1 // SPDX-License-Identifier: GPL-2.0-only
3 * drivers/clocksource/arm_global_timer.c
5 * Copyright (C) 2013 STMicroelectronics (R&D) Limited.
6 * Author: Stuart Menefy <stuart.menefy@st.com>
7 * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
10 #include <linux/init.h>
11 #include <linux/interrupt.h>
12 #include <linux/clocksource.h>
13 #include <linux/clockchips.h>
14 #include <linux/cpu.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/sched_clock.h>
24 #include <asm/cputype.h>
26 #define GT_COUNTER0 0x00
27 #define GT_COUNTER1 0x04
29 #define GT_CONTROL 0x08
30 #define GT_CONTROL_TIMER_ENABLE BIT(0) /* this bit is NOT banked */
31 #define GT_CONTROL_COMP_ENABLE BIT(1) /* banked */
32 #define GT_CONTROL_IRQ_ENABLE BIT(2) /* banked */
33 #define GT_CONTROL_AUTO_INC BIT(3) /* banked */
35 #define GT_INT_STATUS 0x0c
36 #define GT_INT_STATUS_EVENT_FLAG BIT(0)
40 #define GT_AUTO_INC 0x18
43 * We are expecting to be clocked by the ARM peripheral clock.
45 * Note: it is assumed we are using a prescaler value of zero, so this is
46 * the units for all operations.
48 static void __iomem
*gt_base
;
49 static unsigned long gt_clk_rate
;
51 static struct clock_event_device __percpu
*gt_evt
;
54 * To get the value from the Global Timer Counter register proceed as follows:
55 * 1. Read the upper 32-bit timer counter register
56 * 2. Read the lower 32-bit timer counter register
57 * 3. Read the upper 32-bit timer counter register again. If the value is
58 * different to the 32-bit upper value read previously, go back to step 2.
59 * Otherwise the 64-bit timer counter value is correct.
61 static u64 notrace
_gt_counter_read(void)
67 upper
= readl_relaxed(gt_base
+ GT_COUNTER1
);
70 lower
= readl_relaxed(gt_base
+ GT_COUNTER0
);
71 upper
= readl_relaxed(gt_base
+ GT_COUNTER1
);
72 } while (upper
!= old_upper
);
80 static u64
gt_counter_read(void)
82 return _gt_counter_read();
86 * To ensure that updates to comparator value register do not set the
87 * Interrupt Status Register proceed as follows:
88 * 1. Clear the Comp Enable bit in the Timer Control Register.
89 * 2. Write the lower 32-bit Comparator Value Register.
90 * 3. Write the upper 32-bit Comparator Value Register.
91 * 4. Set the Comp Enable bit and, if necessary, the IRQ enable bit.
93 static void gt_compare_set(unsigned long delta
, int periodic
)
95 u64 counter
= gt_counter_read();
99 ctrl
= GT_CONTROL_TIMER_ENABLE
;
100 writel_relaxed(ctrl
, gt_base
+ GT_CONTROL
);
101 writel_relaxed(lower_32_bits(counter
), gt_base
+ GT_COMP0
);
102 writel_relaxed(upper_32_bits(counter
), gt_base
+ GT_COMP1
);
105 writel_relaxed(delta
, gt_base
+ GT_AUTO_INC
);
106 ctrl
|= GT_CONTROL_AUTO_INC
;
109 ctrl
|= GT_CONTROL_COMP_ENABLE
| GT_CONTROL_IRQ_ENABLE
;
110 writel_relaxed(ctrl
, gt_base
+ GT_CONTROL
);
113 static int gt_clockevent_shutdown(struct clock_event_device
*evt
)
117 ctrl
= readl(gt_base
+ GT_CONTROL
);
118 ctrl
&= ~(GT_CONTROL_COMP_ENABLE
| GT_CONTROL_IRQ_ENABLE
|
119 GT_CONTROL_AUTO_INC
);
120 writel(ctrl
, gt_base
+ GT_CONTROL
);
124 static int gt_clockevent_set_periodic(struct clock_event_device
*evt
)
126 gt_compare_set(DIV_ROUND_CLOSEST(gt_clk_rate
, HZ
), 1);
130 static int gt_clockevent_set_next_event(unsigned long evt
,
131 struct clock_event_device
*unused
)
133 gt_compare_set(evt
, 0);
137 static irqreturn_t
gt_clockevent_interrupt(int irq
, void *dev_id
)
139 struct clock_event_device
*evt
= dev_id
;
141 if (!(readl_relaxed(gt_base
+ GT_INT_STATUS
) &
142 GT_INT_STATUS_EVENT_FLAG
))
146 * ERRATA 740657( Global Timer can send 2 interrupts for
147 * the same event in single-shot mode)
149 * Either disable single-shot mode.
151 * Modify the Interrupt Handler to avoid the
152 * offending sequence. This is achieved by clearing
153 * the Global Timer flag _after_ having incremented
154 * the Comparator register value to a higher value.
156 if (clockevent_state_oneshot(evt
))
157 gt_compare_set(ULONG_MAX
, 0);
159 writel_relaxed(GT_INT_STATUS_EVENT_FLAG
, gt_base
+ GT_INT_STATUS
);
160 evt
->event_handler(evt
);
165 static int gt_starting_cpu(unsigned int cpu
)
167 struct clock_event_device
*clk
= this_cpu_ptr(gt_evt
);
169 clk
->name
= "arm_global_timer";
170 clk
->features
= CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT
|
171 CLOCK_EVT_FEAT_PERCPU
;
172 clk
->set_state_shutdown
= gt_clockevent_shutdown
;
173 clk
->set_state_periodic
= gt_clockevent_set_periodic
;
174 clk
->set_state_oneshot
= gt_clockevent_shutdown
;
175 clk
->set_state_oneshot_stopped
= gt_clockevent_shutdown
;
176 clk
->set_next_event
= gt_clockevent_set_next_event
;
177 clk
->cpumask
= cpumask_of(cpu
);
180 clockevents_config_and_register(clk
, gt_clk_rate
,
182 enable_percpu_irq(clk
->irq
, IRQ_TYPE_NONE
);
186 static int gt_dying_cpu(unsigned int cpu
)
188 struct clock_event_device
*clk
= this_cpu_ptr(gt_evt
);
190 gt_clockevent_shutdown(clk
);
191 disable_percpu_irq(clk
->irq
);
195 static u64
gt_clocksource_read(struct clocksource
*cs
)
197 return gt_counter_read();
200 static void gt_resume(struct clocksource
*cs
)
204 ctrl
= readl(gt_base
+ GT_CONTROL
);
205 if (!(ctrl
& GT_CONTROL_TIMER_ENABLE
))
206 /* re-enable timer on resume */
207 writel(GT_CONTROL_TIMER_ENABLE
, gt_base
+ GT_CONTROL
);
210 static struct clocksource gt_clocksource
= {
211 .name
= "arm_global_timer",
213 .read
= gt_clocksource_read
,
214 .mask
= CLOCKSOURCE_MASK(64),
215 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
219 #ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
220 static u64 notrace
gt_sched_clock_read(void)
222 return _gt_counter_read();
226 static unsigned long gt_read_long(void)
228 return readl_relaxed(gt_base
+ GT_COUNTER0
);
231 static struct delay_timer gt_delay_timer
= {
232 .read_current_timer
= gt_read_long
,
235 static void __init
gt_delay_timer_init(void)
237 gt_delay_timer
.freq
= gt_clk_rate
;
238 register_current_timer_delay(>_delay_timer
);
241 static int __init
gt_clocksource_init(void)
243 writel(0, gt_base
+ GT_CONTROL
);
244 writel(0, gt_base
+ GT_COUNTER0
);
245 writel(0, gt_base
+ GT_COUNTER1
);
246 /* enables timer on all the cores */
247 writel(GT_CONTROL_TIMER_ENABLE
, gt_base
+ GT_CONTROL
);
249 #ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
250 sched_clock_register(gt_sched_clock_read
, 64, gt_clk_rate
);
252 return clocksource_register_hz(>_clocksource
, gt_clk_rate
);
255 static int __init
global_timer_of_register(struct device_node
*np
)
261 * In A9 r2p0 the comparators for each processor with the global timer
262 * fire when the timer value is greater than or equal to. In previous
263 * revisions the comparators fired when the timer value was equal to.
265 if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9
266 && (read_cpuid_id() & 0xf0000f) < 0x200000) {
267 pr_warn("global-timer: non support for this cpu version.\n");
271 gt_ppi
= irq_of_parse_and_map(np
, 0);
273 pr_warn("global-timer: unable to parse irq\n");
277 gt_base
= of_iomap(np
, 0);
279 pr_warn("global-timer: invalid base address\n");
283 gt_clk
= of_clk_get(np
, 0);
284 if (!IS_ERR(gt_clk
)) {
285 err
= clk_prepare_enable(gt_clk
);
289 pr_warn("global-timer: clk not found\n");
294 gt_clk_rate
= clk_get_rate(gt_clk
);
295 gt_evt
= alloc_percpu(struct clock_event_device
);
297 pr_warn("global-timer: can't allocate memory\n");
302 err
= request_percpu_irq(gt_ppi
, gt_clockevent_interrupt
,
305 pr_warn("global-timer: can't register interrupt %d (%d)\n",
310 /* Register and immediately configure the timer on the boot CPU */
311 err
= gt_clocksource_init();
315 err
= cpuhp_setup_state(CPUHP_AP_ARM_GLOBAL_TIMER_STARTING
,
316 "clockevents/arm/global_timer:starting",
317 gt_starting_cpu
, gt_dying_cpu
);
321 gt_delay_timer_init();
326 free_percpu_irq(gt_ppi
, gt_evt
);
330 clk_disable_unprepare(gt_clk
);
333 WARN(err
, "ARM Global timer register failed (%d)\n", err
);
338 /* Only tested on r2p2 and r3p0 */
339 TIMER_OF_DECLARE(arm_gt
, "arm,cortex-a9-global-timer",
340 global_timer_of_register
);