WIP FPC-III support
[linux/fpc-iii.git] / drivers / iio / imu / inv_mpu6050 / inv_mpu_ring.c
blob45c37525c2f1651698d8ddb4f2c81678e7169515
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Invensense, Inc.
4 */
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/err.h>
9 #include <linux/delay.h>
10 #include <linux/sysfs.h>
11 #include <linux/jiffies.h>
12 #include <linux/irq.h>
13 #include <linux/interrupt.h>
14 #include <linux/poll.h>
15 #include <linux/math64.h>
16 #include "inv_mpu_iio.h"
18 /**
19 * inv_mpu6050_update_period() - Update chip internal period estimation
21 * @st: driver state
22 * @timestamp: the interrupt timestamp
23 * @nb: number of data set in the fifo
25 * This function uses interrupt timestamps to estimate the chip period and
26 * to choose the data timestamp to come.
28 static void inv_mpu6050_update_period(struct inv_mpu6050_state *st,
29 s64 timestamp, size_t nb)
31 /* Period boundaries for accepting timestamp */
32 const s64 period_min =
33 (NSEC_PER_MSEC * (100 - INV_MPU6050_TS_PERIOD_JITTER)) / 100;
34 const s64 period_max =
35 (NSEC_PER_MSEC * (100 + INV_MPU6050_TS_PERIOD_JITTER)) / 100;
36 const s32 divider = INV_MPU6050_FREQ_DIVIDER(st);
37 s64 delta, interval;
38 bool use_it_timestamp = false;
40 if (st->it_timestamp == 0) {
41 /* not initialized, forced to use it_timestamp */
42 use_it_timestamp = true;
43 } else if (nb == 1) {
45 * Validate the use of it timestamp by checking if interrupt
46 * has been delayed.
47 * nb > 1 means interrupt was delayed for more than 1 sample,
48 * so it's obviously not good.
49 * Compute the chip period between 2 interrupts for validating.
51 delta = div_s64(timestamp - st->it_timestamp, divider);
52 if (delta > period_min && delta < period_max) {
53 /* update chip period and use it timestamp */
54 st->chip_period = (st->chip_period + delta) / 2;
55 use_it_timestamp = true;
59 if (use_it_timestamp) {
61 * Manage case of multiple samples in the fifo (nb > 1):
62 * compute timestamp corresponding to the first sample using
63 * estimated chip period.
65 interval = (nb - 1) * st->chip_period * divider;
66 st->data_timestamp = timestamp - interval;
69 /* save it timestamp */
70 st->it_timestamp = timestamp;
73 /**
74 * inv_mpu6050_get_timestamp() - Return the current data timestamp
76 * @st: driver state
77 * @return: current data timestamp
79 * This function returns the current data timestamp and prepares for next one.
81 static s64 inv_mpu6050_get_timestamp(struct inv_mpu6050_state *st)
83 s64 ts;
85 /* return current data timestamp and increment */
86 ts = st->data_timestamp;
87 st->data_timestamp += st->chip_period * INV_MPU6050_FREQ_DIVIDER(st);
89 return ts;
92 static int inv_reset_fifo(struct iio_dev *indio_dev)
94 int result;
95 struct inv_mpu6050_state *st = iio_priv(indio_dev);
97 /* disable fifo and reenable it */
98 inv_mpu6050_prepare_fifo(st, false);
99 result = inv_mpu6050_prepare_fifo(st, true);
100 if (result)
101 goto reset_fifo_fail;
103 return 0;
105 reset_fifo_fail:
106 dev_err(regmap_get_device(st->map), "reset fifo failed %d\n", result);
107 result = regmap_write(st->map, st->reg->int_enable,
108 INV_MPU6050_BIT_DATA_RDY_EN);
110 return result;
114 * inv_mpu6050_read_fifo() - Transfer data from hardware FIFO to KFIFO.
116 irqreturn_t inv_mpu6050_read_fifo(int irq, void *p)
118 struct iio_poll_func *pf = p;
119 struct iio_dev *indio_dev = pf->indio_dev;
120 struct inv_mpu6050_state *st = iio_priv(indio_dev);
121 size_t bytes_per_datum;
122 int result;
123 u16 fifo_count;
124 s64 timestamp;
125 int int_status;
126 size_t i, nb;
128 mutex_lock(&st->lock);
130 /* ack interrupt and check status */
131 result = regmap_read(st->map, st->reg->int_status, &int_status);
132 if (result) {
133 dev_err(regmap_get_device(st->map),
134 "failed to ack interrupt\n");
135 goto flush_fifo;
137 if (!(int_status & INV_MPU6050_BIT_RAW_DATA_RDY_INT))
138 goto end_session;
140 if (!(st->chip_config.accl_fifo_enable |
141 st->chip_config.gyro_fifo_enable |
142 st->chip_config.magn_fifo_enable))
143 goto end_session;
144 bytes_per_datum = 0;
145 if (st->chip_config.accl_fifo_enable)
146 bytes_per_datum += INV_MPU6050_BYTES_PER_3AXIS_SENSOR;
148 if (st->chip_config.gyro_fifo_enable)
149 bytes_per_datum += INV_MPU6050_BYTES_PER_3AXIS_SENSOR;
151 if (st->chip_config.temp_fifo_enable)
152 bytes_per_datum += INV_MPU6050_BYTES_PER_TEMP_SENSOR;
154 if (st->chip_config.magn_fifo_enable)
155 bytes_per_datum += INV_MPU9X50_BYTES_MAGN;
158 * read fifo_count register to know how many bytes are inside the FIFO
159 * right now
161 result = regmap_bulk_read(st->map, st->reg->fifo_count_h,
162 st->data, INV_MPU6050_FIFO_COUNT_BYTE);
163 if (result)
164 goto end_session;
165 fifo_count = be16_to_cpup((__be16 *)&st->data[0]);
168 * Handle fifo overflow by resetting fifo.
169 * Reset if there is only 3 data set free remaining to mitigate
170 * possible delay between reading fifo count and fifo data.
172 nb = 3 * bytes_per_datum;
173 if (fifo_count >= st->hw->fifo_size - nb) {
174 dev_warn(regmap_get_device(st->map), "fifo overflow reset\n");
175 goto flush_fifo;
178 /* compute and process all complete datum */
179 nb = fifo_count / bytes_per_datum;
180 inv_mpu6050_update_period(st, pf->timestamp, nb);
181 for (i = 0; i < nb; ++i) {
182 result = regmap_noinc_read(st->map, st->reg->fifo_r_w,
183 st->data, bytes_per_datum);
184 if (result)
185 goto flush_fifo;
186 /* skip first samples if needed */
187 if (st->skip_samples) {
188 st->skip_samples--;
189 continue;
191 timestamp = inv_mpu6050_get_timestamp(st);
192 iio_push_to_buffers_with_timestamp(indio_dev, st->data, timestamp);
195 end_session:
196 mutex_unlock(&st->lock);
197 iio_trigger_notify_done(indio_dev->trig);
199 return IRQ_HANDLED;
201 flush_fifo:
202 /* Flush HW and SW FIFOs. */
203 inv_reset_fifo(indio_dev);
204 mutex_unlock(&st->lock);
205 iio_trigger_notify_done(indio_dev->trig);
207 return IRQ_HANDLED;