1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2013 ARM/Linaro
5 * Authors: Daniel Lezcano <daniel.lezcano@linaro.org>
6 * Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
7 * Nicolas Pitre <nicolas.pitre@linaro.org>
9 * Maintainer: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
10 * Maintainer: Daniel Lezcano <daniel.lezcano@linaro.org>
12 #include <linux/cpuidle.h>
13 #include <linux/cpu_pm.h>
14 #include <linux/slab.h>
18 #include <asm/cputype.h>
19 #include <asm/cpuidle.h>
21 #include <asm/smp_plat.h>
22 #include <asm/suspend.h>
24 #include "dt_idle_states.h"
26 static int bl_enter_powerdown(struct cpuidle_device
*dev
,
27 struct cpuidle_driver
*drv
, int idx
);
30 * NB: Owing to current menu governor behaviour big and LITTLE
31 * index 1 states have to define exit_latency and target_residency for
32 * cluster state since, when all CPUs in a cluster hit it, the cluster
33 * can be shutdown. This means that when a single CPU enters this state
34 * the exit_latency and target_residency values are somewhat overkill.
35 * There is no notion of cluster states in the menu governor, so CPUs
36 * have to define CPU states where possibly the cluster will be shutdown
37 * depending on the state of other CPUs. idle states entry and exit happen
38 * at random times; however the cluster state provides target_residency
39 * values as if all CPUs in a cluster enter the state at once; this is
40 * somewhat optimistic and behaviour should be fixed either in the governor
41 * or in the MCPM back-ends.
42 * To make this driver 100% generic the number of states and the exit_latency
43 * target_residency values must be obtained from device tree bindings.
45 * exit_latency: refers to the TC2 vexpress test chip and depends on the
46 * current cluster operating point. It is the time it takes to get the CPU
47 * up and running when the CPU is powered up on cluster wake-up from shutdown.
48 * Current values for big and LITTLE clusters are provided for clusters
49 * running at default operating points.
51 * target_residency: it is the minimum amount of time the cluster has
52 * to be down to break even in terms of power consumption. cluster
53 * shutdown has inherent dynamic power costs (L2 writebacks to DRAM
54 * being the main factor) that depend on the current operating points.
55 * The current values for both clusters are provided for a CPU whose half
56 * of L2 lines are dirty and require cleaning to DRAM, and takes into
57 * account leakage static power values related to the vexpress TC2 testchip.
59 static struct cpuidle_driver bl_idle_little_driver
= {
60 .name
= "little_idle",
62 .states
[0] = ARM_CPUIDLE_WFI_STATE
,
64 .enter
= bl_enter_powerdown
,
66 .target_residency
= 2500,
67 .flags
= CPUIDLE_FLAG_TIMER_STOP
,
69 .desc
= "ARM little-cluster power down",
74 static const struct of_device_id bl_idle_state_match
[] __initconst
= {
75 { .compatible
= "arm,idle-state",
76 .data
= bl_enter_powerdown
},
80 static struct cpuidle_driver bl_idle_big_driver
= {
83 .states
[0] = ARM_CPUIDLE_WFI_STATE
,
85 .enter
= bl_enter_powerdown
,
87 .target_residency
= 2000,
88 .flags
= CPUIDLE_FLAG_TIMER_STOP
,
90 .desc
= "ARM big-cluster power down",
96 * notrace prevents trace shims from getting inserted where they
97 * should not. Global jumps and ldrex/strex must not be inserted
98 * in power down sequences where caches and MMU may be turned off.
100 static int notrace
bl_powerdown_finisher(unsigned long arg
)
102 /* MCPM works with HW CPU identifiers */
103 unsigned int mpidr
= read_cpuid_mpidr();
104 unsigned int cluster
= MPIDR_AFFINITY_LEVEL(mpidr
, 1);
105 unsigned int cpu
= MPIDR_AFFINITY_LEVEL(mpidr
, 0);
107 mcpm_set_entry_vector(cpu
, cluster
, cpu_resume
);
110 /* return value != 0 means failure */
115 * bl_enter_powerdown - Programs CPU to enter the specified state
116 * @dev: cpuidle device
117 * @drv: The target state to be programmed
120 * Called from the CPUidle framework to program the device to the
121 * specified target state selected by the governor.
123 static int bl_enter_powerdown(struct cpuidle_device
*dev
,
124 struct cpuidle_driver
*drv
, int idx
)
128 cpu_suspend(0, bl_powerdown_finisher
);
130 /* signals the MCPM core that CPU is out of low power state */
131 mcpm_cpu_powered_up();
138 static int __init
bl_idle_driver_init(struct cpuidle_driver
*drv
, int part_id
)
140 struct cpumask
*cpumask
;
143 cpumask
= kzalloc(cpumask_size(), GFP_KERNEL
);
147 for_each_possible_cpu(cpu
)
148 if (smp_cpuid_part(cpu
) == part_id
)
149 cpumask_set_cpu(cpu
, cpumask
);
151 drv
->cpumask
= cpumask
;
156 static const struct of_device_id compatible_machine_match
[] = {
157 { .compatible
= "arm,vexpress,v2p-ca15_a7" },
158 { .compatible
= "google,peach" },
162 static int __init
bl_idle_init(void)
165 struct device_node
*root
= of_find_node_by_path("/");
166 const struct of_device_id
*match_id
;
172 * Initialize the driver just for a compliant set of machines
174 match_id
= of_match_node(compatible_machine_match
, root
);
181 if (!mcpm_is_available())
185 * For now the differentiation between little and big cores
186 * is based on the part number. A7 cores are considered little
187 * cores, A15 are considered big cores. This distinction may
188 * evolve in the future with a more generic matching approach.
190 ret
= bl_idle_driver_init(&bl_idle_little_driver
,
191 ARM_CPU_PART_CORTEX_A7
);
195 ret
= bl_idle_driver_init(&bl_idle_big_driver
, ARM_CPU_PART_CORTEX_A15
);
197 goto out_uninit_little
;
199 /* Start at index 1, index 0 standard WFI */
200 ret
= dt_init_idle_driver(&bl_idle_big_driver
, bl_idle_state_match
, 1);
204 /* Start at index 1, index 0 standard WFI */
205 ret
= dt_init_idle_driver(&bl_idle_little_driver
,
206 bl_idle_state_match
, 1);
210 ret
= cpuidle_register(&bl_idle_little_driver
, NULL
);
214 ret
= cpuidle_register(&bl_idle_big_driver
, NULL
);
216 goto out_unregister_little
;
220 out_unregister_little
:
221 cpuidle_unregister(&bl_idle_little_driver
);
223 kfree(bl_idle_big_driver
.cpumask
);
225 kfree(bl_idle_little_driver
.cpumask
);
229 device_initcall(bl_idle_init
);