WIP FPC-III support
[linux/fpc-iii.git] / drivers / i2c / busses / i2c-octeon-core.c
blobd9607905dc2f1dd0db15c6ca457ebc445921d829
1 /*
2 * (C) Copyright 2009-2010
3 * Nokia Siemens Networks, michael.lawnick.ext@nsn.com
5 * Portions Copyright (C) 2010 - 2016 Cavium, Inc.
7 * This file contains the shared part of the driver for the i2c adapter in
8 * Cavium Networks' OCTEON processors and ThunderX SOCs.
10 * This file is licensed under the terms of the GNU General Public
11 * License version 2. This program is licensed "as is" without any
12 * warranty of any kind, whether express or implied.
15 #include <linux/delay.h>
16 #include <linux/i2c.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
21 #include "i2c-octeon-core.h"
23 /* interrupt service routine */
24 irqreturn_t octeon_i2c_isr(int irq, void *dev_id)
26 struct octeon_i2c *i2c = dev_id;
28 i2c->int_disable(i2c);
29 wake_up(&i2c->queue);
31 return IRQ_HANDLED;
34 static bool octeon_i2c_test_iflg(struct octeon_i2c *i2c)
36 return (octeon_i2c_ctl_read(i2c) & TWSI_CTL_IFLG);
39 /**
40 * octeon_i2c_wait - wait for the IFLG to be set
41 * @i2c: The struct octeon_i2c
43 * Returns 0 on success, otherwise a negative errno.
45 static int octeon_i2c_wait(struct octeon_i2c *i2c)
47 long time_left;
50 * Some chip revisions don't assert the irq in the interrupt
51 * controller. So we must poll for the IFLG change.
53 if (i2c->broken_irq_mode) {
54 u64 end = get_jiffies_64() + i2c->adap.timeout;
56 while (!octeon_i2c_test_iflg(i2c) &&
57 time_before64(get_jiffies_64(), end))
58 usleep_range(I2C_OCTEON_EVENT_WAIT / 2, I2C_OCTEON_EVENT_WAIT);
60 return octeon_i2c_test_iflg(i2c) ? 0 : -ETIMEDOUT;
63 i2c->int_enable(i2c);
64 time_left = wait_event_timeout(i2c->queue, octeon_i2c_test_iflg(i2c),
65 i2c->adap.timeout);
66 i2c->int_disable(i2c);
68 if (i2c->broken_irq_check && !time_left &&
69 octeon_i2c_test_iflg(i2c)) {
70 dev_err(i2c->dev, "broken irq connection detected, switching to polling mode.\n");
71 i2c->broken_irq_mode = true;
72 return 0;
75 if (!time_left)
76 return -ETIMEDOUT;
78 return 0;
81 static bool octeon_i2c_hlc_test_valid(struct octeon_i2c *i2c)
83 return (__raw_readq(i2c->twsi_base + SW_TWSI(i2c)) & SW_TWSI_V) == 0;
86 static void octeon_i2c_hlc_int_clear(struct octeon_i2c *i2c)
88 /* clear ST/TS events, listen for neither */
89 octeon_i2c_write_int(i2c, TWSI_INT_ST_INT | TWSI_INT_TS_INT);
93 * Cleanup low-level state & enable high-level controller.
95 static void octeon_i2c_hlc_enable(struct octeon_i2c *i2c)
97 int try = 0;
98 u64 val;
100 if (i2c->hlc_enabled)
101 return;
102 i2c->hlc_enabled = true;
104 while (1) {
105 val = octeon_i2c_ctl_read(i2c);
106 if (!(val & (TWSI_CTL_STA | TWSI_CTL_STP)))
107 break;
109 /* clear IFLG event */
110 if (val & TWSI_CTL_IFLG)
111 octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB);
113 if (try++ > 100) {
114 pr_err("%s: giving up\n", __func__);
115 break;
118 /* spin until any start/stop has finished */
119 udelay(10);
121 octeon_i2c_ctl_write(i2c, TWSI_CTL_CE | TWSI_CTL_AAK | TWSI_CTL_ENAB);
124 static void octeon_i2c_hlc_disable(struct octeon_i2c *i2c)
126 if (!i2c->hlc_enabled)
127 return;
129 i2c->hlc_enabled = false;
130 octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB);
134 * octeon_i2c_hlc_wait - wait for an HLC operation to complete
135 * @i2c: The struct octeon_i2c
137 * Returns 0 on success, otherwise -ETIMEDOUT.
139 static int octeon_i2c_hlc_wait(struct octeon_i2c *i2c)
141 int time_left;
144 * Some cn38xx boards don't assert the irq in the interrupt
145 * controller. So we must poll for the valid bit change.
147 if (i2c->broken_irq_mode) {
148 u64 end = get_jiffies_64() + i2c->adap.timeout;
150 while (!octeon_i2c_hlc_test_valid(i2c) &&
151 time_before64(get_jiffies_64(), end))
152 usleep_range(I2C_OCTEON_EVENT_WAIT / 2, I2C_OCTEON_EVENT_WAIT);
154 return octeon_i2c_hlc_test_valid(i2c) ? 0 : -ETIMEDOUT;
157 i2c->hlc_int_enable(i2c);
158 time_left = wait_event_timeout(i2c->queue,
159 octeon_i2c_hlc_test_valid(i2c),
160 i2c->adap.timeout);
161 i2c->hlc_int_disable(i2c);
162 if (!time_left)
163 octeon_i2c_hlc_int_clear(i2c);
165 if (i2c->broken_irq_check && !time_left &&
166 octeon_i2c_hlc_test_valid(i2c)) {
167 dev_err(i2c->dev, "broken irq connection detected, switching to polling mode.\n");
168 i2c->broken_irq_mode = true;
169 return 0;
172 if (!time_left)
173 return -ETIMEDOUT;
174 return 0;
177 static int octeon_i2c_check_status(struct octeon_i2c *i2c, int final_read)
179 u8 stat;
182 * This is ugly... in HLC mode the status is not in the status register
183 * but in the lower 8 bits of SW_TWSI.
185 if (i2c->hlc_enabled)
186 stat = __raw_readq(i2c->twsi_base + SW_TWSI(i2c));
187 else
188 stat = octeon_i2c_stat_read(i2c);
190 switch (stat) {
191 /* Everything is fine */
192 case STAT_IDLE:
193 case STAT_AD2W_ACK:
194 case STAT_RXADDR_ACK:
195 case STAT_TXADDR_ACK:
196 case STAT_TXDATA_ACK:
197 return 0;
199 /* ACK allowed on pre-terminal bytes only */
200 case STAT_RXDATA_ACK:
201 if (!final_read)
202 return 0;
203 return -EIO;
205 /* NAK allowed on terminal byte only */
206 case STAT_RXDATA_NAK:
207 if (final_read)
208 return 0;
209 return -EIO;
211 /* Arbitration lost */
212 case STAT_LOST_ARB_38:
213 case STAT_LOST_ARB_68:
214 case STAT_LOST_ARB_78:
215 case STAT_LOST_ARB_B0:
216 return -EAGAIN;
218 /* Being addressed as slave, should back off & listen */
219 case STAT_SLAVE_60:
220 case STAT_SLAVE_70:
221 case STAT_GENDATA_ACK:
222 case STAT_GENDATA_NAK:
223 return -EOPNOTSUPP;
225 /* Core busy as slave */
226 case STAT_SLAVE_80:
227 case STAT_SLAVE_88:
228 case STAT_SLAVE_A0:
229 case STAT_SLAVE_A8:
230 case STAT_SLAVE_LOST:
231 case STAT_SLAVE_NAK:
232 case STAT_SLAVE_ACK:
233 return -EOPNOTSUPP;
235 case STAT_TXDATA_NAK:
236 case STAT_BUS_ERROR:
237 return -EIO;
238 case STAT_TXADDR_NAK:
239 case STAT_RXADDR_NAK:
240 case STAT_AD2W_NAK:
241 return -ENXIO;
242 default:
243 dev_err(i2c->dev, "unhandled state: %d\n", stat);
244 return -EIO;
248 static int octeon_i2c_recovery(struct octeon_i2c *i2c)
250 int ret;
252 ret = i2c_recover_bus(&i2c->adap);
253 if (ret)
254 /* recover failed, try hardware re-init */
255 ret = octeon_i2c_init_lowlevel(i2c);
256 return ret;
260 * octeon_i2c_start - send START to the bus
261 * @i2c: The struct octeon_i2c
263 * Returns 0 on success, otherwise a negative errno.
265 static int octeon_i2c_start(struct octeon_i2c *i2c)
267 int ret;
268 u8 stat;
270 octeon_i2c_hlc_disable(i2c);
272 octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB | TWSI_CTL_STA);
273 ret = octeon_i2c_wait(i2c);
274 if (ret)
275 goto error;
277 stat = octeon_i2c_stat_read(i2c);
278 if (stat == STAT_START || stat == STAT_REP_START)
279 /* START successful, bail out */
280 return 0;
282 error:
283 /* START failed, try to recover */
284 ret = octeon_i2c_recovery(i2c);
285 return (ret) ? ret : -EAGAIN;
288 /* send STOP to the bus */
289 static void octeon_i2c_stop(struct octeon_i2c *i2c)
291 octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB | TWSI_CTL_STP);
295 * octeon_i2c_read - receive data from the bus via low-level controller
296 * @i2c: The struct octeon_i2c
297 * @target: Target address
298 * @data: Pointer to the location to store the data
299 * @rlength: Length of the data
300 * @recv_len: flag for length byte
302 * The address is sent over the bus, then the data is read.
304 * Returns 0 on success, otherwise a negative errno.
306 static int octeon_i2c_read(struct octeon_i2c *i2c, int target,
307 u8 *data, u16 *rlength, bool recv_len)
309 int i, result, length = *rlength;
310 bool final_read = false;
312 octeon_i2c_data_write(i2c, (target << 1) | 1);
313 octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB);
315 result = octeon_i2c_wait(i2c);
316 if (result)
317 return result;
319 /* address OK ? */
320 result = octeon_i2c_check_status(i2c, false);
321 if (result)
322 return result;
324 for (i = 0; i < length; i++) {
326 * For the last byte to receive TWSI_CTL_AAK must not be set.
328 * A special case is I2C_M_RECV_LEN where we don't know the
329 * additional length yet. If recv_len is set we assume we're
330 * not reading the final byte and therefore need to set
331 * TWSI_CTL_AAK.
333 if ((i + 1 == length) && !(recv_len && i == 0))
334 final_read = true;
336 /* clear iflg to allow next event */
337 if (final_read)
338 octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB);
339 else
340 octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB | TWSI_CTL_AAK);
342 result = octeon_i2c_wait(i2c);
343 if (result)
344 return result;
346 data[i] = octeon_i2c_data_read(i2c, &result);
347 if (result)
348 return result;
349 if (recv_len && i == 0) {
350 if (data[i] > I2C_SMBUS_BLOCK_MAX + 1)
351 return -EPROTO;
352 length += data[i];
355 result = octeon_i2c_check_status(i2c, final_read);
356 if (result)
357 return result;
359 *rlength = length;
360 return 0;
364 * octeon_i2c_write - send data to the bus via low-level controller
365 * @i2c: The struct octeon_i2c
366 * @target: Target address
367 * @data: Pointer to the data to be sent
368 * @length: Length of the data
370 * The address is sent over the bus, then the data.
372 * Returns 0 on success, otherwise a negative errno.
374 static int octeon_i2c_write(struct octeon_i2c *i2c, int target,
375 const u8 *data, int length)
377 int i, result;
379 octeon_i2c_data_write(i2c, target << 1);
380 octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB);
382 result = octeon_i2c_wait(i2c);
383 if (result)
384 return result;
386 for (i = 0; i < length; i++) {
387 result = octeon_i2c_check_status(i2c, false);
388 if (result)
389 return result;
391 octeon_i2c_data_write(i2c, data[i]);
392 octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB);
394 result = octeon_i2c_wait(i2c);
395 if (result)
396 return result;
399 return 0;
402 /* high-level-controller pure read of up to 8 bytes */
403 static int octeon_i2c_hlc_read(struct octeon_i2c *i2c, struct i2c_msg *msgs)
405 int i, j, ret = 0;
406 u64 cmd;
408 octeon_i2c_hlc_enable(i2c);
409 octeon_i2c_hlc_int_clear(i2c);
411 cmd = SW_TWSI_V | SW_TWSI_R | SW_TWSI_SOVR;
412 /* SIZE */
413 cmd |= (u64)(msgs[0].len - 1) << SW_TWSI_SIZE_SHIFT;
414 /* A */
415 cmd |= (u64)(msgs[0].addr & 0x7full) << SW_TWSI_ADDR_SHIFT;
417 if (msgs[0].flags & I2C_M_TEN)
418 cmd |= SW_TWSI_OP_10;
419 else
420 cmd |= SW_TWSI_OP_7;
422 octeon_i2c_writeq_flush(cmd, i2c->twsi_base + SW_TWSI(i2c));
423 ret = octeon_i2c_hlc_wait(i2c);
424 if (ret)
425 goto err;
427 cmd = __raw_readq(i2c->twsi_base + SW_TWSI(i2c));
428 if ((cmd & SW_TWSI_R) == 0)
429 return octeon_i2c_check_status(i2c, false);
431 for (i = 0, j = msgs[0].len - 1; i < msgs[0].len && i < 4; i++, j--)
432 msgs[0].buf[j] = (cmd >> (8 * i)) & 0xff;
434 if (msgs[0].len > 4) {
435 cmd = __raw_readq(i2c->twsi_base + SW_TWSI_EXT(i2c));
436 for (i = 0; i < msgs[0].len - 4 && i < 4; i++, j--)
437 msgs[0].buf[j] = (cmd >> (8 * i)) & 0xff;
440 err:
441 return ret;
444 /* high-level-controller pure write of up to 8 bytes */
445 static int octeon_i2c_hlc_write(struct octeon_i2c *i2c, struct i2c_msg *msgs)
447 int i, j, ret = 0;
448 u64 cmd;
450 octeon_i2c_hlc_enable(i2c);
451 octeon_i2c_hlc_int_clear(i2c);
453 cmd = SW_TWSI_V | SW_TWSI_SOVR;
454 /* SIZE */
455 cmd |= (u64)(msgs[0].len - 1) << SW_TWSI_SIZE_SHIFT;
456 /* A */
457 cmd |= (u64)(msgs[0].addr & 0x7full) << SW_TWSI_ADDR_SHIFT;
459 if (msgs[0].flags & I2C_M_TEN)
460 cmd |= SW_TWSI_OP_10;
461 else
462 cmd |= SW_TWSI_OP_7;
464 for (i = 0, j = msgs[0].len - 1; i < msgs[0].len && i < 4; i++, j--)
465 cmd |= (u64)msgs[0].buf[j] << (8 * i);
467 if (msgs[0].len > 4) {
468 u64 ext = 0;
470 for (i = 0; i < msgs[0].len - 4 && i < 4; i++, j--)
471 ext |= (u64)msgs[0].buf[j] << (8 * i);
472 octeon_i2c_writeq_flush(ext, i2c->twsi_base + SW_TWSI_EXT(i2c));
475 octeon_i2c_writeq_flush(cmd, i2c->twsi_base + SW_TWSI(i2c));
476 ret = octeon_i2c_hlc_wait(i2c);
477 if (ret)
478 goto err;
480 cmd = __raw_readq(i2c->twsi_base + SW_TWSI(i2c));
481 if ((cmd & SW_TWSI_R) == 0)
482 return octeon_i2c_check_status(i2c, false);
484 err:
485 return ret;
488 /* high-level-controller composite write+read, msg0=addr, msg1=data */
489 static int octeon_i2c_hlc_comp_read(struct octeon_i2c *i2c, struct i2c_msg *msgs)
491 int i, j, ret = 0;
492 u64 cmd;
494 octeon_i2c_hlc_enable(i2c);
496 cmd = SW_TWSI_V | SW_TWSI_R | SW_TWSI_SOVR;
497 /* SIZE */
498 cmd |= (u64)(msgs[1].len - 1) << SW_TWSI_SIZE_SHIFT;
499 /* A */
500 cmd |= (u64)(msgs[0].addr & 0x7full) << SW_TWSI_ADDR_SHIFT;
502 if (msgs[0].flags & I2C_M_TEN)
503 cmd |= SW_TWSI_OP_10_IA;
504 else
505 cmd |= SW_TWSI_OP_7_IA;
507 if (msgs[0].len == 2) {
508 u64 ext = 0;
510 cmd |= SW_TWSI_EIA;
511 ext = (u64)msgs[0].buf[0] << SW_TWSI_IA_SHIFT;
512 cmd |= (u64)msgs[0].buf[1] << SW_TWSI_IA_SHIFT;
513 octeon_i2c_writeq_flush(ext, i2c->twsi_base + SW_TWSI_EXT(i2c));
514 } else {
515 cmd |= (u64)msgs[0].buf[0] << SW_TWSI_IA_SHIFT;
518 octeon_i2c_hlc_int_clear(i2c);
519 octeon_i2c_writeq_flush(cmd, i2c->twsi_base + SW_TWSI(i2c));
521 ret = octeon_i2c_hlc_wait(i2c);
522 if (ret)
523 goto err;
525 cmd = __raw_readq(i2c->twsi_base + SW_TWSI(i2c));
526 if ((cmd & SW_TWSI_R) == 0)
527 return octeon_i2c_check_status(i2c, false);
529 for (i = 0, j = msgs[1].len - 1; i < msgs[1].len && i < 4; i++, j--)
530 msgs[1].buf[j] = (cmd >> (8 * i)) & 0xff;
532 if (msgs[1].len > 4) {
533 cmd = __raw_readq(i2c->twsi_base + SW_TWSI_EXT(i2c));
534 for (i = 0; i < msgs[1].len - 4 && i < 4; i++, j--)
535 msgs[1].buf[j] = (cmd >> (8 * i)) & 0xff;
538 err:
539 return ret;
542 /* high-level-controller composite write+write, m[0]len<=2, m[1]len<=8 */
543 static int octeon_i2c_hlc_comp_write(struct octeon_i2c *i2c, struct i2c_msg *msgs)
545 bool set_ext = false;
546 int i, j, ret = 0;
547 u64 cmd, ext = 0;
549 octeon_i2c_hlc_enable(i2c);
551 cmd = SW_TWSI_V | SW_TWSI_SOVR;
552 /* SIZE */
553 cmd |= (u64)(msgs[1].len - 1) << SW_TWSI_SIZE_SHIFT;
554 /* A */
555 cmd |= (u64)(msgs[0].addr & 0x7full) << SW_TWSI_ADDR_SHIFT;
557 if (msgs[0].flags & I2C_M_TEN)
558 cmd |= SW_TWSI_OP_10_IA;
559 else
560 cmd |= SW_TWSI_OP_7_IA;
562 if (msgs[0].len == 2) {
563 cmd |= SW_TWSI_EIA;
564 ext |= (u64)msgs[0].buf[0] << SW_TWSI_IA_SHIFT;
565 set_ext = true;
566 cmd |= (u64)msgs[0].buf[1] << SW_TWSI_IA_SHIFT;
567 } else {
568 cmd |= (u64)msgs[0].buf[0] << SW_TWSI_IA_SHIFT;
571 for (i = 0, j = msgs[1].len - 1; i < msgs[1].len && i < 4; i++, j--)
572 cmd |= (u64)msgs[1].buf[j] << (8 * i);
574 if (msgs[1].len > 4) {
575 for (i = 0; i < msgs[1].len - 4 && i < 4; i++, j--)
576 ext |= (u64)msgs[1].buf[j] << (8 * i);
577 set_ext = true;
579 if (set_ext)
580 octeon_i2c_writeq_flush(ext, i2c->twsi_base + SW_TWSI_EXT(i2c));
582 octeon_i2c_hlc_int_clear(i2c);
583 octeon_i2c_writeq_flush(cmd, i2c->twsi_base + SW_TWSI(i2c));
585 ret = octeon_i2c_hlc_wait(i2c);
586 if (ret)
587 goto err;
589 cmd = __raw_readq(i2c->twsi_base + SW_TWSI(i2c));
590 if ((cmd & SW_TWSI_R) == 0)
591 return octeon_i2c_check_status(i2c, false);
593 err:
594 return ret;
598 * octeon_i2c_xfer - The driver's master_xfer function
599 * @adap: Pointer to the i2c_adapter structure
600 * @msgs: Pointer to the messages to be processed
601 * @num: Length of the MSGS array
603 * Returns the number of messages processed, or a negative errno on failure.
605 int octeon_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
607 struct octeon_i2c *i2c = i2c_get_adapdata(adap);
608 int i, ret = 0;
610 if (num == 1) {
611 if (msgs[0].len > 0 && msgs[0].len <= 8) {
612 if (msgs[0].flags & I2C_M_RD)
613 ret = octeon_i2c_hlc_read(i2c, msgs);
614 else
615 ret = octeon_i2c_hlc_write(i2c, msgs);
616 goto out;
618 } else if (num == 2) {
619 if ((msgs[0].flags & I2C_M_RD) == 0 &&
620 (msgs[1].flags & I2C_M_RECV_LEN) == 0 &&
621 msgs[0].len > 0 && msgs[0].len <= 2 &&
622 msgs[1].len > 0 && msgs[1].len <= 8 &&
623 msgs[0].addr == msgs[1].addr) {
624 if (msgs[1].flags & I2C_M_RD)
625 ret = octeon_i2c_hlc_comp_read(i2c, msgs);
626 else
627 ret = octeon_i2c_hlc_comp_write(i2c, msgs);
628 goto out;
632 for (i = 0; ret == 0 && i < num; i++) {
633 struct i2c_msg *pmsg = &msgs[i];
635 /* zero-length messages are not supported */
636 if (!pmsg->len) {
637 ret = -EOPNOTSUPP;
638 break;
641 ret = octeon_i2c_start(i2c);
642 if (ret)
643 return ret;
645 if (pmsg->flags & I2C_M_RD)
646 ret = octeon_i2c_read(i2c, pmsg->addr, pmsg->buf,
647 &pmsg->len, pmsg->flags & I2C_M_RECV_LEN);
648 else
649 ret = octeon_i2c_write(i2c, pmsg->addr, pmsg->buf,
650 pmsg->len);
652 octeon_i2c_stop(i2c);
653 out:
654 return (ret != 0) ? ret : num;
657 /* calculate and set clock divisors */
658 void octeon_i2c_set_clock(struct octeon_i2c *i2c)
660 int tclk, thp_base, inc, thp_idx, mdiv_idx, ndiv_idx, foscl, diff;
661 int thp = 0x18, mdiv = 2, ndiv = 0, delta_hz = 1000000;
663 for (ndiv_idx = 0; ndiv_idx < 8 && delta_hz != 0; ndiv_idx++) {
665 * An mdiv value of less than 2 seems to not work well
666 * with ds1337 RTCs, so we constrain it to larger values.
668 for (mdiv_idx = 15; mdiv_idx >= 2 && delta_hz != 0; mdiv_idx--) {
670 * For given ndiv and mdiv values check the
671 * two closest thp values.
673 tclk = i2c->twsi_freq * (mdiv_idx + 1) * 10;
674 tclk *= (1 << ndiv_idx);
675 thp_base = (i2c->sys_freq / (tclk * 2)) - 1;
677 for (inc = 0; inc <= 1; inc++) {
678 thp_idx = thp_base + inc;
679 if (thp_idx < 5 || thp_idx > 0xff)
680 continue;
682 foscl = i2c->sys_freq / (2 * (thp_idx + 1));
683 foscl = foscl / (1 << ndiv_idx);
684 foscl = foscl / (mdiv_idx + 1) / 10;
685 diff = abs(foscl - i2c->twsi_freq);
686 if (diff < delta_hz) {
687 delta_hz = diff;
688 thp = thp_idx;
689 mdiv = mdiv_idx;
690 ndiv = ndiv_idx;
695 octeon_i2c_reg_write(i2c, SW_TWSI_OP_TWSI_CLK, thp);
696 octeon_i2c_reg_write(i2c, SW_TWSI_EOP_TWSI_CLKCTL, (mdiv << 3) | ndiv);
699 int octeon_i2c_init_lowlevel(struct octeon_i2c *i2c)
701 u8 status = 0;
702 int tries;
704 /* reset controller */
705 octeon_i2c_reg_write(i2c, SW_TWSI_EOP_TWSI_RST, 0);
707 for (tries = 10; tries && status != STAT_IDLE; tries--) {
708 udelay(1);
709 status = octeon_i2c_stat_read(i2c);
710 if (status == STAT_IDLE)
711 break;
714 if (status != STAT_IDLE) {
715 dev_err(i2c->dev, "%s: TWSI_RST failed! (0x%x)\n",
716 __func__, status);
717 return -EIO;
720 /* toggle twice to force both teardowns */
721 octeon_i2c_hlc_enable(i2c);
722 octeon_i2c_hlc_disable(i2c);
723 return 0;
726 static int octeon_i2c_get_scl(struct i2c_adapter *adap)
728 struct octeon_i2c *i2c = i2c_get_adapdata(adap);
729 u64 state;
731 state = octeon_i2c_read_int(i2c);
732 return state & TWSI_INT_SCL;
735 static void octeon_i2c_set_scl(struct i2c_adapter *adap, int val)
737 struct octeon_i2c *i2c = i2c_get_adapdata(adap);
739 octeon_i2c_write_int(i2c, val ? 0 : TWSI_INT_SCL_OVR);
742 static int octeon_i2c_get_sda(struct i2c_adapter *adap)
744 struct octeon_i2c *i2c = i2c_get_adapdata(adap);
745 u64 state;
747 state = octeon_i2c_read_int(i2c);
748 return state & TWSI_INT_SDA;
751 static void octeon_i2c_prepare_recovery(struct i2c_adapter *adap)
753 struct octeon_i2c *i2c = i2c_get_adapdata(adap);
755 octeon_i2c_hlc_disable(i2c);
756 octeon_i2c_reg_write(i2c, SW_TWSI_EOP_TWSI_RST, 0);
757 /* wait for software reset to settle */
758 udelay(5);
761 * Bring control register to a good state regardless
762 * of HLC state.
764 octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB);
766 octeon_i2c_write_int(i2c, 0);
769 static void octeon_i2c_unprepare_recovery(struct i2c_adapter *adap)
771 struct octeon_i2c *i2c = i2c_get_adapdata(adap);
774 * Generate STOP to finish the unfinished transaction.
775 * Can't generate STOP via the TWSI CTL register
776 * since it could bring the TWSI controller into an inoperable state.
778 octeon_i2c_write_int(i2c, TWSI_INT_SDA_OVR | TWSI_INT_SCL_OVR);
779 udelay(5);
780 octeon_i2c_write_int(i2c, TWSI_INT_SDA_OVR);
781 udelay(5);
782 octeon_i2c_write_int(i2c, 0);
785 struct i2c_bus_recovery_info octeon_i2c_recovery_info = {
786 .recover_bus = i2c_generic_scl_recovery,
787 .get_scl = octeon_i2c_get_scl,
788 .set_scl = octeon_i2c_set_scl,
789 .get_sda = octeon_i2c_get_sda,
790 .prepare_recovery = octeon_i2c_prepare_recovery,
791 .unprepare_recovery = octeon_i2c_unprepare_recovery,