1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) Ericsson AB 2007-2008
4 * Copyright (C) ST-Ericsson SA 2008-2010
5 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
6 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/log2.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/err.h>
22 #include <linux/of_dma.h>
23 #include <linux/amba/bus.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/platform_data/dma-ste-dma40.h>
27 #include "dmaengine.h"
28 #include "ste_dma40_ll.h"
30 #define D40_NAME "dma40"
32 #define D40_PHY_CHAN -1
34 /* For masking out/in 2 bit channel positions */
35 #define D40_CHAN_POS(chan) (2 * (chan / 2))
36 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
38 /* Maximum iterations taken before giving up suspending a channel */
39 #define D40_SUSPEND_MAX_IT 500
42 #define DMA40_AUTOSUSPEND_DELAY 100
44 /* Hardware requirement on LCLA alignment */
45 #define LCLA_ALIGNMENT 0x40000
47 /* Max number of links per event group */
48 #define D40_LCLA_LINK_PER_EVENT_GRP 128
49 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
51 /* Max number of logical channels per physical channel */
52 #define D40_MAX_LOG_CHAN_PER_PHY 32
54 /* Attempts before giving up to trying to get pages that are aligned */
55 #define MAX_LCLA_ALLOC_ATTEMPTS 256
57 /* Bit markings for allocation map */
58 #define D40_ALLOC_FREE BIT(31)
59 #define D40_ALLOC_PHY BIT(30)
60 #define D40_ALLOC_LOG_FREE 0
62 #define D40_MEMCPY_MAX_CHANS 8
64 /* Reserved event lines for memcpy only. */
65 #define DB8500_DMA_MEMCPY_EV_0 51
66 #define DB8500_DMA_MEMCPY_EV_1 56
67 #define DB8500_DMA_MEMCPY_EV_2 57
68 #define DB8500_DMA_MEMCPY_EV_3 58
69 #define DB8500_DMA_MEMCPY_EV_4 59
70 #define DB8500_DMA_MEMCPY_EV_5 60
72 static int dma40_memcpy_channels
[] = {
73 DB8500_DMA_MEMCPY_EV_0
,
74 DB8500_DMA_MEMCPY_EV_1
,
75 DB8500_DMA_MEMCPY_EV_2
,
76 DB8500_DMA_MEMCPY_EV_3
,
77 DB8500_DMA_MEMCPY_EV_4
,
78 DB8500_DMA_MEMCPY_EV_5
,
81 /* Default configuration for physcial memcpy */
82 static const struct stedma40_chan_cfg dma40_memcpy_conf_phy
= {
83 .mode
= STEDMA40_MODE_PHYSICAL
,
84 .dir
= DMA_MEM_TO_MEM
,
86 .src_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
87 .src_info
.psize
= STEDMA40_PSIZE_PHY_1
,
88 .src_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
90 .dst_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
91 .dst_info
.psize
= STEDMA40_PSIZE_PHY_1
,
92 .dst_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
95 /* Default configuration for logical memcpy */
96 static const struct stedma40_chan_cfg dma40_memcpy_conf_log
= {
97 .mode
= STEDMA40_MODE_LOGICAL
,
98 .dir
= DMA_MEM_TO_MEM
,
100 .src_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
101 .src_info
.psize
= STEDMA40_PSIZE_LOG_1
,
102 .src_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
104 .dst_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
105 .dst_info
.psize
= STEDMA40_PSIZE_LOG_1
,
106 .dst_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
110 * enum 40_command - The different commands and/or statuses.
112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
120 D40_DMA_SUSPEND_REQ
= 2,
121 D40_DMA_SUSPENDED
= 3
125 * enum d40_events - The different Event Enables for the event lines.
127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
130 * @D40_ROUND_EVENTLINE: Status check for event line.
134 D40_DEACTIVATE_EVENTLINE
= 0,
135 D40_ACTIVATE_EVENTLINE
= 1,
136 D40_SUSPEND_REQ_EVENTLINE
= 2,
137 D40_ROUND_EVENTLINE
= 3
141 * These are the registers that has to be saved and later restored
142 * when the DMA hw is powered off.
143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
145 static __maybe_unused u32 d40_backup_regs
[] = {
154 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
157 * since 9540 and 8540 has the same HW revision
158 * use v4a for 9540 or ealier
159 * use v4b for 8540 or later
161 * DB8500ed has revision 0
162 * DB8500v1 has revision 2
163 * DB8500v2 has revision 3
164 * AP9540v1 has revision 4
165 * DB8540v1 has revision 4
166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
168 static u32 d40_backup_regs_v4a
[] = {
187 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
189 static u32 d40_backup_regs_v4b
[] = {
212 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
214 static __maybe_unused u32 d40_backup_regs_chan
[] = {
225 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
226 BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
229 * struct d40_interrupt_lookup - lookup table for interrupt handler
231 * @src: Interrupt mask register.
232 * @clr: Interrupt clear register.
233 * @is_error: true if this is an error interrupt.
234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
237 struct d40_interrupt_lookup
{
245 static struct d40_interrupt_lookup il_v4a
[] = {
246 {D40_DREG_LCTIS0
, D40_DREG_LCICR0
, false, 0},
247 {D40_DREG_LCTIS1
, D40_DREG_LCICR1
, false, 32},
248 {D40_DREG_LCTIS2
, D40_DREG_LCICR2
, false, 64},
249 {D40_DREG_LCTIS3
, D40_DREG_LCICR3
, false, 96},
250 {D40_DREG_LCEIS0
, D40_DREG_LCICR0
, true, 0},
251 {D40_DREG_LCEIS1
, D40_DREG_LCICR1
, true, 32},
252 {D40_DREG_LCEIS2
, D40_DREG_LCICR2
, true, 64},
253 {D40_DREG_LCEIS3
, D40_DREG_LCICR3
, true, 96},
254 {D40_DREG_PCTIS
, D40_DREG_PCICR
, false, D40_PHY_CHAN
},
255 {D40_DREG_PCEIS
, D40_DREG_PCICR
, true, D40_PHY_CHAN
},
258 static struct d40_interrupt_lookup il_v4b
[] = {
259 {D40_DREG_CLCTIS1
, D40_DREG_CLCICR1
, false, 0},
260 {D40_DREG_CLCTIS2
, D40_DREG_CLCICR2
, false, 32},
261 {D40_DREG_CLCTIS3
, D40_DREG_CLCICR3
, false, 64},
262 {D40_DREG_CLCTIS4
, D40_DREG_CLCICR4
, false, 96},
263 {D40_DREG_CLCTIS5
, D40_DREG_CLCICR5
, false, 128},
264 {D40_DREG_CLCEIS1
, D40_DREG_CLCICR1
, true, 0},
265 {D40_DREG_CLCEIS2
, D40_DREG_CLCICR2
, true, 32},
266 {D40_DREG_CLCEIS3
, D40_DREG_CLCICR3
, true, 64},
267 {D40_DREG_CLCEIS4
, D40_DREG_CLCICR4
, true, 96},
268 {D40_DREG_CLCEIS5
, D40_DREG_CLCICR5
, true, 128},
269 {D40_DREG_CPCTIS
, D40_DREG_CPCICR
, false, D40_PHY_CHAN
},
270 {D40_DREG_CPCEIS
, D40_DREG_CPCICR
, true, D40_PHY_CHAN
},
274 * struct d40_reg_val - simple lookup struct
276 * @reg: The register.
277 * @val: The value that belongs to the register in reg.
284 static __initdata
struct d40_reg_val dma_init_reg_v4a
[] = {
285 /* Clock every part of the DMA block from start */
286 { .reg
= D40_DREG_GCC
, .val
= D40_DREG_GCC_ENABLE_ALL
},
288 /* Interrupts on all logical channels */
289 { .reg
= D40_DREG_LCMIS0
, .val
= 0xFFFFFFFF},
290 { .reg
= D40_DREG_LCMIS1
, .val
= 0xFFFFFFFF},
291 { .reg
= D40_DREG_LCMIS2
, .val
= 0xFFFFFFFF},
292 { .reg
= D40_DREG_LCMIS3
, .val
= 0xFFFFFFFF},
293 { .reg
= D40_DREG_LCICR0
, .val
= 0xFFFFFFFF},
294 { .reg
= D40_DREG_LCICR1
, .val
= 0xFFFFFFFF},
295 { .reg
= D40_DREG_LCICR2
, .val
= 0xFFFFFFFF},
296 { .reg
= D40_DREG_LCICR3
, .val
= 0xFFFFFFFF},
297 { .reg
= D40_DREG_LCTIS0
, .val
= 0xFFFFFFFF},
298 { .reg
= D40_DREG_LCTIS1
, .val
= 0xFFFFFFFF},
299 { .reg
= D40_DREG_LCTIS2
, .val
= 0xFFFFFFFF},
300 { .reg
= D40_DREG_LCTIS3
, .val
= 0xFFFFFFFF}
302 static __initdata
struct d40_reg_val dma_init_reg_v4b
[] = {
303 /* Clock every part of the DMA block from start */
304 { .reg
= D40_DREG_GCC
, .val
= D40_DREG_GCC_ENABLE_ALL
},
306 /* Interrupts on all logical channels */
307 { .reg
= D40_DREG_CLCMIS1
, .val
= 0xFFFFFFFF},
308 { .reg
= D40_DREG_CLCMIS2
, .val
= 0xFFFFFFFF},
309 { .reg
= D40_DREG_CLCMIS3
, .val
= 0xFFFFFFFF},
310 { .reg
= D40_DREG_CLCMIS4
, .val
= 0xFFFFFFFF},
311 { .reg
= D40_DREG_CLCMIS5
, .val
= 0xFFFFFFFF},
312 { .reg
= D40_DREG_CLCICR1
, .val
= 0xFFFFFFFF},
313 { .reg
= D40_DREG_CLCICR2
, .val
= 0xFFFFFFFF},
314 { .reg
= D40_DREG_CLCICR3
, .val
= 0xFFFFFFFF},
315 { .reg
= D40_DREG_CLCICR4
, .val
= 0xFFFFFFFF},
316 { .reg
= D40_DREG_CLCICR5
, .val
= 0xFFFFFFFF},
317 { .reg
= D40_DREG_CLCTIS1
, .val
= 0xFFFFFFFF},
318 { .reg
= D40_DREG_CLCTIS2
, .val
= 0xFFFFFFFF},
319 { .reg
= D40_DREG_CLCTIS3
, .val
= 0xFFFFFFFF},
320 { .reg
= D40_DREG_CLCTIS4
, .val
= 0xFFFFFFFF},
321 { .reg
= D40_DREG_CLCTIS5
, .val
= 0xFFFFFFFF}
325 * struct d40_lli_pool - Structure for keeping LLIs in memory
327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
329 * pre_alloc_lli is used.
330 * @dma_addr: DMA address, if mapped
331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
333 * one buffer to one buffer.
335 struct d40_lli_pool
{
339 /* Space for dst and src, plus an extra for padding */
340 u8 pre_alloc_lli
[3 * sizeof(struct d40_phy_lli
)];
344 * struct d40_desc - A descriptor is one DMA job.
346 * @lli_phy: LLI settings for physical channel. Both src and dst=
347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
348 * lli_len equals one.
349 * @lli_log: Same as above but for logical channels.
350 * @lli_pool: The pool with two entries pre-allocated.
351 * @lli_len: Number of llis of current descriptor.
352 * @lli_current: Number of transferred llis.
353 * @lcla_alloc: Number of LCLA entries allocated.
354 * @txd: DMA engine struct. Used for among other things for communication
357 * @is_in_client_list: true if the client owns this descriptor.
358 * @cyclic: true if this is a cyclic job
360 * This descriptor is used for both logical and physical transfers.
364 struct d40_phy_lli_bidir lli_phy
;
366 struct d40_log_lli_bidir lli_log
;
368 struct d40_lli_pool lli_pool
;
373 struct dma_async_tx_descriptor txd
;
374 struct list_head node
;
376 bool is_in_client_list
;
381 * struct d40_lcla_pool - LCLA pool settings and data.
383 * @base: The virtual address of LCLA. 18 bit aligned.
384 * @dma_addr: DMA address, if mapped
385 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
386 * This pointer is only there for clean-up on error.
387 * @pages: The number of pages needed for all physical channels.
388 * Only used later for clean-up on error
389 * @lock: Lock to protect the content in this struct.
390 * @alloc_map: big map over which LCLA entry is own by which job.
392 struct d40_lcla_pool
{
395 void *base_unaligned
;
398 struct d40_desc
**alloc_map
;
402 * struct d40_phy_res - struct for handling eventlines mapped to physical
405 * @lock: A lock protection this entity.
406 * @reserved: True if used by secure world or otherwise.
407 * @num: The physical channel number of this entity.
408 * @allocated_src: Bit mapped to show which src event line's are mapped to
409 * this physical channel. Can also be free or physically allocated.
410 * @allocated_dst: Same as for src but is dst.
411 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
413 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
427 * struct d40_chan - Struct that describes a channel.
429 * @lock: A spinlock to protect this struct.
430 * @log_num: The logical number, if any of this channel.
431 * @pending_tx: The number of pending transfers. Used between interrupt handler
433 * @busy: Set to true when transfer is ongoing on this channel.
434 * @phy_chan: Pointer to physical channel which this instance runs on. If this
435 * point is NULL, then the channel is not allocated.
436 * @chan: DMA engine handle.
437 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
438 * transfer and call client callback.
439 * @client: Cliented owned descriptor list.
440 * @pending_queue: Submitted jobs, to be issued by issue_pending()
441 * @active: Active descriptor.
442 * @done: Completed jobs
443 * @queue: Queued jobs.
444 * @prepare_queue: Prepared jobs.
445 * @dma_cfg: The client configuration of this dma channel.
446 * @slave_config: DMA slave configuration.
447 * @configured: whether the dma_cfg configuration is valid
448 * @base: Pointer to the device instance struct.
449 * @src_def_cfg: Default cfg register setting for src.
450 * @dst_def_cfg: Default cfg register setting for dst.
451 * @log_def: Default logical channel settings.
452 * @lcpa: Pointer to dst and src lcpa settings.
453 * @runtime_addr: runtime configured address.
454 * @runtime_direction: runtime configured direction.
456 * This struct can either "be" a logical or a physical channel.
463 struct d40_phy_res
*phy_chan
;
464 struct dma_chan chan
;
465 struct tasklet_struct tasklet
;
466 struct list_head client
;
467 struct list_head pending_queue
;
468 struct list_head active
;
469 struct list_head done
;
470 struct list_head queue
;
471 struct list_head prepare_queue
;
472 struct stedma40_chan_cfg dma_cfg
;
473 struct dma_slave_config slave_config
;
475 struct d40_base
*base
;
476 /* Default register configurations */
479 struct d40_def_lcsp log_def
;
480 struct d40_log_lli_full
*lcpa
;
481 /* Runtime reconfiguration */
482 dma_addr_t runtime_addr
;
483 enum dma_transfer_direction runtime_direction
;
487 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
490 * @backup: the pointer to the registers address array for backup
491 * @backup_size: the size of the registers address array for backup
492 * @realtime_en: the realtime enable register
493 * @realtime_clear: the realtime clear register
494 * @high_prio_en: the high priority enable register
495 * @high_prio_clear: the high priority clear register
496 * @interrupt_en: the interrupt enable register
497 * @interrupt_clear: the interrupt clear register
498 * @il: the pointer to struct d40_interrupt_lookup
499 * @il_size: the size of d40_interrupt_lookup array
500 * @init_reg: the pointer to the struct d40_reg_val
501 * @init_reg_size: the size of d40_reg_val array
503 struct d40_gen_dmac
{
512 struct d40_interrupt_lookup
*il
;
514 struct d40_reg_val
*init_reg
;
519 * struct d40_base - The big global struct, one for each probe'd instance.
521 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
522 * @execmd_lock: Lock for execute command usage since several channels share
523 * the same physical register.
524 * @dev: The device structure.
525 * @virtbase: The virtual base address of the DMA's register.
526 * @rev: silicon revision detected.
527 * @clk: Pointer to the DMA clock structure.
528 * @phy_start: Physical memory start of the DMA registers.
529 * @phy_size: Size of the DMA register map.
530 * @irq: The IRQ number.
531 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
533 * @num_phy_chans: The number of physical channels. Read from HW. This
534 * is the number of available channels for this driver, not counting "Secure
535 * mode" allocated physical channels.
536 * @num_log_chans: The number of logical channels. Calculated from
538 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
539 * @dma_slave: dma_device channels that can do only do slave transfers.
540 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
541 * @phy_chans: Room for all possible physical channels in system.
542 * @log_chans: Room for all possible logical channels in system.
543 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
544 * to log_chans entries.
545 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
546 * to phy_chans entries.
547 * @plat_data: Pointer to provided platform_data which is the driver
549 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
550 * @phy_res: Vector containing all physical channels.
551 * @lcla_pool: lcla pool settings and data.
552 * @lcpa_base: The virtual mapped address of LCPA.
553 * @phy_lcpa: The physical address of the LCPA.
554 * @lcpa_size: The size of the LCPA area.
555 * @desc_slab: cache for descriptors.
556 * @reg_val_backup: Here the values of some hardware registers are stored
557 * before the DMA is powered off. They are restored when the power is back on.
558 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
560 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
561 * @regs_interrupt: Scratch space for registers during interrupt.
562 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
563 * @gen_dmac: the struct for generic registers values to represent u8500/8540
567 spinlock_t interrupt_lock
;
568 spinlock_t execmd_lock
;
570 void __iomem
*virtbase
;
573 phys_addr_t phy_start
;
574 resource_size_t phy_size
;
576 int num_memcpy_chans
;
579 struct dma_device dma_both
;
580 struct dma_device dma_slave
;
581 struct dma_device dma_memcpy
;
582 struct d40_chan
*phy_chans
;
583 struct d40_chan
*log_chans
;
584 struct d40_chan
**lookup_log_chans
;
585 struct d40_chan
**lookup_phy_chans
;
586 struct stedma40_platform_data
*plat_data
;
587 struct regulator
*lcpa_regulator
;
588 /* Physical half channels */
589 struct d40_phy_res
*phy_res
;
590 struct d40_lcla_pool lcla_pool
;
593 resource_size_t lcpa_size
;
594 struct kmem_cache
*desc_slab
;
595 u32 reg_val_backup
[BACKUP_REGS_SZ
];
596 u32 reg_val_backup_v4
[BACKUP_REGS_SZ_MAX
];
597 u32
*reg_val_backup_chan
;
599 u16 gcc_pwr_off_mask
;
600 struct d40_gen_dmac gen_dmac
;
603 static struct device
*chan2dev(struct d40_chan
*d40c
)
605 return &d40c
->chan
.dev
->device
;
608 static bool chan_is_physical(struct d40_chan
*chan
)
610 return chan
->log_num
== D40_PHY_CHAN
;
613 static bool chan_is_logical(struct d40_chan
*chan
)
615 return !chan_is_physical(chan
);
618 static void __iomem
*chan_base(struct d40_chan
*chan
)
620 return chan
->base
->virtbase
+ D40_DREG_PCBASE
+
621 chan
->phy_chan
->num
* D40_DREG_PCDELTA
;
624 #define d40_err(dev, format, arg...) \
625 dev_err(dev, "[%s] " format, __func__, ## arg)
627 #define chan_err(d40c, format, arg...) \
628 d40_err(chan2dev(d40c), format, ## arg)
630 static int d40_set_runtime_config_write(struct dma_chan
*chan
,
631 struct dma_slave_config
*config
,
632 enum dma_transfer_direction direction
);
634 static int d40_pool_lli_alloc(struct d40_chan
*d40c
, struct d40_desc
*d40d
,
637 bool is_log
= chan_is_logical(d40c
);
642 align
= sizeof(struct d40_log_lli
);
644 align
= sizeof(struct d40_phy_lli
);
647 base
= d40d
->lli_pool
.pre_alloc_lli
;
648 d40d
->lli_pool
.size
= sizeof(d40d
->lli_pool
.pre_alloc_lli
);
649 d40d
->lli_pool
.base
= NULL
;
651 d40d
->lli_pool
.size
= lli_len
* 2 * align
;
653 base
= kmalloc(d40d
->lli_pool
.size
+ align
, GFP_NOWAIT
);
654 d40d
->lli_pool
.base
= base
;
656 if (d40d
->lli_pool
.base
== NULL
)
661 d40d
->lli_log
.src
= PTR_ALIGN(base
, align
);
662 d40d
->lli_log
.dst
= d40d
->lli_log
.src
+ lli_len
;
664 d40d
->lli_pool
.dma_addr
= 0;
666 d40d
->lli_phy
.src
= PTR_ALIGN(base
, align
);
667 d40d
->lli_phy
.dst
= d40d
->lli_phy
.src
+ lli_len
;
669 d40d
->lli_pool
.dma_addr
= dma_map_single(d40c
->base
->dev
,
674 if (dma_mapping_error(d40c
->base
->dev
,
675 d40d
->lli_pool
.dma_addr
)) {
676 kfree(d40d
->lli_pool
.base
);
677 d40d
->lli_pool
.base
= NULL
;
678 d40d
->lli_pool
.dma_addr
= 0;
686 static void d40_pool_lli_free(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
688 if (d40d
->lli_pool
.dma_addr
)
689 dma_unmap_single(d40c
->base
->dev
, d40d
->lli_pool
.dma_addr
,
690 d40d
->lli_pool
.size
, DMA_TO_DEVICE
);
692 kfree(d40d
->lli_pool
.base
);
693 d40d
->lli_pool
.base
= NULL
;
694 d40d
->lli_pool
.size
= 0;
695 d40d
->lli_log
.src
= NULL
;
696 d40d
->lli_log
.dst
= NULL
;
697 d40d
->lli_phy
.src
= NULL
;
698 d40d
->lli_phy
.dst
= NULL
;
701 static int d40_lcla_alloc_one(struct d40_chan
*d40c
,
702 struct d40_desc
*d40d
)
708 spin_lock_irqsave(&d40c
->base
->lcla_pool
.lock
, flags
);
711 * Allocate both src and dst at the same time, therefore the half
712 * start on 1 since 0 can't be used since zero is used as end marker.
714 for (i
= 1 ; i
< D40_LCLA_LINK_PER_EVENT_GRP
/ 2; i
++) {
715 int idx
= d40c
->phy_chan
->num
* D40_LCLA_LINK_PER_EVENT_GRP
+ i
;
717 if (!d40c
->base
->lcla_pool
.alloc_map
[idx
]) {
718 d40c
->base
->lcla_pool
.alloc_map
[idx
] = d40d
;
725 spin_unlock_irqrestore(&d40c
->base
->lcla_pool
.lock
, flags
);
730 static int d40_lcla_free_all(struct d40_chan
*d40c
,
731 struct d40_desc
*d40d
)
737 if (chan_is_physical(d40c
))
740 spin_lock_irqsave(&d40c
->base
->lcla_pool
.lock
, flags
);
742 for (i
= 1 ; i
< D40_LCLA_LINK_PER_EVENT_GRP
/ 2; i
++) {
743 int idx
= d40c
->phy_chan
->num
* D40_LCLA_LINK_PER_EVENT_GRP
+ i
;
745 if (d40c
->base
->lcla_pool
.alloc_map
[idx
] == d40d
) {
746 d40c
->base
->lcla_pool
.alloc_map
[idx
] = NULL
;
748 if (d40d
->lcla_alloc
== 0) {
755 spin_unlock_irqrestore(&d40c
->base
->lcla_pool
.lock
, flags
);
761 static void d40_desc_remove(struct d40_desc
*d40d
)
763 list_del(&d40d
->node
);
766 static struct d40_desc
*d40_desc_get(struct d40_chan
*d40c
)
768 struct d40_desc
*desc
= NULL
;
770 if (!list_empty(&d40c
->client
)) {
774 list_for_each_entry_safe(d
, _d
, &d40c
->client
, node
) {
775 if (async_tx_test_ack(&d
->txd
)) {
778 memset(desc
, 0, sizeof(*desc
));
785 desc
= kmem_cache_zalloc(d40c
->base
->desc_slab
, GFP_NOWAIT
);
788 INIT_LIST_HEAD(&desc
->node
);
793 static void d40_desc_free(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
796 d40_pool_lli_free(d40c
, d40d
);
797 d40_lcla_free_all(d40c
, d40d
);
798 kmem_cache_free(d40c
->base
->desc_slab
, d40d
);
801 static void d40_desc_submit(struct d40_chan
*d40c
, struct d40_desc
*desc
)
803 list_add_tail(&desc
->node
, &d40c
->active
);
806 static void d40_phy_lli_load(struct d40_chan
*chan
, struct d40_desc
*desc
)
808 struct d40_phy_lli
*lli_dst
= desc
->lli_phy
.dst
;
809 struct d40_phy_lli
*lli_src
= desc
->lli_phy
.src
;
810 void __iomem
*base
= chan_base(chan
);
812 writel(lli_src
->reg_cfg
, base
+ D40_CHAN_REG_SSCFG
);
813 writel(lli_src
->reg_elt
, base
+ D40_CHAN_REG_SSELT
);
814 writel(lli_src
->reg_ptr
, base
+ D40_CHAN_REG_SSPTR
);
815 writel(lli_src
->reg_lnk
, base
+ D40_CHAN_REG_SSLNK
);
817 writel(lli_dst
->reg_cfg
, base
+ D40_CHAN_REG_SDCFG
);
818 writel(lli_dst
->reg_elt
, base
+ D40_CHAN_REG_SDELT
);
819 writel(lli_dst
->reg_ptr
, base
+ D40_CHAN_REG_SDPTR
);
820 writel(lli_dst
->reg_lnk
, base
+ D40_CHAN_REG_SDLNK
);
823 static void d40_desc_done(struct d40_chan
*d40c
, struct d40_desc
*desc
)
825 list_add_tail(&desc
->node
, &d40c
->done
);
828 static void d40_log_lli_to_lcxa(struct d40_chan
*chan
, struct d40_desc
*desc
)
830 struct d40_lcla_pool
*pool
= &chan
->base
->lcla_pool
;
831 struct d40_log_lli_bidir
*lli
= &desc
->lli_log
;
832 int lli_current
= desc
->lli_current
;
833 int lli_len
= desc
->lli_len
;
834 bool cyclic
= desc
->cyclic
;
835 int curr_lcla
= -EINVAL
;
837 bool use_esram_lcla
= chan
->base
->plat_data
->use_esram_lcla
;
841 * We may have partially running cyclic transfers, in case we did't get
842 * enough LCLA entries.
844 linkback
= cyclic
&& lli_current
== 0;
847 * For linkback, we need one LCLA even with only one link, because we
848 * can't link back to the one in LCPA space
850 if (linkback
|| (lli_len
- lli_current
> 1)) {
852 * If the channel is expected to use only soft_lli don't
853 * allocate a lcla. This is to avoid a HW issue that exists
854 * in some controller during a peripheral to memory transfer
855 * that uses linked lists.
857 if (!(chan
->phy_chan
->use_soft_lli
&&
858 chan
->dma_cfg
.dir
== DMA_DEV_TO_MEM
))
859 curr_lcla
= d40_lcla_alloc_one(chan
, desc
);
861 first_lcla
= curr_lcla
;
865 * For linkback, we normally load the LCPA in the loop since we need to
866 * link it to the second LCLA and not the first. However, if we
867 * couldn't even get a first LCLA, then we have to run in LCPA and
870 if (!linkback
|| curr_lcla
== -EINVAL
) {
871 unsigned int flags
= 0;
873 if (curr_lcla
== -EINVAL
)
874 flags
|= LLI_TERM_INT
;
876 d40_log_lli_lcpa_write(chan
->lcpa
,
877 &lli
->dst
[lli_current
],
878 &lli
->src
[lli_current
],
887 for (; lli_current
< lli_len
; lli_current
++) {
888 unsigned int lcla_offset
= chan
->phy_chan
->num
* 1024 +
890 struct d40_log_lli
*lcla
= pool
->base
+ lcla_offset
;
891 unsigned int flags
= 0;
894 if (lli_current
+ 1 < lli_len
)
895 next_lcla
= d40_lcla_alloc_one(chan
, desc
);
897 next_lcla
= linkback
? first_lcla
: -EINVAL
;
899 if (cyclic
|| next_lcla
== -EINVAL
)
900 flags
|= LLI_TERM_INT
;
902 if (linkback
&& curr_lcla
== first_lcla
) {
903 /* First link goes in both LCPA and LCLA */
904 d40_log_lli_lcpa_write(chan
->lcpa
,
905 &lli
->dst
[lli_current
],
906 &lli
->src
[lli_current
],
911 * One unused LCLA in the cyclic case if the very first
914 d40_log_lli_lcla_write(lcla
,
915 &lli
->dst
[lli_current
],
916 &lli
->src
[lli_current
],
920 * Cache maintenance is not needed if lcla is
923 if (!use_esram_lcla
) {
924 dma_sync_single_range_for_device(chan
->base
->dev
,
925 pool
->dma_addr
, lcla_offset
,
926 2 * sizeof(struct d40_log_lli
),
929 curr_lcla
= next_lcla
;
931 if (curr_lcla
== -EINVAL
|| curr_lcla
== first_lcla
) {
937 desc
->lli_current
= lli_current
;
940 static void d40_desc_load(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
942 if (chan_is_physical(d40c
)) {
943 d40_phy_lli_load(d40c
, d40d
);
944 d40d
->lli_current
= d40d
->lli_len
;
946 d40_log_lli_to_lcxa(d40c
, d40d
);
949 static struct d40_desc
*d40_first_active_get(struct d40_chan
*d40c
)
951 return list_first_entry_or_null(&d40c
->active
, struct d40_desc
, node
);
954 /* remove desc from current queue and add it to the pending_queue */
955 static void d40_desc_queue(struct d40_chan
*d40c
, struct d40_desc
*desc
)
957 d40_desc_remove(desc
);
958 desc
->is_in_client_list
= false;
959 list_add_tail(&desc
->node
, &d40c
->pending_queue
);
962 static struct d40_desc
*d40_first_pending(struct d40_chan
*d40c
)
964 return list_first_entry_or_null(&d40c
->pending_queue
, struct d40_desc
,
968 static struct d40_desc
*d40_first_queued(struct d40_chan
*d40c
)
970 return list_first_entry_or_null(&d40c
->queue
, struct d40_desc
, node
);
973 static struct d40_desc
*d40_first_done(struct d40_chan
*d40c
)
975 return list_first_entry_or_null(&d40c
->done
, struct d40_desc
, node
);
978 static int d40_psize_2_burst_size(bool is_log
, int psize
)
981 if (psize
== STEDMA40_PSIZE_LOG_1
)
984 if (psize
== STEDMA40_PSIZE_PHY_1
)
992 * The dma only supports transmitting packages up to
993 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
995 * Calculate the total number of dma elements required to send the entire sg list.
997 static int d40_size_2_dmalen(int size
, u32 data_width1
, u32 data_width2
)
1000 u32 max_w
= max(data_width1
, data_width2
);
1001 u32 min_w
= min(data_width1
, data_width2
);
1002 u32 seg_max
= ALIGN(STEDMA40_MAX_SEG_SIZE
* min_w
, max_w
);
1004 if (seg_max
> STEDMA40_MAX_SEG_SIZE
)
1007 if (!IS_ALIGNED(size
, max_w
))
1010 if (size
<= seg_max
)
1013 dmalen
= size
/ seg_max
;
1014 if (dmalen
* seg_max
< size
)
1020 static int d40_sg_2_dmalen(struct scatterlist
*sgl
, int sg_len
,
1021 u32 data_width1
, u32 data_width2
)
1023 struct scatterlist
*sg
;
1028 for_each_sg(sgl
, sg
, sg_len
, i
) {
1029 ret
= d40_size_2_dmalen(sg_dma_len(sg
),
1030 data_width1
, data_width2
);
1038 static int __d40_execute_command_phy(struct d40_chan
*d40c
,
1039 enum d40_command command
)
1043 void __iomem
*active_reg
;
1045 unsigned long flags
;
1048 if (command
== D40_DMA_STOP
) {
1049 ret
= __d40_execute_command_phy(d40c
, D40_DMA_SUSPEND_REQ
);
1054 spin_lock_irqsave(&d40c
->base
->execmd_lock
, flags
);
1056 if (d40c
->phy_chan
->num
% 2 == 0)
1057 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVE
;
1059 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVO
;
1061 if (command
== D40_DMA_SUSPEND_REQ
) {
1062 status
= (readl(active_reg
) &
1063 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
1064 D40_CHAN_POS(d40c
->phy_chan
->num
);
1066 if (status
== D40_DMA_SUSPENDED
|| status
== D40_DMA_STOP
)
1070 wmask
= 0xffffffff & ~(D40_CHAN_POS_MASK(d40c
->phy_chan
->num
));
1071 writel(wmask
| (command
<< D40_CHAN_POS(d40c
->phy_chan
->num
)),
1074 if (command
== D40_DMA_SUSPEND_REQ
) {
1076 for (i
= 0 ; i
< D40_SUSPEND_MAX_IT
; i
++) {
1077 status
= (readl(active_reg
) &
1078 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
1079 D40_CHAN_POS(d40c
->phy_chan
->num
);
1083 * Reduce the number of bus accesses while
1084 * waiting for the DMA to suspend.
1088 if (status
== D40_DMA_STOP
||
1089 status
== D40_DMA_SUSPENDED
)
1093 if (i
== D40_SUSPEND_MAX_IT
) {
1095 "unable to suspend the chl %d (log: %d) status %x\n",
1096 d40c
->phy_chan
->num
, d40c
->log_num
,
1104 spin_unlock_irqrestore(&d40c
->base
->execmd_lock
, flags
);
1108 static void d40_term_all(struct d40_chan
*d40c
)
1110 struct d40_desc
*d40d
;
1111 struct d40_desc
*_d
;
1113 /* Release completed descriptors */
1114 while ((d40d
= d40_first_done(d40c
))) {
1115 d40_desc_remove(d40d
);
1116 d40_desc_free(d40c
, d40d
);
1119 /* Release active descriptors */
1120 while ((d40d
= d40_first_active_get(d40c
))) {
1121 d40_desc_remove(d40d
);
1122 d40_desc_free(d40c
, d40d
);
1125 /* Release queued descriptors waiting for transfer */
1126 while ((d40d
= d40_first_queued(d40c
))) {
1127 d40_desc_remove(d40d
);
1128 d40_desc_free(d40c
, d40d
);
1131 /* Release pending descriptors */
1132 while ((d40d
= d40_first_pending(d40c
))) {
1133 d40_desc_remove(d40d
);
1134 d40_desc_free(d40c
, d40d
);
1137 /* Release client owned descriptors */
1138 if (!list_empty(&d40c
->client
))
1139 list_for_each_entry_safe(d40d
, _d
, &d40c
->client
, node
) {
1140 d40_desc_remove(d40d
);
1141 d40_desc_free(d40c
, d40d
);
1144 /* Release descriptors in prepare queue */
1145 if (!list_empty(&d40c
->prepare_queue
))
1146 list_for_each_entry_safe(d40d
, _d
,
1147 &d40c
->prepare_queue
, node
) {
1148 d40_desc_remove(d40d
);
1149 d40_desc_free(d40c
, d40d
);
1152 d40c
->pending_tx
= 0;
1155 static void __d40_config_set_event(struct d40_chan
*d40c
,
1156 enum d40_events event_type
, u32 event
,
1159 void __iomem
*addr
= chan_base(d40c
) + reg
;
1163 switch (event_type
) {
1165 case D40_DEACTIVATE_EVENTLINE
:
1167 writel((D40_DEACTIVATE_EVENTLINE
<< D40_EVENTLINE_POS(event
))
1168 | ~D40_EVENTLINE_MASK(event
), addr
);
1171 case D40_SUSPEND_REQ_EVENTLINE
:
1172 status
= (readl(addr
) & D40_EVENTLINE_MASK(event
)) >>
1173 D40_EVENTLINE_POS(event
);
1175 if (status
== D40_DEACTIVATE_EVENTLINE
||
1176 status
== D40_SUSPEND_REQ_EVENTLINE
)
1179 writel((D40_SUSPEND_REQ_EVENTLINE
<< D40_EVENTLINE_POS(event
))
1180 | ~D40_EVENTLINE_MASK(event
), addr
);
1182 for (tries
= 0 ; tries
< D40_SUSPEND_MAX_IT
; tries
++) {
1184 status
= (readl(addr
) & D40_EVENTLINE_MASK(event
)) >>
1185 D40_EVENTLINE_POS(event
);
1189 * Reduce the number of bus accesses while
1190 * waiting for the DMA to suspend.
1194 if (status
== D40_DEACTIVATE_EVENTLINE
)
1198 if (tries
== D40_SUSPEND_MAX_IT
) {
1200 "unable to stop the event_line chl %d (log: %d)"
1201 "status %x\n", d40c
->phy_chan
->num
,
1202 d40c
->log_num
, status
);
1206 case D40_ACTIVATE_EVENTLINE
:
1208 * The hardware sometimes doesn't register the enable when src and dst
1209 * event lines are active on the same logical channel. Retry to ensure
1210 * it does. Usually only one retry is sufficient.
1214 writel((D40_ACTIVATE_EVENTLINE
<<
1215 D40_EVENTLINE_POS(event
)) |
1216 ~D40_EVENTLINE_MASK(event
), addr
);
1218 if (readl(addr
) & D40_EVENTLINE_MASK(event
))
1223 dev_dbg(chan2dev(d40c
),
1224 "[%s] workaround enable S%cLNK (%d tries)\n",
1225 __func__
, reg
== D40_CHAN_REG_SSLNK
? 'S' : 'D',
1231 case D40_ROUND_EVENTLINE
:
1238 static void d40_config_set_event(struct d40_chan
*d40c
,
1239 enum d40_events event_type
)
1241 u32 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dev_type
);
1243 /* Enable event line connected to device (or memcpy) */
1244 if ((d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) ||
1245 (d40c
->dma_cfg
.dir
== DMA_DEV_TO_DEV
))
1246 __d40_config_set_event(d40c
, event_type
, event
,
1247 D40_CHAN_REG_SSLNK
);
1249 if (d40c
->dma_cfg
.dir
!= DMA_DEV_TO_MEM
)
1250 __d40_config_set_event(d40c
, event_type
, event
,
1251 D40_CHAN_REG_SDLNK
);
1254 static u32
d40_chan_has_events(struct d40_chan
*d40c
)
1256 void __iomem
*chanbase
= chan_base(d40c
);
1259 val
= readl(chanbase
+ D40_CHAN_REG_SSLNK
);
1260 val
|= readl(chanbase
+ D40_CHAN_REG_SDLNK
);
1266 __d40_execute_command_log(struct d40_chan
*d40c
, enum d40_command command
)
1268 unsigned long flags
;
1271 void __iomem
*active_reg
;
1273 if (d40c
->phy_chan
->num
% 2 == 0)
1274 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVE
;
1276 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVO
;
1279 spin_lock_irqsave(&d40c
->phy_chan
->lock
, flags
);
1283 case D40_DMA_SUSPEND_REQ
:
1285 active_status
= (readl(active_reg
) &
1286 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
1287 D40_CHAN_POS(d40c
->phy_chan
->num
);
1289 if (active_status
== D40_DMA_RUN
)
1290 d40_config_set_event(d40c
, D40_SUSPEND_REQ_EVENTLINE
);
1292 d40_config_set_event(d40c
, D40_DEACTIVATE_EVENTLINE
);
1294 if (!d40_chan_has_events(d40c
) && (command
== D40_DMA_STOP
))
1295 ret
= __d40_execute_command_phy(d40c
, command
);
1301 d40_config_set_event(d40c
, D40_ACTIVATE_EVENTLINE
);
1302 ret
= __d40_execute_command_phy(d40c
, command
);
1305 case D40_DMA_SUSPENDED
:
1310 spin_unlock_irqrestore(&d40c
->phy_chan
->lock
, flags
);
1314 static int d40_channel_execute_command(struct d40_chan
*d40c
,
1315 enum d40_command command
)
1317 if (chan_is_logical(d40c
))
1318 return __d40_execute_command_log(d40c
, command
);
1320 return __d40_execute_command_phy(d40c
, command
);
1323 static u32
d40_get_prmo(struct d40_chan
*d40c
)
1325 static const unsigned int phy_map
[] = {
1326 [STEDMA40_PCHAN_BASIC_MODE
]
1327 = D40_DREG_PRMO_PCHAN_BASIC
,
1328 [STEDMA40_PCHAN_MODULO_MODE
]
1329 = D40_DREG_PRMO_PCHAN_MODULO
,
1330 [STEDMA40_PCHAN_DOUBLE_DST_MODE
]
1331 = D40_DREG_PRMO_PCHAN_DOUBLE_DST
,
1333 static const unsigned int log_map
[] = {
1334 [STEDMA40_LCHAN_SRC_PHY_DST_LOG
]
1335 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG
,
1336 [STEDMA40_LCHAN_SRC_LOG_DST_PHY
]
1337 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY
,
1338 [STEDMA40_LCHAN_SRC_LOG_DST_LOG
]
1339 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG
,
1342 if (chan_is_physical(d40c
))
1343 return phy_map
[d40c
->dma_cfg
.mode_opt
];
1345 return log_map
[d40c
->dma_cfg
.mode_opt
];
1348 static void d40_config_write(struct d40_chan
*d40c
)
1353 /* Odd addresses are even addresses + 4 */
1354 addr_base
= (d40c
->phy_chan
->num
% 2) * 4;
1355 /* Setup channel mode to logical or physical */
1356 var
= ((u32
)(chan_is_logical(d40c
)) + 1) <<
1357 D40_CHAN_POS(d40c
->phy_chan
->num
);
1358 writel(var
, d40c
->base
->virtbase
+ D40_DREG_PRMSE
+ addr_base
);
1360 /* Setup operational mode option register */
1361 var
= d40_get_prmo(d40c
) << D40_CHAN_POS(d40c
->phy_chan
->num
);
1363 writel(var
, d40c
->base
->virtbase
+ D40_DREG_PRMOE
+ addr_base
);
1365 if (chan_is_logical(d40c
)) {
1366 int lidx
= (d40c
->phy_chan
->num
<< D40_SREG_ELEM_LOG_LIDX_POS
)
1367 & D40_SREG_ELEM_LOG_LIDX_MASK
;
1368 void __iomem
*chanbase
= chan_base(d40c
);
1370 /* Set default config for CFG reg */
1371 writel(d40c
->src_def_cfg
, chanbase
+ D40_CHAN_REG_SSCFG
);
1372 writel(d40c
->dst_def_cfg
, chanbase
+ D40_CHAN_REG_SDCFG
);
1374 /* Set LIDX for lcla */
1375 writel(lidx
, chanbase
+ D40_CHAN_REG_SSELT
);
1376 writel(lidx
, chanbase
+ D40_CHAN_REG_SDELT
);
1378 /* Clear LNK which will be used by d40_chan_has_events() */
1379 writel(0, chanbase
+ D40_CHAN_REG_SSLNK
);
1380 writel(0, chanbase
+ D40_CHAN_REG_SDLNK
);
1384 static u32
d40_residue(struct d40_chan
*d40c
)
1388 if (chan_is_logical(d40c
))
1389 num_elt
= (readl(&d40c
->lcpa
->lcsp2
) & D40_MEM_LCSP2_ECNT_MASK
)
1390 >> D40_MEM_LCSP2_ECNT_POS
;
1392 u32 val
= readl(chan_base(d40c
) + D40_CHAN_REG_SDELT
);
1393 num_elt
= (val
& D40_SREG_ELEM_PHY_ECNT_MASK
)
1394 >> D40_SREG_ELEM_PHY_ECNT_POS
;
1397 return num_elt
* d40c
->dma_cfg
.dst_info
.data_width
;
1400 static bool d40_tx_is_linked(struct d40_chan
*d40c
)
1404 if (chan_is_logical(d40c
))
1405 is_link
= readl(&d40c
->lcpa
->lcsp3
) & D40_MEM_LCSP3_DLOS_MASK
;
1407 is_link
= readl(chan_base(d40c
) + D40_CHAN_REG_SDLNK
)
1408 & D40_SREG_LNK_PHYS_LNK_MASK
;
1413 static int d40_pause(struct dma_chan
*chan
)
1415 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
1417 unsigned long flags
;
1419 if (d40c
->phy_chan
== NULL
) {
1420 chan_err(d40c
, "Channel is not allocated!\n");
1427 spin_lock_irqsave(&d40c
->lock
, flags
);
1428 pm_runtime_get_sync(d40c
->base
->dev
);
1430 res
= d40_channel_execute_command(d40c
, D40_DMA_SUSPEND_REQ
);
1432 pm_runtime_mark_last_busy(d40c
->base
->dev
);
1433 pm_runtime_put_autosuspend(d40c
->base
->dev
);
1434 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1438 static int d40_resume(struct dma_chan
*chan
)
1440 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
1442 unsigned long flags
;
1444 if (d40c
->phy_chan
== NULL
) {
1445 chan_err(d40c
, "Channel is not allocated!\n");
1452 spin_lock_irqsave(&d40c
->lock
, flags
);
1453 pm_runtime_get_sync(d40c
->base
->dev
);
1455 /* If bytes left to transfer or linked tx resume job */
1456 if (d40_residue(d40c
) || d40_tx_is_linked(d40c
))
1457 res
= d40_channel_execute_command(d40c
, D40_DMA_RUN
);
1459 pm_runtime_mark_last_busy(d40c
->base
->dev
);
1460 pm_runtime_put_autosuspend(d40c
->base
->dev
);
1461 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1465 static dma_cookie_t
d40_tx_submit(struct dma_async_tx_descriptor
*tx
)
1467 struct d40_chan
*d40c
= container_of(tx
->chan
,
1470 struct d40_desc
*d40d
= container_of(tx
, struct d40_desc
, txd
);
1471 unsigned long flags
;
1472 dma_cookie_t cookie
;
1474 spin_lock_irqsave(&d40c
->lock
, flags
);
1475 cookie
= dma_cookie_assign(tx
);
1476 d40_desc_queue(d40c
, d40d
);
1477 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1482 static int d40_start(struct d40_chan
*d40c
)
1484 return d40_channel_execute_command(d40c
, D40_DMA_RUN
);
1487 static struct d40_desc
*d40_queue_start(struct d40_chan
*d40c
)
1489 struct d40_desc
*d40d
;
1492 /* Start queued jobs, if any */
1493 d40d
= d40_first_queued(d40c
);
1498 pm_runtime_get_sync(d40c
->base
->dev
);
1501 /* Remove from queue */
1502 d40_desc_remove(d40d
);
1504 /* Add to active queue */
1505 d40_desc_submit(d40c
, d40d
);
1507 /* Initiate DMA job */
1508 d40_desc_load(d40c
, d40d
);
1511 err
= d40_start(d40c
);
1520 /* called from interrupt context */
1521 static void dma_tc_handle(struct d40_chan
*d40c
)
1523 struct d40_desc
*d40d
;
1525 /* Get first active entry from list */
1526 d40d
= d40_first_active_get(d40c
);
1533 * If this was a paritially loaded list, we need to reloaded
1534 * it, and only when the list is completed. We need to check
1535 * for done because the interrupt will hit for every link, and
1536 * not just the last one.
1538 if (d40d
->lli_current
< d40d
->lli_len
1539 && !d40_tx_is_linked(d40c
)
1540 && !d40_residue(d40c
)) {
1541 d40_lcla_free_all(d40c
, d40d
);
1542 d40_desc_load(d40c
, d40d
);
1543 (void) d40_start(d40c
);
1545 if (d40d
->lli_current
== d40d
->lli_len
)
1546 d40d
->lli_current
= 0;
1549 d40_lcla_free_all(d40c
, d40d
);
1551 if (d40d
->lli_current
< d40d
->lli_len
) {
1552 d40_desc_load(d40c
, d40d
);
1554 (void) d40_start(d40c
);
1558 if (d40_queue_start(d40c
) == NULL
) {
1561 pm_runtime_mark_last_busy(d40c
->base
->dev
);
1562 pm_runtime_put_autosuspend(d40c
->base
->dev
);
1565 d40_desc_remove(d40d
);
1566 d40_desc_done(d40c
, d40d
);
1570 tasklet_schedule(&d40c
->tasklet
);
1574 static void dma_tasklet(struct tasklet_struct
*t
)
1576 struct d40_chan
*d40c
= from_tasklet(d40c
, t
, tasklet
);
1577 struct d40_desc
*d40d
;
1578 unsigned long flags
;
1579 bool callback_active
;
1580 struct dmaengine_desc_callback cb
;
1582 spin_lock_irqsave(&d40c
->lock
, flags
);
1584 /* Get first entry from the done list */
1585 d40d
= d40_first_done(d40c
);
1587 /* Check if we have reached here for cyclic job */
1588 d40d
= d40_first_active_get(d40c
);
1589 if (d40d
== NULL
|| !d40d
->cyclic
)
1590 goto check_pending_tx
;
1594 dma_cookie_complete(&d40d
->txd
);
1597 * If terminating a channel pending_tx is set to zero.
1598 * This prevents any finished active jobs to return to the client.
1600 if (d40c
->pending_tx
== 0) {
1601 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1605 /* Callback to client */
1606 callback_active
= !!(d40d
->txd
.flags
& DMA_PREP_INTERRUPT
);
1607 dmaengine_desc_get_callback(&d40d
->txd
, &cb
);
1609 if (!d40d
->cyclic
) {
1610 if (async_tx_test_ack(&d40d
->txd
)) {
1611 d40_desc_remove(d40d
);
1612 d40_desc_free(d40c
, d40d
);
1613 } else if (!d40d
->is_in_client_list
) {
1614 d40_desc_remove(d40d
);
1615 d40_lcla_free_all(d40c
, d40d
);
1616 list_add_tail(&d40d
->node
, &d40c
->client
);
1617 d40d
->is_in_client_list
= true;
1623 if (d40c
->pending_tx
)
1624 tasklet_schedule(&d40c
->tasklet
);
1626 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1628 if (callback_active
)
1629 dmaengine_desc_callback_invoke(&cb
, NULL
);
1633 /* Rescue manouver if receiving double interrupts */
1634 if (d40c
->pending_tx
> 0)
1636 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1639 static irqreturn_t
d40_handle_interrupt(int irq
, void *data
)
1645 struct d40_chan
*d40c
;
1646 struct d40_base
*base
= data
;
1647 u32
*regs
= base
->regs_interrupt
;
1648 struct d40_interrupt_lookup
*il
= base
->gen_dmac
.il
;
1649 u32 il_size
= base
->gen_dmac
.il_size
;
1651 spin_lock(&base
->interrupt_lock
);
1653 /* Read interrupt status of both logical and physical channels */
1654 for (i
= 0; i
< il_size
; i
++)
1655 regs
[i
] = readl(base
->virtbase
+ il
[i
].src
);
1659 chan
= find_next_bit((unsigned long *)regs
,
1660 BITS_PER_LONG
* il_size
, chan
+ 1);
1662 /* No more set bits found? */
1663 if (chan
== BITS_PER_LONG
* il_size
)
1666 row
= chan
/ BITS_PER_LONG
;
1667 idx
= chan
& (BITS_PER_LONG
- 1);
1669 if (il
[row
].offset
== D40_PHY_CHAN
)
1670 d40c
= base
->lookup_phy_chans
[idx
];
1672 d40c
= base
->lookup_log_chans
[il
[row
].offset
+ idx
];
1676 * No error because this can happen if something else
1677 * in the system is using the channel.
1683 writel(BIT(idx
), base
->virtbase
+ il
[row
].clr
);
1685 spin_lock(&d40c
->lock
);
1687 if (!il
[row
].is_error
)
1688 dma_tc_handle(d40c
);
1690 d40_err(base
->dev
, "IRQ chan: %ld offset %d idx %d\n",
1691 chan
, il
[row
].offset
, idx
);
1693 spin_unlock(&d40c
->lock
);
1696 spin_unlock(&base
->interrupt_lock
);
1701 static int d40_validate_conf(struct d40_chan
*d40c
,
1702 struct stedma40_chan_cfg
*conf
)
1705 bool is_log
= conf
->mode
== STEDMA40_MODE_LOGICAL
;
1708 chan_err(d40c
, "Invalid direction.\n");
1712 if ((is_log
&& conf
->dev_type
> d40c
->base
->num_log_chans
) ||
1713 (!is_log
&& conf
->dev_type
> d40c
->base
->num_phy_chans
) ||
1714 (conf
->dev_type
< 0)) {
1715 chan_err(d40c
, "Invalid device type (%d)\n", conf
->dev_type
);
1719 if (conf
->dir
== DMA_DEV_TO_DEV
) {
1721 * DMAC HW supports it. Will be added to this driver,
1722 * in case any dma client requires it.
1724 chan_err(d40c
, "periph to periph not supported\n");
1728 if (d40_psize_2_burst_size(is_log
, conf
->src_info
.psize
) *
1729 conf
->src_info
.data_width
!=
1730 d40_psize_2_burst_size(is_log
, conf
->dst_info
.psize
) *
1731 conf
->dst_info
.data_width
) {
1733 * The DMAC hardware only supports
1734 * src (burst x width) == dst (burst x width)
1737 chan_err(d40c
, "src (burst x width) != dst (burst x width)\n");
1744 static bool d40_alloc_mask_set(struct d40_phy_res
*phy
,
1745 bool is_src
, int log_event_line
, bool is_log
,
1748 unsigned long flags
;
1749 spin_lock_irqsave(&phy
->lock
, flags
);
1751 *first_user
= ((phy
->allocated_src
| phy
->allocated_dst
)
1755 /* Physical interrupts are masked per physical full channel */
1756 if (phy
->allocated_src
== D40_ALLOC_FREE
&&
1757 phy
->allocated_dst
== D40_ALLOC_FREE
) {
1758 phy
->allocated_dst
= D40_ALLOC_PHY
;
1759 phy
->allocated_src
= D40_ALLOC_PHY
;
1762 goto not_found_unlock
;
1765 /* Logical channel */
1767 if (phy
->allocated_src
== D40_ALLOC_PHY
)
1768 goto not_found_unlock
;
1770 if (phy
->allocated_src
== D40_ALLOC_FREE
)
1771 phy
->allocated_src
= D40_ALLOC_LOG_FREE
;
1773 if (!(phy
->allocated_src
& BIT(log_event_line
))) {
1774 phy
->allocated_src
|= BIT(log_event_line
);
1777 goto not_found_unlock
;
1779 if (phy
->allocated_dst
== D40_ALLOC_PHY
)
1780 goto not_found_unlock
;
1782 if (phy
->allocated_dst
== D40_ALLOC_FREE
)
1783 phy
->allocated_dst
= D40_ALLOC_LOG_FREE
;
1785 if (!(phy
->allocated_dst
& BIT(log_event_line
))) {
1786 phy
->allocated_dst
|= BIT(log_event_line
);
1791 spin_unlock_irqrestore(&phy
->lock
, flags
);
1794 spin_unlock_irqrestore(&phy
->lock
, flags
);
1798 static bool d40_alloc_mask_free(struct d40_phy_res
*phy
, bool is_src
,
1801 unsigned long flags
;
1802 bool is_free
= false;
1804 spin_lock_irqsave(&phy
->lock
, flags
);
1805 if (!log_event_line
) {
1806 phy
->allocated_dst
= D40_ALLOC_FREE
;
1807 phy
->allocated_src
= D40_ALLOC_FREE
;
1812 /* Logical channel */
1814 phy
->allocated_src
&= ~BIT(log_event_line
);
1815 if (phy
->allocated_src
== D40_ALLOC_LOG_FREE
)
1816 phy
->allocated_src
= D40_ALLOC_FREE
;
1818 phy
->allocated_dst
&= ~BIT(log_event_line
);
1819 if (phy
->allocated_dst
== D40_ALLOC_LOG_FREE
)
1820 phy
->allocated_dst
= D40_ALLOC_FREE
;
1823 is_free
= ((phy
->allocated_src
| phy
->allocated_dst
) ==
1826 spin_unlock_irqrestore(&phy
->lock
, flags
);
1831 static int d40_allocate_channel(struct d40_chan
*d40c
, bool *first_phy_user
)
1833 int dev_type
= d40c
->dma_cfg
.dev_type
;
1836 struct d40_phy_res
*phys
;
1842 bool is_log
= d40c
->dma_cfg
.mode
== STEDMA40_MODE_LOGICAL
;
1844 phys
= d40c
->base
->phy_res
;
1845 num_phy_chans
= d40c
->base
->num_phy_chans
;
1847 if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) {
1848 log_num
= 2 * dev_type
;
1850 } else if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
||
1851 d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
) {
1852 /* dst event lines are used for logical memcpy */
1853 log_num
= 2 * dev_type
+ 1;
1858 event_group
= D40_TYPE_TO_GROUP(dev_type
);
1859 event_line
= D40_TYPE_TO_EVENT(dev_type
);
1862 if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
) {
1863 /* Find physical half channel */
1864 if (d40c
->dma_cfg
.use_fixed_channel
) {
1865 i
= d40c
->dma_cfg
.phy_channel
;
1866 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1871 for (i
= 0; i
< num_phy_chans
; i
++) {
1872 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1879 for (j
= 0; j
< d40c
->base
->num_phy_chans
; j
+= 8) {
1880 int phy_num
= j
+ event_group
* 2;
1881 for (i
= phy_num
; i
< phy_num
+ 2; i
++) {
1882 if (d40_alloc_mask_set(&phys
[i
],
1892 d40c
->phy_chan
= &phys
[i
];
1893 d40c
->log_num
= D40_PHY_CHAN
;
1899 /* Find logical channel */
1900 for (j
= 0; j
< d40c
->base
->num_phy_chans
; j
+= 8) {
1901 int phy_num
= j
+ event_group
* 2;
1903 if (d40c
->dma_cfg
.use_fixed_channel
) {
1904 i
= d40c
->dma_cfg
.phy_channel
;
1906 if ((i
!= phy_num
) && (i
!= phy_num
+ 1)) {
1907 dev_err(chan2dev(d40c
),
1908 "invalid fixed phy channel %d\n", i
);
1912 if (d40_alloc_mask_set(&phys
[i
], is_src
, event_line
,
1913 is_log
, first_phy_user
))
1916 dev_err(chan2dev(d40c
),
1917 "could not allocate fixed phy channel %d\n", i
);
1922 * Spread logical channels across all available physical rather
1923 * than pack every logical channel at the first available phy
1927 for (i
= phy_num
; i
< phy_num
+ 2; i
++) {
1928 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1934 for (i
= phy_num
+ 1; i
>= phy_num
; i
--) {
1935 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1945 d40c
->phy_chan
= &phys
[i
];
1946 d40c
->log_num
= log_num
;
1950 d40c
->base
->lookup_log_chans
[d40c
->log_num
] = d40c
;
1952 d40c
->base
->lookup_phy_chans
[d40c
->phy_chan
->num
] = d40c
;
1958 static int d40_config_memcpy(struct d40_chan
*d40c
)
1960 dma_cap_mask_t cap
= d40c
->chan
.device
->cap_mask
;
1962 if (dma_has_cap(DMA_MEMCPY
, cap
) && !dma_has_cap(DMA_SLAVE
, cap
)) {
1963 d40c
->dma_cfg
= dma40_memcpy_conf_log
;
1964 d40c
->dma_cfg
.dev_type
= dma40_memcpy_channels
[d40c
->chan
.chan_id
];
1966 d40_log_cfg(&d40c
->dma_cfg
,
1967 &d40c
->log_def
.lcsp1
, &d40c
->log_def
.lcsp3
);
1969 } else if (dma_has_cap(DMA_MEMCPY
, cap
) &&
1970 dma_has_cap(DMA_SLAVE
, cap
)) {
1971 d40c
->dma_cfg
= dma40_memcpy_conf_phy
;
1973 /* Generate interrrupt at end of transfer or relink. */
1974 d40c
->dst_def_cfg
|= BIT(D40_SREG_CFG_TIM_POS
);
1976 /* Generate interrupt on error. */
1977 d40c
->src_def_cfg
|= BIT(D40_SREG_CFG_EIM_POS
);
1978 d40c
->dst_def_cfg
|= BIT(D40_SREG_CFG_EIM_POS
);
1981 chan_err(d40c
, "No memcpy\n");
1988 static int d40_free_dma(struct d40_chan
*d40c
)
1992 u32 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dev_type
);
1993 struct d40_phy_res
*phy
= d40c
->phy_chan
;
1996 /* Terminate all queued and active transfers */
2000 chan_err(d40c
, "phy == null\n");
2004 if (phy
->allocated_src
== D40_ALLOC_FREE
&&
2005 phy
->allocated_dst
== D40_ALLOC_FREE
) {
2006 chan_err(d40c
, "channel already free\n");
2010 if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
||
2011 d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
)
2013 else if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
)
2016 chan_err(d40c
, "Unknown direction\n");
2020 pm_runtime_get_sync(d40c
->base
->dev
);
2021 res
= d40_channel_execute_command(d40c
, D40_DMA_STOP
);
2023 chan_err(d40c
, "stop failed\n");
2024 goto mark_last_busy
;
2027 d40_alloc_mask_free(phy
, is_src
, chan_is_logical(d40c
) ? event
: 0);
2029 if (chan_is_logical(d40c
))
2030 d40c
->base
->lookup_log_chans
[d40c
->log_num
] = NULL
;
2032 d40c
->base
->lookup_phy_chans
[phy
->num
] = NULL
;
2035 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2036 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2040 d40c
->phy_chan
= NULL
;
2041 d40c
->configured
= false;
2043 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2044 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2048 static bool d40_is_paused(struct d40_chan
*d40c
)
2050 void __iomem
*chanbase
= chan_base(d40c
);
2051 bool is_paused
= false;
2052 unsigned long flags
;
2053 void __iomem
*active_reg
;
2055 u32 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dev_type
);
2057 spin_lock_irqsave(&d40c
->lock
, flags
);
2059 if (chan_is_physical(d40c
)) {
2060 if (d40c
->phy_chan
->num
% 2 == 0)
2061 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVE
;
2063 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVO
;
2065 status
= (readl(active_reg
) &
2066 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
2067 D40_CHAN_POS(d40c
->phy_chan
->num
);
2068 if (status
== D40_DMA_SUSPENDED
|| status
== D40_DMA_STOP
)
2073 if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
||
2074 d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
) {
2075 status
= readl(chanbase
+ D40_CHAN_REG_SDLNK
);
2076 } else if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) {
2077 status
= readl(chanbase
+ D40_CHAN_REG_SSLNK
);
2079 chan_err(d40c
, "Unknown direction\n");
2083 status
= (status
& D40_EVENTLINE_MASK(event
)) >>
2084 D40_EVENTLINE_POS(event
);
2086 if (status
!= D40_DMA_RUN
)
2089 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2094 static u32
stedma40_residue(struct dma_chan
*chan
)
2096 struct d40_chan
*d40c
=
2097 container_of(chan
, struct d40_chan
, chan
);
2099 unsigned long flags
;
2101 spin_lock_irqsave(&d40c
->lock
, flags
);
2102 bytes_left
= d40_residue(d40c
);
2103 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2109 d40_prep_sg_log(struct d40_chan
*chan
, struct d40_desc
*desc
,
2110 struct scatterlist
*sg_src
, struct scatterlist
*sg_dst
,
2111 unsigned int sg_len
, dma_addr_t src_dev_addr
,
2112 dma_addr_t dst_dev_addr
)
2114 struct stedma40_chan_cfg
*cfg
= &chan
->dma_cfg
;
2115 struct stedma40_half_channel_info
*src_info
= &cfg
->src_info
;
2116 struct stedma40_half_channel_info
*dst_info
= &cfg
->dst_info
;
2119 ret
= d40_log_sg_to_lli(sg_src
, sg_len
,
2122 chan
->log_def
.lcsp1
,
2123 src_info
->data_width
,
2124 dst_info
->data_width
);
2126 ret
= d40_log_sg_to_lli(sg_dst
, sg_len
,
2129 chan
->log_def
.lcsp3
,
2130 dst_info
->data_width
,
2131 src_info
->data_width
);
2133 return ret
< 0 ? ret
: 0;
2137 d40_prep_sg_phy(struct d40_chan
*chan
, struct d40_desc
*desc
,
2138 struct scatterlist
*sg_src
, struct scatterlist
*sg_dst
,
2139 unsigned int sg_len
, dma_addr_t src_dev_addr
,
2140 dma_addr_t dst_dev_addr
)
2142 struct stedma40_chan_cfg
*cfg
= &chan
->dma_cfg
;
2143 struct stedma40_half_channel_info
*src_info
= &cfg
->src_info
;
2144 struct stedma40_half_channel_info
*dst_info
= &cfg
->dst_info
;
2145 unsigned long flags
= 0;
2149 flags
|= LLI_CYCLIC
| LLI_TERM_INT
;
2151 ret
= d40_phy_sg_to_lli(sg_src
, sg_len
, src_dev_addr
,
2153 virt_to_phys(desc
->lli_phy
.src
),
2155 src_info
, dst_info
, flags
);
2157 ret
= d40_phy_sg_to_lli(sg_dst
, sg_len
, dst_dev_addr
,
2159 virt_to_phys(desc
->lli_phy
.dst
),
2161 dst_info
, src_info
, flags
);
2163 dma_sync_single_for_device(chan
->base
->dev
, desc
->lli_pool
.dma_addr
,
2164 desc
->lli_pool
.size
, DMA_TO_DEVICE
);
2166 return ret
< 0 ? ret
: 0;
2169 static struct d40_desc
*
2170 d40_prep_desc(struct d40_chan
*chan
, struct scatterlist
*sg
,
2171 unsigned int sg_len
, unsigned long dma_flags
)
2173 struct stedma40_chan_cfg
*cfg
;
2174 struct d40_desc
*desc
;
2177 desc
= d40_desc_get(chan
);
2181 cfg
= &chan
->dma_cfg
;
2182 desc
->lli_len
= d40_sg_2_dmalen(sg
, sg_len
, cfg
->src_info
.data_width
,
2183 cfg
->dst_info
.data_width
);
2184 if (desc
->lli_len
< 0) {
2185 chan_err(chan
, "Unaligned size\n");
2189 ret
= d40_pool_lli_alloc(chan
, desc
, desc
->lli_len
);
2191 chan_err(chan
, "Could not allocate lli\n");
2195 desc
->lli_current
= 0;
2196 desc
->txd
.flags
= dma_flags
;
2197 desc
->txd
.tx_submit
= d40_tx_submit
;
2199 dma_async_tx_descriptor_init(&desc
->txd
, &chan
->chan
);
2203 d40_desc_free(chan
, desc
);
2207 static struct dma_async_tx_descriptor
*
2208 d40_prep_sg(struct dma_chan
*dchan
, struct scatterlist
*sg_src
,
2209 struct scatterlist
*sg_dst
, unsigned int sg_len
,
2210 enum dma_transfer_direction direction
, unsigned long dma_flags
)
2212 struct d40_chan
*chan
= container_of(dchan
, struct d40_chan
, chan
);
2213 dma_addr_t src_dev_addr
;
2214 dma_addr_t dst_dev_addr
;
2215 struct d40_desc
*desc
;
2216 unsigned long flags
;
2219 if (!chan
->phy_chan
) {
2220 chan_err(chan
, "Cannot prepare unallocated channel\n");
2224 d40_set_runtime_config_write(dchan
, &chan
->slave_config
, direction
);
2226 spin_lock_irqsave(&chan
->lock
, flags
);
2228 desc
= d40_prep_desc(chan
, sg_src
, sg_len
, dma_flags
);
2232 if (sg_next(&sg_src
[sg_len
- 1]) == sg_src
)
2233 desc
->cyclic
= true;
2237 if (direction
== DMA_DEV_TO_MEM
)
2238 src_dev_addr
= chan
->runtime_addr
;
2239 else if (direction
== DMA_MEM_TO_DEV
)
2240 dst_dev_addr
= chan
->runtime_addr
;
2242 if (chan_is_logical(chan
))
2243 ret
= d40_prep_sg_log(chan
, desc
, sg_src
, sg_dst
,
2244 sg_len
, src_dev_addr
, dst_dev_addr
);
2246 ret
= d40_prep_sg_phy(chan
, desc
, sg_src
, sg_dst
,
2247 sg_len
, src_dev_addr
, dst_dev_addr
);
2250 chan_err(chan
, "Failed to prepare %s sg job: %d\n",
2251 chan_is_logical(chan
) ? "log" : "phy", ret
);
2256 * add descriptor to the prepare queue in order to be able
2257 * to free them later in terminate_all
2259 list_add_tail(&desc
->node
, &chan
->prepare_queue
);
2261 spin_unlock_irqrestore(&chan
->lock
, flags
);
2265 d40_desc_free(chan
, desc
);
2267 spin_unlock_irqrestore(&chan
->lock
, flags
);
2271 bool stedma40_filter(struct dma_chan
*chan
, void *data
)
2273 struct stedma40_chan_cfg
*info
= data
;
2274 struct d40_chan
*d40c
=
2275 container_of(chan
, struct d40_chan
, chan
);
2279 err
= d40_validate_conf(d40c
, info
);
2281 d40c
->dma_cfg
= *info
;
2283 err
= d40_config_memcpy(d40c
);
2286 d40c
->configured
= true;
2290 EXPORT_SYMBOL(stedma40_filter
);
2292 static void __d40_set_prio_rt(struct d40_chan
*d40c
, int dev_type
, bool src
)
2294 bool realtime
= d40c
->dma_cfg
.realtime
;
2295 bool highprio
= d40c
->dma_cfg
.high_priority
;
2297 u32 event
= D40_TYPE_TO_EVENT(dev_type
);
2298 u32 group
= D40_TYPE_TO_GROUP(dev_type
);
2299 u32 bit
= BIT(event
);
2301 struct d40_gen_dmac
*dmac
= &d40c
->base
->gen_dmac
;
2303 rtreg
= realtime
? dmac
->realtime_en
: dmac
->realtime_clear
;
2305 * Due to a hardware bug, in some cases a logical channel triggered by
2306 * a high priority destination event line can generate extra packet
2309 * The workaround is to not set the high priority level for the
2310 * destination event lines that trigger logical channels.
2312 if (!src
&& chan_is_logical(d40c
))
2315 prioreg
= highprio
? dmac
->high_prio_en
: dmac
->high_prio_clear
;
2317 /* Destination event lines are stored in the upper halfword */
2321 writel(bit
, d40c
->base
->virtbase
+ prioreg
+ group
* 4);
2322 writel(bit
, d40c
->base
->virtbase
+ rtreg
+ group
* 4);
2325 static void d40_set_prio_realtime(struct d40_chan
*d40c
)
2327 if (d40c
->base
->rev
< 3)
2330 if ((d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) ||
2331 (d40c
->dma_cfg
.dir
== DMA_DEV_TO_DEV
))
2332 __d40_set_prio_rt(d40c
, d40c
->dma_cfg
.dev_type
, true);
2334 if ((d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
) ||
2335 (d40c
->dma_cfg
.dir
== DMA_DEV_TO_DEV
))
2336 __d40_set_prio_rt(d40c
, d40c
->dma_cfg
.dev_type
, false);
2339 #define D40_DT_FLAGS_MODE(flags) ((flags >> 0) & 0x1)
2340 #define D40_DT_FLAGS_DIR(flags) ((flags >> 1) & 0x1)
2341 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2342 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2343 #define D40_DT_FLAGS_HIGH_PRIO(flags) ((flags >> 4) & 0x1)
2345 static struct dma_chan
*d40_xlate(struct of_phandle_args
*dma_spec
,
2346 struct of_dma
*ofdma
)
2348 struct stedma40_chan_cfg cfg
;
2352 memset(&cfg
, 0, sizeof(struct stedma40_chan_cfg
));
2355 dma_cap_set(DMA_SLAVE
, cap
);
2357 cfg
.dev_type
= dma_spec
->args
[0];
2358 flags
= dma_spec
->args
[2];
2360 switch (D40_DT_FLAGS_MODE(flags
)) {
2361 case 0: cfg
.mode
= STEDMA40_MODE_LOGICAL
; break;
2362 case 1: cfg
.mode
= STEDMA40_MODE_PHYSICAL
; break;
2365 switch (D40_DT_FLAGS_DIR(flags
)) {
2367 cfg
.dir
= DMA_MEM_TO_DEV
;
2368 cfg
.dst_info
.big_endian
= D40_DT_FLAGS_BIG_ENDIAN(flags
);
2371 cfg
.dir
= DMA_DEV_TO_MEM
;
2372 cfg
.src_info
.big_endian
= D40_DT_FLAGS_BIG_ENDIAN(flags
);
2376 if (D40_DT_FLAGS_FIXED_CHAN(flags
)) {
2377 cfg
.phy_channel
= dma_spec
->args
[1];
2378 cfg
.use_fixed_channel
= true;
2381 if (D40_DT_FLAGS_HIGH_PRIO(flags
))
2382 cfg
.high_priority
= true;
2384 return dma_request_channel(cap
, stedma40_filter
, &cfg
);
2387 /* DMA ENGINE functions */
2388 static int d40_alloc_chan_resources(struct dma_chan
*chan
)
2391 unsigned long flags
;
2392 struct d40_chan
*d40c
=
2393 container_of(chan
, struct d40_chan
, chan
);
2395 spin_lock_irqsave(&d40c
->lock
, flags
);
2397 dma_cookie_init(chan
);
2399 /* If no dma configuration is set use default configuration (memcpy) */
2400 if (!d40c
->configured
) {
2401 err
= d40_config_memcpy(d40c
);
2403 chan_err(d40c
, "Failed to configure memcpy channel\n");
2404 goto mark_last_busy
;
2408 err
= d40_allocate_channel(d40c
, &is_free_phy
);
2410 chan_err(d40c
, "Failed to allocate channel\n");
2411 d40c
->configured
= false;
2412 goto mark_last_busy
;
2415 pm_runtime_get_sync(d40c
->base
->dev
);
2417 d40_set_prio_realtime(d40c
);
2419 if (chan_is_logical(d40c
)) {
2420 if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
)
2421 d40c
->lcpa
= d40c
->base
->lcpa_base
+
2422 d40c
->dma_cfg
.dev_type
* D40_LCPA_CHAN_SIZE
;
2424 d40c
->lcpa
= d40c
->base
->lcpa_base
+
2425 d40c
->dma_cfg
.dev_type
*
2426 D40_LCPA_CHAN_SIZE
+ D40_LCPA_CHAN_DST_DELTA
;
2428 /* Unmask the Global Interrupt Mask. */
2429 d40c
->src_def_cfg
|= BIT(D40_SREG_CFG_LOG_GIM_POS
);
2430 d40c
->dst_def_cfg
|= BIT(D40_SREG_CFG_LOG_GIM_POS
);
2433 dev_dbg(chan2dev(d40c
), "allocated %s channel (phy %d%s)\n",
2434 chan_is_logical(d40c
) ? "logical" : "physical",
2435 d40c
->phy_chan
->num
,
2436 d40c
->dma_cfg
.use_fixed_channel
? ", fixed" : "");
2440 * Only write channel configuration to the DMA if the physical
2441 * resource is free. In case of multiple logical channels
2442 * on the same physical resource, only the first write is necessary.
2445 d40_config_write(d40c
);
2447 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2448 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2449 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2453 static void d40_free_chan_resources(struct dma_chan
*chan
)
2455 struct d40_chan
*d40c
=
2456 container_of(chan
, struct d40_chan
, chan
);
2458 unsigned long flags
;
2460 if (d40c
->phy_chan
== NULL
) {
2461 chan_err(d40c
, "Cannot free unallocated channel\n");
2465 spin_lock_irqsave(&d40c
->lock
, flags
);
2467 err
= d40_free_dma(d40c
);
2470 chan_err(d40c
, "Failed to free channel\n");
2471 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2474 static struct dma_async_tx_descriptor
*d40_prep_memcpy(struct dma_chan
*chan
,
2478 unsigned long dma_flags
)
2480 struct scatterlist dst_sg
;
2481 struct scatterlist src_sg
;
2483 sg_init_table(&dst_sg
, 1);
2484 sg_init_table(&src_sg
, 1);
2486 sg_dma_address(&dst_sg
) = dst
;
2487 sg_dma_address(&src_sg
) = src
;
2489 sg_dma_len(&dst_sg
) = size
;
2490 sg_dma_len(&src_sg
) = size
;
2492 return d40_prep_sg(chan
, &src_sg
, &dst_sg
, 1,
2493 DMA_MEM_TO_MEM
, dma_flags
);
2496 static struct dma_async_tx_descriptor
*
2497 d40_prep_slave_sg(struct dma_chan
*chan
, struct scatterlist
*sgl
,
2498 unsigned int sg_len
, enum dma_transfer_direction direction
,
2499 unsigned long dma_flags
, void *context
)
2501 if (!is_slave_direction(direction
))
2504 return d40_prep_sg(chan
, sgl
, sgl
, sg_len
, direction
, dma_flags
);
2507 static struct dma_async_tx_descriptor
*
2508 dma40_prep_dma_cyclic(struct dma_chan
*chan
, dma_addr_t dma_addr
,
2509 size_t buf_len
, size_t period_len
,
2510 enum dma_transfer_direction direction
, unsigned long flags
)
2512 unsigned int periods
= buf_len
/ period_len
;
2513 struct dma_async_tx_descriptor
*txd
;
2514 struct scatterlist
*sg
;
2517 sg
= kcalloc(periods
+ 1, sizeof(struct scatterlist
), GFP_NOWAIT
);
2521 for (i
= 0; i
< periods
; i
++) {
2522 sg_dma_address(&sg
[i
]) = dma_addr
;
2523 sg_dma_len(&sg
[i
]) = period_len
;
2524 dma_addr
+= period_len
;
2527 sg_chain(sg
, periods
+ 1, sg
);
2529 txd
= d40_prep_sg(chan
, sg
, sg
, periods
, direction
,
2530 DMA_PREP_INTERRUPT
);
2537 static enum dma_status
d40_tx_status(struct dma_chan
*chan
,
2538 dma_cookie_t cookie
,
2539 struct dma_tx_state
*txstate
)
2541 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2542 enum dma_status ret
;
2544 if (d40c
->phy_chan
== NULL
) {
2545 chan_err(d40c
, "Cannot read status of unallocated channel\n");
2549 ret
= dma_cookie_status(chan
, cookie
, txstate
);
2550 if (ret
!= DMA_COMPLETE
&& txstate
)
2551 dma_set_residue(txstate
, stedma40_residue(chan
));
2553 if (d40_is_paused(d40c
))
2559 static void d40_issue_pending(struct dma_chan
*chan
)
2561 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2562 unsigned long flags
;
2564 if (d40c
->phy_chan
== NULL
) {
2565 chan_err(d40c
, "Channel is not allocated!\n");
2569 spin_lock_irqsave(&d40c
->lock
, flags
);
2571 list_splice_tail_init(&d40c
->pending_queue
, &d40c
->queue
);
2573 /* Busy means that queued jobs are already being processed */
2575 (void) d40_queue_start(d40c
);
2577 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2580 static int d40_terminate_all(struct dma_chan
*chan
)
2582 unsigned long flags
;
2583 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2586 if (d40c
->phy_chan
== NULL
) {
2587 chan_err(d40c
, "Channel is not allocated!\n");
2591 spin_lock_irqsave(&d40c
->lock
, flags
);
2593 pm_runtime_get_sync(d40c
->base
->dev
);
2594 ret
= d40_channel_execute_command(d40c
, D40_DMA_STOP
);
2596 chan_err(d40c
, "Failed to stop channel\n");
2599 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2600 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2602 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2603 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2607 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2612 dma40_config_to_halfchannel(struct d40_chan
*d40c
,
2613 struct stedma40_half_channel_info
*info
,
2618 if (chan_is_logical(d40c
)) {
2620 psize
= STEDMA40_PSIZE_LOG_16
;
2621 else if (maxburst
>= 8)
2622 psize
= STEDMA40_PSIZE_LOG_8
;
2623 else if (maxburst
>= 4)
2624 psize
= STEDMA40_PSIZE_LOG_4
;
2626 psize
= STEDMA40_PSIZE_LOG_1
;
2629 psize
= STEDMA40_PSIZE_PHY_16
;
2630 else if (maxburst
>= 8)
2631 psize
= STEDMA40_PSIZE_PHY_8
;
2632 else if (maxburst
>= 4)
2633 psize
= STEDMA40_PSIZE_PHY_4
;
2635 psize
= STEDMA40_PSIZE_PHY_1
;
2638 info
->psize
= psize
;
2639 info
->flow_ctrl
= STEDMA40_NO_FLOW_CTRL
;
2644 static int d40_set_runtime_config(struct dma_chan
*chan
,
2645 struct dma_slave_config
*config
)
2647 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2649 memcpy(&d40c
->slave_config
, config
, sizeof(*config
));
2654 /* Runtime reconfiguration extension */
2655 static int d40_set_runtime_config_write(struct dma_chan
*chan
,
2656 struct dma_slave_config
*config
,
2657 enum dma_transfer_direction direction
)
2659 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2660 struct stedma40_chan_cfg
*cfg
= &d40c
->dma_cfg
;
2661 enum dma_slave_buswidth src_addr_width
, dst_addr_width
;
2662 dma_addr_t config_addr
;
2663 u32 src_maxburst
, dst_maxburst
;
2666 if (d40c
->phy_chan
== NULL
) {
2667 chan_err(d40c
, "Channel is not allocated!\n");
2671 src_addr_width
= config
->src_addr_width
;
2672 src_maxburst
= config
->src_maxburst
;
2673 dst_addr_width
= config
->dst_addr_width
;
2674 dst_maxburst
= config
->dst_maxburst
;
2676 if (direction
== DMA_DEV_TO_MEM
) {
2677 config_addr
= config
->src_addr
;
2679 if (cfg
->dir
!= DMA_DEV_TO_MEM
)
2680 dev_dbg(d40c
->base
->dev
,
2681 "channel was not configured for peripheral "
2682 "to memory transfer (%d) overriding\n",
2684 cfg
->dir
= DMA_DEV_TO_MEM
;
2686 /* Configure the memory side */
2687 if (dst_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
2688 dst_addr_width
= src_addr_width
;
2689 if (dst_maxburst
== 0)
2690 dst_maxburst
= src_maxburst
;
2692 } else if (direction
== DMA_MEM_TO_DEV
) {
2693 config_addr
= config
->dst_addr
;
2695 if (cfg
->dir
!= DMA_MEM_TO_DEV
)
2696 dev_dbg(d40c
->base
->dev
,
2697 "channel was not configured for memory "
2698 "to peripheral transfer (%d) overriding\n",
2700 cfg
->dir
= DMA_MEM_TO_DEV
;
2702 /* Configure the memory side */
2703 if (src_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
2704 src_addr_width
= dst_addr_width
;
2705 if (src_maxburst
== 0)
2706 src_maxburst
= dst_maxburst
;
2708 dev_err(d40c
->base
->dev
,
2709 "unrecognized channel direction %d\n",
2714 if (config_addr
<= 0) {
2715 dev_err(d40c
->base
->dev
, "no address supplied\n");
2719 if (src_maxburst
* src_addr_width
!= dst_maxburst
* dst_addr_width
) {
2720 dev_err(d40c
->base
->dev
,
2721 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2729 if (src_maxburst
> 16) {
2731 dst_maxburst
= src_maxburst
* src_addr_width
/ dst_addr_width
;
2732 } else if (dst_maxburst
> 16) {
2734 src_maxburst
= dst_maxburst
* dst_addr_width
/ src_addr_width
;
2737 /* Only valid widths are; 1, 2, 4 and 8. */
2738 if (src_addr_width
<= DMA_SLAVE_BUSWIDTH_UNDEFINED
||
2739 src_addr_width
> DMA_SLAVE_BUSWIDTH_8_BYTES
||
2740 dst_addr_width
<= DMA_SLAVE_BUSWIDTH_UNDEFINED
||
2741 dst_addr_width
> DMA_SLAVE_BUSWIDTH_8_BYTES
||
2742 !is_power_of_2(src_addr_width
) ||
2743 !is_power_of_2(dst_addr_width
))
2746 cfg
->src_info
.data_width
= src_addr_width
;
2747 cfg
->dst_info
.data_width
= dst_addr_width
;
2749 ret
= dma40_config_to_halfchannel(d40c
, &cfg
->src_info
,
2754 ret
= dma40_config_to_halfchannel(d40c
, &cfg
->dst_info
,
2759 /* Fill in register values */
2760 if (chan_is_logical(d40c
))
2761 d40_log_cfg(cfg
, &d40c
->log_def
.lcsp1
, &d40c
->log_def
.lcsp3
);
2763 d40_phy_cfg(cfg
, &d40c
->src_def_cfg
, &d40c
->dst_def_cfg
);
2765 /* These settings will take precedence later */
2766 d40c
->runtime_addr
= config_addr
;
2767 d40c
->runtime_direction
= direction
;
2768 dev_dbg(d40c
->base
->dev
,
2769 "configured channel %s for %s, data width %d/%d, "
2770 "maxburst %d/%d elements, LE, no flow control\n",
2771 dma_chan_name(chan
),
2772 (direction
== DMA_DEV_TO_MEM
) ? "RX" : "TX",
2773 src_addr_width
, dst_addr_width
,
2774 src_maxburst
, dst_maxburst
);
2779 /* Initialization functions */
2781 static void __init
d40_chan_init(struct d40_base
*base
, struct dma_device
*dma
,
2782 struct d40_chan
*chans
, int offset
,
2786 struct d40_chan
*d40c
;
2788 INIT_LIST_HEAD(&dma
->channels
);
2790 for (i
= offset
; i
< offset
+ num_chans
; i
++) {
2793 d40c
->chan
.device
= dma
;
2795 spin_lock_init(&d40c
->lock
);
2797 d40c
->log_num
= D40_PHY_CHAN
;
2799 INIT_LIST_HEAD(&d40c
->done
);
2800 INIT_LIST_HEAD(&d40c
->active
);
2801 INIT_LIST_HEAD(&d40c
->queue
);
2802 INIT_LIST_HEAD(&d40c
->pending_queue
);
2803 INIT_LIST_HEAD(&d40c
->client
);
2804 INIT_LIST_HEAD(&d40c
->prepare_queue
);
2806 tasklet_setup(&d40c
->tasklet
, dma_tasklet
);
2808 list_add_tail(&d40c
->chan
.device_node
,
2813 static void d40_ops_init(struct d40_base
*base
, struct dma_device
*dev
)
2815 if (dma_has_cap(DMA_SLAVE
, dev
->cap_mask
)) {
2816 dev
->device_prep_slave_sg
= d40_prep_slave_sg
;
2817 dev
->directions
= BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
);
2820 if (dma_has_cap(DMA_MEMCPY
, dev
->cap_mask
)) {
2821 dev
->device_prep_dma_memcpy
= d40_prep_memcpy
;
2822 dev
->directions
= BIT(DMA_MEM_TO_MEM
);
2824 * This controller can only access address at even
2825 * 32bit boundaries, i.e. 2^2
2827 dev
->copy_align
= DMAENGINE_ALIGN_4_BYTES
;
2830 if (dma_has_cap(DMA_CYCLIC
, dev
->cap_mask
))
2831 dev
->device_prep_dma_cyclic
= dma40_prep_dma_cyclic
;
2833 dev
->device_alloc_chan_resources
= d40_alloc_chan_resources
;
2834 dev
->device_free_chan_resources
= d40_free_chan_resources
;
2835 dev
->device_issue_pending
= d40_issue_pending
;
2836 dev
->device_tx_status
= d40_tx_status
;
2837 dev
->device_config
= d40_set_runtime_config
;
2838 dev
->device_pause
= d40_pause
;
2839 dev
->device_resume
= d40_resume
;
2840 dev
->device_terminate_all
= d40_terminate_all
;
2841 dev
->residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
2842 dev
->dev
= base
->dev
;
2845 static int __init
d40_dmaengine_init(struct d40_base
*base
,
2846 int num_reserved_chans
)
2850 d40_chan_init(base
, &base
->dma_slave
, base
->log_chans
,
2851 0, base
->num_log_chans
);
2853 dma_cap_zero(base
->dma_slave
.cap_mask
);
2854 dma_cap_set(DMA_SLAVE
, base
->dma_slave
.cap_mask
);
2855 dma_cap_set(DMA_CYCLIC
, base
->dma_slave
.cap_mask
);
2857 d40_ops_init(base
, &base
->dma_slave
);
2859 err
= dmaenginem_async_device_register(&base
->dma_slave
);
2862 d40_err(base
->dev
, "Failed to register slave channels\n");
2866 d40_chan_init(base
, &base
->dma_memcpy
, base
->log_chans
,
2867 base
->num_log_chans
, base
->num_memcpy_chans
);
2869 dma_cap_zero(base
->dma_memcpy
.cap_mask
);
2870 dma_cap_set(DMA_MEMCPY
, base
->dma_memcpy
.cap_mask
);
2872 d40_ops_init(base
, &base
->dma_memcpy
);
2874 err
= dmaenginem_async_device_register(&base
->dma_memcpy
);
2878 "Failed to register memcpy only channels\n");
2882 d40_chan_init(base
, &base
->dma_both
, base
->phy_chans
,
2883 0, num_reserved_chans
);
2885 dma_cap_zero(base
->dma_both
.cap_mask
);
2886 dma_cap_set(DMA_SLAVE
, base
->dma_both
.cap_mask
);
2887 dma_cap_set(DMA_MEMCPY
, base
->dma_both
.cap_mask
);
2888 dma_cap_set(DMA_CYCLIC
, base
->dma_slave
.cap_mask
);
2890 d40_ops_init(base
, &base
->dma_both
);
2891 err
= dmaenginem_async_device_register(&base
->dma_both
);
2895 "Failed to register logical and physical capable channels\n");
2903 /* Suspend resume functionality */
2904 #ifdef CONFIG_PM_SLEEP
2905 static int dma40_suspend(struct device
*dev
)
2907 struct d40_base
*base
= dev_get_drvdata(dev
);
2910 ret
= pm_runtime_force_suspend(dev
);
2914 if (base
->lcpa_regulator
)
2915 ret
= regulator_disable(base
->lcpa_regulator
);
2919 static int dma40_resume(struct device
*dev
)
2921 struct d40_base
*base
= dev_get_drvdata(dev
);
2924 if (base
->lcpa_regulator
) {
2925 ret
= regulator_enable(base
->lcpa_regulator
);
2930 return pm_runtime_force_resume(dev
);
2935 static void dma40_backup(void __iomem
*baseaddr
, u32
*backup
,
2936 u32
*regaddr
, int num
, bool save
)
2940 for (i
= 0; i
< num
; i
++) {
2941 void __iomem
*addr
= baseaddr
+ regaddr
[i
];
2944 backup
[i
] = readl_relaxed(addr
);
2946 writel_relaxed(backup
[i
], addr
);
2950 static void d40_save_restore_registers(struct d40_base
*base
, bool save
)
2954 /* Save/Restore channel specific registers */
2955 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
2959 if (base
->phy_res
[i
].reserved
)
2962 addr
= base
->virtbase
+ D40_DREG_PCBASE
+ i
* D40_DREG_PCDELTA
;
2963 idx
= i
* ARRAY_SIZE(d40_backup_regs_chan
);
2965 dma40_backup(addr
, &base
->reg_val_backup_chan
[idx
],
2966 d40_backup_regs_chan
,
2967 ARRAY_SIZE(d40_backup_regs_chan
),
2971 /* Save/Restore global registers */
2972 dma40_backup(base
->virtbase
, base
->reg_val_backup
,
2973 d40_backup_regs
, ARRAY_SIZE(d40_backup_regs
),
2976 /* Save/Restore registers only existing on dma40 v3 and later */
2977 if (base
->gen_dmac
.backup
)
2978 dma40_backup(base
->virtbase
, base
->reg_val_backup_v4
,
2979 base
->gen_dmac
.backup
,
2980 base
->gen_dmac
.backup_size
,
2984 static int dma40_runtime_suspend(struct device
*dev
)
2986 struct d40_base
*base
= dev_get_drvdata(dev
);
2988 d40_save_restore_registers(base
, true);
2990 /* Don't disable/enable clocks for v1 due to HW bugs */
2992 writel_relaxed(base
->gcc_pwr_off_mask
,
2993 base
->virtbase
+ D40_DREG_GCC
);
2998 static int dma40_runtime_resume(struct device
*dev
)
3000 struct d40_base
*base
= dev_get_drvdata(dev
);
3002 d40_save_restore_registers(base
, false);
3004 writel_relaxed(D40_DREG_GCC_ENABLE_ALL
,
3005 base
->virtbase
+ D40_DREG_GCC
);
3010 static const struct dev_pm_ops dma40_pm_ops
= {
3011 SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend
, dma40_resume
)
3012 SET_RUNTIME_PM_OPS(dma40_runtime_suspend
,
3013 dma40_runtime_resume
,
3017 /* Initialization functions. */
3019 static int __init
d40_phy_res_init(struct d40_base
*base
)
3022 int num_phy_chans_avail
= 0;
3024 int odd_even_bit
= -2;
3025 int gcc
= D40_DREG_GCC_ENA
;
3027 val
[0] = readl(base
->virtbase
+ D40_DREG_PRSME
);
3028 val
[1] = readl(base
->virtbase
+ D40_DREG_PRSMO
);
3030 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
3031 base
->phy_res
[i
].num
= i
;
3032 odd_even_bit
+= 2 * ((i
% 2) == 0);
3033 if (((val
[i
% 2] >> odd_even_bit
) & 3) == 1) {
3034 /* Mark security only channels as occupied */
3035 base
->phy_res
[i
].allocated_src
= D40_ALLOC_PHY
;
3036 base
->phy_res
[i
].allocated_dst
= D40_ALLOC_PHY
;
3037 base
->phy_res
[i
].reserved
= true;
3038 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i
),
3040 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i
),
3045 base
->phy_res
[i
].allocated_src
= D40_ALLOC_FREE
;
3046 base
->phy_res
[i
].allocated_dst
= D40_ALLOC_FREE
;
3047 base
->phy_res
[i
].reserved
= false;
3048 num_phy_chans_avail
++;
3050 spin_lock_init(&base
->phy_res
[i
].lock
);
3053 /* Mark disabled channels as occupied */
3054 for (i
= 0; base
->plat_data
->disabled_channels
[i
] != -1; i
++) {
3055 int chan
= base
->plat_data
->disabled_channels
[i
];
3057 base
->phy_res
[chan
].allocated_src
= D40_ALLOC_PHY
;
3058 base
->phy_res
[chan
].allocated_dst
= D40_ALLOC_PHY
;
3059 base
->phy_res
[chan
].reserved
= true;
3060 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan
),
3062 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan
),
3064 num_phy_chans_avail
--;
3067 /* Mark soft_lli channels */
3068 for (i
= 0; i
< base
->plat_data
->num_of_soft_lli_chans
; i
++) {
3069 int chan
= base
->plat_data
->soft_lli_chans
[i
];
3071 base
->phy_res
[chan
].use_soft_lli
= true;
3074 dev_info(base
->dev
, "%d of %d physical DMA channels available\n",
3075 num_phy_chans_avail
, base
->num_phy_chans
);
3077 /* Verify settings extended vs standard */
3078 val
[0] = readl(base
->virtbase
+ D40_DREG_PRTYP
);
3080 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
3082 if (base
->phy_res
[i
].allocated_src
== D40_ALLOC_FREE
&&
3083 (val
[0] & 0x3) != 1)
3085 "[%s] INFO: channel %d is misconfigured (%d)\n",
3086 __func__
, i
, val
[0] & 0x3);
3088 val
[0] = val
[0] >> 2;
3092 * To keep things simple, Enable all clocks initially.
3093 * The clocks will get managed later post channel allocation.
3094 * The clocks for the event lines on which reserved channels exists
3095 * are not managed here.
3097 writel(D40_DREG_GCC_ENABLE_ALL
, base
->virtbase
+ D40_DREG_GCC
);
3098 base
->gcc_pwr_off_mask
= gcc
;
3100 return num_phy_chans_avail
;
3103 static struct d40_base
* __init
d40_hw_detect_init(struct platform_device
*pdev
)
3105 struct stedma40_platform_data
*plat_data
= dev_get_platdata(&pdev
->dev
);
3107 void __iomem
*virtbase
;
3108 struct resource
*res
;
3109 struct d40_base
*base
;
3112 int num_memcpy_chans
;
3113 int clk_ret
= -EINVAL
;
3119 clk
= clk_get(&pdev
->dev
, NULL
);
3121 d40_err(&pdev
->dev
, "No matching clock found\n");
3122 goto check_prepare_enabled
;
3125 clk_ret
= clk_prepare_enable(clk
);
3127 d40_err(&pdev
->dev
, "Failed to prepare/enable clock\n");
3128 goto disable_unprepare
;
3131 /* Get IO for DMAC base address */
3132 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "base");
3134 goto disable_unprepare
;
3136 if (request_mem_region(res
->start
, resource_size(res
),
3137 D40_NAME
" I/O base") == NULL
)
3138 goto release_region
;
3140 virtbase
= ioremap(res
->start
, resource_size(res
));
3142 goto release_region
;
3144 /* This is just a regular AMBA PrimeCell ID actually */
3145 for (pid
= 0, i
= 0; i
< 4; i
++)
3146 pid
|= (readl(virtbase
+ resource_size(res
) - 0x20 + 4 * i
)
3148 for (cid
= 0, i
= 0; i
< 4; i
++)
3149 cid
|= (readl(virtbase
+ resource_size(res
) - 0x10 + 4 * i
)
3152 if (cid
!= AMBA_CID
) {
3153 d40_err(&pdev
->dev
, "Unknown hardware! No PrimeCell ID\n");
3156 if (AMBA_MANF_BITS(pid
) != AMBA_VENDOR_ST
) {
3157 d40_err(&pdev
->dev
, "Unknown designer! Got %x wanted %x\n",
3158 AMBA_MANF_BITS(pid
),
3164 * DB8500ed has revision 0
3166 * DB8500v1 has revision 2
3167 * DB8500v2 has revision 3
3168 * AP9540v1 has revision 4
3169 * DB8540v1 has revision 4
3171 rev
= AMBA_REV_BITS(pid
);
3173 d40_err(&pdev
->dev
, "hardware revision: %d is not supported", rev
);
3177 /* The number of physical channels on this HW */
3178 if (plat_data
->num_of_phy_chans
)
3179 num_phy_chans
= plat_data
->num_of_phy_chans
;
3181 num_phy_chans
= 4 * (readl(virtbase
+ D40_DREG_ICFG
) & 0x7) + 4;
3183 /* The number of channels used for memcpy */
3184 if (plat_data
->num_of_memcpy_chans
)
3185 num_memcpy_chans
= plat_data
->num_of_memcpy_chans
;
3187 num_memcpy_chans
= ARRAY_SIZE(dma40_memcpy_channels
);
3189 num_log_chans
= num_phy_chans
* D40_MAX_LOG_CHAN_PER_PHY
;
3191 dev_info(&pdev
->dev
,
3192 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3193 rev
, &res
->start
, num_phy_chans
, num_log_chans
);
3195 base
= kzalloc(ALIGN(sizeof(struct d40_base
), 4) +
3196 (num_phy_chans
+ num_log_chans
+ num_memcpy_chans
) *
3197 sizeof(struct d40_chan
), GFP_KERNEL
);
3204 base
->num_memcpy_chans
= num_memcpy_chans
;
3205 base
->num_phy_chans
= num_phy_chans
;
3206 base
->num_log_chans
= num_log_chans
;
3207 base
->phy_start
= res
->start
;
3208 base
->phy_size
= resource_size(res
);
3209 base
->virtbase
= virtbase
;
3210 base
->plat_data
= plat_data
;
3211 base
->dev
= &pdev
->dev
;
3212 base
->phy_chans
= ((void *)base
) + ALIGN(sizeof(struct d40_base
), 4);
3213 base
->log_chans
= &base
->phy_chans
[num_phy_chans
];
3215 if (base
->plat_data
->num_of_phy_chans
== 14) {
3216 base
->gen_dmac
.backup
= d40_backup_regs_v4b
;
3217 base
->gen_dmac
.backup_size
= BACKUP_REGS_SZ_V4B
;
3218 base
->gen_dmac
.interrupt_en
= D40_DREG_CPCMIS
;
3219 base
->gen_dmac
.interrupt_clear
= D40_DREG_CPCICR
;
3220 base
->gen_dmac
.realtime_en
= D40_DREG_CRSEG1
;
3221 base
->gen_dmac
.realtime_clear
= D40_DREG_CRCEG1
;
3222 base
->gen_dmac
.high_prio_en
= D40_DREG_CPSEG1
;
3223 base
->gen_dmac
.high_prio_clear
= D40_DREG_CPCEG1
;
3224 base
->gen_dmac
.il
= il_v4b
;
3225 base
->gen_dmac
.il_size
= ARRAY_SIZE(il_v4b
);
3226 base
->gen_dmac
.init_reg
= dma_init_reg_v4b
;
3227 base
->gen_dmac
.init_reg_size
= ARRAY_SIZE(dma_init_reg_v4b
);
3229 if (base
->rev
>= 3) {
3230 base
->gen_dmac
.backup
= d40_backup_regs_v4a
;
3231 base
->gen_dmac
.backup_size
= BACKUP_REGS_SZ_V4A
;
3233 base
->gen_dmac
.interrupt_en
= D40_DREG_PCMIS
;
3234 base
->gen_dmac
.interrupt_clear
= D40_DREG_PCICR
;
3235 base
->gen_dmac
.realtime_en
= D40_DREG_RSEG1
;
3236 base
->gen_dmac
.realtime_clear
= D40_DREG_RCEG1
;
3237 base
->gen_dmac
.high_prio_en
= D40_DREG_PSEG1
;
3238 base
->gen_dmac
.high_prio_clear
= D40_DREG_PCEG1
;
3239 base
->gen_dmac
.il
= il_v4a
;
3240 base
->gen_dmac
.il_size
= ARRAY_SIZE(il_v4a
);
3241 base
->gen_dmac
.init_reg
= dma_init_reg_v4a
;
3242 base
->gen_dmac
.init_reg_size
= ARRAY_SIZE(dma_init_reg_v4a
);
3245 base
->phy_res
= kcalloc(num_phy_chans
,
3246 sizeof(*base
->phy_res
),
3251 base
->lookup_phy_chans
= kcalloc(num_phy_chans
,
3252 sizeof(*base
->lookup_phy_chans
),
3254 if (!base
->lookup_phy_chans
)
3257 base
->lookup_log_chans
= kcalloc(num_log_chans
,
3258 sizeof(*base
->lookup_log_chans
),
3260 if (!base
->lookup_log_chans
)
3261 goto free_phy_chans
;
3263 base
->reg_val_backup_chan
= kmalloc_array(base
->num_phy_chans
,
3264 sizeof(d40_backup_regs_chan
),
3266 if (!base
->reg_val_backup_chan
)
3267 goto free_log_chans
;
3269 base
->lcla_pool
.alloc_map
= kcalloc(num_phy_chans
3270 * D40_LCLA_LINK_PER_EVENT_GRP
,
3271 sizeof(*base
->lcla_pool
.alloc_map
),
3273 if (!base
->lcla_pool
.alloc_map
)
3274 goto free_backup_chan
;
3276 base
->regs_interrupt
= kmalloc_array(base
->gen_dmac
.il_size
,
3277 sizeof(*base
->regs_interrupt
),
3279 if (!base
->regs_interrupt
)
3282 base
->desc_slab
= kmem_cache_create(D40_NAME
, sizeof(struct d40_desc
),
3283 0, SLAB_HWCACHE_ALIGN
,
3285 if (base
->desc_slab
== NULL
)
3291 kfree(base
->regs_interrupt
);
3293 kfree(base
->lcla_pool
.alloc_map
);
3295 kfree(base
->reg_val_backup_chan
);
3297 kfree(base
->lookup_log_chans
);
3299 kfree(base
->lookup_phy_chans
);
3301 kfree(base
->phy_res
);
3307 release_mem_region(res
->start
, resource_size(res
));
3308 check_prepare_enabled
:
3311 clk_disable_unprepare(clk
);
3317 static void __init
d40_hw_init(struct d40_base
*base
)
3321 u32 prmseo
[2] = {0, 0};
3322 u32 activeo
[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3325 struct d40_reg_val
*dma_init_reg
= base
->gen_dmac
.init_reg
;
3326 u32 reg_size
= base
->gen_dmac
.init_reg_size
;
3328 for (i
= 0; i
< reg_size
; i
++)
3329 writel(dma_init_reg
[i
].val
,
3330 base
->virtbase
+ dma_init_reg
[i
].reg
);
3332 /* Configure all our dma channels to default settings */
3333 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
3335 activeo
[i
% 2] = activeo
[i
% 2] << 2;
3337 if (base
->phy_res
[base
->num_phy_chans
- i
- 1].allocated_src
3339 activeo
[i
% 2] |= 3;
3343 /* Enable interrupt # */
3344 pcmis
= (pcmis
<< 1) | 1;
3346 /* Clear interrupt # */
3347 pcicr
= (pcicr
<< 1) | 1;
3349 /* Set channel to physical mode */
3350 prmseo
[i
% 2] = prmseo
[i
% 2] << 2;
3355 writel(prmseo
[1], base
->virtbase
+ D40_DREG_PRMSE
);
3356 writel(prmseo
[0], base
->virtbase
+ D40_DREG_PRMSO
);
3357 writel(activeo
[1], base
->virtbase
+ D40_DREG_ACTIVE
);
3358 writel(activeo
[0], base
->virtbase
+ D40_DREG_ACTIVO
);
3360 /* Write which interrupt to enable */
3361 writel(pcmis
, base
->virtbase
+ base
->gen_dmac
.interrupt_en
);
3363 /* Write which interrupt to clear */
3364 writel(pcicr
, base
->virtbase
+ base
->gen_dmac
.interrupt_clear
);
3366 /* These are __initdata and cannot be accessed after init */
3367 base
->gen_dmac
.init_reg
= NULL
;
3368 base
->gen_dmac
.init_reg_size
= 0;
3371 static int __init
d40_lcla_allocate(struct d40_base
*base
)
3373 struct d40_lcla_pool
*pool
= &base
->lcla_pool
;
3374 unsigned long *page_list
;
3379 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3380 * To full fill this hardware requirement without wasting 256 kb
3381 * we allocate pages until we get an aligned one.
3383 page_list
= kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS
,
3389 /* Calculating how many pages that are required */
3390 base
->lcla_pool
.pages
= SZ_1K
* base
->num_phy_chans
/ PAGE_SIZE
;
3392 for (i
= 0; i
< MAX_LCLA_ALLOC_ATTEMPTS
; i
++) {
3393 page_list
[i
] = __get_free_pages(GFP_KERNEL
,
3394 base
->lcla_pool
.pages
);
3395 if (!page_list
[i
]) {
3397 d40_err(base
->dev
, "Failed to allocate %d pages.\n",
3398 base
->lcla_pool
.pages
);
3401 for (j
= 0; j
< i
; j
++)
3402 free_pages(page_list
[j
], base
->lcla_pool
.pages
);
3403 goto free_page_list
;
3406 if ((virt_to_phys((void *)page_list
[i
]) &
3407 (LCLA_ALIGNMENT
- 1)) == 0)
3411 for (j
= 0; j
< i
; j
++)
3412 free_pages(page_list
[j
], base
->lcla_pool
.pages
);
3414 if (i
< MAX_LCLA_ALLOC_ATTEMPTS
) {
3415 base
->lcla_pool
.base
= (void *)page_list
[i
];
3418 * After many attempts and no succees with finding the correct
3419 * alignment, try with allocating a big buffer.
3422 "[%s] Failed to get %d pages @ 18 bit align.\n",
3423 __func__
, base
->lcla_pool
.pages
);
3424 base
->lcla_pool
.base_unaligned
= kmalloc(SZ_1K
*
3425 base
->num_phy_chans
+
3428 if (!base
->lcla_pool
.base_unaligned
) {
3430 goto free_page_list
;
3433 base
->lcla_pool
.base
= PTR_ALIGN(base
->lcla_pool
.base_unaligned
,
3437 pool
->dma_addr
= dma_map_single(base
->dev
, pool
->base
,
3438 SZ_1K
* base
->num_phy_chans
,
3440 if (dma_mapping_error(base
->dev
, pool
->dma_addr
)) {
3443 goto free_page_list
;
3446 writel(virt_to_phys(base
->lcla_pool
.base
),
3447 base
->virtbase
+ D40_DREG_LCLA
);
3454 static int __init
d40_of_probe(struct platform_device
*pdev
,
3455 struct device_node
*np
)
3457 struct stedma40_platform_data
*pdata
;
3458 int num_phy
= 0, num_memcpy
= 0, num_disabled
= 0;
3461 pdata
= devm_kzalloc(&pdev
->dev
, sizeof(*pdata
), GFP_KERNEL
);
3465 /* If absent this value will be obtained from h/w. */
3466 of_property_read_u32(np
, "dma-channels", &num_phy
);
3468 pdata
->num_of_phy_chans
= num_phy
;
3470 list
= of_get_property(np
, "memcpy-channels", &num_memcpy
);
3471 num_memcpy
/= sizeof(*list
);
3473 if (num_memcpy
> D40_MEMCPY_MAX_CHANS
|| num_memcpy
<= 0) {
3475 "Invalid number of memcpy channels specified (%d)\n",
3479 pdata
->num_of_memcpy_chans
= num_memcpy
;
3481 of_property_read_u32_array(np
, "memcpy-channels",
3482 dma40_memcpy_channels
,
3485 list
= of_get_property(np
, "disabled-channels", &num_disabled
);
3486 num_disabled
/= sizeof(*list
);
3488 if (num_disabled
>= STEDMA40_MAX_PHYS
|| num_disabled
< 0) {
3490 "Invalid number of disabled channels specified (%d)\n",
3495 of_property_read_u32_array(np
, "disabled-channels",
3496 pdata
->disabled_channels
,
3498 pdata
->disabled_channels
[num_disabled
] = -1;
3500 pdev
->dev
.platform_data
= pdata
;
3505 static int __init
d40_probe(struct platform_device
*pdev
)
3507 struct stedma40_platform_data
*plat_data
= dev_get_platdata(&pdev
->dev
);
3508 struct device_node
*np
= pdev
->dev
.of_node
;
3510 struct d40_base
*base
;
3511 struct resource
*res
;
3512 int num_reserved_chans
;
3517 if (d40_of_probe(pdev
, np
)) {
3519 goto report_failure
;
3522 d40_err(&pdev
->dev
, "No pdata or Device Tree provided\n");
3523 goto report_failure
;
3527 base
= d40_hw_detect_init(pdev
);
3529 goto report_failure
;
3531 num_reserved_chans
= d40_phy_res_init(base
);
3533 platform_set_drvdata(pdev
, base
);
3535 spin_lock_init(&base
->interrupt_lock
);
3536 spin_lock_init(&base
->execmd_lock
);
3538 /* Get IO for logical channel parameter address */
3539 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "lcpa");
3542 d40_err(&pdev
->dev
, "No \"lcpa\" memory resource\n");
3545 base
->lcpa_size
= resource_size(res
);
3546 base
->phy_lcpa
= res
->start
;
3548 if (request_mem_region(res
->start
, resource_size(res
),
3549 D40_NAME
" I/O lcpa") == NULL
) {
3551 d40_err(&pdev
->dev
, "Failed to request LCPA region %pR\n", res
);
3555 /* We make use of ESRAM memory for this. */
3556 val
= readl(base
->virtbase
+ D40_DREG_LCPA
);
3557 if (res
->start
!= val
&& val
!= 0) {
3558 dev_warn(&pdev
->dev
,
3559 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3560 __func__
, val
, &res
->start
);
3562 writel(res
->start
, base
->virtbase
+ D40_DREG_LCPA
);
3564 base
->lcpa_base
= ioremap(res
->start
, resource_size(res
));
3565 if (!base
->lcpa_base
) {
3567 d40_err(&pdev
->dev
, "Failed to ioremap LCPA region\n");
3570 /* If lcla has to be located in ESRAM we don't need to allocate */
3571 if (base
->plat_data
->use_esram_lcla
) {
3572 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
3577 "No \"lcla_esram\" memory resource\n");
3580 base
->lcla_pool
.base
= ioremap(res
->start
,
3581 resource_size(res
));
3582 if (!base
->lcla_pool
.base
) {
3584 d40_err(&pdev
->dev
, "Failed to ioremap LCLA region\n");
3587 writel(res
->start
, base
->virtbase
+ D40_DREG_LCLA
);
3590 ret
= d40_lcla_allocate(base
);
3592 d40_err(&pdev
->dev
, "Failed to allocate LCLA area\n");
3597 spin_lock_init(&base
->lcla_pool
.lock
);
3599 base
->irq
= platform_get_irq(pdev
, 0);
3601 ret
= request_irq(base
->irq
, d40_handle_interrupt
, 0, D40_NAME
, base
);
3603 d40_err(&pdev
->dev
, "No IRQ defined\n");
3607 if (base
->plat_data
->use_esram_lcla
) {
3609 base
->lcpa_regulator
= regulator_get(base
->dev
, "lcla_esram");
3610 if (IS_ERR(base
->lcpa_regulator
)) {
3611 d40_err(&pdev
->dev
, "Failed to get lcpa_regulator\n");
3612 ret
= PTR_ERR(base
->lcpa_regulator
);
3613 base
->lcpa_regulator
= NULL
;
3617 ret
= regulator_enable(base
->lcpa_regulator
);
3620 "Failed to enable lcpa_regulator\n");
3621 regulator_put(base
->lcpa_regulator
);
3622 base
->lcpa_regulator
= NULL
;
3627 writel_relaxed(D40_DREG_GCC_ENABLE_ALL
, base
->virtbase
+ D40_DREG_GCC
);
3629 pm_runtime_irq_safe(base
->dev
);
3630 pm_runtime_set_autosuspend_delay(base
->dev
, DMA40_AUTOSUSPEND_DELAY
);
3631 pm_runtime_use_autosuspend(base
->dev
);
3632 pm_runtime_mark_last_busy(base
->dev
);
3633 pm_runtime_set_active(base
->dev
);
3634 pm_runtime_enable(base
->dev
);
3636 ret
= d40_dmaengine_init(base
, num_reserved_chans
);
3640 ret
= dma_set_max_seg_size(base
->dev
, STEDMA40_MAX_SEG_SIZE
);
3642 d40_err(&pdev
->dev
, "Failed to set dma max seg size\n");
3649 ret
= of_dma_controller_register(np
, d40_xlate
, NULL
);
3652 "could not register of_dma_controller\n");
3655 dev_info(base
->dev
, "initialized\n");
3658 kmem_cache_destroy(base
->desc_slab
);
3660 iounmap(base
->virtbase
);
3662 if (base
->lcla_pool
.base
&& base
->plat_data
->use_esram_lcla
) {
3663 iounmap(base
->lcla_pool
.base
);
3664 base
->lcla_pool
.base
= NULL
;
3667 if (base
->lcla_pool
.dma_addr
)
3668 dma_unmap_single(base
->dev
, base
->lcla_pool
.dma_addr
,
3669 SZ_1K
* base
->num_phy_chans
,
3672 if (!base
->lcla_pool
.base_unaligned
&& base
->lcla_pool
.base
)
3673 free_pages((unsigned long)base
->lcla_pool
.base
,
3674 base
->lcla_pool
.pages
);
3676 kfree(base
->lcla_pool
.base_unaligned
);
3679 release_mem_region(base
->phy_lcpa
,
3681 if (base
->phy_start
)
3682 release_mem_region(base
->phy_start
,
3685 clk_disable_unprepare(base
->clk
);
3689 if (base
->lcpa_regulator
) {
3690 regulator_disable(base
->lcpa_regulator
);
3691 regulator_put(base
->lcpa_regulator
);
3694 kfree(base
->lcla_pool
.alloc_map
);
3695 kfree(base
->lookup_log_chans
);
3696 kfree(base
->lookup_phy_chans
);
3697 kfree(base
->phy_res
);
3700 d40_err(&pdev
->dev
, "probe failed\n");
3704 static const struct of_device_id d40_match
[] = {
3705 { .compatible
= "stericsson,dma40", },
3709 static struct platform_driver d40_driver
= {
3712 .pm
= &dma40_pm_ops
,
3713 .of_match_table
= d40_match
,
3717 static int __init
stedma40_init(void)
3719 return platform_driver_probe(&d40_driver
, d40_probe
);
3721 subsys_initcall(stedma40_init
);