WIP FPC-III support
[linux/fpc-iii.git] / drivers / gpu / ipu-v3 / ipu-image-convert.c
blobaa1d4b6d278f734e149b81040f7f4b565f7214e6
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2012-2016 Mentor Graphics Inc.
5 * Queued image conversion support, with tiling and rotation.
6 */
8 #include <linux/interrupt.h>
9 #include <linux/dma-mapping.h>
10 #include <video/imx-ipu-image-convert.h>
11 #include "ipu-prv.h"
14 * The IC Resizer has a restriction that the output frame from the
15 * resizer must be 1024 or less in both width (pixels) and height
16 * (lines).
18 * The image converter attempts to split up a conversion when
19 * the desired output (converted) frame resolution exceeds the
20 * IC resizer limit of 1024 in either dimension.
22 * If either dimension of the output frame exceeds the limit, the
23 * dimension is split into 1, 2, or 4 equal stripes, for a maximum
24 * of 4*4 or 16 tiles. A conversion is then carried out for each
25 * tile (but taking care to pass the full frame stride length to
26 * the DMA channel's parameter memory!). IDMA double-buffering is used
27 * to convert each tile back-to-back when possible (see note below
28 * when double_buffering boolean is set).
30 * Note that the input frame must be split up into the same number
31 * of tiles as the output frame:
33 * +---------+-----+
34 * +-----+---+ | A | B |
35 * | A | B | | | |
36 * +-----+---+ --> +---------+-----+
37 * | C | D | | C | D |
38 * +-----+---+ | | |
39 * +---------+-----+
41 * Clockwise 90° rotations are handled by first rescaling into a
42 * reusable temporary tile buffer and then rotating with the 8x8
43 * block rotator, writing to the correct destination:
45 * +-----+-----+
46 * | | |
47 * +-----+---+ +---------+ | C | A |
48 * | A | B | | A,B, | | | | |
49 * +-----+---+ --> | C,D | | --> | | |
50 * | C | D | +---------+ +-----+-----+
51 * +-----+---+ | D | B |
52 * | | |
53 * +-----+-----+
55 * If the 8x8 block rotator is used, horizontal or vertical flipping
56 * is done during the rotation step, otherwise flipping is done
57 * during the scaling step.
58 * With rotation or flipping, tile order changes between input and
59 * output image. Tiles are numbered row major from top left to bottom
60 * right for both input and output image.
63 #define MAX_STRIPES_W 4
64 #define MAX_STRIPES_H 4
65 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
67 #define MIN_W 16
68 #define MIN_H 8
69 #define MAX_W 4096
70 #define MAX_H 4096
72 enum ipu_image_convert_type {
73 IMAGE_CONVERT_IN = 0,
74 IMAGE_CONVERT_OUT,
77 struct ipu_image_convert_dma_buf {
78 void *virt;
79 dma_addr_t phys;
80 unsigned long len;
83 struct ipu_image_convert_dma_chan {
84 int in;
85 int out;
86 int rot_in;
87 int rot_out;
88 int vdi_in_p;
89 int vdi_in;
90 int vdi_in_n;
93 /* dimensions of one tile */
94 struct ipu_image_tile {
95 u32 width;
96 u32 height;
97 u32 left;
98 u32 top;
99 /* size and strides are in bytes */
100 u32 size;
101 u32 stride;
102 u32 rot_stride;
103 /* start Y or packed offset of this tile */
104 u32 offset;
105 /* offset from start to tile in U plane, for planar formats */
106 u32 u_off;
107 /* offset from start to tile in V plane, for planar formats */
108 u32 v_off;
111 struct ipu_image_convert_image {
112 struct ipu_image base;
113 enum ipu_image_convert_type type;
115 const struct ipu_image_pixfmt *fmt;
116 unsigned int stride;
118 /* # of rows (horizontal stripes) if dest height is > 1024 */
119 unsigned int num_rows;
120 /* # of columns (vertical stripes) if dest width is > 1024 */
121 unsigned int num_cols;
123 struct ipu_image_tile tile[MAX_TILES];
126 struct ipu_image_pixfmt {
127 u32 fourcc; /* V4L2 fourcc */
128 int bpp; /* total bpp */
129 int uv_width_dec; /* decimation in width for U/V planes */
130 int uv_height_dec; /* decimation in height for U/V planes */
131 bool planar; /* planar format */
132 bool uv_swapped; /* U and V planes are swapped */
133 bool uv_packed; /* partial planar (U and V in same plane) */
136 struct ipu_image_convert_ctx;
137 struct ipu_image_convert_chan;
138 struct ipu_image_convert_priv;
140 enum eof_irq_mask {
141 EOF_IRQ_IN = BIT(0),
142 EOF_IRQ_ROT_IN = BIT(1),
143 EOF_IRQ_OUT = BIT(2),
144 EOF_IRQ_ROT_OUT = BIT(3),
147 #define EOF_IRQ_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT)
148 #define EOF_IRQ_ROT_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT | \
149 EOF_IRQ_ROT_IN | EOF_IRQ_ROT_OUT)
151 struct ipu_image_convert_ctx {
152 struct ipu_image_convert_chan *chan;
154 ipu_image_convert_cb_t complete;
155 void *complete_context;
157 /* Source/destination image data and rotation mode */
158 struct ipu_image_convert_image in;
159 struct ipu_image_convert_image out;
160 struct ipu_ic_csc csc;
161 enum ipu_rotate_mode rot_mode;
162 u32 downsize_coeff_h;
163 u32 downsize_coeff_v;
164 u32 image_resize_coeff_h;
165 u32 image_resize_coeff_v;
166 u32 resize_coeffs_h[MAX_STRIPES_W];
167 u32 resize_coeffs_v[MAX_STRIPES_H];
169 /* intermediate buffer for rotation */
170 struct ipu_image_convert_dma_buf rot_intermediate[2];
172 /* current buffer number for double buffering */
173 int cur_buf_num;
175 bool aborting;
176 struct completion aborted;
178 /* can we use double-buffering for this conversion operation? */
179 bool double_buffering;
180 /* num_rows * num_cols */
181 unsigned int num_tiles;
182 /* next tile to process */
183 unsigned int next_tile;
184 /* where to place converted tile in dest image */
185 unsigned int out_tile_map[MAX_TILES];
187 /* mask of completed EOF irqs at every tile conversion */
188 enum eof_irq_mask eof_mask;
190 struct list_head list;
193 struct ipu_image_convert_chan {
194 struct ipu_image_convert_priv *priv;
196 enum ipu_ic_task ic_task;
197 const struct ipu_image_convert_dma_chan *dma_ch;
199 struct ipu_ic *ic;
200 struct ipuv3_channel *in_chan;
201 struct ipuv3_channel *out_chan;
202 struct ipuv3_channel *rotation_in_chan;
203 struct ipuv3_channel *rotation_out_chan;
205 /* the IPU end-of-frame irqs */
206 int in_eof_irq;
207 int rot_in_eof_irq;
208 int out_eof_irq;
209 int rot_out_eof_irq;
211 spinlock_t irqlock;
213 /* list of convert contexts */
214 struct list_head ctx_list;
215 /* queue of conversion runs */
216 struct list_head pending_q;
217 /* queue of completed runs */
218 struct list_head done_q;
220 /* the current conversion run */
221 struct ipu_image_convert_run *current_run;
224 struct ipu_image_convert_priv {
225 struct ipu_image_convert_chan chan[IC_NUM_TASKS];
226 struct ipu_soc *ipu;
229 static const struct ipu_image_convert_dma_chan
230 image_convert_dma_chan[IC_NUM_TASKS] = {
231 [IC_TASK_VIEWFINDER] = {
232 .in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
233 .out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
234 .rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
235 .rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
236 .vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
237 .vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
238 .vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
240 [IC_TASK_POST_PROCESSOR] = {
241 .in = IPUV3_CHANNEL_MEM_IC_PP,
242 .out = IPUV3_CHANNEL_IC_PP_MEM,
243 .rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
244 .rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
248 static const struct ipu_image_pixfmt image_convert_formats[] = {
250 .fourcc = V4L2_PIX_FMT_RGB565,
251 .bpp = 16,
252 }, {
253 .fourcc = V4L2_PIX_FMT_RGB24,
254 .bpp = 24,
255 }, {
256 .fourcc = V4L2_PIX_FMT_BGR24,
257 .bpp = 24,
258 }, {
259 .fourcc = V4L2_PIX_FMT_RGB32,
260 .bpp = 32,
261 }, {
262 .fourcc = V4L2_PIX_FMT_BGR32,
263 .bpp = 32,
264 }, {
265 .fourcc = V4L2_PIX_FMT_XRGB32,
266 .bpp = 32,
267 }, {
268 .fourcc = V4L2_PIX_FMT_XBGR32,
269 .bpp = 32,
270 }, {
271 .fourcc = V4L2_PIX_FMT_BGRX32,
272 .bpp = 32,
273 }, {
274 .fourcc = V4L2_PIX_FMT_RGBX32,
275 .bpp = 32,
276 }, {
277 .fourcc = V4L2_PIX_FMT_YUYV,
278 .bpp = 16,
279 .uv_width_dec = 2,
280 .uv_height_dec = 1,
281 }, {
282 .fourcc = V4L2_PIX_FMT_UYVY,
283 .bpp = 16,
284 .uv_width_dec = 2,
285 .uv_height_dec = 1,
286 }, {
287 .fourcc = V4L2_PIX_FMT_YUV420,
288 .bpp = 12,
289 .planar = true,
290 .uv_width_dec = 2,
291 .uv_height_dec = 2,
292 }, {
293 .fourcc = V4L2_PIX_FMT_YVU420,
294 .bpp = 12,
295 .planar = true,
296 .uv_width_dec = 2,
297 .uv_height_dec = 2,
298 .uv_swapped = true,
299 }, {
300 .fourcc = V4L2_PIX_FMT_NV12,
301 .bpp = 12,
302 .planar = true,
303 .uv_width_dec = 2,
304 .uv_height_dec = 2,
305 .uv_packed = true,
306 }, {
307 .fourcc = V4L2_PIX_FMT_YUV422P,
308 .bpp = 16,
309 .planar = true,
310 .uv_width_dec = 2,
311 .uv_height_dec = 1,
312 }, {
313 .fourcc = V4L2_PIX_FMT_NV16,
314 .bpp = 16,
315 .planar = true,
316 .uv_width_dec = 2,
317 .uv_height_dec = 1,
318 .uv_packed = true,
322 static const struct ipu_image_pixfmt *get_format(u32 fourcc)
324 const struct ipu_image_pixfmt *ret = NULL;
325 unsigned int i;
327 for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
328 if (image_convert_formats[i].fourcc == fourcc) {
329 ret = &image_convert_formats[i];
330 break;
334 return ret;
337 static void dump_format(struct ipu_image_convert_ctx *ctx,
338 struct ipu_image_convert_image *ic_image)
340 struct ipu_image_convert_chan *chan = ctx->chan;
341 struct ipu_image_convert_priv *priv = chan->priv;
343 dev_dbg(priv->ipu->dev,
344 "task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
345 chan->ic_task, ctx,
346 ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
347 ic_image->base.pix.width, ic_image->base.pix.height,
348 ic_image->num_cols, ic_image->num_rows,
349 ic_image->fmt->fourcc & 0xff,
350 (ic_image->fmt->fourcc >> 8) & 0xff,
351 (ic_image->fmt->fourcc >> 16) & 0xff,
352 (ic_image->fmt->fourcc >> 24) & 0xff);
355 int ipu_image_convert_enum_format(int index, u32 *fourcc)
357 const struct ipu_image_pixfmt *fmt;
359 if (index >= (int)ARRAY_SIZE(image_convert_formats))
360 return -EINVAL;
362 /* Format found */
363 fmt = &image_convert_formats[index];
364 *fourcc = fmt->fourcc;
365 return 0;
367 EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
369 static void free_dma_buf(struct ipu_image_convert_priv *priv,
370 struct ipu_image_convert_dma_buf *buf)
372 if (buf->virt)
373 dma_free_coherent(priv->ipu->dev,
374 buf->len, buf->virt, buf->phys);
375 buf->virt = NULL;
376 buf->phys = 0;
379 static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
380 struct ipu_image_convert_dma_buf *buf,
381 int size)
383 buf->len = PAGE_ALIGN(size);
384 buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
385 GFP_DMA | GFP_KERNEL);
386 if (!buf->virt) {
387 dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
388 return -ENOMEM;
391 return 0;
394 static inline int num_stripes(int dim)
396 return (dim - 1) / 1024 + 1;
400 * Calculate downsizing coefficients, which are the same for all tiles,
401 * and initial bilinear resizing coefficients, which are used to find the
402 * best seam positions.
403 * Also determine the number of tiles necessary to guarantee that no tile
404 * is larger than 1024 pixels in either dimension at the output and between
405 * IC downsizing and main processing sections.
407 static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
408 struct ipu_image *in,
409 struct ipu_image *out)
411 u32 downsized_width = in->rect.width;
412 u32 downsized_height = in->rect.height;
413 u32 downsize_coeff_v = 0;
414 u32 downsize_coeff_h = 0;
415 u32 resized_width = out->rect.width;
416 u32 resized_height = out->rect.height;
417 u32 resize_coeff_h;
418 u32 resize_coeff_v;
419 u32 cols;
420 u32 rows;
422 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
423 resized_width = out->rect.height;
424 resized_height = out->rect.width;
427 /* Do not let invalid input lead to an endless loop below */
428 if (WARN_ON(resized_width == 0 || resized_height == 0))
429 return -EINVAL;
431 while (downsized_width >= resized_width * 2) {
432 downsized_width >>= 1;
433 downsize_coeff_h++;
436 while (downsized_height >= resized_height * 2) {
437 downsized_height >>= 1;
438 downsize_coeff_v++;
442 * Calculate the bilinear resizing coefficients that could be used if
443 * we were converting with a single tile. The bottom right output pixel
444 * should sample as close as possible to the bottom right input pixel
445 * out of the decimator, but not overshoot it:
447 resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
448 resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
451 * Both the output of the IC downsizing section before being passed to
452 * the IC main processing section and the final output of the IC main
453 * processing section must be <= 1024 pixels in both dimensions.
455 cols = num_stripes(max_t(u32, downsized_width, resized_width));
456 rows = num_stripes(max_t(u32, downsized_height, resized_height));
458 dev_dbg(ctx->chan->priv->ipu->dev,
459 "%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
460 __func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
461 resize_coeff_v, cols, rows);
463 if (downsize_coeff_h > 2 || downsize_coeff_v > 2 ||
464 resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
465 return -EINVAL;
467 ctx->downsize_coeff_h = downsize_coeff_h;
468 ctx->downsize_coeff_v = downsize_coeff_v;
469 ctx->image_resize_coeff_h = resize_coeff_h;
470 ctx->image_resize_coeff_v = resize_coeff_v;
471 ctx->in.num_cols = cols;
472 ctx->in.num_rows = rows;
474 return 0;
477 #define round_closest(x, y) round_down((x) + (y)/2, (y))
480 * Find the best aligned seam position for the given column / row index.
481 * Rotation and image offsets are out of scope.
483 * @index: column / row index, used to calculate valid interval
484 * @in_edge: input right / bottom edge
485 * @out_edge: output right / bottom edge
486 * @in_align: input alignment, either horizontal 8-byte line start address
487 * alignment, or pixel alignment due to image format
488 * @out_align: output alignment, either horizontal 8-byte line start address
489 * alignment, or pixel alignment due to image format or rotator
490 * block size
491 * @in_burst: horizontal input burst size in case of horizontal flip
492 * @out_burst: horizontal output burst size or rotator block size
493 * @downsize_coeff: downsizing section coefficient
494 * @resize_coeff: main processing section resizing coefficient
495 * @_in_seam: aligned input seam position return value
496 * @_out_seam: aligned output seam position return value
498 static void find_best_seam(struct ipu_image_convert_ctx *ctx,
499 unsigned int index,
500 unsigned int in_edge,
501 unsigned int out_edge,
502 unsigned int in_align,
503 unsigned int out_align,
504 unsigned int in_burst,
505 unsigned int out_burst,
506 unsigned int downsize_coeff,
507 unsigned int resize_coeff,
508 u32 *_in_seam,
509 u32 *_out_seam)
511 struct device *dev = ctx->chan->priv->ipu->dev;
512 unsigned int out_pos;
513 /* Input / output seam position candidates */
514 unsigned int out_seam = 0;
515 unsigned int in_seam = 0;
516 unsigned int min_diff = UINT_MAX;
517 unsigned int out_start;
518 unsigned int out_end;
519 unsigned int in_start;
520 unsigned int in_end;
522 /* Start within 1024 pixels of the right / bottom edge */
523 out_start = max_t(int, index * out_align, out_edge - 1024);
524 /* End before having to add more columns to the left / rows above */
525 out_end = min_t(unsigned int, out_edge, index * 1024 + 1);
528 * Limit input seam position to make sure that the downsized input tile
529 * to the right or bottom does not exceed 1024 pixels.
531 in_start = max_t(int, index * in_align,
532 in_edge - (1024 << downsize_coeff));
533 in_end = min_t(unsigned int, in_edge,
534 index * (1024 << downsize_coeff) + 1);
537 * Output tiles must start at a multiple of 8 bytes horizontally and
538 * possibly at an even line horizontally depending on the pixel format.
539 * Only consider output aligned positions for the seam.
541 out_start = round_up(out_start, out_align);
542 for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
543 unsigned int in_pos;
544 unsigned int in_pos_aligned;
545 unsigned int in_pos_rounded;
546 unsigned int abs_diff;
549 * Tiles in the right row / bottom column may not be allowed to
550 * overshoot horizontally / vertically. out_burst may be the
551 * actual DMA burst size, or the rotator block size.
553 if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
554 continue;
557 * Input sample position, corresponding to out_pos, 19.13 fixed
558 * point.
560 in_pos = (out_pos * resize_coeff) << downsize_coeff;
562 * The closest input sample position that we could actually
563 * start the input tile at, 19.13 fixed point.
565 in_pos_aligned = round_closest(in_pos, 8192U * in_align);
566 /* Convert 19.13 fixed point to integer */
567 in_pos_rounded = in_pos_aligned / 8192U;
569 if (in_pos_rounded < in_start)
570 continue;
571 if (in_pos_rounded >= in_end)
572 break;
574 if ((in_burst > 1) &&
575 (in_edge - in_pos_rounded) % in_burst)
576 continue;
578 if (in_pos < in_pos_aligned)
579 abs_diff = in_pos_aligned - in_pos;
580 else
581 abs_diff = in_pos - in_pos_aligned;
583 if (abs_diff < min_diff) {
584 in_seam = in_pos_rounded;
585 out_seam = out_pos;
586 min_diff = abs_diff;
590 *_out_seam = out_seam;
591 *_in_seam = in_seam;
593 dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) in [%u, %u] diff %u.%03u\n",
594 __func__, out_seam, out_align, out_start, out_end,
595 in_seam, in_align, in_start, in_end, min_diff / 8192,
596 DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
600 * Tile left edges are required to be aligned to multiples of 8 bytes
601 * by the IDMAC.
603 static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
605 if (fmt->planar)
606 return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
607 else
608 return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
612 * Tile top edge alignment is only limited by chroma subsampling.
614 static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
616 return fmt->uv_height_dec > 1 ? 2 : 1;
619 static inline u32 tile_width_align(enum ipu_image_convert_type type,
620 const struct ipu_image_pixfmt *fmt,
621 enum ipu_rotate_mode rot_mode)
623 if (type == IMAGE_CONVERT_IN) {
625 * The IC burst reads 8 pixels at a time. Reading beyond the
626 * end of the line is usually acceptable. Those pixels are
627 * ignored, unless the IC has to write the scaled line in
628 * reverse.
630 return (!ipu_rot_mode_is_irt(rot_mode) &&
631 (rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
635 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
636 * formats to guarantee 8-byte aligned line start addresses in the
637 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
638 * for all other formats.
640 return (ipu_rot_mode_is_irt(rot_mode) &&
641 fmt->planar && !fmt->uv_packed) ?
642 8 * fmt->uv_width_dec : 8;
645 static inline u32 tile_height_align(enum ipu_image_convert_type type,
646 const struct ipu_image_pixfmt *fmt,
647 enum ipu_rotate_mode rot_mode)
649 if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
650 return 2;
653 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
654 * formats to guarantee 8-byte aligned line start addresses in the
655 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
656 * for all other formats.
658 return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
662 * Fill in left position and width and for all tiles in an input column, and
663 * for all corresponding output tiles. If the 90° rotator is used, the output
664 * tiles are in a row, and output tile top position and height are set.
666 static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
667 unsigned int col,
668 struct ipu_image_convert_image *in,
669 unsigned int in_left, unsigned int in_width,
670 struct ipu_image_convert_image *out,
671 unsigned int out_left, unsigned int out_width)
673 unsigned int row, tile_idx;
674 struct ipu_image_tile *in_tile, *out_tile;
676 for (row = 0; row < in->num_rows; row++) {
677 tile_idx = in->num_cols * row + col;
678 in_tile = &in->tile[tile_idx];
679 out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
681 in_tile->left = in_left;
682 in_tile->width = in_width;
684 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
685 out_tile->top = out_left;
686 out_tile->height = out_width;
687 } else {
688 out_tile->left = out_left;
689 out_tile->width = out_width;
695 * Fill in top position and height and for all tiles in an input row, and
696 * for all corresponding output tiles. If the 90° rotator is used, the output
697 * tiles are in a column, and output tile left position and width are set.
699 static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
700 struct ipu_image_convert_image *in,
701 unsigned int in_top, unsigned int in_height,
702 struct ipu_image_convert_image *out,
703 unsigned int out_top, unsigned int out_height)
705 unsigned int col, tile_idx;
706 struct ipu_image_tile *in_tile, *out_tile;
708 for (col = 0; col < in->num_cols; col++) {
709 tile_idx = in->num_cols * row + col;
710 in_tile = &in->tile[tile_idx];
711 out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
713 in_tile->top = in_top;
714 in_tile->height = in_height;
716 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
717 out_tile->left = out_top;
718 out_tile->width = out_height;
719 } else {
720 out_tile->top = out_top;
721 out_tile->height = out_height;
727 * Find the best horizontal and vertical seam positions to split into tiles.
728 * Minimize the fractional part of the input sampling position for the
729 * top / left pixels of each tile.
731 static void find_seams(struct ipu_image_convert_ctx *ctx,
732 struct ipu_image_convert_image *in,
733 struct ipu_image_convert_image *out)
735 struct device *dev = ctx->chan->priv->ipu->dev;
736 unsigned int resized_width = out->base.rect.width;
737 unsigned int resized_height = out->base.rect.height;
738 unsigned int col;
739 unsigned int row;
740 unsigned int in_left_align = tile_left_align(in->fmt);
741 unsigned int in_top_align = tile_top_align(in->fmt);
742 unsigned int out_left_align = tile_left_align(out->fmt);
743 unsigned int out_top_align = tile_top_align(out->fmt);
744 unsigned int out_width_align = tile_width_align(out->type, out->fmt,
745 ctx->rot_mode);
746 unsigned int out_height_align = tile_height_align(out->type, out->fmt,
747 ctx->rot_mode);
748 unsigned int in_right = in->base.rect.width;
749 unsigned int in_bottom = in->base.rect.height;
750 unsigned int out_right = out->base.rect.width;
751 unsigned int out_bottom = out->base.rect.height;
752 unsigned int flipped_out_left;
753 unsigned int flipped_out_top;
755 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
756 /* Switch width/height and align top left to IRT block size */
757 resized_width = out->base.rect.height;
758 resized_height = out->base.rect.width;
759 out_left_align = out_height_align;
760 out_top_align = out_width_align;
761 out_width_align = out_left_align;
762 out_height_align = out_top_align;
763 out_right = out->base.rect.height;
764 out_bottom = out->base.rect.width;
767 for (col = in->num_cols - 1; col > 0; col--) {
768 bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
769 !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
770 bool allow_out_overshoot = (col < in->num_cols - 1) &&
771 !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
772 unsigned int in_left;
773 unsigned int out_left;
776 * Align input width to burst length if the scaling step flips
777 * horizontally.
780 find_best_seam(ctx, col,
781 in_right, out_right,
782 in_left_align, out_left_align,
783 allow_in_overshoot ? 1 : 8 /* burst length */,
784 allow_out_overshoot ? 1 : out_width_align,
785 ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
786 &in_left, &out_left);
788 if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
789 flipped_out_left = resized_width - out_right;
790 else
791 flipped_out_left = out_left;
793 fill_tile_column(ctx, col, in, in_left, in_right - in_left,
794 out, flipped_out_left, out_right - out_left);
796 dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
797 in_left, in_right - in_left,
798 flipped_out_left, out_right - out_left);
800 in_right = in_left;
801 out_right = out_left;
804 flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
805 resized_width - out_right : 0;
807 fill_tile_column(ctx, 0, in, 0, in_right,
808 out, flipped_out_left, out_right);
810 dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
811 in_right, flipped_out_left, out_right);
813 for (row = in->num_rows - 1; row > 0; row--) {
814 bool allow_overshoot = row < in->num_rows - 1;
815 unsigned int in_top;
816 unsigned int out_top;
818 find_best_seam(ctx, row,
819 in_bottom, out_bottom,
820 in_top_align, out_top_align,
821 1, allow_overshoot ? 1 : out_height_align,
822 ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
823 &in_top, &out_top);
825 if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
826 ipu_rot_mode_is_irt(ctx->rot_mode))
827 flipped_out_top = resized_height - out_bottom;
828 else
829 flipped_out_top = out_top;
831 fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
832 out, flipped_out_top, out_bottom - out_top);
834 dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
835 in_top, in_bottom - in_top,
836 flipped_out_top, out_bottom - out_top);
838 in_bottom = in_top;
839 out_bottom = out_top;
842 if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
843 ipu_rot_mode_is_irt(ctx->rot_mode))
844 flipped_out_top = resized_height - out_bottom;
845 else
846 flipped_out_top = 0;
848 fill_tile_row(ctx, 0, in, 0, in_bottom,
849 out, flipped_out_top, out_bottom);
851 dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
852 in_bottom, flipped_out_top, out_bottom);
855 static int calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
856 struct ipu_image_convert_image *image)
858 struct ipu_image_convert_chan *chan = ctx->chan;
859 struct ipu_image_convert_priv *priv = chan->priv;
860 unsigned int max_width = 1024;
861 unsigned int max_height = 1024;
862 unsigned int i;
864 if (image->type == IMAGE_CONVERT_IN) {
865 /* Up to 4096x4096 input tile size */
866 max_width <<= ctx->downsize_coeff_h;
867 max_height <<= ctx->downsize_coeff_v;
870 for (i = 0; i < ctx->num_tiles; i++) {
871 struct ipu_image_tile *tile;
872 const unsigned int row = i / image->num_cols;
873 const unsigned int col = i % image->num_cols;
875 if (image->type == IMAGE_CONVERT_OUT)
876 tile = &image->tile[ctx->out_tile_map[i]];
877 else
878 tile = &image->tile[i];
880 tile->size = ((tile->height * image->fmt->bpp) >> 3) *
881 tile->width;
883 if (image->fmt->planar) {
884 tile->stride = tile->width;
885 tile->rot_stride = tile->height;
886 } else {
887 tile->stride =
888 (image->fmt->bpp * tile->width) >> 3;
889 tile->rot_stride =
890 (image->fmt->bpp * tile->height) >> 3;
893 dev_dbg(priv->ipu->dev,
894 "task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
895 chan->ic_task, ctx,
896 image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
897 row, col,
898 tile->width, tile->height, tile->left, tile->top);
900 if (!tile->width || tile->width > max_width ||
901 !tile->height || tile->height > max_height) {
902 dev_err(priv->ipu->dev, "invalid %s tile size: %ux%u\n",
903 image->type == IMAGE_CONVERT_IN ? "input" :
904 "output", tile->width, tile->height);
905 return -EINVAL;
909 return 0;
913 * Use the rotation transformation to find the tile coordinates
914 * (row, col) of a tile in the destination frame that corresponds
915 * to the given tile coordinates of a source frame. The destination
916 * coordinate is then converted to a tile index.
918 static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
919 int src_row, int src_col)
921 struct ipu_image_convert_chan *chan = ctx->chan;
922 struct ipu_image_convert_priv *priv = chan->priv;
923 struct ipu_image_convert_image *s_image = &ctx->in;
924 struct ipu_image_convert_image *d_image = &ctx->out;
925 int dst_row, dst_col;
927 /* with no rotation it's a 1:1 mapping */
928 if (ctx->rot_mode == IPU_ROTATE_NONE)
929 return src_row * s_image->num_cols + src_col;
932 * before doing the transform, first we have to translate
933 * source row,col for an origin in the center of s_image
935 src_row = src_row * 2 - (s_image->num_rows - 1);
936 src_col = src_col * 2 - (s_image->num_cols - 1);
938 /* do the rotation transform */
939 if (ctx->rot_mode & IPU_ROT_BIT_90) {
940 dst_col = -src_row;
941 dst_row = src_col;
942 } else {
943 dst_col = src_col;
944 dst_row = src_row;
947 /* apply flip */
948 if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
949 dst_col = -dst_col;
950 if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
951 dst_row = -dst_row;
953 dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
954 chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
957 * finally translate dest row,col using an origin in upper
958 * left of d_image
960 dst_row += d_image->num_rows - 1;
961 dst_col += d_image->num_cols - 1;
962 dst_row /= 2;
963 dst_col /= 2;
965 return dst_row * d_image->num_cols + dst_col;
969 * Fill the out_tile_map[] with transformed destination tile indeces.
971 static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
973 struct ipu_image_convert_image *s_image = &ctx->in;
974 unsigned int row, col, tile = 0;
976 for (row = 0; row < s_image->num_rows; row++) {
977 for (col = 0; col < s_image->num_cols; col++) {
978 ctx->out_tile_map[tile] =
979 transform_tile_index(ctx, row, col);
980 tile++;
985 static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
986 struct ipu_image_convert_image *image)
988 struct ipu_image_convert_chan *chan = ctx->chan;
989 struct ipu_image_convert_priv *priv = chan->priv;
990 const struct ipu_image_pixfmt *fmt = image->fmt;
991 unsigned int row, col, tile = 0;
992 u32 H, top, y_stride, uv_stride;
993 u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp;
994 u32 y_row_off, y_col_off, y_off;
995 u32 y_size, uv_size;
997 /* setup some convenience vars */
998 H = image->base.pix.height;
1000 y_stride = image->stride;
1001 uv_stride = y_stride / fmt->uv_width_dec;
1002 if (fmt->uv_packed)
1003 uv_stride *= 2;
1005 y_size = H * y_stride;
1006 uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
1008 for (row = 0; row < image->num_rows; row++) {
1009 top = image->tile[tile].top;
1010 y_row_off = top * y_stride;
1011 uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
1013 for (col = 0; col < image->num_cols; col++) {
1014 y_col_off = image->tile[tile].left;
1015 uv_col_off = y_col_off / fmt->uv_width_dec;
1016 if (fmt->uv_packed)
1017 uv_col_off *= 2;
1019 y_off = y_row_off + y_col_off;
1020 uv_off = uv_row_off + uv_col_off;
1022 u_off = y_size - y_off + uv_off;
1023 v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
1024 if (fmt->uv_swapped) {
1025 tmp = u_off;
1026 u_off = v_off;
1027 v_off = tmp;
1030 image->tile[tile].offset = y_off;
1031 image->tile[tile].u_off = u_off;
1032 image->tile[tile++].v_off = v_off;
1034 if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
1035 dev_err(priv->ipu->dev,
1036 "task %u: ctx %p: %s@[%d,%d]: "
1037 "y_off %08x, u_off %08x, v_off %08x\n",
1038 chan->ic_task, ctx,
1039 image->type == IMAGE_CONVERT_IN ?
1040 "Input" : "Output", row, col,
1041 y_off, u_off, v_off);
1042 return -EINVAL;
1047 return 0;
1050 static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
1051 struct ipu_image_convert_image *image)
1053 struct ipu_image_convert_chan *chan = ctx->chan;
1054 struct ipu_image_convert_priv *priv = chan->priv;
1055 const struct ipu_image_pixfmt *fmt = image->fmt;
1056 unsigned int row, col, tile = 0;
1057 u32 bpp, stride, offset;
1058 u32 row_off, col_off;
1060 /* setup some convenience vars */
1061 stride = image->stride;
1062 bpp = fmt->bpp;
1064 for (row = 0; row < image->num_rows; row++) {
1065 row_off = image->tile[tile].top * stride;
1067 for (col = 0; col < image->num_cols; col++) {
1068 col_off = (image->tile[tile].left * bpp) >> 3;
1070 offset = row_off + col_off;
1072 image->tile[tile].offset = offset;
1073 image->tile[tile].u_off = 0;
1074 image->tile[tile++].v_off = 0;
1076 if (offset & 0x7) {
1077 dev_err(priv->ipu->dev,
1078 "task %u: ctx %p: %s@[%d,%d]: "
1079 "phys %08x\n",
1080 chan->ic_task, ctx,
1081 image->type == IMAGE_CONVERT_IN ?
1082 "Input" : "Output", row, col,
1083 row_off + col_off);
1084 return -EINVAL;
1089 return 0;
1092 static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1093 struct ipu_image_convert_image *image)
1095 if (image->fmt->planar)
1096 return calc_tile_offsets_planar(ctx, image);
1098 return calc_tile_offsets_packed(ctx, image);
1102 * Calculate the resizing ratio for the IC main processing section given input
1103 * size, fixed downsizing coefficient, and output size.
1104 * Either round to closest for the next tile's first pixel to minimize seams
1105 * and distortion (for all but right column / bottom row), or round down to
1106 * avoid sampling beyond the edges of the input image for this tile's last
1107 * pixel.
1108 * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1110 static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1111 u32 output_size, bool allow_overshoot)
1113 u32 downsized = input_size >> downsize_coeff;
1115 if (allow_overshoot)
1116 return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1117 else
1118 return 8192 * (downsized - 1) / (output_size - 1);
1122 * Slightly modify resize coefficients per tile to hide the bilinear
1123 * interpolator reset at tile borders, shifting the right / bottom edge
1124 * by up to a half input pixel. This removes noticeable seams between
1125 * tiles at higher upscaling factors.
1127 static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1129 struct ipu_image_convert_chan *chan = ctx->chan;
1130 struct ipu_image_convert_priv *priv = chan->priv;
1131 struct ipu_image_tile *in_tile, *out_tile;
1132 unsigned int col, row, tile_idx;
1133 unsigned int last_output;
1135 for (col = 0; col < ctx->in.num_cols; col++) {
1136 bool closest = (col < ctx->in.num_cols - 1) &&
1137 !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1138 u32 resized_width;
1139 u32 resize_coeff_h;
1140 u32 in_width;
1142 tile_idx = col;
1143 in_tile = &ctx->in.tile[tile_idx];
1144 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1146 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1147 resized_width = out_tile->height;
1148 else
1149 resized_width = out_tile->width;
1151 resize_coeff_h = calc_resize_coeff(in_tile->width,
1152 ctx->downsize_coeff_h,
1153 resized_width, closest);
1155 dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1156 __func__, col, resize_coeff_h);
1159 * With the horizontal scaling factor known, round up resized
1160 * width (output width or height) to burst size.
1162 resized_width = round_up(resized_width, 8);
1165 * Calculate input width from the last accessed input pixel
1166 * given resized width and scaling coefficients. Round up to
1167 * burst size.
1169 last_output = resized_width - 1;
1170 if (closest && ((last_output * resize_coeff_h) % 8192))
1171 last_output++;
1172 in_width = round_up(
1173 (DIV_ROUND_UP(last_output * resize_coeff_h, 8192) + 1)
1174 << ctx->downsize_coeff_h, 8);
1176 for (row = 0; row < ctx->in.num_rows; row++) {
1177 tile_idx = row * ctx->in.num_cols + col;
1178 in_tile = &ctx->in.tile[tile_idx];
1179 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1181 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1182 out_tile->height = resized_width;
1183 else
1184 out_tile->width = resized_width;
1186 in_tile->width = in_width;
1189 ctx->resize_coeffs_h[col] = resize_coeff_h;
1192 for (row = 0; row < ctx->in.num_rows; row++) {
1193 bool closest = (row < ctx->in.num_rows - 1) &&
1194 !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1195 u32 resized_height;
1196 u32 resize_coeff_v;
1197 u32 in_height;
1199 tile_idx = row * ctx->in.num_cols;
1200 in_tile = &ctx->in.tile[tile_idx];
1201 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1203 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1204 resized_height = out_tile->width;
1205 else
1206 resized_height = out_tile->height;
1208 resize_coeff_v = calc_resize_coeff(in_tile->height,
1209 ctx->downsize_coeff_v,
1210 resized_height, closest);
1212 dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1213 __func__, row, resize_coeff_v);
1216 * With the vertical scaling factor known, round up resized
1217 * height (output width or height) to IDMAC limitations.
1219 resized_height = round_up(resized_height, 2);
1222 * Calculate input width from the last accessed input pixel
1223 * given resized height and scaling coefficients. Align to
1224 * IDMAC restrictions.
1226 last_output = resized_height - 1;
1227 if (closest && ((last_output * resize_coeff_v) % 8192))
1228 last_output++;
1229 in_height = round_up(
1230 (DIV_ROUND_UP(last_output * resize_coeff_v, 8192) + 1)
1231 << ctx->downsize_coeff_v, 2);
1233 for (col = 0; col < ctx->in.num_cols; col++) {
1234 tile_idx = row * ctx->in.num_cols + col;
1235 in_tile = &ctx->in.tile[tile_idx];
1236 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1238 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1239 out_tile->width = resized_height;
1240 else
1241 out_tile->height = resized_height;
1243 in_tile->height = in_height;
1246 ctx->resize_coeffs_v[row] = resize_coeff_v;
1251 * return the number of runs in given queue (pending_q or done_q)
1252 * for this context. hold irqlock when calling.
1254 static int get_run_count(struct ipu_image_convert_ctx *ctx,
1255 struct list_head *q)
1257 struct ipu_image_convert_run *run;
1258 int count = 0;
1260 lockdep_assert_held(&ctx->chan->irqlock);
1262 list_for_each_entry(run, q, list) {
1263 if (run->ctx == ctx)
1264 count++;
1267 return count;
1270 static void convert_stop(struct ipu_image_convert_run *run)
1272 struct ipu_image_convert_ctx *ctx = run->ctx;
1273 struct ipu_image_convert_chan *chan = ctx->chan;
1274 struct ipu_image_convert_priv *priv = chan->priv;
1276 dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1277 __func__, chan->ic_task, ctx, run);
1279 /* disable IC tasks and the channels */
1280 ipu_ic_task_disable(chan->ic);
1281 ipu_idmac_disable_channel(chan->in_chan);
1282 ipu_idmac_disable_channel(chan->out_chan);
1284 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1285 ipu_idmac_disable_channel(chan->rotation_in_chan);
1286 ipu_idmac_disable_channel(chan->rotation_out_chan);
1287 ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1290 ipu_ic_disable(chan->ic);
1293 static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1294 struct ipuv3_channel *channel,
1295 struct ipu_image_convert_image *image,
1296 enum ipu_rotate_mode rot_mode,
1297 bool rot_swap_width_height,
1298 unsigned int tile)
1300 struct ipu_image_convert_chan *chan = ctx->chan;
1301 unsigned int burst_size;
1302 u32 width, height, stride;
1303 dma_addr_t addr0, addr1 = 0;
1304 struct ipu_image tile_image;
1305 unsigned int tile_idx[2];
1307 if (image->type == IMAGE_CONVERT_OUT) {
1308 tile_idx[0] = ctx->out_tile_map[tile];
1309 tile_idx[1] = ctx->out_tile_map[1];
1310 } else {
1311 tile_idx[0] = tile;
1312 tile_idx[1] = 1;
1315 if (rot_swap_width_height) {
1316 width = image->tile[tile_idx[0]].height;
1317 height = image->tile[tile_idx[0]].width;
1318 stride = image->tile[tile_idx[0]].rot_stride;
1319 addr0 = ctx->rot_intermediate[0].phys;
1320 if (ctx->double_buffering)
1321 addr1 = ctx->rot_intermediate[1].phys;
1322 } else {
1323 width = image->tile[tile_idx[0]].width;
1324 height = image->tile[tile_idx[0]].height;
1325 stride = image->stride;
1326 addr0 = image->base.phys0 +
1327 image->tile[tile_idx[0]].offset;
1328 if (ctx->double_buffering)
1329 addr1 = image->base.phys0 +
1330 image->tile[tile_idx[1]].offset;
1333 ipu_cpmem_zero(channel);
1335 memset(&tile_image, 0, sizeof(tile_image));
1336 tile_image.pix.width = tile_image.rect.width = width;
1337 tile_image.pix.height = tile_image.rect.height = height;
1338 tile_image.pix.bytesperline = stride;
1339 tile_image.pix.pixelformat = image->fmt->fourcc;
1340 tile_image.phys0 = addr0;
1341 tile_image.phys1 = addr1;
1342 if (image->fmt->planar && !rot_swap_width_height) {
1343 tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1344 tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1347 ipu_cpmem_set_image(channel, &tile_image);
1349 if (rot_mode)
1350 ipu_cpmem_set_rotation(channel, rot_mode);
1353 * Skip writing U and V components to odd rows in the output
1354 * channels for planar 4:2:0.
1356 if ((channel == chan->out_chan ||
1357 channel == chan->rotation_out_chan) &&
1358 image->fmt->planar && image->fmt->uv_height_dec == 2)
1359 ipu_cpmem_skip_odd_chroma_rows(channel);
1361 if (channel == chan->rotation_in_chan ||
1362 channel == chan->rotation_out_chan) {
1363 burst_size = 8;
1364 ipu_cpmem_set_block_mode(channel);
1365 } else
1366 burst_size = (width % 16) ? 8 : 16;
1368 ipu_cpmem_set_burstsize(channel, burst_size);
1370 ipu_ic_task_idma_init(chan->ic, channel, width, height,
1371 burst_size, rot_mode);
1374 * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1375 * only do this when there is no PRG present.
1377 if (!channel->ipu->prg_priv)
1378 ipu_cpmem_set_axi_id(channel, 1);
1380 ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1383 static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1385 struct ipu_image_convert_ctx *ctx = run->ctx;
1386 struct ipu_image_convert_chan *chan = ctx->chan;
1387 struct ipu_image_convert_priv *priv = chan->priv;
1388 struct ipu_image_convert_image *s_image = &ctx->in;
1389 struct ipu_image_convert_image *d_image = &ctx->out;
1390 unsigned int dst_tile = ctx->out_tile_map[tile];
1391 unsigned int dest_width, dest_height;
1392 unsigned int col, row;
1393 u32 rsc;
1394 int ret;
1396 dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1397 __func__, chan->ic_task, ctx, run, tile, dst_tile);
1399 /* clear EOF irq mask */
1400 ctx->eof_mask = 0;
1402 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1403 /* swap width/height for resizer */
1404 dest_width = d_image->tile[dst_tile].height;
1405 dest_height = d_image->tile[dst_tile].width;
1406 } else {
1407 dest_width = d_image->tile[dst_tile].width;
1408 dest_height = d_image->tile[dst_tile].height;
1411 row = tile / s_image->num_cols;
1412 col = tile % s_image->num_cols;
1414 rsc = (ctx->downsize_coeff_v << 30) |
1415 (ctx->resize_coeffs_v[row] << 16) |
1416 (ctx->downsize_coeff_h << 14) |
1417 (ctx->resize_coeffs_h[col]);
1419 dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1420 __func__, s_image->tile[tile].width,
1421 s_image->tile[tile].height, dest_width, dest_height, rsc);
1423 /* setup the IC resizer and CSC */
1424 ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc,
1425 s_image->tile[tile].width,
1426 s_image->tile[tile].height,
1427 dest_width,
1428 dest_height,
1429 rsc);
1430 if (ret) {
1431 dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1432 return ret;
1435 /* init the source MEM-->IC PP IDMAC channel */
1436 init_idmac_channel(ctx, chan->in_chan, s_image,
1437 IPU_ROTATE_NONE, false, tile);
1439 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1440 /* init the IC PP-->MEM IDMAC channel */
1441 init_idmac_channel(ctx, chan->out_chan, d_image,
1442 IPU_ROTATE_NONE, true, tile);
1444 /* init the MEM-->IC PP ROT IDMAC channel */
1445 init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1446 ctx->rot_mode, true, tile);
1448 /* init the destination IC PP ROT-->MEM IDMAC channel */
1449 init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1450 IPU_ROTATE_NONE, false, tile);
1452 /* now link IC PP-->MEM to MEM-->IC PP ROT */
1453 ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1454 } else {
1455 /* init the destination IC PP-->MEM IDMAC channel */
1456 init_idmac_channel(ctx, chan->out_chan, d_image,
1457 ctx->rot_mode, false, tile);
1460 /* enable the IC */
1461 ipu_ic_enable(chan->ic);
1463 /* set buffers ready */
1464 ipu_idmac_select_buffer(chan->in_chan, 0);
1465 ipu_idmac_select_buffer(chan->out_chan, 0);
1466 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1467 ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1468 if (ctx->double_buffering) {
1469 ipu_idmac_select_buffer(chan->in_chan, 1);
1470 ipu_idmac_select_buffer(chan->out_chan, 1);
1471 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1472 ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1475 /* enable the channels! */
1476 ipu_idmac_enable_channel(chan->in_chan);
1477 ipu_idmac_enable_channel(chan->out_chan);
1478 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1479 ipu_idmac_enable_channel(chan->rotation_in_chan);
1480 ipu_idmac_enable_channel(chan->rotation_out_chan);
1483 ipu_ic_task_enable(chan->ic);
1485 ipu_cpmem_dump(chan->in_chan);
1486 ipu_cpmem_dump(chan->out_chan);
1487 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1488 ipu_cpmem_dump(chan->rotation_in_chan);
1489 ipu_cpmem_dump(chan->rotation_out_chan);
1492 ipu_dump(priv->ipu);
1494 return 0;
1497 /* hold irqlock when calling */
1498 static int do_run(struct ipu_image_convert_run *run)
1500 struct ipu_image_convert_ctx *ctx = run->ctx;
1501 struct ipu_image_convert_chan *chan = ctx->chan;
1503 lockdep_assert_held(&chan->irqlock);
1505 ctx->in.base.phys0 = run->in_phys;
1506 ctx->out.base.phys0 = run->out_phys;
1508 ctx->cur_buf_num = 0;
1509 ctx->next_tile = 1;
1511 /* remove run from pending_q and set as current */
1512 list_del(&run->list);
1513 chan->current_run = run;
1515 return convert_start(run, 0);
1518 /* hold irqlock when calling */
1519 static void run_next(struct ipu_image_convert_chan *chan)
1521 struct ipu_image_convert_priv *priv = chan->priv;
1522 struct ipu_image_convert_run *run, *tmp;
1523 int ret;
1525 lockdep_assert_held(&chan->irqlock);
1527 list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1528 /* skip contexts that are aborting */
1529 if (run->ctx->aborting) {
1530 dev_dbg(priv->ipu->dev,
1531 "%s: task %u: skipping aborting ctx %p run %p\n",
1532 __func__, chan->ic_task, run->ctx, run);
1533 continue;
1536 ret = do_run(run);
1537 if (!ret)
1538 break;
1541 * something went wrong with start, add the run
1542 * to done q and continue to the next run in the
1543 * pending q.
1545 run->status = ret;
1546 list_add_tail(&run->list, &chan->done_q);
1547 chan->current_run = NULL;
1551 static void empty_done_q(struct ipu_image_convert_chan *chan)
1553 struct ipu_image_convert_priv *priv = chan->priv;
1554 struct ipu_image_convert_run *run;
1555 unsigned long flags;
1557 spin_lock_irqsave(&chan->irqlock, flags);
1559 while (!list_empty(&chan->done_q)) {
1560 run = list_entry(chan->done_q.next,
1561 struct ipu_image_convert_run,
1562 list);
1564 list_del(&run->list);
1566 dev_dbg(priv->ipu->dev,
1567 "%s: task %u: completing ctx %p run %p with %d\n",
1568 __func__, chan->ic_task, run->ctx, run, run->status);
1570 /* call the completion callback and free the run */
1571 spin_unlock_irqrestore(&chan->irqlock, flags);
1572 run->ctx->complete(run, run->ctx->complete_context);
1573 spin_lock_irqsave(&chan->irqlock, flags);
1576 spin_unlock_irqrestore(&chan->irqlock, flags);
1580 * the bottom half thread clears out the done_q, calling the
1581 * completion handler for each.
1583 static irqreturn_t do_bh(int irq, void *dev_id)
1585 struct ipu_image_convert_chan *chan = dev_id;
1586 struct ipu_image_convert_priv *priv = chan->priv;
1587 struct ipu_image_convert_ctx *ctx;
1588 unsigned long flags;
1590 dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1591 chan->ic_task);
1593 empty_done_q(chan);
1595 spin_lock_irqsave(&chan->irqlock, flags);
1598 * the done_q is cleared out, signal any contexts
1599 * that are aborting that abort can complete.
1601 list_for_each_entry(ctx, &chan->ctx_list, list) {
1602 if (ctx->aborting) {
1603 dev_dbg(priv->ipu->dev,
1604 "%s: task %u: signaling abort for ctx %p\n",
1605 __func__, chan->ic_task, ctx);
1606 complete_all(&ctx->aborted);
1610 spin_unlock_irqrestore(&chan->irqlock, flags);
1612 dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1613 chan->ic_task);
1615 return IRQ_HANDLED;
1618 static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1620 unsigned int cur_tile = ctx->next_tile - 1;
1621 unsigned int next_tile = ctx->next_tile;
1623 if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1624 ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1625 ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1626 ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1627 ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1628 ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1629 ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1630 ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1631 return true;
1633 return false;
1636 /* hold irqlock when calling */
1637 static irqreturn_t do_tile_complete(struct ipu_image_convert_run *run)
1639 struct ipu_image_convert_ctx *ctx = run->ctx;
1640 struct ipu_image_convert_chan *chan = ctx->chan;
1641 struct ipu_image_tile *src_tile, *dst_tile;
1642 struct ipu_image_convert_image *s_image = &ctx->in;
1643 struct ipu_image_convert_image *d_image = &ctx->out;
1644 struct ipuv3_channel *outch;
1645 unsigned int dst_idx;
1647 lockdep_assert_held(&chan->irqlock);
1649 outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1650 chan->rotation_out_chan : chan->out_chan;
1653 * It is difficult to stop the channel DMA before the channels
1654 * enter the paused state. Without double-buffering the channels
1655 * are always in a paused state when the EOF irq occurs, so it
1656 * is safe to stop the channels now. For double-buffering we
1657 * just ignore the abort until the operation completes, when it
1658 * is safe to shut down.
1660 if (ctx->aborting && !ctx->double_buffering) {
1661 convert_stop(run);
1662 run->status = -EIO;
1663 goto done;
1666 if (ctx->next_tile == ctx->num_tiles) {
1668 * the conversion is complete
1670 convert_stop(run);
1671 run->status = 0;
1672 goto done;
1676 * not done, place the next tile buffers.
1678 if (!ctx->double_buffering) {
1679 if (ic_settings_changed(ctx)) {
1680 convert_stop(run);
1681 convert_start(run, ctx->next_tile);
1682 } else {
1683 src_tile = &s_image->tile[ctx->next_tile];
1684 dst_idx = ctx->out_tile_map[ctx->next_tile];
1685 dst_tile = &d_image->tile[dst_idx];
1687 ipu_cpmem_set_buffer(chan->in_chan, 0,
1688 s_image->base.phys0 +
1689 src_tile->offset);
1690 ipu_cpmem_set_buffer(outch, 0,
1691 d_image->base.phys0 +
1692 dst_tile->offset);
1693 if (s_image->fmt->planar)
1694 ipu_cpmem_set_uv_offset(chan->in_chan,
1695 src_tile->u_off,
1696 src_tile->v_off);
1697 if (d_image->fmt->planar)
1698 ipu_cpmem_set_uv_offset(outch,
1699 dst_tile->u_off,
1700 dst_tile->v_off);
1702 ipu_idmac_select_buffer(chan->in_chan, 0);
1703 ipu_idmac_select_buffer(outch, 0);
1705 } else if (ctx->next_tile < ctx->num_tiles - 1) {
1707 src_tile = &s_image->tile[ctx->next_tile + 1];
1708 dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1709 dst_tile = &d_image->tile[dst_idx];
1711 ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1712 s_image->base.phys0 + src_tile->offset);
1713 ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1714 d_image->base.phys0 + dst_tile->offset);
1716 ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1717 ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1719 ctx->cur_buf_num ^= 1;
1722 ctx->eof_mask = 0; /* clear EOF irq mask for next tile */
1723 ctx->next_tile++;
1724 return IRQ_HANDLED;
1725 done:
1726 list_add_tail(&run->list, &chan->done_q);
1727 chan->current_run = NULL;
1728 run_next(chan);
1729 return IRQ_WAKE_THREAD;
1732 static irqreturn_t eof_irq(int irq, void *data)
1734 struct ipu_image_convert_chan *chan = data;
1735 struct ipu_image_convert_priv *priv = chan->priv;
1736 struct ipu_image_convert_ctx *ctx;
1737 struct ipu_image_convert_run *run;
1738 irqreturn_t ret = IRQ_HANDLED;
1739 bool tile_complete = false;
1740 unsigned long flags;
1742 spin_lock_irqsave(&chan->irqlock, flags);
1744 /* get current run and its context */
1745 run = chan->current_run;
1746 if (!run) {
1747 ret = IRQ_NONE;
1748 goto out;
1751 ctx = run->ctx;
1753 if (irq == chan->in_eof_irq) {
1754 ctx->eof_mask |= EOF_IRQ_IN;
1755 } else if (irq == chan->out_eof_irq) {
1756 ctx->eof_mask |= EOF_IRQ_OUT;
1757 } else if (irq == chan->rot_in_eof_irq ||
1758 irq == chan->rot_out_eof_irq) {
1759 if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1760 /* this was NOT a rotation op, shouldn't happen */
1761 dev_err(priv->ipu->dev,
1762 "Unexpected rotation interrupt\n");
1763 goto out;
1765 ctx->eof_mask |= (irq == chan->rot_in_eof_irq) ?
1766 EOF_IRQ_ROT_IN : EOF_IRQ_ROT_OUT;
1767 } else {
1768 dev_err(priv->ipu->dev, "Received unknown irq %d\n", irq);
1769 ret = IRQ_NONE;
1770 goto out;
1773 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1774 tile_complete = (ctx->eof_mask == EOF_IRQ_ROT_COMPLETE);
1775 else
1776 tile_complete = (ctx->eof_mask == EOF_IRQ_COMPLETE);
1778 if (tile_complete)
1779 ret = do_tile_complete(run);
1780 out:
1781 spin_unlock_irqrestore(&chan->irqlock, flags);
1782 return ret;
1786 * try to force the completion of runs for this ctx. Called when
1787 * abort wait times out in ipu_image_convert_abort().
1789 static void force_abort(struct ipu_image_convert_ctx *ctx)
1791 struct ipu_image_convert_chan *chan = ctx->chan;
1792 struct ipu_image_convert_run *run;
1793 unsigned long flags;
1795 spin_lock_irqsave(&chan->irqlock, flags);
1797 run = chan->current_run;
1798 if (run && run->ctx == ctx) {
1799 convert_stop(run);
1800 run->status = -EIO;
1801 list_add_tail(&run->list, &chan->done_q);
1802 chan->current_run = NULL;
1803 run_next(chan);
1806 spin_unlock_irqrestore(&chan->irqlock, flags);
1808 empty_done_q(chan);
1811 static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1813 if (chan->in_eof_irq >= 0)
1814 free_irq(chan->in_eof_irq, chan);
1815 if (chan->rot_in_eof_irq >= 0)
1816 free_irq(chan->rot_in_eof_irq, chan);
1817 if (chan->out_eof_irq >= 0)
1818 free_irq(chan->out_eof_irq, chan);
1819 if (chan->rot_out_eof_irq >= 0)
1820 free_irq(chan->rot_out_eof_irq, chan);
1822 if (!IS_ERR_OR_NULL(chan->in_chan))
1823 ipu_idmac_put(chan->in_chan);
1824 if (!IS_ERR_OR_NULL(chan->out_chan))
1825 ipu_idmac_put(chan->out_chan);
1826 if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1827 ipu_idmac_put(chan->rotation_in_chan);
1828 if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1829 ipu_idmac_put(chan->rotation_out_chan);
1830 if (!IS_ERR_OR_NULL(chan->ic))
1831 ipu_ic_put(chan->ic);
1833 chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1834 chan->rotation_out_chan = NULL;
1835 chan->in_eof_irq = -1;
1836 chan->rot_in_eof_irq = -1;
1837 chan->out_eof_irq = -1;
1838 chan->rot_out_eof_irq = -1;
1841 static int get_eof_irq(struct ipu_image_convert_chan *chan,
1842 struct ipuv3_channel *channel)
1844 struct ipu_image_convert_priv *priv = chan->priv;
1845 int ret, irq;
1847 irq = ipu_idmac_channel_irq(priv->ipu, channel, IPU_IRQ_EOF);
1849 ret = request_threaded_irq(irq, eof_irq, do_bh, 0, "ipu-ic", chan);
1850 if (ret < 0) {
1851 dev_err(priv->ipu->dev, "could not acquire irq %d\n", irq);
1852 return ret;
1855 return irq;
1858 static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1860 const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1861 struct ipu_image_convert_priv *priv = chan->priv;
1862 int ret;
1864 /* get IC */
1865 chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1866 if (IS_ERR(chan->ic)) {
1867 dev_err(priv->ipu->dev, "could not acquire IC\n");
1868 ret = PTR_ERR(chan->ic);
1869 goto err;
1872 /* get IDMAC channels */
1873 chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1874 chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1875 if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1876 dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1877 ret = -EBUSY;
1878 goto err;
1881 chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1882 chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1883 if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1884 dev_err(priv->ipu->dev,
1885 "could not acquire idmac rotation channels\n");
1886 ret = -EBUSY;
1887 goto err;
1890 /* acquire the EOF interrupts */
1891 ret = get_eof_irq(chan, chan->in_chan);
1892 if (ret < 0) {
1893 chan->in_eof_irq = -1;
1894 goto err;
1896 chan->in_eof_irq = ret;
1898 ret = get_eof_irq(chan, chan->rotation_in_chan);
1899 if (ret < 0) {
1900 chan->rot_in_eof_irq = -1;
1901 goto err;
1903 chan->rot_in_eof_irq = ret;
1905 ret = get_eof_irq(chan, chan->out_chan);
1906 if (ret < 0) {
1907 chan->out_eof_irq = -1;
1908 goto err;
1910 chan->out_eof_irq = ret;
1912 ret = get_eof_irq(chan, chan->rotation_out_chan);
1913 if (ret < 0) {
1914 chan->rot_out_eof_irq = -1;
1915 goto err;
1917 chan->rot_out_eof_irq = ret;
1919 return 0;
1920 err:
1921 release_ipu_resources(chan);
1922 return ret;
1925 static int fill_image(struct ipu_image_convert_ctx *ctx,
1926 struct ipu_image_convert_image *ic_image,
1927 struct ipu_image *image,
1928 enum ipu_image_convert_type type)
1930 struct ipu_image_convert_priv *priv = ctx->chan->priv;
1932 ic_image->base = *image;
1933 ic_image->type = type;
1935 ic_image->fmt = get_format(image->pix.pixelformat);
1936 if (!ic_image->fmt) {
1937 dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1938 type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1939 return -EINVAL;
1942 if (ic_image->fmt->planar)
1943 ic_image->stride = ic_image->base.pix.width;
1944 else
1945 ic_image->stride = ic_image->base.pix.bytesperline;
1947 return 0;
1950 /* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1951 static unsigned int clamp_align(unsigned int x, unsigned int min,
1952 unsigned int max, unsigned int align)
1954 /* Bits that must be zero to be aligned */
1955 unsigned int mask = ~((1 << align) - 1);
1957 /* Clamp to aligned min and max */
1958 x = clamp(x, (min + ~mask) & mask, max & mask);
1960 /* Round to nearest aligned value */
1961 if (align)
1962 x = (x + (1 << (align - 1))) & mask;
1964 return x;
1967 /* Adjusts input/output images to IPU restrictions */
1968 void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1969 enum ipu_rotate_mode rot_mode)
1971 const struct ipu_image_pixfmt *infmt, *outfmt;
1972 u32 w_align_out, h_align_out;
1973 u32 w_align_in, h_align_in;
1975 infmt = get_format(in->pix.pixelformat);
1976 outfmt = get_format(out->pix.pixelformat);
1978 /* set some default pixel formats if needed */
1979 if (!infmt) {
1980 in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1981 infmt = get_format(V4L2_PIX_FMT_RGB24);
1983 if (!outfmt) {
1984 out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1985 outfmt = get_format(V4L2_PIX_FMT_RGB24);
1988 /* image converter does not handle fields */
1989 in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1991 /* resizer cannot downsize more than 4:1 */
1992 if (ipu_rot_mode_is_irt(rot_mode)) {
1993 out->pix.height = max_t(__u32, out->pix.height,
1994 in->pix.width / 4);
1995 out->pix.width = max_t(__u32, out->pix.width,
1996 in->pix.height / 4);
1997 } else {
1998 out->pix.width = max_t(__u32, out->pix.width,
1999 in->pix.width / 4);
2000 out->pix.height = max_t(__u32, out->pix.height,
2001 in->pix.height / 4);
2004 /* align input width/height */
2005 w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt,
2006 rot_mode));
2007 h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt,
2008 rot_mode));
2009 in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W,
2010 w_align_in);
2011 in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H,
2012 h_align_in);
2014 /* align output width/height */
2015 w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt,
2016 rot_mode));
2017 h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt,
2018 rot_mode));
2019 out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W,
2020 w_align_out);
2021 out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H,
2022 h_align_out);
2024 /* set input/output strides and image sizes */
2025 in->pix.bytesperline = infmt->planar ?
2026 clamp_align(in->pix.width, 2 << w_align_in, MAX_W,
2027 w_align_in) :
2028 clamp_align((in->pix.width * infmt->bpp) >> 3,
2029 ((2 << w_align_in) * infmt->bpp) >> 3,
2030 (MAX_W * infmt->bpp) >> 3,
2031 w_align_in);
2032 in->pix.sizeimage = infmt->planar ?
2033 (in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
2034 in->pix.height * in->pix.bytesperline;
2035 out->pix.bytesperline = outfmt->planar ? out->pix.width :
2036 (out->pix.width * outfmt->bpp) >> 3;
2037 out->pix.sizeimage = outfmt->planar ?
2038 (out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
2039 out->pix.height * out->pix.bytesperline;
2041 EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
2044 * this is used by ipu_image_convert_prepare() to verify set input and
2045 * output images are valid before starting the conversion. Clients can
2046 * also call it before calling ipu_image_convert_prepare().
2048 int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
2049 enum ipu_rotate_mode rot_mode)
2051 struct ipu_image testin, testout;
2053 testin = *in;
2054 testout = *out;
2056 ipu_image_convert_adjust(&testin, &testout, rot_mode);
2058 if (testin.pix.width != in->pix.width ||
2059 testin.pix.height != in->pix.height ||
2060 testout.pix.width != out->pix.width ||
2061 testout.pix.height != out->pix.height)
2062 return -EINVAL;
2064 return 0;
2066 EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
2069 * Call ipu_image_convert_prepare() to prepare for the conversion of
2070 * given images and rotation mode. Returns a new conversion context.
2072 struct ipu_image_convert_ctx *
2073 ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2074 struct ipu_image *in, struct ipu_image *out,
2075 enum ipu_rotate_mode rot_mode,
2076 ipu_image_convert_cb_t complete,
2077 void *complete_context)
2079 struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
2080 struct ipu_image_convert_image *s_image, *d_image;
2081 struct ipu_image_convert_chan *chan;
2082 struct ipu_image_convert_ctx *ctx;
2083 unsigned long flags;
2084 unsigned int i;
2085 bool get_res;
2086 int ret;
2088 if (!in || !out || !complete ||
2089 (ic_task != IC_TASK_VIEWFINDER &&
2090 ic_task != IC_TASK_POST_PROCESSOR))
2091 return ERR_PTR(-EINVAL);
2093 /* verify the in/out images before continuing */
2094 ret = ipu_image_convert_verify(in, out, rot_mode);
2095 if (ret) {
2096 dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
2097 __func__);
2098 return ERR_PTR(ret);
2101 chan = &priv->chan[ic_task];
2103 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2104 if (!ctx)
2105 return ERR_PTR(-ENOMEM);
2107 dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
2108 chan->ic_task, ctx);
2110 ctx->chan = chan;
2111 init_completion(&ctx->aborted);
2113 ctx->rot_mode = rot_mode;
2115 /* Sets ctx->in.num_rows/cols as well */
2116 ret = calc_image_resize_coefficients(ctx, in, out);
2117 if (ret)
2118 goto out_free;
2120 s_image = &ctx->in;
2121 d_image = &ctx->out;
2123 /* set tiling and rotation */
2124 if (ipu_rot_mode_is_irt(rot_mode)) {
2125 d_image->num_rows = s_image->num_cols;
2126 d_image->num_cols = s_image->num_rows;
2127 } else {
2128 d_image->num_rows = s_image->num_rows;
2129 d_image->num_cols = s_image->num_cols;
2132 ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2134 ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2135 if (ret)
2136 goto out_free;
2137 ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2138 if (ret)
2139 goto out_free;
2141 calc_out_tile_map(ctx);
2143 find_seams(ctx, s_image, d_image);
2145 ret = calc_tile_dimensions(ctx, s_image);
2146 if (ret)
2147 goto out_free;
2149 ret = calc_tile_offsets(ctx, s_image);
2150 if (ret)
2151 goto out_free;
2153 calc_tile_dimensions(ctx, d_image);
2154 ret = calc_tile_offsets(ctx, d_image);
2155 if (ret)
2156 goto out_free;
2158 calc_tile_resize_coefficients(ctx);
2160 ret = ipu_ic_calc_csc(&ctx->csc,
2161 s_image->base.pix.ycbcr_enc,
2162 s_image->base.pix.quantization,
2163 ipu_pixelformat_to_colorspace(s_image->fmt->fourcc),
2164 d_image->base.pix.ycbcr_enc,
2165 d_image->base.pix.quantization,
2166 ipu_pixelformat_to_colorspace(d_image->fmt->fourcc));
2167 if (ret)
2168 goto out_free;
2170 dump_format(ctx, s_image);
2171 dump_format(ctx, d_image);
2173 ctx->complete = complete;
2174 ctx->complete_context = complete_context;
2177 * Can we use double-buffering for this operation? If there is
2178 * only one tile (the whole image can be converted in a single
2179 * operation) there's no point in using double-buffering. Also,
2180 * the IPU's IDMAC channels allow only a single U and V plane
2181 * offset shared between both buffers, but these offsets change
2182 * for every tile, and therefore would have to be updated for
2183 * each buffer which is not possible. So double-buffering is
2184 * impossible when either the source or destination images are
2185 * a planar format (YUV420, YUV422P, etc.). Further, differently
2186 * sized tiles or different resizing coefficients per tile
2187 * prevent double-buffering as well.
2189 ctx->double_buffering = (ctx->num_tiles > 1 &&
2190 !s_image->fmt->planar &&
2191 !d_image->fmt->planar);
2192 for (i = 1; i < ctx->num_tiles; i++) {
2193 if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
2194 ctx->in.tile[i].height != ctx->in.tile[0].height ||
2195 ctx->out.tile[i].width != ctx->out.tile[0].width ||
2196 ctx->out.tile[i].height != ctx->out.tile[0].height) {
2197 ctx->double_buffering = false;
2198 break;
2201 for (i = 1; i < ctx->in.num_cols; i++) {
2202 if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
2203 ctx->double_buffering = false;
2204 break;
2207 for (i = 1; i < ctx->in.num_rows; i++) {
2208 if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
2209 ctx->double_buffering = false;
2210 break;
2214 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2215 unsigned long intermediate_size = d_image->tile[0].size;
2217 for (i = 1; i < ctx->num_tiles; i++) {
2218 if (d_image->tile[i].size > intermediate_size)
2219 intermediate_size = d_image->tile[i].size;
2222 ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2223 intermediate_size);
2224 if (ret)
2225 goto out_free;
2226 if (ctx->double_buffering) {
2227 ret = alloc_dma_buf(priv,
2228 &ctx->rot_intermediate[1],
2229 intermediate_size);
2230 if (ret)
2231 goto out_free_dmabuf0;
2235 spin_lock_irqsave(&chan->irqlock, flags);
2237 get_res = list_empty(&chan->ctx_list);
2239 list_add_tail(&ctx->list, &chan->ctx_list);
2241 spin_unlock_irqrestore(&chan->irqlock, flags);
2243 if (get_res) {
2244 ret = get_ipu_resources(chan);
2245 if (ret)
2246 goto out_free_dmabuf1;
2249 return ctx;
2251 out_free_dmabuf1:
2252 free_dma_buf(priv, &ctx->rot_intermediate[1]);
2253 spin_lock_irqsave(&chan->irqlock, flags);
2254 list_del(&ctx->list);
2255 spin_unlock_irqrestore(&chan->irqlock, flags);
2256 out_free_dmabuf0:
2257 free_dma_buf(priv, &ctx->rot_intermediate[0]);
2258 out_free:
2259 kfree(ctx);
2260 return ERR_PTR(ret);
2262 EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2265 * Carry out a single image conversion run. Only the physaddr's of the input
2266 * and output image buffers are needed. The conversion context must have
2267 * been created previously with ipu_image_convert_prepare().
2269 int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2271 struct ipu_image_convert_chan *chan;
2272 struct ipu_image_convert_priv *priv;
2273 struct ipu_image_convert_ctx *ctx;
2274 unsigned long flags;
2275 int ret = 0;
2277 if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2278 return -EINVAL;
2280 ctx = run->ctx;
2281 chan = ctx->chan;
2282 priv = chan->priv;
2284 dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2285 chan->ic_task, ctx, run);
2287 INIT_LIST_HEAD(&run->list);
2289 spin_lock_irqsave(&chan->irqlock, flags);
2291 if (ctx->aborting) {
2292 ret = -EIO;
2293 goto unlock;
2296 list_add_tail(&run->list, &chan->pending_q);
2298 if (!chan->current_run) {
2299 ret = do_run(run);
2300 if (ret)
2301 chan->current_run = NULL;
2303 unlock:
2304 spin_unlock_irqrestore(&chan->irqlock, flags);
2305 return ret;
2307 EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2309 /* Abort any active or pending conversions for this context */
2310 static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2312 struct ipu_image_convert_chan *chan = ctx->chan;
2313 struct ipu_image_convert_priv *priv = chan->priv;
2314 struct ipu_image_convert_run *run, *active_run, *tmp;
2315 unsigned long flags;
2316 int run_count, ret;
2318 spin_lock_irqsave(&chan->irqlock, flags);
2320 /* move all remaining pending runs in this context to done_q */
2321 list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2322 if (run->ctx != ctx)
2323 continue;
2324 run->status = -EIO;
2325 list_move_tail(&run->list, &chan->done_q);
2328 run_count = get_run_count(ctx, &chan->done_q);
2329 active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2330 chan->current_run : NULL;
2332 if (active_run)
2333 reinit_completion(&ctx->aborted);
2335 ctx->aborting = true;
2337 spin_unlock_irqrestore(&chan->irqlock, flags);
2339 if (!run_count && !active_run) {
2340 dev_dbg(priv->ipu->dev,
2341 "%s: task %u: no abort needed for ctx %p\n",
2342 __func__, chan->ic_task, ctx);
2343 return;
2346 if (!active_run) {
2347 empty_done_q(chan);
2348 return;
2351 dev_dbg(priv->ipu->dev,
2352 "%s: task %u: wait for completion: %d runs\n",
2353 __func__, chan->ic_task, run_count);
2355 ret = wait_for_completion_timeout(&ctx->aborted,
2356 msecs_to_jiffies(10000));
2357 if (ret == 0) {
2358 dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2359 force_abort(ctx);
2363 void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2365 __ipu_image_convert_abort(ctx);
2366 ctx->aborting = false;
2368 EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2370 /* Unprepare image conversion context */
2371 void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2373 struct ipu_image_convert_chan *chan = ctx->chan;
2374 struct ipu_image_convert_priv *priv = chan->priv;
2375 unsigned long flags;
2376 bool put_res;
2378 /* make sure no runs are hanging around */
2379 __ipu_image_convert_abort(ctx);
2381 dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2382 chan->ic_task, ctx);
2384 spin_lock_irqsave(&chan->irqlock, flags);
2386 list_del(&ctx->list);
2388 put_res = list_empty(&chan->ctx_list);
2390 spin_unlock_irqrestore(&chan->irqlock, flags);
2392 if (put_res)
2393 release_ipu_resources(chan);
2395 free_dma_buf(priv, &ctx->rot_intermediate[1]);
2396 free_dma_buf(priv, &ctx->rot_intermediate[0]);
2398 kfree(ctx);
2400 EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2403 * "Canned" asynchronous single image conversion. Allocates and returns
2404 * a new conversion run. On successful return the caller must free the
2405 * run and call ipu_image_convert_unprepare() after conversion completes.
2407 struct ipu_image_convert_run *
2408 ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2409 struct ipu_image *in, struct ipu_image *out,
2410 enum ipu_rotate_mode rot_mode,
2411 ipu_image_convert_cb_t complete,
2412 void *complete_context)
2414 struct ipu_image_convert_ctx *ctx;
2415 struct ipu_image_convert_run *run;
2416 int ret;
2418 ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2419 complete, complete_context);
2420 if (IS_ERR(ctx))
2421 return ERR_CAST(ctx);
2423 run = kzalloc(sizeof(*run), GFP_KERNEL);
2424 if (!run) {
2425 ipu_image_convert_unprepare(ctx);
2426 return ERR_PTR(-ENOMEM);
2429 run->ctx = ctx;
2430 run->in_phys = in->phys0;
2431 run->out_phys = out->phys0;
2433 ret = ipu_image_convert_queue(run);
2434 if (ret) {
2435 ipu_image_convert_unprepare(ctx);
2436 kfree(run);
2437 return ERR_PTR(ret);
2440 return run;
2442 EXPORT_SYMBOL_GPL(ipu_image_convert);
2444 /* "Canned" synchronous single image conversion */
2445 static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2446 void *data)
2448 struct completion *comp = data;
2450 complete(comp);
2453 int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2454 struct ipu_image *in, struct ipu_image *out,
2455 enum ipu_rotate_mode rot_mode)
2457 struct ipu_image_convert_run *run;
2458 struct completion comp;
2459 int ret;
2461 init_completion(&comp);
2463 run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2464 image_convert_sync_complete, &comp);
2465 if (IS_ERR(run))
2466 return PTR_ERR(run);
2468 ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2469 ret = (ret == 0) ? -ETIMEDOUT : 0;
2471 ipu_image_convert_unprepare(run->ctx);
2472 kfree(run);
2474 return ret;
2476 EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2478 int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2480 struct ipu_image_convert_priv *priv;
2481 int i;
2483 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2484 if (!priv)
2485 return -ENOMEM;
2487 ipu->image_convert_priv = priv;
2488 priv->ipu = ipu;
2490 for (i = 0; i < IC_NUM_TASKS; i++) {
2491 struct ipu_image_convert_chan *chan = &priv->chan[i];
2493 chan->ic_task = i;
2494 chan->priv = priv;
2495 chan->dma_ch = &image_convert_dma_chan[i];
2496 chan->in_eof_irq = -1;
2497 chan->rot_in_eof_irq = -1;
2498 chan->out_eof_irq = -1;
2499 chan->rot_out_eof_irq = -1;
2501 spin_lock_init(&chan->irqlock);
2502 INIT_LIST_HEAD(&chan->ctx_list);
2503 INIT_LIST_HEAD(&chan->pending_q);
2504 INIT_LIST_HEAD(&chan->done_q);
2507 return 0;
2510 void ipu_image_convert_exit(struct ipu_soc *ipu)