WIP FPC-III support
[linux/fpc-iii.git] / drivers / crypto / hisilicon / sec2 / sec_crypto.c
blob2eaa516b323118c8d897fb5c446c4f5886207a51
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
4 #include <crypto/aes.h>
5 #include <crypto/algapi.h>
6 #include <crypto/authenc.h>
7 #include <crypto/des.h>
8 #include <crypto/hash.h>
9 #include <crypto/internal/aead.h>
10 #include <crypto/sha1.h>
11 #include <crypto/sha2.h>
12 #include <crypto/skcipher.h>
13 #include <crypto/xts.h>
14 #include <linux/crypto.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/idr.h>
18 #include "sec.h"
19 #include "sec_crypto.h"
21 #define SEC_PRIORITY 4001
22 #define SEC_XTS_MIN_KEY_SIZE (2 * AES_MIN_KEY_SIZE)
23 #define SEC_XTS_MAX_KEY_SIZE (2 * AES_MAX_KEY_SIZE)
24 #define SEC_DES3_2KEY_SIZE (2 * DES_KEY_SIZE)
25 #define SEC_DES3_3KEY_SIZE (3 * DES_KEY_SIZE)
27 /* SEC sqe(bd) bit operational relative MACRO */
28 #define SEC_DE_OFFSET 1
29 #define SEC_CIPHER_OFFSET 4
30 #define SEC_SCENE_OFFSET 3
31 #define SEC_DST_SGL_OFFSET 2
32 #define SEC_SRC_SGL_OFFSET 7
33 #define SEC_CKEY_OFFSET 9
34 #define SEC_CMODE_OFFSET 12
35 #define SEC_AKEY_OFFSET 5
36 #define SEC_AEAD_ALG_OFFSET 11
37 #define SEC_AUTH_OFFSET 6
39 #define SEC_FLAG_OFFSET 7
40 #define SEC_FLAG_MASK 0x0780
41 #define SEC_TYPE_MASK 0x0F
42 #define SEC_DONE_MASK 0x0001
44 #define SEC_TOTAL_IV_SZ (SEC_IV_SIZE * QM_Q_DEPTH)
45 #define SEC_SGL_SGE_NR 128
46 #define SEC_CTX_DEV(ctx) (&(ctx)->sec->qm.pdev->dev)
47 #define SEC_CIPHER_AUTH 0xfe
48 #define SEC_AUTH_CIPHER 0x1
49 #define SEC_MAX_MAC_LEN 64
50 #define SEC_MAX_AAD_LEN 65535
51 #define SEC_TOTAL_MAC_SZ (SEC_MAX_MAC_LEN * QM_Q_DEPTH)
53 #define SEC_PBUF_SZ 512
54 #define SEC_PBUF_IV_OFFSET SEC_PBUF_SZ
55 #define SEC_PBUF_MAC_OFFSET (SEC_PBUF_SZ + SEC_IV_SIZE)
56 #define SEC_PBUF_PKG (SEC_PBUF_SZ + SEC_IV_SIZE + \
57 SEC_MAX_MAC_LEN * 2)
58 #define SEC_PBUF_NUM (PAGE_SIZE / SEC_PBUF_PKG)
59 #define SEC_PBUF_PAGE_NUM (QM_Q_DEPTH / SEC_PBUF_NUM)
60 #define SEC_PBUF_LEFT_SZ (SEC_PBUF_PKG * (QM_Q_DEPTH - \
61 SEC_PBUF_PAGE_NUM * SEC_PBUF_NUM))
62 #define SEC_TOTAL_PBUF_SZ (PAGE_SIZE * SEC_PBUF_PAGE_NUM + \
63 SEC_PBUF_LEFT_SZ)
65 #define SEC_SQE_LEN_RATE 4
66 #define SEC_SQE_CFLAG 2
67 #define SEC_SQE_AEAD_FLAG 3
68 #define SEC_SQE_DONE 0x1
70 /* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
71 static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
73 if (req->c_req.encrypt)
74 return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
75 ctx->hlf_q_num;
77 return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
78 ctx->hlf_q_num;
81 static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
83 if (req->c_req.encrypt)
84 atomic_dec(&ctx->enc_qcyclic);
85 else
86 atomic_dec(&ctx->dec_qcyclic);
89 static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
91 int req_id;
93 mutex_lock(&qp_ctx->req_lock);
95 req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL,
96 0, QM_Q_DEPTH, GFP_ATOMIC);
97 mutex_unlock(&qp_ctx->req_lock);
98 if (unlikely(req_id < 0)) {
99 dev_err(SEC_CTX_DEV(req->ctx), "alloc req id fail!\n");
100 return req_id;
103 req->qp_ctx = qp_ctx;
104 qp_ctx->req_list[req_id] = req;
106 return req_id;
109 static void sec_free_req_id(struct sec_req *req)
111 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
112 int req_id = req->req_id;
114 if (unlikely(req_id < 0 || req_id >= QM_Q_DEPTH)) {
115 dev_err(SEC_CTX_DEV(req->ctx), "free request id invalid!\n");
116 return;
119 qp_ctx->req_list[req_id] = NULL;
120 req->qp_ctx = NULL;
122 mutex_lock(&qp_ctx->req_lock);
123 idr_remove(&qp_ctx->req_idr, req_id);
124 mutex_unlock(&qp_ctx->req_lock);
127 static int sec_aead_verify(struct sec_req *req)
129 struct aead_request *aead_req = req->aead_req.aead_req;
130 struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
131 size_t authsize = crypto_aead_authsize(tfm);
132 u8 *mac_out = req->aead_req.out_mac;
133 u8 *mac = mac_out + SEC_MAX_MAC_LEN;
134 struct scatterlist *sgl = aead_req->src;
135 size_t sz;
137 sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac, authsize,
138 aead_req->cryptlen + aead_req->assoclen -
139 authsize);
140 if (unlikely(sz != authsize || memcmp(mac_out, mac, sz))) {
141 dev_err(SEC_CTX_DEV(req->ctx), "aead verify failure!\n");
142 return -EBADMSG;
145 return 0;
148 static void sec_req_cb(struct hisi_qp *qp, void *resp)
150 struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
151 struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
152 struct sec_sqe *bd = resp;
153 struct sec_ctx *ctx;
154 struct sec_req *req;
155 u16 done, flag;
156 int err = 0;
157 u8 type;
159 type = bd->type_cipher_auth & SEC_TYPE_MASK;
160 if (unlikely(type != SEC_BD_TYPE2)) {
161 atomic64_inc(&dfx->err_bd_cnt);
162 pr_err("err bd type [%d]\n", type);
163 return;
166 req = qp_ctx->req_list[le16_to_cpu(bd->type2.tag)];
167 if (unlikely(!req)) {
168 atomic64_inc(&dfx->invalid_req_cnt);
169 atomic_inc(&qp->qp_status.used);
170 return;
172 req->err_type = bd->type2.error_type;
173 ctx = req->ctx;
174 done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
175 flag = (le16_to_cpu(bd->type2.done_flag) &
176 SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
177 if (unlikely(req->err_type || done != SEC_SQE_DONE ||
178 (ctx->alg_type == SEC_SKCIPHER && flag != SEC_SQE_CFLAG) ||
179 (ctx->alg_type == SEC_AEAD && flag != SEC_SQE_AEAD_FLAG))) {
180 dev_err(SEC_CTX_DEV(ctx),
181 "err_type[%d],done[%d],flag[%d]\n",
182 req->err_type, done, flag);
183 err = -EIO;
184 atomic64_inc(&dfx->done_flag_cnt);
187 if (ctx->alg_type == SEC_AEAD && !req->c_req.encrypt)
188 err = sec_aead_verify(req);
190 atomic64_inc(&dfx->recv_cnt);
192 ctx->req_op->buf_unmap(ctx, req);
194 ctx->req_op->callback(ctx, req, err);
197 static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
199 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
200 int ret;
202 if (ctx->fake_req_limit <=
203 atomic_read(&qp_ctx->qp->qp_status.used) &&
204 !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
205 return -EBUSY;
207 mutex_lock(&qp_ctx->req_lock);
208 ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
210 if (ctx->fake_req_limit <=
211 atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
212 list_add_tail(&req->backlog_head, &qp_ctx->backlog);
213 atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
214 atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
215 mutex_unlock(&qp_ctx->req_lock);
216 return -EBUSY;
218 mutex_unlock(&qp_ctx->req_lock);
220 if (unlikely(ret == -EBUSY))
221 return -ENOBUFS;
223 if (likely(!ret)) {
224 ret = -EINPROGRESS;
225 atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
228 return ret;
231 /* Get DMA memory resources */
232 static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
234 int i;
236 res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
237 &res->c_ivin_dma, GFP_KERNEL);
238 if (!res->c_ivin)
239 return -ENOMEM;
241 for (i = 1; i < QM_Q_DEPTH; i++) {
242 res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
243 res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
246 return 0;
249 static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
251 if (res->c_ivin)
252 dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
253 res->c_ivin, res->c_ivin_dma);
256 static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
258 int i;
260 res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
261 &res->out_mac_dma, GFP_KERNEL);
262 if (!res->out_mac)
263 return -ENOMEM;
265 for (i = 1; i < QM_Q_DEPTH; i++) {
266 res[i].out_mac_dma = res->out_mac_dma +
267 i * (SEC_MAX_MAC_LEN << 1);
268 res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
271 return 0;
274 static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
276 if (res->out_mac)
277 dma_free_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
278 res->out_mac, res->out_mac_dma);
281 static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
283 if (res->pbuf)
284 dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ,
285 res->pbuf, res->pbuf_dma);
289 * To improve performance, pbuffer is used for
290 * small packets (< 512Bytes) as IOMMU translation using.
292 static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
294 int pbuf_page_offset;
295 int i, j, k;
297 res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ,
298 &res->pbuf_dma, GFP_KERNEL);
299 if (!res->pbuf)
300 return -ENOMEM;
303 * SEC_PBUF_PKG contains data pbuf, iv and
304 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
305 * Every PAGE contains six SEC_PBUF_PKG
306 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
307 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
308 * for the SEC_TOTAL_PBUF_SZ
310 for (i = 0; i <= SEC_PBUF_PAGE_NUM; i++) {
311 pbuf_page_offset = PAGE_SIZE * i;
312 for (j = 0; j < SEC_PBUF_NUM; j++) {
313 k = i * SEC_PBUF_NUM + j;
314 if (k == QM_Q_DEPTH)
315 break;
316 res[k].pbuf = res->pbuf +
317 j * SEC_PBUF_PKG + pbuf_page_offset;
318 res[k].pbuf_dma = res->pbuf_dma +
319 j * SEC_PBUF_PKG + pbuf_page_offset;
323 return 0;
326 static int sec_alg_resource_alloc(struct sec_ctx *ctx,
327 struct sec_qp_ctx *qp_ctx)
329 struct device *dev = SEC_CTX_DEV(ctx);
330 struct sec_alg_res *res = qp_ctx->res;
331 int ret;
333 ret = sec_alloc_civ_resource(dev, res);
334 if (ret)
335 return ret;
337 if (ctx->alg_type == SEC_AEAD) {
338 ret = sec_alloc_mac_resource(dev, res);
339 if (ret)
340 goto alloc_fail;
342 if (ctx->pbuf_supported) {
343 ret = sec_alloc_pbuf_resource(dev, res);
344 if (ret) {
345 dev_err(dev, "fail to alloc pbuf dma resource!\n");
346 goto alloc_pbuf_fail;
350 return 0;
352 alloc_pbuf_fail:
353 if (ctx->alg_type == SEC_AEAD)
354 sec_free_mac_resource(dev, qp_ctx->res);
355 alloc_fail:
356 sec_free_civ_resource(dev, res);
357 return ret;
360 static void sec_alg_resource_free(struct sec_ctx *ctx,
361 struct sec_qp_ctx *qp_ctx)
363 struct device *dev = SEC_CTX_DEV(ctx);
365 sec_free_civ_resource(dev, qp_ctx->res);
367 if (ctx->pbuf_supported)
368 sec_free_pbuf_resource(dev, qp_ctx->res);
369 if (ctx->alg_type == SEC_AEAD)
370 sec_free_mac_resource(dev, qp_ctx->res);
373 static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
374 int qp_ctx_id, int alg_type)
376 struct device *dev = SEC_CTX_DEV(ctx);
377 struct sec_qp_ctx *qp_ctx;
378 struct hisi_qp *qp;
379 int ret = -ENOMEM;
381 qp_ctx = &ctx->qp_ctx[qp_ctx_id];
382 qp = ctx->qps[qp_ctx_id];
383 qp->req_type = 0;
384 qp->qp_ctx = qp_ctx;
385 qp->req_cb = sec_req_cb;
386 qp_ctx->qp = qp;
387 qp_ctx->ctx = ctx;
389 mutex_init(&qp_ctx->req_lock);
390 idr_init(&qp_ctx->req_idr);
391 INIT_LIST_HEAD(&qp_ctx->backlog);
393 qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
394 SEC_SGL_SGE_NR);
395 if (IS_ERR(qp_ctx->c_in_pool)) {
396 dev_err(dev, "fail to create sgl pool for input!\n");
397 goto err_destroy_idr;
400 qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
401 SEC_SGL_SGE_NR);
402 if (IS_ERR(qp_ctx->c_out_pool)) {
403 dev_err(dev, "fail to create sgl pool for output!\n");
404 goto err_free_c_in_pool;
407 ret = sec_alg_resource_alloc(ctx, qp_ctx);
408 if (ret)
409 goto err_free_c_out_pool;
411 ret = hisi_qm_start_qp(qp, 0);
412 if (ret < 0)
413 goto err_queue_free;
415 return 0;
417 err_queue_free:
418 sec_alg_resource_free(ctx, qp_ctx);
419 err_free_c_out_pool:
420 hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
421 err_free_c_in_pool:
422 hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
423 err_destroy_idr:
424 idr_destroy(&qp_ctx->req_idr);
425 return ret;
428 static void sec_release_qp_ctx(struct sec_ctx *ctx,
429 struct sec_qp_ctx *qp_ctx)
431 struct device *dev = SEC_CTX_DEV(ctx);
433 hisi_qm_stop_qp(qp_ctx->qp);
434 sec_alg_resource_free(ctx, qp_ctx);
436 hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
437 hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
439 idr_destroy(&qp_ctx->req_idr);
442 static int sec_ctx_base_init(struct sec_ctx *ctx)
444 struct sec_dev *sec;
445 int i, ret;
447 ctx->qps = sec_create_qps();
448 if (!ctx->qps) {
449 pr_err("Can not create sec qps!\n");
450 return -ENODEV;
453 sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
454 ctx->sec = sec;
455 ctx->hlf_q_num = sec->ctx_q_num >> 1;
457 ctx->pbuf_supported = ctx->sec->iommu_used;
459 /* Half of queue depth is taken as fake requests limit in the queue. */
460 ctx->fake_req_limit = QM_Q_DEPTH >> 1;
461 ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
462 GFP_KERNEL);
463 if (!ctx->qp_ctx) {
464 ret = -ENOMEM;
465 goto err_destroy_qps;
468 for (i = 0; i < sec->ctx_q_num; i++) {
469 ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
470 if (ret)
471 goto err_sec_release_qp_ctx;
474 return 0;
476 err_sec_release_qp_ctx:
477 for (i = i - 1; i >= 0; i--)
478 sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
480 kfree(ctx->qp_ctx);
481 err_destroy_qps:
482 sec_destroy_qps(ctx->qps, sec->ctx_q_num);
484 return ret;
487 static void sec_ctx_base_uninit(struct sec_ctx *ctx)
489 int i;
491 for (i = 0; i < ctx->sec->ctx_q_num; i++)
492 sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
494 sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
495 kfree(ctx->qp_ctx);
498 static int sec_cipher_init(struct sec_ctx *ctx)
500 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
502 c_ctx->c_key = dma_alloc_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
503 &c_ctx->c_key_dma, GFP_KERNEL);
504 if (!c_ctx->c_key)
505 return -ENOMEM;
507 return 0;
510 static void sec_cipher_uninit(struct sec_ctx *ctx)
512 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
514 memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
515 dma_free_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
516 c_ctx->c_key, c_ctx->c_key_dma);
519 static int sec_auth_init(struct sec_ctx *ctx)
521 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
523 a_ctx->a_key = dma_alloc_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
524 &a_ctx->a_key_dma, GFP_KERNEL);
525 if (!a_ctx->a_key)
526 return -ENOMEM;
528 return 0;
531 static void sec_auth_uninit(struct sec_ctx *ctx)
533 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
535 memzero_explicit(a_ctx->a_key, SEC_MAX_KEY_SIZE);
536 dma_free_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
537 a_ctx->a_key, a_ctx->a_key_dma);
540 static int sec_skcipher_init(struct crypto_skcipher *tfm)
542 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
543 int ret;
545 ctx->alg_type = SEC_SKCIPHER;
546 crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
547 ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
548 if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
549 dev_err(SEC_CTX_DEV(ctx), "get error skcipher iv size!\n");
550 return -EINVAL;
553 ret = sec_ctx_base_init(ctx);
554 if (ret)
555 return ret;
557 ret = sec_cipher_init(ctx);
558 if (ret)
559 goto err_cipher_init;
561 return 0;
563 err_cipher_init:
564 sec_ctx_base_uninit(ctx);
565 return ret;
568 static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
570 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
572 sec_cipher_uninit(ctx);
573 sec_ctx_base_uninit(ctx);
576 static int sec_skcipher_3des_setkey(struct sec_cipher_ctx *c_ctx,
577 const u32 keylen,
578 const enum sec_cmode c_mode)
580 switch (keylen) {
581 case SEC_DES3_2KEY_SIZE:
582 c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
583 break;
584 case SEC_DES3_3KEY_SIZE:
585 c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
586 break;
587 default:
588 return -EINVAL;
591 return 0;
594 static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
595 const u32 keylen,
596 const enum sec_cmode c_mode)
598 if (c_mode == SEC_CMODE_XTS) {
599 switch (keylen) {
600 case SEC_XTS_MIN_KEY_SIZE:
601 c_ctx->c_key_len = SEC_CKEY_128BIT;
602 break;
603 case SEC_XTS_MAX_KEY_SIZE:
604 c_ctx->c_key_len = SEC_CKEY_256BIT;
605 break;
606 default:
607 pr_err("hisi_sec2: xts mode key error!\n");
608 return -EINVAL;
610 } else {
611 switch (keylen) {
612 case AES_KEYSIZE_128:
613 c_ctx->c_key_len = SEC_CKEY_128BIT;
614 break;
615 case AES_KEYSIZE_192:
616 c_ctx->c_key_len = SEC_CKEY_192BIT;
617 break;
618 case AES_KEYSIZE_256:
619 c_ctx->c_key_len = SEC_CKEY_256BIT;
620 break;
621 default:
622 pr_err("hisi_sec2: aes key error!\n");
623 return -EINVAL;
627 return 0;
630 static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
631 const u32 keylen, const enum sec_calg c_alg,
632 const enum sec_cmode c_mode)
634 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
635 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
636 int ret;
638 if (c_mode == SEC_CMODE_XTS) {
639 ret = xts_verify_key(tfm, key, keylen);
640 if (ret) {
641 dev_err(SEC_CTX_DEV(ctx), "xts mode key err!\n");
642 return ret;
646 c_ctx->c_alg = c_alg;
647 c_ctx->c_mode = c_mode;
649 switch (c_alg) {
650 case SEC_CALG_3DES:
651 ret = sec_skcipher_3des_setkey(c_ctx, keylen, c_mode);
652 break;
653 case SEC_CALG_AES:
654 case SEC_CALG_SM4:
655 ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
656 break;
657 default:
658 return -EINVAL;
661 if (ret) {
662 dev_err(SEC_CTX_DEV(ctx), "set sec key err!\n");
663 return ret;
666 memcpy(c_ctx->c_key, key, keylen);
668 return 0;
671 #define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode) \
672 static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
673 u32 keylen) \
675 return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode); \
678 GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
679 GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
680 GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
682 GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
683 GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
685 GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
686 GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
688 static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
689 struct scatterlist *src)
691 struct aead_request *aead_req = req->aead_req.aead_req;
692 struct sec_cipher_req *c_req = &req->c_req;
693 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
694 struct device *dev = SEC_CTX_DEV(ctx);
695 int copy_size, pbuf_length;
696 int req_id = req->req_id;
698 if (ctx->alg_type == SEC_AEAD)
699 copy_size = aead_req->cryptlen + aead_req->assoclen;
700 else
701 copy_size = c_req->c_len;
703 pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
704 qp_ctx->res[req_id].pbuf,
705 copy_size);
707 if (unlikely(pbuf_length != copy_size)) {
708 dev_err(dev, "copy src data to pbuf error!\n");
709 return -EINVAL;
712 c_req->c_in_dma = qp_ctx->res[req_id].pbuf_dma;
714 if (!c_req->c_in_dma) {
715 dev_err(dev, "fail to set pbuffer address!\n");
716 return -ENOMEM;
719 c_req->c_out_dma = c_req->c_in_dma;
721 return 0;
724 static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
725 struct scatterlist *dst)
727 struct aead_request *aead_req = req->aead_req.aead_req;
728 struct sec_cipher_req *c_req = &req->c_req;
729 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
730 struct device *dev = SEC_CTX_DEV(ctx);
731 int copy_size, pbuf_length;
732 int req_id = req->req_id;
734 if (ctx->alg_type == SEC_AEAD)
735 copy_size = c_req->c_len + aead_req->assoclen;
736 else
737 copy_size = c_req->c_len;
739 pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
740 qp_ctx->res[req_id].pbuf,
741 copy_size);
743 if (unlikely(pbuf_length != copy_size))
744 dev_err(dev, "copy pbuf data to dst error!\n");
747 static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
748 struct scatterlist *src, struct scatterlist *dst)
750 struct sec_cipher_req *c_req = &req->c_req;
751 struct sec_aead_req *a_req = &req->aead_req;
752 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
753 struct sec_alg_res *res = &qp_ctx->res[req->req_id];
754 struct device *dev = SEC_CTX_DEV(ctx);
755 int ret;
757 if (req->use_pbuf) {
758 ret = sec_cipher_pbuf_map(ctx, req, src);
759 c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
760 c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
761 if (ctx->alg_type == SEC_AEAD) {
762 a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
763 a_req->out_mac_dma = res->pbuf_dma +
764 SEC_PBUF_MAC_OFFSET;
767 return ret;
769 c_req->c_ivin = res->c_ivin;
770 c_req->c_ivin_dma = res->c_ivin_dma;
771 if (ctx->alg_type == SEC_AEAD) {
772 a_req->out_mac = res->out_mac;
773 a_req->out_mac_dma = res->out_mac_dma;
776 c_req->c_in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
777 qp_ctx->c_in_pool,
778 req->req_id,
779 &c_req->c_in_dma);
781 if (IS_ERR(c_req->c_in)) {
782 dev_err(dev, "fail to dma map input sgl buffers!\n");
783 return PTR_ERR(c_req->c_in);
786 if (dst == src) {
787 c_req->c_out = c_req->c_in;
788 c_req->c_out_dma = c_req->c_in_dma;
789 } else {
790 c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
791 qp_ctx->c_out_pool,
792 req->req_id,
793 &c_req->c_out_dma);
795 if (IS_ERR(c_req->c_out)) {
796 dev_err(dev, "fail to dma map output sgl buffers!\n");
797 hisi_acc_sg_buf_unmap(dev, src, c_req->c_in);
798 return PTR_ERR(c_req->c_out);
802 return 0;
805 static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
806 struct scatterlist *src, struct scatterlist *dst)
808 struct sec_cipher_req *c_req = &req->c_req;
809 struct device *dev = SEC_CTX_DEV(ctx);
811 if (req->use_pbuf) {
812 sec_cipher_pbuf_unmap(ctx, req, dst);
813 } else {
814 if (dst != src)
815 hisi_acc_sg_buf_unmap(dev, src, c_req->c_in);
817 hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
821 static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
823 struct skcipher_request *sq = req->c_req.sk_req;
825 return sec_cipher_map(ctx, req, sq->src, sq->dst);
828 static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
830 struct skcipher_request *sq = req->c_req.sk_req;
832 sec_cipher_unmap(ctx, req, sq->src, sq->dst);
835 static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
836 struct crypto_authenc_keys *keys)
838 switch (keys->enckeylen) {
839 case AES_KEYSIZE_128:
840 c_ctx->c_key_len = SEC_CKEY_128BIT;
841 break;
842 case AES_KEYSIZE_192:
843 c_ctx->c_key_len = SEC_CKEY_192BIT;
844 break;
845 case AES_KEYSIZE_256:
846 c_ctx->c_key_len = SEC_CKEY_256BIT;
847 break;
848 default:
849 pr_err("hisi_sec2: aead aes key error!\n");
850 return -EINVAL;
852 memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
854 return 0;
857 static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
858 struct crypto_authenc_keys *keys)
860 struct crypto_shash *hash_tfm = ctx->hash_tfm;
861 int blocksize, digestsize, ret;
863 if (!keys->authkeylen) {
864 pr_err("hisi_sec2: aead auth key error!\n");
865 return -EINVAL;
868 blocksize = crypto_shash_blocksize(hash_tfm);
869 digestsize = crypto_shash_digestsize(hash_tfm);
870 if (keys->authkeylen > blocksize) {
871 ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
872 keys->authkeylen, ctx->a_key);
873 if (ret) {
874 pr_err("hisi_sec2: aead auth digest error!\n");
875 return -EINVAL;
877 ctx->a_key_len = digestsize;
878 } else {
879 memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
880 ctx->a_key_len = keys->authkeylen;
883 return 0;
886 static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
887 const u32 keylen, const enum sec_hash_alg a_alg,
888 const enum sec_calg c_alg,
889 const enum sec_mac_len mac_len,
890 const enum sec_cmode c_mode)
892 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
893 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
894 struct crypto_authenc_keys keys;
895 int ret;
897 ctx->a_ctx.a_alg = a_alg;
898 ctx->c_ctx.c_alg = c_alg;
899 ctx->a_ctx.mac_len = mac_len;
900 c_ctx->c_mode = c_mode;
902 if (crypto_authenc_extractkeys(&keys, key, keylen))
903 goto bad_key;
905 ret = sec_aead_aes_set_key(c_ctx, &keys);
906 if (ret) {
907 dev_err(SEC_CTX_DEV(ctx), "set sec cipher key err!\n");
908 goto bad_key;
911 ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
912 if (ret) {
913 dev_err(SEC_CTX_DEV(ctx), "set sec auth key err!\n");
914 goto bad_key;
917 return 0;
919 bad_key:
920 memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
921 return -EINVAL;
925 #define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode) \
926 static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key, \
927 u32 keylen) \
929 return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
932 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
933 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
934 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
935 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
936 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
937 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
939 static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
941 struct aead_request *aq = req->aead_req.aead_req;
943 return sec_cipher_map(ctx, req, aq->src, aq->dst);
946 static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
948 struct aead_request *aq = req->aead_req.aead_req;
950 sec_cipher_unmap(ctx, req, aq->src, aq->dst);
953 static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
955 int ret;
957 ret = ctx->req_op->buf_map(ctx, req);
958 if (unlikely(ret))
959 return ret;
961 ctx->req_op->do_transfer(ctx, req);
963 ret = ctx->req_op->bd_fill(ctx, req);
964 if (unlikely(ret))
965 goto unmap_req_buf;
967 return ret;
969 unmap_req_buf:
970 ctx->req_op->buf_unmap(ctx, req);
971 return ret;
974 static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
976 ctx->req_op->buf_unmap(ctx, req);
979 static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
981 struct skcipher_request *sk_req = req->c_req.sk_req;
982 struct sec_cipher_req *c_req = &req->c_req;
984 memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
987 static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
989 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
990 struct sec_cipher_req *c_req = &req->c_req;
991 struct sec_sqe *sec_sqe = &req->sec_sqe;
992 u8 scene, sa_type, da_type;
993 u8 bd_type, cipher;
994 u8 de = 0;
996 memset(sec_sqe, 0, sizeof(struct sec_sqe));
998 sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
999 sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1000 sec_sqe->type2.data_src_addr = cpu_to_le64(c_req->c_in_dma);
1001 sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1003 sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
1004 SEC_CMODE_OFFSET);
1005 sec_sqe->type2.c_alg = c_ctx->c_alg;
1006 sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1007 SEC_CKEY_OFFSET);
1009 bd_type = SEC_BD_TYPE2;
1010 if (c_req->encrypt)
1011 cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
1012 else
1013 cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
1014 sec_sqe->type_cipher_auth = bd_type | cipher;
1016 if (req->use_pbuf)
1017 sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
1018 else
1019 sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1020 scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
1021 if (c_req->c_in_dma != c_req->c_out_dma)
1022 de = 0x1 << SEC_DE_OFFSET;
1024 sec_sqe->sds_sa_type = (de | scene | sa_type);
1026 /* Just set DST address type */
1027 if (req->use_pbuf)
1028 da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
1029 else
1030 da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
1031 sec_sqe->sdm_addr_type |= da_type;
1033 sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
1034 sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
1036 return 0;
1039 static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1041 struct aead_request *aead_req = req->aead_req.aead_req;
1042 struct skcipher_request *sk_req = req->c_req.sk_req;
1043 u32 iv_size = req->ctx->c_ctx.ivsize;
1044 struct scatterlist *sgl;
1045 unsigned int cryptlen;
1046 size_t sz;
1047 u8 *iv;
1049 if (req->c_req.encrypt)
1050 sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1051 else
1052 sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
1054 if (alg_type == SEC_SKCIPHER) {
1055 iv = sk_req->iv;
1056 cryptlen = sk_req->cryptlen;
1057 } else {
1058 iv = aead_req->iv;
1059 cryptlen = aead_req->cryptlen;
1062 sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
1063 cryptlen - iv_size);
1064 if (unlikely(sz != iv_size))
1065 dev_err(SEC_CTX_DEV(req->ctx), "copy output iv error!\n");
1068 static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
1069 struct sec_qp_ctx *qp_ctx)
1071 struct sec_req *backlog_req = NULL;
1073 mutex_lock(&qp_ctx->req_lock);
1074 if (ctx->fake_req_limit >=
1075 atomic_read(&qp_ctx->qp->qp_status.used) &&
1076 !list_empty(&qp_ctx->backlog)) {
1077 backlog_req = list_first_entry(&qp_ctx->backlog,
1078 typeof(*backlog_req), backlog_head);
1079 list_del(&backlog_req->backlog_head);
1081 mutex_unlock(&qp_ctx->req_lock);
1083 return backlog_req;
1086 static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
1087 int err)
1089 struct skcipher_request *sk_req = req->c_req.sk_req;
1090 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1091 struct skcipher_request *backlog_sk_req;
1092 struct sec_req *backlog_req;
1094 sec_free_req_id(req);
1096 /* IV output at encrypto of CBC mode */
1097 if (!err && ctx->c_ctx.c_mode == SEC_CMODE_CBC && req->c_req.encrypt)
1098 sec_update_iv(req, SEC_SKCIPHER);
1100 while (1) {
1101 backlog_req = sec_back_req_clear(ctx, qp_ctx);
1102 if (!backlog_req)
1103 break;
1105 backlog_sk_req = backlog_req->c_req.sk_req;
1106 backlog_sk_req->base.complete(&backlog_sk_req->base,
1107 -EINPROGRESS);
1108 atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
1111 sk_req->base.complete(&sk_req->base, err);
1114 static void sec_aead_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
1116 struct aead_request *aead_req = req->aead_req.aead_req;
1117 struct sec_cipher_req *c_req = &req->c_req;
1119 memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1122 static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
1123 struct sec_req *req, struct sec_sqe *sec_sqe)
1125 struct sec_aead_req *a_req = &req->aead_req;
1126 struct sec_cipher_req *c_req = &req->c_req;
1127 struct aead_request *aq = a_req->aead_req;
1129 sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
1131 sec_sqe->type2.mac_key_alg =
1132 cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);
1134 sec_sqe->type2.mac_key_alg |=
1135 cpu_to_le32((u32)((ctx->a_key_len) /
1136 SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);
1138 sec_sqe->type2.mac_key_alg |=
1139 cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
1141 sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
1143 if (dir)
1144 sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1145 else
1146 sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1148 sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
1150 sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1152 sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1155 static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1157 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1158 struct sec_sqe *sec_sqe = &req->sec_sqe;
1159 int ret;
1161 ret = sec_skcipher_bd_fill(ctx, req);
1162 if (unlikely(ret)) {
1163 dev_err(SEC_CTX_DEV(ctx), "skcipher bd fill is error!\n");
1164 return ret;
1167 sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1169 return 0;
1172 static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
1174 struct aead_request *a_req = req->aead_req.aead_req;
1175 struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1176 struct sec_aead_req *aead_req = &req->aead_req;
1177 struct sec_cipher_req *c_req = &req->c_req;
1178 size_t authsize = crypto_aead_authsize(tfm);
1179 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1180 struct aead_request *backlog_aead_req;
1181 struct sec_req *backlog_req;
1182 size_t sz;
1184 if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
1185 sec_update_iv(req, SEC_AEAD);
1187 /* Copy output mac */
1188 if (!err && c_req->encrypt) {
1189 struct scatterlist *sgl = a_req->dst;
1191 sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
1192 aead_req->out_mac,
1193 authsize, a_req->cryptlen +
1194 a_req->assoclen);
1196 if (unlikely(sz != authsize)) {
1197 dev_err(SEC_CTX_DEV(req->ctx), "copy out mac err!\n");
1198 err = -EINVAL;
1202 sec_free_req_id(req);
1204 while (1) {
1205 backlog_req = sec_back_req_clear(c, qp_ctx);
1206 if (!backlog_req)
1207 break;
1209 backlog_aead_req = backlog_req->aead_req.aead_req;
1210 backlog_aead_req->base.complete(&backlog_aead_req->base,
1211 -EINPROGRESS);
1212 atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
1215 a_req->base.complete(&a_req->base, err);
1218 static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
1220 sec_free_req_id(req);
1221 sec_free_queue_id(ctx, req);
1224 static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
1226 struct sec_qp_ctx *qp_ctx;
1227 int queue_id;
1229 /* To load balance */
1230 queue_id = sec_alloc_queue_id(ctx, req);
1231 qp_ctx = &ctx->qp_ctx[queue_id];
1233 req->req_id = sec_alloc_req_id(req, qp_ctx);
1234 if (unlikely(req->req_id < 0)) {
1235 sec_free_queue_id(ctx, req);
1236 return req->req_id;
1239 return 0;
1242 static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
1244 struct sec_cipher_req *c_req = &req->c_req;
1245 int ret;
1247 ret = sec_request_init(ctx, req);
1248 if (unlikely(ret))
1249 return ret;
1251 ret = sec_request_transfer(ctx, req);
1252 if (unlikely(ret))
1253 goto err_uninit_req;
1255 /* Output IV as decrypto */
1256 if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt)
1257 sec_update_iv(req, ctx->alg_type);
1259 ret = ctx->req_op->bd_send(ctx, req);
1260 if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
1261 (ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
1262 dev_err_ratelimited(SEC_CTX_DEV(ctx), "send sec request failed!\n");
1263 goto err_send_req;
1266 return ret;
1268 err_send_req:
1269 /* As failing, restore the IV from user */
1270 if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
1271 if (ctx->alg_type == SEC_SKCIPHER)
1272 memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1273 ctx->c_ctx.ivsize);
1274 else
1275 memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1276 ctx->c_ctx.ivsize);
1279 sec_request_untransfer(ctx, req);
1280 err_uninit_req:
1281 sec_request_uninit(ctx, req);
1282 return ret;
1285 static const struct sec_req_op sec_skcipher_req_ops = {
1286 .buf_map = sec_skcipher_sgl_map,
1287 .buf_unmap = sec_skcipher_sgl_unmap,
1288 .do_transfer = sec_skcipher_copy_iv,
1289 .bd_fill = sec_skcipher_bd_fill,
1290 .bd_send = sec_bd_send,
1291 .callback = sec_skcipher_callback,
1292 .process = sec_process,
1295 static const struct sec_req_op sec_aead_req_ops = {
1296 .buf_map = sec_aead_sgl_map,
1297 .buf_unmap = sec_aead_sgl_unmap,
1298 .do_transfer = sec_aead_copy_iv,
1299 .bd_fill = sec_aead_bd_fill,
1300 .bd_send = sec_bd_send,
1301 .callback = sec_aead_callback,
1302 .process = sec_process,
1305 static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
1307 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1309 ctx->req_op = &sec_skcipher_req_ops;
1311 return sec_skcipher_init(tfm);
1314 static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
1316 sec_skcipher_uninit(tfm);
1319 static int sec_aead_init(struct crypto_aead *tfm)
1321 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1322 int ret;
1324 crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
1325 ctx->alg_type = SEC_AEAD;
1326 ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
1327 if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
1328 dev_err(SEC_CTX_DEV(ctx), "get error aead iv size!\n");
1329 return -EINVAL;
1332 ctx->req_op = &sec_aead_req_ops;
1333 ret = sec_ctx_base_init(ctx);
1334 if (ret)
1335 return ret;
1337 ret = sec_auth_init(ctx);
1338 if (ret)
1339 goto err_auth_init;
1341 ret = sec_cipher_init(ctx);
1342 if (ret)
1343 goto err_cipher_init;
1345 return ret;
1347 err_cipher_init:
1348 sec_auth_uninit(ctx);
1349 err_auth_init:
1350 sec_ctx_base_uninit(ctx);
1351 return ret;
1354 static void sec_aead_exit(struct crypto_aead *tfm)
1356 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1358 sec_cipher_uninit(ctx);
1359 sec_auth_uninit(ctx);
1360 sec_ctx_base_uninit(ctx);
1363 static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
1365 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1366 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1367 int ret;
1369 ret = sec_aead_init(tfm);
1370 if (ret) {
1371 pr_err("hisi_sec2: aead init error!\n");
1372 return ret;
1375 auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
1376 if (IS_ERR(auth_ctx->hash_tfm)) {
1377 dev_err(SEC_CTX_DEV(ctx), "aead alloc shash error!\n");
1378 sec_aead_exit(tfm);
1379 return PTR_ERR(auth_ctx->hash_tfm);
1382 return 0;
1385 static void sec_aead_ctx_exit(struct crypto_aead *tfm)
1387 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1389 crypto_free_shash(ctx->a_ctx.hash_tfm);
1390 sec_aead_exit(tfm);
1393 static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
1395 return sec_aead_ctx_init(tfm, "sha1");
1398 static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
1400 return sec_aead_ctx_init(tfm, "sha256");
1403 static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
1405 return sec_aead_ctx_init(tfm, "sha512");
1408 static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
1410 struct skcipher_request *sk_req = sreq->c_req.sk_req;
1411 struct device *dev = SEC_CTX_DEV(ctx);
1412 u8 c_alg = ctx->c_ctx.c_alg;
1414 if (unlikely(!sk_req->src || !sk_req->dst)) {
1415 dev_err(dev, "skcipher input param error!\n");
1416 return -EINVAL;
1418 sreq->c_req.c_len = sk_req->cryptlen;
1420 if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
1421 sreq->use_pbuf = true;
1422 else
1423 sreq->use_pbuf = false;
1425 if (c_alg == SEC_CALG_3DES) {
1426 if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
1427 dev_err(dev, "skcipher 3des input length error!\n");
1428 return -EINVAL;
1430 return 0;
1431 } else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
1432 if (unlikely(sk_req->cryptlen & (AES_BLOCK_SIZE - 1))) {
1433 dev_err(dev, "skcipher aes input length error!\n");
1434 return -EINVAL;
1436 return 0;
1438 dev_err(dev, "skcipher algorithm error!\n");
1440 return -EINVAL;
1443 static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
1445 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
1446 struct sec_req *req = skcipher_request_ctx(sk_req);
1447 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1448 int ret;
1450 if (!sk_req->cryptlen)
1451 return 0;
1453 req->flag = sk_req->base.flags;
1454 req->c_req.sk_req = sk_req;
1455 req->c_req.encrypt = encrypt;
1456 req->ctx = ctx;
1458 ret = sec_skcipher_param_check(ctx, req);
1459 if (unlikely(ret))
1460 return -EINVAL;
1462 return ctx->req_op->process(ctx, req);
1465 static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
1467 return sec_skcipher_crypto(sk_req, true);
1470 static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
1472 return sec_skcipher_crypto(sk_req, false);
1475 #define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
1476 sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
1478 .base = {\
1479 .cra_name = sec_cra_name,\
1480 .cra_driver_name = "hisi_sec_"sec_cra_name,\
1481 .cra_priority = SEC_PRIORITY,\
1482 .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,\
1483 .cra_blocksize = blk_size,\
1484 .cra_ctxsize = sizeof(struct sec_ctx),\
1485 .cra_module = THIS_MODULE,\
1487 .init = ctx_init,\
1488 .exit = ctx_exit,\
1489 .setkey = sec_set_key,\
1490 .decrypt = sec_skcipher_decrypt,\
1491 .encrypt = sec_skcipher_encrypt,\
1492 .min_keysize = sec_min_key_size,\
1493 .max_keysize = sec_max_key_size,\
1494 .ivsize = iv_size,\
1497 #define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
1498 max_key_size, blk_size, iv_size) \
1499 SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
1500 sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)
1502 static struct skcipher_alg sec_skciphers[] = {
1503 SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb,
1504 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
1505 AES_BLOCK_SIZE, 0)
1507 SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc,
1508 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
1509 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
1511 SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,
1512 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MAX_KEY_SIZE,
1513 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
1515 SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb,
1516 SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
1517 DES3_EDE_BLOCK_SIZE, 0)
1519 SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc,
1520 SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
1521 DES3_EDE_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE)
1523 SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,
1524 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MIN_KEY_SIZE,
1525 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
1527 SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,
1528 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
1529 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
1532 static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
1534 u8 c_alg = ctx->c_ctx.c_alg;
1535 struct aead_request *req = sreq->aead_req.aead_req;
1536 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1537 size_t authsize = crypto_aead_authsize(tfm);
1539 if (unlikely(!req->src || !req->dst || !req->cryptlen ||
1540 req->assoclen > SEC_MAX_AAD_LEN)) {
1541 dev_err(SEC_CTX_DEV(ctx), "aead input param error!\n");
1542 return -EINVAL;
1545 if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
1546 SEC_PBUF_SZ)
1547 sreq->use_pbuf = true;
1548 else
1549 sreq->use_pbuf = false;
1551 /* Support AES only */
1552 if (unlikely(c_alg != SEC_CALG_AES)) {
1553 dev_err(SEC_CTX_DEV(ctx), "aead crypto alg error!\n");
1554 return -EINVAL;
1556 if (sreq->c_req.encrypt)
1557 sreq->c_req.c_len = req->cryptlen;
1558 else
1559 sreq->c_req.c_len = req->cryptlen - authsize;
1561 if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
1562 dev_err(SEC_CTX_DEV(ctx), "aead crypto length error!\n");
1563 return -EINVAL;
1566 return 0;
1569 static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
1571 struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1572 struct sec_req *req = aead_request_ctx(a_req);
1573 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1574 int ret;
1576 req->flag = a_req->base.flags;
1577 req->aead_req.aead_req = a_req;
1578 req->c_req.encrypt = encrypt;
1579 req->ctx = ctx;
1581 ret = sec_aead_param_check(ctx, req);
1582 if (unlikely(ret))
1583 return -EINVAL;
1585 return ctx->req_op->process(ctx, req);
1588 static int sec_aead_encrypt(struct aead_request *a_req)
1590 return sec_aead_crypto(a_req, true);
1593 static int sec_aead_decrypt(struct aead_request *a_req)
1595 return sec_aead_crypto(a_req, false);
1598 #define SEC_AEAD_GEN_ALG(sec_cra_name, sec_set_key, ctx_init,\
1599 ctx_exit, blk_size, iv_size, max_authsize)\
1601 .base = {\
1602 .cra_name = sec_cra_name,\
1603 .cra_driver_name = "hisi_sec_"sec_cra_name,\
1604 .cra_priority = SEC_PRIORITY,\
1605 .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,\
1606 .cra_blocksize = blk_size,\
1607 .cra_ctxsize = sizeof(struct sec_ctx),\
1608 .cra_module = THIS_MODULE,\
1610 .init = ctx_init,\
1611 .exit = ctx_exit,\
1612 .setkey = sec_set_key,\
1613 .decrypt = sec_aead_decrypt,\
1614 .encrypt = sec_aead_encrypt,\
1615 .ivsize = iv_size,\
1616 .maxauthsize = max_authsize,\
1619 #define SEC_AEAD_ALG(algname, keyfunc, aead_init, blksize, ivsize, authsize)\
1620 SEC_AEAD_GEN_ALG(algname, keyfunc, aead_init,\
1621 sec_aead_ctx_exit, blksize, ivsize, authsize)
1623 static struct aead_alg sec_aeads[] = {
1624 SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))",
1625 sec_setkey_aes_cbc_sha1, sec_aead_sha1_ctx_init,
1626 AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
1628 SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))",
1629 sec_setkey_aes_cbc_sha256, sec_aead_sha256_ctx_init,
1630 AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
1632 SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))",
1633 sec_setkey_aes_cbc_sha512, sec_aead_sha512_ctx_init,
1634 AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
1637 int sec_register_to_crypto(void)
1639 int ret;
1641 /* To avoid repeat register */
1642 ret = crypto_register_skciphers(sec_skciphers,
1643 ARRAY_SIZE(sec_skciphers));
1644 if (ret)
1645 return ret;
1647 ret = crypto_register_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
1648 if (ret)
1649 crypto_unregister_skciphers(sec_skciphers,
1650 ARRAY_SIZE(sec_skciphers));
1651 return ret;
1654 void sec_unregister_from_crypto(void)
1656 crypto_unregister_skciphers(sec_skciphers,
1657 ARRAY_SIZE(sec_skciphers));
1658 crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));