(0xC0, dreg_lo, dreg_lo));
388 if (!aux->verifier_zext)
389 /* xor dreg_hi,dreg_hi */
390 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
391 break;
392 case 32:
393 /* Emit 'bswap eax' to swap lower 4 bytes */
394 EMIT1(0x0F);
395 EMIT1(add_1reg(0xC8, dreg_lo));
397 if (!aux->verifier_zext)
398 /* xor dreg_hi,dreg_hi */
399 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
400 break;
401 case 64:
402 /* Emit 'bswap eax' to swap lower 4 bytes */
403 EMIT1(0x0F);
404 EMIT1(add_1reg(0xC8, dreg_lo));
406 /* Emit 'bswap edx' to swap lower 4 bytes */
407 EMIT1(0x0F);
408 EMIT1(add_1reg(0xC8, dreg_hi));
410 /* mov ecx,dreg_hi */
411 EMIT2(0x89, add_2reg(0xC0, IA32_ECX, dreg_hi));
412 /* mov dreg_hi,dreg_lo */
413 EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
414 /* mov dreg_lo,ecx */
415 EMIT2(0x89, add_2reg(0xC0, dreg_lo, IA32_ECX));
417 break;
419 if (dstk) {
420 /* mov dword ptr [ebp+off],dreg_lo */
421 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
422 STACK_VAR(dst_lo));
423 /* mov dword ptr [ebp+off],dreg_hi */
424 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
425 STACK_VAR(dst_hi));
427 *pprog = prog;
431 * ALU operation (32 bit)
432 * dst = dst (div|mod) src
434 static inline void emit_ia32_div_mod_r(const u8 op, const u8 dst, const u8 src,
435 bool dstk, bool sstk, u8 **pprog)
437 u8 *prog = *pprog;
438 int cnt = 0;
440 if (sstk)
441 /* mov ecx,dword ptr [ebp+off] */
442 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
443 STACK_VAR(src));
444 else if (src != IA32_ECX)
445 /* mov ecx,src */
446 EMIT2(0x8B, add_2reg(0xC0, src, IA32_ECX));
448 if (dstk)
449 /* mov eax,dword ptr [ebp+off] */
450 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
451 STACK_VAR(dst));
452 else
453 /* mov eax,dst */
454 EMIT2(0x8B, add_2reg(0xC0, dst, IA32_EAX));
456 /* xor edx,edx */
457 EMIT2(0x31, add_2reg(0xC0, IA32_EDX, IA32_EDX));
458 /* div ecx */
459 EMIT2(0xF7, add_1reg(0xF0, IA32_ECX));
461 if (op == BPF_MOD) {
462 if (dstk)
463 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
464 STACK_VAR(dst));
465 else
466 EMIT2(0x89, add_2reg(0xC0, dst, IA32_EDX));
467 } else {
468 if (dstk)
469 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
470 STACK_VAR(dst));
471 else
472 EMIT2(0x89, add_2reg(0xC0, dst, IA32_EAX));
474 *pprog = prog;
478 * ALU operation (32 bit)
479 * dst = dst (shift) src
481 static inline void emit_ia32_shift_r(const u8 op, const u8 dst, const u8 src,
482 bool dstk, bool sstk, u8 **pprog)
484 u8 *prog = *pprog;
485 int cnt = 0;
486 u8 dreg = dstk ? IA32_EAX : dst;
487 u8 b2;
489 if (dstk)
490 /* mov eax,dword ptr [ebp+off] */
491 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
493 if (sstk)
494 /* mov ecx,dword ptr [ebp+off] */
495 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src));
496 else if (src != IA32_ECX)
497 /* mov ecx,src */
498 EMIT2(0x8B, add_2reg(0xC0, src, IA32_ECX));
500 switch (op) {
501 case BPF_LSH:
502 b2 = 0xE0; break;
503 case BPF_RSH:
504 b2 = 0xE8; break;
505 case BPF_ARSH:
506 b2 = 0xF8; break;
507 default:
508 return;
510 EMIT2(0xD3, add_1reg(b2, dreg));
512 if (dstk)
513 /* mov dword ptr [ebp+off],dreg */
514 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg), STACK_VAR(dst));
515 *pprog = prog;
519 * ALU operation (32 bit)
520 * dst = dst (op) src
522 static inline void emit_ia32_alu_r(const bool is64, const bool hi, const u8 op,
523 const u8 dst, const u8 src, bool dstk,
524 bool sstk, u8 **pprog)
526 u8 *prog = *pprog;
527 int cnt = 0;
528 u8 sreg = sstk ? IA32_EAX : src;
529 u8 dreg = dstk ? IA32_EDX : dst;
531 if (sstk)
532 /* mov eax,dword ptr [ebp+off] */
533 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(src));
535 if (dstk)
536 /* mov eax,dword ptr [ebp+off] */
537 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst));
539 switch (BPF_OP(op)) {
540 /* dst = dst + src */
541 case BPF_ADD:
542 if (hi && is64)
543 EMIT2(0x11, add_2reg(0xC0, dreg, sreg));
544 else
545 EMIT2(0x01, add_2reg(0xC0, dreg, sreg));
546 break;
547 /* dst = dst - src */
548 case BPF_SUB:
549 if (hi && is64)
550 EMIT2(0x19, add_2reg(0xC0, dreg, sreg));
551 else
552 EMIT2(0x29, add_2reg(0xC0, dreg, sreg));
553 break;
554 /* dst = dst | src */
555 case BPF_OR:
556 EMIT2(0x09, add_2reg(0xC0, dreg, sreg));
557 break;
558 /* dst = dst & src */
559 case BPF_AND:
560 EMIT2(0x21, add_2reg(0xC0, dreg, sreg));
561 break;
562 /* dst = dst ^ src */
563 case BPF_XOR:
564 EMIT2(0x31, add_2reg(0xC0, dreg, sreg));
565 break;
568 if (dstk)
569 /* mov dword ptr [ebp+off],dreg */
570 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg),
571 STACK_VAR(dst));
572 *pprog = prog;
575 /* ALU operation (64 bit) */
576 static inline void emit_ia32_alu_r64(const bool is64, const u8 op,
577 const u8 dst[], const u8 src[],
578 bool dstk, bool sstk,
579 u8 **pprog, const struct bpf_prog_aux *aux)
581 u8 *prog = *pprog;
583 emit_ia32_alu_r(is64, false, op, dst_lo, src_lo, dstk, sstk, &prog);
584 if (is64)
585 emit_ia32_alu_r(is64, true, op, dst_hi, src_hi, dstk, sstk,
586 &prog);
587 else if (!aux->verifier_zext)
588 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
589 *pprog = prog;
593 * ALU operation (32 bit)
594 * dst = dst (op) val
596 static inline void emit_ia32_alu_i(const bool is64, const bool hi, const u8 op,
597 const u8 dst, const s32 val, bool dstk,
598 u8 **pprog)
600 u8 *prog = *pprog;
601 int cnt = 0;
602 u8 dreg = dstk ? IA32_EAX : dst;
603 u8 sreg = IA32_EDX;
605 if (dstk)
606 /* mov eax,dword ptr [ebp+off] */
607 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
609 if (!is_imm8(val))
610 /* mov edx,imm32*/
611 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EDX), val);
613 switch (op) {
614 /* dst = dst + val */
615 case BPF_ADD:
616 if (hi && is64) {
617 if (is_imm8(val))
618 EMIT3(0x83, add_1reg(0xD0, dreg), val);
619 else
620 EMIT2(0x11, add_2reg(0xC0, dreg, sreg));
621 } else {
622 if (is_imm8(val))
623 EMIT3(0x83, add_1reg(0xC0, dreg), val);
624 else
625 EMIT2(0x01, add_2reg(0xC0, dreg, sreg));
627 break;
628 /* dst = dst - val */
629 case BPF_SUB:
630 if (hi && is64) {
631 if (is_imm8(val))
632 EMIT3(0x83, add_1reg(0xD8, dreg), val);
633 else
634 EMIT2(0x19, add_2reg(0xC0, dreg, sreg));
635 } else {
636 if (is_imm8(val))
637 EMIT3(0x83, add_1reg(0xE8, dreg), val);
638 else
639 EMIT2(0x29, add_2reg(0xC0, dreg, sreg));
641 break;
642 /* dst = dst | val */
643 case BPF_OR:
644 if (is_imm8(val))
645 EMIT3(0x83, add_1reg(0xC8, dreg), val);
646 else
647 EMIT2(0x09, add_2reg(0xC0, dreg, sreg));
648 break;
649 /* dst = dst & val */
650 case BPF_AND:
651 if (is_imm8(val))
652 EMIT3(0x83, add_1reg(0xE0, dreg), val);
653 else
654 EMIT2(0x21, add_2reg(0xC0, dreg, sreg));
655 break;
656 /* dst = dst ^ val */
657 case BPF_XOR:
658 if (is_imm8(val))
659 EMIT3(0x83, add_1reg(0xF0, dreg), val);
660 else
661 EMIT2(0x31, add_2reg(0xC0, dreg, sreg));
662 break;
663 case BPF_NEG:
664 EMIT2(0xF7, add_1reg(0xD8, dreg));
665 break;
668 if (dstk)
669 /* mov dword ptr [ebp+off],dreg */
670 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg),
671 STACK_VAR(dst));
672 *pprog = prog;
675 /* ALU operation (64 bit) */
676 static inline void emit_ia32_alu_i64(const bool is64, const u8 op,
677 const u8 dst[], const u32 val,
678 bool dstk, u8 **pprog,
679 const struct bpf_prog_aux *aux)
681 u8 *prog = *pprog;
682 u32 hi = 0;
684 if (is64 && (val & (1<<31)))
685 hi = (u32)~0;
687 emit_ia32_alu_i(is64, false, op, dst_lo, val, dstk, &prog);
688 if (is64)
689 emit_ia32_alu_i(is64, true, op, dst_hi, hi, dstk, &prog);
690 else if (!aux->verifier_zext)
691 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
693 *pprog = prog;
696 /* dst = ~dst (64 bit) */
697 static inline void emit_ia32_neg64(const u8 dst[], bool dstk, u8 **pprog)
699 u8 *prog = *pprog;
700 int cnt = 0;
701 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
702 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
704 if (dstk) {
705 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
706 STACK_VAR(dst_lo));
707 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
708 STACK_VAR(dst_hi));
711 /* neg dreg_lo */
712 EMIT2(0xF7, add_1reg(0xD8, dreg_lo));
713 /* adc dreg_hi,0x0 */
714 EMIT3(0x83, add_1reg(0xD0, dreg_hi), 0x00);
715 /* neg dreg_hi */
716 EMIT2(0xF7, add_1reg(0xD8, dreg_hi));
718 if (dstk) {
719 /* mov dword ptr [ebp+off],dreg_lo */
720 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
721 STACK_VAR(dst_lo));
722 /* mov dword ptr [ebp+off],dreg_hi */
723 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
724 STACK_VAR(dst_hi));
726 *pprog = prog;
729 /* dst = dst << src */
730 static inline void emit_ia32_lsh_r64(const u8 dst[], const u8 src[],
731 bool dstk, bool sstk, u8 **pprog)
733 u8 *prog = *pprog;
734 int cnt = 0;
735 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
736 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
738 if (dstk) {
739 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
740 STACK_VAR(dst_lo));
741 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
742 STACK_VAR(dst_hi));
745 if (sstk)
746 /* mov ecx,dword ptr [ebp+off] */
747 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
748 STACK_VAR(src_lo));
749 else
750 /* mov ecx,src_lo */
751 EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
753 /* shld dreg_hi,dreg_lo,cl */
754 EMIT3(0x0F, 0xA5, add_2reg(0xC0, dreg_hi, dreg_lo));
755 /* shl dreg_lo,cl */
756 EMIT2(0xD3, add_1reg(0xE0, dreg_lo));
758 /* if ecx >= 32, mov dreg_lo into dreg_hi and clear dreg_lo */
760 /* cmp ecx,32 */
761 EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
762 /* skip the next two instructions (4 bytes) when < 32 */
763 EMIT2(IA32_JB, 4);
765 /* mov dreg_hi,dreg_lo */
766 EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
767 /* xor dreg_lo,dreg_lo */
768 EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
770 if (dstk) {
771 /* mov dword ptr [ebp+off],dreg_lo */
772 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
773 STACK_VAR(dst_lo));
774 /* mov dword ptr [ebp+off],dreg_hi */
775 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
776 STACK_VAR(dst_hi));
778 /* out: */
779 *pprog = prog;
782 /* dst = dst >> src (signed)*/
783 static inline void emit_ia32_arsh_r64(const u8 dst[], const u8 src[],
784 bool dstk, bool sstk, u8 **pprog)
786 u8 *prog = *pprog;
787 int cnt = 0;
788 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
789 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
791 if (dstk) {
792 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
793 STACK_VAR(dst_lo));
794 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
795 STACK_VAR(dst_hi));
798 if (sstk)
799 /* mov ecx,dword ptr [ebp+off] */
800 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
801 STACK_VAR(src_lo));
802 else
803 /* mov ecx,src_lo */
804 EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
806 /* shrd dreg_lo,dreg_hi,cl */
807 EMIT3(0x0F, 0xAD, add_2reg(0xC0, dreg_lo, dreg_hi));
808 /* sar dreg_hi,cl */
809 EMIT2(0xD3, add_1reg(0xF8, dreg_hi));
811 /* if ecx >= 32, mov dreg_hi to dreg_lo and set/clear dreg_hi depending on sign */
813 /* cmp ecx,32 */
814 EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
815 /* skip the next two instructions (5 bytes) when < 32 */
816 EMIT2(IA32_JB, 5);
818 /* mov dreg_lo,dreg_hi */
819 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
820 /* sar dreg_hi,31 */
821 EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
823 if (dstk) {
824 /* mov dword ptr [ebp+off],dreg_lo */
825 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
826 STACK_VAR(dst_lo));
827 /* mov dword ptr [ebp+off],dreg_hi */
828 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
829 STACK_VAR(dst_hi));
831 /* out: */
832 *pprog = prog;
835 /* dst = dst >> src */
836 static inline void emit_ia32_rsh_r64(const u8 dst[], const u8 src[], bool dstk,
837 bool sstk, u8 **pprog)
839 u8 *prog = *pprog;
840 int cnt = 0;
841 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
842 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
844 if (dstk) {
845 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
846 STACK_VAR(dst_lo));
847 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
848 STACK_VAR(dst_hi));
851 if (sstk)
852 /* mov ecx,dword ptr [ebp+off] */
853 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
854 STACK_VAR(src_lo));
855 else
856 /* mov ecx,src_lo */
857 EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
859 /* shrd dreg_lo,dreg_hi,cl */
860 EMIT3(0x0F, 0xAD, add_2reg(0xC0, dreg_lo, dreg_hi));
861 /* shr dreg_hi,cl */
862 EMIT2(0xD3, add_1reg(0xE8, dreg_hi));
864 /* if ecx >= 32, mov dreg_hi to dreg_lo and clear dreg_hi */
866 /* cmp ecx,32 */
867 EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
868 /* skip the next two instructions (4 bytes) when < 32 */
869 EMIT2(IA32_JB, 4);
871 /* mov dreg_lo,dreg_hi */
872 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
873 /* xor dreg_hi,dreg_hi */
874 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
876 if (dstk) {
877 /* mov dword ptr [ebp+off],dreg_lo */
878 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
879 STACK_VAR(dst_lo));
880 /* mov dword ptr [ebp+off],dreg_hi */
881 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
882 STACK_VAR(dst_hi));
884 /* out: */
885 *pprog = prog;
888 /* dst = dst << val */
889 static inline void emit_ia32_lsh_i64(const u8 dst[], const u32 val,
890 bool dstk, u8 **pprog)
892 u8 *prog = *pprog;
893 int cnt = 0;
894 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
895 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
897 if (dstk) {
898 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
899 STACK_VAR(dst_lo));
900 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
901 STACK_VAR(dst_hi));
903 /* Do LSH operation */
904 if (val < 32) {
905 /* shld dreg_hi,dreg_lo,imm8 */
906 EMIT4(0x0F, 0xA4, add_2reg(0xC0, dreg_hi, dreg_lo), val);
907 /* shl dreg_lo,imm8 */
908 EMIT3(0xC1, add_1reg(0xE0, dreg_lo), val);
909 } else if (val >= 32 && val < 64) {
910 u32 value = val - 32;
912 /* shl dreg_lo,imm8 */
913 EMIT3(0xC1, add_1reg(0xE0, dreg_lo), value);
914 /* mov dreg_hi,dreg_lo */
915 EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
916 /* xor dreg_lo,dreg_lo */
917 EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
918 } else {
919 /* xor dreg_lo,dreg_lo */
920 EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
921 /* xor dreg_hi,dreg_hi */
922 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
925 if (dstk) {
926 /* mov dword ptr [ebp+off],dreg_lo */
927 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
928 STACK_VAR(dst_lo));
929 /* mov dword ptr [ebp+off],dreg_hi */
930 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
931 STACK_VAR(dst_hi));
933 *pprog = prog;
936 /* dst = dst >> val */
937 static inline void emit_ia32_rsh_i64(const u8 dst[], const u32 val,
938 bool dstk, u8 **pprog)
940 u8 *prog = *pprog;
941 int cnt = 0;
942 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
943 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
945 if (dstk) {
946 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
947 STACK_VAR(dst_lo));
948 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
949 STACK_VAR(dst_hi));
952 /* Do RSH operation */
953 if (val < 32) {
954 /* shrd dreg_lo,dreg_hi,imm8 */
955 EMIT4(0x0F, 0xAC, add_2reg(0xC0, dreg_lo, dreg_hi), val);
956 /* shr dreg_hi,imm8 */
957 EMIT3(0xC1, add_1reg(0xE8, dreg_hi), val);
958 } else if (val >= 32 && val < 64) {
959 u32 value = val - 32;
961 /* shr dreg_hi,imm8 */
962 EMIT3(0xC1, add_1reg(0xE8, dreg_hi), value);
963 /* mov dreg_lo,dreg_hi */
964 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
965 /* xor dreg_hi,dreg_hi */
966 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
967 } else {
968 /* xor dreg_lo,dreg_lo */
969 EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
970 /* xor dreg_hi,dreg_hi */
971 EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
974 if (dstk) {
975 /* mov dword ptr [ebp+off],dreg_lo */
976 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
977 STACK_VAR(dst_lo));
978 /* mov dword ptr [ebp+off],dreg_hi */
979 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
980 STACK_VAR(dst_hi));
982 *pprog = prog;
985 /* dst = dst >> val (signed) */
986 static inline void emit_ia32_arsh_i64(const u8 dst[], const u32 val,
987 bool dstk, u8 **pprog)
989 u8 *prog = *pprog;
990 int cnt = 0;
991 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
992 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
994 if (dstk) {
995 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
996 STACK_VAR(dst_lo));
997 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
998 STACK_VAR(dst_hi));
1000 /* Do RSH operation */
1001 if (val < 32) {
1002 /* shrd dreg_lo,dreg_hi,imm8 */
1003 EMIT4(0x0F, 0xAC, add_2reg(0xC0, dreg_lo, dreg_hi), val);
1004 /* ashr dreg_hi,imm8 */
1005 EMIT3(0xC1, add_1reg(0xF8, dreg_hi), val);
1006 } else if (val >= 32 && val < 64) {
1007 u32 value = val - 32;
1009 /* ashr dreg_hi,imm8 */
1010 EMIT3(0xC1, add_1reg(0xF8, dreg_hi), value);
1011 /* mov dreg_lo,dreg_hi */
1012 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
1014 /* ashr dreg_hi,imm8 */
1015 EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
1016 } else {
1017 /* ashr dreg_hi,imm8 */
1018 EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
1019 /* mov dreg_lo,dreg_hi */
1020 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
1023 if (dstk) {
1024 /* mov dword ptr [ebp+off],dreg_lo */
1025 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
1026 STACK_VAR(dst_lo));
1027 /* mov dword ptr [ebp+off],dreg_hi */
1028 EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
1029 STACK_VAR(dst_hi));
1031 *pprog = prog;
1034 static inline void emit_ia32_mul_r64(const u8 dst[], const u8 src[], bool dstk,
1035 bool sstk, u8 **pprog)
1037 u8 *prog = *pprog;
1038 int cnt = 0;
1040 if (dstk)
1041 /* mov eax,dword ptr [ebp+off] */
1042 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1043 STACK_VAR(dst_hi));
1044 else
1045 /* mov eax,dst_hi */
1046 EMIT2(0x8B, add_2reg(0xC0, dst_hi, IA32_EAX));
1048 if (sstk)
1049 /* mul dword ptr [ebp+off] */
1050 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_lo));
1051 else
1052 /* mul src_lo */
1053 EMIT2(0xF7, add_1reg(0xE0, src_lo));
1055 /* mov ecx,eax */
1056 EMIT2(0x89, add_2reg(0xC0, IA32_ECX, IA32_EAX));
1058 if (dstk)
1059 /* mov eax,dword ptr [ebp+off] */
1060 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1061 STACK_VAR(dst_lo));
1062 else
1063 /* mov eax,dst_lo */
1064 EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
1066 if (sstk)
1067 /* mul dword ptr [ebp+off] */
1068 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_hi));
1069 else
1070 /* mul src_hi */
1071 EMIT2(0xF7, add_1reg(0xE0, src_hi));
1073 /* add eax,eax */
1074 EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EAX));
1076 if (dstk)
1077 /* mov eax,dword ptr [ebp+off] */
1078 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1079 STACK_VAR(dst_lo));
1080 else
1081 /* mov eax,dst_lo */
1082 EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
1084 if (sstk)
1085 /* mul dword ptr [ebp+off] */
1086 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_lo));
1087 else
1088 /* mul src_lo */
1089 EMIT2(0xF7, add_1reg(0xE0, src_lo));
1091 /* add ecx,edx */
1092 EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EDX));
1094 if (dstk) {
1095 /* mov dword ptr [ebp+off],eax */
1096 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
1097 STACK_VAR(dst_lo));
1098 /* mov dword ptr [ebp+off],ecx */
1099 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX),
1100 STACK_VAR(dst_hi));
1101 } else {
1102 /* mov dst_lo,eax */
1103 EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EAX));
1104 /* mov dst_hi,ecx */
1105 EMIT2(0x89, add_2reg(0xC0, dst_hi, IA32_ECX));
1108 *pprog = prog;
1111 static inline void emit_ia32_mul_i64(const u8 dst[], const u32 val,
1112 bool dstk, u8 **pprog)
1114 u8 *prog = *pprog;
1115 int cnt = 0;
1116 u32 hi;
1118 hi = val & (1<<31) ? (u32)~0 : 0;
1119 /* movl eax,imm32 */
1120 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), val);
1121 if (dstk)
1122 /* mul dword ptr [ebp+off] */
1123 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_hi));
1124 else
1125 /* mul dst_hi */
1126 EMIT2(0xF7, add_1reg(0xE0, dst_hi));
1128 /* mov ecx,eax */
1129 EMIT2(0x89, add_2reg(0xC0, IA32_ECX, IA32_EAX));
1131 /* movl eax,imm32 */
1132 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), hi);
1133 if (dstk)
1134 /* mul dword ptr [ebp+off] */
1135 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_lo));
1136 else
1137 /* mul dst_lo */
1138 EMIT2(0xF7, add_1reg(0xE0, dst_lo));
1139 /* add ecx,eax */
1140 EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EAX));
1142 /* movl eax,imm32 */
1143 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), val);
1144 if (dstk)
1145 /* mul dword ptr [ebp+off] */
1146 EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_lo));
1147 else
1148 /* mul dst_lo */
1149 EMIT2(0xF7, add_1reg(0xE0, dst_lo));
1151 /* add ecx,edx */
1152 EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EDX));
1154 if (dstk) {
1155 /* mov dword ptr [ebp+off],eax */
1156 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
1157 STACK_VAR(dst_lo));
1158 /* mov dword ptr [ebp+off],ecx */
1159 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX),
1160 STACK_VAR(dst_hi));
1161 } else {
1162 /* mov dword ptr [ebp+off],eax */
1163 EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EAX));
1164 /* mov dword ptr [ebp+off],ecx */
1165 EMIT2(0x89, add_2reg(0xC0, dst_hi, IA32_ECX));
1168 *pprog = prog;
1171 static int bpf_size_to_x86_bytes(int bpf_size)
1173 if (bpf_size == BPF_W)
1174 return 4;
1175 else if (bpf_size == BPF_H)
1176 return 2;
1177 else if (bpf_size == BPF_B)
1178 return 1;
1179 else if (bpf_size == BPF_DW)
1180 return 4; /* imm32 */
1181 else
1182 return 0;
1185 struct jit_context {
1186 int cleanup_addr; /* Epilogue code offset */
1189 /* Maximum number of bytes emitted while JITing one eBPF insn */
1190 #define BPF_MAX_INSN_SIZE 128
1191 #define BPF_INSN_SAFETY 64
1193 #define PROLOGUE_SIZE 35
1196 * Emit prologue code for BPF program and check it's size.
1197 * bpf_tail_call helper will skip it while jumping into another program.
1199 static void emit_prologue(u8 **pprog, u32 stack_depth)
1201 u8 *prog = *pprog;
1202 int cnt = 0;
1203 const u8 *r1 = bpf2ia32[BPF_REG_1];
1204 const u8 fplo = bpf2ia32[BPF_REG_FP][0];
1205 const u8 fphi = bpf2ia32[BPF_REG_FP][1];
1206 const u8 *tcc = bpf2ia32[TCALL_CNT];
1208 /* push ebp */
1209 EMIT1(0x55);
1210 /* mov ebp,esp */
1211 EMIT2(0x89, 0xE5);
1212 /* push edi */
1213 EMIT1(0x57);
1214 /* push esi */
1215 EMIT1(0x56);
1216 /* push ebx */
1217 EMIT1(0x53);
1219 /* sub esp,STACK_SIZE */
1220 EMIT2_off32(0x81, 0xEC, STACK_SIZE);
1221 /* sub ebp,SCRATCH_SIZE+12*/
1222 EMIT3(0x83, add_1reg(0xE8, IA32_EBP), SCRATCH_SIZE + 12);
1223 /* xor ebx,ebx */
1224 EMIT2(0x31, add_2reg(0xC0, IA32_EBX, IA32_EBX));
1226 /* Set up BPF prog stack base register */
1227 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBP), STACK_VAR(fplo));
1228 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(fphi));
1230 /* Move BPF_CTX (EAX) to BPF_REG_R1 */
1231 /* mov dword ptr [ebp+off],eax */
1232 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r1[0]));
1233 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(r1[1]));
1235 /* Initialize Tail Count */
1236 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[0]));
1237 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
1239 BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
1240 *pprog = prog;
1243 /* Emit epilogue code for BPF program */
1244 static void emit_epilogue(u8 **pprog, u32 stack_depth)
1246 u8 *prog = *pprog;
1247 const u8 *r0 = bpf2ia32[BPF_REG_0];
1248 int cnt = 0;
1250 /* mov eax,dword ptr [ebp+off]*/
1251 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r0[0]));
1252 /* mov edx,dword ptr [ebp+off]*/
1253 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(r0[1]));
1255 /* add ebp,SCRATCH_SIZE+12*/
1256 EMIT3(0x83, add_1reg(0xC0, IA32_EBP), SCRATCH_SIZE + 12);
1258 /* mov ebx,dword ptr [ebp-12]*/
1259 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), -12);
1260 /* mov esi,dword ptr [ebp-8]*/
1261 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ESI), -8);
1262 /* mov edi,dword ptr [ebp-4]*/
1263 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDI), -4);
1265 EMIT1(0xC9); /* leave */
1266 EMIT1(0xC3); /* ret */
1267 *pprog = prog;
1271 * Generate the following code:
1272 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
1273 * if (index >= array->map.max_entries)
1274 * goto out;
1275 * if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
1276 * goto out;
1277 * prog = array->ptrs[index];
1278 * if (prog == NULL)
1279 * goto out;
1280 * goto *(prog->bpf_func + prologue_size);
1281 * out:
1283 static void emit_bpf_tail_call(u8 **pprog)
1285 u8 *prog = *pprog;
1286 int cnt = 0;
1287 const u8 *r1 = bpf2ia32[BPF_REG_1];
1288 const u8 *r2 = bpf2ia32[BPF_REG_2];
1289 const u8 *r3 = bpf2ia32[BPF_REG_3];
1290 const u8 *tcc = bpf2ia32[TCALL_CNT];
1291 u32 lo, hi;
1292 static int jmp_label1 = -1;
1295 * if (index >= array->map.max_entries)
1296 * goto out;
1298 /* mov eax,dword ptr [ebp+off] */
1299 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r2[0]));
1300 /* mov edx,dword ptr [ebp+off] */
1301 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(r3[0]));
1303 /* cmp dword ptr [eax+off],edx */
1304 EMIT3(0x39, add_2reg(0x40, IA32_EAX, IA32_EDX),
1305 offsetof(struct bpf_array, map.max_entries));
1306 /* jbe out */
1307 EMIT2(IA32_JBE, jmp_label(jmp_label1, 2));
1310 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
1311 * goto out;
1313 lo = (u32)MAX_TAIL_CALL_CNT;
1314 hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1315 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(tcc[0]));
1316 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
1318 /* cmp edx,hi */
1319 EMIT3(0x83, add_1reg(0xF8, IA32_EBX), hi);
1320 EMIT2(IA32_JNE, 3);
1321 /* cmp ecx,lo */
1322 EMIT3(0x83, add_1reg(0xF8, IA32_ECX), lo);
1324 /* ja out */
1325 EMIT2(IA32_JAE, jmp_label(jmp_label1, 2));
1327 /* add eax,0x1 */
1328 EMIT3(0x83, add_1reg(0xC0, IA32_ECX), 0x01);
1329 /* adc ebx,0x0 */
1330 EMIT3(0x83, add_1reg(0xD0, IA32_EBX), 0x00);
1332 /* mov dword ptr [ebp+off],eax */
1333 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(tcc[0]));
1334 /* mov dword ptr [ebp+off],edx */
1335 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
1337 /* prog = array->ptrs[index]; */
1338 /* mov edx, [eax + edx * 4 + offsetof(...)] */
1339 EMIT3_off32(0x8B, 0x94, 0x90, offsetof(struct bpf_array, ptrs));
1342 * if (prog == NULL)
1343 * goto out;
1345 /* test edx,edx */
1346 EMIT2(0x85, add_2reg(0xC0, IA32_EDX, IA32_EDX));
1347 /* je out */
1348 EMIT2(IA32_JE, jmp_label(jmp_label1, 2));
1350 /* goto *(prog->bpf_func + prologue_size); */
1351 /* mov edx, dword ptr [edx + 32] */
1352 EMIT3(0x8B, add_2reg(0x40, IA32_EDX, IA32_EDX),
1353 offsetof(struct bpf_prog, bpf_func));
1354 /* add edx,prologue_size */
1355 EMIT3(0x83, add_1reg(0xC0, IA32_EDX), PROLOGUE_SIZE);
1357 /* mov eax,dword ptr [ebp+off] */
1358 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r1[0]));
1361 * Now we're ready to jump into next BPF program:
1362 * eax == ctx (1st arg)
1363 * edx == prog->bpf_func + prologue_size
1365 RETPOLINE_EDX_BPF_JIT();
1367 if (jmp_label1 == -1)
1368 jmp_label1 = cnt;
1370 /* out: */
1371 *pprog = prog;
1374 /* Push the scratch stack register on top of the stack. */
1375 static inline void emit_push_r64(const u8 src[], u8 **pprog)
1377 u8 *prog = *pprog;
1378 int cnt = 0;
1380 /* mov ecx,dword ptr [ebp+off] */
1381 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_hi));
1382 /* push ecx */
1383 EMIT1(0x51);
1385 /* mov ecx,dword ptr [ebp+off] */
1386 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_lo));
1387 /* push ecx */
1388 EMIT1(0x51);
1390 *pprog = prog;
1393 static u8 get_cond_jmp_opcode(const u8 op, bool is_cmp_lo)
1395 u8 jmp_cond;
1397 /* Convert BPF opcode to x86 */
1398 switch (op) {
1399 case BPF_JEQ:
1400 jmp_cond = IA32_JE;
1401 break;
1402 case BPF_JSET:
1403 case BPF_JNE:
1404 jmp_cond = IA32_JNE;
1405 break;
1406 case BPF_JGT:
1407 /* GT is unsigned '>', JA in x86 */
1408 jmp_cond = IA32_JA;
1409 break;
1410 case BPF_JLT:
1411 /* LT is unsigned '<', JB in x86 */
1412 jmp_cond = IA32_JB;
1413 break;
1414 case BPF_JGE:
1415 /* GE is unsigned '>=', JAE in x86 */
1416 jmp_cond = IA32_JAE;
1417 break;
1418 case BPF_JLE:
1419 /* LE is unsigned '<=', JBE in x86 */
1420 jmp_cond = IA32_JBE;
1421 break;
1422 case BPF_JSGT:
1423 if (!is_cmp_lo)
1424 /* Signed '>', GT in x86 */
1425 jmp_cond = IA32_JG;
1426 else
1427 /* GT is unsigned '>', JA in x86 */
1428 jmp_cond = IA32_JA;
1429 break;
1430 case BPF_JSLT:
1431 if (!is_cmp_lo)
1432 /* Signed '<', LT in x86 */
1433 jmp_cond = IA32_JL;
1434 else
1435 /* LT is unsigned '<', JB in x86 */
1436 jmp_cond = IA32_JB;
1437 break;
1438 case BPF_JSGE:
1439 if (!is_cmp_lo)
1440 /* Signed '>=', GE in x86 */
1441 jmp_cond = IA32_JGE;
1442 else
1443 /* GE is unsigned '>=', JAE in x86 */
1444 jmp_cond = IA32_JAE;
1445 break;
1446 case BPF_JSLE:
1447 if (!is_cmp_lo)
1448 /* Signed '<=', LE in x86 */
1449 jmp_cond = IA32_JLE;
1450 else
1451 /* LE is unsigned '<=', JBE in x86 */
1452 jmp_cond = IA32_JBE;
1453 break;
1454 default: /* to silence GCC warning */
1455 jmp_cond = COND_JMP_OPCODE_INVALID;
1456 break;
1459 return jmp_cond;
1462 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
1463 int oldproglen, struct jit_context *ctx)
1465 struct bpf_insn *insn = bpf_prog->insnsi;
1466 int insn_cnt = bpf_prog->len;
1467 bool seen_exit = false;
1468 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1469 int i, cnt = 0;
1470 int proglen = 0;
1471 u8 *prog = temp;
1473 emit_prologue(&prog, bpf_prog->aux->stack_depth);
1475 for (i = 0; i < insn_cnt; i++, insn++) {
1476 const s32 imm32 = insn->imm;
1477 const bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1478 const bool dstk = insn->dst_reg != BPF_REG_AX;
1479 const bool sstk = insn->src_reg != BPF_REG_AX;
1480 const u8 code = insn->code;
1481 const u8 *dst = bpf2ia32[insn->dst_reg];
1482 const u8 *src = bpf2ia32[insn->src_reg];
1483 const u8 *r0 = bpf2ia32[BPF_REG_0];
1484 s64 jmp_offset;
1485 u8 jmp_cond;
1486 int ilen;
1487 u8 *func;
1489 switch (code) {
1490 /* ALU operations */
1491 /* dst = src */
1492 case BPF_ALU | BPF_MOV | BPF_K:
1493 case BPF_ALU | BPF_MOV | BPF_X:
1494 case BPF_ALU64 | BPF_MOV | BPF_K:
1495 case BPF_ALU64 | BPF_MOV | BPF_X:
1496 switch (BPF_SRC(code)) {
1497 case BPF_X:
1498 if (imm32 == 1) {
1499 /* Special mov32 for zext. */
1500 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1501 break;
1503 emit_ia32_mov_r64(is64, dst, src, dstk, sstk,
1504 &prog, bpf_prog->aux);
1505 break;
1506 case BPF_K:
1507 /* Sign-extend immediate value to dst reg */
1508 emit_ia32_mov_i64(is64, dst, imm32,
1509 dstk, &prog);
1510 break;
1512 break;
1513 /* dst = dst + src/imm */
1514 /* dst = dst - src/imm */
1515 /* dst = dst | src/imm */
1516 /* dst = dst & src/imm */
1517 /* dst = dst ^ src/imm */
1518 /* dst = dst * src/imm */
1519 /* dst = dst << src */
1520 /* dst = dst >> src */
1521 case BPF_ALU | BPF_ADD | BPF_K:
1522 case BPF_ALU | BPF_ADD | BPF_X:
1523 case BPF_ALU | BPF_SUB | BPF_K:
1524 case BPF_ALU | BPF_SUB | BPF_X:
1525 case BPF_ALU | BPF_OR | BPF_K:
1526 case BPF_ALU | BPF_OR | BPF_X:
1527 case BPF_ALU | BPF_AND | BPF_K:
1528 case BPF_ALU | BPF_AND | BPF_X:
1529 case BPF_ALU | BPF_XOR | BPF_K:
1530 case BPF_ALU | BPF_XOR | BPF_X:
1531 case BPF_ALU64 | BPF_ADD | BPF_K:
1532 case BPF_ALU64 | BPF_ADD | BPF_X:
1533 case BPF_ALU64 | BPF_SUB | BPF_K:
1534 case BPF_ALU64 | BPF_SUB | BPF_X:
1535 case BPF_ALU64 | BPF_OR | BPF_K:
1536 case BPF_ALU64 | BPF_OR | BPF_X:
1537 case BPF_ALU64 | BPF_AND | BPF_K:
1538 case BPF_ALU64 | BPF_AND | BPF_X:
1539 case BPF_ALU64 | BPF_XOR | BPF_K:
1540 case BPF_ALU64 | BPF_XOR | BPF_X:
1541 switch (BPF_SRC(code)) {
1542 case BPF_X:
1543 emit_ia32_alu_r64(is64, BPF_OP(code), dst,
1544 src, dstk, sstk, &prog,
1545 bpf_prog->aux);
1546 break;
1547 case BPF_K:
1548 emit_ia32_alu_i64(is64, BPF_OP(code), dst,
1549 imm32, dstk, &prog,
1550 bpf_prog->aux);
1551 break;
1553 break;
1554 case BPF_ALU | BPF_MUL | BPF_K:
1555 case BPF_ALU | BPF_MUL | BPF_X:
1556 switch (BPF_SRC(code)) {
1557 case BPF_X:
1558 emit_ia32_mul_r(dst_lo, src_lo, dstk,
1559 sstk, &prog);
1560 break;
1561 case BPF_K:
1562 /* mov ecx,imm32*/
1563 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
1564 imm32);
1565 emit_ia32_mul_r(dst_lo, IA32_ECX, dstk,
1566 false, &prog);
1567 break;
1569 if (!bpf_prog->aux->verifier_zext)
1570 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1571 break;
1572 case BPF_ALU | BPF_LSH | BPF_X:
1573 case BPF_ALU | BPF_RSH | BPF_X:
1574 case BPF_ALU | BPF_ARSH | BPF_K:
1575 case BPF_ALU | BPF_ARSH | BPF_X:
1576 switch (BPF_SRC(code)) {
1577 case BPF_X:
1578 emit_ia32_shift_r(BPF_OP(code), dst_lo, src_lo,
1579 dstk, sstk, &prog);
1580 break;
1581 case BPF_K:
1582 /* mov ecx,imm32*/
1583 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
1584 imm32);
1585 emit_ia32_shift_r(BPF_OP(code), dst_lo,
1586 IA32_ECX, dstk, false,
1587 &prog);
1588 break;
1590 if (!bpf_prog->aux->verifier_zext)
1591 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1592 break;
1593 /* dst = dst / src(imm) */
1594 /* dst = dst % src(imm) */
1595 case BPF_ALU | BPF_DIV | BPF_K:
1596 case BPF_ALU | BPF_DIV | BPF_X:
1597 case BPF_ALU | BPF_MOD | BPF_K:
1598 case BPF_ALU | BPF_MOD | BPF_X:
1599 switch (BPF_SRC(code)) {
1600 case BPF_X:
1601 emit_ia32_div_mod_r(BPF_OP(code), dst_lo,
1602 src_lo, dstk, sstk, &prog);
1603 break;
1604 case BPF_K:
1605 /* mov ecx,imm32*/
1606 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
1607 imm32);
1608 emit_ia32_div_mod_r(BPF_OP(code), dst_lo,
1609 IA32_ECX, dstk, false,
1610 &prog);
1611 break;
1613 if (!bpf_prog->aux->verifier_zext)
1614 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1615 break;
1616 case BPF_ALU64 | BPF_DIV | BPF_K:
1617 case BPF_ALU64 | BPF_DIV | BPF_X:
1618 case BPF_ALU64 | BPF_MOD | BPF_K:
1619 case BPF_ALU64 | BPF_MOD | BPF_X:
1620 goto notyet;
1621 /* dst = dst >> imm */
1622 /* dst = dst << imm */
1623 case BPF_ALU | BPF_RSH | BPF_K:
1624 case BPF_ALU | BPF_LSH | BPF_K:
1625 if (unlikely(imm32 > 31))
1626 return -EINVAL;
1627 /* mov ecx,imm32*/
1628 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
1629 emit_ia32_shift_r(BPF_OP(code), dst_lo, IA32_ECX, dstk,
1630 false, &prog);
1631 if (!bpf_prog->aux->verifier_zext)
1632 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1633 break;
1634 /* dst = dst << imm */
1635 case BPF_ALU64 | BPF_LSH | BPF_K:
1636 if (unlikely(imm32 > 63))
1637 return -EINVAL;
1638 emit_ia32_lsh_i64(dst, imm32, dstk, &prog);
1639 break;
1640 /* dst = dst >> imm */
1641 case BPF_ALU64 | BPF_RSH | BPF_K:
1642 if (unlikely(imm32 > 63))
1643 return -EINVAL;
1644 emit_ia32_rsh_i64(dst, imm32, dstk, &prog);
1645 break;
1646 /* dst = dst << src */
1647 case BPF_ALU64 | BPF_LSH | BPF_X:
1648 emit_ia32_lsh_r64(dst, src, dstk, sstk, &prog);
1649 break;
1650 /* dst = dst >> src */
1651 case BPF_ALU64 | BPF_RSH | BPF_X:
1652 emit_ia32_rsh_r64(dst, src, dstk, sstk, &prog);
1653 break;
1654 /* dst = dst >> src (signed) */
1655 case BPF_ALU64 | BPF_ARSH | BPF_X:
1656 emit_ia32_arsh_r64(dst, src, dstk, sstk, &prog);
1657 break;
1658 /* dst = dst >> imm (signed) */
1659 case BPF_ALU64 | BPF_ARSH | BPF_K:
1660 if (unlikely(imm32 > 63))
1661 return -EINVAL;
1662 emit_ia32_arsh_i64(dst, imm32, dstk, &prog);
1663 break;
1664 /* dst = ~dst */
1665 case BPF_ALU | BPF_NEG:
1666 emit_ia32_alu_i(is64, false, BPF_OP(code),
1667 dst_lo, 0, dstk, &prog);
1668 if (!bpf_prog->aux->verifier_zext)
1669 emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1670 break;
1671 /* dst = ~dst (64 bit) */
1672 case BPF_ALU64 | BPF_NEG:
1673 emit_ia32_neg64(dst, dstk, &prog);
1674 break;
1675 /* dst = dst * src/imm */
1676 case BPF_ALU64 | BPF_MUL | BPF_X:
1677 case BPF_ALU64 | BPF_MUL | BPF_K:
1678 switch (BPF_SRC(code)) {
1679 case BPF_X:
1680 emit_ia32_mul_r64(dst, src, dstk, sstk, &prog);
1681 break;
1682 case BPF_K:
1683 emit_ia32_mul_i64(dst, imm32, dstk, &prog);
1684 break;
1686 break;
1687 /* dst = htole(dst) */
1688 case BPF_ALU | BPF_END | BPF_FROM_LE:
1689 emit_ia32_to_le_r64(dst, imm32, dstk, &prog,
1690 bpf_prog->aux);
1691 break;
1692 /* dst = htobe(dst) */
1693 case BPF_ALU | BPF_END | BPF_FROM_BE:
1694 emit_ia32_to_be_r64(dst, imm32, dstk, &prog,
1695 bpf_prog->aux);
1696 break;
1697 /* dst = imm64 */
1698 case BPF_LD | BPF_IMM | BPF_DW: {
1699 s32 hi, lo = imm32;
1701 hi = insn[1].imm;
1702 emit_ia32_mov_i(dst_lo, lo, dstk, &prog);
1703 emit_ia32_mov_i(dst_hi, hi, dstk, &prog);
1704 insn++;
1705 i++;
1706 break;
1708 /* ST: *(u8*)(dst_reg + off) = imm */
1709 case BPF_ST | BPF_MEM | BPF_H:
1710 case BPF_ST | BPF_MEM | BPF_B:
1711 case BPF_ST | BPF_MEM | BPF_W:
1712 case BPF_ST | BPF_MEM | BPF_DW:
1713 if (dstk)
1714 /* mov eax,dword ptr [ebp+off] */
1715 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1716 STACK_VAR(dst_lo));
1717 else
1718 /* mov eax,dst_lo */
1719 EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
1721 switch (BPF_SIZE(code)) {
1722 case BPF_B:
1723 EMIT(0xC6, 1); break;
1724 case BPF_H:
1725 EMIT2(0x66, 0xC7); break;
1726 case BPF_W:
1727 case BPF_DW:
1728 EMIT(0xC7, 1); break;
1731 if (is_imm8(insn->off))
1732 EMIT2(add_1reg(0x40, IA32_EAX), insn->off);
1733 else
1734 EMIT1_off32(add_1reg(0x80, IA32_EAX),
1735 insn->off);
1736 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(code)));
1738 if (BPF_SIZE(code) == BPF_DW) {
1739 u32 hi;
1741 hi = imm32 & (1<<31) ? (u32)~0 : 0;
1742 EMIT2_off32(0xC7, add_1reg(0x80, IA32_EAX),
1743 insn->off + 4);
1744 EMIT(hi, 4);
1746 break;
1748 /* STX: *(u8*)(dst_reg + off) = src_reg */
1749 case BPF_STX | BPF_MEM | BPF_B:
1750 case BPF_STX | BPF_MEM | BPF_H:
1751 case BPF_STX | BPF_MEM | BPF_W:
1752 case BPF_STX | BPF_MEM | BPF_DW:
1753 if (dstk)
1754 /* mov eax,dword ptr [ebp+off] */
1755 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1756 STACK_VAR(dst_lo));
1757 else
1758 /* mov eax,dst_lo */
1759 EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
1761 if (sstk)
1762 /* mov edx,dword ptr [ebp+off] */
1763 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
1764 STACK_VAR(src_lo));
1765 else
1766 /* mov edx,src_lo */
1767 EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_EDX));
1769 switch (BPF_SIZE(code)) {
1770 case BPF_B:
1771 EMIT(0x88, 1); break;
1772 case BPF_H:
1773 EMIT2(0x66, 0x89); break;
1774 case BPF_W:
1775 case BPF_DW:
1776 EMIT(0x89, 1); break;
1779 if (is_imm8(insn->off))
1780 EMIT2(add_2reg(0x40, IA32_EAX, IA32_EDX),
1781 insn->off);
1782 else
1783 EMIT1_off32(add_2reg(0x80, IA32_EAX, IA32_EDX),
1784 insn->off);
1786 if (BPF_SIZE(code) == BPF_DW) {
1787 if (sstk)
1788 /* mov edi,dword ptr [ebp+off] */
1789 EMIT3(0x8B, add_2reg(0x40, IA32_EBP,
1790 IA32_EDX),
1791 STACK_VAR(src_hi));
1792 else
1793 /* mov edi,src_hi */
1794 EMIT2(0x8B, add_2reg(0xC0, src_hi,
1795 IA32_EDX));
1796 EMIT1(0x89);
1797 if (is_imm8(insn->off + 4)) {
1798 EMIT2(add_2reg(0x40, IA32_EAX,
1799 IA32_EDX),
1800 insn->off + 4);
1801 } else {
1802 EMIT1(add_2reg(0x80, IA32_EAX,
1803 IA32_EDX));
1804 EMIT(insn->off + 4, 4);
1807 break;
1809 /* LDX: dst_reg = *(u8*)(src_reg + off) */
1810 case BPF_LDX | BPF_MEM | BPF_B:
1811 case BPF_LDX | BPF_MEM | BPF_H:
1812 case BPF_LDX | BPF_MEM | BPF_W:
1813 case BPF_LDX | BPF_MEM | BPF_DW:
1814 if (sstk)
1815 /* mov eax,dword ptr [ebp+off] */
1816 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1817 STACK_VAR(src_lo));
1818 else
1819 /* mov eax,dword ptr [ebp+off] */
1820 EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_EAX));
1822 switch (BPF_SIZE(code)) {
1823 case BPF_B:
1824 EMIT2(0x0F, 0xB6); break;
1825 case BPF_H:
1826 EMIT2(0x0F, 0xB7); break;
1827 case BPF_W:
1828 case BPF_DW:
1829 EMIT(0x8B, 1); break;
1832 if (is_imm8(insn->off))
1833 EMIT2(add_2reg(0x40, IA32_EAX, IA32_EDX),
1834 insn->off);
1835 else
1836 EMIT1_off32(add_2reg(0x80, IA32_EAX, IA32_EDX),
1837 insn->off);
1839 if (dstk)
1840 /* mov dword ptr [ebp+off],edx */
1841 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
1842 STACK_VAR(dst_lo));
1843 else
1844 /* mov dst_lo,edx */
1845 EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EDX));
1846 switch (BPF_SIZE(code)) {
1847 case BPF_B:
1848 case BPF_H:
1849 case BPF_W:
1850 if (bpf_prog->aux->verifier_zext)
1851 break;
1852 if (dstk) {
1853 EMIT3(0xC7, add_1reg(0x40, IA32_EBP),
1854 STACK_VAR(dst_hi));
1855 EMIT(0x0, 4);
1856 } else {
1857 /* xor dst_hi,dst_hi */
1858 EMIT2(0x33,
1859 add_2reg(0xC0, dst_hi, dst_hi));
1861 break;
1862 case BPF_DW:
1863 EMIT2_off32(0x8B,
1864 add_2reg(0x80, IA32_EAX, IA32_EDX),
1865 insn->off + 4);
1866 if (dstk)
1867 EMIT3(0x89,
1868 add_2reg(0x40, IA32_EBP,
1869 IA32_EDX),
1870 STACK_VAR(dst_hi));
1871 else
1872 EMIT2(0x89,
1873 add_2reg(0xC0, dst_hi, IA32_EDX));
1874 break;
1875 default:
1876 break;
1878 break;
1879 /* call */
1880 case BPF_JMP | BPF_CALL:
1882 const u8 *r1 = bpf2ia32[BPF_REG_1];
1883 const u8 *r2 = bpf2ia32[BPF_REG_2];
1884 const u8 *r3 = bpf2ia32[BPF_REG_3];
1885 const u8 *r4 = bpf2ia32[BPF_REG_4];
1886 const u8 *r5 = bpf2ia32[BPF_REG_5];
1888 if (insn->src_reg == BPF_PSEUDO_CALL)
1889 goto notyet;
1891 func = (u8 *) __bpf_call_base + imm32;
1892 jmp_offset = func - (image + addrs[i]);
1894 if (!imm32 || !is_simm32(jmp_offset)) {
1895 pr_err("unsupported BPF func %d addr %p image %p\n",
1896 imm32, func, image);
1897 return -EINVAL;
1900 /* mov eax,dword ptr [ebp+off] */
1901 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1902 STACK_VAR(r1[0]));
1903 /* mov edx,dword ptr [ebp+off] */
1904 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
1905 STACK_VAR(r1[1]));
1907 emit_push_r64(r5, &prog);
1908 emit_push_r64(r4, &prog);
1909 emit_push_r64(r3, &prog);
1910 emit_push_r64(r2, &prog);
1912 EMIT1_off32(0xE8, jmp_offset + 9);
1914 /* mov dword ptr [ebp+off],eax */
1915 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
1916 STACK_VAR(r0[0]));
1917 /* mov dword ptr [ebp+off],edx */
1918 EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
1919 STACK_VAR(r0[1]));
1921 /* add esp,32 */
1922 EMIT3(0x83, add_1reg(0xC0, IA32_ESP), 32);
1923 break;
1925 case BPF_JMP | BPF_TAIL_CALL:
1926 emit_bpf_tail_call(&prog);
1927 break;
1929 /* cond jump */
1930 case BPF_JMP | BPF_JEQ | BPF_X:
1931 case BPF_JMP | BPF_JNE | BPF_X:
1932 case BPF_JMP | BPF_JGT | BPF_X:
1933 case BPF_JMP | BPF_JLT | BPF_X:
1934 case BPF_JMP | BPF_JGE | BPF_X:
1935 case BPF_JMP | BPF_JLE | BPF_X:
1936 case BPF_JMP32 | BPF_JEQ | BPF_X:
1937 case BPF_JMP32 | BPF_JNE | BPF_X:
1938 case BPF_JMP32 | BPF_JGT | BPF_X:
1939 case BPF_JMP32 | BPF_JLT | BPF_X:
1940 case BPF_JMP32 | BPF_JGE | BPF_X:
1941 case BPF_JMP32 | BPF_JLE | BPF_X:
1942 case BPF_JMP32 | BPF_JSGT | BPF_X:
1943 case BPF_JMP32 | BPF_JSLE | BPF_X:
1944 case BPF_JMP32 | BPF_JSLT | BPF_X:
1945 case BPF_JMP32 | BPF_JSGE | BPF_X: {
1946 bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
1947 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
1948 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
1949 u8 sreg_lo = sstk ? IA32_ECX : src_lo;
1950 u8 sreg_hi = sstk ? IA32_EBX : src_hi;
1952 if (dstk) {
1953 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1954 STACK_VAR(dst_lo));
1955 if (is_jmp64)
1956 EMIT3(0x8B,
1957 add_2reg(0x40, IA32_EBP,
1958 IA32_EDX),
1959 STACK_VAR(dst_hi));
1962 if (sstk) {
1963 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
1964 STACK_VAR(src_lo));
1965 if (is_jmp64)
1966 EMIT3(0x8B,
1967 add_2reg(0x40, IA32_EBP,
1968 IA32_EBX),
1969 STACK_VAR(src_hi));
1972 if (is_jmp64) {
1973 /* cmp dreg_hi,sreg_hi */
1974 EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
1975 EMIT2(IA32_JNE, 2);
1977 /* cmp dreg_lo,sreg_lo */
1978 EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
1979 goto emit_cond_jmp;
1981 case BPF_JMP | BPF_JSGT | BPF_X:
1982 case BPF_JMP | BPF_JSLE | BPF_X:
1983 case BPF_JMP | BPF_JSLT | BPF_X:
1984 case BPF_JMP | BPF_JSGE | BPF_X: {
1985 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
1986 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
1987 u8 sreg_lo = sstk ? IA32_ECX : src_lo;
1988 u8 sreg_hi = sstk ? IA32_EBX : src_hi;
1990 if (dstk) {
1991 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1992 STACK_VAR(dst_lo));
1993 EMIT3(0x8B,
1994 add_2reg(0x40, IA32_EBP,
1995 IA32_EDX),
1996 STACK_VAR(dst_hi));
1999 if (sstk) {
2000 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
2001 STACK_VAR(src_lo));
2002 EMIT3(0x8B,
2003 add_2reg(0x40, IA32_EBP,
2004 IA32_EBX),
2005 STACK_VAR(src_hi));
2008 /* cmp dreg_hi,sreg_hi */
2009 EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
2010 EMIT2(IA32_JNE, 10);
2011 /* cmp dreg_lo,sreg_lo */
2012 EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
2013 goto emit_cond_jmp_signed;
2015 case BPF_JMP | BPF_JSET | BPF_X:
2016 case BPF_JMP32 | BPF_JSET | BPF_X: {
2017 bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
2018 u8 dreg_lo = IA32_EAX;
2019 u8 dreg_hi = IA32_EDX;
2020 u8 sreg_lo = sstk ? IA32_ECX : src_lo;
2021 u8 sreg_hi = sstk ? IA32_EBX : src_hi;
2023 if (dstk) {
2024 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2025 STACK_VAR(dst_lo));
2026 if (is_jmp64)
2027 EMIT3(0x8B,
2028 add_2reg(0x40, IA32_EBP,
2029 IA32_EDX),
2030 STACK_VAR(dst_hi));
2031 } else {
2032 /* mov dreg_lo,dst_lo */
2033 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dst_lo));
2034 if (is_jmp64)
2035 /* mov dreg_hi,dst_hi */
2036 EMIT2(0x89,
2037 add_2reg(0xC0, dreg_hi, dst_hi));
2040 if (sstk) {
2041 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
2042 STACK_VAR(src_lo));
2043 if (is_jmp64)
2044 EMIT3(0x8B,
2045 add_2reg(0x40, IA32_EBP,
2046 IA32_EBX),
2047 STACK_VAR(src_hi));
2049 /* and dreg_lo,sreg_lo */
2050 EMIT2(0x23, add_2reg(0xC0, sreg_lo, dreg_lo));
2051 if (is_jmp64) {
2052 /* and dreg_hi,sreg_hi */
2053 EMIT2(0x23, add_2reg(0xC0, sreg_hi, dreg_hi));
2054 /* or dreg_lo,dreg_hi */
2055 EMIT2(0x09, add_2reg(0xC0, dreg_lo, dreg_hi));
2057 goto emit_cond_jmp;
2059 case BPF_JMP | BPF_JSET | BPF_K:
2060 case BPF_JMP32 | BPF_JSET | BPF_K: {
2061 bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
2062 u8 dreg_lo = IA32_EAX;
2063 u8 dreg_hi = IA32_EDX;
2064 u8 sreg_lo = IA32_ECX;
2065 u8 sreg_hi = IA32_EBX;
2066 u32 hi;
2068 if (dstk) {
2069 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2070 STACK_VAR(dst_lo));
2071 if (is_jmp64)
2072 EMIT3(0x8B,
2073 add_2reg(0x40, IA32_EBP,
2074 IA32_EDX),
2075 STACK_VAR(dst_hi));
2076 } else {
2077 /* mov dreg_lo,dst_lo */
2078 EMIT2(0x89, add_2reg(0xC0, dreg_lo, dst_lo));
2079 if (is_jmp64)
2080 /* mov dreg_hi,dst_hi */
2081 EMIT2(0x89,
2082 add_2reg(0xC0, dreg_hi, dst_hi));
2085 /* mov ecx,imm32 */
2086 EMIT2_off32(0xC7, add_1reg(0xC0, sreg_lo), imm32);
2088 /* and dreg_lo,sreg_lo */
2089 EMIT2(0x23, add_2reg(0xC0, sreg_lo, dreg_lo));
2090 if (is_jmp64) {
2091 hi = imm32 & (1 << 31) ? (u32)~0 : 0;
2092 /* mov ebx,imm32 */
2093 EMIT2_off32(0xC7, add_1reg(0xC0, sreg_hi), hi);
2094 /* and dreg_hi,sreg_hi */
2095 EMIT2(0x23, add_2reg(0xC0, sreg_hi, dreg_hi));
2096 /* or dreg_lo,dreg_hi */
2097 EMIT2(0x09, add_2reg(0xC0, dreg_lo, dreg_hi));
2099 goto emit_cond_jmp;
2101 case BPF_JMP | BPF_JEQ | BPF_K:
2102 case BPF_JMP | BPF_JNE | BPF_K:
2103 case BPF_JMP | BPF_JGT | BPF_K:
2104 case BPF_JMP | BPF_JLT | BPF_K:
2105 case BPF_JMP | BPF_JGE | BPF_K:
2106 case BPF_JMP | BPF_JLE | BPF_K:
2107 case BPF_JMP32 | BPF_JEQ | BPF_K:
2108 case BPF_JMP32 | BPF_JNE | BPF_K:
2109 case BPF_JMP32 | BPF_JGT | BPF_K:
2110 case BPF_JMP32 | BPF_JLT | BPF_K:
2111 case BPF_JMP32 | BPF_JGE | BPF_K:
2112 case BPF_JMP32 | BPF_JLE | BPF_K:
2113 case BPF_JMP32 | BPF_JSGT | BPF_K:
2114 case BPF_JMP32 | BPF_JSLE | BPF_K:
2115 case BPF_JMP32 | BPF_JSLT | BPF_K:
2116 case BPF_JMP32 | BPF_JSGE | BPF_K: {
2117 bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
2118 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
2119 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
2120 u8 sreg_lo = IA32_ECX;
2121 u8 sreg_hi = IA32_EBX;
2122 u32 hi;
2124 if (dstk) {
2125 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2126 STACK_VAR(dst_lo));
2127 if (is_jmp64)
2128 EMIT3(0x8B,
2129 add_2reg(0x40, IA32_EBP,
2130 IA32_EDX),
2131 STACK_VAR(dst_hi));
2134 /* mov ecx,imm32 */
2135 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
2136 if (is_jmp64) {
2137 hi = imm32 & (1 << 31) ? (u32)~0 : 0;
2138 /* mov ebx,imm32 */
2139 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX), hi);
2140 /* cmp dreg_hi,sreg_hi */
2141 EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
2142 EMIT2(IA32_JNE, 2);
2144 /* cmp dreg_lo,sreg_lo */
2145 EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
2147 emit_cond_jmp: jmp_cond = get_cond_jmp_opcode(BPF_OP(code), false);
2148 if (jmp_cond == COND_JMP_OPCODE_INVALID)
2149 return -EFAULT;
2150 jmp_offset = addrs[i + insn->off] - addrs[i];
2151 if (is_imm8(jmp_offset)) {
2152 EMIT2(jmp_cond, jmp_offset);
2153 } else if (is_simm32(jmp_offset)) {
2154 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2155 } else {
2156 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2157 return -EFAULT;
2159 break;
2161 case BPF_JMP | BPF_JSGT | BPF_K:
2162 case BPF_JMP | BPF_JSLE | BPF_K:
2163 case BPF_JMP | BPF_JSLT | BPF_K:
2164 case BPF_JMP | BPF_JSGE | BPF_K: {
2165 u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
2166 u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
2167 u8 sreg_lo = IA32_ECX;
2168 u8 sreg_hi = IA32_EBX;
2169 u32 hi;
2171 if (dstk) {
2172 EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2173 STACK_VAR(dst_lo));
2174 EMIT3(0x8B,
2175 add_2reg(0x40, IA32_EBP,
2176 IA32_EDX),
2177 STACK_VAR(dst_hi));
2180 /* mov ecx,imm32 */
2181 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
2182 hi = imm32 & (1 << 31) ? (u32)~0 : 0;
2183 /* mov ebx,imm32 */
2184 EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX), hi);
2185 /* cmp dreg_hi,sreg_hi */
2186 EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
2187 EMIT2(IA32_JNE, 10);
2188 /* cmp dreg_lo,sreg_lo */
2189 EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
2192 * For simplicity of branch offset computation,
2193 * let's use fixed jump coding here.
2195 emit_cond_jmp_signed: /* Check the condition for low 32-bit comparison */
2196 jmp_cond = get_cond_jmp_opcode(BPF_OP(code), true);
2197 if (jmp_cond == COND_JMP_OPCODE_INVALID)
2198 return -EFAULT;
2199 jmp_offset = addrs[i + insn->off] - addrs[i] + 8;
2200 if (is_simm32(jmp_offset)) {
2201 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2202 } else {
2203 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2204 return -EFAULT;
2206 EMIT2(0xEB, 6);
2208 /* Check the condition for high 32-bit comparison */
2209 jmp_cond = get_cond_jmp_opcode(BPF_OP(code), false);
2210 if (jmp_cond == COND_JMP_OPCODE_INVALID)
2211 return -EFAULT;
2212 jmp_offset = addrs[i + insn->off] - addrs[i];
2213 if (is_simm32(jmp_offset)) {
2214 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2215 } else {
2216 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2217 return -EFAULT;
2219 break;
2221 case BPF_JMP | BPF_JA:
2222 if (insn->off == -1)
2223 /* -1 jmp instructions will always jump
2224 * backwards two bytes. Explicitly handling
2225 * this case avoids wasting too many passes
2226 * when there are long sequences of replaced
2227 * dead code.
2229 jmp_offset = -2;
2230 else
2231 jmp_offset = addrs[i + insn->off] - addrs[i];
2233 if (!jmp_offset)
2234 /* Optimize out nop jumps */
2235 break;
2236 emit_jmp:
2237 if (is_imm8(jmp_offset)) {
2238 EMIT2(0xEB, jmp_offset);
2239 } else if (is_simm32(jmp_offset)) {
2240 EMIT1_off32(0xE9, jmp_offset);
2241 } else {
2242 pr_err("jmp gen bug %llx\n", jmp_offset);
2243 return -EFAULT;
2245 break;
2246 /* STX XADD: lock *(u32 *)(dst + off) += src */
2247 case BPF_STX | BPF_XADD | BPF_W:
2248 /* STX XADD: lock *(u64 *)(dst + off) += src */
2249 case BPF_STX | BPF_XADD | BPF_DW:
2250 goto notyet;
2251 case BPF_JMP | BPF_EXIT:
2252 if (seen_exit) {
2253 jmp_offset = ctx->cleanup_addr - addrs[i];
2254 goto emit_jmp;
2256 seen_exit = true;
2257 /* Update cleanup_addr */
2258 ctx->cleanup_addr = proglen;
2259 emit_epilogue(&prog, bpf_prog->aux->stack_depth);
2260 break;
2261 notyet:
2262 pr_info_once("*** NOT YET: opcode %02x ***\n", code);
2263 return -EFAULT;
2264 default:
2266 * This error will be seen if new instruction was added
2267 * to interpreter, but not to JIT or if there is junk in
2268 * bpf_prog
2270 pr_err("bpf_jit: unknown opcode %02x\n", code);
2271 return -EINVAL;
2274 ilen = prog - temp;
2275 if (ilen > BPF_MAX_INSN_SIZE) {
2276 pr_err("bpf_jit: fatal insn size error\n");
2277 return -EFAULT;
2280 if (image) {
2281 if (unlikely(proglen + ilen > oldproglen)) {
2282 pr_err("bpf_jit: fatal error\n");
2283 return -EFAULT;
2285 memcpy(image + proglen, temp, ilen);
2287 proglen += ilen;
2288 addrs[i] = proglen;
2289 prog = temp;
2291 return proglen;
2294 bool bpf_jit_needs_zext(void)
2296 return true;
2299 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2301 struct bpf_binary_header *header = NULL;
2302 struct bpf_prog *tmp, *orig_prog = prog;
2303 int proglen, oldproglen = 0;
2304 struct jit_context ctx = {};
2305 bool tmp_blinded = false;
2306 u8 *image = NULL;
2307 int *addrs;
2308 int pass;
2309 int i;
2311 if (!prog->jit_requested)
2312 return orig_prog;
2314 tmp = bpf_jit_blind_constants(prog);
2316 * If blinding was requested and we failed during blinding,
2317 * we must fall back to the interpreter.
2319 if (IS_ERR(tmp))
2320 return orig_prog;
2321 if (tmp != prog) {
2322 tmp_blinded = true;
2323 prog = tmp;
2326 addrs = kmalloc_array(prog->len, sizeof(*addrs), GFP_KERNEL);
2327 if (!addrs) {
2328 prog = orig_prog;
2329 goto out;
2333 * Before first pass, make a rough estimation of addrs[]
2334 * each BPF instruction is translated to less than 64 bytes
2336 for (proglen = 0, i = 0; i < prog->len; i++) {
2337 proglen += 64;
2338 addrs[i] = proglen;
2340 ctx.cleanup_addr = proglen;
2343 * JITed image shrinks with every pass and the loop iterates
2344 * until the image stops shrinking. Very large BPF programs
2345 * may converge on the last pass. In such case do one more
2346 * pass to emit the final image.
2348 for (pass = 0; pass < 20 || image; pass++) {
2349 proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
2350 if (proglen <= 0) {
2351 out_image:
2352 image = NULL;
2353 if (header)
2354 bpf_jit_binary_free(header);
2355 prog = orig_prog;
2356 goto out_addrs;
2358 if (image) {
2359 if (proglen != oldproglen) {
2360 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2361 proglen, oldproglen);
2362 goto out_image;
2364 break;
2366 if (proglen == oldproglen) {
2367 header = bpf_jit_binary_alloc(proglen, &image,
2368 1, jit_fill_hole);
2369 if (!header) {
2370 prog = orig_prog;
2371 goto out_addrs;
2374 oldproglen = proglen;
2375 cond_resched();
2378 if (bpf_jit_enable > 1)
2379 bpf_jit_dump(prog->len, proglen, pass + 1, image);
2381 if (image) {
2382 bpf_jit_binary_lock_ro(header);
2383 prog->bpf_func = (void *)image;
2384 prog->jited = 1;
2385 prog->jited_len = proglen;
2386 } else {
2387 prog = orig_prog;
2390 out_addrs:
2391 kfree(addrs);
2392 out:
2393 if (tmp_blinded)
2394 bpf_jit_prog_release_other(prog, prog == orig_prog ?
2395 tmp : orig_prog);
2396 return prog;