WIP FPC-III support
[linux/fpc-iii.git] / drivers / clocksource / sh_tmu.c
blobb00dec0655cb283971b8010b04e8734c434ff055
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SuperH Timer Support - TMU
5 * Copyright (C) 2009 Magnus Damm
6 */
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/sh_timer.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
27 #ifdef CONFIG_SUPERH
28 #include <asm/platform_early.h>
29 #endif
31 enum sh_tmu_model {
32 SH_TMU,
33 SH_TMU_SH3,
36 struct sh_tmu_device;
38 struct sh_tmu_channel {
39 struct sh_tmu_device *tmu;
40 unsigned int index;
42 void __iomem *base;
43 int irq;
45 unsigned long periodic;
46 struct clock_event_device ced;
47 struct clocksource cs;
48 bool cs_enabled;
49 unsigned int enable_count;
52 struct sh_tmu_device {
53 struct platform_device *pdev;
55 void __iomem *mapbase;
56 struct clk *clk;
57 unsigned long rate;
59 enum sh_tmu_model model;
61 raw_spinlock_t lock; /* Protect the shared start/stop register */
63 struct sh_tmu_channel *channels;
64 unsigned int num_channels;
66 bool has_clockevent;
67 bool has_clocksource;
70 #define TSTR -1 /* shared register */
71 #define TCOR 0 /* channel register */
72 #define TCNT 1 /* channel register */
73 #define TCR 2 /* channel register */
75 #define TCR_UNF (1 << 8)
76 #define TCR_UNIE (1 << 5)
77 #define TCR_TPSC_CLK4 (0 << 0)
78 #define TCR_TPSC_CLK16 (1 << 0)
79 #define TCR_TPSC_CLK64 (2 << 0)
80 #define TCR_TPSC_CLK256 (3 << 0)
81 #define TCR_TPSC_CLK1024 (4 << 0)
82 #define TCR_TPSC_MASK (7 << 0)
84 static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
86 unsigned long offs;
88 if (reg_nr == TSTR) {
89 switch (ch->tmu->model) {
90 case SH_TMU_SH3:
91 return ioread8(ch->tmu->mapbase + 2);
92 case SH_TMU:
93 return ioread8(ch->tmu->mapbase + 4);
97 offs = reg_nr << 2;
99 if (reg_nr == TCR)
100 return ioread16(ch->base + offs);
101 else
102 return ioread32(ch->base + offs);
105 static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
106 unsigned long value)
108 unsigned long offs;
110 if (reg_nr == TSTR) {
111 switch (ch->tmu->model) {
112 case SH_TMU_SH3:
113 return iowrite8(value, ch->tmu->mapbase + 2);
114 case SH_TMU:
115 return iowrite8(value, ch->tmu->mapbase + 4);
119 offs = reg_nr << 2;
121 if (reg_nr == TCR)
122 iowrite16(value, ch->base + offs);
123 else
124 iowrite32(value, ch->base + offs);
127 static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
129 unsigned long flags, value;
131 /* start stop register shared by multiple timer channels */
132 raw_spin_lock_irqsave(&ch->tmu->lock, flags);
133 value = sh_tmu_read(ch, TSTR);
135 if (start)
136 value |= 1 << ch->index;
137 else
138 value &= ~(1 << ch->index);
140 sh_tmu_write(ch, TSTR, value);
141 raw_spin_unlock_irqrestore(&ch->tmu->lock, flags);
144 static int __sh_tmu_enable(struct sh_tmu_channel *ch)
146 int ret;
148 /* enable clock */
149 ret = clk_enable(ch->tmu->clk);
150 if (ret) {
151 dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
152 ch->index);
153 return ret;
156 /* make sure channel is disabled */
157 sh_tmu_start_stop_ch(ch, 0);
159 /* maximum timeout */
160 sh_tmu_write(ch, TCOR, 0xffffffff);
161 sh_tmu_write(ch, TCNT, 0xffffffff);
163 /* configure channel to parent clock / 4, irq off */
164 sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
166 /* enable channel */
167 sh_tmu_start_stop_ch(ch, 1);
169 return 0;
172 static int sh_tmu_enable(struct sh_tmu_channel *ch)
174 if (ch->enable_count++ > 0)
175 return 0;
177 pm_runtime_get_sync(&ch->tmu->pdev->dev);
178 dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
180 return __sh_tmu_enable(ch);
183 static void __sh_tmu_disable(struct sh_tmu_channel *ch)
185 /* disable channel */
186 sh_tmu_start_stop_ch(ch, 0);
188 /* disable interrupts in TMU block */
189 sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
191 /* stop clock */
192 clk_disable(ch->tmu->clk);
195 static void sh_tmu_disable(struct sh_tmu_channel *ch)
197 if (WARN_ON(ch->enable_count == 0))
198 return;
200 if (--ch->enable_count > 0)
201 return;
203 __sh_tmu_disable(ch);
205 dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
206 pm_runtime_put(&ch->tmu->pdev->dev);
209 static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
210 int periodic)
212 /* stop timer */
213 sh_tmu_start_stop_ch(ch, 0);
215 /* acknowledge interrupt */
216 sh_tmu_read(ch, TCR);
218 /* enable interrupt */
219 sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
221 /* reload delta value in case of periodic timer */
222 if (periodic)
223 sh_tmu_write(ch, TCOR, delta);
224 else
225 sh_tmu_write(ch, TCOR, 0xffffffff);
227 sh_tmu_write(ch, TCNT, delta);
229 /* start timer */
230 sh_tmu_start_stop_ch(ch, 1);
233 static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
235 struct sh_tmu_channel *ch = dev_id;
237 /* disable or acknowledge interrupt */
238 if (clockevent_state_oneshot(&ch->ced))
239 sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
240 else
241 sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
243 /* notify clockevent layer */
244 ch->ced.event_handler(&ch->ced);
245 return IRQ_HANDLED;
248 static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
250 return container_of(cs, struct sh_tmu_channel, cs);
253 static u64 sh_tmu_clocksource_read(struct clocksource *cs)
255 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
257 return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
260 static int sh_tmu_clocksource_enable(struct clocksource *cs)
262 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
263 int ret;
265 if (WARN_ON(ch->cs_enabled))
266 return 0;
268 ret = sh_tmu_enable(ch);
269 if (!ret)
270 ch->cs_enabled = true;
272 return ret;
275 static void sh_tmu_clocksource_disable(struct clocksource *cs)
277 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
279 if (WARN_ON(!ch->cs_enabled))
280 return;
282 sh_tmu_disable(ch);
283 ch->cs_enabled = false;
286 static void sh_tmu_clocksource_suspend(struct clocksource *cs)
288 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
290 if (!ch->cs_enabled)
291 return;
293 if (--ch->enable_count == 0) {
294 __sh_tmu_disable(ch);
295 dev_pm_genpd_suspend(&ch->tmu->pdev->dev);
299 static void sh_tmu_clocksource_resume(struct clocksource *cs)
301 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
303 if (!ch->cs_enabled)
304 return;
306 if (ch->enable_count++ == 0) {
307 dev_pm_genpd_resume(&ch->tmu->pdev->dev);
308 __sh_tmu_enable(ch);
312 static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
313 const char *name)
315 struct clocksource *cs = &ch->cs;
317 cs->name = name;
318 cs->rating = 200;
319 cs->read = sh_tmu_clocksource_read;
320 cs->enable = sh_tmu_clocksource_enable;
321 cs->disable = sh_tmu_clocksource_disable;
322 cs->suspend = sh_tmu_clocksource_suspend;
323 cs->resume = sh_tmu_clocksource_resume;
324 cs->mask = CLOCKSOURCE_MASK(32);
325 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
327 dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
328 ch->index);
330 clocksource_register_hz(cs, ch->tmu->rate);
331 return 0;
334 static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
336 return container_of(ced, struct sh_tmu_channel, ced);
339 static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
341 sh_tmu_enable(ch);
343 if (periodic) {
344 ch->periodic = (ch->tmu->rate + HZ/2) / HZ;
345 sh_tmu_set_next(ch, ch->periodic, 1);
349 static int sh_tmu_clock_event_shutdown(struct clock_event_device *ced)
351 struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
353 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
354 sh_tmu_disable(ch);
355 return 0;
358 static int sh_tmu_clock_event_set_state(struct clock_event_device *ced,
359 int periodic)
361 struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
363 /* deal with old setting first */
364 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
365 sh_tmu_disable(ch);
367 dev_info(&ch->tmu->pdev->dev, "ch%u: used for %s clock events\n",
368 ch->index, periodic ? "periodic" : "oneshot");
369 sh_tmu_clock_event_start(ch, periodic);
370 return 0;
373 static int sh_tmu_clock_event_set_oneshot(struct clock_event_device *ced)
375 return sh_tmu_clock_event_set_state(ced, 0);
378 static int sh_tmu_clock_event_set_periodic(struct clock_event_device *ced)
380 return sh_tmu_clock_event_set_state(ced, 1);
383 static int sh_tmu_clock_event_next(unsigned long delta,
384 struct clock_event_device *ced)
386 struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
388 BUG_ON(!clockevent_state_oneshot(ced));
390 /* program new delta value */
391 sh_tmu_set_next(ch, delta, 0);
392 return 0;
395 static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
397 dev_pm_genpd_suspend(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
400 static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
402 dev_pm_genpd_resume(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
405 static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
406 const char *name)
408 struct clock_event_device *ced = &ch->ced;
409 int ret;
411 ced->name = name;
412 ced->features = CLOCK_EVT_FEAT_PERIODIC;
413 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
414 ced->rating = 200;
415 ced->cpumask = cpu_possible_mask;
416 ced->set_next_event = sh_tmu_clock_event_next;
417 ced->set_state_shutdown = sh_tmu_clock_event_shutdown;
418 ced->set_state_periodic = sh_tmu_clock_event_set_periodic;
419 ced->set_state_oneshot = sh_tmu_clock_event_set_oneshot;
420 ced->suspend = sh_tmu_clock_event_suspend;
421 ced->resume = sh_tmu_clock_event_resume;
423 dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
424 ch->index);
426 clockevents_config_and_register(ced, ch->tmu->rate, 0x300, 0xffffffff);
428 ret = request_irq(ch->irq, sh_tmu_interrupt,
429 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
430 dev_name(&ch->tmu->pdev->dev), ch);
431 if (ret) {
432 dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
433 ch->index, ch->irq);
434 return;
438 static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
439 bool clockevent, bool clocksource)
441 if (clockevent) {
442 ch->tmu->has_clockevent = true;
443 sh_tmu_register_clockevent(ch, name);
444 } else if (clocksource) {
445 ch->tmu->has_clocksource = true;
446 sh_tmu_register_clocksource(ch, name);
449 return 0;
452 static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index,
453 bool clockevent, bool clocksource,
454 struct sh_tmu_device *tmu)
456 /* Skip unused channels. */
457 if (!clockevent && !clocksource)
458 return 0;
460 ch->tmu = tmu;
461 ch->index = index;
463 if (tmu->model == SH_TMU_SH3)
464 ch->base = tmu->mapbase + 4 + ch->index * 12;
465 else
466 ch->base = tmu->mapbase + 8 + ch->index * 12;
468 ch->irq = platform_get_irq(tmu->pdev, index);
469 if (ch->irq < 0)
470 return ch->irq;
472 ch->cs_enabled = false;
473 ch->enable_count = 0;
475 return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
476 clockevent, clocksource);
479 static int sh_tmu_map_memory(struct sh_tmu_device *tmu)
481 struct resource *res;
483 res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
484 if (!res) {
485 dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
486 return -ENXIO;
489 tmu->mapbase = ioremap(res->start, resource_size(res));
490 if (tmu->mapbase == NULL)
491 return -ENXIO;
493 return 0;
496 static int sh_tmu_parse_dt(struct sh_tmu_device *tmu)
498 struct device_node *np = tmu->pdev->dev.of_node;
500 tmu->model = SH_TMU;
501 tmu->num_channels = 3;
503 of_property_read_u32(np, "#renesas,channels", &tmu->num_channels);
505 if (tmu->num_channels != 2 && tmu->num_channels != 3) {
506 dev_err(&tmu->pdev->dev, "invalid number of channels %u\n",
507 tmu->num_channels);
508 return -EINVAL;
511 return 0;
514 static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
516 unsigned int i;
517 int ret;
519 tmu->pdev = pdev;
521 raw_spin_lock_init(&tmu->lock);
523 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
524 ret = sh_tmu_parse_dt(tmu);
525 if (ret < 0)
526 return ret;
527 } else if (pdev->dev.platform_data) {
528 const struct platform_device_id *id = pdev->id_entry;
529 struct sh_timer_config *cfg = pdev->dev.platform_data;
531 tmu->model = id->driver_data;
532 tmu->num_channels = hweight8(cfg->channels_mask);
533 } else {
534 dev_err(&tmu->pdev->dev, "missing platform data\n");
535 return -ENXIO;
538 /* Get hold of clock. */
539 tmu->clk = clk_get(&tmu->pdev->dev, "fck");
540 if (IS_ERR(tmu->clk)) {
541 dev_err(&tmu->pdev->dev, "cannot get clock\n");
542 return PTR_ERR(tmu->clk);
545 ret = clk_prepare(tmu->clk);
546 if (ret < 0)
547 goto err_clk_put;
549 /* Determine clock rate. */
550 ret = clk_enable(tmu->clk);
551 if (ret < 0)
552 goto err_clk_unprepare;
554 tmu->rate = clk_get_rate(tmu->clk) / 4;
555 clk_disable(tmu->clk);
557 /* Map the memory resource. */
558 ret = sh_tmu_map_memory(tmu);
559 if (ret < 0) {
560 dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
561 goto err_clk_unprepare;
564 /* Allocate and setup the channels. */
565 tmu->channels = kcalloc(tmu->num_channels, sizeof(*tmu->channels),
566 GFP_KERNEL);
567 if (tmu->channels == NULL) {
568 ret = -ENOMEM;
569 goto err_unmap;
573 * Use the first channel as a clock event device and the second channel
574 * as a clock source.
576 for (i = 0; i < tmu->num_channels; ++i) {
577 ret = sh_tmu_channel_setup(&tmu->channels[i], i,
578 i == 0, i == 1, tmu);
579 if (ret < 0)
580 goto err_unmap;
583 platform_set_drvdata(pdev, tmu);
585 return 0;
587 err_unmap:
588 kfree(tmu->channels);
589 iounmap(tmu->mapbase);
590 err_clk_unprepare:
591 clk_unprepare(tmu->clk);
592 err_clk_put:
593 clk_put(tmu->clk);
594 return ret;
597 static int sh_tmu_probe(struct platform_device *pdev)
599 struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
600 int ret;
602 if (!is_sh_early_platform_device(pdev)) {
603 pm_runtime_set_active(&pdev->dev);
604 pm_runtime_enable(&pdev->dev);
607 if (tmu) {
608 dev_info(&pdev->dev, "kept as earlytimer\n");
609 goto out;
612 tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
613 if (tmu == NULL)
614 return -ENOMEM;
616 ret = sh_tmu_setup(tmu, pdev);
617 if (ret) {
618 kfree(tmu);
619 pm_runtime_idle(&pdev->dev);
620 return ret;
623 if (is_sh_early_platform_device(pdev))
624 return 0;
626 out:
627 if (tmu->has_clockevent || tmu->has_clocksource)
628 pm_runtime_irq_safe(&pdev->dev);
629 else
630 pm_runtime_idle(&pdev->dev);
632 return 0;
635 static int sh_tmu_remove(struct platform_device *pdev)
637 return -EBUSY; /* cannot unregister clockevent and clocksource */
640 static const struct platform_device_id sh_tmu_id_table[] = {
641 { "sh-tmu", SH_TMU },
642 { "sh-tmu-sh3", SH_TMU_SH3 },
645 MODULE_DEVICE_TABLE(platform, sh_tmu_id_table);
647 static const struct of_device_id sh_tmu_of_table[] __maybe_unused = {
648 { .compatible = "renesas,tmu" },
651 MODULE_DEVICE_TABLE(of, sh_tmu_of_table);
653 static struct platform_driver sh_tmu_device_driver = {
654 .probe = sh_tmu_probe,
655 .remove = sh_tmu_remove,
656 .driver = {
657 .name = "sh_tmu",
658 .of_match_table = of_match_ptr(sh_tmu_of_table),
660 .id_table = sh_tmu_id_table,
663 static int __init sh_tmu_init(void)
665 return platform_driver_register(&sh_tmu_device_driver);
668 static void __exit sh_tmu_exit(void)
670 platform_driver_unregister(&sh_tmu_device_driver);
673 #ifdef CONFIG_SUPERH
674 sh_early_platform_init("earlytimer", &sh_tmu_device_driver);
675 #endif
677 subsys_initcall(sh_tmu_init);
678 module_exit(sh_tmu_exit);
680 MODULE_AUTHOR("Magnus Damm");
681 MODULE_DESCRIPTION("SuperH TMU Timer Driver");
682 MODULE_LICENSE("GPL v2");