2 * Common Flash Interface support:
3 * Intel Extended Vendor Command Set (ID 0x0001)
5 * (C) 2000 Red Hat. GPL'd
8 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net>
9 * - completely revamped method functions so they are aware and
10 * independent of the flash geometry (buswidth, interleave, etc.)
11 * - scalability vs code size is completely set at compile-time
12 * (see include/linux/mtd/cfi.h for selection)
13 * - optimized write buffer method
14 * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
15 * - reworked lock/unlock/erase support for var size flash
16 * 21/03/2007 Rodolfo Giometti <giometti@linux.it>
17 * - auto unlock sectors on resume for auto locking flash on power up
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
25 #include <asm/byteorder.h>
27 #include <linux/errno.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/reboot.h>
32 #include <linux/bitmap.h>
33 #include <linux/mtd/xip.h>
34 #include <linux/mtd/map.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/cfi.h>
38 /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
39 /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
41 // debugging, turns off buffer write mode if set to 1
42 #define FORCE_WORD_WRITE 0
45 #define I82802AB 0x00ad
46 #define I82802AC 0x00ac
47 #define PF38F4476 0x881c
48 #define M28F00AP30 0x8963
49 /* STMicroelectronics chips */
50 #define M50LPW080 0x002F
51 #define M50FLW080A 0x0080
52 #define M50FLW080B 0x0081
54 #define AT49BV640D 0x02de
55 #define AT49BV640DT 0x02db
57 #define LH28F640BFHE_PTTL90 0x00b0
58 #define LH28F640BFHE_PBTL90 0x00b1
59 #define LH28F640BFHE_PTTL70A 0x00b2
60 #define LH28F640BFHE_PBTL70A 0x00b3
62 static int cfi_intelext_read (struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
63 static int cfi_intelext_write_words(struct mtd_info
*, loff_t
, size_t, size_t *, const u_char
*);
64 static int cfi_intelext_write_buffers(struct mtd_info
*, loff_t
, size_t, size_t *, const u_char
*);
65 static int cfi_intelext_writev(struct mtd_info
*, const struct kvec
*, unsigned long, loff_t
, size_t *);
66 static int cfi_intelext_erase_varsize(struct mtd_info
*, struct erase_info
*);
67 static void cfi_intelext_sync (struct mtd_info
*);
68 static int cfi_intelext_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
69 static int cfi_intelext_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
70 static int cfi_intelext_is_locked(struct mtd_info
*mtd
, loff_t ofs
,
73 static int cfi_intelext_read_fact_prot_reg (struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
74 static int cfi_intelext_read_user_prot_reg (struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
75 static int cfi_intelext_write_user_prot_reg (struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
76 static int cfi_intelext_lock_user_prot_reg (struct mtd_info
*, loff_t
, size_t);
77 static int cfi_intelext_get_fact_prot_info(struct mtd_info
*, size_t,
78 size_t *, struct otp_info
*);
79 static int cfi_intelext_get_user_prot_info(struct mtd_info
*, size_t,
80 size_t *, struct otp_info
*);
82 static int cfi_intelext_suspend (struct mtd_info
*);
83 static void cfi_intelext_resume (struct mtd_info
*);
84 static int cfi_intelext_reboot (struct notifier_block
*, unsigned long, void *);
86 static void cfi_intelext_destroy(struct mtd_info
*);
88 struct mtd_info
*cfi_cmdset_0001(struct map_info
*, int);
90 static struct mtd_info
*cfi_intelext_setup (struct mtd_info
*);
91 static int cfi_intelext_partition_fixup(struct mtd_info
*, struct cfi_private
**);
93 static int cfi_intelext_point (struct mtd_info
*mtd
, loff_t from
, size_t len
,
94 size_t *retlen
, void **virt
, resource_size_t
*phys
);
95 static int cfi_intelext_unpoint(struct mtd_info
*mtd
, loff_t from
, size_t len
);
97 static int chip_ready (struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int mode
);
98 static int get_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int mode
);
99 static void put_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
);
100 #include "fwh_lock.h"
105 * *********** SETUP AND PROBE BITS ***********
108 static struct mtd_chip_driver cfi_intelext_chipdrv
= {
109 .probe
= NULL
, /* Not usable directly */
110 .destroy
= cfi_intelext_destroy
,
111 .name
= "cfi_cmdset_0001",
112 .module
= THIS_MODULE
115 /* #define DEBUG_LOCK_BITS */
116 /* #define DEBUG_CFI_FEATURES */
118 #ifdef DEBUG_CFI_FEATURES
119 static void cfi_tell_features(struct cfi_pri_intelext
*extp
)
122 printk(" Extended Query version %c.%c\n", extp
->MajorVersion
, extp
->MinorVersion
);
123 printk(" Feature/Command Support: %4.4X\n", extp
->FeatureSupport
);
124 printk(" - Chip Erase: %s\n", extp
->FeatureSupport
&1?"supported":"unsupported");
125 printk(" - Suspend Erase: %s\n", extp
->FeatureSupport
&2?"supported":"unsupported");
126 printk(" - Suspend Program: %s\n", extp
->FeatureSupport
&4?"supported":"unsupported");
127 printk(" - Legacy Lock/Unlock: %s\n", extp
->FeatureSupport
&8?"supported":"unsupported");
128 printk(" - Queued Erase: %s\n", extp
->FeatureSupport
&16?"supported":"unsupported");
129 printk(" - Instant block lock: %s\n", extp
->FeatureSupport
&32?"supported":"unsupported");
130 printk(" - Protection Bits: %s\n", extp
->FeatureSupport
&64?"supported":"unsupported");
131 printk(" - Page-mode read: %s\n", extp
->FeatureSupport
&128?"supported":"unsupported");
132 printk(" - Synchronous read: %s\n", extp
->FeatureSupport
&256?"supported":"unsupported");
133 printk(" - Simultaneous operations: %s\n", extp
->FeatureSupport
&512?"supported":"unsupported");
134 printk(" - Extended Flash Array: %s\n", extp
->FeatureSupport
&1024?"supported":"unsupported");
135 for (i
=11; i
<32; i
++) {
136 if (extp
->FeatureSupport
& (1<<i
))
137 printk(" - Unknown Bit %X: supported\n", i
);
140 printk(" Supported functions after Suspend: %2.2X\n", extp
->SuspendCmdSupport
);
141 printk(" - Program after Erase Suspend: %s\n", extp
->SuspendCmdSupport
&1?"supported":"unsupported");
142 for (i
=1; i
<8; i
++) {
143 if (extp
->SuspendCmdSupport
& (1<<i
))
144 printk(" - Unknown Bit %X: supported\n", i
);
147 printk(" Block Status Register Mask: %4.4X\n", extp
->BlkStatusRegMask
);
148 printk(" - Lock Bit Active: %s\n", extp
->BlkStatusRegMask
&1?"yes":"no");
149 printk(" - Lock-Down Bit Active: %s\n", extp
->BlkStatusRegMask
&2?"yes":"no");
150 for (i
=2; i
<3; i
++) {
151 if (extp
->BlkStatusRegMask
& (1<<i
))
152 printk(" - Unknown Bit %X Active: yes\n",i
);
154 printk(" - EFA Lock Bit: %s\n", extp
->BlkStatusRegMask
&16?"yes":"no");
155 printk(" - EFA Lock-Down Bit: %s\n", extp
->BlkStatusRegMask
&32?"yes":"no");
156 for (i
=6; i
<16; i
++) {
157 if (extp
->BlkStatusRegMask
& (1<<i
))
158 printk(" - Unknown Bit %X Active: yes\n",i
);
161 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
162 extp
->VccOptimal
>> 4, extp
->VccOptimal
& 0xf);
163 if (extp
->VppOptimal
)
164 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
165 extp
->VppOptimal
>> 4, extp
->VppOptimal
& 0xf);
169 /* Atmel chips don't use the same PRI format as Intel chips */
170 static void fixup_convert_atmel_pri(struct mtd_info
*mtd
)
172 struct map_info
*map
= mtd
->priv
;
173 struct cfi_private
*cfi
= map
->fldrv_priv
;
174 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
175 struct cfi_pri_atmel atmel_pri
;
176 uint32_t features
= 0;
178 /* Reverse byteswapping */
179 extp
->FeatureSupport
= cpu_to_le32(extp
->FeatureSupport
);
180 extp
->BlkStatusRegMask
= cpu_to_le16(extp
->BlkStatusRegMask
);
181 extp
->ProtRegAddr
= cpu_to_le16(extp
->ProtRegAddr
);
183 memcpy(&atmel_pri
, extp
, sizeof(atmel_pri
));
184 memset((char *)extp
+ 5, 0, sizeof(*extp
) - 5);
186 printk(KERN_ERR
"atmel Features: %02x\n", atmel_pri
.Features
);
188 if (atmel_pri
.Features
& 0x01) /* chip erase supported */
190 if (atmel_pri
.Features
& 0x02) /* erase suspend supported */
192 if (atmel_pri
.Features
& 0x04) /* program suspend supported */
194 if (atmel_pri
.Features
& 0x08) /* simultaneous operations supported */
196 if (atmel_pri
.Features
& 0x20) /* page mode read supported */
198 if (atmel_pri
.Features
& 0x40) /* queued erase supported */
200 if (atmel_pri
.Features
& 0x80) /* Protection bits supported */
203 extp
->FeatureSupport
= features
;
205 /* burst write mode not supported */
206 cfi
->cfiq
->BufWriteTimeoutTyp
= 0;
207 cfi
->cfiq
->BufWriteTimeoutMax
= 0;
210 static void fixup_at49bv640dx_lock(struct mtd_info
*mtd
)
212 struct map_info
*map
= mtd
->priv
;
213 struct cfi_private
*cfi
= map
->fldrv_priv
;
214 struct cfi_pri_intelext
*cfip
= cfi
->cmdset_priv
;
216 cfip
->FeatureSupport
|= (1 << 5);
217 mtd
->flags
|= MTD_POWERUP_LOCK
;
220 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
221 /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
222 static void fixup_intel_strataflash(struct mtd_info
*mtd
)
224 struct map_info
*map
= mtd
->priv
;
225 struct cfi_private
*cfi
= map
->fldrv_priv
;
226 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
228 printk(KERN_WARNING
"cfi_cmdset_0001: Suspend "
229 "erase on write disabled.\n");
230 extp
->SuspendCmdSupport
&= ~1;
234 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
235 static void fixup_no_write_suspend(struct mtd_info
*mtd
)
237 struct map_info
*map
= mtd
->priv
;
238 struct cfi_private
*cfi
= map
->fldrv_priv
;
239 struct cfi_pri_intelext
*cfip
= cfi
->cmdset_priv
;
241 if (cfip
&& (cfip
->FeatureSupport
&4)) {
242 cfip
->FeatureSupport
&= ~4;
243 printk(KERN_WARNING
"cfi_cmdset_0001: write suspend disabled\n");
248 static void fixup_st_m28w320ct(struct mtd_info
*mtd
)
250 struct map_info
*map
= mtd
->priv
;
251 struct cfi_private
*cfi
= map
->fldrv_priv
;
253 cfi
->cfiq
->BufWriteTimeoutTyp
= 0; /* Not supported */
254 cfi
->cfiq
->BufWriteTimeoutMax
= 0; /* Not supported */
257 static void fixup_st_m28w320cb(struct mtd_info
*mtd
)
259 struct map_info
*map
= mtd
->priv
;
260 struct cfi_private
*cfi
= map
->fldrv_priv
;
262 /* Note this is done after the region info is endian swapped */
263 cfi
->cfiq
->EraseRegionInfo
[1] =
264 (cfi
->cfiq
->EraseRegionInfo
[1] & 0xffff0000) | 0x3e;
267 static int is_LH28F640BF(struct cfi_private
*cfi
)
269 /* Sharp LH28F640BF Family */
270 if (cfi
->mfr
== CFI_MFR_SHARP
&& (
271 cfi
->id
== LH28F640BFHE_PTTL90
|| cfi
->id
== LH28F640BFHE_PBTL90
||
272 cfi
->id
== LH28F640BFHE_PTTL70A
|| cfi
->id
== LH28F640BFHE_PBTL70A
))
277 static void fixup_LH28F640BF(struct mtd_info
*mtd
)
279 struct map_info
*map
= mtd
->priv
;
280 struct cfi_private
*cfi
= map
->fldrv_priv
;
281 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
283 /* Reset the Partition Configuration Register on LH28F640BF
284 * to a single partition (PCR = 0x000): PCR is embedded into A0-A15. */
285 if (is_LH28F640BF(cfi
)) {
286 printk(KERN_INFO
"Reset Partition Config. Register: 1 Partition of 4 planes\n");
287 map_write(map
, CMD(0x60), 0);
288 map_write(map
, CMD(0x04), 0);
290 /* We have set one single partition thus
291 * Simultaneous Operations are not allowed */
292 printk(KERN_INFO
"cfi_cmdset_0001: Simultaneous Operations disabled\n");
293 extp
->FeatureSupport
&= ~512;
297 static void fixup_use_point(struct mtd_info
*mtd
)
299 struct map_info
*map
= mtd
->priv
;
300 if (!mtd
->_point
&& map_is_linear(map
)) {
301 mtd
->_point
= cfi_intelext_point
;
302 mtd
->_unpoint
= cfi_intelext_unpoint
;
306 static void fixup_use_write_buffers(struct mtd_info
*mtd
)
308 struct map_info
*map
= mtd
->priv
;
309 struct cfi_private
*cfi
= map
->fldrv_priv
;
310 if (cfi
->cfiq
->BufWriteTimeoutTyp
) {
311 printk(KERN_INFO
"Using buffer write method\n" );
312 mtd
->_write
= cfi_intelext_write_buffers
;
313 mtd
->_writev
= cfi_intelext_writev
;
318 * Some chips power-up with all sectors locked by default.
320 static void fixup_unlock_powerup_lock(struct mtd_info
*mtd
)
322 struct map_info
*map
= mtd
->priv
;
323 struct cfi_private
*cfi
= map
->fldrv_priv
;
324 struct cfi_pri_intelext
*cfip
= cfi
->cmdset_priv
;
326 if (cfip
->FeatureSupport
&32) {
327 printk(KERN_INFO
"Using auto-unlock on power-up/resume\n" );
328 mtd
->flags
|= MTD_POWERUP_LOCK
;
332 static struct cfi_fixup cfi_fixup_table
[] = {
333 { CFI_MFR_ATMEL
, CFI_ID_ANY
, fixup_convert_atmel_pri
},
334 { CFI_MFR_ATMEL
, AT49BV640D
, fixup_at49bv640dx_lock
},
335 { CFI_MFR_ATMEL
, AT49BV640DT
, fixup_at49bv640dx_lock
},
336 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
337 { CFI_MFR_ANY
, CFI_ID_ANY
, fixup_intel_strataflash
},
339 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
340 { CFI_MFR_ANY
, CFI_ID_ANY
, fixup_no_write_suspend
},
342 #if !FORCE_WORD_WRITE
343 { CFI_MFR_ANY
, CFI_ID_ANY
, fixup_use_write_buffers
},
345 { CFI_MFR_ST
, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct
},
346 { CFI_MFR_ST
, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb
},
347 { CFI_MFR_INTEL
, CFI_ID_ANY
, fixup_unlock_powerup_lock
},
348 { CFI_MFR_SHARP
, CFI_ID_ANY
, fixup_unlock_powerup_lock
},
349 { CFI_MFR_SHARP
, CFI_ID_ANY
, fixup_LH28F640BF
},
353 static struct cfi_fixup jedec_fixup_table
[] = {
354 { CFI_MFR_INTEL
, I82802AB
, fixup_use_fwh_lock
},
355 { CFI_MFR_INTEL
, I82802AC
, fixup_use_fwh_lock
},
356 { CFI_MFR_ST
, M50LPW080
, fixup_use_fwh_lock
},
357 { CFI_MFR_ST
, M50FLW080A
, fixup_use_fwh_lock
},
358 { CFI_MFR_ST
, M50FLW080B
, fixup_use_fwh_lock
},
361 static struct cfi_fixup fixup_table
[] = {
362 /* The CFI vendor ids and the JEDEC vendor IDs appear
363 * to be common. It is like the devices id's are as
364 * well. This table is to pick all cases where
365 * we know that is the case.
367 { CFI_MFR_ANY
, CFI_ID_ANY
, fixup_use_point
},
371 static void cfi_fixup_major_minor(struct cfi_private
*cfi
,
372 struct cfi_pri_intelext
*extp
)
374 if (cfi
->mfr
== CFI_MFR_INTEL
&&
375 cfi
->id
== PF38F4476
&& extp
->MinorVersion
== '3')
376 extp
->MinorVersion
= '1';
379 static int cfi_is_micron_28F00AP30(struct cfi_private
*cfi
, struct flchip
*chip
)
382 * Micron(was Numonyx) 1Gbit bottom boot are buggy w.r.t
383 * Erase Supend for their small Erase Blocks(0x8000)
385 if (cfi
->mfr
== CFI_MFR_INTEL
&& cfi
->id
== M28F00AP30
)
390 static inline struct cfi_pri_intelext
*
391 read_pri_intelext(struct map_info
*map
, __u16 adr
)
393 struct cfi_private
*cfi
= map
->fldrv_priv
;
394 struct cfi_pri_intelext
*extp
;
395 unsigned int extra_size
= 0;
396 unsigned int extp_size
= sizeof(*extp
);
399 extp
= (struct cfi_pri_intelext
*)cfi_read_pri(map
, adr
, extp_size
, "Intel/Sharp");
403 cfi_fixup_major_minor(cfi
, extp
);
405 if (extp
->MajorVersion
!= '1' ||
406 (extp
->MinorVersion
< '0' || extp
->MinorVersion
> '5')) {
407 printk(KERN_ERR
" Unknown Intel/Sharp Extended Query "
408 "version %c.%c.\n", extp
->MajorVersion
,
414 /* Do some byteswapping if necessary */
415 extp
->FeatureSupport
= le32_to_cpu(extp
->FeatureSupport
);
416 extp
->BlkStatusRegMask
= le16_to_cpu(extp
->BlkStatusRegMask
);
417 extp
->ProtRegAddr
= le16_to_cpu(extp
->ProtRegAddr
);
419 if (extp
->MinorVersion
>= '0') {
422 /* Protection Register info */
423 if (extp
->NumProtectionFields
)
424 extra_size
+= (extp
->NumProtectionFields
- 1) *
425 sizeof(struct cfi_intelext_otpinfo
);
428 if (extp
->MinorVersion
>= '1') {
429 /* Burst Read info */
431 if (extp_size
< sizeof(*extp
) + extra_size
)
433 extra_size
+= extp
->extra
[extra_size
- 1];
436 if (extp
->MinorVersion
>= '3') {
439 /* Number of hardware-partitions */
441 if (extp_size
< sizeof(*extp
) + extra_size
)
443 nb_parts
= extp
->extra
[extra_size
- 1];
445 /* skip the sizeof(partregion) field in CFI 1.4 */
446 if (extp
->MinorVersion
>= '4')
449 for (i
= 0; i
< nb_parts
; i
++) {
450 struct cfi_intelext_regioninfo
*rinfo
;
451 rinfo
= (struct cfi_intelext_regioninfo
*)&extp
->extra
[extra_size
];
452 extra_size
+= sizeof(*rinfo
);
453 if (extp_size
< sizeof(*extp
) + extra_size
)
455 rinfo
->NumIdentPartitions
=le16_to_cpu(rinfo
->NumIdentPartitions
);
456 extra_size
+= (rinfo
->NumBlockTypes
- 1)
457 * sizeof(struct cfi_intelext_blockinfo
);
460 if (extp
->MinorVersion
>= '4')
461 extra_size
+= sizeof(struct cfi_intelext_programming_regioninfo
);
463 if (extp_size
< sizeof(*extp
) + extra_size
) {
465 extp_size
= sizeof(*extp
) + extra_size
;
467 if (extp_size
> 4096) {
469 "%s: cfi_pri_intelext is too fat\n",
480 struct mtd_info
*cfi_cmdset_0001(struct map_info
*map
, int primary
)
482 struct cfi_private
*cfi
= map
->fldrv_priv
;
483 struct mtd_info
*mtd
;
486 mtd
= kzalloc(sizeof(*mtd
), GFP_KERNEL
);
490 mtd
->type
= MTD_NORFLASH
;
492 /* Fill in the default mtd operations */
493 mtd
->_erase
= cfi_intelext_erase_varsize
;
494 mtd
->_read
= cfi_intelext_read
;
495 mtd
->_write
= cfi_intelext_write_words
;
496 mtd
->_sync
= cfi_intelext_sync
;
497 mtd
->_lock
= cfi_intelext_lock
;
498 mtd
->_unlock
= cfi_intelext_unlock
;
499 mtd
->_is_locked
= cfi_intelext_is_locked
;
500 mtd
->_suspend
= cfi_intelext_suspend
;
501 mtd
->_resume
= cfi_intelext_resume
;
502 mtd
->flags
= MTD_CAP_NORFLASH
;
503 mtd
->name
= map
->name
;
505 mtd
->writebufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
507 mtd
->reboot_notifier
.notifier_call
= cfi_intelext_reboot
;
509 if (cfi
->cfi_mode
== CFI_MODE_CFI
) {
511 * It's a real CFI chip, not one for which the probe
512 * routine faked a CFI structure. So we read the feature
515 __u16 adr
= primary
?cfi
->cfiq
->P_ADR
:cfi
->cfiq
->A_ADR
;
516 struct cfi_pri_intelext
*extp
;
518 extp
= read_pri_intelext(map
, adr
);
524 /* Install our own private info structure */
525 cfi
->cmdset_priv
= extp
;
527 cfi_fixup(mtd
, cfi_fixup_table
);
529 #ifdef DEBUG_CFI_FEATURES
530 /* Tell the user about it in lots of lovely detail */
531 cfi_tell_features(extp
);
534 if(extp
->SuspendCmdSupport
& 1) {
535 printk(KERN_NOTICE
"cfi_cmdset_0001: Erase suspend on write enabled\n");
538 else if (cfi
->cfi_mode
== CFI_MODE_JEDEC
) {
539 /* Apply jedec specific fixups */
540 cfi_fixup(mtd
, jedec_fixup_table
);
542 /* Apply generic fixups */
543 cfi_fixup(mtd
, fixup_table
);
545 for (i
=0; i
< cfi
->numchips
; i
++) {
546 if (cfi
->cfiq
->WordWriteTimeoutTyp
)
547 cfi
->chips
[i
].word_write_time
=
548 1<<cfi
->cfiq
->WordWriteTimeoutTyp
;
550 cfi
->chips
[i
].word_write_time
= 50000;
552 if (cfi
->cfiq
->BufWriteTimeoutTyp
)
553 cfi
->chips
[i
].buffer_write_time
=
554 1<<cfi
->cfiq
->BufWriteTimeoutTyp
;
555 /* No default; if it isn't specified, we won't use it */
557 if (cfi
->cfiq
->BlockEraseTimeoutTyp
)
558 cfi
->chips
[i
].erase_time
=
559 1000<<cfi
->cfiq
->BlockEraseTimeoutTyp
;
561 cfi
->chips
[i
].erase_time
= 2000000;
563 if (cfi
->cfiq
->WordWriteTimeoutTyp
&&
564 cfi
->cfiq
->WordWriteTimeoutMax
)
565 cfi
->chips
[i
].word_write_time_max
=
566 1<<(cfi
->cfiq
->WordWriteTimeoutTyp
+
567 cfi
->cfiq
->WordWriteTimeoutMax
);
569 cfi
->chips
[i
].word_write_time_max
= 50000 * 8;
571 if (cfi
->cfiq
->BufWriteTimeoutTyp
&&
572 cfi
->cfiq
->BufWriteTimeoutMax
)
573 cfi
->chips
[i
].buffer_write_time_max
=
574 1<<(cfi
->cfiq
->BufWriteTimeoutTyp
+
575 cfi
->cfiq
->BufWriteTimeoutMax
);
577 if (cfi
->cfiq
->BlockEraseTimeoutTyp
&&
578 cfi
->cfiq
->BlockEraseTimeoutMax
)
579 cfi
->chips
[i
].erase_time_max
=
580 1000<<(cfi
->cfiq
->BlockEraseTimeoutTyp
+
581 cfi
->cfiq
->BlockEraseTimeoutMax
);
583 cfi
->chips
[i
].erase_time_max
= 2000000 * 8;
585 cfi
->chips
[i
].ref_point_counter
= 0;
586 init_waitqueue_head(&(cfi
->chips
[i
].wq
));
589 map
->fldrv
= &cfi_intelext_chipdrv
;
591 return cfi_intelext_setup(mtd
);
593 struct mtd_info
*cfi_cmdset_0003(struct map_info
*map
, int primary
) __attribute__((alias("cfi_cmdset_0001")));
594 struct mtd_info
*cfi_cmdset_0200(struct map_info
*map
, int primary
) __attribute__((alias("cfi_cmdset_0001")));
595 EXPORT_SYMBOL_GPL(cfi_cmdset_0001
);
596 EXPORT_SYMBOL_GPL(cfi_cmdset_0003
);
597 EXPORT_SYMBOL_GPL(cfi_cmdset_0200
);
599 static struct mtd_info
*cfi_intelext_setup(struct mtd_info
*mtd
)
601 struct map_info
*map
= mtd
->priv
;
602 struct cfi_private
*cfi
= map
->fldrv_priv
;
603 unsigned long offset
= 0;
605 unsigned long devsize
= (1<<cfi
->cfiq
->DevSize
) * cfi
->interleave
;
607 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
609 mtd
->size
= devsize
* cfi
->numchips
;
611 mtd
->numeraseregions
= cfi
->cfiq
->NumEraseRegions
* cfi
->numchips
;
612 mtd
->eraseregions
= kcalloc(mtd
->numeraseregions
,
613 sizeof(struct mtd_erase_region_info
),
615 if (!mtd
->eraseregions
)
618 for (i
=0; i
<cfi
->cfiq
->NumEraseRegions
; i
++) {
619 unsigned long ernum
, ersize
;
620 ersize
= ((cfi
->cfiq
->EraseRegionInfo
[i
] >> 8) & ~0xff) * cfi
->interleave
;
621 ernum
= (cfi
->cfiq
->EraseRegionInfo
[i
] & 0xffff) + 1;
623 if (mtd
->erasesize
< ersize
) {
624 mtd
->erasesize
= ersize
;
626 for (j
=0; j
<cfi
->numchips
; j
++) {
627 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].offset
= (j
*devsize
)+offset
;
628 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].erasesize
= ersize
;
629 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].numblocks
= ernum
;
630 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].lockmap
= kmalloc(ernum
/ 8 + 1, GFP_KERNEL
);
631 if (!mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].lockmap
)
634 offset
+= (ersize
* ernum
);
637 if (offset
!= devsize
) {
639 printk(KERN_WARNING
"Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset
, devsize
);
643 for (i
=0; i
<mtd
->numeraseregions
;i
++){
644 printk(KERN_DEBUG
"erase region %d: offset=0x%llx,size=0x%x,blocks=%d\n",
645 i
,(unsigned long long)mtd
->eraseregions
[i
].offset
,
646 mtd
->eraseregions
[i
].erasesize
,
647 mtd
->eraseregions
[i
].numblocks
);
650 #ifdef CONFIG_MTD_OTP
651 mtd
->_read_fact_prot_reg
= cfi_intelext_read_fact_prot_reg
;
652 mtd
->_read_user_prot_reg
= cfi_intelext_read_user_prot_reg
;
653 mtd
->_write_user_prot_reg
= cfi_intelext_write_user_prot_reg
;
654 mtd
->_lock_user_prot_reg
= cfi_intelext_lock_user_prot_reg
;
655 mtd
->_get_fact_prot_info
= cfi_intelext_get_fact_prot_info
;
656 mtd
->_get_user_prot_info
= cfi_intelext_get_user_prot_info
;
659 /* This function has the potential to distort the reality
660 a bit and therefore should be called last. */
661 if (cfi_intelext_partition_fixup(mtd
, &cfi
) != 0)
664 __module_get(THIS_MODULE
);
665 register_reboot_notifier(&mtd
->reboot_notifier
);
669 if (mtd
->eraseregions
)
670 for (i
=0; i
<cfi
->cfiq
->NumEraseRegions
; i
++)
671 for (j
=0; j
<cfi
->numchips
; j
++)
672 kfree(mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].lockmap
);
673 kfree(mtd
->eraseregions
);
675 kfree(cfi
->cmdset_priv
);
679 static int cfi_intelext_partition_fixup(struct mtd_info
*mtd
,
680 struct cfi_private
**pcfi
)
682 struct map_info
*map
= mtd
->priv
;
683 struct cfi_private
*cfi
= *pcfi
;
684 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
687 * Probing of multi-partition flash chips.
689 * To support multiple partitions when available, we simply arrange
690 * for each of them to have their own flchip structure even if they
691 * are on the same physical chip. This means completely recreating
692 * a new cfi_private structure right here which is a blatent code
693 * layering violation, but this is still the least intrusive
694 * arrangement at this point. This can be rearranged in the future
695 * if someone feels motivated enough. --nico
697 if (extp
&& extp
->MajorVersion
== '1' && extp
->MinorVersion
>= '3'
698 && extp
->FeatureSupport
& (1 << 9)) {
700 struct cfi_private
*newcfi
;
702 struct flchip_shared
*shared
;
703 int numregions
, numparts
, partshift
, numvirtchips
, i
, j
;
705 /* Protection Register info */
706 if (extp
->NumProtectionFields
)
707 offs
= (extp
->NumProtectionFields
- 1) *
708 sizeof(struct cfi_intelext_otpinfo
);
710 /* Burst Read info */
711 offs
+= extp
->extra
[offs
+1]+2;
713 /* Number of partition regions */
714 numregions
= extp
->extra
[offs
];
717 /* skip the sizeof(partregion) field in CFI 1.4 */
718 if (extp
->MinorVersion
>= '4')
721 /* Number of hardware partitions */
723 for (i
= 0; i
< numregions
; i
++) {
724 struct cfi_intelext_regioninfo
*rinfo
;
725 rinfo
= (struct cfi_intelext_regioninfo
*)&extp
->extra
[offs
];
726 numparts
+= rinfo
->NumIdentPartitions
;
727 offs
+= sizeof(*rinfo
)
728 + (rinfo
->NumBlockTypes
- 1) *
729 sizeof(struct cfi_intelext_blockinfo
);
735 /* Programming Region info */
736 if (extp
->MinorVersion
>= '4') {
737 struct cfi_intelext_programming_regioninfo
*prinfo
;
738 prinfo
= (struct cfi_intelext_programming_regioninfo
*)&extp
->extra
[offs
];
739 mtd
->writesize
= cfi
->interleave
<< prinfo
->ProgRegShift
;
740 mtd
->flags
&= ~MTD_BIT_WRITEABLE
;
741 printk(KERN_DEBUG
"%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
742 map
->name
, mtd
->writesize
,
743 cfi
->interleave
* prinfo
->ControlValid
,
744 cfi
->interleave
* prinfo
->ControlInvalid
);
748 * All functions below currently rely on all chips having
749 * the same geometry so we'll just assume that all hardware
750 * partitions are of the same size too.
752 partshift
= cfi
->chipshift
- __ffs(numparts
);
754 if ((1 << partshift
) < mtd
->erasesize
) {
756 "%s: bad number of hw partitions (%d)\n",
761 numvirtchips
= cfi
->numchips
* numparts
;
762 newcfi
= kmalloc(struct_size(newcfi
, chips
, numvirtchips
),
766 shared
= kmalloc_array(cfi
->numchips
,
767 sizeof(struct flchip_shared
),
773 memcpy(newcfi
, cfi
, sizeof(struct cfi_private
));
774 newcfi
->numchips
= numvirtchips
;
775 newcfi
->chipshift
= partshift
;
777 chip
= &newcfi
->chips
[0];
778 for (i
= 0; i
< cfi
->numchips
; i
++) {
779 shared
[i
].writing
= shared
[i
].erasing
= NULL
;
780 mutex_init(&shared
[i
].lock
);
781 for (j
= 0; j
< numparts
; j
++) {
782 *chip
= cfi
->chips
[i
];
783 chip
->start
+= j
<< partshift
;
784 chip
->priv
= &shared
[i
];
785 /* those should be reset too since
786 they create memory references. */
787 init_waitqueue_head(&chip
->wq
);
788 mutex_init(&chip
->mutex
);
793 printk(KERN_DEBUG
"%s: %d set(s) of %d interleaved chips "
794 "--> %d partitions of %d KiB\n",
795 map
->name
, cfi
->numchips
, cfi
->interleave
,
796 newcfi
->numchips
, 1<<(newcfi
->chipshift
-10));
798 map
->fldrv_priv
= newcfi
;
807 * *********** CHIP ACCESS FUNCTIONS ***********
809 static int chip_ready (struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int mode
)
811 DECLARE_WAITQUEUE(wait
, current
);
812 struct cfi_private
*cfi
= map
->fldrv_priv
;
813 map_word status
, status_OK
= CMD(0x80), status_PWS
= CMD(0x01);
814 struct cfi_pri_intelext
*cfip
= cfi
->cmdset_priv
;
815 unsigned long timeo
= jiffies
+ HZ
;
817 /* Prevent setting state FL_SYNCING for chip in suspended state. */
818 if (mode
== FL_SYNCING
&& chip
->oldstate
!= FL_READY
)
821 switch (chip
->state
) {
825 status
= map_read(map
, adr
);
826 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
829 /* At this point we're fine with write operations
830 in other partitions as they don't conflict. */
831 if (chip
->priv
&& map_word_andequal(map
, status
, status_PWS
, status_PWS
))
834 mutex_unlock(&chip
->mutex
);
836 mutex_lock(&chip
->mutex
);
837 /* Someone else might have been playing with it. */
848 !(cfip
->FeatureSupport
& 2) ||
849 !(mode
== FL_READY
|| mode
== FL_POINT
||
850 (mode
== FL_WRITING
&& (cfip
->SuspendCmdSupport
& 1))))
853 /* Do not allow suspend iff read/write to EB address */
854 if ((adr
& chip
->in_progress_block_mask
) ==
855 chip
->in_progress_block_addr
)
858 /* do not suspend small EBs, buggy Micron Chips */
859 if (cfi_is_micron_28F00AP30(cfi
, chip
) &&
860 (chip
->in_progress_block_mask
== ~(0x8000-1)))
864 map_write(map
, CMD(0xB0), chip
->in_progress_block_addr
);
866 /* If the flash has finished erasing, then 'erase suspend'
867 * appears to make some (28F320) flash devices switch to
868 * 'read' mode. Make sure that we switch to 'read status'
869 * mode so we get the right data. --rmk
871 map_write(map
, CMD(0x70), chip
->in_progress_block_addr
);
872 chip
->oldstate
= FL_ERASING
;
873 chip
->state
= FL_ERASE_SUSPENDING
;
874 chip
->erase_suspended
= 1;
876 status
= map_read(map
, chip
->in_progress_block_addr
);
877 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
880 if (time_after(jiffies
, timeo
)) {
881 /* Urgh. Resume and pretend we weren't here.
882 * Make sure we're in 'read status' mode if it had finished */
883 put_chip(map
, chip
, adr
);
884 printk(KERN_ERR
"%s: Chip not ready after erase "
885 "suspended: status = 0x%lx\n", map
->name
, status
.x
[0]);
889 mutex_unlock(&chip
->mutex
);
891 mutex_lock(&chip
->mutex
);
892 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
893 So we can just loop here. */
895 chip
->state
= FL_STATUS
;
898 case FL_XIP_WHILE_ERASING
:
899 if (mode
!= FL_READY
&& mode
!= FL_POINT
&&
900 (mode
!= FL_WRITING
|| !cfip
|| !(cfip
->SuspendCmdSupport
&1)))
902 chip
->oldstate
= chip
->state
;
903 chip
->state
= FL_READY
;
907 /* The machine is rebooting now,so no one can get chip anymore */
910 /* Only if there's no operation suspended... */
911 if (mode
== FL_READY
&& chip
->oldstate
== FL_READY
)
916 set_current_state(TASK_UNINTERRUPTIBLE
);
917 add_wait_queue(&chip
->wq
, &wait
);
918 mutex_unlock(&chip
->mutex
);
920 remove_wait_queue(&chip
->wq
, &wait
);
921 mutex_lock(&chip
->mutex
);
926 static int get_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int mode
)
929 DECLARE_WAITQUEUE(wait
, current
);
933 (mode
== FL_WRITING
|| mode
== FL_ERASING
|| mode
== FL_OTP_WRITE
934 || mode
== FL_SHUTDOWN
) && chip
->state
!= FL_SYNCING
) {
936 * OK. We have possibility for contention on the write/erase
937 * operations which are global to the real chip and not per
938 * partition. So let's fight it over in the partition which
939 * currently has authority on the operation.
941 * The rules are as follows:
943 * - any write operation must own shared->writing.
945 * - any erase operation must own _both_ shared->writing and
948 * - contention arbitration is handled in the owner's context.
950 * The 'shared' struct can be read and/or written only when
953 struct flchip_shared
*shared
= chip
->priv
;
954 struct flchip
*contender
;
955 mutex_lock(&shared
->lock
);
956 contender
= shared
->writing
;
957 if (contender
&& contender
!= chip
) {
959 * The engine to perform desired operation on this
960 * partition is already in use by someone else.
961 * Let's fight over it in the context of the chip
962 * currently using it. If it is possible to suspend,
963 * that other partition will do just that, otherwise
964 * it'll happily send us to sleep. In any case, when
965 * get_chip returns success we're clear to go ahead.
967 ret
= mutex_trylock(&contender
->mutex
);
968 mutex_unlock(&shared
->lock
);
971 mutex_unlock(&chip
->mutex
);
972 ret
= chip_ready(map
, contender
, contender
->start
, mode
);
973 mutex_lock(&chip
->mutex
);
975 if (ret
== -EAGAIN
) {
976 mutex_unlock(&contender
->mutex
);
980 mutex_unlock(&contender
->mutex
);
983 mutex_lock(&shared
->lock
);
985 /* We should not own chip if it is already
986 * in FL_SYNCING state. Put contender and retry. */
987 if (chip
->state
== FL_SYNCING
) {
988 put_chip(map
, contender
, contender
->start
);
989 mutex_unlock(&contender
->mutex
);
992 mutex_unlock(&contender
->mutex
);
995 /* Check if we already have suspended erase
996 * on this chip. Sleep. */
997 if (mode
== FL_ERASING
&& shared
->erasing
998 && shared
->erasing
->oldstate
== FL_ERASING
) {
999 mutex_unlock(&shared
->lock
);
1000 set_current_state(TASK_UNINTERRUPTIBLE
);
1001 add_wait_queue(&chip
->wq
, &wait
);
1002 mutex_unlock(&chip
->mutex
);
1004 remove_wait_queue(&chip
->wq
, &wait
);
1005 mutex_lock(&chip
->mutex
);
1010 shared
->writing
= chip
;
1011 if (mode
== FL_ERASING
)
1012 shared
->erasing
= chip
;
1013 mutex_unlock(&shared
->lock
);
1015 ret
= chip_ready(map
, chip
, adr
, mode
);
1022 static void put_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
1024 struct cfi_private
*cfi
= map
->fldrv_priv
;
1027 struct flchip_shared
*shared
= chip
->priv
;
1028 mutex_lock(&shared
->lock
);
1029 if (shared
->writing
== chip
&& chip
->oldstate
== FL_READY
) {
1030 /* We own the ability to write, but we're done */
1031 shared
->writing
= shared
->erasing
;
1032 if (shared
->writing
&& shared
->writing
!= chip
) {
1033 /* give back ownership to who we loaned it from */
1034 struct flchip
*loaner
= shared
->writing
;
1035 mutex_lock(&loaner
->mutex
);
1036 mutex_unlock(&shared
->lock
);
1037 mutex_unlock(&chip
->mutex
);
1038 put_chip(map
, loaner
, loaner
->start
);
1039 mutex_lock(&chip
->mutex
);
1040 mutex_unlock(&loaner
->mutex
);
1044 shared
->erasing
= NULL
;
1045 shared
->writing
= NULL
;
1046 } else if (shared
->erasing
== chip
&& shared
->writing
!= chip
) {
1048 * We own the ability to erase without the ability
1049 * to write, which means the erase was suspended
1050 * and some other partition is currently writing.
1051 * Don't let the switch below mess things up since
1052 * we don't have ownership to resume anything.
1054 mutex_unlock(&shared
->lock
);
1058 mutex_unlock(&shared
->lock
);
1061 switch(chip
->oldstate
) {
1063 /* What if one interleaved chip has finished and the
1064 other hasn't? The old code would leave the finished
1065 one in READY mode. That's bad, and caused -EROFS
1066 errors to be returned from do_erase_oneblock because
1067 that's the only bit it checked for at the time.
1068 As the state machine appears to explicitly allow
1069 sending the 0x70 (Read Status) command to an erasing
1070 chip and expecting it to be ignored, that's what we
1072 map_write(map
, CMD(0xd0), chip
->in_progress_block_addr
);
1073 map_write(map
, CMD(0x70), chip
->in_progress_block_addr
);
1074 chip
->oldstate
= FL_READY
;
1075 chip
->state
= FL_ERASING
;
1078 case FL_XIP_WHILE_ERASING
:
1079 chip
->state
= chip
->oldstate
;
1080 chip
->oldstate
= FL_READY
;
1085 case FL_JEDEC_QUERY
:
1088 printk(KERN_ERR
"%s: put_chip() called with oldstate %d!!\n", map
->name
, chip
->oldstate
);
1093 #ifdef CONFIG_MTD_XIP
1096 * No interrupt what so ever can be serviced while the flash isn't in array
1097 * mode. This is ensured by the xip_disable() and xip_enable() functions
1098 * enclosing any code path where the flash is known not to be in array mode.
1099 * And within a XIP disabled code path, only functions marked with __xipram
1100 * may be called and nothing else (it's a good thing to inspect generated
1101 * assembly to make sure inline functions were actually inlined and that gcc
1102 * didn't emit calls to its own support functions). Also configuring MTD CFI
1103 * support to a single buswidth and a single interleave is also recommended.
1106 static void xip_disable(struct map_info
*map
, struct flchip
*chip
,
1109 /* TODO: chips with no XIP use should ignore and return */
1110 (void) map_read(map
, adr
); /* ensure mmu mapping is up to date */
1111 local_irq_disable();
1114 static void __xipram
xip_enable(struct map_info
*map
, struct flchip
*chip
,
1117 struct cfi_private
*cfi
= map
->fldrv_priv
;
1118 if (chip
->state
!= FL_POINT
&& chip
->state
!= FL_READY
) {
1119 map_write(map
, CMD(0xff), adr
);
1120 chip
->state
= FL_READY
;
1122 (void) map_read(map
, adr
);
1128 * When a delay is required for the flash operation to complete, the
1129 * xip_wait_for_operation() function is polling for both the given timeout
1130 * and pending (but still masked) hardware interrupts. Whenever there is an
1131 * interrupt pending then the flash erase or write operation is suspended,
1132 * array mode restored and interrupts unmasked. Task scheduling might also
1133 * happen at that point. The CPU eventually returns from the interrupt or
1134 * the call to schedule() and the suspended flash operation is resumed for
1135 * the remaining of the delay period.
1137 * Warning: this function _will_ fool interrupt latency tracing tools.
1140 static int __xipram
xip_wait_for_operation(
1141 struct map_info
*map
, struct flchip
*chip
,
1142 unsigned long adr
, unsigned int chip_op_time_max
)
1144 struct cfi_private
*cfi
= map
->fldrv_priv
;
1145 struct cfi_pri_intelext
*cfip
= cfi
->cmdset_priv
;
1146 map_word status
, OK
= CMD(0x80);
1147 unsigned long usec
, suspended
, start
, done
;
1148 flstate_t oldstate
, newstate
;
1150 start
= xip_currtime();
1151 usec
= chip_op_time_max
;
1158 if (xip_irqpending() && cfip
&&
1159 ((chip
->state
== FL_ERASING
&& (cfip
->FeatureSupport
&2)) ||
1160 (chip
->state
== FL_WRITING
&& (cfip
->FeatureSupport
&4))) &&
1161 (cfi_interleave_is_1(cfi
) || chip
->oldstate
== FL_READY
)) {
1163 * Let's suspend the erase or write operation when
1164 * supported. Note that we currently don't try to
1165 * suspend interleaved chips if there is already
1166 * another operation suspended (imagine what happens
1167 * when one chip was already done with the current
1168 * operation while another chip suspended it, then
1169 * we resume the whole thing at once). Yes, it
1173 map_write(map
, CMD(0xb0), adr
);
1174 map_write(map
, CMD(0x70), adr
);
1175 suspended
= xip_currtime();
1177 if (xip_elapsed_since(suspended
) > 100000) {
1179 * The chip doesn't want to suspend
1180 * after waiting for 100 msecs.
1181 * This is a critical error but there
1182 * is not much we can do here.
1186 status
= map_read(map
, adr
);
1187 } while (!map_word_andequal(map
, status
, OK
, OK
));
1189 /* Suspend succeeded */
1190 oldstate
= chip
->state
;
1191 if (oldstate
== FL_ERASING
) {
1192 if (!map_word_bitsset(map
, status
, CMD(0x40)))
1194 newstate
= FL_XIP_WHILE_ERASING
;
1195 chip
->erase_suspended
= 1;
1197 if (!map_word_bitsset(map
, status
, CMD(0x04)))
1199 newstate
= FL_XIP_WHILE_WRITING
;
1200 chip
->write_suspended
= 1;
1202 chip
->state
= newstate
;
1203 map_write(map
, CMD(0xff), adr
);
1204 (void) map_read(map
, adr
);
1207 mutex_unlock(&chip
->mutex
);
1212 * We're back. However someone else might have
1213 * decided to go write to the chip if we are in
1214 * a suspended erase state. If so let's wait
1217 mutex_lock(&chip
->mutex
);
1218 while (chip
->state
!= newstate
) {
1219 DECLARE_WAITQUEUE(wait
, current
);
1220 set_current_state(TASK_UNINTERRUPTIBLE
);
1221 add_wait_queue(&chip
->wq
, &wait
);
1222 mutex_unlock(&chip
->mutex
);
1224 remove_wait_queue(&chip
->wq
, &wait
);
1225 mutex_lock(&chip
->mutex
);
1227 /* Disallow XIP again */
1228 local_irq_disable();
1230 /* Resume the write or erase operation */
1231 map_write(map
, CMD(0xd0), adr
);
1232 map_write(map
, CMD(0x70), adr
);
1233 chip
->state
= oldstate
;
1234 start
= xip_currtime();
1235 } else if (usec
>= 1000000/HZ
) {
1237 * Try to save on CPU power when waiting delay
1238 * is at least a system timer tick period.
1239 * No need to be extremely accurate here.
1243 status
= map_read(map
, adr
);
1244 done
= xip_elapsed_since(start
);
1245 } while (!map_word_andequal(map
, status
, OK
, OK
)
1248 return (done
>= usec
) ? -ETIME
: 0;
1252 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1253 * the flash is actively programming or erasing since we have to poll for
1254 * the operation to complete anyway. We can't do that in a generic way with
1255 * a XIP setup so do it before the actual flash operation in this case
1256 * and stub it out from INVAL_CACHE_AND_WAIT.
1258 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1259 INVALIDATE_CACHED_RANGE(map, from, size)
1261 #define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \
1262 xip_wait_for_operation(map, chip, cmd_adr, usec_max)
1266 #define xip_disable(map, chip, adr)
1267 #define xip_enable(map, chip, adr)
1268 #define XIP_INVAL_CACHED_RANGE(x...)
1269 #define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation
1271 static int inval_cache_and_wait_for_operation(
1272 struct map_info
*map
, struct flchip
*chip
,
1273 unsigned long cmd_adr
, unsigned long inval_adr
, int inval_len
,
1274 unsigned int chip_op_time
, unsigned int chip_op_time_max
)
1276 struct cfi_private
*cfi
= map
->fldrv_priv
;
1277 map_word status
, status_OK
= CMD(0x80);
1278 int chip_state
= chip
->state
;
1279 unsigned int timeo
, sleep_time
, reset_timeo
;
1281 mutex_unlock(&chip
->mutex
);
1283 INVALIDATE_CACHED_RANGE(map
, inval_adr
, inval_len
);
1284 mutex_lock(&chip
->mutex
);
1286 timeo
= chip_op_time_max
;
1289 reset_timeo
= timeo
;
1290 sleep_time
= chip_op_time
/ 2;
1293 if (chip
->state
!= chip_state
) {
1294 /* Someone's suspended the operation: sleep */
1295 DECLARE_WAITQUEUE(wait
, current
);
1296 set_current_state(TASK_UNINTERRUPTIBLE
);
1297 add_wait_queue(&chip
->wq
, &wait
);
1298 mutex_unlock(&chip
->mutex
);
1300 remove_wait_queue(&chip
->wq
, &wait
);
1301 mutex_lock(&chip
->mutex
);
1305 status
= map_read(map
, cmd_adr
);
1306 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1309 if (chip
->erase_suspended
&& chip_state
== FL_ERASING
) {
1310 /* Erase suspend occurred while sleep: reset timeout */
1311 timeo
= reset_timeo
;
1312 chip
->erase_suspended
= 0;
1314 if (chip
->write_suspended
&& chip_state
== FL_WRITING
) {
1315 /* Write suspend occurred while sleep: reset timeout */
1316 timeo
= reset_timeo
;
1317 chip
->write_suspended
= 0;
1320 map_write(map
, CMD(0x70), cmd_adr
);
1321 chip
->state
= FL_STATUS
;
1325 /* OK Still waiting. Drop the lock, wait a while and retry. */
1326 mutex_unlock(&chip
->mutex
);
1327 if (sleep_time
>= 1000000/HZ
) {
1329 * Half of the normal delay still remaining
1330 * can be performed with a sleeping delay instead
1333 msleep(sleep_time
/1000);
1334 timeo
-= sleep_time
;
1335 sleep_time
= 1000000/HZ
;
1341 mutex_lock(&chip
->mutex
);
1344 /* Done and happy. */
1345 chip
->state
= FL_STATUS
;
1351 #define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \
1352 INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max);
1355 static int do_point_onechip (struct map_info
*map
, struct flchip
*chip
, loff_t adr
, size_t len
)
1357 unsigned long cmd_addr
;
1358 struct cfi_private
*cfi
= map
->fldrv_priv
;
1363 /* Ensure cmd read/writes are aligned. */
1364 cmd_addr
= adr
& ~(map_bankwidth(map
)-1);
1366 mutex_lock(&chip
->mutex
);
1368 ret
= get_chip(map
, chip
, cmd_addr
, FL_POINT
);
1371 if (chip
->state
!= FL_POINT
&& chip
->state
!= FL_READY
)
1372 map_write(map
, CMD(0xff), cmd_addr
);
1374 chip
->state
= FL_POINT
;
1375 chip
->ref_point_counter
++;
1377 mutex_unlock(&chip
->mutex
);
1382 static int cfi_intelext_point(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1383 size_t *retlen
, void **virt
, resource_size_t
*phys
)
1385 struct map_info
*map
= mtd
->priv
;
1386 struct cfi_private
*cfi
= map
->fldrv_priv
;
1387 unsigned long ofs
, last_end
= 0;
1394 /* Now lock the chip(s) to POINT state */
1396 /* ofs: offset within the first chip that the first read should start */
1397 chipnum
= (from
>> cfi
->chipshift
);
1398 ofs
= from
- (chipnum
<< cfi
->chipshift
);
1400 *virt
= map
->virt
+ cfi
->chips
[chipnum
].start
+ ofs
;
1402 *phys
= map
->phys
+ cfi
->chips
[chipnum
].start
+ ofs
;
1405 unsigned long thislen
;
1407 if (chipnum
>= cfi
->numchips
)
1410 /* We cannot point across chips that are virtually disjoint */
1412 last_end
= cfi
->chips
[chipnum
].start
;
1413 else if (cfi
->chips
[chipnum
].start
!= last_end
)
1416 if ((len
+ ofs
-1) >> cfi
->chipshift
)
1417 thislen
= (1<<cfi
->chipshift
) - ofs
;
1421 ret
= do_point_onechip(map
, &cfi
->chips
[chipnum
], ofs
, thislen
);
1429 last_end
+= 1 << cfi
->chipshift
;
1435 static int cfi_intelext_unpoint(struct mtd_info
*mtd
, loff_t from
, size_t len
)
1437 struct map_info
*map
= mtd
->priv
;
1438 struct cfi_private
*cfi
= map
->fldrv_priv
;
1440 int chipnum
, err
= 0;
1442 /* Now unlock the chip(s) POINT state */
1444 /* ofs: offset within the first chip that the first read should start */
1445 chipnum
= (from
>> cfi
->chipshift
);
1446 ofs
= from
- (chipnum
<< cfi
->chipshift
);
1448 while (len
&& !err
) {
1449 unsigned long thislen
;
1450 struct flchip
*chip
;
1452 chip
= &cfi
->chips
[chipnum
];
1453 if (chipnum
>= cfi
->numchips
)
1456 if ((len
+ ofs
-1) >> cfi
->chipshift
)
1457 thislen
= (1<<cfi
->chipshift
) - ofs
;
1461 mutex_lock(&chip
->mutex
);
1462 if (chip
->state
== FL_POINT
) {
1463 chip
->ref_point_counter
--;
1464 if(chip
->ref_point_counter
== 0)
1465 chip
->state
= FL_READY
;
1467 printk(KERN_ERR
"%s: Error: unpoint called on non pointed region\n", map
->name
);
1471 put_chip(map
, chip
, chip
->start
);
1472 mutex_unlock(&chip
->mutex
);
1482 static inline int do_read_onechip(struct map_info
*map
, struct flchip
*chip
, loff_t adr
, size_t len
, u_char
*buf
)
1484 unsigned long cmd_addr
;
1485 struct cfi_private
*cfi
= map
->fldrv_priv
;
1490 /* Ensure cmd read/writes are aligned. */
1491 cmd_addr
= adr
& ~(map_bankwidth(map
)-1);
1493 mutex_lock(&chip
->mutex
);
1494 ret
= get_chip(map
, chip
, cmd_addr
, FL_READY
);
1496 mutex_unlock(&chip
->mutex
);
1500 if (chip
->state
!= FL_POINT
&& chip
->state
!= FL_READY
) {
1501 map_write(map
, CMD(0xff), cmd_addr
);
1503 chip
->state
= FL_READY
;
1506 map_copy_from(map
, buf
, adr
, len
);
1508 put_chip(map
, chip
, cmd_addr
);
1510 mutex_unlock(&chip
->mutex
);
1514 static int cfi_intelext_read (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
)
1516 struct map_info
*map
= mtd
->priv
;
1517 struct cfi_private
*cfi
= map
->fldrv_priv
;
1522 /* ofs: offset within the first chip that the first read should start */
1523 chipnum
= (from
>> cfi
->chipshift
);
1524 ofs
= from
- (chipnum
<< cfi
->chipshift
);
1527 unsigned long thislen
;
1529 if (chipnum
>= cfi
->numchips
)
1532 if ((len
+ ofs
-1) >> cfi
->chipshift
)
1533 thislen
= (1<<cfi
->chipshift
) - ofs
;
1537 ret
= do_read_onechip(map
, &cfi
->chips
[chipnum
], ofs
, thislen
, buf
);
1551 static int __xipram
do_write_oneword(struct map_info
*map
, struct flchip
*chip
,
1552 unsigned long adr
, map_word datum
, int mode
)
1554 struct cfi_private
*cfi
= map
->fldrv_priv
;
1555 map_word status
, write_cmd
;
1562 write_cmd
= (cfi
->cfiq
->P_ID
!= P_ID_INTEL_PERFORMANCE
) ? CMD(0x40) : CMD(0x41);
1565 write_cmd
= CMD(0xc0);
1571 mutex_lock(&chip
->mutex
);
1572 ret
= get_chip(map
, chip
, adr
, mode
);
1574 mutex_unlock(&chip
->mutex
);
1578 XIP_INVAL_CACHED_RANGE(map
, adr
, map_bankwidth(map
));
1580 xip_disable(map
, chip
, adr
);
1581 map_write(map
, write_cmd
, adr
);
1582 map_write(map
, datum
, adr
);
1585 ret
= INVAL_CACHE_AND_WAIT(map
, chip
, adr
,
1586 adr
, map_bankwidth(map
),
1587 chip
->word_write_time
,
1588 chip
->word_write_time_max
);
1590 xip_enable(map
, chip
, adr
);
1591 printk(KERN_ERR
"%s: word write error (status timeout)\n", map
->name
);
1595 /* check for errors */
1596 status
= map_read(map
, adr
);
1597 if (map_word_bitsset(map
, status
, CMD(0x1a))) {
1598 unsigned long chipstatus
= MERGESTATUS(status
);
1601 map_write(map
, CMD(0x50), adr
);
1602 map_write(map
, CMD(0x70), adr
);
1603 xip_enable(map
, chip
, adr
);
1605 if (chipstatus
& 0x02) {
1607 } else if (chipstatus
& 0x08) {
1608 printk(KERN_ERR
"%s: word write error (bad VPP)\n", map
->name
);
1611 printk(KERN_ERR
"%s: word write error (status 0x%lx)\n", map
->name
, chipstatus
);
1618 xip_enable(map
, chip
, adr
);
1619 out
: DISABLE_VPP(map
);
1620 put_chip(map
, chip
, adr
);
1621 mutex_unlock(&chip
->mutex
);
1626 static int cfi_intelext_write_words (struct mtd_info
*mtd
, loff_t to
, size_t len
, size_t *retlen
, const u_char
*buf
)
1628 struct map_info
*map
= mtd
->priv
;
1629 struct cfi_private
*cfi
= map
->fldrv_priv
;
1634 chipnum
= to
>> cfi
->chipshift
;
1635 ofs
= to
- (chipnum
<< cfi
->chipshift
);
1637 /* If it's not bus-aligned, do the first byte write */
1638 if (ofs
& (map_bankwidth(map
)-1)) {
1639 unsigned long bus_ofs
= ofs
& ~(map_bankwidth(map
)-1);
1640 int gap
= ofs
- bus_ofs
;
1644 n
= min_t(int, len
, map_bankwidth(map
)-gap
);
1645 datum
= map_word_ff(map
);
1646 datum
= map_word_load_partial(map
, datum
, buf
, gap
, n
);
1648 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1649 bus_ofs
, datum
, FL_WRITING
);
1658 if (ofs
>> cfi
->chipshift
) {
1661 if (chipnum
== cfi
->numchips
)
1666 while(len
>= map_bankwidth(map
)) {
1667 map_word datum
= map_word_load(map
, buf
);
1669 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1670 ofs
, datum
, FL_WRITING
);
1674 ofs
+= map_bankwidth(map
);
1675 buf
+= map_bankwidth(map
);
1676 (*retlen
) += map_bankwidth(map
);
1677 len
-= map_bankwidth(map
);
1679 if (ofs
>> cfi
->chipshift
) {
1682 if (chipnum
== cfi
->numchips
)
1687 if (len
& (map_bankwidth(map
)-1)) {
1690 datum
= map_word_ff(map
);
1691 datum
= map_word_load_partial(map
, datum
, buf
, 0, len
);
1693 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1694 ofs
, datum
, FL_WRITING
);
1705 static int __xipram
do_write_buffer(struct map_info
*map
, struct flchip
*chip
,
1706 unsigned long adr
, const struct kvec
**pvec
,
1707 unsigned long *pvec_seek
, int len
)
1709 struct cfi_private
*cfi
= map
->fldrv_priv
;
1710 map_word status
, write_cmd
, datum
;
1711 unsigned long cmd_adr
;
1712 int ret
, wbufsize
, word_gap
, words
;
1713 const struct kvec
*vec
;
1714 unsigned long vec_seek
;
1715 unsigned long initial_adr
;
1716 int initial_len
= len
;
1718 wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
1721 cmd_adr
= adr
& ~(wbufsize
-1);
1723 /* Sharp LH28F640BF chips need the first address for the
1724 * Page Buffer Program command. See Table 5 of
1725 * LH28F320BF, LH28F640BF, LH28F128BF Series (Appendix FUM00701) */
1726 if (is_LH28F640BF(cfi
))
1729 /* Let's determine this according to the interleave only once */
1730 write_cmd
= (cfi
->cfiq
->P_ID
!= P_ID_INTEL_PERFORMANCE
) ? CMD(0xe8) : CMD(0xe9);
1732 mutex_lock(&chip
->mutex
);
1733 ret
= get_chip(map
, chip
, cmd_adr
, FL_WRITING
);
1735 mutex_unlock(&chip
->mutex
);
1739 XIP_INVAL_CACHED_RANGE(map
, initial_adr
, initial_len
);
1741 xip_disable(map
, chip
, cmd_adr
);
1743 /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
1744 [...], the device will not accept any more Write to Buffer commands".
1745 So we must check here and reset those bits if they're set. Otherwise
1746 we're just pissing in the wind */
1747 if (chip
->state
!= FL_STATUS
) {
1748 map_write(map
, CMD(0x70), cmd_adr
);
1749 chip
->state
= FL_STATUS
;
1751 status
= map_read(map
, cmd_adr
);
1752 if (map_word_bitsset(map
, status
, CMD(0x30))) {
1753 xip_enable(map
, chip
, cmd_adr
);
1754 printk(KERN_WARNING
"SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status
.x
[0]);
1755 xip_disable(map
, chip
, cmd_adr
);
1756 map_write(map
, CMD(0x50), cmd_adr
);
1757 map_write(map
, CMD(0x70), cmd_adr
);
1760 chip
->state
= FL_WRITING_TO_BUFFER
;
1761 map_write(map
, write_cmd
, cmd_adr
);
1762 ret
= WAIT_TIMEOUT(map
, chip
, cmd_adr
, 0, 0);
1764 /* Argh. Not ready for write to buffer */
1765 map_word Xstatus
= map_read(map
, cmd_adr
);
1766 map_write(map
, CMD(0x70), cmd_adr
);
1767 chip
->state
= FL_STATUS
;
1768 status
= map_read(map
, cmd_adr
);
1769 map_write(map
, CMD(0x50), cmd_adr
);
1770 map_write(map
, CMD(0x70), cmd_adr
);
1771 xip_enable(map
, chip
, cmd_adr
);
1772 printk(KERN_ERR
"%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n",
1773 map
->name
, Xstatus
.x
[0], status
.x
[0]);
1777 /* Figure out the number of words to write */
1778 word_gap
= (-adr
& (map_bankwidth(map
)-1));
1779 words
= DIV_ROUND_UP(len
- word_gap
, map_bankwidth(map
));
1783 word_gap
= map_bankwidth(map
) - word_gap
;
1785 datum
= map_word_ff(map
);
1788 /* Write length of data to come */
1789 map_write(map
, CMD(words
), cmd_adr
);
1793 vec_seek
= *pvec_seek
;
1795 int n
= map_bankwidth(map
) - word_gap
;
1796 if (n
> vec
->iov_len
- vec_seek
)
1797 n
= vec
->iov_len
- vec_seek
;
1801 if (!word_gap
&& len
< map_bankwidth(map
))
1802 datum
= map_word_ff(map
);
1804 datum
= map_word_load_partial(map
, datum
,
1805 vec
->iov_base
+ vec_seek
,
1810 if (!len
|| word_gap
== map_bankwidth(map
)) {
1811 map_write(map
, datum
, adr
);
1812 adr
+= map_bankwidth(map
);
1817 if (vec_seek
== vec
->iov_len
) {
1823 *pvec_seek
= vec_seek
;
1826 map_write(map
, CMD(0xd0), cmd_adr
);
1827 chip
->state
= FL_WRITING
;
1829 ret
= INVAL_CACHE_AND_WAIT(map
, chip
, cmd_adr
,
1830 initial_adr
, initial_len
,
1831 chip
->buffer_write_time
,
1832 chip
->buffer_write_time_max
);
1834 map_write(map
, CMD(0x70), cmd_adr
);
1835 chip
->state
= FL_STATUS
;
1836 xip_enable(map
, chip
, cmd_adr
);
1837 printk(KERN_ERR
"%s: buffer write error (status timeout)\n", map
->name
);
1841 /* check for errors */
1842 status
= map_read(map
, cmd_adr
);
1843 if (map_word_bitsset(map
, status
, CMD(0x1a))) {
1844 unsigned long chipstatus
= MERGESTATUS(status
);
1847 map_write(map
, CMD(0x50), cmd_adr
);
1848 map_write(map
, CMD(0x70), cmd_adr
);
1849 xip_enable(map
, chip
, cmd_adr
);
1851 if (chipstatus
& 0x02) {
1853 } else if (chipstatus
& 0x08) {
1854 printk(KERN_ERR
"%s: buffer write error (bad VPP)\n", map
->name
);
1857 printk(KERN_ERR
"%s: buffer write error (status 0x%lx)\n", map
->name
, chipstatus
);
1864 xip_enable(map
, chip
, cmd_adr
);
1865 out
: DISABLE_VPP(map
);
1866 put_chip(map
, chip
, cmd_adr
);
1867 mutex_unlock(&chip
->mutex
);
1871 static int cfi_intelext_writev (struct mtd_info
*mtd
, const struct kvec
*vecs
,
1872 unsigned long count
, loff_t to
, size_t *retlen
)
1874 struct map_info
*map
= mtd
->priv
;
1875 struct cfi_private
*cfi
= map
->fldrv_priv
;
1876 int wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
1879 unsigned long ofs
, vec_seek
, i
;
1882 for (i
= 0; i
< count
; i
++)
1883 len
+= vecs
[i
].iov_len
;
1888 chipnum
= to
>> cfi
->chipshift
;
1889 ofs
= to
- (chipnum
<< cfi
->chipshift
);
1893 /* We must not cross write block boundaries */
1894 int size
= wbufsize
- (ofs
& (wbufsize
-1));
1898 ret
= do_write_buffer(map
, &cfi
->chips
[chipnum
],
1899 ofs
, &vecs
, &vec_seek
, size
);
1907 if (ofs
>> cfi
->chipshift
) {
1910 if (chipnum
== cfi
->numchips
)
1914 /* Be nice and reschedule with the chip in a usable state for other
1923 static int cfi_intelext_write_buffers (struct mtd_info
*mtd
, loff_t to
,
1924 size_t len
, size_t *retlen
, const u_char
*buf
)
1928 vec
.iov_base
= (void *) buf
;
1931 return cfi_intelext_writev(mtd
, &vec
, 1, to
, retlen
);
1934 static int __xipram
do_erase_oneblock(struct map_info
*map
, struct flchip
*chip
,
1935 unsigned long adr
, int len
, void *thunk
)
1937 struct cfi_private
*cfi
= map
->fldrv_priv
;
1945 mutex_lock(&chip
->mutex
);
1946 ret
= get_chip(map
, chip
, adr
, FL_ERASING
);
1948 mutex_unlock(&chip
->mutex
);
1952 XIP_INVAL_CACHED_RANGE(map
, adr
, len
);
1954 xip_disable(map
, chip
, adr
);
1956 /* Clear the status register first */
1957 map_write(map
, CMD(0x50), adr
);
1960 map_write(map
, CMD(0x20), adr
);
1961 map_write(map
, CMD(0xD0), adr
);
1962 chip
->state
= FL_ERASING
;
1963 chip
->erase_suspended
= 0;
1964 chip
->in_progress_block_addr
= adr
;
1965 chip
->in_progress_block_mask
= ~(len
- 1);
1967 ret
= INVAL_CACHE_AND_WAIT(map
, chip
, adr
,
1970 chip
->erase_time_max
);
1972 map_write(map
, CMD(0x70), adr
);
1973 chip
->state
= FL_STATUS
;
1974 xip_enable(map
, chip
, adr
);
1975 printk(KERN_ERR
"%s: block erase error: (status timeout)\n", map
->name
);
1979 /* We've broken this before. It doesn't hurt to be safe */
1980 map_write(map
, CMD(0x70), adr
);
1981 chip
->state
= FL_STATUS
;
1982 status
= map_read(map
, adr
);
1984 /* check for errors */
1985 if (map_word_bitsset(map
, status
, CMD(0x3a))) {
1986 unsigned long chipstatus
= MERGESTATUS(status
);
1988 /* Reset the error bits */
1989 map_write(map
, CMD(0x50), adr
);
1990 map_write(map
, CMD(0x70), adr
);
1991 xip_enable(map
, chip
, adr
);
1993 if ((chipstatus
& 0x30) == 0x30) {
1994 printk(KERN_ERR
"%s: block erase error: (bad command sequence, status 0x%lx)\n", map
->name
, chipstatus
);
1996 } else if (chipstatus
& 0x02) {
1997 /* Protection bit set */
1999 } else if (chipstatus
& 0x8) {
2001 printk(KERN_ERR
"%s: block erase error: (bad VPP)\n", map
->name
);
2003 } else if (chipstatus
& 0x20 && retries
--) {
2004 printk(KERN_DEBUG
"block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr
, chipstatus
);
2006 put_chip(map
, chip
, adr
);
2007 mutex_unlock(&chip
->mutex
);
2010 printk(KERN_ERR
"%s: block erase failed at 0x%08lx (status 0x%lx)\n", map
->name
, adr
, chipstatus
);
2017 xip_enable(map
, chip
, adr
);
2018 out
: DISABLE_VPP(map
);
2019 put_chip(map
, chip
, adr
);
2020 mutex_unlock(&chip
->mutex
);
2024 static int cfi_intelext_erase_varsize(struct mtd_info
*mtd
, struct erase_info
*instr
)
2026 return cfi_varsize_frob(mtd
, do_erase_oneblock
, instr
->addr
,
2030 static void cfi_intelext_sync (struct mtd_info
*mtd
)
2032 struct map_info
*map
= mtd
->priv
;
2033 struct cfi_private
*cfi
= map
->fldrv_priv
;
2035 struct flchip
*chip
;
2038 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
2039 chip
= &cfi
->chips
[i
];
2041 mutex_lock(&chip
->mutex
);
2042 ret
= get_chip(map
, chip
, chip
->start
, FL_SYNCING
);
2045 chip
->oldstate
= chip
->state
;
2046 chip
->state
= FL_SYNCING
;
2047 /* No need to wake_up() on this state change -
2048 * as the whole point is that nobody can do anything
2049 * with the chip now anyway.
2052 mutex_unlock(&chip
->mutex
);
2055 /* Unlock the chips again */
2057 for (i
--; i
>=0; i
--) {
2058 chip
= &cfi
->chips
[i
];
2060 mutex_lock(&chip
->mutex
);
2062 if (chip
->state
== FL_SYNCING
) {
2063 chip
->state
= chip
->oldstate
;
2064 chip
->oldstate
= FL_READY
;
2067 mutex_unlock(&chip
->mutex
);
2071 static int __xipram
do_getlockstatus_oneblock(struct map_info
*map
,
2072 struct flchip
*chip
,
2074 int len
, void *thunk
)
2076 struct cfi_private
*cfi
= map
->fldrv_priv
;
2077 int status
, ofs_factor
= cfi
->interleave
* cfi
->device_type
;
2080 xip_disable(map
, chip
, adr
+(2*ofs_factor
));
2081 map_write(map
, CMD(0x90), adr
+(2*ofs_factor
));
2082 chip
->state
= FL_JEDEC_QUERY
;
2083 status
= cfi_read_query(map
, adr
+(2*ofs_factor
));
2084 xip_enable(map
, chip
, 0);
2088 #ifdef DEBUG_LOCK_BITS
2089 static int __xipram
do_printlockstatus_oneblock(struct map_info
*map
,
2090 struct flchip
*chip
,
2092 int len
, void *thunk
)
2094 printk(KERN_DEBUG
"block status register for 0x%08lx is %x\n",
2095 adr
, do_getlockstatus_oneblock(map
, chip
, adr
, len
, thunk
));
2100 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1)
2101 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2)
2103 static int __xipram
do_xxlock_oneblock(struct map_info
*map
, struct flchip
*chip
,
2104 unsigned long adr
, int len
, void *thunk
)
2106 struct cfi_private
*cfi
= map
->fldrv_priv
;
2107 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
2113 mutex_lock(&chip
->mutex
);
2114 ret
= get_chip(map
, chip
, adr
, FL_LOCKING
);
2116 mutex_unlock(&chip
->mutex
);
2121 xip_disable(map
, chip
, adr
);
2123 map_write(map
, CMD(0x60), adr
);
2124 if (thunk
== DO_XXLOCK_ONEBLOCK_LOCK
) {
2125 map_write(map
, CMD(0x01), adr
);
2126 chip
->state
= FL_LOCKING
;
2127 } else if (thunk
== DO_XXLOCK_ONEBLOCK_UNLOCK
) {
2128 map_write(map
, CMD(0xD0), adr
);
2129 chip
->state
= FL_UNLOCKING
;
2134 * If Instant Individual Block Locking supported then no need
2138 * Unlocking may take up to 1.4 seconds on some Intel flashes. So
2139 * lets use a max of 1.5 seconds (1500ms) as timeout.
2141 * See "Clear Block Lock-Bits Time" on page 40 in
2142 * "3 Volt Intel StrataFlash Memory" 28F128J3,28F640J3,28F320J3 manual
2143 * from February 2003
2145 mdelay
= (!extp
|| !(extp
->FeatureSupport
& (1 << 5))) ? 1500 : 0;
2147 ret
= WAIT_TIMEOUT(map
, chip
, adr
, mdelay
, mdelay
* 1000);
2149 map_write(map
, CMD(0x70), adr
);
2150 chip
->state
= FL_STATUS
;
2151 xip_enable(map
, chip
, adr
);
2152 printk(KERN_ERR
"%s: block unlock error: (status timeout)\n", map
->name
);
2156 xip_enable(map
, chip
, adr
);
2157 out
: DISABLE_VPP(map
);
2158 put_chip(map
, chip
, adr
);
2159 mutex_unlock(&chip
->mutex
);
2163 static int cfi_intelext_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2167 #ifdef DEBUG_LOCK_BITS
2168 printk(KERN_DEBUG
"%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2169 __func__
, ofs
, len
);
2170 cfi_varsize_frob(mtd
, do_printlockstatus_oneblock
,
2174 ret
= cfi_varsize_frob(mtd
, do_xxlock_oneblock
,
2175 ofs
, len
, DO_XXLOCK_ONEBLOCK_LOCK
);
2177 #ifdef DEBUG_LOCK_BITS
2178 printk(KERN_DEBUG
"%s: lock status after, ret=%d\n",
2180 cfi_varsize_frob(mtd
, do_printlockstatus_oneblock
,
2187 static int cfi_intelext_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2191 #ifdef DEBUG_LOCK_BITS
2192 printk(KERN_DEBUG
"%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2193 __func__
, ofs
, len
);
2194 cfi_varsize_frob(mtd
, do_printlockstatus_oneblock
,
2198 ret
= cfi_varsize_frob(mtd
, do_xxlock_oneblock
,
2199 ofs
, len
, DO_XXLOCK_ONEBLOCK_UNLOCK
);
2201 #ifdef DEBUG_LOCK_BITS
2202 printk(KERN_DEBUG
"%s: lock status after, ret=%d\n",
2204 cfi_varsize_frob(mtd
, do_printlockstatus_oneblock
,
2211 static int cfi_intelext_is_locked(struct mtd_info
*mtd
, loff_t ofs
,
2214 return cfi_varsize_frob(mtd
, do_getlockstatus_oneblock
,
2215 ofs
, len
, NULL
) ? 1 : 0;
2218 #ifdef CONFIG_MTD_OTP
2220 typedef int (*otp_op_t
)(struct map_info
*map
, struct flchip
*chip
,
2221 u_long data_offset
, u_char
*buf
, u_int size
,
2222 u_long prot_offset
, u_int groupno
, u_int groupsize
);
2225 do_otp_read(struct map_info
*map
, struct flchip
*chip
, u_long offset
,
2226 u_char
*buf
, u_int size
, u_long prot
, u_int grpno
, u_int grpsz
)
2228 struct cfi_private
*cfi
= map
->fldrv_priv
;
2231 mutex_lock(&chip
->mutex
);
2232 ret
= get_chip(map
, chip
, chip
->start
, FL_JEDEC_QUERY
);
2234 mutex_unlock(&chip
->mutex
);
2238 /* let's ensure we're not reading back cached data from array mode */
2239 INVALIDATE_CACHED_RANGE(map
, chip
->start
+ offset
, size
);
2241 xip_disable(map
, chip
, chip
->start
);
2242 if (chip
->state
!= FL_JEDEC_QUERY
) {
2243 map_write(map
, CMD(0x90), chip
->start
);
2244 chip
->state
= FL_JEDEC_QUERY
;
2246 map_copy_from(map
, buf
, chip
->start
+ offset
, size
);
2247 xip_enable(map
, chip
, chip
->start
);
2249 /* then ensure we don't keep OTP data in the cache */
2250 INVALIDATE_CACHED_RANGE(map
, chip
->start
+ offset
, size
);
2252 put_chip(map
, chip
, chip
->start
);
2253 mutex_unlock(&chip
->mutex
);
2258 do_otp_write(struct map_info
*map
, struct flchip
*chip
, u_long offset
,
2259 u_char
*buf
, u_int size
, u_long prot
, u_int grpno
, u_int grpsz
)
2264 unsigned long bus_ofs
= offset
& ~(map_bankwidth(map
)-1);
2265 int gap
= offset
- bus_ofs
;
2266 int n
= min_t(int, size
, map_bankwidth(map
)-gap
);
2267 map_word datum
= map_word_ff(map
);
2269 datum
= map_word_load_partial(map
, datum
, buf
, gap
, n
);
2270 ret
= do_write_oneword(map
, chip
, bus_ofs
, datum
, FL_OTP_WRITE
);
2283 do_otp_lock(struct map_info
*map
, struct flchip
*chip
, u_long offset
,
2284 u_char
*buf
, u_int size
, u_long prot
, u_int grpno
, u_int grpsz
)
2286 struct cfi_private
*cfi
= map
->fldrv_priv
;
2289 /* make sure area matches group boundaries */
2293 datum
= map_word_ff(map
);
2294 datum
= map_word_clr(map
, datum
, CMD(1 << grpno
));
2295 return do_write_oneword(map
, chip
, prot
, datum
, FL_OTP_WRITE
);
2298 static int cfi_intelext_otp_walk(struct mtd_info
*mtd
, loff_t from
, size_t len
,
2299 size_t *retlen
, u_char
*buf
,
2300 otp_op_t action
, int user_regs
)
2302 struct map_info
*map
= mtd
->priv
;
2303 struct cfi_private
*cfi
= map
->fldrv_priv
;
2304 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
2305 struct flchip
*chip
;
2306 struct cfi_intelext_otpinfo
*otp
;
2307 u_long devsize
, reg_prot_offset
, data_offset
;
2308 u_int chip_num
, chip_step
, field
, reg_fact_size
, reg_user_size
;
2309 u_int groups
, groupno
, groupsize
, reg_fact_groups
, reg_user_groups
;
2314 /* Check that we actually have some OTP registers */
2315 if (!extp
|| !(extp
->FeatureSupport
& 64) || !extp
->NumProtectionFields
)
2318 /* we need real chips here not virtual ones */
2319 devsize
= (1 << cfi
->cfiq
->DevSize
) * cfi
->interleave
;
2320 chip_step
= devsize
>> cfi
->chipshift
;
2323 /* Some chips have OTP located in the _top_ partition only.
2324 For example: Intel 28F256L18T (T means top-parameter device) */
2325 if (cfi
->mfr
== CFI_MFR_INTEL
) {
2330 chip_num
= chip_step
- 1;
2334 for ( ; chip_num
< cfi
->numchips
; chip_num
+= chip_step
) {
2335 chip
= &cfi
->chips
[chip_num
];
2336 otp
= (struct cfi_intelext_otpinfo
*)&extp
->extra
[0];
2338 /* first OTP region */
2340 reg_prot_offset
= extp
->ProtRegAddr
;
2341 reg_fact_groups
= 1;
2342 reg_fact_size
= 1 << extp
->FactProtRegSize
;
2343 reg_user_groups
= 1;
2344 reg_user_size
= 1 << extp
->UserProtRegSize
;
2347 /* flash geometry fixup */
2348 data_offset
= reg_prot_offset
+ 1;
2349 data_offset
*= cfi
->interleave
* cfi
->device_type
;
2350 reg_prot_offset
*= cfi
->interleave
* cfi
->device_type
;
2351 reg_fact_size
*= cfi
->interleave
;
2352 reg_user_size
*= cfi
->interleave
;
2355 groups
= reg_user_groups
;
2356 groupsize
= reg_user_size
;
2357 /* skip over factory reg area */
2358 groupno
= reg_fact_groups
;
2359 data_offset
+= reg_fact_groups
* reg_fact_size
;
2361 groups
= reg_fact_groups
;
2362 groupsize
= reg_fact_size
;
2366 while (len
> 0 && groups
> 0) {
2369 * Special case: if action is NULL
2370 * we fill buf with otp_info records.
2372 struct otp_info
*otpinfo
;
2374 len
-= sizeof(struct otp_info
);
2377 ret
= do_otp_read(map
, chip
,
2379 (u_char
*)&lockword
,
2384 otpinfo
= (struct otp_info
*)buf
;
2385 otpinfo
->start
= from
;
2386 otpinfo
->length
= groupsize
;
2388 !map_word_bitsset(map
, lockword
,
2391 buf
+= sizeof(*otpinfo
);
2392 *retlen
+= sizeof(*otpinfo
);
2393 } else if (from
>= groupsize
) {
2395 data_offset
+= groupsize
;
2397 int size
= groupsize
;
2398 data_offset
+= from
;
2403 ret
= action(map
, chip
, data_offset
,
2404 buf
, size
, reg_prot_offset
,
2405 groupno
, groupsize
);
2411 data_offset
+= size
;
2417 /* next OTP region */
2418 if (++field
== extp
->NumProtectionFields
)
2420 reg_prot_offset
= otp
->ProtRegAddr
;
2421 reg_fact_groups
= otp
->FactGroups
;
2422 reg_fact_size
= 1 << otp
->FactProtRegSize
;
2423 reg_user_groups
= otp
->UserGroups
;
2424 reg_user_size
= 1 << otp
->UserProtRegSize
;
2432 static int cfi_intelext_read_fact_prot_reg(struct mtd_info
*mtd
, loff_t from
,
2433 size_t len
, size_t *retlen
,
2436 return cfi_intelext_otp_walk(mtd
, from
, len
, retlen
,
2437 buf
, do_otp_read
, 0);
2440 static int cfi_intelext_read_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
2441 size_t len
, size_t *retlen
,
2444 return cfi_intelext_otp_walk(mtd
, from
, len
, retlen
,
2445 buf
, do_otp_read
, 1);
2448 static int cfi_intelext_write_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
2449 size_t len
, size_t *retlen
,
2452 return cfi_intelext_otp_walk(mtd
, from
, len
, retlen
,
2453 buf
, do_otp_write
, 1);
2456 static int cfi_intelext_lock_user_prot_reg(struct mtd_info
*mtd
,
2457 loff_t from
, size_t len
)
2460 return cfi_intelext_otp_walk(mtd
, from
, len
, &retlen
,
2461 NULL
, do_otp_lock
, 1);
2464 static int cfi_intelext_get_fact_prot_info(struct mtd_info
*mtd
, size_t len
,
2465 size_t *retlen
, struct otp_info
*buf
)
2468 return cfi_intelext_otp_walk(mtd
, 0, len
, retlen
, (u_char
*)buf
,
2472 static int cfi_intelext_get_user_prot_info(struct mtd_info
*mtd
, size_t len
,
2473 size_t *retlen
, struct otp_info
*buf
)
2475 return cfi_intelext_otp_walk(mtd
, 0, len
, retlen
, (u_char
*)buf
,
2481 static void cfi_intelext_save_locks(struct mtd_info
*mtd
)
2483 struct mtd_erase_region_info
*region
;
2484 int block
, status
, i
;
2488 for (i
= 0; i
< mtd
->numeraseregions
; i
++) {
2489 region
= &mtd
->eraseregions
[i
];
2490 if (!region
->lockmap
)
2493 for (block
= 0; block
< region
->numblocks
; block
++){
2494 len
= region
->erasesize
;
2495 adr
= region
->offset
+ block
* len
;
2497 status
= cfi_varsize_frob(mtd
,
2498 do_getlockstatus_oneblock
, adr
, len
, NULL
);
2500 set_bit(block
, region
->lockmap
);
2502 clear_bit(block
, region
->lockmap
);
2507 static int cfi_intelext_suspend(struct mtd_info
*mtd
)
2509 struct map_info
*map
= mtd
->priv
;
2510 struct cfi_private
*cfi
= map
->fldrv_priv
;
2511 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
2513 struct flchip
*chip
;
2516 if ((mtd
->flags
& MTD_POWERUP_LOCK
)
2517 && extp
&& (extp
->FeatureSupport
& (1 << 5)))
2518 cfi_intelext_save_locks(mtd
);
2520 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
2521 chip
= &cfi
->chips
[i
];
2523 mutex_lock(&chip
->mutex
);
2525 switch (chip
->state
) {
2529 case FL_JEDEC_QUERY
:
2530 if (chip
->oldstate
== FL_READY
) {
2531 /* place the chip in a known state before suspend */
2532 map_write(map
, CMD(0xFF), cfi
->chips
[i
].start
);
2533 chip
->oldstate
= chip
->state
;
2534 chip
->state
= FL_PM_SUSPENDED
;
2535 /* No need to wake_up() on this state change -
2536 * as the whole point is that nobody can do anything
2537 * with the chip now anyway.
2540 /* There seems to be an operation pending. We must wait for it. */
2541 printk(KERN_NOTICE
"Flash device refused suspend due to pending operation (oldstate %d)\n", chip
->oldstate
);
2546 /* Should we actually wait? Once upon a time these routines weren't
2547 allowed to. Or should we return -EAGAIN, because the upper layers
2548 ought to have already shut down anything which was using the device
2549 anyway? The latter for now. */
2550 printk(KERN_NOTICE
"Flash device refused suspend due to active operation (state %d)\n", chip
->state
);
2552 case FL_PM_SUSPENDED
:
2555 mutex_unlock(&chip
->mutex
);
2558 /* Unlock the chips again */
2561 for (i
--; i
>=0; i
--) {
2562 chip
= &cfi
->chips
[i
];
2564 mutex_lock(&chip
->mutex
);
2566 if (chip
->state
== FL_PM_SUSPENDED
) {
2567 /* No need to force it into a known state here,
2568 because we're returning failure, and it didn't
2570 chip
->state
= chip
->oldstate
;
2571 chip
->oldstate
= FL_READY
;
2574 mutex_unlock(&chip
->mutex
);
2581 static void cfi_intelext_restore_locks(struct mtd_info
*mtd
)
2583 struct mtd_erase_region_info
*region
;
2588 for (i
= 0; i
< mtd
->numeraseregions
; i
++) {
2589 region
= &mtd
->eraseregions
[i
];
2590 if (!region
->lockmap
)
2593 for_each_clear_bit(block
, region
->lockmap
, region
->numblocks
) {
2594 len
= region
->erasesize
;
2595 adr
= region
->offset
+ block
* len
;
2596 cfi_intelext_unlock(mtd
, adr
, len
);
2601 static void cfi_intelext_resume(struct mtd_info
*mtd
)
2603 struct map_info
*map
= mtd
->priv
;
2604 struct cfi_private
*cfi
= map
->fldrv_priv
;
2605 struct cfi_pri_intelext
*extp
= cfi
->cmdset_priv
;
2607 struct flchip
*chip
;
2609 for (i
=0; i
<cfi
->numchips
; i
++) {
2611 chip
= &cfi
->chips
[i
];
2613 mutex_lock(&chip
->mutex
);
2615 /* Go to known state. Chip may have been power cycled */
2616 if (chip
->state
== FL_PM_SUSPENDED
) {
2617 /* Refresh LH28F640BF Partition Config. Register */
2618 fixup_LH28F640BF(mtd
);
2619 map_write(map
, CMD(0xFF), cfi
->chips
[i
].start
);
2620 chip
->oldstate
= chip
->state
= FL_READY
;
2624 mutex_unlock(&chip
->mutex
);
2627 if ((mtd
->flags
& MTD_POWERUP_LOCK
)
2628 && extp
&& (extp
->FeatureSupport
& (1 << 5)))
2629 cfi_intelext_restore_locks(mtd
);
2632 static int cfi_intelext_reset(struct mtd_info
*mtd
)
2634 struct map_info
*map
= mtd
->priv
;
2635 struct cfi_private
*cfi
= map
->fldrv_priv
;
2638 for (i
=0; i
< cfi
->numchips
; i
++) {
2639 struct flchip
*chip
= &cfi
->chips
[i
];
2641 /* force the completion of any ongoing operation
2642 and switch to array mode so any bootloader in
2643 flash is accessible for soft reboot. */
2644 mutex_lock(&chip
->mutex
);
2645 ret
= get_chip(map
, chip
, chip
->start
, FL_SHUTDOWN
);
2647 map_write(map
, CMD(0xff), chip
->start
);
2648 chip
->state
= FL_SHUTDOWN
;
2649 put_chip(map
, chip
, chip
->start
);
2651 mutex_unlock(&chip
->mutex
);
2657 static int cfi_intelext_reboot(struct notifier_block
*nb
, unsigned long val
,
2660 struct mtd_info
*mtd
;
2662 mtd
= container_of(nb
, struct mtd_info
, reboot_notifier
);
2663 cfi_intelext_reset(mtd
);
2667 static void cfi_intelext_destroy(struct mtd_info
*mtd
)
2669 struct map_info
*map
= mtd
->priv
;
2670 struct cfi_private
*cfi
= map
->fldrv_priv
;
2671 struct mtd_erase_region_info
*region
;
2673 cfi_intelext_reset(mtd
);
2674 unregister_reboot_notifier(&mtd
->reboot_notifier
);
2675 kfree(cfi
->cmdset_priv
);
2677 kfree(cfi
->chips
[0].priv
);
2679 for (i
= 0; i
< mtd
->numeraseregions
; i
++) {
2680 region
= &mtd
->eraseregions
[i
];
2681 kfree(region
->lockmap
);
2683 kfree(mtd
->eraseregions
);
2686 MODULE_LICENSE("GPL");
2687 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
2688 MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
2689 MODULE_ALIAS("cfi_cmdset_0003");
2690 MODULE_ALIAS("cfi_cmdset_0200");