WIP FPC-III support
[linux/fpc-iii.git] / drivers / media / dvb-frontends / mb86a20s.c
bloba7faf0cf8788b8c39bc15fe859e3054208e5d199
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
5 * Copyright (C) 2010-2013 Mauro Carvalho Chehab
6 * Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
7 */
9 #include <linux/kernel.h>
10 #include <asm/div64.h>
12 #include <media/dvb_frontend.h>
13 #include "mb86a20s.h"
15 #define NUM_LAYERS 3
17 enum mb86a20s_bandwidth {
18 MB86A20S_13SEG = 0,
19 MB86A20S_13SEG_PARTIAL = 1,
20 MB86A20S_1SEG = 2,
21 MB86A20S_3SEG = 3,
24 static u8 mb86a20s_subchannel[] = {
25 0xb0, 0xc0, 0xd0, 0xe0,
26 0xf0, 0x00, 0x10, 0x20,
29 struct mb86a20s_state {
30 struct i2c_adapter *i2c;
31 const struct mb86a20s_config *config;
32 u32 last_frequency;
34 struct dvb_frontend frontend;
36 u32 if_freq;
37 enum mb86a20s_bandwidth bw;
38 bool inversion;
39 u32 subchannel;
41 u32 estimated_rate[NUM_LAYERS];
42 unsigned long get_strength_time;
44 bool need_init;
47 struct regdata {
48 u8 reg;
49 u8 data;
52 #define BER_SAMPLING_RATE 1 /* Seconds */
55 * Initialization sequence: Use whatevere default values that PV SBTVD
56 * does on its initialisation, obtained via USB snoop
58 static struct regdata mb86a20s_init1[] = {
59 { 0x70, 0x0f },
60 { 0x70, 0xff },
61 { 0x08, 0x01 },
62 { 0x50, 0xd1 }, { 0x51, 0x20 },
65 static struct regdata mb86a20s_init2[] = {
66 { 0x50, 0xd1 }, { 0x51, 0x22 },
67 { 0x39, 0x01 },
68 { 0x71, 0x00 },
69 { 0x3b, 0x21 },
70 { 0x3c, 0x3a },
71 { 0x01, 0x0d },
72 { 0x04, 0x08 }, { 0x05, 0x05 },
73 { 0x04, 0x0e }, { 0x05, 0x00 },
74 { 0x04, 0x0f }, { 0x05, 0x14 },
75 { 0x04, 0x0b }, { 0x05, 0x8c },
76 { 0x04, 0x00 }, { 0x05, 0x00 },
77 { 0x04, 0x01 }, { 0x05, 0x07 },
78 { 0x04, 0x02 }, { 0x05, 0x0f },
79 { 0x04, 0x03 }, { 0x05, 0xa0 },
80 { 0x04, 0x09 }, { 0x05, 0x00 },
81 { 0x04, 0x0a }, { 0x05, 0xff },
82 { 0x04, 0x27 }, { 0x05, 0x64 },
83 { 0x04, 0x28 }, { 0x05, 0x00 },
84 { 0x04, 0x1e }, { 0x05, 0xff },
85 { 0x04, 0x29 }, { 0x05, 0x0a },
86 { 0x04, 0x32 }, { 0x05, 0x0a },
87 { 0x04, 0x14 }, { 0x05, 0x02 },
88 { 0x04, 0x04 }, { 0x05, 0x00 },
89 { 0x04, 0x05 }, { 0x05, 0x22 },
90 { 0x04, 0x06 }, { 0x05, 0x0e },
91 { 0x04, 0x07 }, { 0x05, 0xd8 },
92 { 0x04, 0x12 }, { 0x05, 0x00 },
93 { 0x04, 0x13 }, { 0x05, 0xff },
96 * On this demod, when the bit count reaches the count below,
97 * it collects the bit error count. The bit counters are initialized
98 * to 65535 here. This warrants that all of them will be quickly
99 * calculated when device gets locked. As TMCC is parsed, the values
100 * will be adjusted later in the driver's code.
102 { 0x52, 0x01 }, /* Turn on BER before Viterbi */
103 { 0x50, 0xa7 }, { 0x51, 0x00 },
104 { 0x50, 0xa8 }, { 0x51, 0xff },
105 { 0x50, 0xa9 }, { 0x51, 0xff },
106 { 0x50, 0xaa }, { 0x51, 0x00 },
107 { 0x50, 0xab }, { 0x51, 0xff },
108 { 0x50, 0xac }, { 0x51, 0xff },
109 { 0x50, 0xad }, { 0x51, 0x00 },
110 { 0x50, 0xae }, { 0x51, 0xff },
111 { 0x50, 0xaf }, { 0x51, 0xff },
114 * On this demod, post BER counts blocks. When the count reaches the
115 * value below, it collects the block error count. The block counters
116 * are initialized to 127 here. This warrants that all of them will be
117 * quickly calculated when device gets locked. As TMCC is parsed, the
118 * values will be adjusted later in the driver's code.
120 { 0x5e, 0x07 }, /* Turn on BER after Viterbi */
121 { 0x50, 0xdc }, { 0x51, 0x00 },
122 { 0x50, 0xdd }, { 0x51, 0x7f },
123 { 0x50, 0xde }, { 0x51, 0x00 },
124 { 0x50, 0xdf }, { 0x51, 0x7f },
125 { 0x50, 0xe0 }, { 0x51, 0x00 },
126 { 0x50, 0xe1 }, { 0x51, 0x7f },
129 * On this demod, when the block count reaches the count below,
130 * it collects the block error count. The block counters are initialized
131 * to 127 here. This warrants that all of them will be quickly
132 * calculated when device gets locked. As TMCC is parsed, the values
133 * will be adjusted later in the driver's code.
135 { 0x50, 0xb0 }, { 0x51, 0x07 }, /* Enable PER */
136 { 0x50, 0xb2 }, { 0x51, 0x00 },
137 { 0x50, 0xb3 }, { 0x51, 0x7f },
138 { 0x50, 0xb4 }, { 0x51, 0x00 },
139 { 0x50, 0xb5 }, { 0x51, 0x7f },
140 { 0x50, 0xb6 }, { 0x51, 0x00 },
141 { 0x50, 0xb7 }, { 0x51, 0x7f },
143 { 0x50, 0x50 }, { 0x51, 0x02 }, /* MER manual mode */
144 { 0x50, 0x51 }, { 0x51, 0x04 }, /* MER symbol 4 */
145 { 0x45, 0x04 }, /* CN symbol 4 */
146 { 0x48, 0x04 }, /* CN manual mode */
147 { 0x50, 0xd5 }, { 0x51, 0x01 },
148 { 0x50, 0xd6 }, { 0x51, 0x1f },
149 { 0x50, 0xd2 }, { 0x51, 0x03 },
150 { 0x50, 0xd7 }, { 0x51, 0x3f },
151 { 0x1c, 0x01 },
152 { 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x03 },
153 { 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0d },
154 { 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
155 { 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x01 },
156 { 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x21 },
157 { 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x29 },
158 { 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
159 { 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x31 },
160 { 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0e },
161 { 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x4e },
162 { 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x46 },
163 { 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
164 { 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x56 },
165 { 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x35 },
166 { 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbe },
167 { 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0x84 },
168 { 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x03 }, { 0x2b, 0xee },
169 { 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x98 },
170 { 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x9f },
171 { 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xb2 },
172 { 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0xc2 },
173 { 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0x4a },
174 { 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbc },
175 { 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x04 }, { 0x2b, 0xba },
176 { 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0x14 },
177 { 0x50, 0x1e }, { 0x51, 0x5d },
178 { 0x50, 0x22 }, { 0x51, 0x00 },
179 { 0x50, 0x23 }, { 0x51, 0xc8 },
180 { 0x50, 0x24 }, { 0x51, 0x00 },
181 { 0x50, 0x25 }, { 0x51, 0xf0 },
182 { 0x50, 0x26 }, { 0x51, 0x00 },
183 { 0x50, 0x27 }, { 0x51, 0xc3 },
184 { 0x50, 0x39 }, { 0x51, 0x02 },
185 { 0x50, 0xd5 }, { 0x51, 0x01 },
186 { 0xd0, 0x00 },
189 static struct regdata mb86a20s_reset_reception[] = {
190 { 0x70, 0xf0 },
191 { 0x70, 0xff },
192 { 0x08, 0x01 },
193 { 0x08, 0x00 },
196 static struct regdata mb86a20s_per_ber_reset[] = {
197 { 0x53, 0x00 }, /* pre BER Counter reset */
198 { 0x53, 0x07 },
200 { 0x5f, 0x00 }, /* post BER Counter reset */
201 { 0x5f, 0x07 },
203 { 0x50, 0xb1 }, /* PER Counter reset */
204 { 0x51, 0x07 },
205 { 0x51, 0x00 },
209 * I2C read/write functions and macros
212 static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
213 u8 i2c_addr, u8 reg, u8 data)
215 u8 buf[] = { reg, data };
216 struct i2c_msg msg = {
217 .addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
219 int rc;
221 rc = i2c_transfer(state->i2c, &msg, 1);
222 if (rc != 1) {
223 dev_err(&state->i2c->dev,
224 "%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
225 __func__, rc, reg, data);
226 return rc;
229 return 0;
232 static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state,
233 u8 i2c_addr, struct regdata *rd, int size)
235 int i, rc;
237 for (i = 0; i < size; i++) {
238 rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg,
239 rd[i].data);
240 if (rc < 0)
241 return rc;
243 return 0;
246 static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
247 u8 i2c_addr, u8 reg)
249 u8 val;
250 int rc;
251 struct i2c_msg msg[] = {
252 { .addr = i2c_addr, .flags = 0, .buf = &reg, .len = 1 },
253 { .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 }
256 rc = i2c_transfer(state->i2c, msg, 2);
258 if (rc != 2) {
259 dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
260 __func__, reg, rc);
261 return (rc < 0) ? rc : -EIO;
264 return val;
267 #define mb86a20s_readreg(state, reg) \
268 mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
269 #define mb86a20s_writereg(state, reg, val) \
270 mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
271 #define mb86a20s_writeregdata(state, regdata) \
272 mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
273 regdata, ARRAY_SIZE(regdata))
276 * Ancillary internal routines (likely compiled inlined)
278 * The functions below assume that gateway lock has already obtained
281 static int mb86a20s_read_status(struct dvb_frontend *fe, enum fe_status *status)
283 struct mb86a20s_state *state = fe->demodulator_priv;
284 int val;
286 *status = 0;
288 val = mb86a20s_readreg(state, 0x0a);
289 if (val < 0)
290 return val;
292 val &= 0xf;
293 if (val >= 2)
294 *status |= FE_HAS_SIGNAL;
296 if (val >= 4)
297 *status |= FE_HAS_CARRIER;
299 if (val >= 5)
300 *status |= FE_HAS_VITERBI;
302 if (val >= 7)
303 *status |= FE_HAS_SYNC;
306 * Actually, on state S8, it starts receiving TS, but the TS
307 * output is only on normal state after the transition to S9.
309 if (val >= 9)
310 *status |= FE_HAS_LOCK;
312 dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
313 __func__, *status, val);
315 return val;
318 static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
320 struct mb86a20s_state *state = fe->demodulator_priv;
321 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
322 int rc;
323 unsigned rf_max, rf_min, rf;
325 if (state->get_strength_time &&
326 (!time_after(jiffies, state->get_strength_time)))
327 return c->strength.stat[0].uvalue;
329 /* Reset its value if an error happen */
330 c->strength.stat[0].uvalue = 0;
332 /* Does a binary search to get RF strength */
333 rf_max = 0xfff;
334 rf_min = 0;
335 do {
336 rf = (rf_max + rf_min) / 2;
337 rc = mb86a20s_writereg(state, 0x04, 0x1f);
338 if (rc < 0)
339 return rc;
340 rc = mb86a20s_writereg(state, 0x05, rf >> 8);
341 if (rc < 0)
342 return rc;
343 rc = mb86a20s_writereg(state, 0x04, 0x20);
344 if (rc < 0)
345 return rc;
346 rc = mb86a20s_writereg(state, 0x05, rf);
347 if (rc < 0)
348 return rc;
350 rc = mb86a20s_readreg(state, 0x02);
351 if (rc < 0)
352 return rc;
353 if (rc & 0x08)
354 rf_min = (rf_max + rf_min) / 2;
355 else
356 rf_max = (rf_max + rf_min) / 2;
357 if (rf_max - rf_min < 4) {
358 rf = (rf_max + rf_min) / 2;
360 /* Rescale it from 2^12 (4096) to 2^16 */
361 rf = rf << (16 - 12);
362 if (rf)
363 rf |= (1 << 12) - 1;
365 dev_dbg(&state->i2c->dev,
366 "%s: signal strength = %d (%d < RF=%d < %d)\n",
367 __func__, rf, rf_min, rf >> 4, rf_max);
368 c->strength.stat[0].uvalue = rf;
369 state->get_strength_time = jiffies +
370 msecs_to_jiffies(1000);
371 return 0;
373 } while (1);
376 static int mb86a20s_get_modulation(struct mb86a20s_state *state,
377 unsigned layer)
379 int rc;
380 static unsigned char reg[] = {
381 [0] = 0x86, /* Layer A */
382 [1] = 0x8a, /* Layer B */
383 [2] = 0x8e, /* Layer C */
386 if (layer >= ARRAY_SIZE(reg))
387 return -EINVAL;
388 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
389 if (rc < 0)
390 return rc;
391 rc = mb86a20s_readreg(state, 0x6e);
392 if (rc < 0)
393 return rc;
394 switch ((rc >> 4) & 0x07) {
395 case 0:
396 return DQPSK;
397 case 1:
398 return QPSK;
399 case 2:
400 return QAM_16;
401 case 3:
402 return QAM_64;
403 default:
404 return QAM_AUTO;
408 static int mb86a20s_get_fec(struct mb86a20s_state *state,
409 unsigned layer)
411 int rc;
413 static unsigned char reg[] = {
414 [0] = 0x87, /* Layer A */
415 [1] = 0x8b, /* Layer B */
416 [2] = 0x8f, /* Layer C */
419 if (layer >= ARRAY_SIZE(reg))
420 return -EINVAL;
421 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
422 if (rc < 0)
423 return rc;
424 rc = mb86a20s_readreg(state, 0x6e);
425 if (rc < 0)
426 return rc;
427 switch ((rc >> 4) & 0x07) {
428 case 0:
429 return FEC_1_2;
430 case 1:
431 return FEC_2_3;
432 case 2:
433 return FEC_3_4;
434 case 3:
435 return FEC_5_6;
436 case 4:
437 return FEC_7_8;
438 default:
439 return FEC_AUTO;
443 static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
444 unsigned layer)
446 int rc;
447 int interleaving[] = {
448 0, 1, 2, 4, 8
451 static unsigned char reg[] = {
452 [0] = 0x88, /* Layer A */
453 [1] = 0x8c, /* Layer B */
454 [2] = 0x90, /* Layer C */
457 if (layer >= ARRAY_SIZE(reg))
458 return -EINVAL;
459 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
460 if (rc < 0)
461 return rc;
462 rc = mb86a20s_readreg(state, 0x6e);
463 if (rc < 0)
464 return rc;
466 return interleaving[(rc >> 4) & 0x07];
469 static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
470 unsigned layer)
472 int rc, count;
473 static unsigned char reg[] = {
474 [0] = 0x89, /* Layer A */
475 [1] = 0x8d, /* Layer B */
476 [2] = 0x91, /* Layer C */
479 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
481 if (layer >= ARRAY_SIZE(reg))
482 return -EINVAL;
484 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
485 if (rc < 0)
486 return rc;
487 rc = mb86a20s_readreg(state, 0x6e);
488 if (rc < 0)
489 return rc;
490 count = (rc >> 4) & 0x0f;
492 dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);
494 return count;
497 static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
499 struct mb86a20s_state *state = fe->demodulator_priv;
500 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
502 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
504 /* Fixed parameters */
505 c->delivery_system = SYS_ISDBT;
506 c->bandwidth_hz = 6000000;
508 /* Initialize values that will be later autodetected */
509 c->isdbt_layer_enabled = 0;
510 c->transmission_mode = TRANSMISSION_MODE_AUTO;
511 c->guard_interval = GUARD_INTERVAL_AUTO;
512 c->isdbt_sb_mode = 0;
513 c->isdbt_sb_segment_count = 0;
517 * Estimates the bit rate using the per-segment bit rate given by
518 * ABNT/NBR 15601 spec (table 4).
520 static const u32 isdbt_rate[3][5][4] = {
521 { /* DQPSK/QPSK */
522 { 280850, 312060, 330420, 340430 }, /* 1/2 */
523 { 374470, 416080, 440560, 453910 }, /* 2/3 */
524 { 421280, 468090, 495630, 510650 }, /* 3/4 */
525 { 468090, 520100, 550700, 567390 }, /* 5/6 */
526 { 491500, 546110, 578230, 595760 }, /* 7/8 */
527 }, { /* QAM16 */
528 { 561710, 624130, 660840, 680870 }, /* 1/2 */
529 { 748950, 832170, 881120, 907820 }, /* 2/3 */
530 { 842570, 936190, 991260, 1021300 }, /* 3/4 */
531 { 936190, 1040210, 1101400, 1134780 }, /* 5/6 */
532 { 983000, 1092220, 1156470, 1191520 }, /* 7/8 */
533 }, { /* QAM64 */
534 { 842570, 936190, 991260, 1021300 }, /* 1/2 */
535 { 1123430, 1248260, 1321680, 1361740 }, /* 2/3 */
536 { 1263860, 1404290, 1486900, 1531950 }, /* 3/4 */
537 { 1404290, 1560320, 1652110, 1702170 }, /* 5/6 */
538 { 1474500, 1638340, 1734710, 1787280 }, /* 7/8 */
542 static u32 isdbt_layer_min_bitrate(struct dtv_frontend_properties *c,
543 u32 layer)
545 int mod, fec, guard;
548 * If modulation/fec/guard is not detected, the default is
549 * to consider the lowest bit rate, to avoid taking too long time
550 * to get BER.
552 switch (c->layer[layer].modulation) {
553 case DQPSK:
554 case QPSK:
555 default:
556 mod = 0;
557 break;
558 case QAM_16:
559 mod = 1;
560 break;
561 case QAM_64:
562 mod = 2;
563 break;
566 switch (c->layer[layer].fec) {
567 default:
568 case FEC_1_2:
569 case FEC_AUTO:
570 fec = 0;
571 break;
572 case FEC_2_3:
573 fec = 1;
574 break;
575 case FEC_3_4:
576 fec = 2;
577 break;
578 case FEC_5_6:
579 fec = 3;
580 break;
581 case FEC_7_8:
582 fec = 4;
583 break;
586 switch (c->guard_interval) {
587 default:
588 case GUARD_INTERVAL_1_4:
589 guard = 0;
590 break;
591 case GUARD_INTERVAL_1_8:
592 guard = 1;
593 break;
594 case GUARD_INTERVAL_1_16:
595 guard = 2;
596 break;
597 case GUARD_INTERVAL_1_32:
598 guard = 3;
599 break;
602 return isdbt_rate[mod][fec][guard] * c->layer[layer].segment_count;
605 static int mb86a20s_get_frontend(struct dvb_frontend *fe)
607 struct mb86a20s_state *state = fe->demodulator_priv;
608 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
609 int layer, rc, rate, counter;
611 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
613 /* Reset frontend cache to default values */
614 mb86a20s_reset_frontend_cache(fe);
616 /* Check for partial reception */
617 rc = mb86a20s_writereg(state, 0x6d, 0x85);
618 if (rc < 0)
619 return rc;
620 rc = mb86a20s_readreg(state, 0x6e);
621 if (rc < 0)
622 return rc;
623 c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
625 /* Get per-layer data */
627 for (layer = 0; layer < NUM_LAYERS; layer++) {
628 dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
629 __func__, 'A' + layer);
631 rc = mb86a20s_get_segment_count(state, layer);
632 if (rc < 0)
633 goto noperlayer_error;
634 if (rc >= 0 && rc < 14) {
635 c->layer[layer].segment_count = rc;
636 } else {
637 c->layer[layer].segment_count = 0;
638 state->estimated_rate[layer] = 0;
639 continue;
641 c->isdbt_layer_enabled |= 1 << layer;
642 rc = mb86a20s_get_modulation(state, layer);
643 if (rc < 0)
644 goto noperlayer_error;
645 dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
646 __func__, rc);
647 c->layer[layer].modulation = rc;
648 rc = mb86a20s_get_fec(state, layer);
649 if (rc < 0)
650 goto noperlayer_error;
651 dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
652 __func__, rc);
653 c->layer[layer].fec = rc;
654 rc = mb86a20s_get_interleaving(state, layer);
655 if (rc < 0)
656 goto noperlayer_error;
657 dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
658 __func__, rc);
659 c->layer[layer].interleaving = rc;
661 rate = isdbt_layer_min_bitrate(c, layer);
662 counter = rate * BER_SAMPLING_RATE;
664 /* Avoids sampling too quickly or to overflow the register */
665 if (counter < 256)
666 counter = 256;
667 else if (counter > (1 << 24) - 1)
668 counter = (1 << 24) - 1;
670 dev_dbg(&state->i2c->dev,
671 "%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
672 __func__, 'A' + layer, rate / 1000, counter, counter);
674 state->estimated_rate[layer] = counter;
677 rc = mb86a20s_writereg(state, 0x6d, 0x84);
678 if (rc < 0)
679 return rc;
680 if ((rc & 0x60) == 0x20) {
681 c->isdbt_sb_mode = 1;
682 /* At least, one segment should exist */
683 if (!c->isdbt_sb_segment_count)
684 c->isdbt_sb_segment_count = 1;
687 /* Get transmission mode and guard interval */
688 rc = mb86a20s_readreg(state, 0x07);
689 if (rc < 0)
690 return rc;
691 c->transmission_mode = TRANSMISSION_MODE_AUTO;
692 if ((rc & 0x60) == 0x20) {
693 /* Only modes 2 and 3 are supported */
694 switch ((rc >> 2) & 0x03) {
695 case 1:
696 c->transmission_mode = TRANSMISSION_MODE_4K;
697 break;
698 case 2:
699 c->transmission_mode = TRANSMISSION_MODE_8K;
700 break;
703 c->guard_interval = GUARD_INTERVAL_AUTO;
704 if (!(rc & 0x10)) {
705 /* Guard interval 1/32 is not supported */
706 switch (rc & 0x3) {
707 case 0:
708 c->guard_interval = GUARD_INTERVAL_1_4;
709 break;
710 case 1:
711 c->guard_interval = GUARD_INTERVAL_1_8;
712 break;
713 case 2:
714 c->guard_interval = GUARD_INTERVAL_1_16;
715 break;
718 return 0;
720 noperlayer_error:
722 /* per-layer info is incomplete; discard all per-layer */
723 c->isdbt_layer_enabled = 0;
725 return rc;
728 static int mb86a20s_reset_counters(struct dvb_frontend *fe)
730 struct mb86a20s_state *state = fe->demodulator_priv;
731 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
732 int rc, val;
734 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
736 /* Reset the counters, if the channel changed */
737 if (state->last_frequency != c->frequency) {
738 memset(&c->cnr, 0, sizeof(c->cnr));
739 memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
740 memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
741 memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
742 memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
743 memset(&c->block_error, 0, sizeof(c->block_error));
744 memset(&c->block_count, 0, sizeof(c->block_count));
746 state->last_frequency = c->frequency;
749 /* Clear status for most stats */
751 /* BER/PER counter reset */
752 rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset);
753 if (rc < 0)
754 goto err;
756 /* CNR counter reset */
757 rc = mb86a20s_readreg(state, 0x45);
758 if (rc < 0)
759 goto err;
760 val = rc;
761 rc = mb86a20s_writereg(state, 0x45, val | 0x10);
762 if (rc < 0)
763 goto err;
764 rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
765 if (rc < 0)
766 goto err;
768 /* MER counter reset */
769 rc = mb86a20s_writereg(state, 0x50, 0x50);
770 if (rc < 0)
771 goto err;
772 rc = mb86a20s_readreg(state, 0x51);
773 if (rc < 0)
774 goto err;
775 val = rc;
776 rc = mb86a20s_writereg(state, 0x51, val | 0x01);
777 if (rc < 0)
778 goto err;
779 rc = mb86a20s_writereg(state, 0x51, val & 0x06);
780 if (rc < 0)
781 goto err;
783 goto ok;
784 err:
785 dev_err(&state->i2c->dev,
786 "%s: Can't reset FE statistics (error %d).\n",
787 __func__, rc);
789 return rc;
792 static int mb86a20s_get_pre_ber(struct dvb_frontend *fe,
793 unsigned layer,
794 u32 *error, u32 *count)
796 struct mb86a20s_state *state = fe->demodulator_priv;
797 int rc, val;
799 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
801 if (layer >= NUM_LAYERS)
802 return -EINVAL;
804 /* Check if the BER measures are already available */
805 rc = mb86a20s_readreg(state, 0x54);
806 if (rc < 0)
807 return rc;
809 /* Check if data is available for that layer */
810 if (!(rc & (1 << layer))) {
811 dev_dbg(&state->i2c->dev,
812 "%s: preBER for layer %c is not available yet.\n",
813 __func__, 'A' + layer);
814 return -EBUSY;
817 /* Read Bit Error Count */
818 rc = mb86a20s_readreg(state, 0x55 + layer * 3);
819 if (rc < 0)
820 return rc;
821 *error = rc << 16;
822 rc = mb86a20s_readreg(state, 0x56 + layer * 3);
823 if (rc < 0)
824 return rc;
825 *error |= rc << 8;
826 rc = mb86a20s_readreg(state, 0x57 + layer * 3);
827 if (rc < 0)
828 return rc;
829 *error |= rc;
831 dev_dbg(&state->i2c->dev,
832 "%s: bit error before Viterbi for layer %c: %d.\n",
833 __func__, 'A' + layer, *error);
835 /* Read Bit Count */
836 rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
837 if (rc < 0)
838 return rc;
839 rc = mb86a20s_readreg(state, 0x51);
840 if (rc < 0)
841 return rc;
842 *count = rc << 16;
843 rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
844 if (rc < 0)
845 return rc;
846 rc = mb86a20s_readreg(state, 0x51);
847 if (rc < 0)
848 return rc;
849 *count |= rc << 8;
850 rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
851 if (rc < 0)
852 return rc;
853 rc = mb86a20s_readreg(state, 0x51);
854 if (rc < 0)
855 return rc;
856 *count |= rc;
858 dev_dbg(&state->i2c->dev,
859 "%s: bit count before Viterbi for layer %c: %d.\n",
860 __func__, 'A' + layer, *count);
864 * As we get TMCC data from the frontend, we can better estimate the
865 * BER bit counters, in order to do the BER measure during a longer
866 * time. Use those data, if available, to update the bit count
867 * measure.
870 if (state->estimated_rate[layer]
871 && state->estimated_rate[layer] != *count) {
872 dev_dbg(&state->i2c->dev,
873 "%s: updating layer %c preBER counter to %d.\n",
874 __func__, 'A' + layer, state->estimated_rate[layer]);
876 /* Turn off BER before Viterbi */
877 rc = mb86a20s_writereg(state, 0x52, 0x00);
879 /* Update counter for this layer */
880 rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
881 if (rc < 0)
882 return rc;
883 rc = mb86a20s_writereg(state, 0x51,
884 state->estimated_rate[layer] >> 16);
885 if (rc < 0)
886 return rc;
887 rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
888 if (rc < 0)
889 return rc;
890 rc = mb86a20s_writereg(state, 0x51,
891 state->estimated_rate[layer] >> 8);
892 if (rc < 0)
893 return rc;
894 rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
895 if (rc < 0)
896 return rc;
897 rc = mb86a20s_writereg(state, 0x51,
898 state->estimated_rate[layer]);
899 if (rc < 0)
900 return rc;
902 /* Turn on BER before Viterbi */
903 rc = mb86a20s_writereg(state, 0x52, 0x01);
905 /* Reset all preBER counters */
906 rc = mb86a20s_writereg(state, 0x53, 0x00);
907 if (rc < 0)
908 return rc;
909 rc = mb86a20s_writereg(state, 0x53, 0x07);
910 } else {
911 /* Reset counter to collect new data */
912 rc = mb86a20s_readreg(state, 0x53);
913 if (rc < 0)
914 return rc;
915 val = rc;
916 rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer));
917 if (rc < 0)
918 return rc;
919 rc = mb86a20s_writereg(state, 0x53, val | (1 << layer));
922 return rc;
925 static int mb86a20s_get_post_ber(struct dvb_frontend *fe,
926 unsigned layer,
927 u32 *error, u32 *count)
929 struct mb86a20s_state *state = fe->demodulator_priv;
930 u32 counter, collect_rate;
931 int rc, val;
933 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
935 if (layer >= NUM_LAYERS)
936 return -EINVAL;
938 /* Check if the BER measures are already available */
939 rc = mb86a20s_readreg(state, 0x60);
940 if (rc < 0)
941 return rc;
943 /* Check if data is available for that layer */
944 if (!(rc & (1 << layer))) {
945 dev_dbg(&state->i2c->dev,
946 "%s: post BER for layer %c is not available yet.\n",
947 __func__, 'A' + layer);
948 return -EBUSY;
951 /* Read Bit Error Count */
952 rc = mb86a20s_readreg(state, 0x64 + layer * 3);
953 if (rc < 0)
954 return rc;
955 *error = rc << 16;
956 rc = mb86a20s_readreg(state, 0x65 + layer * 3);
957 if (rc < 0)
958 return rc;
959 *error |= rc << 8;
960 rc = mb86a20s_readreg(state, 0x66 + layer * 3);
961 if (rc < 0)
962 return rc;
963 *error |= rc;
965 dev_dbg(&state->i2c->dev,
966 "%s: post bit error for layer %c: %d.\n",
967 __func__, 'A' + layer, *error);
969 /* Read Bit Count */
970 rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
971 if (rc < 0)
972 return rc;
973 rc = mb86a20s_readreg(state, 0x51);
974 if (rc < 0)
975 return rc;
976 counter = rc << 8;
977 rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
978 if (rc < 0)
979 return rc;
980 rc = mb86a20s_readreg(state, 0x51);
981 if (rc < 0)
982 return rc;
983 counter |= rc;
984 *count = counter * 204 * 8;
986 dev_dbg(&state->i2c->dev,
987 "%s: post bit count for layer %c: %d.\n",
988 __func__, 'A' + layer, *count);
991 * As we get TMCC data from the frontend, we can better estimate the
992 * BER bit counters, in order to do the BER measure during a longer
993 * time. Use those data, if available, to update the bit count
994 * measure.
997 if (!state->estimated_rate[layer])
998 goto reset_measurement;
1000 collect_rate = state->estimated_rate[layer] / 204 / 8;
1001 if (collect_rate < 32)
1002 collect_rate = 32;
1003 if (collect_rate > 65535)
1004 collect_rate = 65535;
1005 if (collect_rate != counter) {
1006 dev_dbg(&state->i2c->dev,
1007 "%s: updating postBER counter on layer %c to %d.\n",
1008 __func__, 'A' + layer, collect_rate);
1010 /* Turn off BER after Viterbi */
1011 rc = mb86a20s_writereg(state, 0x5e, 0x00);
1013 /* Update counter for this layer */
1014 rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
1015 if (rc < 0)
1016 return rc;
1017 rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1018 if (rc < 0)
1019 return rc;
1020 rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
1021 if (rc < 0)
1022 return rc;
1023 rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1024 if (rc < 0)
1025 return rc;
1027 /* Turn on BER after Viterbi */
1028 rc = mb86a20s_writereg(state, 0x5e, 0x07);
1030 /* Reset all preBER counters */
1031 rc = mb86a20s_writereg(state, 0x5f, 0x00);
1032 if (rc < 0)
1033 return rc;
1034 rc = mb86a20s_writereg(state, 0x5f, 0x07);
1036 return rc;
1039 reset_measurement:
1040 /* Reset counter to collect new data */
1041 rc = mb86a20s_readreg(state, 0x5f);
1042 if (rc < 0)
1043 return rc;
1044 val = rc;
1045 rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer));
1046 if (rc < 0)
1047 return rc;
1048 rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer));
1050 return rc;
1053 static int mb86a20s_get_blk_error(struct dvb_frontend *fe,
1054 unsigned layer,
1055 u32 *error, u32 *count)
1057 struct mb86a20s_state *state = fe->demodulator_priv;
1058 int rc, val;
1059 u32 collect_rate;
1060 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1062 if (layer >= NUM_LAYERS)
1063 return -EINVAL;
1065 /* Check if the PER measures are already available */
1066 rc = mb86a20s_writereg(state, 0x50, 0xb8);
1067 if (rc < 0)
1068 return rc;
1069 rc = mb86a20s_readreg(state, 0x51);
1070 if (rc < 0)
1071 return rc;
1073 /* Check if data is available for that layer */
1075 if (!(rc & (1 << layer))) {
1076 dev_dbg(&state->i2c->dev,
1077 "%s: block counts for layer %c aren't available yet.\n",
1078 __func__, 'A' + layer);
1079 return -EBUSY;
1082 /* Read Packet error Count */
1083 rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2);
1084 if (rc < 0)
1085 return rc;
1086 rc = mb86a20s_readreg(state, 0x51);
1087 if (rc < 0)
1088 return rc;
1089 *error = rc << 8;
1090 rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2);
1091 if (rc < 0)
1092 return rc;
1093 rc = mb86a20s_readreg(state, 0x51);
1094 if (rc < 0)
1095 return rc;
1096 *error |= rc;
1097 dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n",
1098 __func__, 'A' + layer, *error);
1100 /* Read Bit Count */
1101 rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1102 if (rc < 0)
1103 return rc;
1104 rc = mb86a20s_readreg(state, 0x51);
1105 if (rc < 0)
1106 return rc;
1107 *count = rc << 8;
1108 rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1109 if (rc < 0)
1110 return rc;
1111 rc = mb86a20s_readreg(state, 0x51);
1112 if (rc < 0)
1113 return rc;
1114 *count |= rc;
1116 dev_dbg(&state->i2c->dev,
1117 "%s: block count for layer %c: %d.\n",
1118 __func__, 'A' + layer, *count);
1121 * As we get TMCC data from the frontend, we can better estimate the
1122 * BER bit counters, in order to do the BER measure during a longer
1123 * time. Use those data, if available, to update the bit count
1124 * measure.
1127 if (!state->estimated_rate[layer])
1128 goto reset_measurement;
1130 collect_rate = state->estimated_rate[layer] / 204 / 8;
1131 if (collect_rate < 32)
1132 collect_rate = 32;
1133 if (collect_rate > 65535)
1134 collect_rate = 65535;
1136 if (collect_rate != *count) {
1137 dev_dbg(&state->i2c->dev,
1138 "%s: updating PER counter on layer %c to %d.\n",
1139 __func__, 'A' + layer, collect_rate);
1141 /* Stop PER measurement */
1142 rc = mb86a20s_writereg(state, 0x50, 0xb0);
1143 if (rc < 0)
1144 return rc;
1145 rc = mb86a20s_writereg(state, 0x51, 0x00);
1146 if (rc < 0)
1147 return rc;
1149 /* Update this layer's counter */
1150 rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1151 if (rc < 0)
1152 return rc;
1153 rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1154 if (rc < 0)
1155 return rc;
1156 rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1157 if (rc < 0)
1158 return rc;
1159 rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1160 if (rc < 0)
1161 return rc;
1163 /* start PER measurement */
1164 rc = mb86a20s_writereg(state, 0x50, 0xb0);
1165 if (rc < 0)
1166 return rc;
1167 rc = mb86a20s_writereg(state, 0x51, 0x07);
1168 if (rc < 0)
1169 return rc;
1171 /* Reset all counters to collect new data */
1172 rc = mb86a20s_writereg(state, 0x50, 0xb1);
1173 if (rc < 0)
1174 return rc;
1175 rc = mb86a20s_writereg(state, 0x51, 0x07);
1176 if (rc < 0)
1177 return rc;
1178 rc = mb86a20s_writereg(state, 0x51, 0x00);
1180 return rc;
1183 reset_measurement:
1184 /* Reset counter to collect new data */
1185 rc = mb86a20s_writereg(state, 0x50, 0xb1);
1186 if (rc < 0)
1187 return rc;
1188 rc = mb86a20s_readreg(state, 0x51);
1189 if (rc < 0)
1190 return rc;
1191 val = rc;
1192 rc = mb86a20s_writereg(state, 0x51, val | (1 << layer));
1193 if (rc < 0)
1194 return rc;
1195 rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer));
1197 return rc;
1200 struct linear_segments {
1201 unsigned x, y;
1205 * All tables below return a dB/1000 measurement
1208 static const struct linear_segments cnr_to_db_table[] = {
1209 { 19648, 0},
1210 { 18187, 1000},
1211 { 16534, 2000},
1212 { 14823, 3000},
1213 { 13161, 4000},
1214 { 11622, 5000},
1215 { 10279, 6000},
1216 { 9089, 7000},
1217 { 8042, 8000},
1218 { 7137, 9000},
1219 { 6342, 10000},
1220 { 5641, 11000},
1221 { 5030, 12000},
1222 { 4474, 13000},
1223 { 3988, 14000},
1224 { 3556, 15000},
1225 { 3180, 16000},
1226 { 2841, 17000},
1227 { 2541, 18000},
1228 { 2276, 19000},
1229 { 2038, 20000},
1230 { 1800, 21000},
1231 { 1625, 22000},
1232 { 1462, 23000},
1233 { 1324, 24000},
1234 { 1175, 25000},
1235 { 1063, 26000},
1236 { 980, 27000},
1237 { 907, 28000},
1238 { 840, 29000},
1239 { 788, 30000},
1242 static const struct linear_segments cnr_64qam_table[] = {
1243 { 3922688, 0},
1244 { 3920384, 1000},
1245 { 3902720, 2000},
1246 { 3894784, 3000},
1247 { 3882496, 4000},
1248 { 3872768, 5000},
1249 { 3858944, 6000},
1250 { 3851520, 7000},
1251 { 3838976, 8000},
1252 { 3829248, 9000},
1253 { 3818240, 10000},
1254 { 3806976, 11000},
1255 { 3791872, 12000},
1256 { 3767040, 13000},
1257 { 3720960, 14000},
1258 { 3637504, 15000},
1259 { 3498496, 16000},
1260 { 3296000, 17000},
1261 { 3031040, 18000},
1262 { 2715392, 19000},
1263 { 2362624, 20000},
1264 { 1963264, 21000},
1265 { 1649664, 22000},
1266 { 1366784, 23000},
1267 { 1120768, 24000},
1268 { 890880, 25000},
1269 { 723456, 26000},
1270 { 612096, 27000},
1271 { 518912, 28000},
1272 { 448256, 29000},
1273 { 388864, 30000},
1276 static const struct linear_segments cnr_16qam_table[] = {
1277 { 5314816, 0},
1278 { 5219072, 1000},
1279 { 5118720, 2000},
1280 { 4998912, 3000},
1281 { 4875520, 4000},
1282 { 4736000, 5000},
1283 { 4604160, 6000},
1284 { 4458752, 7000},
1285 { 4300288, 8000},
1286 { 4092928, 9000},
1287 { 3836160, 10000},
1288 { 3521024, 11000},
1289 { 3155968, 12000},
1290 { 2756864, 13000},
1291 { 2347008, 14000},
1292 { 1955072, 15000},
1293 { 1593600, 16000},
1294 { 1297920, 17000},
1295 { 1043968, 18000},
1296 { 839680, 19000},
1297 { 672256, 20000},
1298 { 523008, 21000},
1299 { 424704, 22000},
1300 { 345088, 23000},
1301 { 280064, 24000},
1302 { 221440, 25000},
1303 { 179712, 26000},
1304 { 151040, 27000},
1305 { 128512, 28000},
1306 { 110080, 29000},
1307 { 95744, 30000},
1310 static const struct linear_segments cnr_qpsk_table[] = {
1311 { 2834176, 0},
1312 { 2683648, 1000},
1313 { 2536960, 2000},
1314 { 2391808, 3000},
1315 { 2133248, 4000},
1316 { 1906176, 5000},
1317 { 1666560, 6000},
1318 { 1422080, 7000},
1319 { 1189632, 8000},
1320 { 976384, 9000},
1321 { 790272, 10000},
1322 { 633344, 11000},
1323 { 505600, 12000},
1324 { 402944, 13000},
1325 { 320768, 14000},
1326 { 255488, 15000},
1327 { 204032, 16000},
1328 { 163072, 17000},
1329 { 130304, 18000},
1330 { 105216, 19000},
1331 { 83456, 20000},
1332 { 65024, 21000},
1333 { 52480, 22000},
1334 { 42752, 23000},
1335 { 34560, 24000},
1336 { 27136, 25000},
1337 { 22016, 26000},
1338 { 18432, 27000},
1339 { 15616, 28000},
1340 { 13312, 29000},
1341 { 11520, 30000},
1344 static u32 interpolate_value(u32 value, const struct linear_segments *segments,
1345 unsigned len)
1347 u64 tmp64;
1348 u32 dx, dy;
1349 int i, ret;
1351 if (value >= segments[0].x)
1352 return segments[0].y;
1353 if (value < segments[len-1].x)
1354 return segments[len-1].y;
1356 for (i = 1; i < len - 1; i++) {
1357 /* If value is identical, no need to interpolate */
1358 if (value == segments[i].x)
1359 return segments[i].y;
1360 if (value > segments[i].x)
1361 break;
1364 /* Linear interpolation between the two (x,y) points */
1365 dy = segments[i].y - segments[i - 1].y;
1366 dx = segments[i - 1].x - segments[i].x;
1367 tmp64 = value - segments[i].x;
1368 tmp64 *= dy;
1369 do_div(tmp64, dx);
1370 ret = segments[i].y - tmp64;
1372 return ret;
1375 static int mb86a20s_get_main_CNR(struct dvb_frontend *fe)
1377 struct mb86a20s_state *state = fe->demodulator_priv;
1378 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1379 u32 cnr_linear, cnr;
1380 int rc, val;
1382 /* Check if CNR is available */
1383 rc = mb86a20s_readreg(state, 0x45);
1384 if (rc < 0)
1385 return rc;
1387 if (!(rc & 0x40)) {
1388 dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n",
1389 __func__);
1390 return -EBUSY;
1392 val = rc;
1394 rc = mb86a20s_readreg(state, 0x46);
1395 if (rc < 0)
1396 return rc;
1397 cnr_linear = rc << 8;
1399 rc = mb86a20s_readreg(state, 0x46);
1400 if (rc < 0)
1401 return rc;
1402 cnr_linear |= rc;
1404 cnr = interpolate_value(cnr_linear,
1405 cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table));
1407 c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1408 c->cnr.stat[0].svalue = cnr;
1410 dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n",
1411 __func__, cnr / 1000, cnr % 1000, cnr_linear);
1413 /* CNR counter reset */
1414 rc = mb86a20s_writereg(state, 0x45, val | 0x10);
1415 if (rc < 0)
1416 return rc;
1417 rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
1419 return rc;
1422 static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe)
1424 struct mb86a20s_state *state = fe->demodulator_priv;
1425 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1426 u32 mer, cnr;
1427 int rc, val, layer;
1428 const struct linear_segments *segs;
1429 unsigned segs_len;
1431 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1433 /* Check if the measures are already available */
1434 rc = mb86a20s_writereg(state, 0x50, 0x5b);
1435 if (rc < 0)
1436 return rc;
1437 rc = mb86a20s_readreg(state, 0x51);
1438 if (rc < 0)
1439 return rc;
1441 /* Check if data is available */
1442 if (!(rc & 0x01)) {
1443 dev_dbg(&state->i2c->dev,
1444 "%s: MER measures aren't available yet.\n", __func__);
1445 return -EBUSY;
1448 /* Read all layers */
1449 for (layer = 0; layer < NUM_LAYERS; layer++) {
1450 if (!(c->isdbt_layer_enabled & (1 << layer))) {
1451 c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1452 continue;
1455 rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3);
1456 if (rc < 0)
1457 return rc;
1458 rc = mb86a20s_readreg(state, 0x51);
1459 if (rc < 0)
1460 return rc;
1461 mer = rc << 16;
1462 rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3);
1463 if (rc < 0)
1464 return rc;
1465 rc = mb86a20s_readreg(state, 0x51);
1466 if (rc < 0)
1467 return rc;
1468 mer |= rc << 8;
1469 rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3);
1470 if (rc < 0)
1471 return rc;
1472 rc = mb86a20s_readreg(state, 0x51);
1473 if (rc < 0)
1474 return rc;
1475 mer |= rc;
1477 switch (c->layer[layer].modulation) {
1478 case DQPSK:
1479 case QPSK:
1480 segs = cnr_qpsk_table;
1481 segs_len = ARRAY_SIZE(cnr_qpsk_table);
1482 break;
1483 case QAM_16:
1484 segs = cnr_16qam_table;
1485 segs_len = ARRAY_SIZE(cnr_16qam_table);
1486 break;
1487 default:
1488 case QAM_64:
1489 segs = cnr_64qam_table;
1490 segs_len = ARRAY_SIZE(cnr_64qam_table);
1491 break;
1493 cnr = interpolate_value(mer, segs, segs_len);
1495 c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL;
1496 c->cnr.stat[1 + layer].svalue = cnr;
1498 dev_dbg(&state->i2c->dev,
1499 "%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
1500 __func__, 'A' + layer, cnr / 1000, cnr % 1000, mer);
1504 /* Start a new MER measurement */
1505 /* MER counter reset */
1506 rc = mb86a20s_writereg(state, 0x50, 0x50);
1507 if (rc < 0)
1508 return rc;
1509 rc = mb86a20s_readreg(state, 0x51);
1510 if (rc < 0)
1511 return rc;
1512 val = rc;
1514 rc = mb86a20s_writereg(state, 0x51, val | 0x01);
1515 if (rc < 0)
1516 return rc;
1517 rc = mb86a20s_writereg(state, 0x51, val & 0x06);
1518 if (rc < 0)
1519 return rc;
1521 return 0;
1524 static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
1526 struct mb86a20s_state *state = fe->demodulator_priv;
1527 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1528 int layer;
1530 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1532 /* Fill the length of each status counter */
1534 /* Only global stats */
1535 c->strength.len = 1;
1537 /* Per-layer stats - 3 layers + global */
1538 c->cnr.len = NUM_LAYERS + 1;
1539 c->pre_bit_error.len = NUM_LAYERS + 1;
1540 c->pre_bit_count.len = NUM_LAYERS + 1;
1541 c->post_bit_error.len = NUM_LAYERS + 1;
1542 c->post_bit_count.len = NUM_LAYERS + 1;
1543 c->block_error.len = NUM_LAYERS + 1;
1544 c->block_count.len = NUM_LAYERS + 1;
1546 /* Signal is always available */
1547 c->strength.stat[0].scale = FE_SCALE_RELATIVE;
1548 c->strength.stat[0].uvalue = 0;
1550 /* Put all of them at FE_SCALE_NOT_AVAILABLE */
1551 for (layer = 0; layer < NUM_LAYERS + 1; layer++) {
1552 c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1553 c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1554 c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1555 c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1556 c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1557 c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1558 c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1562 static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr)
1564 struct mb86a20s_state *state = fe->demodulator_priv;
1565 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1566 int rc = 0, layer;
1567 u32 bit_error = 0, bit_count = 0;
1568 u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
1569 u32 t_post_bit_error = 0, t_post_bit_count = 0;
1570 u32 block_error = 0, block_count = 0;
1571 u32 t_block_error = 0, t_block_count = 0;
1572 int active_layers = 0, pre_ber_layers = 0, post_ber_layers = 0;
1573 int per_layers = 0;
1575 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1577 mb86a20s_get_main_CNR(fe);
1579 /* Get per-layer stats */
1580 mb86a20s_get_blk_error_layer_CNR(fe);
1583 * At state 7, only CNR is available
1584 * For BER measures, state=9 is required
1585 * FIXME: we may get MER measures with state=8
1587 if (status_nr < 9)
1588 return 0;
1590 for (layer = 0; layer < NUM_LAYERS; layer++) {
1591 if (c->isdbt_layer_enabled & (1 << layer)) {
1592 /* Layer is active and has rc segments */
1593 active_layers++;
1595 /* Handle BER before vterbi */
1596 rc = mb86a20s_get_pre_ber(fe, layer,
1597 &bit_error, &bit_count);
1598 if (rc >= 0) {
1599 c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1600 c->pre_bit_error.stat[1 + layer].uvalue += bit_error;
1601 c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1602 c->pre_bit_count.stat[1 + layer].uvalue += bit_count;
1603 } else if (rc != -EBUSY) {
1605 * If an I/O error happened,
1606 * measures are now unavailable
1608 c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1609 c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1610 dev_err(&state->i2c->dev,
1611 "%s: Can't get BER for layer %c (error %d).\n",
1612 __func__, 'A' + layer, rc);
1614 if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1615 pre_ber_layers++;
1617 /* Handle BER post vterbi */
1618 rc = mb86a20s_get_post_ber(fe, layer,
1619 &bit_error, &bit_count);
1620 if (rc >= 0) {
1621 c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1622 c->post_bit_error.stat[1 + layer].uvalue += bit_error;
1623 c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1624 c->post_bit_count.stat[1 + layer].uvalue += bit_count;
1625 } else if (rc != -EBUSY) {
1627 * If an I/O error happened,
1628 * measures are now unavailable
1630 c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1631 c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1632 dev_err(&state->i2c->dev,
1633 "%s: Can't get BER for layer %c (error %d).\n",
1634 __func__, 'A' + layer, rc);
1636 if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1637 post_ber_layers++;
1639 /* Handle Block errors for PER/UCB reports */
1640 rc = mb86a20s_get_blk_error(fe, layer,
1641 &block_error,
1642 &block_count);
1643 if (rc >= 0) {
1644 c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1645 c->block_error.stat[1 + layer].uvalue += block_error;
1646 c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1647 c->block_count.stat[1 + layer].uvalue += block_count;
1648 } else if (rc != -EBUSY) {
1650 * If an I/O error happened,
1651 * measures are now unavailable
1653 c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1654 c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1655 dev_err(&state->i2c->dev,
1656 "%s: Can't get PER for layer %c (error %d).\n",
1657 __func__, 'A' + layer, rc);
1660 if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1661 per_layers++;
1663 /* Update total preBER */
1664 t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue;
1665 t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue;
1667 /* Update total postBER */
1668 t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue;
1669 t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue;
1671 /* Update total PER */
1672 t_block_error += c->block_error.stat[1 + layer].uvalue;
1673 t_block_count += c->block_count.stat[1 + layer].uvalue;
1678 * Start showing global count if at least one error count is
1679 * available.
1681 if (pre_ber_layers) {
1683 * At least one per-layer BER measure was read. We can now
1684 * calculate the total BER
1686 * Total Bit Error/Count is calculated as the sum of the
1687 * bit errors on all active layers.
1689 c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1690 c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
1691 c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1692 c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
1693 } else {
1694 c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1695 c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1699 * Start showing global count if at least one error count is
1700 * available.
1702 if (post_ber_layers) {
1704 * At least one per-layer BER measure was read. We can now
1705 * calculate the total BER
1707 * Total Bit Error/Count is calculated as the sum of the
1708 * bit errors on all active layers.
1710 c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1711 c->post_bit_error.stat[0].uvalue = t_post_bit_error;
1712 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1713 c->post_bit_count.stat[0].uvalue = t_post_bit_count;
1714 } else {
1715 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1716 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1719 if (per_layers) {
1721 * At least one per-layer UCB measure was read. We can now
1722 * calculate the total UCB
1724 * Total block Error/Count is calculated as the sum of the
1725 * block errors on all active layers.
1727 c->block_error.stat[0].scale = FE_SCALE_COUNTER;
1728 c->block_error.stat[0].uvalue = t_block_error;
1729 c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1730 c->block_count.stat[0].uvalue = t_block_count;
1731 } else {
1732 c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1733 c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1736 return rc;
1740 * The functions below are called via DVB callbacks, so they need to
1741 * properly use the I2C gate control
1744 static int mb86a20s_initfe(struct dvb_frontend *fe)
1746 struct mb86a20s_state *state = fe->demodulator_priv;
1747 u64 pll;
1748 u32 fclk;
1749 int rc;
1750 u8 regD5 = 1, reg71, reg09 = 0x3a;
1752 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1754 if (fe->ops.i2c_gate_ctrl)
1755 fe->ops.i2c_gate_ctrl(fe, 0);
1757 /* Initialize the frontend */
1758 rc = mb86a20s_writeregdata(state, mb86a20s_init1);
1759 if (rc < 0)
1760 goto err;
1762 if (!state->inversion)
1763 reg09 |= 0x04;
1764 rc = mb86a20s_writereg(state, 0x09, reg09);
1765 if (rc < 0)
1766 goto err;
1767 if (!state->bw)
1768 reg71 = 1;
1769 else
1770 reg71 = 0;
1771 rc = mb86a20s_writereg(state, 0x39, reg71);
1772 if (rc < 0)
1773 goto err;
1774 rc = mb86a20s_writereg(state, 0x71, state->bw);
1775 if (rc < 0)
1776 goto err;
1777 if (state->subchannel) {
1778 rc = mb86a20s_writereg(state, 0x44, state->subchannel);
1779 if (rc < 0)
1780 goto err;
1783 fclk = state->config->fclk;
1784 if (!fclk)
1785 fclk = 32571428;
1787 /* Adjust IF frequency to match tuner */
1788 if (fe->ops.tuner_ops.get_if_frequency)
1789 fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq);
1791 if (!state->if_freq)
1792 state->if_freq = 3300000;
1794 pll = (((u64)1) << 34) * state->if_freq;
1795 do_div(pll, 63 * fclk);
1796 pll = (1 << 25) - pll;
1797 rc = mb86a20s_writereg(state, 0x28, 0x2a);
1798 if (rc < 0)
1799 goto err;
1800 rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1801 if (rc < 0)
1802 goto err;
1803 rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1804 if (rc < 0)
1805 goto err;
1806 rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1807 if (rc < 0)
1808 goto err;
1809 dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n",
1810 __func__, fclk, state->if_freq, (long long)pll);
1812 /* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */
1813 pll = state->if_freq * 1677721600L;
1814 do_div(pll, 1628571429L);
1815 rc = mb86a20s_writereg(state, 0x28, 0x20);
1816 if (rc < 0)
1817 goto err;
1818 rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1819 if (rc < 0)
1820 goto err;
1821 rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1822 if (rc < 0)
1823 goto err;
1824 rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1825 if (rc < 0)
1826 goto err;
1827 dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n",
1828 __func__, state->if_freq, (long long)pll);
1830 if (!state->config->is_serial)
1831 regD5 &= ~1;
1833 rc = mb86a20s_writereg(state, 0x50, 0xd5);
1834 if (rc < 0)
1835 goto err;
1836 rc = mb86a20s_writereg(state, 0x51, regD5);
1837 if (rc < 0)
1838 goto err;
1840 rc = mb86a20s_writeregdata(state, mb86a20s_init2);
1841 if (rc < 0)
1842 goto err;
1845 err:
1846 if (fe->ops.i2c_gate_ctrl)
1847 fe->ops.i2c_gate_ctrl(fe, 1);
1849 if (rc < 0) {
1850 state->need_init = true;
1851 dev_info(&state->i2c->dev,
1852 "mb86a20s: Init failed. Will try again later\n");
1853 } else {
1854 state->need_init = false;
1855 dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
1857 return rc;
1860 static int mb86a20s_set_frontend(struct dvb_frontend *fe)
1862 struct mb86a20s_state *state = fe->demodulator_priv;
1863 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1864 int rc, if_freq;
1865 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1867 if (!c->isdbt_layer_enabled)
1868 c->isdbt_layer_enabled = 7;
1870 if (c->isdbt_layer_enabled == 1)
1871 state->bw = MB86A20S_1SEG;
1872 else if (c->isdbt_partial_reception)
1873 state->bw = MB86A20S_13SEG_PARTIAL;
1874 else
1875 state->bw = MB86A20S_13SEG;
1877 if (c->inversion == INVERSION_ON)
1878 state->inversion = true;
1879 else
1880 state->inversion = false;
1882 if (!c->isdbt_sb_mode) {
1883 state->subchannel = 0;
1884 } else {
1885 if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel))
1886 c->isdbt_sb_subchannel = 0;
1888 state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel];
1892 * Gate should already be opened, but it doesn't hurt to
1893 * double-check
1895 if (fe->ops.i2c_gate_ctrl)
1896 fe->ops.i2c_gate_ctrl(fe, 1);
1897 fe->ops.tuner_ops.set_params(fe);
1899 if (fe->ops.tuner_ops.get_if_frequency)
1900 fe->ops.tuner_ops.get_if_frequency(fe, &if_freq);
1903 * Make it more reliable: if, for some reason, the initial
1904 * device initialization doesn't happen, initialize it when
1905 * a SBTVD parameters are adjusted.
1907 * Unfortunately, due to a hard to track bug at tda829x/tda18271,
1908 * the agc callback logic is not called during DVB attach time,
1909 * causing mb86a20s to not be initialized with Kworld SBTVD.
1910 * So, this hack is needed, in order to make Kworld SBTVD to work.
1912 * It is also needed to change the IF after the initial init.
1914 * HACK: Always init the frontend when set_frontend is called:
1915 * it was noticed that, on some devices, it fails to lock on a
1916 * different channel. So, it is better to reset everything, even
1917 * wasting some time, than to loose channel lock.
1919 mb86a20s_initfe(fe);
1921 if (fe->ops.i2c_gate_ctrl)
1922 fe->ops.i2c_gate_ctrl(fe, 0);
1924 rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
1925 mb86a20s_reset_counters(fe);
1926 mb86a20s_stats_not_ready(fe);
1928 if (fe->ops.i2c_gate_ctrl)
1929 fe->ops.i2c_gate_ctrl(fe, 1);
1931 return rc;
1934 static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
1935 enum fe_status *status)
1937 struct mb86a20s_state *state = fe->demodulator_priv;
1938 int rc, status_nr;
1940 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1942 if (fe->ops.i2c_gate_ctrl)
1943 fe->ops.i2c_gate_ctrl(fe, 0);
1945 /* Get lock */
1946 status_nr = mb86a20s_read_status(fe, status);
1947 if (status_nr < 7) {
1948 mb86a20s_stats_not_ready(fe);
1949 mb86a20s_reset_frontend_cache(fe);
1951 if (status_nr < 0) {
1952 dev_err(&state->i2c->dev,
1953 "%s: Can't read frontend lock status\n", __func__);
1954 rc = status_nr;
1955 goto error;
1958 /* Get signal strength */
1959 rc = mb86a20s_read_signal_strength(fe);
1960 if (rc < 0) {
1961 dev_err(&state->i2c->dev,
1962 "%s: Can't reset VBER registers.\n", __func__);
1963 mb86a20s_stats_not_ready(fe);
1964 mb86a20s_reset_frontend_cache(fe);
1966 rc = 0; /* Status is OK */
1967 goto error;
1970 if (status_nr >= 7) {
1971 /* Get TMCC info*/
1972 rc = mb86a20s_get_frontend(fe);
1973 if (rc < 0) {
1974 dev_err(&state->i2c->dev,
1975 "%s: Can't get FE TMCC data.\n", __func__);
1976 rc = 0; /* Status is OK */
1977 goto error;
1980 /* Get statistics */
1981 rc = mb86a20s_get_stats(fe, status_nr);
1982 if (rc < 0 && rc != -EBUSY) {
1983 dev_err(&state->i2c->dev,
1984 "%s: Can't get FE statistics.\n", __func__);
1985 rc = 0;
1986 goto error;
1988 rc = 0; /* Don't return EBUSY to userspace */
1990 goto ok;
1992 error:
1993 mb86a20s_stats_not_ready(fe);
1996 if (fe->ops.i2c_gate_ctrl)
1997 fe->ops.i2c_gate_ctrl(fe, 1);
1999 return rc;
2002 static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
2003 u16 *strength)
2005 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2008 *strength = c->strength.stat[0].uvalue;
2010 return 0;
2013 static int mb86a20s_tune(struct dvb_frontend *fe,
2014 bool re_tune,
2015 unsigned int mode_flags,
2016 unsigned int *delay,
2017 enum fe_status *status)
2019 struct mb86a20s_state *state = fe->demodulator_priv;
2020 int rc = 0;
2022 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2024 if (re_tune)
2025 rc = mb86a20s_set_frontend(fe);
2027 if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
2028 mb86a20s_read_status_and_stats(fe, status);
2030 return rc;
2033 static void mb86a20s_release(struct dvb_frontend *fe)
2035 struct mb86a20s_state *state = fe->demodulator_priv;
2037 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2039 kfree(state);
2042 static enum dvbfe_algo mb86a20s_get_frontend_algo(struct dvb_frontend *fe)
2044 return DVBFE_ALGO_HW;
2047 static const struct dvb_frontend_ops mb86a20s_ops;
2049 struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
2050 struct i2c_adapter *i2c)
2052 struct mb86a20s_state *state;
2053 u8 rev;
2055 dev_dbg(&i2c->dev, "%s called.\n", __func__);
2057 /* allocate memory for the internal state */
2058 state = kzalloc(sizeof(*state), GFP_KERNEL);
2059 if (!state)
2060 return NULL;
2062 /* setup the state */
2063 state->config = config;
2064 state->i2c = i2c;
2066 /* create dvb_frontend */
2067 memcpy(&state->frontend.ops, &mb86a20s_ops,
2068 sizeof(struct dvb_frontend_ops));
2069 state->frontend.demodulator_priv = state;
2071 /* Check if it is a mb86a20s frontend */
2072 rev = mb86a20s_readreg(state, 0);
2073 if (rev != 0x13) {
2074 kfree(state);
2075 dev_dbg(&i2c->dev,
2076 "Frontend revision %d is unknown - aborting.\n",
2077 rev);
2078 return NULL;
2081 dev_info(&i2c->dev, "Detected a Fujitsu mb86a20s frontend\n");
2082 return &state->frontend;
2084 EXPORT_SYMBOL(mb86a20s_attach);
2086 static const struct dvb_frontend_ops mb86a20s_ops = {
2087 .delsys = { SYS_ISDBT },
2088 /* Use dib8000 values per default */
2089 .info = {
2090 .name = "Fujitsu mb86A20s",
2091 .caps = FE_CAN_RECOVER |
2092 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
2093 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
2094 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2095 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO |
2096 FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO,
2097 /* Actually, those values depend on the used tuner */
2098 .frequency_min_hz = 45 * MHz,
2099 .frequency_max_hz = 864 * MHz,
2100 .frequency_stepsize_hz = 62500,
2103 .release = mb86a20s_release,
2105 .init = mb86a20s_initfe,
2106 .set_frontend = mb86a20s_set_frontend,
2107 .read_status = mb86a20s_read_status_and_stats,
2108 .read_signal_strength = mb86a20s_read_signal_strength_from_cache,
2109 .tune = mb86a20s_tune,
2110 .get_frontend_algo = mb86a20s_get_frontend_algo,
2113 MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
2114 MODULE_AUTHOR("Mauro Carvalho Chehab");
2115 MODULE_LICENSE("GPL");