1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Isochronous I/O functionality:
4 * - Isochronous DMA context management
5 * - Isochronous bus resource management (channels, bandwidth), client side
7 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
10 #include <linux/dma-mapping.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/vmalloc.h>
19 #include <linux/export.h>
21 #include <asm/byteorder.h>
26 * Isochronous DMA context management
29 int fw_iso_buffer_alloc(struct fw_iso_buffer
*buffer
, int page_count
)
33 buffer
->page_count
= 0;
34 buffer
->page_count_mapped
= 0;
35 buffer
->pages
= kmalloc_array(page_count
, sizeof(buffer
->pages
[0]),
37 if (buffer
->pages
== NULL
)
40 for (i
= 0; i
< page_count
; i
++) {
41 buffer
->pages
[i
] = alloc_page(GFP_KERNEL
| GFP_DMA32
| __GFP_ZERO
);
42 if (buffer
->pages
[i
] == NULL
)
45 buffer
->page_count
= i
;
47 fw_iso_buffer_destroy(buffer
, NULL
);
54 int fw_iso_buffer_map_dma(struct fw_iso_buffer
*buffer
, struct fw_card
*card
,
55 enum dma_data_direction direction
)
60 buffer
->direction
= direction
;
62 for (i
= 0; i
< buffer
->page_count
; i
++) {
63 address
= dma_map_page(card
->device
, buffer
->pages
[i
],
64 0, PAGE_SIZE
, direction
);
65 if (dma_mapping_error(card
->device
, address
))
68 set_page_private(buffer
->pages
[i
], address
);
70 buffer
->page_count_mapped
= i
;
71 if (i
< buffer
->page_count
)
77 int fw_iso_buffer_init(struct fw_iso_buffer
*buffer
, struct fw_card
*card
,
78 int page_count
, enum dma_data_direction direction
)
82 ret
= fw_iso_buffer_alloc(buffer
, page_count
);
86 ret
= fw_iso_buffer_map_dma(buffer
, card
, direction
);
88 fw_iso_buffer_destroy(buffer
, card
);
92 EXPORT_SYMBOL(fw_iso_buffer_init
);
94 void fw_iso_buffer_destroy(struct fw_iso_buffer
*buffer
,
100 for (i
= 0; i
< buffer
->page_count_mapped
; i
++) {
101 address
= page_private(buffer
->pages
[i
]);
102 dma_unmap_page(card
->device
, address
,
103 PAGE_SIZE
, buffer
->direction
);
105 for (i
= 0; i
< buffer
->page_count
; i
++)
106 __free_page(buffer
->pages
[i
]);
108 kfree(buffer
->pages
);
109 buffer
->pages
= NULL
;
110 buffer
->page_count
= 0;
111 buffer
->page_count_mapped
= 0;
113 EXPORT_SYMBOL(fw_iso_buffer_destroy
);
115 /* Convert DMA address to offset into virtually contiguous buffer. */
116 size_t fw_iso_buffer_lookup(struct fw_iso_buffer
*buffer
, dma_addr_t completed
)
122 for (i
= 0; i
< buffer
->page_count
; i
++) {
123 address
= page_private(buffer
->pages
[i
]);
124 offset
= (ssize_t
)completed
- (ssize_t
)address
;
125 if (offset
> 0 && offset
<= PAGE_SIZE
)
126 return (i
<< PAGE_SHIFT
) + offset
;
132 struct fw_iso_context
*fw_iso_context_create(struct fw_card
*card
,
133 int type
, int channel
, int speed
, size_t header_size
,
134 fw_iso_callback_t callback
, void *callback_data
)
136 struct fw_iso_context
*ctx
;
138 ctx
= card
->driver
->allocate_iso_context(card
,
139 type
, channel
, header_size
);
145 ctx
->channel
= channel
;
147 ctx
->header_size
= header_size
;
148 ctx
->callback
.sc
= callback
;
149 ctx
->callback_data
= callback_data
;
153 EXPORT_SYMBOL(fw_iso_context_create
);
155 void fw_iso_context_destroy(struct fw_iso_context
*ctx
)
157 ctx
->card
->driver
->free_iso_context(ctx
);
159 EXPORT_SYMBOL(fw_iso_context_destroy
);
161 int fw_iso_context_start(struct fw_iso_context
*ctx
,
162 int cycle
, int sync
, int tags
)
164 return ctx
->card
->driver
->start_iso(ctx
, cycle
, sync
, tags
);
166 EXPORT_SYMBOL(fw_iso_context_start
);
168 int fw_iso_context_set_channels(struct fw_iso_context
*ctx
, u64
*channels
)
170 return ctx
->card
->driver
->set_iso_channels(ctx
, channels
);
173 int fw_iso_context_queue(struct fw_iso_context
*ctx
,
174 struct fw_iso_packet
*packet
,
175 struct fw_iso_buffer
*buffer
,
176 unsigned long payload
)
178 return ctx
->card
->driver
->queue_iso(ctx
, packet
, buffer
, payload
);
180 EXPORT_SYMBOL(fw_iso_context_queue
);
182 void fw_iso_context_queue_flush(struct fw_iso_context
*ctx
)
184 ctx
->card
->driver
->flush_queue_iso(ctx
);
186 EXPORT_SYMBOL(fw_iso_context_queue_flush
);
188 int fw_iso_context_flush_completions(struct fw_iso_context
*ctx
)
190 return ctx
->card
->driver
->flush_iso_completions(ctx
);
192 EXPORT_SYMBOL(fw_iso_context_flush_completions
);
194 int fw_iso_context_stop(struct fw_iso_context
*ctx
)
196 return ctx
->card
->driver
->stop_iso(ctx
);
198 EXPORT_SYMBOL(fw_iso_context_stop
);
201 * Isochronous bus resource management (channels, bandwidth), client side
204 static int manage_bandwidth(struct fw_card
*card
, int irm_id
, int generation
,
205 int bandwidth
, bool allocate
)
207 int try, new, old
= allocate
? BANDWIDTH_AVAILABLE_INITIAL
: 0;
211 * On a 1394a IRM with low contention, try < 1 is enough.
212 * On a 1394-1995 IRM, we need at least try < 2.
213 * Let's just do try < 5.
215 for (try = 0; try < 5; try++) {
216 new = allocate
? old
- bandwidth
: old
+ bandwidth
;
217 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL
)
220 data
[0] = cpu_to_be32(old
);
221 data
[1] = cpu_to_be32(new);
222 switch (fw_run_transaction(card
, TCODE_LOCK_COMPARE_SWAP
,
223 irm_id
, generation
, SCODE_100
,
224 CSR_REGISTER_BASE
+ CSR_BANDWIDTH_AVAILABLE
,
226 case RCODE_GENERATION
:
227 /* A generation change frees all bandwidth. */
228 return allocate
? -EAGAIN
: bandwidth
;
231 if (be32_to_cpup(data
) == old
)
234 old
= be32_to_cpup(data
);
242 static int manage_channel(struct fw_card
*card
, int irm_id
, int generation
,
243 u32 channels_mask
, u64 offset
, bool allocate
)
245 __be32 bit
, all
, old
;
247 int channel
, ret
= -EIO
, retry
= 5;
249 old
= all
= allocate
? cpu_to_be32(~0) : 0;
251 for (channel
= 0; channel
< 32; channel
++) {
252 if (!(channels_mask
& 1 << channel
))
257 bit
= cpu_to_be32(1 << (31 - channel
));
258 if ((old
& bit
) != (all
& bit
))
263 switch (fw_run_transaction(card
, TCODE_LOCK_COMPARE_SWAP
,
264 irm_id
, generation
, SCODE_100
,
266 case RCODE_GENERATION
:
267 /* A generation change frees all channels. */
268 return allocate
? -EAGAIN
: channel
;
276 /* Is the IRM 1394a-2000 compliant? */
277 if ((data
[0] & bit
) == (data
[1] & bit
))
280 fallthrough
; /* It's a 1394-1995 IRM, retry */
294 static void deallocate_channel(struct fw_card
*card
, int irm_id
,
295 int generation
, int channel
)
300 mask
= channel
< 32 ? 1 << channel
: 1 << (channel
- 32);
301 offset
= channel
< 32 ? CSR_REGISTER_BASE
+ CSR_CHANNELS_AVAILABLE_HI
:
302 CSR_REGISTER_BASE
+ CSR_CHANNELS_AVAILABLE_LO
;
304 manage_channel(card
, irm_id
, generation
, mask
, offset
, false);
308 * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
309 * @card: card interface for this action
310 * @generation: bus generation
311 * @channels_mask: bitmask for channel allocation
312 * @channel: pointer for returning channel allocation result
313 * @bandwidth: pointer for returning bandwidth allocation result
314 * @allocate: whether to allocate (true) or deallocate (false)
316 * In parameters: card, generation, channels_mask, bandwidth, allocate
317 * Out parameters: channel, bandwidth
319 * This function blocks (sleeps) during communication with the IRM.
321 * Allocates or deallocates at most one channel out of channels_mask.
322 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
323 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
324 * channel 0 and LSB for channel 63.)
325 * Allocates or deallocates as many bandwidth allocation units as specified.
327 * Returns channel < 0 if no channel was allocated or deallocated.
328 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
330 * If generation is stale, deallocations succeed but allocations fail with
333 * If channel allocation fails, no bandwidth will be allocated either.
334 * If bandwidth allocation fails, no channel will be allocated either.
335 * But deallocations of channel and bandwidth are tried independently
336 * of each other's success.
338 void fw_iso_resource_manage(struct fw_card
*card
, int generation
,
339 u64 channels_mask
, int *channel
, int *bandwidth
,
342 u32 channels_hi
= channels_mask
; /* channels 31...0 */
343 u32 channels_lo
= channels_mask
>> 32; /* channels 63...32 */
344 int irm_id
, ret
, c
= -EINVAL
;
346 spin_lock_irq(&card
->lock
);
347 irm_id
= card
->irm_node
->node_id
;
348 spin_unlock_irq(&card
->lock
);
351 c
= manage_channel(card
, irm_id
, generation
, channels_hi
,
352 CSR_REGISTER_BASE
+ CSR_CHANNELS_AVAILABLE_HI
,
354 if (channels_lo
&& c
< 0) {
355 c
= manage_channel(card
, irm_id
, generation
, channels_lo
,
356 CSR_REGISTER_BASE
+ CSR_CHANNELS_AVAILABLE_LO
,
363 if (allocate
&& channels_mask
!= 0 && c
< 0)
369 ret
= manage_bandwidth(card
, irm_id
, generation
, *bandwidth
, allocate
);
373 if (allocate
&& ret
< 0) {
375 deallocate_channel(card
, irm_id
, generation
, c
);
379 EXPORT_SYMBOL(fw_iso_resource_manage
);