WIP FPC-III support
[linux/fpc-iii.git] / drivers / macintosh / windfarm_pm112.c
blobe8377ce0a95af8b1d4f116bf08dc1a3508f60965
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Windfarm PowerMac thermal control.
4 * Control loops for machines with SMU and PPC970MP processors.
6 * Copyright (C) 2005 Paul Mackerras, IBM Corp. <paulus@samba.org>
7 * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp.
8 */
9 #include <linux/types.h>
10 #include <linux/errno.h>
11 #include <linux/kernel.h>
12 #include <linux/device.h>
13 #include <linux/platform_device.h>
14 #include <linux/reboot.h>
15 #include <asm/prom.h>
16 #include <asm/smu.h>
18 #include "windfarm.h"
19 #include "windfarm_pid.h"
21 #define VERSION "0.2"
23 #define DEBUG
24 #undef LOTSA_DEBUG
26 #ifdef DEBUG
27 #define DBG(args...) printk(args)
28 #else
29 #define DBG(args...) do { } while(0)
30 #endif
32 #ifdef LOTSA_DEBUG
33 #define DBG_LOTS(args...) printk(args)
34 #else
35 #define DBG_LOTS(args...) do { } while(0)
36 #endif
38 /* define this to force CPU overtemp to 60 degree, useful for testing
39 * the overtemp code
41 #undef HACKED_OVERTEMP
43 /* We currently only handle 2 chips, 4 cores... */
44 #define NR_CHIPS 2
45 #define NR_CORES 4
46 #define NR_CPU_FANS 3 * NR_CHIPS
48 /* Controls and sensors */
49 static struct wf_sensor *sens_cpu_temp[NR_CORES];
50 static struct wf_sensor *sens_cpu_power[NR_CORES];
51 static struct wf_sensor *hd_temp;
52 static struct wf_sensor *slots_power;
53 static struct wf_sensor *u4_temp;
55 static struct wf_control *cpu_fans[NR_CPU_FANS];
56 static char *cpu_fan_names[NR_CPU_FANS] = {
57 "cpu-rear-fan-0",
58 "cpu-rear-fan-1",
59 "cpu-front-fan-0",
60 "cpu-front-fan-1",
61 "cpu-pump-0",
62 "cpu-pump-1",
64 static struct wf_control *cpufreq_clamp;
66 /* Second pump isn't required (and isn't actually present) */
67 #define CPU_FANS_REQD (NR_CPU_FANS - 2)
68 #define FIRST_PUMP 4
69 #define LAST_PUMP 5
71 /* We keep a temperature history for average calculation of 180s */
72 #define CPU_TEMP_HIST_SIZE 180
74 /* Scale factor for fan speed, *100 */
75 static int cpu_fan_scale[NR_CPU_FANS] = {
76 100,
77 100,
78 97, /* inlet fans run at 97% of exhaust fan */
79 97,
80 100, /* updated later */
81 100, /* updated later */
84 static struct wf_control *backside_fan;
85 static struct wf_control *slots_fan;
86 static struct wf_control *drive_bay_fan;
88 /* PID loop state */
89 static struct wf_cpu_pid_state cpu_pid[NR_CORES];
90 static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
91 static int cpu_thist_pt;
92 static s64 cpu_thist_total;
93 static s32 cpu_all_tmax = 100 << 16;
94 static int cpu_last_target;
95 static struct wf_pid_state backside_pid;
96 static int backside_tick;
97 static struct wf_pid_state slots_pid;
98 static bool slots_started;
99 static struct wf_pid_state drive_bay_pid;
100 static int drive_bay_tick;
102 static int nr_cores;
103 static int have_all_controls;
104 static int have_all_sensors;
105 static bool started;
107 static int failure_state;
108 #define FAILURE_SENSOR 1
109 #define FAILURE_FAN 2
110 #define FAILURE_PERM 4
111 #define FAILURE_LOW_OVERTEMP 8
112 #define FAILURE_HIGH_OVERTEMP 16
114 /* Overtemp values */
115 #define LOW_OVER_AVERAGE 0
116 #define LOW_OVER_IMMEDIATE (10 << 16)
117 #define LOW_OVER_CLEAR ((-10) << 16)
118 #define HIGH_OVER_IMMEDIATE (14 << 16)
119 #define HIGH_OVER_AVERAGE (10 << 16)
120 #define HIGH_OVER_IMMEDIATE (14 << 16)
123 /* Implementation... */
124 static int create_cpu_loop(int cpu)
126 int chip = cpu / 2;
127 int core = cpu & 1;
128 struct smu_sdbp_header *hdr;
129 struct smu_sdbp_cpupiddata *piddata;
130 struct wf_cpu_pid_param pid;
131 struct wf_control *main_fan = cpu_fans[0];
132 s32 tmax;
133 int fmin;
135 /* Get FVT params to get Tmax; if not found, assume default */
136 hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL);
137 if (hdr) {
138 struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1];
139 tmax = fvt->maxtemp << 16;
140 } else
141 tmax = 95 << 16; /* default to 95 degrees C */
143 /* We keep a global tmax for overtemp calculations */
144 if (tmax < cpu_all_tmax)
145 cpu_all_tmax = tmax;
147 kfree(hdr);
149 /* Get PID params from the appropriate SAT */
150 hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL);
151 if (hdr == NULL) {
152 printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n");
153 return -EINVAL;
155 piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
158 * Darwin has a minimum fan speed of 1000 rpm for the 4-way and
159 * 515 for the 2-way. That appears to be overkill, so for now,
160 * impose a minimum of 750 or 515.
162 fmin = (nr_cores > 2) ? 750 : 515;
164 /* Initialize PID loop */
165 pid.interval = 1; /* seconds */
166 pid.history_len = piddata->history_len;
167 pid.gd = piddata->gd;
168 pid.gp = piddata->gp;
169 pid.gr = piddata->gr / piddata->history_len;
170 pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8);
171 pid.ttarget = tmax - (piddata->target_temp_delta << 16);
172 pid.tmax = tmax;
173 pid.min = main_fan->ops->get_min(main_fan);
174 pid.max = main_fan->ops->get_max(main_fan);
175 if (pid.min < fmin)
176 pid.min = fmin;
178 wf_cpu_pid_init(&cpu_pid[cpu], &pid);
180 kfree(hdr);
182 return 0;
185 static void cpu_max_all_fans(void)
187 int i;
189 /* We max all CPU fans in case of a sensor error. We also do the
190 * cpufreq clamping now, even if it's supposedly done later by the
191 * generic code anyway, we do it earlier here to react faster
193 if (cpufreq_clamp)
194 wf_control_set_max(cpufreq_clamp);
195 for (i = 0; i < NR_CPU_FANS; ++i)
196 if (cpu_fans[i])
197 wf_control_set_max(cpu_fans[i]);
200 static int cpu_check_overtemp(s32 temp)
202 int new_state = 0;
203 s32 t_avg, t_old;
205 /* First check for immediate overtemps */
206 if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
207 new_state |= FAILURE_LOW_OVERTEMP;
208 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
209 printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
210 " temperature !\n");
212 if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
213 new_state |= FAILURE_HIGH_OVERTEMP;
214 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
215 printk(KERN_ERR "windfarm: Critical overtemp due to"
216 " immediate CPU temperature !\n");
219 /* We calculate a history of max temperatures and use that for the
220 * overtemp management
222 t_old = cpu_thist[cpu_thist_pt];
223 cpu_thist[cpu_thist_pt] = temp;
224 cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
225 cpu_thist_total -= t_old;
226 cpu_thist_total += temp;
227 t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
229 DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
230 FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
232 /* Now check for average overtemps */
233 if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
234 new_state |= FAILURE_LOW_OVERTEMP;
235 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
236 printk(KERN_ERR "windfarm: Overtemp due to average CPU"
237 " temperature !\n");
239 if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
240 new_state |= FAILURE_HIGH_OVERTEMP;
241 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
242 printk(KERN_ERR "windfarm: Critical overtemp due to"
243 " average CPU temperature !\n");
246 /* Now handle overtemp conditions. We don't currently use the windfarm
247 * overtemp handling core as it's not fully suited to the needs of those
248 * new machine. This will be fixed later.
250 if (new_state) {
251 /* High overtemp -> immediate shutdown */
252 if (new_state & FAILURE_HIGH_OVERTEMP)
253 machine_power_off();
254 if ((failure_state & new_state) != new_state)
255 cpu_max_all_fans();
256 failure_state |= new_state;
257 } else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
258 (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
259 printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
260 failure_state &= ~FAILURE_LOW_OVERTEMP;
263 return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
266 static void cpu_fans_tick(void)
268 int err, cpu;
269 s32 greatest_delta = 0;
270 s32 temp, power, t_max = 0;
271 int i, t, target = 0;
272 struct wf_sensor *sr;
273 struct wf_control *ct;
274 struct wf_cpu_pid_state *sp;
276 DBG_LOTS(KERN_DEBUG);
277 for (cpu = 0; cpu < nr_cores; ++cpu) {
278 /* Get CPU core temperature */
279 sr = sens_cpu_temp[cpu];
280 err = sr->ops->get_value(sr, &temp);
281 if (err) {
282 DBG("\n");
283 printk(KERN_WARNING "windfarm: CPU %d temperature "
284 "sensor error %d\n", cpu, err);
285 failure_state |= FAILURE_SENSOR;
286 cpu_max_all_fans();
287 return;
290 /* Keep track of highest temp */
291 t_max = max(t_max, temp);
293 /* Get CPU power */
294 sr = sens_cpu_power[cpu];
295 err = sr->ops->get_value(sr, &power);
296 if (err) {
297 DBG("\n");
298 printk(KERN_WARNING "windfarm: CPU %d power "
299 "sensor error %d\n", cpu, err);
300 failure_state |= FAILURE_SENSOR;
301 cpu_max_all_fans();
302 return;
305 /* Run PID */
306 sp = &cpu_pid[cpu];
307 t = wf_cpu_pid_run(sp, power, temp);
309 if (cpu == 0 || sp->last_delta > greatest_delta) {
310 greatest_delta = sp->last_delta;
311 target = t;
313 DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ",
314 cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp));
316 DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max));
318 /* Darwin limits decrease to 20 per iteration */
319 if (target < (cpu_last_target - 20))
320 target = cpu_last_target - 20;
321 cpu_last_target = target;
322 for (cpu = 0; cpu < nr_cores; ++cpu)
323 cpu_pid[cpu].target = target;
325 /* Handle possible overtemps */
326 if (cpu_check_overtemp(t_max))
327 return;
329 /* Set fans */
330 for (i = 0; i < NR_CPU_FANS; ++i) {
331 ct = cpu_fans[i];
332 if (ct == NULL)
333 continue;
334 err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100);
335 if (err) {
336 printk(KERN_WARNING "windfarm: fan %s reports "
337 "error %d\n", ct->name, err);
338 failure_state |= FAILURE_FAN;
339 break;
344 /* Backside/U4 fan */
345 static struct wf_pid_param backside_param = {
346 .interval = 5,
347 .history_len = 2,
348 .gd = 48 << 20,
349 .gp = 5 << 20,
350 .gr = 0,
351 .itarget = 64 << 16,
352 .additive = 1,
355 static void backside_fan_tick(void)
357 s32 temp;
358 int speed;
359 int err;
361 if (!backside_fan || !u4_temp)
362 return;
363 if (!backside_tick) {
364 /* first time; initialize things */
365 printk(KERN_INFO "windfarm: Backside control loop started.\n");
366 backside_param.min = backside_fan->ops->get_min(backside_fan);
367 backside_param.max = backside_fan->ops->get_max(backside_fan);
368 wf_pid_init(&backside_pid, &backside_param);
369 backside_tick = 1;
371 if (--backside_tick > 0)
372 return;
373 backside_tick = backside_pid.param.interval;
375 err = u4_temp->ops->get_value(u4_temp, &temp);
376 if (err) {
377 printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
378 err);
379 failure_state |= FAILURE_SENSOR;
380 wf_control_set_max(backside_fan);
381 return;
383 speed = wf_pid_run(&backside_pid, temp);
384 DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
385 FIX32TOPRINT(temp), speed);
387 err = backside_fan->ops->set_value(backside_fan, speed);
388 if (err) {
389 printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
390 failure_state |= FAILURE_FAN;
394 /* Drive bay fan */
395 static struct wf_pid_param drive_bay_prm = {
396 .interval = 5,
397 .history_len = 2,
398 .gd = 30 << 20,
399 .gp = 5 << 20,
400 .gr = 0,
401 .itarget = 40 << 16,
402 .additive = 1,
405 static void drive_bay_fan_tick(void)
407 s32 temp;
408 int speed;
409 int err;
411 if (!drive_bay_fan || !hd_temp)
412 return;
413 if (!drive_bay_tick) {
414 /* first time; initialize things */
415 printk(KERN_INFO "windfarm: Drive bay control loop started.\n");
416 drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan);
417 drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan);
418 wf_pid_init(&drive_bay_pid, &drive_bay_prm);
419 drive_bay_tick = 1;
421 if (--drive_bay_tick > 0)
422 return;
423 drive_bay_tick = drive_bay_pid.param.interval;
425 err = hd_temp->ops->get_value(hd_temp, &temp);
426 if (err) {
427 printk(KERN_WARNING "windfarm: drive bay temp sensor "
428 "error %d\n", err);
429 failure_state |= FAILURE_SENSOR;
430 wf_control_set_max(drive_bay_fan);
431 return;
433 speed = wf_pid_run(&drive_bay_pid, temp);
434 DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n",
435 FIX32TOPRINT(temp), speed);
437 err = drive_bay_fan->ops->set_value(drive_bay_fan, speed);
438 if (err) {
439 printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
440 failure_state |= FAILURE_FAN;
444 /* PCI slots area fan */
445 /* This makes the fan speed proportional to the power consumed */
446 static struct wf_pid_param slots_param = {
447 .interval = 1,
448 .history_len = 2,
449 .gd = 0,
450 .gp = 0,
451 .gr = 0x1277952,
452 .itarget = 0,
453 .min = 1560,
454 .max = 3510,
457 static void slots_fan_tick(void)
459 s32 power;
460 int speed;
461 int err;
463 if (!slots_fan || !slots_power)
464 return;
465 if (!slots_started) {
466 /* first time; initialize things */
467 printk(KERN_INFO "windfarm: Slots control loop started.\n");
468 wf_pid_init(&slots_pid, &slots_param);
469 slots_started = true;
472 err = slots_power->ops->get_value(slots_power, &power);
473 if (err) {
474 printk(KERN_WARNING "windfarm: slots power sensor error %d\n",
475 err);
476 failure_state |= FAILURE_SENSOR;
477 wf_control_set_max(slots_fan);
478 return;
480 speed = wf_pid_run(&slots_pid, power);
481 DBG_LOTS("slots PID power=%d.%.3d speed=%d\n",
482 FIX32TOPRINT(power), speed);
484 err = slots_fan->ops->set_value(slots_fan, speed);
485 if (err) {
486 printk(KERN_WARNING "windfarm: slots fan error %d\n", err);
487 failure_state |= FAILURE_FAN;
491 static void set_fail_state(void)
493 int i;
495 if (cpufreq_clamp)
496 wf_control_set_max(cpufreq_clamp);
497 for (i = 0; i < NR_CPU_FANS; ++i)
498 if (cpu_fans[i])
499 wf_control_set_max(cpu_fans[i]);
500 if (backside_fan)
501 wf_control_set_max(backside_fan);
502 if (slots_fan)
503 wf_control_set_max(slots_fan);
504 if (drive_bay_fan)
505 wf_control_set_max(drive_bay_fan);
508 static void pm112_tick(void)
510 int i, last_failure;
512 if (!started) {
513 started = true;
514 printk(KERN_INFO "windfarm: CPUs control loops started.\n");
515 for (i = 0; i < nr_cores; ++i) {
516 if (create_cpu_loop(i) < 0) {
517 failure_state = FAILURE_PERM;
518 set_fail_state();
519 break;
522 DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
524 #ifdef HACKED_OVERTEMP
525 cpu_all_tmax = 60 << 16;
526 #endif
529 /* Permanent failure, bail out */
530 if (failure_state & FAILURE_PERM)
531 return;
532 /* Clear all failure bits except low overtemp which will be eventually
533 * cleared by the control loop itself
535 last_failure = failure_state;
536 failure_state &= FAILURE_LOW_OVERTEMP;
537 cpu_fans_tick();
538 backside_fan_tick();
539 slots_fan_tick();
540 drive_bay_fan_tick();
542 DBG_LOTS("last_failure: 0x%x, failure_state: %x\n",
543 last_failure, failure_state);
545 /* Check for failures. Any failure causes cpufreq clamping */
546 if (failure_state && last_failure == 0 && cpufreq_clamp)
547 wf_control_set_max(cpufreq_clamp);
548 if (failure_state == 0 && last_failure && cpufreq_clamp)
549 wf_control_set_min(cpufreq_clamp);
551 /* That's it for now, we might want to deal with other failures
552 * differently in the future though
556 static void pm112_new_control(struct wf_control *ct)
558 int i, max_exhaust;
560 if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
561 if (wf_get_control(ct) == 0)
562 cpufreq_clamp = ct;
565 for (i = 0; i < NR_CPU_FANS; ++i) {
566 if (!strcmp(ct->name, cpu_fan_names[i])) {
567 if (cpu_fans[i] == NULL && wf_get_control(ct) == 0)
568 cpu_fans[i] = ct;
569 break;
572 if (i >= NR_CPU_FANS) {
573 /* not a CPU fan, try the others */
574 if (!strcmp(ct->name, "backside-fan")) {
575 if (backside_fan == NULL && wf_get_control(ct) == 0)
576 backside_fan = ct;
577 } else if (!strcmp(ct->name, "slots-fan")) {
578 if (slots_fan == NULL && wf_get_control(ct) == 0)
579 slots_fan = ct;
580 } else if (!strcmp(ct->name, "drive-bay-fan")) {
581 if (drive_bay_fan == NULL && wf_get_control(ct) == 0)
582 drive_bay_fan = ct;
584 return;
587 for (i = 0; i < CPU_FANS_REQD; ++i)
588 if (cpu_fans[i] == NULL)
589 return;
591 /* work out pump scaling factors */
592 max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]);
593 for (i = FIRST_PUMP; i <= LAST_PUMP; ++i)
594 if ((ct = cpu_fans[i]) != NULL)
595 cpu_fan_scale[i] =
596 ct->ops->get_max(ct) * 100 / max_exhaust;
598 have_all_controls = 1;
601 static void pm112_new_sensor(struct wf_sensor *sr)
603 unsigned int i;
605 if (!strncmp(sr->name, "cpu-temp-", 9)) {
606 i = sr->name[9] - '0';
607 if (sr->name[10] == 0 && i < NR_CORES &&
608 sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0)
609 sens_cpu_temp[i] = sr;
611 } else if (!strncmp(sr->name, "cpu-power-", 10)) {
612 i = sr->name[10] - '0';
613 if (sr->name[11] == 0 && i < NR_CORES &&
614 sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0)
615 sens_cpu_power[i] = sr;
616 } else if (!strcmp(sr->name, "hd-temp")) {
617 if (hd_temp == NULL && wf_get_sensor(sr) == 0)
618 hd_temp = sr;
619 } else if (!strcmp(sr->name, "slots-power")) {
620 if (slots_power == NULL && wf_get_sensor(sr) == 0)
621 slots_power = sr;
622 } else if (!strcmp(sr->name, "backside-temp")) {
623 if (u4_temp == NULL && wf_get_sensor(sr) == 0)
624 u4_temp = sr;
625 } else
626 return;
628 /* check if we have all the sensors we need */
629 for (i = 0; i < nr_cores; ++i)
630 if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL)
631 return;
633 have_all_sensors = 1;
636 static int pm112_wf_notify(struct notifier_block *self,
637 unsigned long event, void *data)
639 switch (event) {
640 case WF_EVENT_NEW_SENSOR:
641 pm112_new_sensor(data);
642 break;
643 case WF_EVENT_NEW_CONTROL:
644 pm112_new_control(data);
645 break;
646 case WF_EVENT_TICK:
647 if (have_all_controls && have_all_sensors)
648 pm112_tick();
650 return 0;
653 static struct notifier_block pm112_events = {
654 .notifier_call = pm112_wf_notify,
657 static int wf_pm112_probe(struct platform_device *dev)
659 wf_register_client(&pm112_events);
660 return 0;
663 static int wf_pm112_remove(struct platform_device *dev)
665 wf_unregister_client(&pm112_events);
666 /* should release all sensors and controls */
667 return 0;
670 static struct platform_driver wf_pm112_driver = {
671 .probe = wf_pm112_probe,
672 .remove = wf_pm112_remove,
673 .driver = {
674 .name = "windfarm",
678 static int __init wf_pm112_init(void)
680 struct device_node *cpu;
682 if (!of_machine_is_compatible("PowerMac11,2"))
683 return -ENODEV;
685 /* Count the number of CPU cores */
686 nr_cores = 0;
687 for_each_node_by_type(cpu, "cpu")
688 ++nr_cores;
690 printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n");
692 #ifdef MODULE
693 request_module("windfarm_smu_controls");
694 request_module("windfarm_smu_sensors");
695 request_module("windfarm_smu_sat");
696 request_module("windfarm_lm75_sensor");
697 request_module("windfarm_max6690_sensor");
698 request_module("windfarm_cpufreq_clamp");
700 #endif /* MODULE */
702 platform_driver_register(&wf_pm112_driver);
703 return 0;
706 static void __exit wf_pm112_exit(void)
708 platform_driver_unregister(&wf_pm112_driver);
711 module_init(wf_pm112_init);
712 module_exit(wf_pm112_exit);
714 MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>");
715 MODULE_DESCRIPTION("Thermal control for PowerMac11,2");
716 MODULE_LICENSE("GPL");
717 MODULE_ALIAS("platform:windfarm");