WIP FPC-III support
[linux/fpc-iii.git] / drivers / crypto / qce / sha.c
blob61c418c123458f18244dc19ad1caea56a2821041
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
4 */
6 #include <linux/device.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/interrupt.h>
9 #include <crypto/internal/hash.h>
11 #include "common.h"
12 #include "core.h"
13 #include "sha.h"
15 /* crypto hw padding constant for first operation */
16 #define SHA_PADDING 64
17 #define SHA_PADDING_MASK (SHA_PADDING - 1)
19 static LIST_HEAD(ahash_algs);
21 static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
22 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
25 static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
26 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
27 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
30 static void qce_ahash_done(void *data)
32 struct crypto_async_request *async_req = data;
33 struct ahash_request *req = ahash_request_cast(async_req);
34 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
35 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
36 struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
37 struct qce_device *qce = tmpl->qce;
38 struct qce_result_dump *result = qce->dma.result_buf;
39 unsigned int digestsize = crypto_ahash_digestsize(ahash);
40 int error;
41 u32 status;
43 error = qce_dma_terminate_all(&qce->dma);
44 if (error)
45 dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
47 dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
48 dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
50 memcpy(rctx->digest, result->auth_iv, digestsize);
51 if (req->result && rctx->last_blk)
52 memcpy(req->result, result->auth_iv, digestsize);
54 rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
55 rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
57 error = qce_check_status(qce, &status);
58 if (error < 0)
59 dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
61 req->src = rctx->src_orig;
62 req->nbytes = rctx->nbytes_orig;
63 rctx->last_blk = false;
64 rctx->first_blk = false;
66 qce->async_req_done(tmpl->qce, error);
69 static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
71 struct ahash_request *req = ahash_request_cast(async_req);
72 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
73 struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
74 struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
75 struct qce_device *qce = tmpl->qce;
76 unsigned long flags = rctx->flags;
77 int ret;
79 if (IS_SHA_HMAC(flags)) {
80 rctx->authkey = ctx->authkey;
81 rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
82 } else if (IS_CMAC(flags)) {
83 rctx->authkey = ctx->authkey;
84 rctx->authklen = AES_KEYSIZE_128;
87 rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
88 if (rctx->src_nents < 0) {
89 dev_err(qce->dev, "Invalid numbers of src SG.\n");
90 return rctx->src_nents;
93 ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
94 if (ret < 0)
95 return ret;
97 sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
99 ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
100 if (ret < 0)
101 goto error_unmap_src;
103 ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
104 &rctx->result_sg, 1, qce_ahash_done, async_req);
105 if (ret)
106 goto error_unmap_dst;
108 qce_dma_issue_pending(&qce->dma);
110 ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0);
111 if (ret)
112 goto error_terminate;
114 return 0;
116 error_terminate:
117 qce_dma_terminate_all(&qce->dma);
118 error_unmap_dst:
119 dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
120 error_unmap_src:
121 dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
122 return ret;
125 static int qce_ahash_init(struct ahash_request *req)
127 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
128 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
129 const u32 *std_iv = tmpl->std_iv;
131 memset(rctx, 0, sizeof(*rctx));
132 rctx->first_blk = true;
133 rctx->last_blk = false;
134 rctx->flags = tmpl->alg_flags;
135 memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
137 return 0;
140 static int qce_ahash_export(struct ahash_request *req, void *out)
142 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
143 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
144 unsigned long flags = rctx->flags;
145 unsigned int digestsize = crypto_ahash_digestsize(ahash);
146 unsigned int blocksize =
147 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
149 if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
150 struct sha1_state *out_state = out;
152 out_state->count = rctx->count;
153 qce_cpu_to_be32p_array((__be32 *)out_state->state,
154 rctx->digest, digestsize);
155 memcpy(out_state->buffer, rctx->buf, blocksize);
156 } else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
157 struct sha256_state *out_state = out;
159 out_state->count = rctx->count;
160 qce_cpu_to_be32p_array((__be32 *)out_state->state,
161 rctx->digest, digestsize);
162 memcpy(out_state->buf, rctx->buf, blocksize);
163 } else {
164 return -EINVAL;
167 return 0;
170 static int qce_import_common(struct ahash_request *req, u64 in_count,
171 const u32 *state, const u8 *buffer, bool hmac)
173 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
174 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
175 unsigned int digestsize = crypto_ahash_digestsize(ahash);
176 unsigned int blocksize;
177 u64 count = in_count;
179 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
180 rctx->count = in_count;
181 memcpy(rctx->buf, buffer, blocksize);
183 if (in_count <= blocksize) {
184 rctx->first_blk = 1;
185 } else {
186 rctx->first_blk = 0;
188 * For HMAC, there is a hardware padding done when first block
189 * is set. Therefore the byte_count must be incremened by 64
190 * after the first block operation.
192 if (hmac)
193 count += SHA_PADDING;
196 rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK);
197 rctx->byte_count[1] = (__force __be32)(count >> 32);
198 qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state,
199 digestsize);
200 rctx->buflen = (unsigned int)(in_count & (blocksize - 1));
202 return 0;
205 static int qce_ahash_import(struct ahash_request *req, const void *in)
207 struct qce_sha_reqctx *rctx;
208 unsigned long flags;
209 bool hmac;
210 int ret;
212 ret = qce_ahash_init(req);
213 if (ret)
214 return ret;
216 rctx = ahash_request_ctx(req);
217 flags = rctx->flags;
218 hmac = IS_SHA_HMAC(flags);
220 if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
221 const struct sha1_state *state = in;
223 ret = qce_import_common(req, state->count, state->state,
224 state->buffer, hmac);
225 } else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
226 const struct sha256_state *state = in;
228 ret = qce_import_common(req, state->count, state->state,
229 state->buf, hmac);
232 return ret;
235 static int qce_ahash_update(struct ahash_request *req)
237 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
238 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
239 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
240 struct qce_device *qce = tmpl->qce;
241 struct scatterlist *sg_last, *sg;
242 unsigned int total, len;
243 unsigned int hash_later;
244 unsigned int nbytes;
245 unsigned int blocksize;
247 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
248 rctx->count += req->nbytes;
250 /* check for buffer from previous updates and append it */
251 total = req->nbytes + rctx->buflen;
253 if (total <= blocksize) {
254 scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
255 0, req->nbytes, 0);
256 rctx->buflen += req->nbytes;
257 return 0;
260 /* save the original req structure fields */
261 rctx->src_orig = req->src;
262 rctx->nbytes_orig = req->nbytes;
265 * if we have data from previous update copy them on buffer. The old
266 * data will be combined with current request bytes.
268 if (rctx->buflen)
269 memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
271 /* calculate how many bytes will be hashed later */
272 hash_later = total % blocksize;
273 if (hash_later) {
274 unsigned int src_offset = req->nbytes - hash_later;
275 scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
276 hash_later, 0);
279 /* here nbytes is multiple of blocksize */
280 nbytes = total - hash_later;
282 len = rctx->buflen;
283 sg = sg_last = req->src;
285 while (len < nbytes && sg) {
286 if (len + sg_dma_len(sg) > nbytes)
287 break;
288 len += sg_dma_len(sg);
289 sg_last = sg;
290 sg = sg_next(sg);
293 if (!sg_last)
294 return -EINVAL;
296 if (rctx->buflen) {
297 sg_init_table(rctx->sg, 2);
298 sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
299 sg_chain(rctx->sg, 2, req->src);
300 req->src = rctx->sg;
303 req->nbytes = nbytes;
304 rctx->buflen = hash_later;
306 return qce->async_req_enqueue(tmpl->qce, &req->base);
309 static int qce_ahash_final(struct ahash_request *req)
311 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
312 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
313 struct qce_device *qce = tmpl->qce;
315 if (!rctx->buflen) {
316 if (tmpl->hash_zero)
317 memcpy(req->result, tmpl->hash_zero,
318 tmpl->alg.ahash.halg.digestsize);
319 return 0;
322 rctx->last_blk = true;
324 rctx->src_orig = req->src;
325 rctx->nbytes_orig = req->nbytes;
327 memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
328 sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
330 req->src = rctx->sg;
331 req->nbytes = rctx->buflen;
333 return qce->async_req_enqueue(tmpl->qce, &req->base);
336 static int qce_ahash_digest(struct ahash_request *req)
338 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
339 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
340 struct qce_device *qce = tmpl->qce;
341 int ret;
343 ret = qce_ahash_init(req);
344 if (ret)
345 return ret;
347 rctx->src_orig = req->src;
348 rctx->nbytes_orig = req->nbytes;
349 rctx->first_blk = true;
350 rctx->last_blk = true;
352 if (!rctx->nbytes_orig) {
353 if (tmpl->hash_zero)
354 memcpy(req->result, tmpl->hash_zero,
355 tmpl->alg.ahash.halg.digestsize);
356 return 0;
359 return qce->async_req_enqueue(tmpl->qce, &req->base);
362 static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
363 unsigned int keylen)
365 unsigned int digestsize = crypto_ahash_digestsize(tfm);
366 struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
367 struct crypto_wait wait;
368 struct ahash_request *req;
369 struct scatterlist sg;
370 unsigned int blocksize;
371 struct crypto_ahash *ahash_tfm;
372 u8 *buf;
373 int ret;
374 const char *alg_name;
376 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
377 memset(ctx->authkey, 0, sizeof(ctx->authkey));
379 if (keylen <= blocksize) {
380 memcpy(ctx->authkey, key, keylen);
381 return 0;
384 if (digestsize == SHA1_DIGEST_SIZE)
385 alg_name = "sha1-qce";
386 else if (digestsize == SHA256_DIGEST_SIZE)
387 alg_name = "sha256-qce";
388 else
389 return -EINVAL;
391 ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0);
392 if (IS_ERR(ahash_tfm))
393 return PTR_ERR(ahash_tfm);
395 req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
396 if (!req) {
397 ret = -ENOMEM;
398 goto err_free_ahash;
401 crypto_init_wait(&wait);
402 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
403 crypto_req_done, &wait);
404 crypto_ahash_clear_flags(ahash_tfm, ~0);
406 buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
407 if (!buf) {
408 ret = -ENOMEM;
409 goto err_free_req;
412 memcpy(buf, key, keylen);
413 sg_init_one(&sg, buf, keylen);
414 ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
416 ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
418 kfree(buf);
419 err_free_req:
420 ahash_request_free(req);
421 err_free_ahash:
422 crypto_free_ahash(ahash_tfm);
423 return ret;
426 static int qce_ahash_cra_init(struct crypto_tfm *tfm)
428 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
429 struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
431 crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
432 memset(ctx, 0, sizeof(*ctx));
433 return 0;
436 struct qce_ahash_def {
437 unsigned long flags;
438 const char *name;
439 const char *drv_name;
440 unsigned int digestsize;
441 unsigned int blocksize;
442 unsigned int statesize;
443 const u32 *std_iv;
446 static const struct qce_ahash_def ahash_def[] = {
448 .flags = QCE_HASH_SHA1,
449 .name = "sha1",
450 .drv_name = "sha1-qce",
451 .digestsize = SHA1_DIGEST_SIZE,
452 .blocksize = SHA1_BLOCK_SIZE,
453 .statesize = sizeof(struct sha1_state),
454 .std_iv = std_iv_sha1,
457 .flags = QCE_HASH_SHA256,
458 .name = "sha256",
459 .drv_name = "sha256-qce",
460 .digestsize = SHA256_DIGEST_SIZE,
461 .blocksize = SHA256_BLOCK_SIZE,
462 .statesize = sizeof(struct sha256_state),
463 .std_iv = std_iv_sha256,
466 .flags = QCE_HASH_SHA1_HMAC,
467 .name = "hmac(sha1)",
468 .drv_name = "hmac-sha1-qce",
469 .digestsize = SHA1_DIGEST_SIZE,
470 .blocksize = SHA1_BLOCK_SIZE,
471 .statesize = sizeof(struct sha1_state),
472 .std_iv = std_iv_sha1,
475 .flags = QCE_HASH_SHA256_HMAC,
476 .name = "hmac(sha256)",
477 .drv_name = "hmac-sha256-qce",
478 .digestsize = SHA256_DIGEST_SIZE,
479 .blocksize = SHA256_BLOCK_SIZE,
480 .statesize = sizeof(struct sha256_state),
481 .std_iv = std_iv_sha256,
485 static int qce_ahash_register_one(const struct qce_ahash_def *def,
486 struct qce_device *qce)
488 struct qce_alg_template *tmpl;
489 struct ahash_alg *alg;
490 struct crypto_alg *base;
491 int ret;
493 tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
494 if (!tmpl)
495 return -ENOMEM;
497 tmpl->std_iv = def->std_iv;
499 alg = &tmpl->alg.ahash;
500 alg->init = qce_ahash_init;
501 alg->update = qce_ahash_update;
502 alg->final = qce_ahash_final;
503 alg->digest = qce_ahash_digest;
504 alg->export = qce_ahash_export;
505 alg->import = qce_ahash_import;
506 if (IS_SHA_HMAC(def->flags))
507 alg->setkey = qce_ahash_hmac_setkey;
508 alg->halg.digestsize = def->digestsize;
509 alg->halg.statesize = def->statesize;
511 if (IS_SHA1(def->flags))
512 tmpl->hash_zero = sha1_zero_message_hash;
513 else if (IS_SHA256(def->flags))
514 tmpl->hash_zero = sha256_zero_message_hash;
516 base = &alg->halg.base;
517 base->cra_blocksize = def->blocksize;
518 base->cra_priority = 300;
519 base->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
520 base->cra_ctxsize = sizeof(struct qce_sha_ctx);
521 base->cra_alignmask = 0;
522 base->cra_module = THIS_MODULE;
523 base->cra_init = qce_ahash_cra_init;
525 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
526 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
527 def->drv_name);
529 INIT_LIST_HEAD(&tmpl->entry);
530 tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
531 tmpl->alg_flags = def->flags;
532 tmpl->qce = qce;
534 ret = crypto_register_ahash(alg);
535 if (ret) {
536 kfree(tmpl);
537 dev_err(qce->dev, "%s registration failed\n", base->cra_name);
538 return ret;
541 list_add_tail(&tmpl->entry, &ahash_algs);
542 dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
543 return 0;
546 static void qce_ahash_unregister(struct qce_device *qce)
548 struct qce_alg_template *tmpl, *n;
550 list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
551 crypto_unregister_ahash(&tmpl->alg.ahash);
552 list_del(&tmpl->entry);
553 kfree(tmpl);
557 static int qce_ahash_register(struct qce_device *qce)
559 int ret, i;
561 for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
562 ret = qce_ahash_register_one(&ahash_def[i], qce);
563 if (ret)
564 goto err;
567 return 0;
568 err:
569 qce_ahash_unregister(qce);
570 return ret;
573 const struct qce_algo_ops ahash_ops = {
574 .type = CRYPTO_ALG_TYPE_AHASH,
575 .register_algs = qce_ahash_register,
576 .unregister_algs = qce_ahash_unregister,
577 .async_req_handle = qce_ahash_async_req_handle,