WIP FPC-III support
[linux/fpc-iii.git] / drivers / char / xillybus / xillybus_core.c
blob57fa68834981d60a59800bce5e794cba09c0fc3c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/misc/xillybus_core.c
5 * Copyright 2011 Xillybus Ltd, http://xillybus.com
7 * Driver for the Xillybus FPGA/host framework.
9 * This driver interfaces with a special IP core in an FPGA, setting up
10 * a pipe between a hardware FIFO in the programmable logic and a device
11 * file in the host. The number of such pipes and their attributes are
12 * set up on the logic. This driver detects these automatically and
13 * creates the device files accordingly.
16 #include <linux/list.h>
17 #include <linux/device.h>
18 #include <linux/module.h>
19 #include <linux/io.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/interrupt.h>
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/cdev.h>
25 #include <linux/spinlock.h>
26 #include <linux/mutex.h>
27 #include <linux/crc32.h>
28 #include <linux/poll.h>
29 #include <linux/delay.h>
30 #include <linux/slab.h>
31 #include <linux/workqueue.h>
32 #include "xillybus.h"
34 MODULE_DESCRIPTION("Xillybus core functions");
35 MODULE_AUTHOR("Eli Billauer, Xillybus Ltd.");
36 MODULE_VERSION("1.07");
37 MODULE_ALIAS("xillybus_core");
38 MODULE_LICENSE("GPL v2");
40 /* General timeout is 100 ms, rx timeout is 10 ms */
41 #define XILLY_RX_TIMEOUT (10*HZ/1000)
42 #define XILLY_TIMEOUT (100*HZ/1000)
44 #define fpga_msg_ctrl_reg 0x0008
45 #define fpga_dma_control_reg 0x0020
46 #define fpga_dma_bufno_reg 0x0024
47 #define fpga_dma_bufaddr_lowaddr_reg 0x0028
48 #define fpga_dma_bufaddr_highaddr_reg 0x002c
49 #define fpga_buf_ctrl_reg 0x0030
50 #define fpga_buf_offset_reg 0x0034
51 #define fpga_endian_reg 0x0040
53 #define XILLYMSG_OPCODE_RELEASEBUF 1
54 #define XILLYMSG_OPCODE_QUIESCEACK 2
55 #define XILLYMSG_OPCODE_FIFOEOF 3
56 #define XILLYMSG_OPCODE_FATAL_ERROR 4
57 #define XILLYMSG_OPCODE_NONEMPTY 5
59 static const char xillyname[] = "xillybus";
61 static struct class *xillybus_class;
64 * ep_list_lock is the last lock to be taken; No other lock requests are
65 * allowed while holding it. It merely protects list_of_endpoints, and not
66 * the endpoints listed in it.
69 static LIST_HEAD(list_of_endpoints);
70 static struct mutex ep_list_lock;
71 static struct workqueue_struct *xillybus_wq;
74 * Locking scheme: Mutexes protect invocations of character device methods.
75 * If both locks are taken, wr_mutex is taken first, rd_mutex second.
77 * wr_spinlock protects wr_*_buf_idx, wr_empty, wr_sleepy, wr_ready and the
78 * buffers' end_offset fields against changes made by IRQ handler (and in
79 * theory, other file request handlers, but the mutex handles that). Nothing
80 * else.
81 * They are held for short direct memory manipulations. Needless to say,
82 * no mutex locking is allowed when a spinlock is held.
84 * rd_spinlock does the same with rd_*_buf_idx, rd_empty and end_offset.
86 * register_mutex is endpoint-specific, and is held when non-atomic
87 * register operations are performed. wr_mutex and rd_mutex may be
88 * held when register_mutex is taken, but none of the spinlocks. Note that
89 * register_mutex doesn't protect against sporadic buf_ctrl_reg writes
90 * which are unrelated to buf_offset_reg, since they are harmless.
92 * Blocking on the wait queues is allowed with mutexes held, but not with
93 * spinlocks.
95 * Only interruptible blocking is allowed on mutexes and wait queues.
97 * All in all, the locking order goes (with skips allowed, of course):
98 * wr_mutex -> rd_mutex -> register_mutex -> wr_spinlock -> rd_spinlock
101 static void malformed_message(struct xilly_endpoint *endpoint, u32 *buf)
103 int opcode;
104 int msg_channel, msg_bufno, msg_data, msg_dir;
106 opcode = (buf[0] >> 24) & 0xff;
107 msg_dir = buf[0] & 1;
108 msg_channel = (buf[0] >> 1) & 0x7ff;
109 msg_bufno = (buf[0] >> 12) & 0x3ff;
110 msg_data = buf[1] & 0xfffffff;
112 dev_warn(endpoint->dev,
113 "Malformed message (skipping): opcode=%d, channel=%03x, dir=%d, bufno=%03x, data=%07x\n",
114 opcode, msg_channel, msg_dir, msg_bufno, msg_data);
118 * xillybus_isr assumes the interrupt is allocated exclusively to it,
119 * which is the natural case MSI and several other hardware-oriented
120 * interrupts. Sharing is not allowed.
123 irqreturn_t xillybus_isr(int irq, void *data)
125 struct xilly_endpoint *ep = data;
126 u32 *buf;
127 unsigned int buf_size;
128 int i;
129 int opcode;
130 unsigned int msg_channel, msg_bufno, msg_data, msg_dir;
131 struct xilly_channel *channel;
133 buf = ep->msgbuf_addr;
134 buf_size = ep->msg_buf_size/sizeof(u32);
136 ep->ephw->hw_sync_sgl_for_cpu(ep,
137 ep->msgbuf_dma_addr,
138 ep->msg_buf_size,
139 DMA_FROM_DEVICE);
141 for (i = 0; i < buf_size; i += 2) {
142 if (((buf[i+1] >> 28) & 0xf) != ep->msg_counter) {
143 malformed_message(ep, &buf[i]);
144 dev_warn(ep->dev,
145 "Sending a NACK on counter %x (instead of %x) on entry %d\n",
146 ((buf[i+1] >> 28) & 0xf),
147 ep->msg_counter,
148 i/2);
150 if (++ep->failed_messages > 10) {
151 dev_err(ep->dev,
152 "Lost sync with interrupt messages. Stopping.\n");
153 } else {
154 ep->ephw->hw_sync_sgl_for_device(
156 ep->msgbuf_dma_addr,
157 ep->msg_buf_size,
158 DMA_FROM_DEVICE);
160 iowrite32(0x01, /* Message NACK */
161 ep->registers + fpga_msg_ctrl_reg);
163 return IRQ_HANDLED;
164 } else if (buf[i] & (1 << 22)) /* Last message */
165 break;
168 if (i >= buf_size) {
169 dev_err(ep->dev, "Bad interrupt message. Stopping.\n");
170 return IRQ_HANDLED;
173 buf_size = i + 2;
175 for (i = 0; i < buf_size; i += 2) { /* Scan through messages */
176 opcode = (buf[i] >> 24) & 0xff;
178 msg_dir = buf[i] & 1;
179 msg_channel = (buf[i] >> 1) & 0x7ff;
180 msg_bufno = (buf[i] >> 12) & 0x3ff;
181 msg_data = buf[i+1] & 0xfffffff;
183 switch (opcode) {
184 case XILLYMSG_OPCODE_RELEASEBUF:
185 if ((msg_channel > ep->num_channels) ||
186 (msg_channel == 0)) {
187 malformed_message(ep, &buf[i]);
188 break;
191 channel = ep->channels[msg_channel];
193 if (msg_dir) { /* Write channel */
194 if (msg_bufno >= channel->num_wr_buffers) {
195 malformed_message(ep, &buf[i]);
196 break;
198 spin_lock(&channel->wr_spinlock);
199 channel->wr_buffers[msg_bufno]->end_offset =
200 msg_data;
201 channel->wr_fpga_buf_idx = msg_bufno;
202 channel->wr_empty = 0;
203 channel->wr_sleepy = 0;
204 spin_unlock(&channel->wr_spinlock);
206 wake_up_interruptible(&channel->wr_wait);
208 } else {
209 /* Read channel */
211 if (msg_bufno >= channel->num_rd_buffers) {
212 malformed_message(ep, &buf[i]);
213 break;
216 spin_lock(&channel->rd_spinlock);
217 channel->rd_fpga_buf_idx = msg_bufno;
218 channel->rd_full = 0;
219 spin_unlock(&channel->rd_spinlock);
221 wake_up_interruptible(&channel->rd_wait);
222 if (!channel->rd_synchronous)
223 queue_delayed_work(
224 xillybus_wq,
225 &channel->rd_workitem,
226 XILLY_RX_TIMEOUT);
229 break;
230 case XILLYMSG_OPCODE_NONEMPTY:
231 if ((msg_channel > ep->num_channels) ||
232 (msg_channel == 0) || (!msg_dir) ||
233 !ep->channels[msg_channel]->wr_supports_nonempty) {
234 malformed_message(ep, &buf[i]);
235 break;
238 channel = ep->channels[msg_channel];
240 if (msg_bufno >= channel->num_wr_buffers) {
241 malformed_message(ep, &buf[i]);
242 break;
244 spin_lock(&channel->wr_spinlock);
245 if (msg_bufno == channel->wr_host_buf_idx)
246 channel->wr_ready = 1;
247 spin_unlock(&channel->wr_spinlock);
249 wake_up_interruptible(&channel->wr_ready_wait);
251 break;
252 case XILLYMSG_OPCODE_QUIESCEACK:
253 ep->idtlen = msg_data;
254 wake_up_interruptible(&ep->ep_wait);
256 break;
257 case XILLYMSG_OPCODE_FIFOEOF:
258 if ((msg_channel > ep->num_channels) ||
259 (msg_channel == 0) || (!msg_dir) ||
260 !ep->channels[msg_channel]->num_wr_buffers) {
261 malformed_message(ep, &buf[i]);
262 break;
264 channel = ep->channels[msg_channel];
265 spin_lock(&channel->wr_spinlock);
266 channel->wr_eof = msg_bufno;
267 channel->wr_sleepy = 0;
269 channel->wr_hangup = channel->wr_empty &&
270 (channel->wr_host_buf_idx == msg_bufno);
272 spin_unlock(&channel->wr_spinlock);
274 wake_up_interruptible(&channel->wr_wait);
276 break;
277 case XILLYMSG_OPCODE_FATAL_ERROR:
278 ep->fatal_error = 1;
279 wake_up_interruptible(&ep->ep_wait); /* For select() */
280 dev_err(ep->dev,
281 "FPGA reported a fatal error. This means that the low-level communication with the device has failed. This hardware problem is most likely unrelated to Xillybus (neither kernel module nor FPGA core), but reports are still welcome. All I/O is aborted.\n");
282 break;
283 default:
284 malformed_message(ep, &buf[i]);
285 break;
289 ep->ephw->hw_sync_sgl_for_device(ep,
290 ep->msgbuf_dma_addr,
291 ep->msg_buf_size,
292 DMA_FROM_DEVICE);
294 ep->msg_counter = (ep->msg_counter + 1) & 0xf;
295 ep->failed_messages = 0;
296 iowrite32(0x03, ep->registers + fpga_msg_ctrl_reg); /* Message ACK */
298 return IRQ_HANDLED;
300 EXPORT_SYMBOL(xillybus_isr);
303 * A few trivial memory management functions.
304 * NOTE: These functions are used only on probe and remove, and therefore
305 * no locks are applied!
308 static void xillybus_autoflush(struct work_struct *work);
310 struct xilly_alloc_state {
311 void *salami;
312 int left_of_salami;
313 int nbuffer;
314 enum dma_data_direction direction;
315 u32 regdirection;
318 static int xilly_get_dma_buffers(struct xilly_endpoint *ep,
319 struct xilly_alloc_state *s,
320 struct xilly_buffer **buffers,
321 int bufnum, int bytebufsize)
323 int i, rc;
324 dma_addr_t dma_addr;
325 struct device *dev = ep->dev;
326 struct xilly_buffer *this_buffer = NULL; /* Init to silence warning */
328 if (buffers) { /* Not the message buffer */
329 this_buffer = devm_kcalloc(dev, bufnum,
330 sizeof(struct xilly_buffer),
331 GFP_KERNEL);
332 if (!this_buffer)
333 return -ENOMEM;
336 for (i = 0; i < bufnum; i++) {
338 * Buffers are expected in descending size order, so there
339 * is either enough space for this buffer or none at all.
342 if ((s->left_of_salami < bytebufsize) &&
343 (s->left_of_salami > 0)) {
344 dev_err(ep->dev,
345 "Corrupt buffer allocation in IDT. Aborting.\n");
346 return -ENODEV;
349 if (s->left_of_salami == 0) {
350 int allocorder, allocsize;
352 allocsize = PAGE_SIZE;
353 allocorder = 0;
354 while (bytebufsize > allocsize) {
355 allocsize *= 2;
356 allocorder++;
359 s->salami = (void *) devm_get_free_pages(
360 dev,
361 GFP_KERNEL | __GFP_DMA32 | __GFP_ZERO,
362 allocorder);
363 if (!s->salami)
364 return -ENOMEM;
366 s->left_of_salami = allocsize;
369 rc = ep->ephw->map_single(ep, s->salami,
370 bytebufsize, s->direction,
371 &dma_addr);
372 if (rc)
373 return rc;
375 iowrite32((u32) (dma_addr & 0xffffffff),
376 ep->registers + fpga_dma_bufaddr_lowaddr_reg);
377 iowrite32(((u32) ((((u64) dma_addr) >> 32) & 0xffffffff)),
378 ep->registers + fpga_dma_bufaddr_highaddr_reg);
380 if (buffers) { /* Not the message buffer */
381 this_buffer->addr = s->salami;
382 this_buffer->dma_addr = dma_addr;
383 buffers[i] = this_buffer++;
385 iowrite32(s->regdirection | s->nbuffer++,
386 ep->registers + fpga_dma_bufno_reg);
387 } else {
388 ep->msgbuf_addr = s->salami;
389 ep->msgbuf_dma_addr = dma_addr;
390 ep->msg_buf_size = bytebufsize;
392 iowrite32(s->regdirection,
393 ep->registers + fpga_dma_bufno_reg);
396 s->left_of_salami -= bytebufsize;
397 s->salami += bytebufsize;
399 return 0;
402 static int xilly_setupchannels(struct xilly_endpoint *ep,
403 unsigned char *chandesc,
404 int entries)
406 struct device *dev = ep->dev;
407 int i, entry, rc;
408 struct xilly_channel *channel;
409 int channelnum, bufnum, bufsize, format, is_writebuf;
410 int bytebufsize;
411 int synchronous, allowpartial, exclusive_open, seekable;
412 int supports_nonempty;
413 int msg_buf_done = 0;
415 struct xilly_alloc_state rd_alloc = {
416 .salami = NULL,
417 .left_of_salami = 0,
418 .nbuffer = 1,
419 .direction = DMA_TO_DEVICE,
420 .regdirection = 0,
423 struct xilly_alloc_state wr_alloc = {
424 .salami = NULL,
425 .left_of_salami = 0,
426 .nbuffer = 1,
427 .direction = DMA_FROM_DEVICE,
428 .regdirection = 0x80000000,
431 channel = devm_kcalloc(dev, ep->num_channels,
432 sizeof(struct xilly_channel), GFP_KERNEL);
433 if (!channel)
434 return -ENOMEM;
436 ep->channels = devm_kcalloc(dev, ep->num_channels + 1,
437 sizeof(struct xilly_channel *),
438 GFP_KERNEL);
439 if (!ep->channels)
440 return -ENOMEM;
442 ep->channels[0] = NULL; /* Channel 0 is message buf. */
444 /* Initialize all channels with defaults */
446 for (i = 1; i <= ep->num_channels; i++) {
447 channel->wr_buffers = NULL;
448 channel->rd_buffers = NULL;
449 channel->num_wr_buffers = 0;
450 channel->num_rd_buffers = 0;
451 channel->wr_fpga_buf_idx = -1;
452 channel->wr_host_buf_idx = 0;
453 channel->wr_host_buf_pos = 0;
454 channel->wr_empty = 1;
455 channel->wr_ready = 0;
456 channel->wr_sleepy = 1;
457 channel->rd_fpga_buf_idx = 0;
458 channel->rd_host_buf_idx = 0;
459 channel->rd_host_buf_pos = 0;
460 channel->rd_full = 0;
461 channel->wr_ref_count = 0;
462 channel->rd_ref_count = 0;
464 spin_lock_init(&channel->wr_spinlock);
465 spin_lock_init(&channel->rd_spinlock);
466 mutex_init(&channel->wr_mutex);
467 mutex_init(&channel->rd_mutex);
468 init_waitqueue_head(&channel->rd_wait);
469 init_waitqueue_head(&channel->wr_wait);
470 init_waitqueue_head(&channel->wr_ready_wait);
472 INIT_DELAYED_WORK(&channel->rd_workitem, xillybus_autoflush);
474 channel->endpoint = ep;
475 channel->chan_num = i;
477 channel->log2_element_size = 0;
479 ep->channels[i] = channel++;
482 for (entry = 0; entry < entries; entry++, chandesc += 4) {
483 struct xilly_buffer **buffers = NULL;
485 is_writebuf = chandesc[0] & 0x01;
486 channelnum = (chandesc[0] >> 1) | ((chandesc[1] & 0x0f) << 7);
487 format = (chandesc[1] >> 4) & 0x03;
488 allowpartial = (chandesc[1] >> 6) & 0x01;
489 synchronous = (chandesc[1] >> 7) & 0x01;
490 bufsize = 1 << (chandesc[2] & 0x1f);
491 bufnum = 1 << (chandesc[3] & 0x0f);
492 exclusive_open = (chandesc[2] >> 7) & 0x01;
493 seekable = (chandesc[2] >> 6) & 0x01;
494 supports_nonempty = (chandesc[2] >> 5) & 0x01;
496 if ((channelnum > ep->num_channels) ||
497 ((channelnum == 0) && !is_writebuf)) {
498 dev_err(ep->dev,
499 "IDT requests channel out of range. Aborting.\n");
500 return -ENODEV;
503 channel = ep->channels[channelnum]; /* NULL for msg channel */
505 if (!is_writebuf || channelnum > 0) {
506 channel->log2_element_size = ((format > 2) ?
507 2 : format);
509 bytebufsize = bufsize *
510 (1 << channel->log2_element_size);
512 buffers = devm_kcalloc(dev, bufnum,
513 sizeof(struct xilly_buffer *),
514 GFP_KERNEL);
515 if (!buffers)
516 return -ENOMEM;
517 } else {
518 bytebufsize = bufsize << 2;
521 if (!is_writebuf) {
522 channel->num_rd_buffers = bufnum;
523 channel->rd_buf_size = bytebufsize;
524 channel->rd_allow_partial = allowpartial;
525 channel->rd_synchronous = synchronous;
526 channel->rd_exclusive_open = exclusive_open;
527 channel->seekable = seekable;
529 channel->rd_buffers = buffers;
530 rc = xilly_get_dma_buffers(ep, &rd_alloc, buffers,
531 bufnum, bytebufsize);
532 } else if (channelnum > 0) {
533 channel->num_wr_buffers = bufnum;
534 channel->wr_buf_size = bytebufsize;
536 channel->seekable = seekable;
537 channel->wr_supports_nonempty = supports_nonempty;
539 channel->wr_allow_partial = allowpartial;
540 channel->wr_synchronous = synchronous;
541 channel->wr_exclusive_open = exclusive_open;
543 channel->wr_buffers = buffers;
544 rc = xilly_get_dma_buffers(ep, &wr_alloc, buffers,
545 bufnum, bytebufsize);
546 } else {
547 rc = xilly_get_dma_buffers(ep, &wr_alloc, NULL,
548 bufnum, bytebufsize);
549 msg_buf_done++;
552 if (rc)
553 return -ENOMEM;
556 if (!msg_buf_done) {
557 dev_err(ep->dev,
558 "Corrupt IDT: No message buffer. Aborting.\n");
559 return -ENODEV;
561 return 0;
564 static int xilly_scan_idt(struct xilly_endpoint *endpoint,
565 struct xilly_idt_handle *idt_handle)
567 int count = 0;
568 unsigned char *idt = endpoint->channels[1]->wr_buffers[0]->addr;
569 unsigned char *end_of_idt = idt + endpoint->idtlen - 4;
570 unsigned char *scan;
571 int len;
573 scan = idt;
574 idt_handle->idt = idt;
576 scan++; /* Skip version number */
578 while ((scan <= end_of_idt) && *scan) {
579 while ((scan <= end_of_idt) && *scan++)
580 /* Do nothing, just scan thru string */;
581 count++;
584 scan++;
586 if (scan > end_of_idt) {
587 dev_err(endpoint->dev,
588 "IDT device name list overflow. Aborting.\n");
589 return -ENODEV;
591 idt_handle->chandesc = scan;
593 len = endpoint->idtlen - (3 + ((int) (scan - idt)));
595 if (len & 0x03) {
596 dev_err(endpoint->dev,
597 "Corrupt IDT device name list. Aborting.\n");
598 return -ENODEV;
601 idt_handle->entries = len >> 2;
602 endpoint->num_channels = count;
604 return 0;
607 static int xilly_obtain_idt(struct xilly_endpoint *endpoint)
609 struct xilly_channel *channel;
610 unsigned char *version;
611 long t;
613 channel = endpoint->channels[1]; /* This should be generated ad-hoc */
615 channel->wr_sleepy = 1;
617 iowrite32(1 |
618 (3 << 24), /* Opcode 3 for channel 0 = Send IDT */
619 endpoint->registers + fpga_buf_ctrl_reg);
621 t = wait_event_interruptible_timeout(channel->wr_wait,
622 (!channel->wr_sleepy),
623 XILLY_TIMEOUT);
625 if (t <= 0) {
626 dev_err(endpoint->dev, "Failed to obtain IDT. Aborting.\n");
628 if (endpoint->fatal_error)
629 return -EIO;
631 return -ENODEV;
634 endpoint->ephw->hw_sync_sgl_for_cpu(
635 channel->endpoint,
636 channel->wr_buffers[0]->dma_addr,
637 channel->wr_buf_size,
638 DMA_FROM_DEVICE);
640 if (channel->wr_buffers[0]->end_offset != endpoint->idtlen) {
641 dev_err(endpoint->dev,
642 "IDT length mismatch (%d != %d). Aborting.\n",
643 channel->wr_buffers[0]->end_offset, endpoint->idtlen);
644 return -ENODEV;
647 if (crc32_le(~0, channel->wr_buffers[0]->addr,
648 endpoint->idtlen+1) != 0) {
649 dev_err(endpoint->dev, "IDT failed CRC check. Aborting.\n");
650 return -ENODEV;
653 version = channel->wr_buffers[0]->addr;
655 /* Check version number. Reject anything above 0x82. */
656 if (*version > 0x82) {
657 dev_err(endpoint->dev,
658 "No support for IDT version 0x%02x. Maybe the xillybus driver needs an upgrade. Aborting.\n",
659 *version);
660 return -ENODEV;
663 return 0;
666 static ssize_t xillybus_read(struct file *filp, char __user *userbuf,
667 size_t count, loff_t *f_pos)
669 ssize_t rc;
670 unsigned long flags;
671 int bytes_done = 0;
672 int no_time_left = 0;
673 long deadline, left_to_sleep;
674 struct xilly_channel *channel = filp->private_data;
676 int empty, reached_eof, exhausted, ready;
677 /* Initializations are there only to silence warnings */
679 int howmany = 0, bufpos = 0, bufidx = 0, bufferdone = 0;
680 int waiting_bufidx;
682 if (channel->endpoint->fatal_error)
683 return -EIO;
685 deadline = jiffies + 1 + XILLY_RX_TIMEOUT;
687 rc = mutex_lock_interruptible(&channel->wr_mutex);
688 if (rc)
689 return rc;
691 while (1) { /* Note that we may drop mutex within this loop */
692 int bytes_to_do = count - bytes_done;
694 spin_lock_irqsave(&channel->wr_spinlock, flags);
696 empty = channel->wr_empty;
697 ready = !empty || channel->wr_ready;
699 if (!empty) {
700 bufidx = channel->wr_host_buf_idx;
701 bufpos = channel->wr_host_buf_pos;
702 howmany = ((channel->wr_buffers[bufidx]->end_offset
703 + 1) << channel->log2_element_size)
704 - bufpos;
706 /* Update wr_host_* to its post-operation state */
707 if (howmany > bytes_to_do) {
708 bufferdone = 0;
710 howmany = bytes_to_do;
711 channel->wr_host_buf_pos += howmany;
712 } else {
713 bufferdone = 1;
715 channel->wr_host_buf_pos = 0;
717 if (bufidx == channel->wr_fpga_buf_idx) {
718 channel->wr_empty = 1;
719 channel->wr_sleepy = 1;
720 channel->wr_ready = 0;
723 if (bufidx >= (channel->num_wr_buffers - 1))
724 channel->wr_host_buf_idx = 0;
725 else
726 channel->wr_host_buf_idx++;
731 * Marking our situation after the possible changes above,
732 * for use after releasing the spinlock.
734 * empty = empty before change
735 * exhasted = empty after possible change
738 reached_eof = channel->wr_empty &&
739 (channel->wr_host_buf_idx == channel->wr_eof);
740 channel->wr_hangup = reached_eof;
741 exhausted = channel->wr_empty;
742 waiting_bufidx = channel->wr_host_buf_idx;
744 spin_unlock_irqrestore(&channel->wr_spinlock, flags);
746 if (!empty) { /* Go on, now without the spinlock */
748 if (bufpos == 0) /* Position zero means it's virgin */
749 channel->endpoint->ephw->hw_sync_sgl_for_cpu(
750 channel->endpoint,
751 channel->wr_buffers[bufidx]->dma_addr,
752 channel->wr_buf_size,
753 DMA_FROM_DEVICE);
755 if (copy_to_user(
756 userbuf,
757 channel->wr_buffers[bufidx]->addr
758 + bufpos, howmany))
759 rc = -EFAULT;
761 userbuf += howmany;
762 bytes_done += howmany;
764 if (bufferdone) {
765 channel->endpoint->ephw->hw_sync_sgl_for_device(
766 channel->endpoint,
767 channel->wr_buffers[bufidx]->dma_addr,
768 channel->wr_buf_size,
769 DMA_FROM_DEVICE);
772 * Tell FPGA the buffer is done with. It's an
773 * atomic operation to the FPGA, so what
774 * happens with other channels doesn't matter,
775 * and the certain channel is protected with
776 * the channel-specific mutex.
779 iowrite32(1 | (channel->chan_num << 1) |
780 (bufidx << 12),
781 channel->endpoint->registers +
782 fpga_buf_ctrl_reg);
785 if (rc) {
786 mutex_unlock(&channel->wr_mutex);
787 return rc;
791 /* This includes a zero-count return = EOF */
792 if ((bytes_done >= count) || reached_eof)
793 break;
795 if (!exhausted)
796 continue; /* More in RAM buffer(s)? Just go on. */
798 if ((bytes_done > 0) &&
799 (no_time_left ||
800 (channel->wr_synchronous && channel->wr_allow_partial)))
801 break;
804 * Nonblocking read: The "ready" flag tells us that the FPGA
805 * has data to send. In non-blocking mode, if it isn't on,
806 * just return. But if there is, we jump directly to the point
807 * where we ask for the FPGA to send all it has, and wait
808 * until that data arrives. So in a sense, we *do* block in
809 * nonblocking mode, but only for a very short time.
812 if (!no_time_left && (filp->f_flags & O_NONBLOCK)) {
813 if (bytes_done > 0)
814 break;
816 if (ready)
817 goto desperate;
819 rc = -EAGAIN;
820 break;
823 if (!no_time_left || (bytes_done > 0)) {
825 * Note that in case of an element-misaligned read
826 * request, offsetlimit will include the last element,
827 * which will be partially read from.
829 int offsetlimit = ((count - bytes_done) - 1) >>
830 channel->log2_element_size;
831 int buf_elements = channel->wr_buf_size >>
832 channel->log2_element_size;
835 * In synchronous mode, always send an offset limit.
836 * Just don't send a value too big.
839 if (channel->wr_synchronous) {
840 /* Don't request more than one buffer */
841 if (channel->wr_allow_partial &&
842 (offsetlimit >= buf_elements))
843 offsetlimit = buf_elements - 1;
845 /* Don't request more than all buffers */
846 if (!channel->wr_allow_partial &&
847 (offsetlimit >=
848 (buf_elements * channel->num_wr_buffers)))
849 offsetlimit = buf_elements *
850 channel->num_wr_buffers - 1;
854 * In asynchronous mode, force early flush of a buffer
855 * only if that will allow returning a full count. The
856 * "offsetlimit < ( ... )" rather than "<=" excludes
857 * requesting a full buffer, which would obviously
858 * cause a buffer transmission anyhow
861 if (channel->wr_synchronous ||
862 (offsetlimit < (buf_elements - 1))) {
863 mutex_lock(&channel->endpoint->register_mutex);
865 iowrite32(offsetlimit,
866 channel->endpoint->registers +
867 fpga_buf_offset_reg);
869 iowrite32(1 | (channel->chan_num << 1) |
870 (2 << 24) | /* 2 = offset limit */
871 (waiting_bufidx << 12),
872 channel->endpoint->registers +
873 fpga_buf_ctrl_reg);
875 mutex_unlock(&channel->endpoint->
876 register_mutex);
881 * If partial completion is disallowed, there is no point in
882 * timeout sleeping. Neither if no_time_left is set and
883 * there's no data.
886 if (!channel->wr_allow_partial ||
887 (no_time_left && (bytes_done == 0))) {
889 * This do-loop will run more than once if another
890 * thread reasserted wr_sleepy before we got the mutex
891 * back, so we try again.
894 do {
895 mutex_unlock(&channel->wr_mutex);
897 if (wait_event_interruptible(
898 channel->wr_wait,
899 (!channel->wr_sleepy)))
900 goto interrupted;
902 if (mutex_lock_interruptible(
903 &channel->wr_mutex))
904 goto interrupted;
905 } while (channel->wr_sleepy);
907 continue;
909 interrupted: /* Mutex is not held if got here */
910 if (channel->endpoint->fatal_error)
911 return -EIO;
912 if (bytes_done)
913 return bytes_done;
914 if (filp->f_flags & O_NONBLOCK)
915 return -EAGAIN; /* Don't admit snoozing */
916 return -EINTR;
919 left_to_sleep = deadline - ((long) jiffies);
922 * If our time is out, skip the waiting. We may miss wr_sleepy
923 * being deasserted but hey, almost missing the train is like
924 * missing it.
927 if (left_to_sleep > 0) {
928 left_to_sleep =
929 wait_event_interruptible_timeout(
930 channel->wr_wait,
931 (!channel->wr_sleepy),
932 left_to_sleep);
934 if (left_to_sleep > 0) /* wr_sleepy deasserted */
935 continue;
937 if (left_to_sleep < 0) { /* Interrupt */
938 mutex_unlock(&channel->wr_mutex);
939 if (channel->endpoint->fatal_error)
940 return -EIO;
941 if (bytes_done)
942 return bytes_done;
943 return -EINTR;
947 desperate:
948 no_time_left = 1; /* We're out of sleeping time. Desperate! */
950 if (bytes_done == 0) {
952 * Reaching here means that we allow partial return,
953 * that we've run out of time, and that we have
954 * nothing to return.
955 * So tell the FPGA to send anything it has or gets.
958 iowrite32(1 | (channel->chan_num << 1) |
959 (3 << 24) | /* Opcode 3, flush it all! */
960 (waiting_bufidx << 12),
961 channel->endpoint->registers +
962 fpga_buf_ctrl_reg);
966 * Reaching here means that we *do* have data in the buffer,
967 * but the "partial" flag disallows returning less than
968 * required. And we don't have as much. So loop again,
969 * which is likely to end up blocking indefinitely until
970 * enough data has arrived.
974 mutex_unlock(&channel->wr_mutex);
976 if (channel->endpoint->fatal_error)
977 return -EIO;
979 if (rc)
980 return rc;
982 return bytes_done;
986 * The timeout argument takes values as follows:
987 * >0 : Flush with timeout
988 * ==0 : Flush, and wait idefinitely for the flush to complete
989 * <0 : Autoflush: Flush only if there's a single buffer occupied
992 static int xillybus_myflush(struct xilly_channel *channel, long timeout)
994 int rc;
995 unsigned long flags;
997 int end_offset_plus1;
998 int bufidx, bufidx_minus1;
999 int i;
1000 int empty;
1001 int new_rd_host_buf_pos;
1003 if (channel->endpoint->fatal_error)
1004 return -EIO;
1005 rc = mutex_lock_interruptible(&channel->rd_mutex);
1006 if (rc)
1007 return rc;
1010 * Don't flush a closed channel. This can happen when the work queued
1011 * autoflush thread fires off after the file has closed. This is not
1012 * an error, just something to dismiss.
1015 if (!channel->rd_ref_count)
1016 goto done;
1018 bufidx = channel->rd_host_buf_idx;
1020 bufidx_minus1 = (bufidx == 0) ?
1021 channel->num_rd_buffers - 1 :
1022 bufidx - 1;
1024 end_offset_plus1 = channel->rd_host_buf_pos >>
1025 channel->log2_element_size;
1027 new_rd_host_buf_pos = channel->rd_host_buf_pos -
1028 (end_offset_plus1 << channel->log2_element_size);
1030 /* Submit the current buffer if it's nonempty */
1031 if (end_offset_plus1) {
1032 unsigned char *tail = channel->rd_buffers[bufidx]->addr +
1033 (end_offset_plus1 << channel->log2_element_size);
1035 /* Copy unflushed data, so we can put it in next buffer */
1036 for (i = 0; i < new_rd_host_buf_pos; i++)
1037 channel->rd_leftovers[i] = *tail++;
1039 spin_lock_irqsave(&channel->rd_spinlock, flags);
1041 /* Autoflush only if a single buffer is occupied */
1043 if ((timeout < 0) &&
1044 (channel->rd_full ||
1045 (bufidx_minus1 != channel->rd_fpga_buf_idx))) {
1046 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1048 * A new work item may be queued by the ISR exactly
1049 * now, since the execution of a work item allows the
1050 * queuing of a new one while it's running.
1052 goto done;
1055 /* The 4th element is never needed for data, so it's a flag */
1056 channel->rd_leftovers[3] = (new_rd_host_buf_pos != 0);
1058 /* Set up rd_full to reflect a certain moment's state */
1060 if (bufidx == channel->rd_fpga_buf_idx)
1061 channel->rd_full = 1;
1062 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1064 if (bufidx >= (channel->num_rd_buffers - 1))
1065 channel->rd_host_buf_idx = 0;
1066 else
1067 channel->rd_host_buf_idx++;
1069 channel->endpoint->ephw->hw_sync_sgl_for_device(
1070 channel->endpoint,
1071 channel->rd_buffers[bufidx]->dma_addr,
1072 channel->rd_buf_size,
1073 DMA_TO_DEVICE);
1075 mutex_lock(&channel->endpoint->register_mutex);
1077 iowrite32(end_offset_plus1 - 1,
1078 channel->endpoint->registers + fpga_buf_offset_reg);
1080 iowrite32((channel->chan_num << 1) | /* Channel ID */
1081 (2 << 24) | /* Opcode 2, submit buffer */
1082 (bufidx << 12),
1083 channel->endpoint->registers + fpga_buf_ctrl_reg);
1085 mutex_unlock(&channel->endpoint->register_mutex);
1086 } else if (bufidx == 0) {
1087 bufidx = channel->num_rd_buffers - 1;
1088 } else {
1089 bufidx--;
1092 channel->rd_host_buf_pos = new_rd_host_buf_pos;
1094 if (timeout < 0)
1095 goto done; /* Autoflush */
1098 * bufidx is now the last buffer written to (or equal to
1099 * rd_fpga_buf_idx if buffer was never written to), and
1100 * channel->rd_host_buf_idx the one after it.
1102 * If bufidx == channel->rd_fpga_buf_idx we're either empty or full.
1105 while (1) { /* Loop waiting for draining of buffers */
1106 spin_lock_irqsave(&channel->rd_spinlock, flags);
1108 if (bufidx != channel->rd_fpga_buf_idx)
1109 channel->rd_full = 1; /*
1110 * Not really full,
1111 * but needs waiting.
1114 empty = !channel->rd_full;
1116 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1118 if (empty)
1119 break;
1122 * Indefinite sleep with mutex taken. With data waiting for
1123 * flushing user should not be surprised if open() for write
1124 * sleeps.
1126 if (timeout == 0)
1127 wait_event_interruptible(channel->rd_wait,
1128 (!channel->rd_full));
1130 else if (wait_event_interruptible_timeout(
1131 channel->rd_wait,
1132 (!channel->rd_full),
1133 timeout) == 0) {
1134 dev_warn(channel->endpoint->dev,
1135 "Timed out while flushing. Output data may be lost.\n");
1137 rc = -ETIMEDOUT;
1138 break;
1141 if (channel->rd_full) {
1142 rc = -EINTR;
1143 break;
1147 done:
1148 mutex_unlock(&channel->rd_mutex);
1150 if (channel->endpoint->fatal_error)
1151 return -EIO;
1153 return rc;
1156 static int xillybus_flush(struct file *filp, fl_owner_t id)
1158 if (!(filp->f_mode & FMODE_WRITE))
1159 return 0;
1161 return xillybus_myflush(filp->private_data, HZ); /* 1 second timeout */
1164 static void xillybus_autoflush(struct work_struct *work)
1166 struct delayed_work *workitem = container_of(
1167 work, struct delayed_work, work);
1168 struct xilly_channel *channel = container_of(
1169 workitem, struct xilly_channel, rd_workitem);
1170 int rc;
1172 rc = xillybus_myflush(channel, -1);
1173 if (rc == -EINTR)
1174 dev_warn(channel->endpoint->dev,
1175 "Autoflush failed because work queue thread got a signal.\n");
1176 else if (rc)
1177 dev_err(channel->endpoint->dev,
1178 "Autoflush failed under weird circumstances.\n");
1181 static ssize_t xillybus_write(struct file *filp, const char __user *userbuf,
1182 size_t count, loff_t *f_pos)
1184 ssize_t rc;
1185 unsigned long flags;
1186 int bytes_done = 0;
1187 struct xilly_channel *channel = filp->private_data;
1189 int full, exhausted;
1190 /* Initializations are there only to silence warnings */
1192 int howmany = 0, bufpos = 0, bufidx = 0, bufferdone = 0;
1193 int end_offset_plus1 = 0;
1195 if (channel->endpoint->fatal_error)
1196 return -EIO;
1198 rc = mutex_lock_interruptible(&channel->rd_mutex);
1199 if (rc)
1200 return rc;
1202 while (1) {
1203 int bytes_to_do = count - bytes_done;
1205 spin_lock_irqsave(&channel->rd_spinlock, flags);
1207 full = channel->rd_full;
1209 if (!full) {
1210 bufidx = channel->rd_host_buf_idx;
1211 bufpos = channel->rd_host_buf_pos;
1212 howmany = channel->rd_buf_size - bufpos;
1215 * Update rd_host_* to its state after this operation.
1216 * count=0 means committing the buffer immediately,
1217 * which is like flushing, but not necessarily block.
1220 if ((howmany > bytes_to_do) &&
1221 (count ||
1222 ((bufpos >> channel->log2_element_size) == 0))) {
1223 bufferdone = 0;
1225 howmany = bytes_to_do;
1226 channel->rd_host_buf_pos += howmany;
1227 } else {
1228 bufferdone = 1;
1230 if (count) {
1231 end_offset_plus1 =
1232 channel->rd_buf_size >>
1233 channel->log2_element_size;
1234 channel->rd_host_buf_pos = 0;
1235 } else {
1236 unsigned char *tail;
1237 int i;
1239 howmany = 0;
1241 end_offset_plus1 = bufpos >>
1242 channel->log2_element_size;
1244 channel->rd_host_buf_pos -=
1245 end_offset_plus1 <<
1246 channel->log2_element_size;
1248 tail = channel->
1249 rd_buffers[bufidx]->addr +
1250 (end_offset_plus1 <<
1251 channel->log2_element_size);
1253 for (i = 0;
1254 i < channel->rd_host_buf_pos;
1255 i++)
1256 channel->rd_leftovers[i] =
1257 *tail++;
1260 if (bufidx == channel->rd_fpga_buf_idx)
1261 channel->rd_full = 1;
1263 if (bufidx >= (channel->num_rd_buffers - 1))
1264 channel->rd_host_buf_idx = 0;
1265 else
1266 channel->rd_host_buf_idx++;
1271 * Marking our situation after the possible changes above,
1272 * for use after releasing the spinlock.
1274 * full = full before change
1275 * exhasted = full after possible change
1278 exhausted = channel->rd_full;
1280 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1282 if (!full) { /* Go on, now without the spinlock */
1283 unsigned char *head =
1284 channel->rd_buffers[bufidx]->addr;
1285 int i;
1287 if ((bufpos == 0) || /* Zero means it's virgin */
1288 (channel->rd_leftovers[3] != 0)) {
1289 channel->endpoint->ephw->hw_sync_sgl_for_cpu(
1290 channel->endpoint,
1291 channel->rd_buffers[bufidx]->dma_addr,
1292 channel->rd_buf_size,
1293 DMA_TO_DEVICE);
1295 /* Virgin, but leftovers are due */
1296 for (i = 0; i < bufpos; i++)
1297 *head++ = channel->rd_leftovers[i];
1299 channel->rd_leftovers[3] = 0; /* Clear flag */
1302 if (copy_from_user(
1303 channel->rd_buffers[bufidx]->addr + bufpos,
1304 userbuf, howmany))
1305 rc = -EFAULT;
1307 userbuf += howmany;
1308 bytes_done += howmany;
1310 if (bufferdone) {
1311 channel->endpoint->ephw->hw_sync_sgl_for_device(
1312 channel->endpoint,
1313 channel->rd_buffers[bufidx]->dma_addr,
1314 channel->rd_buf_size,
1315 DMA_TO_DEVICE);
1317 mutex_lock(&channel->endpoint->register_mutex);
1319 iowrite32(end_offset_plus1 - 1,
1320 channel->endpoint->registers +
1321 fpga_buf_offset_reg);
1323 iowrite32((channel->chan_num << 1) |
1324 (2 << 24) | /* 2 = submit buffer */
1325 (bufidx << 12),
1326 channel->endpoint->registers +
1327 fpga_buf_ctrl_reg);
1329 mutex_unlock(&channel->endpoint->
1330 register_mutex);
1332 channel->rd_leftovers[3] =
1333 (channel->rd_host_buf_pos != 0);
1336 if (rc) {
1337 mutex_unlock(&channel->rd_mutex);
1339 if (channel->endpoint->fatal_error)
1340 return -EIO;
1342 if (!channel->rd_synchronous)
1343 queue_delayed_work(
1344 xillybus_wq,
1345 &channel->rd_workitem,
1346 XILLY_RX_TIMEOUT);
1348 return rc;
1352 if (bytes_done >= count)
1353 break;
1355 if (!exhausted)
1356 continue; /* If there's more space, just go on */
1358 if ((bytes_done > 0) && channel->rd_allow_partial)
1359 break;
1362 * Indefinite sleep with mutex taken. With data waiting for
1363 * flushing, user should not be surprised if open() for write
1364 * sleeps.
1367 if (filp->f_flags & O_NONBLOCK) {
1368 rc = -EAGAIN;
1369 break;
1372 if (wait_event_interruptible(channel->rd_wait,
1373 (!channel->rd_full))) {
1374 mutex_unlock(&channel->rd_mutex);
1376 if (channel->endpoint->fatal_error)
1377 return -EIO;
1379 if (bytes_done)
1380 return bytes_done;
1381 return -EINTR;
1385 mutex_unlock(&channel->rd_mutex);
1387 if (!channel->rd_synchronous)
1388 queue_delayed_work(xillybus_wq,
1389 &channel->rd_workitem,
1390 XILLY_RX_TIMEOUT);
1392 if (channel->endpoint->fatal_error)
1393 return -EIO;
1395 if (rc)
1396 return rc;
1398 if ((channel->rd_synchronous) && (bytes_done > 0)) {
1399 rc = xillybus_myflush(filp->private_data, 0); /* No timeout */
1401 if (rc && (rc != -EINTR))
1402 return rc;
1405 return bytes_done;
1408 static int xillybus_open(struct inode *inode, struct file *filp)
1410 int rc = 0;
1411 unsigned long flags;
1412 int minor = iminor(inode);
1413 int major = imajor(inode);
1414 struct xilly_endpoint *ep_iter, *endpoint = NULL;
1415 struct xilly_channel *channel;
1417 mutex_lock(&ep_list_lock);
1419 list_for_each_entry(ep_iter, &list_of_endpoints, ep_list) {
1420 if ((ep_iter->major == major) &&
1421 (minor >= ep_iter->lowest_minor) &&
1422 (minor < (ep_iter->lowest_minor +
1423 ep_iter->num_channels))) {
1424 endpoint = ep_iter;
1425 break;
1428 mutex_unlock(&ep_list_lock);
1430 if (!endpoint) {
1431 pr_err("xillybus: open() failed to find a device for major=%d and minor=%d\n",
1432 major, minor);
1433 return -ENODEV;
1436 if (endpoint->fatal_error)
1437 return -EIO;
1439 channel = endpoint->channels[1 + minor - endpoint->lowest_minor];
1440 filp->private_data = channel;
1443 * It gets complicated because:
1444 * 1. We don't want to take a mutex we don't have to
1445 * 2. We don't want to open one direction if the other will fail.
1448 if ((filp->f_mode & FMODE_READ) && (!channel->num_wr_buffers))
1449 return -ENODEV;
1451 if ((filp->f_mode & FMODE_WRITE) && (!channel->num_rd_buffers))
1452 return -ENODEV;
1454 if ((filp->f_mode & FMODE_READ) && (filp->f_flags & O_NONBLOCK) &&
1455 (channel->wr_synchronous || !channel->wr_allow_partial ||
1456 !channel->wr_supports_nonempty)) {
1457 dev_err(endpoint->dev,
1458 "open() failed: O_NONBLOCK not allowed for read on this device\n");
1459 return -ENODEV;
1462 if ((filp->f_mode & FMODE_WRITE) && (filp->f_flags & O_NONBLOCK) &&
1463 (channel->rd_synchronous || !channel->rd_allow_partial)) {
1464 dev_err(endpoint->dev,
1465 "open() failed: O_NONBLOCK not allowed for write on this device\n");
1466 return -ENODEV;
1470 * Note: open() may block on getting mutexes despite O_NONBLOCK.
1471 * This shouldn't occur normally, since multiple open of the same
1472 * file descriptor is almost always prohibited anyhow
1473 * (*_exclusive_open is normally set in real-life systems).
1476 if (filp->f_mode & FMODE_READ) {
1477 rc = mutex_lock_interruptible(&channel->wr_mutex);
1478 if (rc)
1479 return rc;
1482 if (filp->f_mode & FMODE_WRITE) {
1483 rc = mutex_lock_interruptible(&channel->rd_mutex);
1484 if (rc)
1485 goto unlock_wr;
1488 if ((filp->f_mode & FMODE_READ) &&
1489 (channel->wr_ref_count != 0) &&
1490 (channel->wr_exclusive_open)) {
1491 rc = -EBUSY;
1492 goto unlock;
1495 if ((filp->f_mode & FMODE_WRITE) &&
1496 (channel->rd_ref_count != 0) &&
1497 (channel->rd_exclusive_open)) {
1498 rc = -EBUSY;
1499 goto unlock;
1502 if (filp->f_mode & FMODE_READ) {
1503 if (channel->wr_ref_count == 0) { /* First open of file */
1504 /* Move the host to first buffer */
1505 spin_lock_irqsave(&channel->wr_spinlock, flags);
1506 channel->wr_host_buf_idx = 0;
1507 channel->wr_host_buf_pos = 0;
1508 channel->wr_fpga_buf_idx = -1;
1509 channel->wr_empty = 1;
1510 channel->wr_ready = 0;
1511 channel->wr_sleepy = 1;
1512 channel->wr_eof = -1;
1513 channel->wr_hangup = 0;
1515 spin_unlock_irqrestore(&channel->wr_spinlock, flags);
1517 iowrite32(1 | (channel->chan_num << 1) |
1518 (4 << 24) | /* Opcode 4, open channel */
1519 ((channel->wr_synchronous & 1) << 23),
1520 channel->endpoint->registers +
1521 fpga_buf_ctrl_reg);
1524 channel->wr_ref_count++;
1527 if (filp->f_mode & FMODE_WRITE) {
1528 if (channel->rd_ref_count == 0) { /* First open of file */
1529 /* Move the host to first buffer */
1530 spin_lock_irqsave(&channel->rd_spinlock, flags);
1531 channel->rd_host_buf_idx = 0;
1532 channel->rd_host_buf_pos = 0;
1533 channel->rd_leftovers[3] = 0; /* No leftovers. */
1534 channel->rd_fpga_buf_idx = channel->num_rd_buffers - 1;
1535 channel->rd_full = 0;
1537 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1539 iowrite32((channel->chan_num << 1) |
1540 (4 << 24), /* Opcode 4, open channel */
1541 channel->endpoint->registers +
1542 fpga_buf_ctrl_reg);
1545 channel->rd_ref_count++;
1548 unlock:
1549 if (filp->f_mode & FMODE_WRITE)
1550 mutex_unlock(&channel->rd_mutex);
1551 unlock_wr:
1552 if (filp->f_mode & FMODE_READ)
1553 mutex_unlock(&channel->wr_mutex);
1555 if (!rc && (!channel->seekable))
1556 return nonseekable_open(inode, filp);
1558 return rc;
1561 static int xillybus_release(struct inode *inode, struct file *filp)
1563 unsigned long flags;
1564 struct xilly_channel *channel = filp->private_data;
1566 int buf_idx;
1567 int eof;
1569 if (channel->endpoint->fatal_error)
1570 return -EIO;
1572 if (filp->f_mode & FMODE_WRITE) {
1573 mutex_lock(&channel->rd_mutex);
1575 channel->rd_ref_count--;
1577 if (channel->rd_ref_count == 0) {
1579 * We rely on the kernel calling flush()
1580 * before we get here.
1583 iowrite32((channel->chan_num << 1) | /* Channel ID */
1584 (5 << 24), /* Opcode 5, close channel */
1585 channel->endpoint->registers +
1586 fpga_buf_ctrl_reg);
1588 mutex_unlock(&channel->rd_mutex);
1591 if (filp->f_mode & FMODE_READ) {
1592 mutex_lock(&channel->wr_mutex);
1594 channel->wr_ref_count--;
1596 if (channel->wr_ref_count == 0) {
1597 iowrite32(1 | (channel->chan_num << 1) |
1598 (5 << 24), /* Opcode 5, close channel */
1599 channel->endpoint->registers +
1600 fpga_buf_ctrl_reg);
1603 * This is crazily cautious: We make sure that not
1604 * only that we got an EOF (be it because we closed
1605 * the channel or because of a user's EOF), but verify
1606 * that it's one beyond the last buffer arrived, so
1607 * we have no leftover buffers pending before wrapping
1608 * up (which can only happen in asynchronous channels,
1609 * BTW)
1612 while (1) {
1613 spin_lock_irqsave(&channel->wr_spinlock,
1614 flags);
1615 buf_idx = channel->wr_fpga_buf_idx;
1616 eof = channel->wr_eof;
1617 channel->wr_sleepy = 1;
1618 spin_unlock_irqrestore(&channel->wr_spinlock,
1619 flags);
1622 * Check if eof points at the buffer after
1623 * the last one the FPGA submitted. Note that
1624 * no EOF is marked by negative eof.
1627 buf_idx++;
1628 if (buf_idx == channel->num_wr_buffers)
1629 buf_idx = 0;
1631 if (buf_idx == eof)
1632 break;
1635 * Steal extra 100 ms if awaken by interrupt.
1636 * This is a simple workaround for an
1637 * interrupt pending when entering, which would
1638 * otherwise result in declaring the hardware
1639 * non-responsive.
1642 if (wait_event_interruptible(
1643 channel->wr_wait,
1644 (!channel->wr_sleepy)))
1645 msleep(100);
1647 if (channel->wr_sleepy) {
1648 mutex_unlock(&channel->wr_mutex);
1649 dev_warn(channel->endpoint->dev,
1650 "Hardware failed to respond to close command, therefore left in messy state.\n");
1651 return -EINTR;
1656 mutex_unlock(&channel->wr_mutex);
1659 return 0;
1662 static loff_t xillybus_llseek(struct file *filp, loff_t offset, int whence)
1664 struct xilly_channel *channel = filp->private_data;
1665 loff_t pos = filp->f_pos;
1666 int rc = 0;
1669 * Take both mutexes not allowing interrupts, since it seems like
1670 * common applications don't expect an -EINTR here. Besides, multiple
1671 * access to a single file descriptor on seekable devices is a mess
1672 * anyhow.
1675 if (channel->endpoint->fatal_error)
1676 return -EIO;
1678 mutex_lock(&channel->wr_mutex);
1679 mutex_lock(&channel->rd_mutex);
1681 switch (whence) {
1682 case SEEK_SET:
1683 pos = offset;
1684 break;
1685 case SEEK_CUR:
1686 pos += offset;
1687 break;
1688 case SEEK_END:
1689 pos = offset; /* Going to the end => to the beginning */
1690 break;
1691 default:
1692 rc = -EINVAL;
1693 goto end;
1696 /* In any case, we must finish on an element boundary */
1697 if (pos & ((1 << channel->log2_element_size) - 1)) {
1698 rc = -EINVAL;
1699 goto end;
1702 mutex_lock(&channel->endpoint->register_mutex);
1704 iowrite32(pos >> channel->log2_element_size,
1705 channel->endpoint->registers + fpga_buf_offset_reg);
1707 iowrite32((channel->chan_num << 1) |
1708 (6 << 24), /* Opcode 6, set address */
1709 channel->endpoint->registers + fpga_buf_ctrl_reg);
1711 mutex_unlock(&channel->endpoint->register_mutex);
1713 end:
1714 mutex_unlock(&channel->rd_mutex);
1715 mutex_unlock(&channel->wr_mutex);
1717 if (rc) /* Return error after releasing mutexes */
1718 return rc;
1720 filp->f_pos = pos;
1723 * Since seekable devices are allowed only when the channel is
1724 * synchronous, we assume that there is no data pending in either
1725 * direction (which holds true as long as no concurrent access on the
1726 * file descriptor takes place).
1727 * The only thing we may need to throw away is leftovers from partial
1728 * write() flush.
1731 channel->rd_leftovers[3] = 0;
1733 return pos;
1736 static __poll_t xillybus_poll(struct file *filp, poll_table *wait)
1738 struct xilly_channel *channel = filp->private_data;
1739 __poll_t mask = 0;
1740 unsigned long flags;
1742 poll_wait(filp, &channel->endpoint->ep_wait, wait);
1745 * poll() won't play ball regarding read() channels which
1746 * aren't asynchronous and support the nonempty message. Allowing
1747 * that will create situations where data has been delivered at
1748 * the FPGA, and users expecting select() to wake up, which it may
1749 * not.
1752 if (!channel->wr_synchronous && channel->wr_supports_nonempty) {
1753 poll_wait(filp, &channel->wr_wait, wait);
1754 poll_wait(filp, &channel->wr_ready_wait, wait);
1756 spin_lock_irqsave(&channel->wr_spinlock, flags);
1757 if (!channel->wr_empty || channel->wr_ready)
1758 mask |= EPOLLIN | EPOLLRDNORM;
1760 if (channel->wr_hangup)
1762 * Not EPOLLHUP, because its behavior is in the
1763 * mist, and EPOLLIN does what we want: Wake up
1764 * the read file descriptor so it sees EOF.
1766 mask |= EPOLLIN | EPOLLRDNORM;
1767 spin_unlock_irqrestore(&channel->wr_spinlock, flags);
1771 * If partial data write is disallowed on a write() channel,
1772 * it's pointless to ever signal OK to write, because is could
1773 * block despite some space being available.
1776 if (channel->rd_allow_partial) {
1777 poll_wait(filp, &channel->rd_wait, wait);
1779 spin_lock_irqsave(&channel->rd_spinlock, flags);
1780 if (!channel->rd_full)
1781 mask |= EPOLLOUT | EPOLLWRNORM;
1782 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1785 if (channel->endpoint->fatal_error)
1786 mask |= EPOLLERR;
1788 return mask;
1791 static const struct file_operations xillybus_fops = {
1792 .owner = THIS_MODULE,
1793 .read = xillybus_read,
1794 .write = xillybus_write,
1795 .open = xillybus_open,
1796 .flush = xillybus_flush,
1797 .release = xillybus_release,
1798 .llseek = xillybus_llseek,
1799 .poll = xillybus_poll,
1802 static int xillybus_init_chrdev(struct xilly_endpoint *endpoint,
1803 const unsigned char *idt)
1805 int rc;
1806 dev_t dev;
1807 int devnum, i, minor, major;
1808 char devname[48];
1809 struct device *device;
1811 rc = alloc_chrdev_region(&dev, 0, /* minor start */
1812 endpoint->num_channels,
1813 xillyname);
1814 if (rc) {
1815 dev_warn(endpoint->dev, "Failed to obtain major/minors");
1816 return rc;
1819 endpoint->major = major = MAJOR(dev);
1820 endpoint->lowest_minor = minor = MINOR(dev);
1822 cdev_init(&endpoint->cdev, &xillybus_fops);
1823 endpoint->cdev.owner = endpoint->ephw->owner;
1824 rc = cdev_add(&endpoint->cdev, MKDEV(major, minor),
1825 endpoint->num_channels);
1826 if (rc) {
1827 dev_warn(endpoint->dev, "Failed to add cdev. Aborting.\n");
1828 goto unregister_chrdev;
1831 idt++;
1833 for (i = minor, devnum = 0;
1834 devnum < endpoint->num_channels;
1835 devnum++, i++) {
1836 snprintf(devname, sizeof(devname)-1, "xillybus_%s", idt);
1838 devname[sizeof(devname)-1] = 0; /* Should never matter */
1840 while (*idt++)
1841 /* Skip to next */;
1843 device = device_create(xillybus_class,
1844 NULL,
1845 MKDEV(major, i),
1846 NULL,
1847 "%s", devname);
1849 if (IS_ERR(device)) {
1850 dev_warn(endpoint->dev,
1851 "Failed to create %s device. Aborting.\n",
1852 devname);
1853 rc = -ENODEV;
1854 goto unroll_device_create;
1858 dev_info(endpoint->dev, "Created %d device files.\n",
1859 endpoint->num_channels);
1860 return 0; /* succeed */
1862 unroll_device_create:
1863 devnum--; i--;
1864 for (; devnum >= 0; devnum--, i--)
1865 device_destroy(xillybus_class, MKDEV(major, i));
1867 cdev_del(&endpoint->cdev);
1868 unregister_chrdev:
1869 unregister_chrdev_region(MKDEV(major, minor), endpoint->num_channels);
1871 return rc;
1874 static void xillybus_cleanup_chrdev(struct xilly_endpoint *endpoint)
1876 int minor;
1878 for (minor = endpoint->lowest_minor;
1879 minor < (endpoint->lowest_minor + endpoint->num_channels);
1880 minor++)
1881 device_destroy(xillybus_class, MKDEV(endpoint->major, minor));
1882 cdev_del(&endpoint->cdev);
1883 unregister_chrdev_region(MKDEV(endpoint->major,
1884 endpoint->lowest_minor),
1885 endpoint->num_channels);
1887 dev_info(endpoint->dev, "Removed %d device files.\n",
1888 endpoint->num_channels);
1891 struct xilly_endpoint *xillybus_init_endpoint(struct pci_dev *pdev,
1892 struct device *dev,
1893 struct xilly_endpoint_hardware
1894 *ephw)
1896 struct xilly_endpoint *endpoint;
1898 endpoint = devm_kzalloc(dev, sizeof(*endpoint), GFP_KERNEL);
1899 if (!endpoint)
1900 return NULL;
1902 endpoint->pdev = pdev;
1903 endpoint->dev = dev;
1904 endpoint->ephw = ephw;
1905 endpoint->msg_counter = 0x0b;
1906 endpoint->failed_messages = 0;
1907 endpoint->fatal_error = 0;
1909 init_waitqueue_head(&endpoint->ep_wait);
1910 mutex_init(&endpoint->register_mutex);
1912 return endpoint;
1914 EXPORT_SYMBOL(xillybus_init_endpoint);
1916 static int xilly_quiesce(struct xilly_endpoint *endpoint)
1918 long t;
1920 endpoint->idtlen = -1;
1922 iowrite32((u32) (endpoint->dma_using_dac & 0x0001),
1923 endpoint->registers + fpga_dma_control_reg);
1925 t = wait_event_interruptible_timeout(endpoint->ep_wait,
1926 (endpoint->idtlen >= 0),
1927 XILLY_TIMEOUT);
1928 if (t <= 0) {
1929 dev_err(endpoint->dev,
1930 "Failed to quiesce the device on exit.\n");
1931 return -ENODEV;
1933 return 0;
1936 int xillybus_endpoint_discovery(struct xilly_endpoint *endpoint)
1938 int rc;
1939 long t;
1941 void *bootstrap_resources;
1942 int idtbuffersize = (1 << PAGE_SHIFT);
1943 struct device *dev = endpoint->dev;
1946 * The bogus IDT is used during bootstrap for allocating the initial
1947 * message buffer, and then the message buffer and space for the IDT
1948 * itself. The initial message buffer is of a single page's size, but
1949 * it's soon replaced with a more modest one (and memory is freed).
1952 unsigned char bogus_idt[8] = { 1, 224, (PAGE_SHIFT)-2, 0,
1953 3, 192, PAGE_SHIFT, 0 };
1954 struct xilly_idt_handle idt_handle;
1957 * Writing the value 0x00000001 to Endianness register signals which
1958 * endianness this processor is using, so the FPGA can swap words as
1959 * necessary.
1962 iowrite32(1, endpoint->registers + fpga_endian_reg);
1964 /* Bootstrap phase I: Allocate temporary message buffer */
1966 bootstrap_resources = devres_open_group(dev, NULL, GFP_KERNEL);
1967 if (!bootstrap_resources)
1968 return -ENOMEM;
1970 endpoint->num_channels = 0;
1972 rc = xilly_setupchannels(endpoint, bogus_idt, 1);
1973 if (rc)
1974 return rc;
1976 /* Clear the message subsystem (and counter in particular) */
1977 iowrite32(0x04, endpoint->registers + fpga_msg_ctrl_reg);
1979 endpoint->idtlen = -1;
1982 * Set DMA 32/64 bit mode, quiesce the device (?!) and get IDT
1983 * buffer size.
1985 iowrite32((u32) (endpoint->dma_using_dac & 0x0001),
1986 endpoint->registers + fpga_dma_control_reg);
1988 t = wait_event_interruptible_timeout(endpoint->ep_wait,
1989 (endpoint->idtlen >= 0),
1990 XILLY_TIMEOUT);
1991 if (t <= 0) {
1992 dev_err(endpoint->dev, "No response from FPGA. Aborting.\n");
1993 return -ENODEV;
1996 /* Enable DMA */
1997 iowrite32((u32) (0x0002 | (endpoint->dma_using_dac & 0x0001)),
1998 endpoint->registers + fpga_dma_control_reg);
2000 /* Bootstrap phase II: Allocate buffer for IDT and obtain it */
2001 while (endpoint->idtlen >= idtbuffersize) {
2002 idtbuffersize *= 2;
2003 bogus_idt[6]++;
2006 endpoint->num_channels = 1;
2008 rc = xilly_setupchannels(endpoint, bogus_idt, 2);
2009 if (rc)
2010 goto failed_idt;
2012 rc = xilly_obtain_idt(endpoint);
2013 if (rc)
2014 goto failed_idt;
2016 rc = xilly_scan_idt(endpoint, &idt_handle);
2017 if (rc)
2018 goto failed_idt;
2020 devres_close_group(dev, bootstrap_resources);
2022 /* Bootstrap phase III: Allocate buffers according to IDT */
2024 rc = xilly_setupchannels(endpoint,
2025 idt_handle.chandesc,
2026 idt_handle.entries);
2027 if (rc)
2028 goto failed_idt;
2031 * endpoint is now completely configured. We put it on the list
2032 * available to open() before registering the char device(s)
2035 mutex_lock(&ep_list_lock);
2036 list_add_tail(&endpoint->ep_list, &list_of_endpoints);
2037 mutex_unlock(&ep_list_lock);
2039 rc = xillybus_init_chrdev(endpoint, idt_handle.idt);
2040 if (rc)
2041 goto failed_chrdevs;
2043 devres_release_group(dev, bootstrap_resources);
2045 return 0;
2047 failed_chrdevs:
2048 mutex_lock(&ep_list_lock);
2049 list_del(&endpoint->ep_list);
2050 mutex_unlock(&ep_list_lock);
2052 failed_idt:
2053 xilly_quiesce(endpoint);
2054 flush_workqueue(xillybus_wq);
2056 return rc;
2058 EXPORT_SYMBOL(xillybus_endpoint_discovery);
2060 void xillybus_endpoint_remove(struct xilly_endpoint *endpoint)
2062 xillybus_cleanup_chrdev(endpoint);
2064 mutex_lock(&ep_list_lock);
2065 list_del(&endpoint->ep_list);
2066 mutex_unlock(&ep_list_lock);
2068 xilly_quiesce(endpoint);
2071 * Flushing is done upon endpoint release to prevent access to memory
2072 * just about to be released. This makes the quiesce complete.
2074 flush_workqueue(xillybus_wq);
2076 EXPORT_SYMBOL(xillybus_endpoint_remove);
2078 static int __init xillybus_init(void)
2080 mutex_init(&ep_list_lock);
2082 xillybus_class = class_create(THIS_MODULE, xillyname);
2083 if (IS_ERR(xillybus_class))
2084 return PTR_ERR(xillybus_class);
2086 xillybus_wq = alloc_workqueue(xillyname, 0, 0);
2087 if (!xillybus_wq) {
2088 class_destroy(xillybus_class);
2089 return -ENOMEM;
2092 return 0;
2095 static void __exit xillybus_exit(void)
2097 /* flush_workqueue() was called for each endpoint released */
2098 destroy_workqueue(xillybus_wq);
2100 class_destroy(xillybus_class);
2103 module_init(xillybus_init);
2104 module_exit(xillybus_exit);