WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / ethernet / intel / e1000e / netdev.c
blobe9b82c209c2df60534a2eef83fe5d8e230846554
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/aer.h>
27 #include <linux/prefetch.h>
29 #include "e1000.h"
31 char e1000e_driver_name[] = "e1000e";
33 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34 static int debug = -1;
35 module_param(debug, int, 0);
36 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
38 static const struct e1000_info *e1000_info_tbl[] = {
39 [board_82571] = &e1000_82571_info,
40 [board_82572] = &e1000_82572_info,
41 [board_82573] = &e1000_82573_info,
42 [board_82574] = &e1000_82574_info,
43 [board_82583] = &e1000_82583_info,
44 [board_80003es2lan] = &e1000_es2_info,
45 [board_ich8lan] = &e1000_ich8_info,
46 [board_ich9lan] = &e1000_ich9_info,
47 [board_ich10lan] = &e1000_ich10_info,
48 [board_pchlan] = &e1000_pch_info,
49 [board_pch2lan] = &e1000_pch2_info,
50 [board_pch_lpt] = &e1000_pch_lpt_info,
51 [board_pch_spt] = &e1000_pch_spt_info,
52 [board_pch_cnp] = &e1000_pch_cnp_info,
55 struct e1000_reg_info {
56 u32 ofs;
57 char *name;
60 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
61 /* General Registers */
62 {E1000_CTRL, "CTRL"},
63 {E1000_STATUS, "STATUS"},
64 {E1000_CTRL_EXT, "CTRL_EXT"},
66 /* Interrupt Registers */
67 {E1000_ICR, "ICR"},
69 /* Rx Registers */
70 {E1000_RCTL, "RCTL"},
71 {E1000_RDLEN(0), "RDLEN"},
72 {E1000_RDH(0), "RDH"},
73 {E1000_RDT(0), "RDT"},
74 {E1000_RDTR, "RDTR"},
75 {E1000_RXDCTL(0), "RXDCTL"},
76 {E1000_ERT, "ERT"},
77 {E1000_RDBAL(0), "RDBAL"},
78 {E1000_RDBAH(0), "RDBAH"},
79 {E1000_RDFH, "RDFH"},
80 {E1000_RDFT, "RDFT"},
81 {E1000_RDFHS, "RDFHS"},
82 {E1000_RDFTS, "RDFTS"},
83 {E1000_RDFPC, "RDFPC"},
85 /* Tx Registers */
86 {E1000_TCTL, "TCTL"},
87 {E1000_TDBAL(0), "TDBAL"},
88 {E1000_TDBAH(0), "TDBAH"},
89 {E1000_TDLEN(0), "TDLEN"},
90 {E1000_TDH(0), "TDH"},
91 {E1000_TDT(0), "TDT"},
92 {E1000_TIDV, "TIDV"},
93 {E1000_TXDCTL(0), "TXDCTL"},
94 {E1000_TADV, "TADV"},
95 {E1000_TARC(0), "TARC"},
96 {E1000_TDFH, "TDFH"},
97 {E1000_TDFT, "TDFT"},
98 {E1000_TDFHS, "TDFHS"},
99 {E1000_TDFTS, "TDFTS"},
100 {E1000_TDFPC, "TDFPC"},
102 /* List Terminator */
103 {0, NULL}
107 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
108 * @hw: pointer to the HW structure
110 * When updating the MAC CSR registers, the Manageability Engine (ME) could
111 * be accessing the registers at the same time. Normally, this is handled in
112 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
113 * accesses later than it should which could result in the register to have
114 * an incorrect value. Workaround this by checking the FWSM register which
115 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
116 * and try again a number of times.
118 static void __ew32_prepare(struct e1000_hw *hw)
120 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
122 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
123 udelay(50);
126 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
128 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
129 __ew32_prepare(hw);
131 writel(val, hw->hw_addr + reg);
135 * e1000_regdump - register printout routine
136 * @hw: pointer to the HW structure
137 * @reginfo: pointer to the register info table
139 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
141 int n = 0;
142 char rname[16];
143 u32 regs[8];
145 switch (reginfo->ofs) {
146 case E1000_RXDCTL(0):
147 for (n = 0; n < 2; n++)
148 regs[n] = __er32(hw, E1000_RXDCTL(n));
149 break;
150 case E1000_TXDCTL(0):
151 for (n = 0; n < 2; n++)
152 regs[n] = __er32(hw, E1000_TXDCTL(n));
153 break;
154 case E1000_TARC(0):
155 for (n = 0; n < 2; n++)
156 regs[n] = __er32(hw, E1000_TARC(n));
157 break;
158 default:
159 pr_info("%-15s %08x\n",
160 reginfo->name, __er32(hw, reginfo->ofs));
161 return;
164 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
165 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
168 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
169 struct e1000_buffer *bi)
171 int i;
172 struct e1000_ps_page *ps_page;
174 for (i = 0; i < adapter->rx_ps_pages; i++) {
175 ps_page = &bi->ps_pages[i];
177 if (ps_page->page) {
178 pr_info("packet dump for ps_page %d:\n", i);
179 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
180 16, 1, page_address(ps_page->page),
181 PAGE_SIZE, true);
187 * e1000e_dump - Print registers, Tx-ring and Rx-ring
188 * @adapter: board private structure
190 static void e1000e_dump(struct e1000_adapter *adapter)
192 struct net_device *netdev = adapter->netdev;
193 struct e1000_hw *hw = &adapter->hw;
194 struct e1000_reg_info *reginfo;
195 struct e1000_ring *tx_ring = adapter->tx_ring;
196 struct e1000_tx_desc *tx_desc;
197 struct my_u0 {
198 __le64 a;
199 __le64 b;
200 } *u0;
201 struct e1000_buffer *buffer_info;
202 struct e1000_ring *rx_ring = adapter->rx_ring;
203 union e1000_rx_desc_packet_split *rx_desc_ps;
204 union e1000_rx_desc_extended *rx_desc;
205 struct my_u1 {
206 __le64 a;
207 __le64 b;
208 __le64 c;
209 __le64 d;
210 } *u1;
211 u32 staterr;
212 int i = 0;
214 if (!netif_msg_hw(adapter))
215 return;
217 /* Print netdevice Info */
218 if (netdev) {
219 dev_info(&adapter->pdev->dev, "Net device Info\n");
220 pr_info("Device Name state trans_start\n");
221 pr_info("%-15s %016lX %016lX\n", netdev->name,
222 netdev->state, dev_trans_start(netdev));
225 /* Print Registers */
226 dev_info(&adapter->pdev->dev, "Register Dump\n");
227 pr_info(" Register Name Value\n");
228 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
229 reginfo->name; reginfo++) {
230 e1000_regdump(hw, reginfo);
233 /* Print Tx Ring Summary */
234 if (!netdev || !netif_running(netdev))
235 return;
237 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
238 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
239 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
240 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
241 0, tx_ring->next_to_use, tx_ring->next_to_clean,
242 (unsigned long long)buffer_info->dma,
243 buffer_info->length,
244 buffer_info->next_to_watch,
245 (unsigned long long)buffer_info->time_stamp);
247 /* Print Tx Ring */
248 if (!netif_msg_tx_done(adapter))
249 goto rx_ring_summary;
251 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
253 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
255 * Legacy Transmit Descriptor
256 * +--------------------------------------------------------------+
257 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
258 * +--------------------------------------------------------------+
259 * 8 | Special | CSS | Status | CMD | CSO | Length |
260 * +--------------------------------------------------------------+
261 * 63 48 47 36 35 32 31 24 23 16 15 0
263 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
264 * 63 48 47 40 39 32 31 16 15 8 7 0
265 * +----------------------------------------------------------------+
266 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
267 * +----------------------------------------------------------------+
268 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
269 * +----------------------------------------------------------------+
270 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
272 * Extended Data Descriptor (DTYP=0x1)
273 * +----------------------------------------------------------------+
274 * 0 | Buffer Address [63:0] |
275 * +----------------------------------------------------------------+
276 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
277 * +----------------------------------------------------------------+
278 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
280 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
281 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
282 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
283 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
284 const char *next_desc;
285 tx_desc = E1000_TX_DESC(*tx_ring, i);
286 buffer_info = &tx_ring->buffer_info[i];
287 u0 = (struct my_u0 *)tx_desc;
288 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
289 next_desc = " NTC/U";
290 else if (i == tx_ring->next_to_use)
291 next_desc = " NTU";
292 else if (i == tx_ring->next_to_clean)
293 next_desc = " NTC";
294 else
295 next_desc = "";
296 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
297 (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
298 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
300 (unsigned long long)le64_to_cpu(u0->a),
301 (unsigned long long)le64_to_cpu(u0->b),
302 (unsigned long long)buffer_info->dma,
303 buffer_info->length, buffer_info->next_to_watch,
304 (unsigned long long)buffer_info->time_stamp,
305 buffer_info->skb, next_desc);
307 if (netif_msg_pktdata(adapter) && buffer_info->skb)
308 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
309 16, 1, buffer_info->skb->data,
310 buffer_info->skb->len, true);
313 /* Print Rx Ring Summary */
314 rx_ring_summary:
315 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
316 pr_info("Queue [NTU] [NTC]\n");
317 pr_info(" %5d %5X %5X\n",
318 0, rx_ring->next_to_use, rx_ring->next_to_clean);
320 /* Print Rx Ring */
321 if (!netif_msg_rx_status(adapter))
322 return;
324 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
325 switch (adapter->rx_ps_pages) {
326 case 1:
327 case 2:
328 case 3:
329 /* [Extended] Packet Split Receive Descriptor Format
331 * +-----------------------------------------------------+
332 * 0 | Buffer Address 0 [63:0] |
333 * +-----------------------------------------------------+
334 * 8 | Buffer Address 1 [63:0] |
335 * +-----------------------------------------------------+
336 * 16 | Buffer Address 2 [63:0] |
337 * +-----------------------------------------------------+
338 * 24 | Buffer Address 3 [63:0] |
339 * +-----------------------------------------------------+
341 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
342 /* [Extended] Receive Descriptor (Write-Back) Format
344 * 63 48 47 32 31 13 12 8 7 4 3 0
345 * +------------------------------------------------------+
346 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
347 * | Checksum | Ident | | Queue | | Type |
348 * +------------------------------------------------------+
349 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
350 * +------------------------------------------------------+
351 * 63 48 47 32 31 20 19 0
353 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
354 for (i = 0; i < rx_ring->count; i++) {
355 const char *next_desc;
356 buffer_info = &rx_ring->buffer_info[i];
357 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
358 u1 = (struct my_u1 *)rx_desc_ps;
359 staterr =
360 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
362 if (i == rx_ring->next_to_use)
363 next_desc = " NTU";
364 else if (i == rx_ring->next_to_clean)
365 next_desc = " NTC";
366 else
367 next_desc = "";
369 if (staterr & E1000_RXD_STAT_DD) {
370 /* Descriptor Done */
371 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
372 "RWB", i,
373 (unsigned long long)le64_to_cpu(u1->a),
374 (unsigned long long)le64_to_cpu(u1->b),
375 (unsigned long long)le64_to_cpu(u1->c),
376 (unsigned long long)le64_to_cpu(u1->d),
377 buffer_info->skb, next_desc);
378 } else {
379 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
380 "R ", i,
381 (unsigned long long)le64_to_cpu(u1->a),
382 (unsigned long long)le64_to_cpu(u1->b),
383 (unsigned long long)le64_to_cpu(u1->c),
384 (unsigned long long)le64_to_cpu(u1->d),
385 (unsigned long long)buffer_info->dma,
386 buffer_info->skb, next_desc);
388 if (netif_msg_pktdata(adapter))
389 e1000e_dump_ps_pages(adapter,
390 buffer_info);
393 break;
394 default:
395 case 0:
396 /* Extended Receive Descriptor (Read) Format
398 * +-----------------------------------------------------+
399 * 0 | Buffer Address [63:0] |
400 * +-----------------------------------------------------+
401 * 8 | Reserved |
402 * +-----------------------------------------------------+
404 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
405 /* Extended Receive Descriptor (Write-Back) Format
407 * 63 48 47 32 31 24 23 4 3 0
408 * +------------------------------------------------------+
409 * | RSS Hash | | | |
410 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
411 * | Packet | IP | | | Type |
412 * | Checksum | Ident | | | |
413 * +------------------------------------------------------+
414 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
415 * +------------------------------------------------------+
416 * 63 48 47 32 31 20 19 0
418 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
420 for (i = 0; i < rx_ring->count; i++) {
421 const char *next_desc;
423 buffer_info = &rx_ring->buffer_info[i];
424 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
425 u1 = (struct my_u1 *)rx_desc;
426 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
428 if (i == rx_ring->next_to_use)
429 next_desc = " NTU";
430 else if (i == rx_ring->next_to_clean)
431 next_desc = " NTC";
432 else
433 next_desc = "";
435 if (staterr & E1000_RXD_STAT_DD) {
436 /* Descriptor Done */
437 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
438 "RWB", i,
439 (unsigned long long)le64_to_cpu(u1->a),
440 (unsigned long long)le64_to_cpu(u1->b),
441 buffer_info->skb, next_desc);
442 } else {
443 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
444 "R ", i,
445 (unsigned long long)le64_to_cpu(u1->a),
446 (unsigned long long)le64_to_cpu(u1->b),
447 (unsigned long long)buffer_info->dma,
448 buffer_info->skb, next_desc);
450 if (netif_msg_pktdata(adapter) &&
451 buffer_info->skb)
452 print_hex_dump(KERN_INFO, "",
453 DUMP_PREFIX_ADDRESS, 16,
455 buffer_info->skb->data,
456 adapter->rx_buffer_len,
457 true);
464 * e1000_desc_unused - calculate if we have unused descriptors
465 * @ring: pointer to ring struct to perform calculation on
467 static int e1000_desc_unused(struct e1000_ring *ring)
469 if (ring->next_to_clean > ring->next_to_use)
470 return ring->next_to_clean - ring->next_to_use - 1;
472 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
476 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
477 * @adapter: board private structure
478 * @hwtstamps: time stamp structure to update
479 * @systim: unsigned 64bit system time value.
481 * Convert the system time value stored in the RX/TXSTMP registers into a
482 * hwtstamp which can be used by the upper level time stamping functions.
484 * The 'systim_lock' spinlock is used to protect the consistency of the
485 * system time value. This is needed because reading the 64 bit time
486 * value involves reading two 32 bit registers. The first read latches the
487 * value.
489 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
490 struct skb_shared_hwtstamps *hwtstamps,
491 u64 systim)
493 u64 ns;
494 unsigned long flags;
496 spin_lock_irqsave(&adapter->systim_lock, flags);
497 ns = timecounter_cyc2time(&adapter->tc, systim);
498 spin_unlock_irqrestore(&adapter->systim_lock, flags);
500 memset(hwtstamps, 0, sizeof(*hwtstamps));
501 hwtstamps->hwtstamp = ns_to_ktime(ns);
505 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
506 * @adapter: board private structure
507 * @status: descriptor extended error and status field
508 * @skb: particular skb to include time stamp
510 * If the time stamp is valid, convert it into the timecounter ns value
511 * and store that result into the shhwtstamps structure which is passed
512 * up the network stack.
514 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
515 struct sk_buff *skb)
517 struct e1000_hw *hw = &adapter->hw;
518 u64 rxstmp;
520 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
521 !(status & E1000_RXDEXT_STATERR_TST) ||
522 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
523 return;
525 /* The Rx time stamp registers contain the time stamp. No other
526 * received packet will be time stamped until the Rx time stamp
527 * registers are read. Because only one packet can be time stamped
528 * at a time, the register values must belong to this packet and
529 * therefore none of the other additional attributes need to be
530 * compared.
532 rxstmp = (u64)er32(RXSTMPL);
533 rxstmp |= (u64)er32(RXSTMPH) << 32;
534 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
536 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
540 * e1000_receive_skb - helper function to handle Rx indications
541 * @adapter: board private structure
542 * @netdev: pointer to netdev struct
543 * @staterr: descriptor extended error and status field as written by hardware
544 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
545 * @skb: pointer to sk_buff to be indicated to stack
547 static void e1000_receive_skb(struct e1000_adapter *adapter,
548 struct net_device *netdev, struct sk_buff *skb,
549 u32 staterr, __le16 vlan)
551 u16 tag = le16_to_cpu(vlan);
553 e1000e_rx_hwtstamp(adapter, staterr, skb);
555 skb->protocol = eth_type_trans(skb, netdev);
557 if (staterr & E1000_RXD_STAT_VP)
558 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
560 napi_gro_receive(&adapter->napi, skb);
564 * e1000_rx_checksum - Receive Checksum Offload
565 * @adapter: board private structure
566 * @status_err: receive descriptor status and error fields
567 * @skb: socket buffer with received data
569 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
570 struct sk_buff *skb)
572 u16 status = (u16)status_err;
573 u8 errors = (u8)(status_err >> 24);
575 skb_checksum_none_assert(skb);
577 /* Rx checksum disabled */
578 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
579 return;
581 /* Ignore Checksum bit is set */
582 if (status & E1000_RXD_STAT_IXSM)
583 return;
585 /* TCP/UDP checksum error bit or IP checksum error bit is set */
586 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
587 /* let the stack verify checksum errors */
588 adapter->hw_csum_err++;
589 return;
592 /* TCP/UDP Checksum has not been calculated */
593 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
594 return;
596 /* It must be a TCP or UDP packet with a valid checksum */
597 skb->ip_summed = CHECKSUM_UNNECESSARY;
598 adapter->hw_csum_good++;
601 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
603 struct e1000_adapter *adapter = rx_ring->adapter;
604 struct e1000_hw *hw = &adapter->hw;
606 __ew32_prepare(hw);
607 writel(i, rx_ring->tail);
609 if (unlikely(i != readl(rx_ring->tail))) {
610 u32 rctl = er32(RCTL);
612 ew32(RCTL, rctl & ~E1000_RCTL_EN);
613 e_err("ME firmware caused invalid RDT - resetting\n");
614 schedule_work(&adapter->reset_task);
618 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
620 struct e1000_adapter *adapter = tx_ring->adapter;
621 struct e1000_hw *hw = &adapter->hw;
623 __ew32_prepare(hw);
624 writel(i, tx_ring->tail);
626 if (unlikely(i != readl(tx_ring->tail))) {
627 u32 tctl = er32(TCTL);
629 ew32(TCTL, tctl & ~E1000_TCTL_EN);
630 e_err("ME firmware caused invalid TDT - resetting\n");
631 schedule_work(&adapter->reset_task);
636 * e1000_alloc_rx_buffers - Replace used receive buffers
637 * @rx_ring: Rx descriptor ring
638 * @cleaned_count: number to reallocate
639 * @gfp: flags for allocation
641 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
642 int cleaned_count, gfp_t gfp)
644 struct e1000_adapter *adapter = rx_ring->adapter;
645 struct net_device *netdev = adapter->netdev;
646 struct pci_dev *pdev = adapter->pdev;
647 union e1000_rx_desc_extended *rx_desc;
648 struct e1000_buffer *buffer_info;
649 struct sk_buff *skb;
650 unsigned int i;
651 unsigned int bufsz = adapter->rx_buffer_len;
653 i = rx_ring->next_to_use;
654 buffer_info = &rx_ring->buffer_info[i];
656 while (cleaned_count--) {
657 skb = buffer_info->skb;
658 if (skb) {
659 skb_trim(skb, 0);
660 goto map_skb;
663 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
664 if (!skb) {
665 /* Better luck next round */
666 adapter->alloc_rx_buff_failed++;
667 break;
670 buffer_info->skb = skb;
671 map_skb:
672 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
673 adapter->rx_buffer_len,
674 DMA_FROM_DEVICE);
675 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
676 dev_err(&pdev->dev, "Rx DMA map failed\n");
677 adapter->rx_dma_failed++;
678 break;
681 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
682 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
684 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
685 /* Force memory writes to complete before letting h/w
686 * know there are new descriptors to fetch. (Only
687 * applicable for weak-ordered memory model archs,
688 * such as IA-64).
690 wmb();
691 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
692 e1000e_update_rdt_wa(rx_ring, i);
693 else
694 writel(i, rx_ring->tail);
696 i++;
697 if (i == rx_ring->count)
698 i = 0;
699 buffer_info = &rx_ring->buffer_info[i];
702 rx_ring->next_to_use = i;
706 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
707 * @rx_ring: Rx descriptor ring
708 * @cleaned_count: number to reallocate
709 * @gfp: flags for allocation
711 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
712 int cleaned_count, gfp_t gfp)
714 struct e1000_adapter *adapter = rx_ring->adapter;
715 struct net_device *netdev = adapter->netdev;
716 struct pci_dev *pdev = adapter->pdev;
717 union e1000_rx_desc_packet_split *rx_desc;
718 struct e1000_buffer *buffer_info;
719 struct e1000_ps_page *ps_page;
720 struct sk_buff *skb;
721 unsigned int i, j;
723 i = rx_ring->next_to_use;
724 buffer_info = &rx_ring->buffer_info[i];
726 while (cleaned_count--) {
727 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
729 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
730 ps_page = &buffer_info->ps_pages[j];
731 if (j >= adapter->rx_ps_pages) {
732 /* all unused desc entries get hw null ptr */
733 rx_desc->read.buffer_addr[j + 1] =
734 ~cpu_to_le64(0);
735 continue;
737 if (!ps_page->page) {
738 ps_page->page = alloc_page(gfp);
739 if (!ps_page->page) {
740 adapter->alloc_rx_buff_failed++;
741 goto no_buffers;
743 ps_page->dma = dma_map_page(&pdev->dev,
744 ps_page->page,
745 0, PAGE_SIZE,
746 DMA_FROM_DEVICE);
747 if (dma_mapping_error(&pdev->dev,
748 ps_page->dma)) {
749 dev_err(&adapter->pdev->dev,
750 "Rx DMA page map failed\n");
751 adapter->rx_dma_failed++;
752 goto no_buffers;
755 /* Refresh the desc even if buffer_addrs
756 * didn't change because each write-back
757 * erases this info.
759 rx_desc->read.buffer_addr[j + 1] =
760 cpu_to_le64(ps_page->dma);
763 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
764 gfp);
766 if (!skb) {
767 adapter->alloc_rx_buff_failed++;
768 break;
771 buffer_info->skb = skb;
772 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
773 adapter->rx_ps_bsize0,
774 DMA_FROM_DEVICE);
775 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
776 dev_err(&pdev->dev, "Rx DMA map failed\n");
777 adapter->rx_dma_failed++;
778 /* cleanup skb */
779 dev_kfree_skb_any(skb);
780 buffer_info->skb = NULL;
781 break;
784 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
786 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
787 /* Force memory writes to complete before letting h/w
788 * know there are new descriptors to fetch. (Only
789 * applicable for weak-ordered memory model archs,
790 * such as IA-64).
792 wmb();
793 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
794 e1000e_update_rdt_wa(rx_ring, i << 1);
795 else
796 writel(i << 1, rx_ring->tail);
799 i++;
800 if (i == rx_ring->count)
801 i = 0;
802 buffer_info = &rx_ring->buffer_info[i];
805 no_buffers:
806 rx_ring->next_to_use = i;
810 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
811 * @rx_ring: Rx descriptor ring
812 * @cleaned_count: number of buffers to allocate this pass
813 * @gfp: flags for allocation
816 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
817 int cleaned_count, gfp_t gfp)
819 struct e1000_adapter *adapter = rx_ring->adapter;
820 struct net_device *netdev = adapter->netdev;
821 struct pci_dev *pdev = adapter->pdev;
822 union e1000_rx_desc_extended *rx_desc;
823 struct e1000_buffer *buffer_info;
824 struct sk_buff *skb;
825 unsigned int i;
826 unsigned int bufsz = 256 - 16; /* for skb_reserve */
828 i = rx_ring->next_to_use;
829 buffer_info = &rx_ring->buffer_info[i];
831 while (cleaned_count--) {
832 skb = buffer_info->skb;
833 if (skb) {
834 skb_trim(skb, 0);
835 goto check_page;
838 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
839 if (unlikely(!skb)) {
840 /* Better luck next round */
841 adapter->alloc_rx_buff_failed++;
842 break;
845 buffer_info->skb = skb;
846 check_page:
847 /* allocate a new page if necessary */
848 if (!buffer_info->page) {
849 buffer_info->page = alloc_page(gfp);
850 if (unlikely(!buffer_info->page)) {
851 adapter->alloc_rx_buff_failed++;
852 break;
856 if (!buffer_info->dma) {
857 buffer_info->dma = dma_map_page(&pdev->dev,
858 buffer_info->page, 0,
859 PAGE_SIZE,
860 DMA_FROM_DEVICE);
861 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
862 adapter->alloc_rx_buff_failed++;
863 break;
867 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
868 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
870 if (unlikely(++i == rx_ring->count))
871 i = 0;
872 buffer_info = &rx_ring->buffer_info[i];
875 if (likely(rx_ring->next_to_use != i)) {
876 rx_ring->next_to_use = i;
877 if (unlikely(i-- == 0))
878 i = (rx_ring->count - 1);
880 /* Force memory writes to complete before letting h/w
881 * know there are new descriptors to fetch. (Only
882 * applicable for weak-ordered memory model archs,
883 * such as IA-64).
885 wmb();
886 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
887 e1000e_update_rdt_wa(rx_ring, i);
888 else
889 writel(i, rx_ring->tail);
893 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
894 struct sk_buff *skb)
896 if (netdev->features & NETIF_F_RXHASH)
897 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
901 * e1000_clean_rx_irq - Send received data up the network stack
902 * @rx_ring: Rx descriptor ring
903 * @work_done: output parameter for indicating completed work
904 * @work_to_do: how many packets we can clean
906 * the return value indicates whether actual cleaning was done, there
907 * is no guarantee that everything was cleaned
909 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
910 int work_to_do)
912 struct e1000_adapter *adapter = rx_ring->adapter;
913 struct net_device *netdev = adapter->netdev;
914 struct pci_dev *pdev = adapter->pdev;
915 struct e1000_hw *hw = &adapter->hw;
916 union e1000_rx_desc_extended *rx_desc, *next_rxd;
917 struct e1000_buffer *buffer_info, *next_buffer;
918 u32 length, staterr;
919 unsigned int i;
920 int cleaned_count = 0;
921 bool cleaned = false;
922 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
924 i = rx_ring->next_to_clean;
925 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
926 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
927 buffer_info = &rx_ring->buffer_info[i];
929 while (staterr & E1000_RXD_STAT_DD) {
930 struct sk_buff *skb;
932 if (*work_done >= work_to_do)
933 break;
934 (*work_done)++;
935 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
937 skb = buffer_info->skb;
938 buffer_info->skb = NULL;
940 prefetch(skb->data - NET_IP_ALIGN);
942 i++;
943 if (i == rx_ring->count)
944 i = 0;
945 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
946 prefetch(next_rxd);
948 next_buffer = &rx_ring->buffer_info[i];
950 cleaned = true;
951 cleaned_count++;
952 dma_unmap_single(&pdev->dev, buffer_info->dma,
953 adapter->rx_buffer_len, DMA_FROM_DEVICE);
954 buffer_info->dma = 0;
956 length = le16_to_cpu(rx_desc->wb.upper.length);
958 /* !EOP means multiple descriptors were used to store a single
959 * packet, if that's the case we need to toss it. In fact, we
960 * need to toss every packet with the EOP bit clear and the
961 * next frame that _does_ have the EOP bit set, as it is by
962 * definition only a frame fragment
964 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
965 adapter->flags2 |= FLAG2_IS_DISCARDING;
967 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
968 /* All receives must fit into a single buffer */
969 e_dbg("Receive packet consumed multiple buffers\n");
970 /* recycle */
971 buffer_info->skb = skb;
972 if (staterr & E1000_RXD_STAT_EOP)
973 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
974 goto next_desc;
977 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
978 !(netdev->features & NETIF_F_RXALL))) {
979 /* recycle */
980 buffer_info->skb = skb;
981 goto next_desc;
984 /* adjust length to remove Ethernet CRC */
985 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
986 /* If configured to store CRC, don't subtract FCS,
987 * but keep the FCS bytes out of the total_rx_bytes
988 * counter
990 if (netdev->features & NETIF_F_RXFCS)
991 total_rx_bytes -= 4;
992 else
993 length -= 4;
996 total_rx_bytes += length;
997 total_rx_packets++;
999 /* code added for copybreak, this should improve
1000 * performance for small packets with large amounts
1001 * of reassembly being done in the stack
1003 if (length < copybreak) {
1004 struct sk_buff *new_skb =
1005 napi_alloc_skb(&adapter->napi, length);
1006 if (new_skb) {
1007 skb_copy_to_linear_data_offset(new_skb,
1008 -NET_IP_ALIGN,
1009 (skb->data -
1010 NET_IP_ALIGN),
1011 (length +
1012 NET_IP_ALIGN));
1013 /* save the skb in buffer_info as good */
1014 buffer_info->skb = skb;
1015 skb = new_skb;
1017 /* else just continue with the old one */
1019 /* end copybreak code */
1020 skb_put(skb, length);
1022 /* Receive Checksum Offload */
1023 e1000_rx_checksum(adapter, staterr, skb);
1025 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1027 e1000_receive_skb(adapter, netdev, skb, staterr,
1028 rx_desc->wb.upper.vlan);
1030 next_desc:
1031 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1033 /* return some buffers to hardware, one at a time is too slow */
1034 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1035 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1036 GFP_ATOMIC);
1037 cleaned_count = 0;
1040 /* use prefetched values */
1041 rx_desc = next_rxd;
1042 buffer_info = next_buffer;
1044 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1046 rx_ring->next_to_clean = i;
1048 cleaned_count = e1000_desc_unused(rx_ring);
1049 if (cleaned_count)
1050 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1052 adapter->total_rx_bytes += total_rx_bytes;
1053 adapter->total_rx_packets += total_rx_packets;
1054 return cleaned;
1057 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1058 struct e1000_buffer *buffer_info,
1059 bool drop)
1061 struct e1000_adapter *adapter = tx_ring->adapter;
1063 if (buffer_info->dma) {
1064 if (buffer_info->mapped_as_page)
1065 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1066 buffer_info->length, DMA_TO_DEVICE);
1067 else
1068 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1069 buffer_info->length, DMA_TO_DEVICE);
1070 buffer_info->dma = 0;
1072 if (buffer_info->skb) {
1073 if (drop)
1074 dev_kfree_skb_any(buffer_info->skb);
1075 else
1076 dev_consume_skb_any(buffer_info->skb);
1077 buffer_info->skb = NULL;
1079 buffer_info->time_stamp = 0;
1082 static void e1000_print_hw_hang(struct work_struct *work)
1084 struct e1000_adapter *adapter = container_of(work,
1085 struct e1000_adapter,
1086 print_hang_task);
1087 struct net_device *netdev = adapter->netdev;
1088 struct e1000_ring *tx_ring = adapter->tx_ring;
1089 unsigned int i = tx_ring->next_to_clean;
1090 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1091 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1092 struct e1000_hw *hw = &adapter->hw;
1093 u16 phy_status, phy_1000t_status, phy_ext_status;
1094 u16 pci_status;
1096 if (test_bit(__E1000_DOWN, &adapter->state))
1097 return;
1099 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1100 /* May be block on write-back, flush and detect again
1101 * flush pending descriptor writebacks to memory
1103 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1104 /* execute the writes immediately */
1105 e1e_flush();
1106 /* Due to rare timing issues, write to TIDV again to ensure
1107 * the write is successful
1109 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1110 /* execute the writes immediately */
1111 e1e_flush();
1112 adapter->tx_hang_recheck = true;
1113 return;
1115 adapter->tx_hang_recheck = false;
1117 if (er32(TDH(0)) == er32(TDT(0))) {
1118 e_dbg("false hang detected, ignoring\n");
1119 return;
1122 /* Real hang detected */
1123 netif_stop_queue(netdev);
1125 e1e_rphy(hw, MII_BMSR, &phy_status);
1126 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1127 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1129 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1131 /* detected Hardware unit hang */
1132 e_err("Detected Hardware Unit Hang:\n"
1133 " TDH <%x>\n"
1134 " TDT <%x>\n"
1135 " next_to_use <%x>\n"
1136 " next_to_clean <%x>\n"
1137 "buffer_info[next_to_clean]:\n"
1138 " time_stamp <%lx>\n"
1139 " next_to_watch <%x>\n"
1140 " jiffies <%lx>\n"
1141 " next_to_watch.status <%x>\n"
1142 "MAC Status <%x>\n"
1143 "PHY Status <%x>\n"
1144 "PHY 1000BASE-T Status <%x>\n"
1145 "PHY Extended Status <%x>\n"
1146 "PCI Status <%x>\n",
1147 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1148 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1149 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1150 phy_status, phy_1000t_status, phy_ext_status, pci_status);
1152 e1000e_dump(adapter);
1154 /* Suggest workaround for known h/w issue */
1155 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1156 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1160 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1161 * @work: pointer to work struct
1163 * This work function polls the TSYNCTXCTL valid bit to determine when a
1164 * timestamp has been taken for the current stored skb. The timestamp must
1165 * be for this skb because only one such packet is allowed in the queue.
1167 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1169 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1170 tx_hwtstamp_work);
1171 struct e1000_hw *hw = &adapter->hw;
1173 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1174 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1175 struct skb_shared_hwtstamps shhwtstamps;
1176 u64 txstmp;
1178 txstmp = er32(TXSTMPL);
1179 txstmp |= (u64)er32(TXSTMPH) << 32;
1181 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1183 /* Clear the global tx_hwtstamp_skb pointer and force writes
1184 * prior to notifying the stack of a Tx timestamp.
1186 adapter->tx_hwtstamp_skb = NULL;
1187 wmb(); /* force write prior to skb_tstamp_tx */
1189 skb_tstamp_tx(skb, &shhwtstamps);
1190 dev_consume_skb_any(skb);
1191 } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1192 + adapter->tx_timeout_factor * HZ)) {
1193 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1194 adapter->tx_hwtstamp_skb = NULL;
1195 adapter->tx_hwtstamp_timeouts++;
1196 e_warn("clearing Tx timestamp hang\n");
1197 } else {
1198 /* reschedule to check later */
1199 schedule_work(&adapter->tx_hwtstamp_work);
1204 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1205 * @tx_ring: Tx descriptor ring
1207 * the return value indicates whether actual cleaning was done, there
1208 * is no guarantee that everything was cleaned
1210 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1212 struct e1000_adapter *adapter = tx_ring->adapter;
1213 struct net_device *netdev = adapter->netdev;
1214 struct e1000_hw *hw = &adapter->hw;
1215 struct e1000_tx_desc *tx_desc, *eop_desc;
1216 struct e1000_buffer *buffer_info;
1217 unsigned int i, eop;
1218 unsigned int count = 0;
1219 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1220 unsigned int bytes_compl = 0, pkts_compl = 0;
1222 i = tx_ring->next_to_clean;
1223 eop = tx_ring->buffer_info[i].next_to_watch;
1224 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1226 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1227 (count < tx_ring->count)) {
1228 bool cleaned = false;
1230 dma_rmb(); /* read buffer_info after eop_desc */
1231 for (; !cleaned; count++) {
1232 tx_desc = E1000_TX_DESC(*tx_ring, i);
1233 buffer_info = &tx_ring->buffer_info[i];
1234 cleaned = (i == eop);
1236 if (cleaned) {
1237 total_tx_packets += buffer_info->segs;
1238 total_tx_bytes += buffer_info->bytecount;
1239 if (buffer_info->skb) {
1240 bytes_compl += buffer_info->skb->len;
1241 pkts_compl++;
1245 e1000_put_txbuf(tx_ring, buffer_info, false);
1246 tx_desc->upper.data = 0;
1248 i++;
1249 if (i == tx_ring->count)
1250 i = 0;
1253 if (i == tx_ring->next_to_use)
1254 break;
1255 eop = tx_ring->buffer_info[i].next_to_watch;
1256 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1259 tx_ring->next_to_clean = i;
1261 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1263 #define TX_WAKE_THRESHOLD 32
1264 if (count && netif_carrier_ok(netdev) &&
1265 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1266 /* Make sure that anybody stopping the queue after this
1267 * sees the new next_to_clean.
1269 smp_mb();
1271 if (netif_queue_stopped(netdev) &&
1272 !(test_bit(__E1000_DOWN, &adapter->state))) {
1273 netif_wake_queue(netdev);
1274 ++adapter->restart_queue;
1278 if (adapter->detect_tx_hung) {
1279 /* Detect a transmit hang in hardware, this serializes the
1280 * check with the clearing of time_stamp and movement of i
1282 adapter->detect_tx_hung = false;
1283 if (tx_ring->buffer_info[i].time_stamp &&
1284 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1285 + (adapter->tx_timeout_factor * HZ)) &&
1286 !(er32(STATUS) & E1000_STATUS_TXOFF))
1287 schedule_work(&adapter->print_hang_task);
1288 else
1289 adapter->tx_hang_recheck = false;
1291 adapter->total_tx_bytes += total_tx_bytes;
1292 adapter->total_tx_packets += total_tx_packets;
1293 return count < tx_ring->count;
1297 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1298 * @rx_ring: Rx descriptor ring
1299 * @work_done: output parameter for indicating completed work
1300 * @work_to_do: how many packets we can clean
1302 * the return value indicates whether actual cleaning was done, there
1303 * is no guarantee that everything was cleaned
1305 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1306 int work_to_do)
1308 struct e1000_adapter *adapter = rx_ring->adapter;
1309 struct e1000_hw *hw = &adapter->hw;
1310 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1311 struct net_device *netdev = adapter->netdev;
1312 struct pci_dev *pdev = adapter->pdev;
1313 struct e1000_buffer *buffer_info, *next_buffer;
1314 struct e1000_ps_page *ps_page;
1315 struct sk_buff *skb;
1316 unsigned int i, j;
1317 u32 length, staterr;
1318 int cleaned_count = 0;
1319 bool cleaned = false;
1320 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1322 i = rx_ring->next_to_clean;
1323 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1324 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1325 buffer_info = &rx_ring->buffer_info[i];
1327 while (staterr & E1000_RXD_STAT_DD) {
1328 if (*work_done >= work_to_do)
1329 break;
1330 (*work_done)++;
1331 skb = buffer_info->skb;
1332 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1334 /* in the packet split case this is header only */
1335 prefetch(skb->data - NET_IP_ALIGN);
1337 i++;
1338 if (i == rx_ring->count)
1339 i = 0;
1340 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1341 prefetch(next_rxd);
1343 next_buffer = &rx_ring->buffer_info[i];
1345 cleaned = true;
1346 cleaned_count++;
1347 dma_unmap_single(&pdev->dev, buffer_info->dma,
1348 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1349 buffer_info->dma = 0;
1351 /* see !EOP comment in other Rx routine */
1352 if (!(staterr & E1000_RXD_STAT_EOP))
1353 adapter->flags2 |= FLAG2_IS_DISCARDING;
1355 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1356 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1357 dev_kfree_skb_irq(skb);
1358 if (staterr & E1000_RXD_STAT_EOP)
1359 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1360 goto next_desc;
1363 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1364 !(netdev->features & NETIF_F_RXALL))) {
1365 dev_kfree_skb_irq(skb);
1366 goto next_desc;
1369 length = le16_to_cpu(rx_desc->wb.middle.length0);
1371 if (!length) {
1372 e_dbg("Last part of the packet spanning multiple descriptors\n");
1373 dev_kfree_skb_irq(skb);
1374 goto next_desc;
1377 /* Good Receive */
1378 skb_put(skb, length);
1381 /* this looks ugly, but it seems compiler issues make
1382 * it more efficient than reusing j
1384 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1386 /* page alloc/put takes too long and effects small
1387 * packet throughput, so unsplit small packets and
1388 * save the alloc/put only valid in softirq (napi)
1389 * context to call kmap_*
1391 if (l1 && (l1 <= copybreak) &&
1392 ((length + l1) <= adapter->rx_ps_bsize0)) {
1393 u8 *vaddr;
1395 ps_page = &buffer_info->ps_pages[0];
1397 /* there is no documentation about how to call
1398 * kmap_atomic, so we can't hold the mapping
1399 * very long
1401 dma_sync_single_for_cpu(&pdev->dev,
1402 ps_page->dma,
1403 PAGE_SIZE,
1404 DMA_FROM_DEVICE);
1405 vaddr = kmap_atomic(ps_page->page);
1406 memcpy(skb_tail_pointer(skb), vaddr, l1);
1407 kunmap_atomic(vaddr);
1408 dma_sync_single_for_device(&pdev->dev,
1409 ps_page->dma,
1410 PAGE_SIZE,
1411 DMA_FROM_DEVICE);
1413 /* remove the CRC */
1414 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1415 if (!(netdev->features & NETIF_F_RXFCS))
1416 l1 -= 4;
1419 skb_put(skb, l1);
1420 goto copydone;
1421 } /* if */
1424 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1425 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1426 if (!length)
1427 break;
1429 ps_page = &buffer_info->ps_pages[j];
1430 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1431 DMA_FROM_DEVICE);
1432 ps_page->dma = 0;
1433 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1434 ps_page->page = NULL;
1435 skb->len += length;
1436 skb->data_len += length;
1437 skb->truesize += PAGE_SIZE;
1440 /* strip the ethernet crc, problem is we're using pages now so
1441 * this whole operation can get a little cpu intensive
1443 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1444 if (!(netdev->features & NETIF_F_RXFCS))
1445 pskb_trim(skb, skb->len - 4);
1448 copydone:
1449 total_rx_bytes += skb->len;
1450 total_rx_packets++;
1452 e1000_rx_checksum(adapter, staterr, skb);
1454 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1456 if (rx_desc->wb.upper.header_status &
1457 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1458 adapter->rx_hdr_split++;
1460 e1000_receive_skb(adapter, netdev, skb, staterr,
1461 rx_desc->wb.middle.vlan);
1463 next_desc:
1464 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1465 buffer_info->skb = NULL;
1467 /* return some buffers to hardware, one at a time is too slow */
1468 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1469 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1470 GFP_ATOMIC);
1471 cleaned_count = 0;
1474 /* use prefetched values */
1475 rx_desc = next_rxd;
1476 buffer_info = next_buffer;
1478 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1480 rx_ring->next_to_clean = i;
1482 cleaned_count = e1000_desc_unused(rx_ring);
1483 if (cleaned_count)
1484 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1486 adapter->total_rx_bytes += total_rx_bytes;
1487 adapter->total_rx_packets += total_rx_packets;
1488 return cleaned;
1491 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1492 u16 length)
1494 bi->page = NULL;
1495 skb->len += length;
1496 skb->data_len += length;
1497 skb->truesize += PAGE_SIZE;
1501 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1502 * @rx_ring: Rx descriptor ring
1503 * @work_done: output parameter for indicating completed work
1504 * @work_to_do: how many packets we can clean
1506 * the return value indicates whether actual cleaning was done, there
1507 * is no guarantee that everything was cleaned
1509 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1510 int work_to_do)
1512 struct e1000_adapter *adapter = rx_ring->adapter;
1513 struct net_device *netdev = adapter->netdev;
1514 struct pci_dev *pdev = adapter->pdev;
1515 union e1000_rx_desc_extended *rx_desc, *next_rxd;
1516 struct e1000_buffer *buffer_info, *next_buffer;
1517 u32 length, staterr;
1518 unsigned int i;
1519 int cleaned_count = 0;
1520 bool cleaned = false;
1521 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1522 struct skb_shared_info *shinfo;
1524 i = rx_ring->next_to_clean;
1525 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1526 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1527 buffer_info = &rx_ring->buffer_info[i];
1529 while (staterr & E1000_RXD_STAT_DD) {
1530 struct sk_buff *skb;
1532 if (*work_done >= work_to_do)
1533 break;
1534 (*work_done)++;
1535 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1537 skb = buffer_info->skb;
1538 buffer_info->skb = NULL;
1540 ++i;
1541 if (i == rx_ring->count)
1542 i = 0;
1543 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1544 prefetch(next_rxd);
1546 next_buffer = &rx_ring->buffer_info[i];
1548 cleaned = true;
1549 cleaned_count++;
1550 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1551 DMA_FROM_DEVICE);
1552 buffer_info->dma = 0;
1554 length = le16_to_cpu(rx_desc->wb.upper.length);
1556 /* errors is only valid for DD + EOP descriptors */
1557 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1558 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1559 !(netdev->features & NETIF_F_RXALL)))) {
1560 /* recycle both page and skb */
1561 buffer_info->skb = skb;
1562 /* an error means any chain goes out the window too */
1563 if (rx_ring->rx_skb_top)
1564 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1565 rx_ring->rx_skb_top = NULL;
1566 goto next_desc;
1568 #define rxtop (rx_ring->rx_skb_top)
1569 if (!(staterr & E1000_RXD_STAT_EOP)) {
1570 /* this descriptor is only the beginning (or middle) */
1571 if (!rxtop) {
1572 /* this is the beginning of a chain */
1573 rxtop = skb;
1574 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1575 0, length);
1576 } else {
1577 /* this is the middle of a chain */
1578 shinfo = skb_shinfo(rxtop);
1579 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1580 buffer_info->page, 0,
1581 length);
1582 /* re-use the skb, only consumed the page */
1583 buffer_info->skb = skb;
1585 e1000_consume_page(buffer_info, rxtop, length);
1586 goto next_desc;
1587 } else {
1588 if (rxtop) {
1589 /* end of the chain */
1590 shinfo = skb_shinfo(rxtop);
1591 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1592 buffer_info->page, 0,
1593 length);
1594 /* re-use the current skb, we only consumed the
1595 * page
1597 buffer_info->skb = skb;
1598 skb = rxtop;
1599 rxtop = NULL;
1600 e1000_consume_page(buffer_info, skb, length);
1601 } else {
1602 /* no chain, got EOP, this buf is the packet
1603 * copybreak to save the put_page/alloc_page
1605 if (length <= copybreak &&
1606 skb_tailroom(skb) >= length) {
1607 u8 *vaddr;
1608 vaddr = kmap_atomic(buffer_info->page);
1609 memcpy(skb_tail_pointer(skb), vaddr,
1610 length);
1611 kunmap_atomic(vaddr);
1612 /* re-use the page, so don't erase
1613 * buffer_info->page
1615 skb_put(skb, length);
1616 } else {
1617 skb_fill_page_desc(skb, 0,
1618 buffer_info->page, 0,
1619 length);
1620 e1000_consume_page(buffer_info, skb,
1621 length);
1626 /* Receive Checksum Offload */
1627 e1000_rx_checksum(adapter, staterr, skb);
1629 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1631 /* probably a little skewed due to removing CRC */
1632 total_rx_bytes += skb->len;
1633 total_rx_packets++;
1635 /* eth type trans needs skb->data to point to something */
1636 if (!pskb_may_pull(skb, ETH_HLEN)) {
1637 e_err("pskb_may_pull failed.\n");
1638 dev_kfree_skb_irq(skb);
1639 goto next_desc;
1642 e1000_receive_skb(adapter, netdev, skb, staterr,
1643 rx_desc->wb.upper.vlan);
1645 next_desc:
1646 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1648 /* return some buffers to hardware, one at a time is too slow */
1649 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1650 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1651 GFP_ATOMIC);
1652 cleaned_count = 0;
1655 /* use prefetched values */
1656 rx_desc = next_rxd;
1657 buffer_info = next_buffer;
1659 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1661 rx_ring->next_to_clean = i;
1663 cleaned_count = e1000_desc_unused(rx_ring);
1664 if (cleaned_count)
1665 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1667 adapter->total_rx_bytes += total_rx_bytes;
1668 adapter->total_rx_packets += total_rx_packets;
1669 return cleaned;
1673 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1674 * @rx_ring: Rx descriptor ring
1676 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1678 struct e1000_adapter *adapter = rx_ring->adapter;
1679 struct e1000_buffer *buffer_info;
1680 struct e1000_ps_page *ps_page;
1681 struct pci_dev *pdev = adapter->pdev;
1682 unsigned int i, j;
1684 /* Free all the Rx ring sk_buffs */
1685 for (i = 0; i < rx_ring->count; i++) {
1686 buffer_info = &rx_ring->buffer_info[i];
1687 if (buffer_info->dma) {
1688 if (adapter->clean_rx == e1000_clean_rx_irq)
1689 dma_unmap_single(&pdev->dev, buffer_info->dma,
1690 adapter->rx_buffer_len,
1691 DMA_FROM_DEVICE);
1692 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1693 dma_unmap_page(&pdev->dev, buffer_info->dma,
1694 PAGE_SIZE, DMA_FROM_DEVICE);
1695 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1696 dma_unmap_single(&pdev->dev, buffer_info->dma,
1697 adapter->rx_ps_bsize0,
1698 DMA_FROM_DEVICE);
1699 buffer_info->dma = 0;
1702 if (buffer_info->page) {
1703 put_page(buffer_info->page);
1704 buffer_info->page = NULL;
1707 if (buffer_info->skb) {
1708 dev_kfree_skb(buffer_info->skb);
1709 buffer_info->skb = NULL;
1712 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1713 ps_page = &buffer_info->ps_pages[j];
1714 if (!ps_page->page)
1715 break;
1716 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1717 DMA_FROM_DEVICE);
1718 ps_page->dma = 0;
1719 put_page(ps_page->page);
1720 ps_page->page = NULL;
1724 /* there also may be some cached data from a chained receive */
1725 if (rx_ring->rx_skb_top) {
1726 dev_kfree_skb(rx_ring->rx_skb_top);
1727 rx_ring->rx_skb_top = NULL;
1730 /* Zero out the descriptor ring */
1731 memset(rx_ring->desc, 0, rx_ring->size);
1733 rx_ring->next_to_clean = 0;
1734 rx_ring->next_to_use = 0;
1735 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1738 static void e1000e_downshift_workaround(struct work_struct *work)
1740 struct e1000_adapter *adapter = container_of(work,
1741 struct e1000_adapter,
1742 downshift_task);
1744 if (test_bit(__E1000_DOWN, &adapter->state))
1745 return;
1747 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1751 * e1000_intr_msi - Interrupt Handler
1752 * @irq: interrupt number
1753 * @data: pointer to a network interface device structure
1755 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1757 struct net_device *netdev = data;
1758 struct e1000_adapter *adapter = netdev_priv(netdev);
1759 struct e1000_hw *hw = &adapter->hw;
1760 u32 icr = er32(ICR);
1762 /* read ICR disables interrupts using IAM */
1763 if (icr & E1000_ICR_LSC) {
1764 hw->mac.get_link_status = true;
1765 /* ICH8 workaround-- Call gig speed drop workaround on cable
1766 * disconnect (LSC) before accessing any PHY registers
1768 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1769 (!(er32(STATUS) & E1000_STATUS_LU)))
1770 schedule_work(&adapter->downshift_task);
1772 /* 80003ES2LAN workaround-- For packet buffer work-around on
1773 * link down event; disable receives here in the ISR and reset
1774 * adapter in watchdog
1776 if (netif_carrier_ok(netdev) &&
1777 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1778 /* disable receives */
1779 u32 rctl = er32(RCTL);
1781 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1782 adapter->flags |= FLAG_RESTART_NOW;
1784 /* guard against interrupt when we're going down */
1785 if (!test_bit(__E1000_DOWN, &adapter->state))
1786 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1789 /* Reset on uncorrectable ECC error */
1790 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1791 u32 pbeccsts = er32(PBECCSTS);
1793 adapter->corr_errors +=
1794 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1795 adapter->uncorr_errors +=
1796 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1797 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1799 /* Do the reset outside of interrupt context */
1800 schedule_work(&adapter->reset_task);
1802 /* return immediately since reset is imminent */
1803 return IRQ_HANDLED;
1806 if (napi_schedule_prep(&adapter->napi)) {
1807 adapter->total_tx_bytes = 0;
1808 adapter->total_tx_packets = 0;
1809 adapter->total_rx_bytes = 0;
1810 adapter->total_rx_packets = 0;
1811 __napi_schedule(&adapter->napi);
1814 return IRQ_HANDLED;
1818 * e1000_intr - Interrupt Handler
1819 * @irq: interrupt number
1820 * @data: pointer to a network interface device structure
1822 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1824 struct net_device *netdev = data;
1825 struct e1000_adapter *adapter = netdev_priv(netdev);
1826 struct e1000_hw *hw = &adapter->hw;
1827 u32 rctl, icr = er32(ICR);
1829 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1830 return IRQ_NONE; /* Not our interrupt */
1832 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1833 * not set, then the adapter didn't send an interrupt
1835 if (!(icr & E1000_ICR_INT_ASSERTED))
1836 return IRQ_NONE;
1838 /* Interrupt Auto-Mask...upon reading ICR,
1839 * interrupts are masked. No need for the
1840 * IMC write
1843 if (icr & E1000_ICR_LSC) {
1844 hw->mac.get_link_status = true;
1845 /* ICH8 workaround-- Call gig speed drop workaround on cable
1846 * disconnect (LSC) before accessing any PHY registers
1848 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1849 (!(er32(STATUS) & E1000_STATUS_LU)))
1850 schedule_work(&adapter->downshift_task);
1852 /* 80003ES2LAN workaround--
1853 * For packet buffer work-around on link down event;
1854 * disable receives here in the ISR and
1855 * reset adapter in watchdog
1857 if (netif_carrier_ok(netdev) &&
1858 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1859 /* disable receives */
1860 rctl = er32(RCTL);
1861 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1862 adapter->flags |= FLAG_RESTART_NOW;
1864 /* guard against interrupt when we're going down */
1865 if (!test_bit(__E1000_DOWN, &adapter->state))
1866 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1869 /* Reset on uncorrectable ECC error */
1870 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1871 u32 pbeccsts = er32(PBECCSTS);
1873 adapter->corr_errors +=
1874 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1875 adapter->uncorr_errors +=
1876 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1877 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1879 /* Do the reset outside of interrupt context */
1880 schedule_work(&adapter->reset_task);
1882 /* return immediately since reset is imminent */
1883 return IRQ_HANDLED;
1886 if (napi_schedule_prep(&adapter->napi)) {
1887 adapter->total_tx_bytes = 0;
1888 adapter->total_tx_packets = 0;
1889 adapter->total_rx_bytes = 0;
1890 adapter->total_rx_packets = 0;
1891 __napi_schedule(&adapter->napi);
1894 return IRQ_HANDLED;
1897 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1899 struct net_device *netdev = data;
1900 struct e1000_adapter *adapter = netdev_priv(netdev);
1901 struct e1000_hw *hw = &adapter->hw;
1902 u32 icr = er32(ICR);
1904 if (icr & adapter->eiac_mask)
1905 ew32(ICS, (icr & adapter->eiac_mask));
1907 if (icr & E1000_ICR_LSC) {
1908 hw->mac.get_link_status = true;
1909 /* guard against interrupt when we're going down */
1910 if (!test_bit(__E1000_DOWN, &adapter->state))
1911 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1914 if (!test_bit(__E1000_DOWN, &adapter->state))
1915 ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1917 return IRQ_HANDLED;
1920 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1922 struct net_device *netdev = data;
1923 struct e1000_adapter *adapter = netdev_priv(netdev);
1924 struct e1000_hw *hw = &adapter->hw;
1925 struct e1000_ring *tx_ring = adapter->tx_ring;
1927 adapter->total_tx_bytes = 0;
1928 adapter->total_tx_packets = 0;
1930 if (!e1000_clean_tx_irq(tx_ring))
1931 /* Ring was not completely cleaned, so fire another interrupt */
1932 ew32(ICS, tx_ring->ims_val);
1934 if (!test_bit(__E1000_DOWN, &adapter->state))
1935 ew32(IMS, adapter->tx_ring->ims_val);
1937 return IRQ_HANDLED;
1940 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1942 struct net_device *netdev = data;
1943 struct e1000_adapter *adapter = netdev_priv(netdev);
1944 struct e1000_ring *rx_ring = adapter->rx_ring;
1946 /* Write the ITR value calculated at the end of the
1947 * previous interrupt.
1949 if (rx_ring->set_itr) {
1950 u32 itr = rx_ring->itr_val ?
1951 1000000000 / (rx_ring->itr_val * 256) : 0;
1953 writel(itr, rx_ring->itr_register);
1954 rx_ring->set_itr = 0;
1957 if (napi_schedule_prep(&adapter->napi)) {
1958 adapter->total_rx_bytes = 0;
1959 adapter->total_rx_packets = 0;
1960 __napi_schedule(&adapter->napi);
1962 return IRQ_HANDLED;
1966 * e1000_configure_msix - Configure MSI-X hardware
1967 * @adapter: board private structure
1969 * e1000_configure_msix sets up the hardware to properly
1970 * generate MSI-X interrupts.
1972 static void e1000_configure_msix(struct e1000_adapter *adapter)
1974 struct e1000_hw *hw = &adapter->hw;
1975 struct e1000_ring *rx_ring = adapter->rx_ring;
1976 struct e1000_ring *tx_ring = adapter->tx_ring;
1977 int vector = 0;
1978 u32 ctrl_ext, ivar = 0;
1980 adapter->eiac_mask = 0;
1982 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1983 if (hw->mac.type == e1000_82574) {
1984 u32 rfctl = er32(RFCTL);
1986 rfctl |= E1000_RFCTL_ACK_DIS;
1987 ew32(RFCTL, rfctl);
1990 /* Configure Rx vector */
1991 rx_ring->ims_val = E1000_IMS_RXQ0;
1992 adapter->eiac_mask |= rx_ring->ims_val;
1993 if (rx_ring->itr_val)
1994 writel(1000000000 / (rx_ring->itr_val * 256),
1995 rx_ring->itr_register);
1996 else
1997 writel(1, rx_ring->itr_register);
1998 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2000 /* Configure Tx vector */
2001 tx_ring->ims_val = E1000_IMS_TXQ0;
2002 vector++;
2003 if (tx_ring->itr_val)
2004 writel(1000000000 / (tx_ring->itr_val * 256),
2005 tx_ring->itr_register);
2006 else
2007 writel(1, tx_ring->itr_register);
2008 adapter->eiac_mask |= tx_ring->ims_val;
2009 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2011 /* set vector for Other Causes, e.g. link changes */
2012 vector++;
2013 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2014 if (rx_ring->itr_val)
2015 writel(1000000000 / (rx_ring->itr_val * 256),
2016 hw->hw_addr + E1000_EITR_82574(vector));
2017 else
2018 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2020 /* Cause Tx interrupts on every write back */
2021 ivar |= BIT(31);
2023 ew32(IVAR, ivar);
2025 /* enable MSI-X PBA support */
2026 ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2027 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2028 ew32(CTRL_EXT, ctrl_ext);
2029 e1e_flush();
2032 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2034 if (adapter->msix_entries) {
2035 pci_disable_msix(adapter->pdev);
2036 kfree(adapter->msix_entries);
2037 adapter->msix_entries = NULL;
2038 } else if (adapter->flags & FLAG_MSI_ENABLED) {
2039 pci_disable_msi(adapter->pdev);
2040 adapter->flags &= ~FLAG_MSI_ENABLED;
2045 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2046 * @adapter: board private structure
2048 * Attempt to configure interrupts using the best available
2049 * capabilities of the hardware and kernel.
2051 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2053 int err;
2054 int i;
2056 switch (adapter->int_mode) {
2057 case E1000E_INT_MODE_MSIX:
2058 if (adapter->flags & FLAG_HAS_MSIX) {
2059 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2060 adapter->msix_entries = kcalloc(adapter->num_vectors,
2061 sizeof(struct
2062 msix_entry),
2063 GFP_KERNEL);
2064 if (adapter->msix_entries) {
2065 struct e1000_adapter *a = adapter;
2067 for (i = 0; i < adapter->num_vectors; i++)
2068 adapter->msix_entries[i].entry = i;
2070 err = pci_enable_msix_range(a->pdev,
2071 a->msix_entries,
2072 a->num_vectors,
2073 a->num_vectors);
2074 if (err > 0)
2075 return;
2077 /* MSI-X failed, so fall through and try MSI */
2078 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2079 e1000e_reset_interrupt_capability(adapter);
2081 adapter->int_mode = E1000E_INT_MODE_MSI;
2082 fallthrough;
2083 case E1000E_INT_MODE_MSI:
2084 if (!pci_enable_msi(adapter->pdev)) {
2085 adapter->flags |= FLAG_MSI_ENABLED;
2086 } else {
2087 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2088 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2090 fallthrough;
2091 case E1000E_INT_MODE_LEGACY:
2092 /* Don't do anything; this is the system default */
2093 break;
2096 /* store the number of vectors being used */
2097 adapter->num_vectors = 1;
2101 * e1000_request_msix - Initialize MSI-X interrupts
2102 * @adapter: board private structure
2104 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2105 * kernel.
2107 static int e1000_request_msix(struct e1000_adapter *adapter)
2109 struct net_device *netdev = adapter->netdev;
2110 int err = 0, vector = 0;
2112 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2113 snprintf(adapter->rx_ring->name,
2114 sizeof(adapter->rx_ring->name) - 1,
2115 "%.14s-rx-0", netdev->name);
2116 else
2117 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2118 err = request_irq(adapter->msix_entries[vector].vector,
2119 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2120 netdev);
2121 if (err)
2122 return err;
2123 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2124 E1000_EITR_82574(vector);
2125 adapter->rx_ring->itr_val = adapter->itr;
2126 vector++;
2128 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2129 snprintf(adapter->tx_ring->name,
2130 sizeof(adapter->tx_ring->name) - 1,
2131 "%.14s-tx-0", netdev->name);
2132 else
2133 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2134 err = request_irq(adapter->msix_entries[vector].vector,
2135 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2136 netdev);
2137 if (err)
2138 return err;
2139 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2140 E1000_EITR_82574(vector);
2141 adapter->tx_ring->itr_val = adapter->itr;
2142 vector++;
2144 err = request_irq(adapter->msix_entries[vector].vector,
2145 e1000_msix_other, 0, netdev->name, netdev);
2146 if (err)
2147 return err;
2149 e1000_configure_msix(adapter);
2151 return 0;
2155 * e1000_request_irq - initialize interrupts
2156 * @adapter: board private structure
2158 * Attempts to configure interrupts using the best available
2159 * capabilities of the hardware and kernel.
2161 static int e1000_request_irq(struct e1000_adapter *adapter)
2163 struct net_device *netdev = adapter->netdev;
2164 int err;
2166 if (adapter->msix_entries) {
2167 err = e1000_request_msix(adapter);
2168 if (!err)
2169 return err;
2170 /* fall back to MSI */
2171 e1000e_reset_interrupt_capability(adapter);
2172 adapter->int_mode = E1000E_INT_MODE_MSI;
2173 e1000e_set_interrupt_capability(adapter);
2175 if (adapter->flags & FLAG_MSI_ENABLED) {
2176 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2177 netdev->name, netdev);
2178 if (!err)
2179 return err;
2181 /* fall back to legacy interrupt */
2182 e1000e_reset_interrupt_capability(adapter);
2183 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2186 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2187 netdev->name, netdev);
2188 if (err)
2189 e_err("Unable to allocate interrupt, Error: %d\n", err);
2191 return err;
2194 static void e1000_free_irq(struct e1000_adapter *adapter)
2196 struct net_device *netdev = adapter->netdev;
2198 if (adapter->msix_entries) {
2199 int vector = 0;
2201 free_irq(adapter->msix_entries[vector].vector, netdev);
2202 vector++;
2204 free_irq(adapter->msix_entries[vector].vector, netdev);
2205 vector++;
2207 /* Other Causes interrupt vector */
2208 free_irq(adapter->msix_entries[vector].vector, netdev);
2209 return;
2212 free_irq(adapter->pdev->irq, netdev);
2216 * e1000_irq_disable - Mask off interrupt generation on the NIC
2217 * @adapter: board private structure
2219 static void e1000_irq_disable(struct e1000_adapter *adapter)
2221 struct e1000_hw *hw = &adapter->hw;
2223 ew32(IMC, ~0);
2224 if (adapter->msix_entries)
2225 ew32(EIAC_82574, 0);
2226 e1e_flush();
2228 if (adapter->msix_entries) {
2229 int i;
2231 for (i = 0; i < adapter->num_vectors; i++)
2232 synchronize_irq(adapter->msix_entries[i].vector);
2233 } else {
2234 synchronize_irq(adapter->pdev->irq);
2239 * e1000_irq_enable - Enable default interrupt generation settings
2240 * @adapter: board private structure
2242 static void e1000_irq_enable(struct e1000_adapter *adapter)
2244 struct e1000_hw *hw = &adapter->hw;
2246 if (adapter->msix_entries) {
2247 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2248 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2249 IMS_OTHER_MASK);
2250 } else if (hw->mac.type >= e1000_pch_lpt) {
2251 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2252 } else {
2253 ew32(IMS, IMS_ENABLE_MASK);
2255 e1e_flush();
2259 * e1000e_get_hw_control - get control of the h/w from f/w
2260 * @adapter: address of board private structure
2262 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2263 * For ASF and Pass Through versions of f/w this means that
2264 * the driver is loaded. For AMT version (only with 82573)
2265 * of the f/w this means that the network i/f is open.
2267 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2269 struct e1000_hw *hw = &adapter->hw;
2270 u32 ctrl_ext;
2271 u32 swsm;
2273 /* Let firmware know the driver has taken over */
2274 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2275 swsm = er32(SWSM);
2276 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2277 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2278 ctrl_ext = er32(CTRL_EXT);
2279 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2284 * e1000e_release_hw_control - release control of the h/w to f/w
2285 * @adapter: address of board private structure
2287 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2288 * For ASF and Pass Through versions of f/w this means that the
2289 * driver is no longer loaded. For AMT version (only with 82573) i
2290 * of the f/w this means that the network i/f is closed.
2293 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2295 struct e1000_hw *hw = &adapter->hw;
2296 u32 ctrl_ext;
2297 u32 swsm;
2299 /* Let firmware taken over control of h/w */
2300 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2301 swsm = er32(SWSM);
2302 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2303 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2304 ctrl_ext = er32(CTRL_EXT);
2305 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2310 * e1000_alloc_ring_dma - allocate memory for a ring structure
2311 * @adapter: board private structure
2312 * @ring: ring struct for which to allocate dma
2314 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2315 struct e1000_ring *ring)
2317 struct pci_dev *pdev = adapter->pdev;
2319 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2320 GFP_KERNEL);
2321 if (!ring->desc)
2322 return -ENOMEM;
2324 return 0;
2328 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2329 * @tx_ring: Tx descriptor ring
2331 * Return 0 on success, negative on failure
2333 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2335 struct e1000_adapter *adapter = tx_ring->adapter;
2336 int err = -ENOMEM, size;
2338 size = sizeof(struct e1000_buffer) * tx_ring->count;
2339 tx_ring->buffer_info = vzalloc(size);
2340 if (!tx_ring->buffer_info)
2341 goto err;
2343 /* round up to nearest 4K */
2344 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2345 tx_ring->size = ALIGN(tx_ring->size, 4096);
2347 err = e1000_alloc_ring_dma(adapter, tx_ring);
2348 if (err)
2349 goto err;
2351 tx_ring->next_to_use = 0;
2352 tx_ring->next_to_clean = 0;
2354 return 0;
2355 err:
2356 vfree(tx_ring->buffer_info);
2357 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2358 return err;
2362 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2363 * @rx_ring: Rx descriptor ring
2365 * Returns 0 on success, negative on failure
2367 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2369 struct e1000_adapter *adapter = rx_ring->adapter;
2370 struct e1000_buffer *buffer_info;
2371 int i, size, desc_len, err = -ENOMEM;
2373 size = sizeof(struct e1000_buffer) * rx_ring->count;
2374 rx_ring->buffer_info = vzalloc(size);
2375 if (!rx_ring->buffer_info)
2376 goto err;
2378 for (i = 0; i < rx_ring->count; i++) {
2379 buffer_info = &rx_ring->buffer_info[i];
2380 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2381 sizeof(struct e1000_ps_page),
2382 GFP_KERNEL);
2383 if (!buffer_info->ps_pages)
2384 goto err_pages;
2387 desc_len = sizeof(union e1000_rx_desc_packet_split);
2389 /* Round up to nearest 4K */
2390 rx_ring->size = rx_ring->count * desc_len;
2391 rx_ring->size = ALIGN(rx_ring->size, 4096);
2393 err = e1000_alloc_ring_dma(adapter, rx_ring);
2394 if (err)
2395 goto err_pages;
2397 rx_ring->next_to_clean = 0;
2398 rx_ring->next_to_use = 0;
2399 rx_ring->rx_skb_top = NULL;
2401 return 0;
2403 err_pages:
2404 for (i = 0; i < rx_ring->count; i++) {
2405 buffer_info = &rx_ring->buffer_info[i];
2406 kfree(buffer_info->ps_pages);
2408 err:
2409 vfree(rx_ring->buffer_info);
2410 e_err("Unable to allocate memory for the receive descriptor ring\n");
2411 return err;
2415 * e1000_clean_tx_ring - Free Tx Buffers
2416 * @tx_ring: Tx descriptor ring
2418 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2420 struct e1000_adapter *adapter = tx_ring->adapter;
2421 struct e1000_buffer *buffer_info;
2422 unsigned long size;
2423 unsigned int i;
2425 for (i = 0; i < tx_ring->count; i++) {
2426 buffer_info = &tx_ring->buffer_info[i];
2427 e1000_put_txbuf(tx_ring, buffer_info, false);
2430 netdev_reset_queue(adapter->netdev);
2431 size = sizeof(struct e1000_buffer) * tx_ring->count;
2432 memset(tx_ring->buffer_info, 0, size);
2434 memset(tx_ring->desc, 0, tx_ring->size);
2436 tx_ring->next_to_use = 0;
2437 tx_ring->next_to_clean = 0;
2441 * e1000e_free_tx_resources - Free Tx Resources per Queue
2442 * @tx_ring: Tx descriptor ring
2444 * Free all transmit software resources
2446 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2448 struct e1000_adapter *adapter = tx_ring->adapter;
2449 struct pci_dev *pdev = adapter->pdev;
2451 e1000_clean_tx_ring(tx_ring);
2453 vfree(tx_ring->buffer_info);
2454 tx_ring->buffer_info = NULL;
2456 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2457 tx_ring->dma);
2458 tx_ring->desc = NULL;
2462 * e1000e_free_rx_resources - Free Rx Resources
2463 * @rx_ring: Rx descriptor ring
2465 * Free all receive software resources
2467 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2469 struct e1000_adapter *adapter = rx_ring->adapter;
2470 struct pci_dev *pdev = adapter->pdev;
2471 int i;
2473 e1000_clean_rx_ring(rx_ring);
2475 for (i = 0; i < rx_ring->count; i++)
2476 kfree(rx_ring->buffer_info[i].ps_pages);
2478 vfree(rx_ring->buffer_info);
2479 rx_ring->buffer_info = NULL;
2481 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2482 rx_ring->dma);
2483 rx_ring->desc = NULL;
2487 * e1000_update_itr - update the dynamic ITR value based on statistics
2488 * @itr_setting: current adapter->itr
2489 * @packets: the number of packets during this measurement interval
2490 * @bytes: the number of bytes during this measurement interval
2492 * Stores a new ITR value based on packets and byte
2493 * counts during the last interrupt. The advantage of per interrupt
2494 * computation is faster updates and more accurate ITR for the current
2495 * traffic pattern. Constants in this function were computed
2496 * based on theoretical maximum wire speed and thresholds were set based
2497 * on testing data as well as attempting to minimize response time
2498 * while increasing bulk throughput. This functionality is controlled
2499 * by the InterruptThrottleRate module parameter.
2501 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2503 unsigned int retval = itr_setting;
2505 if (packets == 0)
2506 return itr_setting;
2508 switch (itr_setting) {
2509 case lowest_latency:
2510 /* handle TSO and jumbo frames */
2511 if (bytes / packets > 8000)
2512 retval = bulk_latency;
2513 else if ((packets < 5) && (bytes > 512))
2514 retval = low_latency;
2515 break;
2516 case low_latency: /* 50 usec aka 20000 ints/s */
2517 if (bytes > 10000) {
2518 /* this if handles the TSO accounting */
2519 if (bytes / packets > 8000)
2520 retval = bulk_latency;
2521 else if ((packets < 10) || ((bytes / packets) > 1200))
2522 retval = bulk_latency;
2523 else if ((packets > 35))
2524 retval = lowest_latency;
2525 } else if (bytes / packets > 2000) {
2526 retval = bulk_latency;
2527 } else if (packets <= 2 && bytes < 512) {
2528 retval = lowest_latency;
2530 break;
2531 case bulk_latency: /* 250 usec aka 4000 ints/s */
2532 if (bytes > 25000) {
2533 if (packets > 35)
2534 retval = low_latency;
2535 } else if (bytes < 6000) {
2536 retval = low_latency;
2538 break;
2541 return retval;
2544 static void e1000_set_itr(struct e1000_adapter *adapter)
2546 u16 current_itr;
2547 u32 new_itr = adapter->itr;
2549 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2550 if (adapter->link_speed != SPEED_1000) {
2551 current_itr = 0;
2552 new_itr = 4000;
2553 goto set_itr_now;
2556 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2557 new_itr = 0;
2558 goto set_itr_now;
2561 adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2562 adapter->total_tx_packets,
2563 adapter->total_tx_bytes);
2564 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2565 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2566 adapter->tx_itr = low_latency;
2568 adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2569 adapter->total_rx_packets,
2570 adapter->total_rx_bytes);
2571 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2572 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2573 adapter->rx_itr = low_latency;
2575 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2577 /* counts and packets in update_itr are dependent on these numbers */
2578 switch (current_itr) {
2579 case lowest_latency:
2580 new_itr = 70000;
2581 break;
2582 case low_latency:
2583 new_itr = 20000; /* aka hwitr = ~200 */
2584 break;
2585 case bulk_latency:
2586 new_itr = 4000;
2587 break;
2588 default:
2589 break;
2592 set_itr_now:
2593 if (new_itr != adapter->itr) {
2594 /* this attempts to bias the interrupt rate towards Bulk
2595 * by adding intermediate steps when interrupt rate is
2596 * increasing
2598 new_itr = new_itr > adapter->itr ?
2599 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2600 adapter->itr = new_itr;
2601 adapter->rx_ring->itr_val = new_itr;
2602 if (adapter->msix_entries)
2603 adapter->rx_ring->set_itr = 1;
2604 else
2605 e1000e_write_itr(adapter, new_itr);
2610 * e1000e_write_itr - write the ITR value to the appropriate registers
2611 * @adapter: address of board private structure
2612 * @itr: new ITR value to program
2614 * e1000e_write_itr determines if the adapter is in MSI-X mode
2615 * and, if so, writes the EITR registers with the ITR value.
2616 * Otherwise, it writes the ITR value into the ITR register.
2618 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2620 struct e1000_hw *hw = &adapter->hw;
2621 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2623 if (adapter->msix_entries) {
2624 int vector;
2626 for (vector = 0; vector < adapter->num_vectors; vector++)
2627 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2628 } else {
2629 ew32(ITR, new_itr);
2634 * e1000_alloc_queues - Allocate memory for all rings
2635 * @adapter: board private structure to initialize
2637 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2639 int size = sizeof(struct e1000_ring);
2641 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2642 if (!adapter->tx_ring)
2643 goto err;
2644 adapter->tx_ring->count = adapter->tx_ring_count;
2645 adapter->tx_ring->adapter = adapter;
2647 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2648 if (!adapter->rx_ring)
2649 goto err;
2650 adapter->rx_ring->count = adapter->rx_ring_count;
2651 adapter->rx_ring->adapter = adapter;
2653 return 0;
2654 err:
2655 e_err("Unable to allocate memory for queues\n");
2656 kfree(adapter->rx_ring);
2657 kfree(adapter->tx_ring);
2658 return -ENOMEM;
2662 * e1000e_poll - NAPI Rx polling callback
2663 * @napi: struct associated with this polling callback
2664 * @budget: number of packets driver is allowed to process this poll
2666 static int e1000e_poll(struct napi_struct *napi, int budget)
2668 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2669 napi);
2670 struct e1000_hw *hw = &adapter->hw;
2671 struct net_device *poll_dev = adapter->netdev;
2672 int tx_cleaned = 1, work_done = 0;
2674 adapter = netdev_priv(poll_dev);
2676 if (!adapter->msix_entries ||
2677 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2678 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2680 adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2682 if (!tx_cleaned || work_done == budget)
2683 return budget;
2685 /* Exit the polling mode, but don't re-enable interrupts if stack might
2686 * poll us due to busy-polling
2688 if (likely(napi_complete_done(napi, work_done))) {
2689 if (adapter->itr_setting & 3)
2690 e1000_set_itr(adapter);
2691 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2692 if (adapter->msix_entries)
2693 ew32(IMS, adapter->rx_ring->ims_val);
2694 else
2695 e1000_irq_enable(adapter);
2699 return work_done;
2702 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2703 __always_unused __be16 proto, u16 vid)
2705 struct e1000_adapter *adapter = netdev_priv(netdev);
2706 struct e1000_hw *hw = &adapter->hw;
2707 u32 vfta, index;
2709 /* don't update vlan cookie if already programmed */
2710 if ((adapter->hw.mng_cookie.status &
2711 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2712 (vid == adapter->mng_vlan_id))
2713 return 0;
2715 /* add VID to filter table */
2716 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2717 index = (vid >> 5) & 0x7F;
2718 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2719 vfta |= BIT((vid & 0x1F));
2720 hw->mac.ops.write_vfta(hw, index, vfta);
2723 set_bit(vid, adapter->active_vlans);
2725 return 0;
2728 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2729 __always_unused __be16 proto, u16 vid)
2731 struct e1000_adapter *adapter = netdev_priv(netdev);
2732 struct e1000_hw *hw = &adapter->hw;
2733 u32 vfta, index;
2735 if ((adapter->hw.mng_cookie.status &
2736 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2737 (vid == adapter->mng_vlan_id)) {
2738 /* release control to f/w */
2739 e1000e_release_hw_control(adapter);
2740 return 0;
2743 /* remove VID from filter table */
2744 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2745 index = (vid >> 5) & 0x7F;
2746 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2747 vfta &= ~BIT((vid & 0x1F));
2748 hw->mac.ops.write_vfta(hw, index, vfta);
2751 clear_bit(vid, adapter->active_vlans);
2753 return 0;
2757 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2758 * @adapter: board private structure to initialize
2760 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2762 struct net_device *netdev = adapter->netdev;
2763 struct e1000_hw *hw = &adapter->hw;
2764 u32 rctl;
2766 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2767 /* disable VLAN receive filtering */
2768 rctl = er32(RCTL);
2769 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2770 ew32(RCTL, rctl);
2772 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2773 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2774 adapter->mng_vlan_id);
2775 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2781 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2782 * @adapter: board private structure to initialize
2784 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2786 struct e1000_hw *hw = &adapter->hw;
2787 u32 rctl;
2789 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2790 /* enable VLAN receive filtering */
2791 rctl = er32(RCTL);
2792 rctl |= E1000_RCTL_VFE;
2793 rctl &= ~E1000_RCTL_CFIEN;
2794 ew32(RCTL, rctl);
2799 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2800 * @adapter: board private structure to initialize
2802 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2804 struct e1000_hw *hw = &adapter->hw;
2805 u32 ctrl;
2807 /* disable VLAN tag insert/strip */
2808 ctrl = er32(CTRL);
2809 ctrl &= ~E1000_CTRL_VME;
2810 ew32(CTRL, ctrl);
2814 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2815 * @adapter: board private structure to initialize
2817 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2819 struct e1000_hw *hw = &adapter->hw;
2820 u32 ctrl;
2822 /* enable VLAN tag insert/strip */
2823 ctrl = er32(CTRL);
2824 ctrl |= E1000_CTRL_VME;
2825 ew32(CTRL, ctrl);
2828 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2830 struct net_device *netdev = adapter->netdev;
2831 u16 vid = adapter->hw.mng_cookie.vlan_id;
2832 u16 old_vid = adapter->mng_vlan_id;
2834 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2835 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2836 adapter->mng_vlan_id = vid;
2839 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2840 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2843 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2845 u16 vid;
2847 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2849 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2850 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2853 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2855 struct e1000_hw *hw = &adapter->hw;
2856 u32 manc, manc2h, mdef, i, j;
2858 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2859 return;
2861 manc = er32(MANC);
2863 /* enable receiving management packets to the host. this will probably
2864 * generate destination unreachable messages from the host OS, but
2865 * the packets will be handled on SMBUS
2867 manc |= E1000_MANC_EN_MNG2HOST;
2868 manc2h = er32(MANC2H);
2870 switch (hw->mac.type) {
2871 default:
2872 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2873 break;
2874 case e1000_82574:
2875 case e1000_82583:
2876 /* Check if IPMI pass-through decision filter already exists;
2877 * if so, enable it.
2879 for (i = 0, j = 0; i < 8; i++) {
2880 mdef = er32(MDEF(i));
2882 /* Ignore filters with anything other than IPMI ports */
2883 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2884 continue;
2886 /* Enable this decision filter in MANC2H */
2887 if (mdef)
2888 manc2h |= BIT(i);
2890 j |= mdef;
2893 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2894 break;
2896 /* Create new decision filter in an empty filter */
2897 for (i = 0, j = 0; i < 8; i++)
2898 if (er32(MDEF(i)) == 0) {
2899 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2900 E1000_MDEF_PORT_664));
2901 manc2h |= BIT(1);
2902 j++;
2903 break;
2906 if (!j)
2907 e_warn("Unable to create IPMI pass-through filter\n");
2908 break;
2911 ew32(MANC2H, manc2h);
2912 ew32(MANC, manc);
2916 * e1000_configure_tx - Configure Transmit Unit after Reset
2917 * @adapter: board private structure
2919 * Configure the Tx unit of the MAC after a reset.
2921 static void e1000_configure_tx(struct e1000_adapter *adapter)
2923 struct e1000_hw *hw = &adapter->hw;
2924 struct e1000_ring *tx_ring = adapter->tx_ring;
2925 u64 tdba;
2926 u32 tdlen, tctl, tarc;
2928 /* Setup the HW Tx Head and Tail descriptor pointers */
2929 tdba = tx_ring->dma;
2930 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2931 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2932 ew32(TDBAH(0), (tdba >> 32));
2933 ew32(TDLEN(0), tdlen);
2934 ew32(TDH(0), 0);
2935 ew32(TDT(0), 0);
2936 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2937 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2939 writel(0, tx_ring->head);
2940 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2941 e1000e_update_tdt_wa(tx_ring, 0);
2942 else
2943 writel(0, tx_ring->tail);
2945 /* Set the Tx Interrupt Delay register */
2946 ew32(TIDV, adapter->tx_int_delay);
2947 /* Tx irq moderation */
2948 ew32(TADV, adapter->tx_abs_int_delay);
2950 if (adapter->flags2 & FLAG2_DMA_BURST) {
2951 u32 txdctl = er32(TXDCTL(0));
2953 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2954 E1000_TXDCTL_WTHRESH);
2955 /* set up some performance related parameters to encourage the
2956 * hardware to use the bus more efficiently in bursts, depends
2957 * on the tx_int_delay to be enabled,
2958 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2959 * hthresh = 1 ==> prefetch when one or more available
2960 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2961 * BEWARE: this seems to work but should be considered first if
2962 * there are Tx hangs or other Tx related bugs
2964 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2965 ew32(TXDCTL(0), txdctl);
2967 /* erratum work around: set txdctl the same for both queues */
2968 ew32(TXDCTL(1), er32(TXDCTL(0)));
2970 /* Program the Transmit Control Register */
2971 tctl = er32(TCTL);
2972 tctl &= ~E1000_TCTL_CT;
2973 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2974 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2976 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2977 tarc = er32(TARC(0));
2978 /* set the speed mode bit, we'll clear it if we're not at
2979 * gigabit link later
2981 #define SPEED_MODE_BIT BIT(21)
2982 tarc |= SPEED_MODE_BIT;
2983 ew32(TARC(0), tarc);
2986 /* errata: program both queues to unweighted RR */
2987 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2988 tarc = er32(TARC(0));
2989 tarc |= 1;
2990 ew32(TARC(0), tarc);
2991 tarc = er32(TARC(1));
2992 tarc |= 1;
2993 ew32(TARC(1), tarc);
2996 /* Setup Transmit Descriptor Settings for eop descriptor */
2997 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2999 /* only set IDE if we are delaying interrupts using the timers */
3000 if (adapter->tx_int_delay)
3001 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3003 /* enable Report Status bit */
3004 adapter->txd_cmd |= E1000_TXD_CMD_RS;
3006 ew32(TCTL, tctl);
3008 hw->mac.ops.config_collision_dist(hw);
3010 /* SPT and KBL Si errata workaround to avoid data corruption */
3011 if (hw->mac.type == e1000_pch_spt) {
3012 u32 reg_val;
3014 reg_val = er32(IOSFPC);
3015 reg_val |= E1000_RCTL_RDMTS_HEX;
3016 ew32(IOSFPC, reg_val);
3018 reg_val = er32(TARC(0));
3019 /* SPT and KBL Si errata workaround to avoid Tx hang.
3020 * Dropping the number of outstanding requests from
3021 * 3 to 2 in order to avoid a buffer overrun.
3023 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3024 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3025 ew32(TARC(0), reg_val);
3029 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3030 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3033 * e1000_setup_rctl - configure the receive control registers
3034 * @adapter: Board private structure
3036 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3038 struct e1000_hw *hw = &adapter->hw;
3039 u32 rctl, rfctl;
3040 u32 pages = 0;
3042 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3043 * If jumbo frames not set, program related MAC/PHY registers
3044 * to h/w defaults
3046 if (hw->mac.type >= e1000_pch2lan) {
3047 s32 ret_val;
3049 if (adapter->netdev->mtu > ETH_DATA_LEN)
3050 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3051 else
3052 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3054 if (ret_val)
3055 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3058 /* Program MC offset vector base */
3059 rctl = er32(RCTL);
3060 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3061 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3062 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3063 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3065 /* Do not Store bad packets */
3066 rctl &= ~E1000_RCTL_SBP;
3068 /* Enable Long Packet receive */
3069 if (adapter->netdev->mtu <= ETH_DATA_LEN)
3070 rctl &= ~E1000_RCTL_LPE;
3071 else
3072 rctl |= E1000_RCTL_LPE;
3074 /* Some systems expect that the CRC is included in SMBUS traffic. The
3075 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3076 * host memory when this is enabled
3078 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3079 rctl |= E1000_RCTL_SECRC;
3081 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3082 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3083 u16 phy_data;
3085 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3086 phy_data &= 0xfff8;
3087 phy_data |= BIT(2);
3088 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3090 e1e_rphy(hw, 22, &phy_data);
3091 phy_data &= 0x0fff;
3092 phy_data |= BIT(14);
3093 e1e_wphy(hw, 0x10, 0x2823);
3094 e1e_wphy(hw, 0x11, 0x0003);
3095 e1e_wphy(hw, 22, phy_data);
3098 /* Setup buffer sizes */
3099 rctl &= ~E1000_RCTL_SZ_4096;
3100 rctl |= E1000_RCTL_BSEX;
3101 switch (adapter->rx_buffer_len) {
3102 case 2048:
3103 default:
3104 rctl |= E1000_RCTL_SZ_2048;
3105 rctl &= ~E1000_RCTL_BSEX;
3106 break;
3107 case 4096:
3108 rctl |= E1000_RCTL_SZ_4096;
3109 break;
3110 case 8192:
3111 rctl |= E1000_RCTL_SZ_8192;
3112 break;
3113 case 16384:
3114 rctl |= E1000_RCTL_SZ_16384;
3115 break;
3118 /* Enable Extended Status in all Receive Descriptors */
3119 rfctl = er32(RFCTL);
3120 rfctl |= E1000_RFCTL_EXTEN;
3121 ew32(RFCTL, rfctl);
3123 /* 82571 and greater support packet-split where the protocol
3124 * header is placed in skb->data and the packet data is
3125 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3126 * In the case of a non-split, skb->data is linearly filled,
3127 * followed by the page buffers. Therefore, skb->data is
3128 * sized to hold the largest protocol header.
3130 * allocations using alloc_page take too long for regular MTU
3131 * so only enable packet split for jumbo frames
3133 * Using pages when the page size is greater than 16k wastes
3134 * a lot of memory, since we allocate 3 pages at all times
3135 * per packet.
3137 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3138 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3139 adapter->rx_ps_pages = pages;
3140 else
3141 adapter->rx_ps_pages = 0;
3143 if (adapter->rx_ps_pages) {
3144 u32 psrctl = 0;
3146 /* Enable Packet split descriptors */
3147 rctl |= E1000_RCTL_DTYP_PS;
3149 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3151 switch (adapter->rx_ps_pages) {
3152 case 3:
3153 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3154 fallthrough;
3155 case 2:
3156 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3157 fallthrough;
3158 case 1:
3159 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3160 break;
3163 ew32(PSRCTL, psrctl);
3166 /* This is useful for sniffing bad packets. */
3167 if (adapter->netdev->features & NETIF_F_RXALL) {
3168 /* UPE and MPE will be handled by normal PROMISC logic
3169 * in e1000e_set_rx_mode
3171 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3172 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3173 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3175 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3176 E1000_RCTL_DPF | /* Allow filtered pause */
3177 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3178 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3179 * and that breaks VLANs.
3183 ew32(RCTL, rctl);
3184 /* just started the receive unit, no need to restart */
3185 adapter->flags &= ~FLAG_RESTART_NOW;
3189 * e1000_configure_rx - Configure Receive Unit after Reset
3190 * @adapter: board private structure
3192 * Configure the Rx unit of the MAC after a reset.
3194 static void e1000_configure_rx(struct e1000_adapter *adapter)
3196 struct e1000_hw *hw = &adapter->hw;
3197 struct e1000_ring *rx_ring = adapter->rx_ring;
3198 u64 rdba;
3199 u32 rdlen, rctl, rxcsum, ctrl_ext;
3201 if (adapter->rx_ps_pages) {
3202 /* this is a 32 byte descriptor */
3203 rdlen = rx_ring->count *
3204 sizeof(union e1000_rx_desc_packet_split);
3205 adapter->clean_rx = e1000_clean_rx_irq_ps;
3206 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3207 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3208 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3209 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3210 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3211 } else {
3212 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3213 adapter->clean_rx = e1000_clean_rx_irq;
3214 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3217 /* disable receives while setting up the descriptors */
3218 rctl = er32(RCTL);
3219 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3220 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3221 e1e_flush();
3222 usleep_range(10000, 11000);
3224 if (adapter->flags2 & FLAG2_DMA_BURST) {
3225 /* set the writeback threshold (only takes effect if the RDTR
3226 * is set). set GRAN=1 and write back up to 0x4 worth, and
3227 * enable prefetching of 0x20 Rx descriptors
3228 * granularity = 01
3229 * wthresh = 04,
3230 * hthresh = 04,
3231 * pthresh = 0x20
3233 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3234 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3237 /* set the Receive Delay Timer Register */
3238 ew32(RDTR, adapter->rx_int_delay);
3240 /* irq moderation */
3241 ew32(RADV, adapter->rx_abs_int_delay);
3242 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3243 e1000e_write_itr(adapter, adapter->itr);
3245 ctrl_ext = er32(CTRL_EXT);
3246 /* Auto-Mask interrupts upon ICR access */
3247 ctrl_ext |= E1000_CTRL_EXT_IAME;
3248 ew32(IAM, 0xffffffff);
3249 ew32(CTRL_EXT, ctrl_ext);
3250 e1e_flush();
3252 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3253 * the Base and Length of the Rx Descriptor Ring
3255 rdba = rx_ring->dma;
3256 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3257 ew32(RDBAH(0), (rdba >> 32));
3258 ew32(RDLEN(0), rdlen);
3259 ew32(RDH(0), 0);
3260 ew32(RDT(0), 0);
3261 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3262 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3264 writel(0, rx_ring->head);
3265 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3266 e1000e_update_rdt_wa(rx_ring, 0);
3267 else
3268 writel(0, rx_ring->tail);
3270 /* Enable Receive Checksum Offload for TCP and UDP */
3271 rxcsum = er32(RXCSUM);
3272 if (adapter->netdev->features & NETIF_F_RXCSUM)
3273 rxcsum |= E1000_RXCSUM_TUOFL;
3274 else
3275 rxcsum &= ~E1000_RXCSUM_TUOFL;
3276 ew32(RXCSUM, rxcsum);
3278 /* With jumbo frames, excessive C-state transition latencies result
3279 * in dropped transactions.
3281 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3282 u32 lat =
3283 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3284 adapter->max_frame_size) * 8 / 1000;
3286 if (adapter->flags & FLAG_IS_ICH) {
3287 u32 rxdctl = er32(RXDCTL(0));
3289 ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3292 dev_info(&adapter->pdev->dev,
3293 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3294 cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3295 } else {
3296 cpu_latency_qos_update_request(&adapter->pm_qos_req,
3297 PM_QOS_DEFAULT_VALUE);
3300 /* Enable Receives */
3301 ew32(RCTL, rctl);
3305 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3306 * @netdev: network interface device structure
3308 * Writes multicast address list to the MTA hash table.
3309 * Returns: -ENOMEM on failure
3310 * 0 on no addresses written
3311 * X on writing X addresses to MTA
3313 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3315 struct e1000_adapter *adapter = netdev_priv(netdev);
3316 struct e1000_hw *hw = &adapter->hw;
3317 struct netdev_hw_addr *ha;
3318 u8 *mta_list;
3319 int i;
3321 if (netdev_mc_empty(netdev)) {
3322 /* nothing to program, so clear mc list */
3323 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3324 return 0;
3327 mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3328 if (!mta_list)
3329 return -ENOMEM;
3331 /* update_mc_addr_list expects a packed array of only addresses. */
3332 i = 0;
3333 netdev_for_each_mc_addr(ha, netdev)
3334 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3336 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3337 kfree(mta_list);
3339 return netdev_mc_count(netdev);
3343 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3344 * @netdev: network interface device structure
3346 * Writes unicast address list to the RAR table.
3347 * Returns: -ENOMEM on failure/insufficient address space
3348 * 0 on no addresses written
3349 * X on writing X addresses to the RAR table
3351 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3353 struct e1000_adapter *adapter = netdev_priv(netdev);
3354 struct e1000_hw *hw = &adapter->hw;
3355 unsigned int rar_entries;
3356 int count = 0;
3358 rar_entries = hw->mac.ops.rar_get_count(hw);
3360 /* save a rar entry for our hardware address */
3361 rar_entries--;
3363 /* save a rar entry for the LAA workaround */
3364 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3365 rar_entries--;
3367 /* return ENOMEM indicating insufficient memory for addresses */
3368 if (netdev_uc_count(netdev) > rar_entries)
3369 return -ENOMEM;
3371 if (!netdev_uc_empty(netdev) && rar_entries) {
3372 struct netdev_hw_addr *ha;
3374 /* write the addresses in reverse order to avoid write
3375 * combining
3377 netdev_for_each_uc_addr(ha, netdev) {
3378 int ret_val;
3380 if (!rar_entries)
3381 break;
3382 ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3383 if (ret_val < 0)
3384 return -ENOMEM;
3385 count++;
3389 /* zero out the remaining RAR entries not used above */
3390 for (; rar_entries > 0; rar_entries--) {
3391 ew32(RAH(rar_entries), 0);
3392 ew32(RAL(rar_entries), 0);
3394 e1e_flush();
3396 return count;
3400 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3401 * @netdev: network interface device structure
3403 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3404 * address list or the network interface flags are updated. This routine is
3405 * responsible for configuring the hardware for proper unicast, multicast,
3406 * promiscuous mode, and all-multi behavior.
3408 static void e1000e_set_rx_mode(struct net_device *netdev)
3410 struct e1000_adapter *adapter = netdev_priv(netdev);
3411 struct e1000_hw *hw = &adapter->hw;
3412 u32 rctl;
3414 if (pm_runtime_suspended(netdev->dev.parent))
3415 return;
3417 /* Check for Promiscuous and All Multicast modes */
3418 rctl = er32(RCTL);
3420 /* clear the affected bits */
3421 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3423 if (netdev->flags & IFF_PROMISC) {
3424 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3425 /* Do not hardware filter VLANs in promisc mode */
3426 e1000e_vlan_filter_disable(adapter);
3427 } else {
3428 int count;
3430 if (netdev->flags & IFF_ALLMULTI) {
3431 rctl |= E1000_RCTL_MPE;
3432 } else {
3433 /* Write addresses to the MTA, if the attempt fails
3434 * then we should just turn on promiscuous mode so
3435 * that we can at least receive multicast traffic
3437 count = e1000e_write_mc_addr_list(netdev);
3438 if (count < 0)
3439 rctl |= E1000_RCTL_MPE;
3441 e1000e_vlan_filter_enable(adapter);
3442 /* Write addresses to available RAR registers, if there is not
3443 * sufficient space to store all the addresses then enable
3444 * unicast promiscuous mode
3446 count = e1000e_write_uc_addr_list(netdev);
3447 if (count < 0)
3448 rctl |= E1000_RCTL_UPE;
3451 ew32(RCTL, rctl);
3453 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3454 e1000e_vlan_strip_enable(adapter);
3455 else
3456 e1000e_vlan_strip_disable(adapter);
3459 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3461 struct e1000_hw *hw = &adapter->hw;
3462 u32 mrqc, rxcsum;
3463 u32 rss_key[10];
3464 int i;
3466 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3467 for (i = 0; i < 10; i++)
3468 ew32(RSSRK(i), rss_key[i]);
3470 /* Direct all traffic to queue 0 */
3471 for (i = 0; i < 32; i++)
3472 ew32(RETA(i), 0);
3474 /* Disable raw packet checksumming so that RSS hash is placed in
3475 * descriptor on writeback.
3477 rxcsum = er32(RXCSUM);
3478 rxcsum |= E1000_RXCSUM_PCSD;
3480 ew32(RXCSUM, rxcsum);
3482 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3483 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3484 E1000_MRQC_RSS_FIELD_IPV6 |
3485 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3486 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3488 ew32(MRQC, mrqc);
3492 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3493 * @adapter: board private structure
3494 * @timinca: pointer to returned time increment attributes
3496 * Get attributes for incrementing the System Time Register SYSTIML/H at
3497 * the default base frequency, and set the cyclecounter shift value.
3499 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3501 struct e1000_hw *hw = &adapter->hw;
3502 u32 incvalue, incperiod, shift;
3504 /* Make sure clock is enabled on I217/I218/I219 before checking
3505 * the frequency
3507 if ((hw->mac.type >= e1000_pch_lpt) &&
3508 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3509 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3510 u32 fextnvm7 = er32(FEXTNVM7);
3512 if (!(fextnvm7 & BIT(0))) {
3513 ew32(FEXTNVM7, fextnvm7 | BIT(0));
3514 e1e_flush();
3518 switch (hw->mac.type) {
3519 case e1000_pch2lan:
3520 /* Stable 96MHz frequency */
3521 incperiod = INCPERIOD_96MHZ;
3522 incvalue = INCVALUE_96MHZ;
3523 shift = INCVALUE_SHIFT_96MHZ;
3524 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3525 break;
3526 case e1000_pch_lpt:
3527 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3528 /* Stable 96MHz frequency */
3529 incperiod = INCPERIOD_96MHZ;
3530 incvalue = INCVALUE_96MHZ;
3531 shift = INCVALUE_SHIFT_96MHZ;
3532 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3533 } else {
3534 /* Stable 25MHz frequency */
3535 incperiod = INCPERIOD_25MHZ;
3536 incvalue = INCVALUE_25MHZ;
3537 shift = INCVALUE_SHIFT_25MHZ;
3538 adapter->cc.shift = shift;
3540 break;
3541 case e1000_pch_spt:
3542 /* Stable 24MHz frequency */
3543 incperiod = INCPERIOD_24MHZ;
3544 incvalue = INCVALUE_24MHZ;
3545 shift = INCVALUE_SHIFT_24MHZ;
3546 adapter->cc.shift = shift;
3547 break;
3548 case e1000_pch_cnp:
3549 case e1000_pch_tgp:
3550 case e1000_pch_adp:
3551 case e1000_pch_mtp:
3552 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3553 /* Stable 24MHz frequency */
3554 incperiod = INCPERIOD_24MHZ;
3555 incvalue = INCVALUE_24MHZ;
3556 shift = INCVALUE_SHIFT_24MHZ;
3557 adapter->cc.shift = shift;
3558 } else {
3559 /* Stable 38400KHz frequency */
3560 incperiod = INCPERIOD_38400KHZ;
3561 incvalue = INCVALUE_38400KHZ;
3562 shift = INCVALUE_SHIFT_38400KHZ;
3563 adapter->cc.shift = shift;
3565 break;
3566 case e1000_82574:
3567 case e1000_82583:
3568 /* Stable 25MHz frequency */
3569 incperiod = INCPERIOD_25MHZ;
3570 incvalue = INCVALUE_25MHZ;
3571 shift = INCVALUE_SHIFT_25MHZ;
3572 adapter->cc.shift = shift;
3573 break;
3574 default:
3575 return -EINVAL;
3578 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3579 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3581 return 0;
3585 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3586 * @adapter: board private structure
3587 * @config: timestamp configuration
3589 * Outgoing time stamping can be enabled and disabled. Play nice and
3590 * disable it when requested, although it shouldn't cause any overhead
3591 * when no packet needs it. At most one packet in the queue may be
3592 * marked for time stamping, otherwise it would be impossible to tell
3593 * for sure to which packet the hardware time stamp belongs.
3595 * Incoming time stamping has to be configured via the hardware filters.
3596 * Not all combinations are supported, in particular event type has to be
3597 * specified. Matching the kind of event packet is not supported, with the
3598 * exception of "all V2 events regardless of level 2 or 4".
3600 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3601 struct hwtstamp_config *config)
3603 struct e1000_hw *hw = &adapter->hw;
3604 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3605 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3606 u32 rxmtrl = 0;
3607 u16 rxudp = 0;
3608 bool is_l4 = false;
3609 bool is_l2 = false;
3610 u32 regval;
3612 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3613 return -EINVAL;
3615 /* flags reserved for future extensions - must be zero */
3616 if (config->flags)
3617 return -EINVAL;
3619 switch (config->tx_type) {
3620 case HWTSTAMP_TX_OFF:
3621 tsync_tx_ctl = 0;
3622 break;
3623 case HWTSTAMP_TX_ON:
3624 break;
3625 default:
3626 return -ERANGE;
3629 switch (config->rx_filter) {
3630 case HWTSTAMP_FILTER_NONE:
3631 tsync_rx_ctl = 0;
3632 break;
3633 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3634 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3635 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3636 is_l4 = true;
3637 break;
3638 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3639 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3640 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3641 is_l4 = true;
3642 break;
3643 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3644 /* Also time stamps V2 L2 Path Delay Request/Response */
3645 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3646 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3647 is_l2 = true;
3648 break;
3649 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3650 /* Also time stamps V2 L2 Path Delay Request/Response. */
3651 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3652 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3653 is_l2 = true;
3654 break;
3655 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3656 /* Hardware cannot filter just V2 L4 Sync messages */
3657 fallthrough;
3658 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3659 /* Also time stamps V2 Path Delay Request/Response. */
3660 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3661 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3662 is_l2 = true;
3663 is_l4 = true;
3664 break;
3665 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3666 /* Hardware cannot filter just V2 L4 Delay Request messages */
3667 fallthrough;
3668 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3669 /* Also time stamps V2 Path Delay Request/Response. */
3670 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3671 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3672 is_l2 = true;
3673 is_l4 = true;
3674 break;
3675 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3676 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3677 /* Hardware cannot filter just V2 L4 or L2 Event messages */
3678 fallthrough;
3679 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3680 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3681 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3682 is_l2 = true;
3683 is_l4 = true;
3684 break;
3685 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3686 /* For V1, the hardware can only filter Sync messages or
3687 * Delay Request messages but not both so fall-through to
3688 * time stamp all packets.
3690 fallthrough;
3691 case HWTSTAMP_FILTER_NTP_ALL:
3692 case HWTSTAMP_FILTER_ALL:
3693 is_l2 = true;
3694 is_l4 = true;
3695 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3696 config->rx_filter = HWTSTAMP_FILTER_ALL;
3697 break;
3698 default:
3699 return -ERANGE;
3702 adapter->hwtstamp_config = *config;
3704 /* enable/disable Tx h/w time stamping */
3705 regval = er32(TSYNCTXCTL);
3706 regval &= ~E1000_TSYNCTXCTL_ENABLED;
3707 regval |= tsync_tx_ctl;
3708 ew32(TSYNCTXCTL, regval);
3709 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3710 (regval & E1000_TSYNCTXCTL_ENABLED)) {
3711 e_err("Timesync Tx Control register not set as expected\n");
3712 return -EAGAIN;
3715 /* enable/disable Rx h/w time stamping */
3716 regval = er32(TSYNCRXCTL);
3717 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3718 regval |= tsync_rx_ctl;
3719 ew32(TSYNCRXCTL, regval);
3720 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3721 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3722 (regval & (E1000_TSYNCRXCTL_ENABLED |
3723 E1000_TSYNCRXCTL_TYPE_MASK))) {
3724 e_err("Timesync Rx Control register not set as expected\n");
3725 return -EAGAIN;
3728 /* L2: define ethertype filter for time stamped packets */
3729 if (is_l2)
3730 rxmtrl |= ETH_P_1588;
3732 /* define which PTP packets get time stamped */
3733 ew32(RXMTRL, rxmtrl);
3735 /* Filter by destination port */
3736 if (is_l4) {
3737 rxudp = PTP_EV_PORT;
3738 cpu_to_be16s(&rxudp);
3740 ew32(RXUDP, rxudp);
3742 e1e_flush();
3744 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3745 er32(RXSTMPH);
3746 er32(TXSTMPH);
3748 return 0;
3752 * e1000_configure - configure the hardware for Rx and Tx
3753 * @adapter: private board structure
3755 static void e1000_configure(struct e1000_adapter *adapter)
3757 struct e1000_ring *rx_ring = adapter->rx_ring;
3759 e1000e_set_rx_mode(adapter->netdev);
3761 e1000_restore_vlan(adapter);
3762 e1000_init_manageability_pt(adapter);
3764 e1000_configure_tx(adapter);
3766 if (adapter->netdev->features & NETIF_F_RXHASH)
3767 e1000e_setup_rss_hash(adapter);
3768 e1000_setup_rctl(adapter);
3769 e1000_configure_rx(adapter);
3770 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3774 * e1000e_power_up_phy - restore link in case the phy was powered down
3775 * @adapter: address of board private structure
3777 * The phy may be powered down to save power and turn off link when the
3778 * driver is unloaded and wake on lan is not enabled (among others)
3779 * *** this routine MUST be followed by a call to e1000e_reset ***
3781 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3783 if (adapter->hw.phy.ops.power_up)
3784 adapter->hw.phy.ops.power_up(&adapter->hw);
3786 adapter->hw.mac.ops.setup_link(&adapter->hw);
3790 * e1000_power_down_phy - Power down the PHY
3791 * @adapter: board private structure
3793 * Power down the PHY so no link is implied when interface is down.
3794 * The PHY cannot be powered down if management or WoL is active.
3796 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3798 if (adapter->hw.phy.ops.power_down)
3799 adapter->hw.phy.ops.power_down(&adapter->hw);
3803 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3804 * @adapter: board private structure
3806 * We want to clear all pending descriptors from the TX ring.
3807 * zeroing happens when the HW reads the regs. We assign the ring itself as
3808 * the data of the next descriptor. We don't care about the data we are about
3809 * to reset the HW.
3811 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3813 struct e1000_hw *hw = &adapter->hw;
3814 struct e1000_ring *tx_ring = adapter->tx_ring;
3815 struct e1000_tx_desc *tx_desc = NULL;
3816 u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3817 u16 size = 512;
3819 tctl = er32(TCTL);
3820 ew32(TCTL, tctl | E1000_TCTL_EN);
3821 tdt = er32(TDT(0));
3822 BUG_ON(tdt != tx_ring->next_to_use);
3823 tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3824 tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3826 tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3827 tx_desc->upper.data = 0;
3828 /* flush descriptors to memory before notifying the HW */
3829 wmb();
3830 tx_ring->next_to_use++;
3831 if (tx_ring->next_to_use == tx_ring->count)
3832 tx_ring->next_to_use = 0;
3833 ew32(TDT(0), tx_ring->next_to_use);
3834 usleep_range(200, 250);
3838 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3839 * @adapter: board private structure
3841 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3843 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3845 u32 rctl, rxdctl;
3846 struct e1000_hw *hw = &adapter->hw;
3848 rctl = er32(RCTL);
3849 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3850 e1e_flush();
3851 usleep_range(100, 150);
3853 rxdctl = er32(RXDCTL(0));
3854 /* zero the lower 14 bits (prefetch and host thresholds) */
3855 rxdctl &= 0xffffc000;
3857 /* update thresholds: prefetch threshold to 31, host threshold to 1
3858 * and make sure the granularity is "descriptors" and not "cache lines"
3860 rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3862 ew32(RXDCTL(0), rxdctl);
3863 /* momentarily enable the RX ring for the changes to take effect */
3864 ew32(RCTL, rctl | E1000_RCTL_EN);
3865 e1e_flush();
3866 usleep_range(100, 150);
3867 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3871 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3872 * @adapter: board private structure
3874 * In i219, the descriptor rings must be emptied before resetting the HW
3875 * or before changing the device state to D3 during runtime (runtime PM).
3877 * Failure to do this will cause the HW to enter a unit hang state which can
3878 * only be released by PCI reset on the device
3882 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3884 u16 hang_state;
3885 u32 fext_nvm11, tdlen;
3886 struct e1000_hw *hw = &adapter->hw;
3888 /* First, disable MULR fix in FEXTNVM11 */
3889 fext_nvm11 = er32(FEXTNVM11);
3890 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3891 ew32(FEXTNVM11, fext_nvm11);
3892 /* do nothing if we're not in faulty state, or if the queue is empty */
3893 tdlen = er32(TDLEN(0));
3894 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3895 &hang_state);
3896 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3897 return;
3898 e1000_flush_tx_ring(adapter);
3899 /* recheck, maybe the fault is caused by the rx ring */
3900 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3901 &hang_state);
3902 if (hang_state & FLUSH_DESC_REQUIRED)
3903 e1000_flush_rx_ring(adapter);
3907 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3908 * @adapter: board private structure
3910 * When the MAC is reset, all hardware bits for timesync will be reset to the
3911 * default values. This function will restore the settings last in place.
3912 * Since the clock SYSTIME registers are reset, we will simply restore the
3913 * cyclecounter to the kernel real clock time.
3915 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3917 struct ptp_clock_info *info = &adapter->ptp_clock_info;
3918 struct e1000_hw *hw = &adapter->hw;
3919 unsigned long flags;
3920 u32 timinca;
3921 s32 ret_val;
3923 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3924 return;
3926 if (info->adjfreq) {
3927 /* restore the previous ptp frequency delta */
3928 ret_val = info->adjfreq(info, adapter->ptp_delta);
3929 } else {
3930 /* set the default base frequency if no adjustment possible */
3931 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3932 if (!ret_val)
3933 ew32(TIMINCA, timinca);
3936 if (ret_val) {
3937 dev_warn(&adapter->pdev->dev,
3938 "Failed to restore TIMINCA clock rate delta: %d\n",
3939 ret_val);
3940 return;
3943 /* reset the systim ns time counter */
3944 spin_lock_irqsave(&adapter->systim_lock, flags);
3945 timecounter_init(&adapter->tc, &adapter->cc,
3946 ktime_to_ns(ktime_get_real()));
3947 spin_unlock_irqrestore(&adapter->systim_lock, flags);
3949 /* restore the previous hwtstamp configuration settings */
3950 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3954 * e1000e_reset - bring the hardware into a known good state
3955 * @adapter: board private structure
3957 * This function boots the hardware and enables some settings that
3958 * require a configuration cycle of the hardware - those cannot be
3959 * set/changed during runtime. After reset the device needs to be
3960 * properly configured for Rx, Tx etc.
3962 void e1000e_reset(struct e1000_adapter *adapter)
3964 struct e1000_mac_info *mac = &adapter->hw.mac;
3965 struct e1000_fc_info *fc = &adapter->hw.fc;
3966 struct e1000_hw *hw = &adapter->hw;
3967 u32 tx_space, min_tx_space, min_rx_space;
3968 u32 pba = adapter->pba;
3969 u16 hwm;
3971 /* reset Packet Buffer Allocation to default */
3972 ew32(PBA, pba);
3974 if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3975 /* To maintain wire speed transmits, the Tx FIFO should be
3976 * large enough to accommodate two full transmit packets,
3977 * rounded up to the next 1KB and expressed in KB. Likewise,
3978 * the Rx FIFO should be large enough to accommodate at least
3979 * one full receive packet and is similarly rounded up and
3980 * expressed in KB.
3982 pba = er32(PBA);
3983 /* upper 16 bits has Tx packet buffer allocation size in KB */
3984 tx_space = pba >> 16;
3985 /* lower 16 bits has Rx packet buffer allocation size in KB */
3986 pba &= 0xffff;
3987 /* the Tx fifo also stores 16 bytes of information about the Tx
3988 * but don't include ethernet FCS because hardware appends it
3990 min_tx_space = (adapter->max_frame_size +
3991 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3992 min_tx_space = ALIGN(min_tx_space, 1024);
3993 min_tx_space >>= 10;
3994 /* software strips receive CRC, so leave room for it */
3995 min_rx_space = adapter->max_frame_size;
3996 min_rx_space = ALIGN(min_rx_space, 1024);
3997 min_rx_space >>= 10;
3999 /* If current Tx allocation is less than the min Tx FIFO size,
4000 * and the min Tx FIFO size is less than the current Rx FIFO
4001 * allocation, take space away from current Rx allocation
4003 if ((tx_space < min_tx_space) &&
4004 ((min_tx_space - tx_space) < pba)) {
4005 pba -= min_tx_space - tx_space;
4007 /* if short on Rx space, Rx wins and must trump Tx
4008 * adjustment
4010 if (pba < min_rx_space)
4011 pba = min_rx_space;
4014 ew32(PBA, pba);
4017 /* flow control settings
4019 * The high water mark must be low enough to fit one full frame
4020 * (or the size used for early receive) above it in the Rx FIFO.
4021 * Set it to the lower of:
4022 * - 90% of the Rx FIFO size, and
4023 * - the full Rx FIFO size minus one full frame
4025 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4026 fc->pause_time = 0xFFFF;
4027 else
4028 fc->pause_time = E1000_FC_PAUSE_TIME;
4029 fc->send_xon = true;
4030 fc->current_mode = fc->requested_mode;
4032 switch (hw->mac.type) {
4033 case e1000_ich9lan:
4034 case e1000_ich10lan:
4035 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4036 pba = 14;
4037 ew32(PBA, pba);
4038 fc->high_water = 0x2800;
4039 fc->low_water = fc->high_water - 8;
4040 break;
4042 fallthrough;
4043 default:
4044 hwm = min(((pba << 10) * 9 / 10),
4045 ((pba << 10) - adapter->max_frame_size));
4047 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4048 fc->low_water = fc->high_water - 8;
4049 break;
4050 case e1000_pchlan:
4051 /* Workaround PCH LOM adapter hangs with certain network
4052 * loads. If hangs persist, try disabling Tx flow control.
4054 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4055 fc->high_water = 0x3500;
4056 fc->low_water = 0x1500;
4057 } else {
4058 fc->high_water = 0x5000;
4059 fc->low_water = 0x3000;
4061 fc->refresh_time = 0x1000;
4062 break;
4063 case e1000_pch2lan:
4064 case e1000_pch_lpt:
4065 case e1000_pch_spt:
4066 case e1000_pch_cnp:
4067 case e1000_pch_tgp:
4068 case e1000_pch_adp:
4069 case e1000_pch_mtp:
4070 fc->refresh_time = 0xFFFF;
4071 fc->pause_time = 0xFFFF;
4073 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4074 fc->high_water = 0x05C20;
4075 fc->low_water = 0x05048;
4076 break;
4079 pba = 14;
4080 ew32(PBA, pba);
4081 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4082 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4083 break;
4086 /* Alignment of Tx data is on an arbitrary byte boundary with the
4087 * maximum size per Tx descriptor limited only to the transmit
4088 * allocation of the packet buffer minus 96 bytes with an upper
4089 * limit of 24KB due to receive synchronization limitations.
4091 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4092 24 << 10);
4094 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4095 * fit in receive buffer.
4097 if (adapter->itr_setting & 0x3) {
4098 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4099 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4100 dev_info(&adapter->pdev->dev,
4101 "Interrupt Throttle Rate off\n");
4102 adapter->flags2 |= FLAG2_DISABLE_AIM;
4103 e1000e_write_itr(adapter, 0);
4105 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4106 dev_info(&adapter->pdev->dev,
4107 "Interrupt Throttle Rate on\n");
4108 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4109 adapter->itr = 20000;
4110 e1000e_write_itr(adapter, adapter->itr);
4114 if (hw->mac.type >= e1000_pch_spt)
4115 e1000_flush_desc_rings(adapter);
4116 /* Allow time for pending master requests to run */
4117 mac->ops.reset_hw(hw);
4119 /* For parts with AMT enabled, let the firmware know
4120 * that the network interface is in control
4122 if (adapter->flags & FLAG_HAS_AMT)
4123 e1000e_get_hw_control(adapter);
4125 ew32(WUC, 0);
4127 if (mac->ops.init_hw(hw))
4128 e_err("Hardware Error\n");
4130 e1000_update_mng_vlan(adapter);
4132 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4133 ew32(VET, ETH_P_8021Q);
4135 e1000e_reset_adaptive(hw);
4137 /* restore systim and hwtstamp settings */
4138 e1000e_systim_reset(adapter);
4140 /* Set EEE advertisement as appropriate */
4141 if (adapter->flags2 & FLAG2_HAS_EEE) {
4142 s32 ret_val;
4143 u16 adv_addr;
4145 switch (hw->phy.type) {
4146 case e1000_phy_82579:
4147 adv_addr = I82579_EEE_ADVERTISEMENT;
4148 break;
4149 case e1000_phy_i217:
4150 adv_addr = I217_EEE_ADVERTISEMENT;
4151 break;
4152 default:
4153 dev_err(&adapter->pdev->dev,
4154 "Invalid PHY type setting EEE advertisement\n");
4155 return;
4158 ret_val = hw->phy.ops.acquire(hw);
4159 if (ret_val) {
4160 dev_err(&adapter->pdev->dev,
4161 "EEE advertisement - unable to acquire PHY\n");
4162 return;
4165 e1000_write_emi_reg_locked(hw, adv_addr,
4166 hw->dev_spec.ich8lan.eee_disable ?
4167 0 : adapter->eee_advert);
4169 hw->phy.ops.release(hw);
4172 if (!netif_running(adapter->netdev) &&
4173 !test_bit(__E1000_TESTING, &adapter->state))
4174 e1000_power_down_phy(adapter);
4176 e1000_get_phy_info(hw);
4178 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4179 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4180 u16 phy_data = 0;
4181 /* speed up time to link by disabling smart power down, ignore
4182 * the return value of this function because there is nothing
4183 * different we would do if it failed
4185 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4186 phy_data &= ~IGP02E1000_PM_SPD;
4187 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4189 if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4190 u32 reg;
4192 /* Fextnvm7 @ 0xe4[2] = 1 */
4193 reg = er32(FEXTNVM7);
4194 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4195 ew32(FEXTNVM7, reg);
4196 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4197 reg = er32(FEXTNVM9);
4198 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4199 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4200 ew32(FEXTNVM9, reg);
4206 * e1000e_trigger_lsc - trigger an LSC interrupt
4207 * @adapter:
4209 * Fire a link status change interrupt to start the watchdog.
4211 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4213 struct e1000_hw *hw = &adapter->hw;
4215 if (adapter->msix_entries)
4216 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4217 else
4218 ew32(ICS, E1000_ICS_LSC);
4221 void e1000e_up(struct e1000_adapter *adapter)
4223 /* hardware has been reset, we need to reload some things */
4224 e1000_configure(adapter);
4226 clear_bit(__E1000_DOWN, &adapter->state);
4228 if (adapter->msix_entries)
4229 e1000_configure_msix(adapter);
4230 e1000_irq_enable(adapter);
4232 /* Tx queue started by watchdog timer when link is up */
4234 e1000e_trigger_lsc(adapter);
4237 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4239 struct e1000_hw *hw = &adapter->hw;
4241 if (!(adapter->flags2 & FLAG2_DMA_BURST))
4242 return;
4244 /* flush pending descriptor writebacks to memory */
4245 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4246 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4248 /* execute the writes immediately */
4249 e1e_flush();
4251 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4252 * write is successful
4254 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4255 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4257 /* execute the writes immediately */
4258 e1e_flush();
4261 static void e1000e_update_stats(struct e1000_adapter *adapter);
4264 * e1000e_down - quiesce the device and optionally reset the hardware
4265 * @adapter: board private structure
4266 * @reset: boolean flag to reset the hardware or not
4268 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4270 struct net_device *netdev = adapter->netdev;
4271 struct e1000_hw *hw = &adapter->hw;
4272 u32 tctl, rctl;
4274 /* signal that we're down so the interrupt handler does not
4275 * reschedule our watchdog timer
4277 set_bit(__E1000_DOWN, &adapter->state);
4279 netif_carrier_off(netdev);
4281 /* disable receives in the hardware */
4282 rctl = er32(RCTL);
4283 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4284 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4285 /* flush and sleep below */
4287 netif_stop_queue(netdev);
4289 /* disable transmits in the hardware */
4290 tctl = er32(TCTL);
4291 tctl &= ~E1000_TCTL_EN;
4292 ew32(TCTL, tctl);
4294 /* flush both disables and wait for them to finish */
4295 e1e_flush();
4296 usleep_range(10000, 11000);
4298 e1000_irq_disable(adapter);
4300 napi_synchronize(&adapter->napi);
4302 del_timer_sync(&adapter->watchdog_timer);
4303 del_timer_sync(&adapter->phy_info_timer);
4305 spin_lock(&adapter->stats64_lock);
4306 e1000e_update_stats(adapter);
4307 spin_unlock(&adapter->stats64_lock);
4309 e1000e_flush_descriptors(adapter);
4311 adapter->link_speed = 0;
4312 adapter->link_duplex = 0;
4314 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4315 if ((hw->mac.type >= e1000_pch2lan) &&
4316 (adapter->netdev->mtu > ETH_DATA_LEN) &&
4317 e1000_lv_jumbo_workaround_ich8lan(hw, false))
4318 e_dbg("failed to disable jumbo frame workaround mode\n");
4320 if (!pci_channel_offline(adapter->pdev)) {
4321 if (reset)
4322 e1000e_reset(adapter);
4323 else if (hw->mac.type >= e1000_pch_spt)
4324 e1000_flush_desc_rings(adapter);
4326 e1000_clean_tx_ring(adapter->tx_ring);
4327 e1000_clean_rx_ring(adapter->rx_ring);
4330 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4332 might_sleep();
4333 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4334 usleep_range(1000, 1100);
4335 e1000e_down(adapter, true);
4336 e1000e_up(adapter);
4337 clear_bit(__E1000_RESETTING, &adapter->state);
4341 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4342 * @hw: pointer to the HW structure
4343 * @systim: PHC time value read, sanitized and returned
4344 * @sts: structure to hold system time before and after reading SYSTIML,
4345 * may be NULL
4347 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4348 * check to see that the time is incrementing at a reasonable
4349 * rate and is a multiple of incvalue.
4351 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4352 struct ptp_system_timestamp *sts)
4354 u64 time_delta, rem, temp;
4355 u64 systim_next;
4356 u32 incvalue;
4357 int i;
4359 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4360 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4361 /* latch SYSTIMH on read of SYSTIML */
4362 ptp_read_system_prets(sts);
4363 systim_next = (u64)er32(SYSTIML);
4364 ptp_read_system_postts(sts);
4365 systim_next |= (u64)er32(SYSTIMH) << 32;
4367 time_delta = systim_next - systim;
4368 temp = time_delta;
4369 /* VMWare users have seen incvalue of zero, don't div / 0 */
4370 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4372 systim = systim_next;
4374 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4375 break;
4378 return systim;
4382 * e1000e_read_systim - read SYSTIM register
4383 * @adapter: board private structure
4384 * @sts: structure which will contain system time before and after reading
4385 * SYSTIML, may be NULL
4387 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4388 struct ptp_system_timestamp *sts)
4390 struct e1000_hw *hw = &adapter->hw;
4391 u32 systimel, systimel_2, systimeh;
4392 u64 systim;
4393 /* SYSTIMH latching upon SYSTIML read does not work well.
4394 * This means that if SYSTIML overflows after we read it but before
4395 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4396 * will experience a huge non linear increment in the systime value
4397 * to fix that we test for overflow and if true, we re-read systime.
4399 ptp_read_system_prets(sts);
4400 systimel = er32(SYSTIML);
4401 ptp_read_system_postts(sts);
4402 systimeh = er32(SYSTIMH);
4403 /* Is systimel is so large that overflow is possible? */
4404 if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4405 ptp_read_system_prets(sts);
4406 systimel_2 = er32(SYSTIML);
4407 ptp_read_system_postts(sts);
4408 if (systimel > systimel_2) {
4409 /* There was an overflow, read again SYSTIMH, and use
4410 * systimel_2
4412 systimeh = er32(SYSTIMH);
4413 systimel = systimel_2;
4416 systim = (u64)systimel;
4417 systim |= (u64)systimeh << 32;
4419 if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4420 systim = e1000e_sanitize_systim(hw, systim, sts);
4422 return systim;
4426 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4427 * @cc: cyclecounter structure
4429 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4431 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4432 cc);
4434 return e1000e_read_systim(adapter, NULL);
4438 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4439 * @adapter: board private structure to initialize
4441 * e1000_sw_init initializes the Adapter private data structure.
4442 * Fields are initialized based on PCI device information and
4443 * OS network device settings (MTU size).
4445 static int e1000_sw_init(struct e1000_adapter *adapter)
4447 struct net_device *netdev = adapter->netdev;
4449 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4450 adapter->rx_ps_bsize0 = 128;
4451 adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4452 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4453 adapter->tx_ring_count = E1000_DEFAULT_TXD;
4454 adapter->rx_ring_count = E1000_DEFAULT_RXD;
4456 spin_lock_init(&adapter->stats64_lock);
4458 e1000e_set_interrupt_capability(adapter);
4460 if (e1000_alloc_queues(adapter))
4461 return -ENOMEM;
4463 /* Setup hardware time stamping cyclecounter */
4464 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4465 adapter->cc.read = e1000e_cyclecounter_read;
4466 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4467 adapter->cc.mult = 1;
4468 /* cc.shift set in e1000e_get_base_tininca() */
4470 spin_lock_init(&adapter->systim_lock);
4471 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4474 /* Explicitly disable IRQ since the NIC can be in any state. */
4475 e1000_irq_disable(adapter);
4477 set_bit(__E1000_DOWN, &adapter->state);
4478 return 0;
4482 * e1000_intr_msi_test - Interrupt Handler
4483 * @irq: interrupt number
4484 * @data: pointer to a network interface device structure
4486 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4488 struct net_device *netdev = data;
4489 struct e1000_adapter *adapter = netdev_priv(netdev);
4490 struct e1000_hw *hw = &adapter->hw;
4491 u32 icr = er32(ICR);
4493 e_dbg("icr is %08X\n", icr);
4494 if (icr & E1000_ICR_RXSEQ) {
4495 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4496 /* Force memory writes to complete before acknowledging the
4497 * interrupt is handled.
4499 wmb();
4502 return IRQ_HANDLED;
4506 * e1000_test_msi_interrupt - Returns 0 for successful test
4507 * @adapter: board private struct
4509 * code flow taken from tg3.c
4511 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4513 struct net_device *netdev = adapter->netdev;
4514 struct e1000_hw *hw = &adapter->hw;
4515 int err;
4517 /* poll_enable hasn't been called yet, so don't need disable */
4518 /* clear any pending events */
4519 er32(ICR);
4521 /* free the real vector and request a test handler */
4522 e1000_free_irq(adapter);
4523 e1000e_reset_interrupt_capability(adapter);
4525 /* Assume that the test fails, if it succeeds then the test
4526 * MSI irq handler will unset this flag
4528 adapter->flags |= FLAG_MSI_TEST_FAILED;
4530 err = pci_enable_msi(adapter->pdev);
4531 if (err)
4532 goto msi_test_failed;
4534 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4535 netdev->name, netdev);
4536 if (err) {
4537 pci_disable_msi(adapter->pdev);
4538 goto msi_test_failed;
4541 /* Force memory writes to complete before enabling and firing an
4542 * interrupt.
4544 wmb();
4546 e1000_irq_enable(adapter);
4548 /* fire an unusual interrupt on the test handler */
4549 ew32(ICS, E1000_ICS_RXSEQ);
4550 e1e_flush();
4551 msleep(100);
4553 e1000_irq_disable(adapter);
4555 rmb(); /* read flags after interrupt has been fired */
4557 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4558 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4559 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4560 } else {
4561 e_dbg("MSI interrupt test succeeded!\n");
4564 free_irq(adapter->pdev->irq, netdev);
4565 pci_disable_msi(adapter->pdev);
4567 msi_test_failed:
4568 e1000e_set_interrupt_capability(adapter);
4569 return e1000_request_irq(adapter);
4573 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4574 * @adapter: board private struct
4576 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4578 static int e1000_test_msi(struct e1000_adapter *adapter)
4580 int err;
4581 u16 pci_cmd;
4583 if (!(adapter->flags & FLAG_MSI_ENABLED))
4584 return 0;
4586 /* disable SERR in case the MSI write causes a master abort */
4587 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4588 if (pci_cmd & PCI_COMMAND_SERR)
4589 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4590 pci_cmd & ~PCI_COMMAND_SERR);
4592 err = e1000_test_msi_interrupt(adapter);
4594 /* re-enable SERR */
4595 if (pci_cmd & PCI_COMMAND_SERR) {
4596 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4597 pci_cmd |= PCI_COMMAND_SERR;
4598 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4601 return err;
4605 * e1000e_open - Called when a network interface is made active
4606 * @netdev: network interface device structure
4608 * Returns 0 on success, negative value on failure
4610 * The open entry point is called when a network interface is made
4611 * active by the system (IFF_UP). At this point all resources needed
4612 * for transmit and receive operations are allocated, the interrupt
4613 * handler is registered with the OS, the watchdog timer is started,
4614 * and the stack is notified that the interface is ready.
4616 int e1000e_open(struct net_device *netdev)
4618 struct e1000_adapter *adapter = netdev_priv(netdev);
4619 struct e1000_hw *hw = &adapter->hw;
4620 struct pci_dev *pdev = adapter->pdev;
4621 int err;
4623 /* disallow open during test */
4624 if (test_bit(__E1000_TESTING, &adapter->state))
4625 return -EBUSY;
4627 pm_runtime_get_sync(&pdev->dev);
4629 netif_carrier_off(netdev);
4630 netif_stop_queue(netdev);
4632 /* allocate transmit descriptors */
4633 err = e1000e_setup_tx_resources(adapter->tx_ring);
4634 if (err)
4635 goto err_setup_tx;
4637 /* allocate receive descriptors */
4638 err = e1000e_setup_rx_resources(adapter->rx_ring);
4639 if (err)
4640 goto err_setup_rx;
4642 /* If AMT is enabled, let the firmware know that the network
4643 * interface is now open and reset the part to a known state.
4645 if (adapter->flags & FLAG_HAS_AMT) {
4646 e1000e_get_hw_control(adapter);
4647 e1000e_reset(adapter);
4650 e1000e_power_up_phy(adapter);
4652 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4653 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4654 e1000_update_mng_vlan(adapter);
4656 /* DMA latency requirement to workaround jumbo issue */
4657 cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4659 /* before we allocate an interrupt, we must be ready to handle it.
4660 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4661 * as soon as we call pci_request_irq, so we have to setup our
4662 * clean_rx handler before we do so.
4664 e1000_configure(adapter);
4666 err = e1000_request_irq(adapter);
4667 if (err)
4668 goto err_req_irq;
4670 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4671 * ignore e1000e MSI messages, which means we need to test our MSI
4672 * interrupt now
4674 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4675 err = e1000_test_msi(adapter);
4676 if (err) {
4677 e_err("Interrupt allocation failed\n");
4678 goto err_req_irq;
4682 /* From here on the code is the same as e1000e_up() */
4683 clear_bit(__E1000_DOWN, &adapter->state);
4685 napi_enable(&adapter->napi);
4687 e1000_irq_enable(adapter);
4689 adapter->tx_hang_recheck = false;
4691 hw->mac.get_link_status = true;
4692 pm_runtime_put(&pdev->dev);
4694 e1000e_trigger_lsc(adapter);
4696 return 0;
4698 err_req_irq:
4699 cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4700 e1000e_release_hw_control(adapter);
4701 e1000_power_down_phy(adapter);
4702 e1000e_free_rx_resources(adapter->rx_ring);
4703 err_setup_rx:
4704 e1000e_free_tx_resources(adapter->tx_ring);
4705 err_setup_tx:
4706 e1000e_reset(adapter);
4707 pm_runtime_put_sync(&pdev->dev);
4709 return err;
4713 * e1000e_close - Disables a network interface
4714 * @netdev: network interface device structure
4716 * Returns 0, this is not allowed to fail
4718 * The close entry point is called when an interface is de-activated
4719 * by the OS. The hardware is still under the drivers control, but
4720 * needs to be disabled. A global MAC reset is issued to stop the
4721 * hardware, and all transmit and receive resources are freed.
4723 int e1000e_close(struct net_device *netdev)
4725 struct e1000_adapter *adapter = netdev_priv(netdev);
4726 struct pci_dev *pdev = adapter->pdev;
4727 int count = E1000_CHECK_RESET_COUNT;
4729 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4730 usleep_range(10000, 11000);
4732 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4734 pm_runtime_get_sync(&pdev->dev);
4736 if (netif_device_present(netdev)) {
4737 e1000e_down(adapter, true);
4738 e1000_free_irq(adapter);
4740 /* Link status message must follow this format */
4741 netdev_info(netdev, "NIC Link is Down\n");
4744 napi_disable(&adapter->napi);
4746 e1000e_free_tx_resources(adapter->tx_ring);
4747 e1000e_free_rx_resources(adapter->rx_ring);
4749 /* kill manageability vlan ID if supported, but not if a vlan with
4750 * the same ID is registered on the host OS (let 8021q kill it)
4752 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4753 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4754 adapter->mng_vlan_id);
4756 /* If AMT is enabled, let the firmware know that the network
4757 * interface is now closed
4759 if ((adapter->flags & FLAG_HAS_AMT) &&
4760 !test_bit(__E1000_TESTING, &adapter->state))
4761 e1000e_release_hw_control(adapter);
4763 cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4765 pm_runtime_put_sync(&pdev->dev);
4767 return 0;
4771 * e1000_set_mac - Change the Ethernet Address of the NIC
4772 * @netdev: network interface device structure
4773 * @p: pointer to an address structure
4775 * Returns 0 on success, negative on failure
4777 static int e1000_set_mac(struct net_device *netdev, void *p)
4779 struct e1000_adapter *adapter = netdev_priv(netdev);
4780 struct e1000_hw *hw = &adapter->hw;
4781 struct sockaddr *addr = p;
4783 if (!is_valid_ether_addr(addr->sa_data))
4784 return -EADDRNOTAVAIL;
4786 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4787 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4789 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4791 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4792 /* activate the work around */
4793 e1000e_set_laa_state_82571(&adapter->hw, 1);
4795 /* Hold a copy of the LAA in RAR[14] This is done so that
4796 * between the time RAR[0] gets clobbered and the time it
4797 * gets fixed (in e1000_watchdog), the actual LAA is in one
4798 * of the RARs and no incoming packets directed to this port
4799 * are dropped. Eventually the LAA will be in RAR[0] and
4800 * RAR[14]
4802 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4803 adapter->hw.mac.rar_entry_count - 1);
4806 return 0;
4810 * e1000e_update_phy_task - work thread to update phy
4811 * @work: pointer to our work struct
4813 * this worker thread exists because we must acquire a
4814 * semaphore to read the phy, which we could msleep while
4815 * waiting for it, and we can't msleep in a timer.
4817 static void e1000e_update_phy_task(struct work_struct *work)
4819 struct e1000_adapter *adapter = container_of(work,
4820 struct e1000_adapter,
4821 update_phy_task);
4822 struct e1000_hw *hw = &adapter->hw;
4824 if (test_bit(__E1000_DOWN, &adapter->state))
4825 return;
4827 e1000_get_phy_info(hw);
4829 /* Enable EEE on 82579 after link up */
4830 if (hw->phy.type >= e1000_phy_82579)
4831 e1000_set_eee_pchlan(hw);
4835 * e1000_update_phy_info - timre call-back to update PHY info
4836 * @t: pointer to timer_list containing private info adapter
4838 * Need to wait a few seconds after link up to get diagnostic information from
4839 * the phy
4841 static void e1000_update_phy_info(struct timer_list *t)
4843 struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4845 if (test_bit(__E1000_DOWN, &adapter->state))
4846 return;
4848 schedule_work(&adapter->update_phy_task);
4852 * e1000e_update_phy_stats - Update the PHY statistics counters
4853 * @adapter: board private structure
4855 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4857 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4859 struct e1000_hw *hw = &adapter->hw;
4860 s32 ret_val;
4861 u16 phy_data;
4863 ret_val = hw->phy.ops.acquire(hw);
4864 if (ret_val)
4865 return;
4867 /* A page set is expensive so check if already on desired page.
4868 * If not, set to the page with the PHY status registers.
4870 hw->phy.addr = 1;
4871 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4872 &phy_data);
4873 if (ret_val)
4874 goto release;
4875 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4876 ret_val = hw->phy.ops.set_page(hw,
4877 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4878 if (ret_val)
4879 goto release;
4882 /* Single Collision Count */
4883 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4884 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4885 if (!ret_val)
4886 adapter->stats.scc += phy_data;
4888 /* Excessive Collision Count */
4889 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4890 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4891 if (!ret_val)
4892 adapter->stats.ecol += phy_data;
4894 /* Multiple Collision Count */
4895 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4896 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4897 if (!ret_val)
4898 adapter->stats.mcc += phy_data;
4900 /* Late Collision Count */
4901 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4902 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4903 if (!ret_val)
4904 adapter->stats.latecol += phy_data;
4906 /* Collision Count - also used for adaptive IFS */
4907 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4908 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4909 if (!ret_val)
4910 hw->mac.collision_delta = phy_data;
4912 /* Defer Count */
4913 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4914 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4915 if (!ret_val)
4916 adapter->stats.dc += phy_data;
4918 /* Transmit with no CRS */
4919 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4920 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4921 if (!ret_val)
4922 adapter->stats.tncrs += phy_data;
4924 release:
4925 hw->phy.ops.release(hw);
4929 * e1000e_update_stats - Update the board statistics counters
4930 * @adapter: board private structure
4932 static void e1000e_update_stats(struct e1000_adapter *adapter)
4934 struct net_device *netdev = adapter->netdev;
4935 struct e1000_hw *hw = &adapter->hw;
4936 struct pci_dev *pdev = adapter->pdev;
4938 /* Prevent stats update while adapter is being reset, or if the pci
4939 * connection is down.
4941 if (adapter->link_speed == 0)
4942 return;
4943 if (pci_channel_offline(pdev))
4944 return;
4946 adapter->stats.crcerrs += er32(CRCERRS);
4947 adapter->stats.gprc += er32(GPRC);
4948 adapter->stats.gorc += er32(GORCL);
4949 er32(GORCH); /* Clear gorc */
4950 adapter->stats.bprc += er32(BPRC);
4951 adapter->stats.mprc += er32(MPRC);
4952 adapter->stats.roc += er32(ROC);
4954 adapter->stats.mpc += er32(MPC);
4956 /* Half-duplex statistics */
4957 if (adapter->link_duplex == HALF_DUPLEX) {
4958 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4959 e1000e_update_phy_stats(adapter);
4960 } else {
4961 adapter->stats.scc += er32(SCC);
4962 adapter->stats.ecol += er32(ECOL);
4963 adapter->stats.mcc += er32(MCC);
4964 adapter->stats.latecol += er32(LATECOL);
4965 adapter->stats.dc += er32(DC);
4967 hw->mac.collision_delta = er32(COLC);
4969 if ((hw->mac.type != e1000_82574) &&
4970 (hw->mac.type != e1000_82583))
4971 adapter->stats.tncrs += er32(TNCRS);
4973 adapter->stats.colc += hw->mac.collision_delta;
4976 adapter->stats.xonrxc += er32(XONRXC);
4977 adapter->stats.xontxc += er32(XONTXC);
4978 adapter->stats.xoffrxc += er32(XOFFRXC);
4979 adapter->stats.xofftxc += er32(XOFFTXC);
4980 adapter->stats.gptc += er32(GPTC);
4981 adapter->stats.gotc += er32(GOTCL);
4982 er32(GOTCH); /* Clear gotc */
4983 adapter->stats.rnbc += er32(RNBC);
4984 adapter->stats.ruc += er32(RUC);
4986 adapter->stats.mptc += er32(MPTC);
4987 adapter->stats.bptc += er32(BPTC);
4989 /* used for adaptive IFS */
4991 hw->mac.tx_packet_delta = er32(TPT);
4992 adapter->stats.tpt += hw->mac.tx_packet_delta;
4994 adapter->stats.algnerrc += er32(ALGNERRC);
4995 adapter->stats.rxerrc += er32(RXERRC);
4996 adapter->stats.cexterr += er32(CEXTERR);
4997 adapter->stats.tsctc += er32(TSCTC);
4998 adapter->stats.tsctfc += er32(TSCTFC);
5000 /* Fill out the OS statistics structure */
5001 netdev->stats.multicast = adapter->stats.mprc;
5002 netdev->stats.collisions = adapter->stats.colc;
5004 /* Rx Errors */
5006 /* RLEC on some newer hardware can be incorrect so build
5007 * our own version based on RUC and ROC
5009 netdev->stats.rx_errors = adapter->stats.rxerrc +
5010 adapter->stats.crcerrs + adapter->stats.algnerrc +
5011 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5012 netdev->stats.rx_length_errors = adapter->stats.ruc +
5013 adapter->stats.roc;
5014 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5015 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5016 netdev->stats.rx_missed_errors = adapter->stats.mpc;
5018 /* Tx Errors */
5019 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5020 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5021 netdev->stats.tx_window_errors = adapter->stats.latecol;
5022 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5024 /* Tx Dropped needs to be maintained elsewhere */
5026 /* Management Stats */
5027 adapter->stats.mgptc += er32(MGTPTC);
5028 adapter->stats.mgprc += er32(MGTPRC);
5029 adapter->stats.mgpdc += er32(MGTPDC);
5031 /* Correctable ECC Errors */
5032 if (hw->mac.type >= e1000_pch_lpt) {
5033 u32 pbeccsts = er32(PBECCSTS);
5035 adapter->corr_errors +=
5036 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5037 adapter->uncorr_errors +=
5038 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5039 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5044 * e1000_phy_read_status - Update the PHY register status snapshot
5045 * @adapter: board private structure
5047 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5049 struct e1000_hw *hw = &adapter->hw;
5050 struct e1000_phy_regs *phy = &adapter->phy_regs;
5052 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5053 (er32(STATUS) & E1000_STATUS_LU) &&
5054 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5055 int ret_val;
5057 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5058 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5059 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5060 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5061 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5062 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5063 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5064 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5065 if (ret_val)
5066 e_warn("Error reading PHY register\n");
5067 } else {
5068 /* Do not read PHY registers if link is not up
5069 * Set values to typical power-on defaults
5071 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5072 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5073 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5074 BMSR_ERCAP);
5075 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5076 ADVERTISE_ALL | ADVERTISE_CSMA);
5077 phy->lpa = 0;
5078 phy->expansion = EXPANSION_ENABLENPAGE;
5079 phy->ctrl1000 = ADVERTISE_1000FULL;
5080 phy->stat1000 = 0;
5081 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5085 static void e1000_print_link_info(struct e1000_adapter *adapter)
5087 struct e1000_hw *hw = &adapter->hw;
5088 u32 ctrl = er32(CTRL);
5090 /* Link status message must follow this format for user tools */
5091 netdev_info(adapter->netdev,
5092 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5093 adapter->link_speed,
5094 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5095 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5096 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5097 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5100 static bool e1000e_has_link(struct e1000_adapter *adapter)
5102 struct e1000_hw *hw = &adapter->hw;
5103 bool link_active = false;
5104 s32 ret_val = 0;
5106 /* get_link_status is set on LSC (link status) interrupt or
5107 * Rx sequence error interrupt. get_link_status will stay
5108 * true until the check_for_link establishes link
5109 * for copper adapters ONLY
5111 switch (hw->phy.media_type) {
5112 case e1000_media_type_copper:
5113 if (hw->mac.get_link_status) {
5114 ret_val = hw->mac.ops.check_for_link(hw);
5115 link_active = !hw->mac.get_link_status;
5116 } else {
5117 link_active = true;
5119 break;
5120 case e1000_media_type_fiber:
5121 ret_val = hw->mac.ops.check_for_link(hw);
5122 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5123 break;
5124 case e1000_media_type_internal_serdes:
5125 ret_val = hw->mac.ops.check_for_link(hw);
5126 link_active = hw->mac.serdes_has_link;
5127 break;
5128 default:
5129 case e1000_media_type_unknown:
5130 break;
5133 if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5134 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5135 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5136 e_info("Gigabit has been disabled, downgrading speed\n");
5139 return link_active;
5142 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5144 /* make sure the receive unit is started */
5145 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5146 (adapter->flags & FLAG_RESTART_NOW)) {
5147 struct e1000_hw *hw = &adapter->hw;
5148 u32 rctl = er32(RCTL);
5150 ew32(RCTL, rctl | E1000_RCTL_EN);
5151 adapter->flags &= ~FLAG_RESTART_NOW;
5155 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5157 struct e1000_hw *hw = &adapter->hw;
5159 /* With 82574 controllers, PHY needs to be checked periodically
5160 * for hung state and reset, if two calls return true
5162 if (e1000_check_phy_82574(hw))
5163 adapter->phy_hang_count++;
5164 else
5165 adapter->phy_hang_count = 0;
5167 if (adapter->phy_hang_count > 1) {
5168 adapter->phy_hang_count = 0;
5169 e_dbg("PHY appears hung - resetting\n");
5170 schedule_work(&adapter->reset_task);
5175 * e1000_watchdog - Timer Call-back
5176 * @t: pointer to timer_list containing private info adapter
5178 static void e1000_watchdog(struct timer_list *t)
5180 struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5182 /* Do the rest outside of interrupt context */
5183 schedule_work(&adapter->watchdog_task);
5185 /* TODO: make this use queue_delayed_work() */
5188 static void e1000_watchdog_task(struct work_struct *work)
5190 struct e1000_adapter *adapter = container_of(work,
5191 struct e1000_adapter,
5192 watchdog_task);
5193 struct net_device *netdev = adapter->netdev;
5194 struct e1000_mac_info *mac = &adapter->hw.mac;
5195 struct e1000_phy_info *phy = &adapter->hw.phy;
5196 struct e1000_ring *tx_ring = adapter->tx_ring;
5197 u32 dmoff_exit_timeout = 100, tries = 0;
5198 struct e1000_hw *hw = &adapter->hw;
5199 u32 link, tctl, pcim_state;
5201 if (test_bit(__E1000_DOWN, &adapter->state))
5202 return;
5204 link = e1000e_has_link(adapter);
5205 if ((netif_carrier_ok(netdev)) && link) {
5206 /* Cancel scheduled suspend requests. */
5207 pm_runtime_resume(netdev->dev.parent);
5209 e1000e_enable_receives(adapter);
5210 goto link_up;
5213 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5214 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5215 e1000_update_mng_vlan(adapter);
5217 if (link) {
5218 if (!netif_carrier_ok(netdev)) {
5219 bool txb2b = true;
5221 /* Cancel scheduled suspend requests. */
5222 pm_runtime_resume(netdev->dev.parent);
5224 /* Checking if MAC is in DMoff state*/
5225 pcim_state = er32(STATUS);
5226 while (pcim_state & E1000_STATUS_PCIM_STATE) {
5227 if (tries++ == dmoff_exit_timeout) {
5228 e_dbg("Error in exiting dmoff\n");
5229 break;
5231 usleep_range(10000, 20000);
5232 pcim_state = er32(STATUS);
5234 /* Checking if MAC exited DMoff state */
5235 if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5236 e1000_phy_hw_reset(&adapter->hw);
5239 /* update snapshot of PHY registers on LSC */
5240 e1000_phy_read_status(adapter);
5241 mac->ops.get_link_up_info(&adapter->hw,
5242 &adapter->link_speed,
5243 &adapter->link_duplex);
5244 e1000_print_link_info(adapter);
5246 /* check if SmartSpeed worked */
5247 e1000e_check_downshift(hw);
5248 if (phy->speed_downgraded)
5249 netdev_warn(netdev,
5250 "Link Speed was downgraded by SmartSpeed\n");
5252 /* On supported PHYs, check for duplex mismatch only
5253 * if link has autonegotiated at 10/100 half
5255 if ((hw->phy.type == e1000_phy_igp_3 ||
5256 hw->phy.type == e1000_phy_bm) &&
5257 hw->mac.autoneg &&
5258 (adapter->link_speed == SPEED_10 ||
5259 adapter->link_speed == SPEED_100) &&
5260 (adapter->link_duplex == HALF_DUPLEX)) {
5261 u16 autoneg_exp;
5263 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5265 if (!(autoneg_exp & EXPANSION_NWAY))
5266 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
5269 /* adjust timeout factor according to speed/duplex */
5270 adapter->tx_timeout_factor = 1;
5271 switch (adapter->link_speed) {
5272 case SPEED_10:
5273 txb2b = false;
5274 adapter->tx_timeout_factor = 16;
5275 break;
5276 case SPEED_100:
5277 txb2b = false;
5278 adapter->tx_timeout_factor = 10;
5279 break;
5282 /* workaround: re-program speed mode bit after
5283 * link-up event
5285 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5286 !txb2b) {
5287 u32 tarc0;
5289 tarc0 = er32(TARC(0));
5290 tarc0 &= ~SPEED_MODE_BIT;
5291 ew32(TARC(0), tarc0);
5294 /* disable TSO for pcie and 10/100 speeds, to avoid
5295 * some hardware issues
5297 if (!(adapter->flags & FLAG_TSO_FORCE)) {
5298 switch (adapter->link_speed) {
5299 case SPEED_10:
5300 case SPEED_100:
5301 e_info("10/100 speed: disabling TSO\n");
5302 netdev->features &= ~NETIF_F_TSO;
5303 netdev->features &= ~NETIF_F_TSO6;
5304 break;
5305 case SPEED_1000:
5306 netdev->features |= NETIF_F_TSO;
5307 netdev->features |= NETIF_F_TSO6;
5308 break;
5309 default:
5310 /* oops */
5311 break;
5313 if (hw->mac.type == e1000_pch_spt) {
5314 netdev->features &= ~NETIF_F_TSO;
5315 netdev->features &= ~NETIF_F_TSO6;
5319 /* enable transmits in the hardware, need to do this
5320 * after setting TARC(0)
5322 tctl = er32(TCTL);
5323 tctl |= E1000_TCTL_EN;
5324 ew32(TCTL, tctl);
5326 /* Perform any post-link-up configuration before
5327 * reporting link up.
5329 if (phy->ops.cfg_on_link_up)
5330 phy->ops.cfg_on_link_up(hw);
5332 netif_wake_queue(netdev);
5333 netif_carrier_on(netdev);
5335 if (!test_bit(__E1000_DOWN, &adapter->state))
5336 mod_timer(&adapter->phy_info_timer,
5337 round_jiffies(jiffies + 2 * HZ));
5339 } else {
5340 if (netif_carrier_ok(netdev)) {
5341 adapter->link_speed = 0;
5342 adapter->link_duplex = 0;
5343 /* Link status message must follow this format */
5344 netdev_info(netdev, "NIC Link is Down\n");
5345 netif_carrier_off(netdev);
5346 netif_stop_queue(netdev);
5347 if (!test_bit(__E1000_DOWN, &adapter->state))
5348 mod_timer(&adapter->phy_info_timer,
5349 round_jiffies(jiffies + 2 * HZ));
5351 /* 8000ES2LAN requires a Rx packet buffer work-around
5352 * on link down event; reset the controller to flush
5353 * the Rx packet buffer.
5355 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5356 adapter->flags |= FLAG_RESTART_NOW;
5357 else
5358 pm_schedule_suspend(netdev->dev.parent,
5359 LINK_TIMEOUT);
5363 link_up:
5364 spin_lock(&adapter->stats64_lock);
5365 e1000e_update_stats(adapter);
5367 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5368 adapter->tpt_old = adapter->stats.tpt;
5369 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5370 adapter->colc_old = adapter->stats.colc;
5372 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5373 adapter->gorc_old = adapter->stats.gorc;
5374 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5375 adapter->gotc_old = adapter->stats.gotc;
5376 spin_unlock(&adapter->stats64_lock);
5378 /* If the link is lost the controller stops DMA, but
5379 * if there is queued Tx work it cannot be done. So
5380 * reset the controller to flush the Tx packet buffers.
5382 if (!netif_carrier_ok(netdev) &&
5383 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5384 adapter->flags |= FLAG_RESTART_NOW;
5386 /* If reset is necessary, do it outside of interrupt context. */
5387 if (adapter->flags & FLAG_RESTART_NOW) {
5388 schedule_work(&adapter->reset_task);
5389 /* return immediately since reset is imminent */
5390 return;
5393 e1000e_update_adaptive(&adapter->hw);
5395 /* Simple mode for Interrupt Throttle Rate (ITR) */
5396 if (adapter->itr_setting == 4) {
5397 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5398 * Total asymmetrical Tx or Rx gets ITR=8000;
5399 * everyone else is between 2000-8000.
5401 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5402 u32 dif = (adapter->gotc > adapter->gorc ?
5403 adapter->gotc - adapter->gorc :
5404 adapter->gorc - adapter->gotc) / 10000;
5405 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5407 e1000e_write_itr(adapter, itr);
5410 /* Cause software interrupt to ensure Rx ring is cleaned */
5411 if (adapter->msix_entries)
5412 ew32(ICS, adapter->rx_ring->ims_val);
5413 else
5414 ew32(ICS, E1000_ICS_RXDMT0);
5416 /* flush pending descriptors to memory before detecting Tx hang */
5417 e1000e_flush_descriptors(adapter);
5419 /* Force detection of hung controller every watchdog period */
5420 adapter->detect_tx_hung = true;
5422 /* With 82571 controllers, LAA may be overwritten due to controller
5423 * reset from the other port. Set the appropriate LAA in RAR[0]
5425 if (e1000e_get_laa_state_82571(hw))
5426 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5428 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5429 e1000e_check_82574_phy_workaround(adapter);
5431 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5432 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5433 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5434 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5435 er32(RXSTMPH);
5436 adapter->rx_hwtstamp_cleared++;
5437 } else {
5438 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5442 /* Reset the timer */
5443 if (!test_bit(__E1000_DOWN, &adapter->state))
5444 mod_timer(&adapter->watchdog_timer,
5445 round_jiffies(jiffies + 2 * HZ));
5448 #define E1000_TX_FLAGS_CSUM 0x00000001
5449 #define E1000_TX_FLAGS_VLAN 0x00000002
5450 #define E1000_TX_FLAGS_TSO 0x00000004
5451 #define E1000_TX_FLAGS_IPV4 0x00000008
5452 #define E1000_TX_FLAGS_NO_FCS 0x00000010
5453 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5454 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5455 #define E1000_TX_FLAGS_VLAN_SHIFT 16
5457 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5458 __be16 protocol)
5460 struct e1000_context_desc *context_desc;
5461 struct e1000_buffer *buffer_info;
5462 unsigned int i;
5463 u32 cmd_length = 0;
5464 u16 ipcse = 0, mss;
5465 u8 ipcss, ipcso, tucss, tucso, hdr_len;
5466 int err;
5468 if (!skb_is_gso(skb))
5469 return 0;
5471 err = skb_cow_head(skb, 0);
5472 if (err < 0)
5473 return err;
5475 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5476 mss = skb_shinfo(skb)->gso_size;
5477 if (protocol == htons(ETH_P_IP)) {
5478 struct iphdr *iph = ip_hdr(skb);
5479 iph->tot_len = 0;
5480 iph->check = 0;
5481 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5482 0, IPPROTO_TCP, 0);
5483 cmd_length = E1000_TXD_CMD_IP;
5484 ipcse = skb_transport_offset(skb) - 1;
5485 } else if (skb_is_gso_v6(skb)) {
5486 tcp_v6_gso_csum_prep(skb);
5487 ipcse = 0;
5489 ipcss = skb_network_offset(skb);
5490 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5491 tucss = skb_transport_offset(skb);
5492 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5494 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5495 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5497 i = tx_ring->next_to_use;
5498 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5499 buffer_info = &tx_ring->buffer_info[i];
5501 context_desc->lower_setup.ip_fields.ipcss = ipcss;
5502 context_desc->lower_setup.ip_fields.ipcso = ipcso;
5503 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5504 context_desc->upper_setup.tcp_fields.tucss = tucss;
5505 context_desc->upper_setup.tcp_fields.tucso = tucso;
5506 context_desc->upper_setup.tcp_fields.tucse = 0;
5507 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5508 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5509 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5511 buffer_info->time_stamp = jiffies;
5512 buffer_info->next_to_watch = i;
5514 i++;
5515 if (i == tx_ring->count)
5516 i = 0;
5517 tx_ring->next_to_use = i;
5519 return 1;
5522 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5523 __be16 protocol)
5525 struct e1000_adapter *adapter = tx_ring->adapter;
5526 struct e1000_context_desc *context_desc;
5527 struct e1000_buffer *buffer_info;
5528 unsigned int i;
5529 u8 css;
5530 u32 cmd_len = E1000_TXD_CMD_DEXT;
5532 if (skb->ip_summed != CHECKSUM_PARTIAL)
5533 return false;
5535 switch (protocol) {
5536 case cpu_to_be16(ETH_P_IP):
5537 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5538 cmd_len |= E1000_TXD_CMD_TCP;
5539 break;
5540 case cpu_to_be16(ETH_P_IPV6):
5541 /* XXX not handling all IPV6 headers */
5542 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5543 cmd_len |= E1000_TXD_CMD_TCP;
5544 break;
5545 default:
5546 if (unlikely(net_ratelimit()))
5547 e_warn("checksum_partial proto=%x!\n",
5548 be16_to_cpu(protocol));
5549 break;
5552 css = skb_checksum_start_offset(skb);
5554 i = tx_ring->next_to_use;
5555 buffer_info = &tx_ring->buffer_info[i];
5556 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5558 context_desc->lower_setup.ip_config = 0;
5559 context_desc->upper_setup.tcp_fields.tucss = css;
5560 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5561 context_desc->upper_setup.tcp_fields.tucse = 0;
5562 context_desc->tcp_seg_setup.data = 0;
5563 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5565 buffer_info->time_stamp = jiffies;
5566 buffer_info->next_to_watch = i;
5568 i++;
5569 if (i == tx_ring->count)
5570 i = 0;
5571 tx_ring->next_to_use = i;
5573 return true;
5576 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5577 unsigned int first, unsigned int max_per_txd,
5578 unsigned int nr_frags)
5580 struct e1000_adapter *adapter = tx_ring->adapter;
5581 struct pci_dev *pdev = adapter->pdev;
5582 struct e1000_buffer *buffer_info;
5583 unsigned int len = skb_headlen(skb);
5584 unsigned int offset = 0, size, count = 0, i;
5585 unsigned int f, bytecount, segs;
5587 i = tx_ring->next_to_use;
5589 while (len) {
5590 buffer_info = &tx_ring->buffer_info[i];
5591 size = min(len, max_per_txd);
5593 buffer_info->length = size;
5594 buffer_info->time_stamp = jiffies;
5595 buffer_info->next_to_watch = i;
5596 buffer_info->dma = dma_map_single(&pdev->dev,
5597 skb->data + offset,
5598 size, DMA_TO_DEVICE);
5599 buffer_info->mapped_as_page = false;
5600 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5601 goto dma_error;
5603 len -= size;
5604 offset += size;
5605 count++;
5607 if (len) {
5608 i++;
5609 if (i == tx_ring->count)
5610 i = 0;
5614 for (f = 0; f < nr_frags; f++) {
5615 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5617 len = skb_frag_size(frag);
5618 offset = 0;
5620 while (len) {
5621 i++;
5622 if (i == tx_ring->count)
5623 i = 0;
5625 buffer_info = &tx_ring->buffer_info[i];
5626 size = min(len, max_per_txd);
5628 buffer_info->length = size;
5629 buffer_info->time_stamp = jiffies;
5630 buffer_info->next_to_watch = i;
5631 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5632 offset, size,
5633 DMA_TO_DEVICE);
5634 buffer_info->mapped_as_page = true;
5635 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5636 goto dma_error;
5638 len -= size;
5639 offset += size;
5640 count++;
5644 segs = skb_shinfo(skb)->gso_segs ? : 1;
5645 /* multiply data chunks by size of headers */
5646 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5648 tx_ring->buffer_info[i].skb = skb;
5649 tx_ring->buffer_info[i].segs = segs;
5650 tx_ring->buffer_info[i].bytecount = bytecount;
5651 tx_ring->buffer_info[first].next_to_watch = i;
5653 return count;
5655 dma_error:
5656 dev_err(&pdev->dev, "Tx DMA map failed\n");
5657 buffer_info->dma = 0;
5658 if (count)
5659 count--;
5661 while (count--) {
5662 if (i == 0)
5663 i += tx_ring->count;
5664 i--;
5665 buffer_info = &tx_ring->buffer_info[i];
5666 e1000_put_txbuf(tx_ring, buffer_info, true);
5669 return 0;
5672 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5674 struct e1000_adapter *adapter = tx_ring->adapter;
5675 struct e1000_tx_desc *tx_desc = NULL;
5676 struct e1000_buffer *buffer_info;
5677 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5678 unsigned int i;
5680 if (tx_flags & E1000_TX_FLAGS_TSO) {
5681 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5682 E1000_TXD_CMD_TSE;
5683 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5685 if (tx_flags & E1000_TX_FLAGS_IPV4)
5686 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5689 if (tx_flags & E1000_TX_FLAGS_CSUM) {
5690 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5691 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5694 if (tx_flags & E1000_TX_FLAGS_VLAN) {
5695 txd_lower |= E1000_TXD_CMD_VLE;
5696 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5699 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5700 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5702 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5703 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5704 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5707 i = tx_ring->next_to_use;
5709 do {
5710 buffer_info = &tx_ring->buffer_info[i];
5711 tx_desc = E1000_TX_DESC(*tx_ring, i);
5712 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5713 tx_desc->lower.data = cpu_to_le32(txd_lower |
5714 buffer_info->length);
5715 tx_desc->upper.data = cpu_to_le32(txd_upper);
5717 i++;
5718 if (i == tx_ring->count)
5719 i = 0;
5720 } while (--count > 0);
5722 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5724 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5725 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5726 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5728 /* Force memory writes to complete before letting h/w
5729 * know there are new descriptors to fetch. (Only
5730 * applicable for weak-ordered memory model archs,
5731 * such as IA-64).
5733 wmb();
5735 tx_ring->next_to_use = i;
5738 #define MINIMUM_DHCP_PACKET_SIZE 282
5739 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5740 struct sk_buff *skb)
5742 struct e1000_hw *hw = &adapter->hw;
5743 u16 length, offset;
5745 if (skb_vlan_tag_present(skb) &&
5746 !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5747 (adapter->hw.mng_cookie.status &
5748 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5749 return 0;
5751 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5752 return 0;
5754 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5755 return 0;
5758 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5759 struct udphdr *udp;
5761 if (ip->protocol != IPPROTO_UDP)
5762 return 0;
5764 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5765 if (ntohs(udp->dest) != 67)
5766 return 0;
5768 offset = (u8 *)udp + 8 - skb->data;
5769 length = skb->len - offset;
5770 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5773 return 0;
5776 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5778 struct e1000_adapter *adapter = tx_ring->adapter;
5780 netif_stop_queue(adapter->netdev);
5781 /* Herbert's original patch had:
5782 * smp_mb__after_netif_stop_queue();
5783 * but since that doesn't exist yet, just open code it.
5785 smp_mb();
5787 /* We need to check again in a case another CPU has just
5788 * made room available.
5790 if (e1000_desc_unused(tx_ring) < size)
5791 return -EBUSY;
5793 /* A reprieve! */
5794 netif_start_queue(adapter->netdev);
5795 ++adapter->restart_queue;
5796 return 0;
5799 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5801 BUG_ON(size > tx_ring->count);
5803 if (e1000_desc_unused(tx_ring) >= size)
5804 return 0;
5805 return __e1000_maybe_stop_tx(tx_ring, size);
5808 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5809 struct net_device *netdev)
5811 struct e1000_adapter *adapter = netdev_priv(netdev);
5812 struct e1000_ring *tx_ring = adapter->tx_ring;
5813 unsigned int first;
5814 unsigned int tx_flags = 0;
5815 unsigned int len = skb_headlen(skb);
5816 unsigned int nr_frags;
5817 unsigned int mss;
5818 int count = 0;
5819 int tso;
5820 unsigned int f;
5821 __be16 protocol = vlan_get_protocol(skb);
5823 if (test_bit(__E1000_DOWN, &adapter->state)) {
5824 dev_kfree_skb_any(skb);
5825 return NETDEV_TX_OK;
5828 if (skb->len <= 0) {
5829 dev_kfree_skb_any(skb);
5830 return NETDEV_TX_OK;
5833 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5834 * pad skb in order to meet this minimum size requirement
5836 if (skb_put_padto(skb, 17))
5837 return NETDEV_TX_OK;
5839 mss = skb_shinfo(skb)->gso_size;
5840 if (mss) {
5841 u8 hdr_len;
5843 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5844 * points to just header, pull a few bytes of payload from
5845 * frags into skb->data
5847 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5848 /* we do this workaround for ES2LAN, but it is un-necessary,
5849 * avoiding it could save a lot of cycles
5851 if (skb->data_len && (hdr_len == len)) {
5852 unsigned int pull_size;
5854 pull_size = min_t(unsigned int, 4, skb->data_len);
5855 if (!__pskb_pull_tail(skb, pull_size)) {
5856 e_err("__pskb_pull_tail failed.\n");
5857 dev_kfree_skb_any(skb);
5858 return NETDEV_TX_OK;
5860 len = skb_headlen(skb);
5864 /* reserve a descriptor for the offload context */
5865 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5866 count++;
5867 count++;
5869 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5871 nr_frags = skb_shinfo(skb)->nr_frags;
5872 for (f = 0; f < nr_frags; f++)
5873 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5874 adapter->tx_fifo_limit);
5876 if (adapter->hw.mac.tx_pkt_filtering)
5877 e1000_transfer_dhcp_info(adapter, skb);
5879 /* need: count + 2 desc gap to keep tail from touching
5880 * head, otherwise try next time
5882 if (e1000_maybe_stop_tx(tx_ring, count + 2))
5883 return NETDEV_TX_BUSY;
5885 if (skb_vlan_tag_present(skb)) {
5886 tx_flags |= E1000_TX_FLAGS_VLAN;
5887 tx_flags |= (skb_vlan_tag_get(skb) <<
5888 E1000_TX_FLAGS_VLAN_SHIFT);
5891 first = tx_ring->next_to_use;
5893 tso = e1000_tso(tx_ring, skb, protocol);
5894 if (tso < 0) {
5895 dev_kfree_skb_any(skb);
5896 return NETDEV_TX_OK;
5899 if (tso)
5900 tx_flags |= E1000_TX_FLAGS_TSO;
5901 else if (e1000_tx_csum(tx_ring, skb, protocol))
5902 tx_flags |= E1000_TX_FLAGS_CSUM;
5904 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5905 * 82571 hardware supports TSO capabilities for IPv6 as well...
5906 * no longer assume, we must.
5908 if (protocol == htons(ETH_P_IP))
5909 tx_flags |= E1000_TX_FLAGS_IPV4;
5911 if (unlikely(skb->no_fcs))
5912 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5914 /* if count is 0 then mapping error has occurred */
5915 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5916 nr_frags);
5917 if (count) {
5918 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5919 (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5920 if (!adapter->tx_hwtstamp_skb) {
5921 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5922 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5923 adapter->tx_hwtstamp_skb = skb_get(skb);
5924 adapter->tx_hwtstamp_start = jiffies;
5925 schedule_work(&adapter->tx_hwtstamp_work);
5926 } else {
5927 adapter->tx_hwtstamp_skipped++;
5931 skb_tx_timestamp(skb);
5933 netdev_sent_queue(netdev, skb->len);
5934 e1000_tx_queue(tx_ring, tx_flags, count);
5935 /* Make sure there is space in the ring for the next send. */
5936 e1000_maybe_stop_tx(tx_ring,
5937 (MAX_SKB_FRAGS *
5938 DIV_ROUND_UP(PAGE_SIZE,
5939 adapter->tx_fifo_limit) + 2));
5941 if (!netdev_xmit_more() ||
5942 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5943 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5944 e1000e_update_tdt_wa(tx_ring,
5945 tx_ring->next_to_use);
5946 else
5947 writel(tx_ring->next_to_use, tx_ring->tail);
5949 } else {
5950 dev_kfree_skb_any(skb);
5951 tx_ring->buffer_info[first].time_stamp = 0;
5952 tx_ring->next_to_use = first;
5955 return NETDEV_TX_OK;
5959 * e1000_tx_timeout - Respond to a Tx Hang
5960 * @netdev: network interface device structure
5961 * @txqueue: index of the hung queue (unused)
5963 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5965 struct e1000_adapter *adapter = netdev_priv(netdev);
5967 /* Do the reset outside of interrupt context */
5968 adapter->tx_timeout_count++;
5969 schedule_work(&adapter->reset_task);
5972 static void e1000_reset_task(struct work_struct *work)
5974 struct e1000_adapter *adapter;
5975 adapter = container_of(work, struct e1000_adapter, reset_task);
5977 /* don't run the task if already down */
5978 if (test_bit(__E1000_DOWN, &adapter->state))
5979 return;
5981 if (!(adapter->flags & FLAG_RESTART_NOW)) {
5982 e1000e_dump(adapter);
5983 e_err("Reset adapter unexpectedly\n");
5985 e1000e_reinit_locked(adapter);
5989 * e1000_get_stats64 - Get System Network Statistics
5990 * @netdev: network interface device structure
5991 * @stats: rtnl_link_stats64 pointer
5993 * Returns the address of the device statistics structure.
5995 void e1000e_get_stats64(struct net_device *netdev,
5996 struct rtnl_link_stats64 *stats)
5998 struct e1000_adapter *adapter = netdev_priv(netdev);
6000 spin_lock(&adapter->stats64_lock);
6001 e1000e_update_stats(adapter);
6002 /* Fill out the OS statistics structure */
6003 stats->rx_bytes = adapter->stats.gorc;
6004 stats->rx_packets = adapter->stats.gprc;
6005 stats->tx_bytes = adapter->stats.gotc;
6006 stats->tx_packets = adapter->stats.gptc;
6007 stats->multicast = adapter->stats.mprc;
6008 stats->collisions = adapter->stats.colc;
6010 /* Rx Errors */
6012 /* RLEC on some newer hardware can be incorrect so build
6013 * our own version based on RUC and ROC
6015 stats->rx_errors = adapter->stats.rxerrc +
6016 adapter->stats.crcerrs + adapter->stats.algnerrc +
6017 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
6018 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
6019 stats->rx_crc_errors = adapter->stats.crcerrs;
6020 stats->rx_frame_errors = adapter->stats.algnerrc;
6021 stats->rx_missed_errors = adapter->stats.mpc;
6023 /* Tx Errors */
6024 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6025 stats->tx_aborted_errors = adapter->stats.ecol;
6026 stats->tx_window_errors = adapter->stats.latecol;
6027 stats->tx_carrier_errors = adapter->stats.tncrs;
6029 /* Tx Dropped needs to be maintained elsewhere */
6031 spin_unlock(&adapter->stats64_lock);
6035 * e1000_change_mtu - Change the Maximum Transfer Unit
6036 * @netdev: network interface device structure
6037 * @new_mtu: new value for maximum frame size
6039 * Returns 0 on success, negative on failure
6041 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6043 struct e1000_adapter *adapter = netdev_priv(netdev);
6044 int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6046 /* Jumbo frame support */
6047 if ((new_mtu > ETH_DATA_LEN) &&
6048 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6049 e_err("Jumbo Frames not supported.\n");
6050 return -EINVAL;
6053 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6054 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6055 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6056 (new_mtu > ETH_DATA_LEN)) {
6057 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6058 return -EINVAL;
6061 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6062 usleep_range(1000, 1100);
6063 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6064 adapter->max_frame_size = max_frame;
6065 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6066 netdev->mtu, new_mtu);
6067 netdev->mtu = new_mtu;
6069 pm_runtime_get_sync(netdev->dev.parent);
6071 if (netif_running(netdev))
6072 e1000e_down(adapter, true);
6074 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6075 * means we reserve 2 more, this pushes us to allocate from the next
6076 * larger slab size.
6077 * i.e. RXBUFFER_2048 --> size-4096 slab
6078 * However with the new *_jumbo_rx* routines, jumbo receives will use
6079 * fragmented skbs
6082 if (max_frame <= 2048)
6083 adapter->rx_buffer_len = 2048;
6084 else
6085 adapter->rx_buffer_len = 4096;
6087 /* adjust allocation if LPE protects us, and we aren't using SBP */
6088 if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6089 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6091 if (netif_running(netdev))
6092 e1000e_up(adapter);
6093 else
6094 e1000e_reset(adapter);
6096 pm_runtime_put_sync(netdev->dev.parent);
6098 clear_bit(__E1000_RESETTING, &adapter->state);
6100 return 0;
6103 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6104 int cmd)
6106 struct e1000_adapter *adapter = netdev_priv(netdev);
6107 struct mii_ioctl_data *data = if_mii(ifr);
6109 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6110 return -EOPNOTSUPP;
6112 switch (cmd) {
6113 case SIOCGMIIPHY:
6114 data->phy_id = adapter->hw.phy.addr;
6115 break;
6116 case SIOCGMIIREG:
6117 e1000_phy_read_status(adapter);
6119 switch (data->reg_num & 0x1F) {
6120 case MII_BMCR:
6121 data->val_out = adapter->phy_regs.bmcr;
6122 break;
6123 case MII_BMSR:
6124 data->val_out = adapter->phy_regs.bmsr;
6125 break;
6126 case MII_PHYSID1:
6127 data->val_out = (adapter->hw.phy.id >> 16);
6128 break;
6129 case MII_PHYSID2:
6130 data->val_out = (adapter->hw.phy.id & 0xFFFF);
6131 break;
6132 case MII_ADVERTISE:
6133 data->val_out = adapter->phy_regs.advertise;
6134 break;
6135 case MII_LPA:
6136 data->val_out = adapter->phy_regs.lpa;
6137 break;
6138 case MII_EXPANSION:
6139 data->val_out = adapter->phy_regs.expansion;
6140 break;
6141 case MII_CTRL1000:
6142 data->val_out = adapter->phy_regs.ctrl1000;
6143 break;
6144 case MII_STAT1000:
6145 data->val_out = adapter->phy_regs.stat1000;
6146 break;
6147 case MII_ESTATUS:
6148 data->val_out = adapter->phy_regs.estatus;
6149 break;
6150 default:
6151 return -EIO;
6153 break;
6154 case SIOCSMIIREG:
6155 default:
6156 return -EOPNOTSUPP;
6158 return 0;
6162 * e1000e_hwtstamp_ioctl - control hardware time stamping
6163 * @netdev: network interface device structure
6164 * @ifr: interface request
6166 * Outgoing time stamping can be enabled and disabled. Play nice and
6167 * disable it when requested, although it shouldn't cause any overhead
6168 * when no packet needs it. At most one packet in the queue may be
6169 * marked for time stamping, otherwise it would be impossible to tell
6170 * for sure to which packet the hardware time stamp belongs.
6172 * Incoming time stamping has to be configured via the hardware filters.
6173 * Not all combinations are supported, in particular event type has to be
6174 * specified. Matching the kind of event packet is not supported, with the
6175 * exception of "all V2 events regardless of level 2 or 4".
6177 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6179 struct e1000_adapter *adapter = netdev_priv(netdev);
6180 struct hwtstamp_config config;
6181 int ret_val;
6183 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6184 return -EFAULT;
6186 ret_val = e1000e_config_hwtstamp(adapter, &config);
6187 if (ret_val)
6188 return ret_val;
6190 switch (config.rx_filter) {
6191 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6192 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6193 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6194 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6195 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6196 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6197 /* With V2 type filters which specify a Sync or Delay Request,
6198 * Path Delay Request/Response messages are also time stamped
6199 * by hardware so notify the caller the requested packets plus
6200 * some others are time stamped.
6202 config.rx_filter = HWTSTAMP_FILTER_SOME;
6203 break;
6204 default:
6205 break;
6208 return copy_to_user(ifr->ifr_data, &config,
6209 sizeof(config)) ? -EFAULT : 0;
6212 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6214 struct e1000_adapter *adapter = netdev_priv(netdev);
6216 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6217 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6220 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6222 switch (cmd) {
6223 case SIOCGMIIPHY:
6224 case SIOCGMIIREG:
6225 case SIOCSMIIREG:
6226 return e1000_mii_ioctl(netdev, ifr, cmd);
6227 case SIOCSHWTSTAMP:
6228 return e1000e_hwtstamp_set(netdev, ifr);
6229 case SIOCGHWTSTAMP:
6230 return e1000e_hwtstamp_get(netdev, ifr);
6231 default:
6232 return -EOPNOTSUPP;
6236 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6238 struct e1000_hw *hw = &adapter->hw;
6239 u32 i, mac_reg, wuc;
6240 u16 phy_reg, wuc_enable;
6241 int retval;
6243 /* copy MAC RARs to PHY RARs */
6244 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6246 retval = hw->phy.ops.acquire(hw);
6247 if (retval) {
6248 e_err("Could not acquire PHY\n");
6249 return retval;
6252 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6253 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6254 if (retval)
6255 goto release;
6257 /* copy MAC MTA to PHY MTA - only needed for pchlan */
6258 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6259 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6260 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6261 (u16)(mac_reg & 0xFFFF));
6262 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6263 (u16)((mac_reg >> 16) & 0xFFFF));
6266 /* configure PHY Rx Control register */
6267 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6268 mac_reg = er32(RCTL);
6269 if (mac_reg & E1000_RCTL_UPE)
6270 phy_reg |= BM_RCTL_UPE;
6271 if (mac_reg & E1000_RCTL_MPE)
6272 phy_reg |= BM_RCTL_MPE;
6273 phy_reg &= ~(BM_RCTL_MO_MASK);
6274 if (mac_reg & E1000_RCTL_MO_3)
6275 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6276 << BM_RCTL_MO_SHIFT);
6277 if (mac_reg & E1000_RCTL_BAM)
6278 phy_reg |= BM_RCTL_BAM;
6279 if (mac_reg & E1000_RCTL_PMCF)
6280 phy_reg |= BM_RCTL_PMCF;
6281 mac_reg = er32(CTRL);
6282 if (mac_reg & E1000_CTRL_RFCE)
6283 phy_reg |= BM_RCTL_RFCE;
6284 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6286 wuc = E1000_WUC_PME_EN;
6287 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6288 wuc |= E1000_WUC_APME;
6290 /* enable PHY wakeup in MAC register */
6291 ew32(WUFC, wufc);
6292 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6293 E1000_WUC_PME_STATUS | wuc));
6295 /* configure and enable PHY wakeup in PHY registers */
6296 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6297 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6299 /* activate PHY wakeup */
6300 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6301 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6302 if (retval)
6303 e_err("Could not set PHY Host Wakeup bit\n");
6304 release:
6305 hw->phy.ops.release(hw);
6307 return retval;
6310 static void e1000e_flush_lpic(struct pci_dev *pdev)
6312 struct net_device *netdev = pci_get_drvdata(pdev);
6313 struct e1000_adapter *adapter = netdev_priv(netdev);
6314 struct e1000_hw *hw = &adapter->hw;
6315 u32 ret_val;
6317 pm_runtime_get_sync(netdev->dev.parent);
6319 ret_val = hw->phy.ops.acquire(hw);
6320 if (ret_val)
6321 goto fl_out;
6323 pr_info("EEE TX LPI TIMER: %08X\n",
6324 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6326 hw->phy.ops.release(hw);
6328 fl_out:
6329 pm_runtime_put_sync(netdev->dev.parent);
6332 /* S0ix implementation */
6333 static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6335 struct e1000_hw *hw = &adapter->hw;
6336 u32 mac_data;
6337 u16 phy_data;
6339 /* Disable the periodic inband message,
6340 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6342 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6343 phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6344 phy_data |= BIT(10);
6345 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6347 /* Make sure we don't exit K1 every time a new packet arrives
6348 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6350 e1e_rphy(hw, I217_CGFREG, &phy_data);
6351 phy_data |= BIT(5);
6352 e1e_wphy(hw, I217_CGFREG, phy_data);
6354 /* Change the MAC/PHY interface to SMBus
6355 * Force the SMBus in PHY page769_23[0] = 1
6356 * Force the SMBus in MAC CTRL_EXT[11] = 1
6358 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6359 phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6360 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6361 mac_data = er32(CTRL_EXT);
6362 mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6363 ew32(CTRL_EXT, mac_data);
6365 /* DFT control: PHY bit: page769_20[0] = 1
6366 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6368 e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6369 phy_data |= BIT(0);
6370 e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6372 mac_data = er32(EXTCNF_CTRL);
6373 mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6374 ew32(EXTCNF_CTRL, mac_data);
6376 /* Check MAC Tx/Rx packet buffer pointers.
6377 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6378 * pending traffic indication that would prevent power gating.
6380 mac_data = er32(TDFH);
6381 if (mac_data)
6382 ew32(TDFH, 0);
6383 mac_data = er32(TDFT);
6384 if (mac_data)
6385 ew32(TDFT, 0);
6386 mac_data = er32(TDFHS);
6387 if (mac_data)
6388 ew32(TDFHS, 0);
6389 mac_data = er32(TDFTS);
6390 if (mac_data)
6391 ew32(TDFTS, 0);
6392 mac_data = er32(TDFPC);
6393 if (mac_data)
6394 ew32(TDFPC, 0);
6395 mac_data = er32(RDFH);
6396 if (mac_data)
6397 ew32(RDFH, 0);
6398 mac_data = er32(RDFT);
6399 if (mac_data)
6400 ew32(RDFT, 0);
6401 mac_data = er32(RDFHS);
6402 if (mac_data)
6403 ew32(RDFHS, 0);
6404 mac_data = er32(RDFTS);
6405 if (mac_data)
6406 ew32(RDFTS, 0);
6407 mac_data = er32(RDFPC);
6408 if (mac_data)
6409 ew32(RDFPC, 0);
6411 /* Enable the Dynamic Power Gating in the MAC */
6412 mac_data = er32(FEXTNVM7);
6413 mac_data |= BIT(22);
6414 ew32(FEXTNVM7, mac_data);
6416 /* Disable the time synchronization clock */
6417 mac_data = er32(FEXTNVM7);
6418 mac_data |= BIT(31);
6419 mac_data &= ~BIT(0);
6420 ew32(FEXTNVM7, mac_data);
6422 /* Dynamic Power Gating Enable */
6423 mac_data = er32(CTRL_EXT);
6424 mac_data |= BIT(3);
6425 ew32(CTRL_EXT, mac_data);
6427 /* Disable disconnected cable conditioning for Power Gating */
6428 mac_data = er32(DPGFR);
6429 mac_data |= BIT(2);
6430 ew32(DPGFR, mac_data);
6432 /* Don't wake from dynamic Power Gating with clock request */
6433 mac_data = er32(FEXTNVM12);
6434 mac_data |= BIT(12);
6435 ew32(FEXTNVM12, mac_data);
6437 /* Ungate PGCB clock */
6438 mac_data = er32(FEXTNVM9);
6439 mac_data &= ~BIT(28);
6440 ew32(FEXTNVM9, mac_data);
6442 /* Enable K1 off to enable mPHY Power Gating */
6443 mac_data = er32(FEXTNVM6);
6444 mac_data |= BIT(31);
6445 ew32(FEXTNVM6, mac_data);
6447 /* Enable mPHY power gating for any link and speed */
6448 mac_data = er32(FEXTNVM8);
6449 mac_data |= BIT(9);
6450 ew32(FEXTNVM8, mac_data);
6452 /* Enable the Dynamic Clock Gating in the DMA and MAC */
6453 mac_data = er32(CTRL_EXT);
6454 mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6455 ew32(CTRL_EXT, mac_data);
6457 /* No MAC DPG gating SLP_S0 in modern standby
6458 * Switch the logic of the lanphypc to use PMC counter
6460 mac_data = er32(FEXTNVM5);
6461 mac_data |= BIT(7);
6462 ew32(FEXTNVM5, mac_data);
6465 static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6467 struct e1000_hw *hw = &adapter->hw;
6468 u32 mac_data;
6469 u16 phy_data;
6471 /* Disable the Dynamic Power Gating in the MAC */
6472 mac_data = er32(FEXTNVM7);
6473 mac_data &= 0xFFBFFFFF;
6474 ew32(FEXTNVM7, mac_data);
6476 /* Enable the time synchronization clock */
6477 mac_data = er32(FEXTNVM7);
6478 mac_data |= BIT(0);
6479 ew32(FEXTNVM7, mac_data);
6481 /* Disable mPHY power gating for any link and speed */
6482 mac_data = er32(FEXTNVM8);
6483 mac_data &= ~BIT(9);
6484 ew32(FEXTNVM8, mac_data);
6486 /* Disable K1 off */
6487 mac_data = er32(FEXTNVM6);
6488 mac_data &= ~BIT(31);
6489 ew32(FEXTNVM6, mac_data);
6491 /* Disable Ungate PGCB clock */
6492 mac_data = er32(FEXTNVM9);
6493 mac_data |= BIT(28);
6494 ew32(FEXTNVM9, mac_data);
6496 /* Cancel not waking from dynamic
6497 * Power Gating with clock request
6499 mac_data = er32(FEXTNVM12);
6500 mac_data &= ~BIT(12);
6501 ew32(FEXTNVM12, mac_data);
6503 /* Cancel disable disconnected cable conditioning
6504 * for Power Gating
6506 mac_data = er32(DPGFR);
6507 mac_data &= ~BIT(2);
6508 ew32(DPGFR, mac_data);
6510 /* Disable Dynamic Power Gating */
6511 mac_data = er32(CTRL_EXT);
6512 mac_data &= 0xFFFFFFF7;
6513 ew32(CTRL_EXT, mac_data);
6515 /* Disable the Dynamic Clock Gating in the DMA and MAC */
6516 mac_data = er32(CTRL_EXT);
6517 mac_data &= 0xFFF7FFFF;
6518 ew32(CTRL_EXT, mac_data);
6520 /* Revert the lanphypc logic to use the internal Gbe counter
6521 * and not the PMC counter
6523 mac_data = er32(FEXTNVM5);
6524 mac_data &= 0xFFFFFF7F;
6525 ew32(FEXTNVM5, mac_data);
6527 /* Enable the periodic inband message,
6528 * Request PCIe clock in K1 page770_17[10:9] =01b
6530 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6531 phy_data &= 0xFBFF;
6532 phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6533 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6535 /* Return back configuration
6536 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6538 e1e_rphy(hw, I217_CGFREG, &phy_data);
6539 phy_data &= 0xFFDF;
6540 e1e_wphy(hw, I217_CGFREG, phy_data);
6542 /* Change the MAC/PHY interface to Kumeran
6543 * Unforce the SMBus in PHY page769_23[0] = 0
6544 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6546 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6547 phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6548 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6549 mac_data = er32(CTRL_EXT);
6550 mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6551 ew32(CTRL_EXT, mac_data);
6554 static int e1000e_pm_freeze(struct device *dev)
6556 struct net_device *netdev = dev_get_drvdata(dev);
6557 struct e1000_adapter *adapter = netdev_priv(netdev);
6558 bool present;
6560 rtnl_lock();
6562 present = netif_device_present(netdev);
6563 netif_device_detach(netdev);
6565 if (present && netif_running(netdev)) {
6566 int count = E1000_CHECK_RESET_COUNT;
6568 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6569 usleep_range(10000, 11000);
6571 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6573 /* Quiesce the device without resetting the hardware */
6574 e1000e_down(adapter, false);
6575 e1000_free_irq(adapter);
6577 rtnl_unlock();
6579 e1000e_reset_interrupt_capability(adapter);
6581 /* Allow time for pending master requests to run */
6582 e1000e_disable_pcie_master(&adapter->hw);
6584 return 0;
6587 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6589 struct net_device *netdev = pci_get_drvdata(pdev);
6590 struct e1000_adapter *adapter = netdev_priv(netdev);
6591 struct e1000_hw *hw = &adapter->hw;
6592 u32 ctrl, ctrl_ext, rctl, status, wufc;
6593 int retval = 0;
6595 /* Runtime suspend should only enable wakeup for link changes */
6596 if (runtime)
6597 wufc = E1000_WUFC_LNKC;
6598 else if (device_may_wakeup(&pdev->dev))
6599 wufc = adapter->wol;
6600 else
6601 wufc = 0;
6603 status = er32(STATUS);
6604 if (status & E1000_STATUS_LU)
6605 wufc &= ~E1000_WUFC_LNKC;
6607 if (wufc) {
6608 e1000_setup_rctl(adapter);
6609 e1000e_set_rx_mode(netdev);
6611 /* turn on all-multi mode if wake on multicast is enabled */
6612 if (wufc & E1000_WUFC_MC) {
6613 rctl = er32(RCTL);
6614 rctl |= E1000_RCTL_MPE;
6615 ew32(RCTL, rctl);
6618 ctrl = er32(CTRL);
6619 ctrl |= E1000_CTRL_ADVD3WUC;
6620 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6621 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6622 ew32(CTRL, ctrl);
6624 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6625 adapter->hw.phy.media_type ==
6626 e1000_media_type_internal_serdes) {
6627 /* keep the laser running in D3 */
6628 ctrl_ext = er32(CTRL_EXT);
6629 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6630 ew32(CTRL_EXT, ctrl_ext);
6633 if (!runtime)
6634 e1000e_power_up_phy(adapter);
6636 if (adapter->flags & FLAG_IS_ICH)
6637 e1000_suspend_workarounds_ich8lan(&adapter->hw);
6639 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6640 /* enable wakeup by the PHY */
6641 retval = e1000_init_phy_wakeup(adapter, wufc);
6642 if (retval)
6643 return retval;
6644 } else {
6645 /* enable wakeup by the MAC */
6646 ew32(WUFC, wufc);
6647 ew32(WUC, E1000_WUC_PME_EN);
6649 } else {
6650 ew32(WUC, 0);
6651 ew32(WUFC, 0);
6653 e1000_power_down_phy(adapter);
6656 if (adapter->hw.phy.type == e1000_phy_igp_3) {
6657 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6658 } else if (hw->mac.type >= e1000_pch_lpt) {
6659 if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6660 /* ULP does not support wake from unicast, multicast
6661 * or broadcast.
6663 retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6665 if (retval)
6666 return retval;
6669 /* Ensure that the appropriate bits are set in LPI_CTRL
6670 * for EEE in Sx
6672 if ((hw->phy.type >= e1000_phy_i217) &&
6673 adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6674 u16 lpi_ctrl = 0;
6676 retval = hw->phy.ops.acquire(hw);
6677 if (!retval) {
6678 retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6679 &lpi_ctrl);
6680 if (!retval) {
6681 if (adapter->eee_advert &
6682 hw->dev_spec.ich8lan.eee_lp_ability &
6683 I82579_EEE_100_SUPPORTED)
6684 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6685 if (adapter->eee_advert &
6686 hw->dev_spec.ich8lan.eee_lp_ability &
6687 I82579_EEE_1000_SUPPORTED)
6688 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6690 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6691 lpi_ctrl);
6694 hw->phy.ops.release(hw);
6697 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6698 * would have already happened in close and is redundant.
6700 e1000e_release_hw_control(adapter);
6702 pci_clear_master(pdev);
6704 /* The pci-e switch on some quad port adapters will report a
6705 * correctable error when the MAC transitions from D0 to D3. To
6706 * prevent this we need to mask off the correctable errors on the
6707 * downstream port of the pci-e switch.
6709 * We don't have the associated upstream bridge while assigning
6710 * the PCI device into guest. For example, the KVM on power is
6711 * one of the cases.
6713 if (adapter->flags & FLAG_IS_QUAD_PORT) {
6714 struct pci_dev *us_dev = pdev->bus->self;
6715 u16 devctl;
6717 if (!us_dev)
6718 return 0;
6720 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6721 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6722 (devctl & ~PCI_EXP_DEVCTL_CERE));
6724 pci_save_state(pdev);
6725 pci_prepare_to_sleep(pdev);
6727 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6730 return 0;
6734 * __e1000e_disable_aspm - Disable ASPM states
6735 * @pdev: pointer to PCI device struct
6736 * @state: bit-mask of ASPM states to disable
6737 * @locked: indication if this context holds pci_bus_sem locked.
6739 * Some devices *must* have certain ASPM states disabled per hardware errata.
6741 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6743 struct pci_dev *parent = pdev->bus->self;
6744 u16 aspm_dis_mask = 0;
6745 u16 pdev_aspmc, parent_aspmc;
6747 switch (state) {
6748 case PCIE_LINK_STATE_L0S:
6749 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6750 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6751 fallthrough; /* can't have L1 without L0s */
6752 case PCIE_LINK_STATE_L1:
6753 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6754 break;
6755 default:
6756 return;
6759 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6760 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6762 if (parent) {
6763 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6764 &parent_aspmc);
6765 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6768 /* Nothing to do if the ASPM states to be disabled already are */
6769 if (!(pdev_aspmc & aspm_dis_mask) &&
6770 (!parent || !(parent_aspmc & aspm_dis_mask)))
6771 return;
6773 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6774 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6775 "L0s" : "",
6776 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6777 "L1" : "");
6779 #ifdef CONFIG_PCIEASPM
6780 if (locked)
6781 pci_disable_link_state_locked(pdev, state);
6782 else
6783 pci_disable_link_state(pdev, state);
6785 /* Double-check ASPM control. If not disabled by the above, the
6786 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6787 * not enabled); override by writing PCI config space directly.
6789 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6790 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6792 if (!(aspm_dis_mask & pdev_aspmc))
6793 return;
6794 #endif
6796 /* Both device and parent should have the same ASPM setting.
6797 * Disable ASPM in downstream component first and then upstream.
6799 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6801 if (parent)
6802 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6803 aspm_dis_mask);
6807 * e1000e_disable_aspm - Disable ASPM states.
6808 * @pdev: pointer to PCI device struct
6809 * @state: bit-mask of ASPM states to disable
6811 * This function acquires the pci_bus_sem!
6812 * Some devices *must* have certain ASPM states disabled per hardware errata.
6814 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6816 __e1000e_disable_aspm(pdev, state, 0);
6820 * e1000e_disable_aspm_locked Disable ASPM states.
6821 * @pdev: pointer to PCI device struct
6822 * @state: bit-mask of ASPM states to disable
6824 * This function must be called with pci_bus_sem acquired!
6825 * Some devices *must* have certain ASPM states disabled per hardware errata.
6827 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6829 __e1000e_disable_aspm(pdev, state, 1);
6832 static int e1000e_pm_thaw(struct device *dev)
6834 struct net_device *netdev = dev_get_drvdata(dev);
6835 struct e1000_adapter *adapter = netdev_priv(netdev);
6836 int rc = 0;
6838 e1000e_set_interrupt_capability(adapter);
6840 rtnl_lock();
6841 if (netif_running(netdev)) {
6842 rc = e1000_request_irq(adapter);
6843 if (rc)
6844 goto err_irq;
6846 e1000e_up(adapter);
6849 netif_device_attach(netdev);
6850 err_irq:
6851 rtnl_unlock();
6853 return rc;
6856 static int __e1000_resume(struct pci_dev *pdev)
6858 struct net_device *netdev = pci_get_drvdata(pdev);
6859 struct e1000_adapter *adapter = netdev_priv(netdev);
6860 struct e1000_hw *hw = &adapter->hw;
6861 u16 aspm_disable_flag = 0;
6863 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6864 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6865 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6866 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6867 if (aspm_disable_flag)
6868 e1000e_disable_aspm(pdev, aspm_disable_flag);
6870 pci_set_master(pdev);
6872 if (hw->mac.type >= e1000_pch2lan)
6873 e1000_resume_workarounds_pchlan(&adapter->hw);
6875 e1000e_power_up_phy(adapter);
6877 /* report the system wakeup cause from S3/S4 */
6878 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6879 u16 phy_data;
6881 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6882 if (phy_data) {
6883 e_info("PHY Wakeup cause - %s\n",
6884 phy_data & E1000_WUS_EX ? "Unicast Packet" :
6885 phy_data & E1000_WUS_MC ? "Multicast Packet" :
6886 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6887 phy_data & E1000_WUS_MAG ? "Magic Packet" :
6888 phy_data & E1000_WUS_LNKC ?
6889 "Link Status Change" : "other");
6891 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6892 } else {
6893 u32 wus = er32(WUS);
6895 if (wus) {
6896 e_info("MAC Wakeup cause - %s\n",
6897 wus & E1000_WUS_EX ? "Unicast Packet" :
6898 wus & E1000_WUS_MC ? "Multicast Packet" :
6899 wus & E1000_WUS_BC ? "Broadcast Packet" :
6900 wus & E1000_WUS_MAG ? "Magic Packet" :
6901 wus & E1000_WUS_LNKC ? "Link Status Change" :
6902 "other");
6904 ew32(WUS, ~0);
6907 e1000e_reset(adapter);
6909 e1000_init_manageability_pt(adapter);
6911 /* If the controller has AMT, do not set DRV_LOAD until the interface
6912 * is up. For all other cases, let the f/w know that the h/w is now
6913 * under the control of the driver.
6915 if (!(adapter->flags & FLAG_HAS_AMT))
6916 e1000e_get_hw_control(adapter);
6918 return 0;
6921 static __maybe_unused int e1000e_pm_suspend(struct device *dev)
6923 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6924 struct e1000_adapter *adapter = netdev_priv(netdev);
6925 struct pci_dev *pdev = to_pci_dev(dev);
6926 int rc;
6928 e1000e_flush_lpic(pdev);
6930 e1000e_pm_freeze(dev);
6932 rc = __e1000_shutdown(pdev, false);
6933 if (rc) {
6934 e1000e_pm_thaw(dev);
6935 } else {
6936 /* Introduce S0ix implementation */
6937 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6938 e1000e_s0ix_entry_flow(adapter);
6941 return rc;
6944 static __maybe_unused int e1000e_pm_resume(struct device *dev)
6946 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6947 struct e1000_adapter *adapter = netdev_priv(netdev);
6948 struct pci_dev *pdev = to_pci_dev(dev);
6949 int rc;
6951 /* Introduce S0ix implementation */
6952 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6953 e1000e_s0ix_exit_flow(adapter);
6955 rc = __e1000_resume(pdev);
6956 if (rc)
6957 return rc;
6959 return e1000e_pm_thaw(dev);
6962 static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
6964 struct net_device *netdev = dev_get_drvdata(dev);
6965 struct e1000_adapter *adapter = netdev_priv(netdev);
6966 u16 eee_lp;
6968 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6970 if (!e1000e_has_link(adapter)) {
6971 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6972 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6975 return -EBUSY;
6978 static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
6980 struct pci_dev *pdev = to_pci_dev(dev);
6981 struct net_device *netdev = pci_get_drvdata(pdev);
6982 struct e1000_adapter *adapter = netdev_priv(netdev);
6983 int rc;
6985 rc = __e1000_resume(pdev);
6986 if (rc)
6987 return rc;
6989 if (netdev->flags & IFF_UP)
6990 e1000e_up(adapter);
6992 return rc;
6995 static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
6997 struct pci_dev *pdev = to_pci_dev(dev);
6998 struct net_device *netdev = pci_get_drvdata(pdev);
6999 struct e1000_adapter *adapter = netdev_priv(netdev);
7001 if (netdev->flags & IFF_UP) {
7002 int count = E1000_CHECK_RESET_COUNT;
7004 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7005 usleep_range(10000, 11000);
7007 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7009 /* Down the device without resetting the hardware */
7010 e1000e_down(adapter, false);
7013 if (__e1000_shutdown(pdev, true)) {
7014 e1000e_pm_runtime_resume(dev);
7015 return -EBUSY;
7018 return 0;
7021 static void e1000_shutdown(struct pci_dev *pdev)
7023 e1000e_flush_lpic(pdev);
7025 e1000e_pm_freeze(&pdev->dev);
7027 __e1000_shutdown(pdev, false);
7030 #ifdef CONFIG_NET_POLL_CONTROLLER
7032 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7034 struct net_device *netdev = data;
7035 struct e1000_adapter *adapter = netdev_priv(netdev);
7037 if (adapter->msix_entries) {
7038 int vector, msix_irq;
7040 vector = 0;
7041 msix_irq = adapter->msix_entries[vector].vector;
7042 if (disable_hardirq(msix_irq))
7043 e1000_intr_msix_rx(msix_irq, netdev);
7044 enable_irq(msix_irq);
7046 vector++;
7047 msix_irq = adapter->msix_entries[vector].vector;
7048 if (disable_hardirq(msix_irq))
7049 e1000_intr_msix_tx(msix_irq, netdev);
7050 enable_irq(msix_irq);
7052 vector++;
7053 msix_irq = adapter->msix_entries[vector].vector;
7054 if (disable_hardirq(msix_irq))
7055 e1000_msix_other(msix_irq, netdev);
7056 enable_irq(msix_irq);
7059 return IRQ_HANDLED;
7063 * e1000_netpoll
7064 * @netdev: network interface device structure
7066 * Polling 'interrupt' - used by things like netconsole to send skbs
7067 * without having to re-enable interrupts. It's not called while
7068 * the interrupt routine is executing.
7070 static void e1000_netpoll(struct net_device *netdev)
7072 struct e1000_adapter *adapter = netdev_priv(netdev);
7074 switch (adapter->int_mode) {
7075 case E1000E_INT_MODE_MSIX:
7076 e1000_intr_msix(adapter->pdev->irq, netdev);
7077 break;
7078 case E1000E_INT_MODE_MSI:
7079 if (disable_hardirq(adapter->pdev->irq))
7080 e1000_intr_msi(adapter->pdev->irq, netdev);
7081 enable_irq(adapter->pdev->irq);
7082 break;
7083 default: /* E1000E_INT_MODE_LEGACY */
7084 if (disable_hardirq(adapter->pdev->irq))
7085 e1000_intr(adapter->pdev->irq, netdev);
7086 enable_irq(adapter->pdev->irq);
7087 break;
7090 #endif
7093 * e1000_io_error_detected - called when PCI error is detected
7094 * @pdev: Pointer to PCI device
7095 * @state: The current pci connection state
7097 * This function is called after a PCI bus error affecting
7098 * this device has been detected.
7100 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7101 pci_channel_state_t state)
7103 e1000e_pm_freeze(&pdev->dev);
7105 if (state == pci_channel_io_perm_failure)
7106 return PCI_ERS_RESULT_DISCONNECT;
7108 pci_disable_device(pdev);
7110 /* Request a slot slot reset. */
7111 return PCI_ERS_RESULT_NEED_RESET;
7115 * e1000_io_slot_reset - called after the pci bus has been reset.
7116 * @pdev: Pointer to PCI device
7118 * Restart the card from scratch, as if from a cold-boot. Implementation
7119 * resembles the first-half of the e1000e_pm_resume routine.
7121 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7123 struct net_device *netdev = pci_get_drvdata(pdev);
7124 struct e1000_adapter *adapter = netdev_priv(netdev);
7125 struct e1000_hw *hw = &adapter->hw;
7126 u16 aspm_disable_flag = 0;
7127 int err;
7128 pci_ers_result_t result;
7130 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7131 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7132 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7133 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7134 if (aspm_disable_flag)
7135 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7137 err = pci_enable_device_mem(pdev);
7138 if (err) {
7139 dev_err(&pdev->dev,
7140 "Cannot re-enable PCI device after reset.\n");
7141 result = PCI_ERS_RESULT_DISCONNECT;
7142 } else {
7143 pdev->state_saved = true;
7144 pci_restore_state(pdev);
7145 pci_set_master(pdev);
7147 pci_enable_wake(pdev, PCI_D3hot, 0);
7148 pci_enable_wake(pdev, PCI_D3cold, 0);
7150 e1000e_reset(adapter);
7151 ew32(WUS, ~0);
7152 result = PCI_ERS_RESULT_RECOVERED;
7155 return result;
7159 * e1000_io_resume - called when traffic can start flowing again.
7160 * @pdev: Pointer to PCI device
7162 * This callback is called when the error recovery driver tells us that
7163 * its OK to resume normal operation. Implementation resembles the
7164 * second-half of the e1000e_pm_resume routine.
7166 static void e1000_io_resume(struct pci_dev *pdev)
7168 struct net_device *netdev = pci_get_drvdata(pdev);
7169 struct e1000_adapter *adapter = netdev_priv(netdev);
7171 e1000_init_manageability_pt(adapter);
7173 e1000e_pm_thaw(&pdev->dev);
7175 /* If the controller has AMT, do not set DRV_LOAD until the interface
7176 * is up. For all other cases, let the f/w know that the h/w is now
7177 * under the control of the driver.
7179 if (!(adapter->flags & FLAG_HAS_AMT))
7180 e1000e_get_hw_control(adapter);
7183 static void e1000_print_device_info(struct e1000_adapter *adapter)
7185 struct e1000_hw *hw = &adapter->hw;
7186 struct net_device *netdev = adapter->netdev;
7187 u32 ret_val;
7188 u8 pba_str[E1000_PBANUM_LENGTH];
7190 /* print bus type/speed/width info */
7191 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7192 /* bus width */
7193 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7194 "Width x1"),
7195 /* MAC address */
7196 netdev->dev_addr);
7197 e_info("Intel(R) PRO/%s Network Connection\n",
7198 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7199 ret_val = e1000_read_pba_string_generic(hw, pba_str,
7200 E1000_PBANUM_LENGTH);
7201 if (ret_val)
7202 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
7203 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7204 hw->mac.type, hw->phy.type, pba_str);
7207 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7209 struct e1000_hw *hw = &adapter->hw;
7210 int ret_val;
7211 u16 buf = 0;
7213 if (hw->mac.type != e1000_82573)
7214 return;
7216 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7217 le16_to_cpus(&buf);
7218 if (!ret_val && (!(buf & BIT(0)))) {
7219 /* Deep Smart Power Down (DSPD) */
7220 dev_warn(&adapter->pdev->dev,
7221 "Warning: detected DSPD enabled in EEPROM\n");
7225 static netdev_features_t e1000_fix_features(struct net_device *netdev,
7226 netdev_features_t features)
7228 struct e1000_adapter *adapter = netdev_priv(netdev);
7229 struct e1000_hw *hw = &adapter->hw;
7231 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7232 if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7233 features &= ~NETIF_F_RXFCS;
7235 /* Since there is no support for separate Rx/Tx vlan accel
7236 * enable/disable make sure Tx flag is always in same state as Rx.
7238 if (features & NETIF_F_HW_VLAN_CTAG_RX)
7239 features |= NETIF_F_HW_VLAN_CTAG_TX;
7240 else
7241 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7243 return features;
7246 static int e1000_set_features(struct net_device *netdev,
7247 netdev_features_t features)
7249 struct e1000_adapter *adapter = netdev_priv(netdev);
7250 netdev_features_t changed = features ^ netdev->features;
7252 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7253 adapter->flags |= FLAG_TSO_FORCE;
7255 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7256 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7257 NETIF_F_RXALL)))
7258 return 0;
7260 if (changed & NETIF_F_RXFCS) {
7261 if (features & NETIF_F_RXFCS) {
7262 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7263 } else {
7264 /* We need to take it back to defaults, which might mean
7265 * stripping is still disabled at the adapter level.
7267 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7268 adapter->flags2 |= FLAG2_CRC_STRIPPING;
7269 else
7270 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7274 netdev->features = features;
7276 if (netif_running(netdev))
7277 e1000e_reinit_locked(adapter);
7278 else
7279 e1000e_reset(adapter);
7281 return 1;
7284 static const struct net_device_ops e1000e_netdev_ops = {
7285 .ndo_open = e1000e_open,
7286 .ndo_stop = e1000e_close,
7287 .ndo_start_xmit = e1000_xmit_frame,
7288 .ndo_get_stats64 = e1000e_get_stats64,
7289 .ndo_set_rx_mode = e1000e_set_rx_mode,
7290 .ndo_set_mac_address = e1000_set_mac,
7291 .ndo_change_mtu = e1000_change_mtu,
7292 .ndo_do_ioctl = e1000_ioctl,
7293 .ndo_tx_timeout = e1000_tx_timeout,
7294 .ndo_validate_addr = eth_validate_addr,
7296 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
7297 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
7298 #ifdef CONFIG_NET_POLL_CONTROLLER
7299 .ndo_poll_controller = e1000_netpoll,
7300 #endif
7301 .ndo_set_features = e1000_set_features,
7302 .ndo_fix_features = e1000_fix_features,
7303 .ndo_features_check = passthru_features_check,
7307 * e1000_probe - Device Initialization Routine
7308 * @pdev: PCI device information struct
7309 * @ent: entry in e1000_pci_tbl
7311 * Returns 0 on success, negative on failure
7313 * e1000_probe initializes an adapter identified by a pci_dev structure.
7314 * The OS initialization, configuring of the adapter private structure,
7315 * and a hardware reset occur.
7317 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7319 struct net_device *netdev;
7320 struct e1000_adapter *adapter;
7321 struct e1000_hw *hw;
7322 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7323 resource_size_t mmio_start, mmio_len;
7324 resource_size_t flash_start, flash_len;
7325 static int cards_found;
7326 u16 aspm_disable_flag = 0;
7327 int bars, i, err, pci_using_dac;
7328 u16 eeprom_data = 0;
7329 u16 eeprom_apme_mask = E1000_EEPROM_APME;
7330 s32 ret_val = 0;
7332 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7333 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7334 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7335 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7336 if (aspm_disable_flag)
7337 e1000e_disable_aspm(pdev, aspm_disable_flag);
7339 err = pci_enable_device_mem(pdev);
7340 if (err)
7341 return err;
7343 pci_using_dac = 0;
7344 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7345 if (!err) {
7346 pci_using_dac = 1;
7347 } else {
7348 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7349 if (err) {
7350 dev_err(&pdev->dev,
7351 "No usable DMA configuration, aborting\n");
7352 goto err_dma;
7356 bars = pci_select_bars(pdev, IORESOURCE_MEM);
7357 err = pci_request_selected_regions_exclusive(pdev, bars,
7358 e1000e_driver_name);
7359 if (err)
7360 goto err_pci_reg;
7362 /* AER (Advanced Error Reporting) hooks */
7363 pci_enable_pcie_error_reporting(pdev);
7365 pci_set_master(pdev);
7366 /* PCI config space info */
7367 err = pci_save_state(pdev);
7368 if (err)
7369 goto err_alloc_etherdev;
7371 err = -ENOMEM;
7372 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7373 if (!netdev)
7374 goto err_alloc_etherdev;
7376 SET_NETDEV_DEV(netdev, &pdev->dev);
7378 netdev->irq = pdev->irq;
7380 pci_set_drvdata(pdev, netdev);
7381 adapter = netdev_priv(netdev);
7382 hw = &adapter->hw;
7383 adapter->netdev = netdev;
7384 adapter->pdev = pdev;
7385 adapter->ei = ei;
7386 adapter->pba = ei->pba;
7387 adapter->flags = ei->flags;
7388 adapter->flags2 = ei->flags2;
7389 adapter->hw.adapter = adapter;
7390 adapter->hw.mac.type = ei->mac;
7391 adapter->max_hw_frame_size = ei->max_hw_frame_size;
7392 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7394 mmio_start = pci_resource_start(pdev, 0);
7395 mmio_len = pci_resource_len(pdev, 0);
7397 err = -EIO;
7398 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7399 if (!adapter->hw.hw_addr)
7400 goto err_ioremap;
7402 if ((adapter->flags & FLAG_HAS_FLASH) &&
7403 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7404 (hw->mac.type < e1000_pch_spt)) {
7405 flash_start = pci_resource_start(pdev, 1);
7406 flash_len = pci_resource_len(pdev, 1);
7407 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7408 if (!adapter->hw.flash_address)
7409 goto err_flashmap;
7412 /* Set default EEE advertisement */
7413 if (adapter->flags2 & FLAG2_HAS_EEE)
7414 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7416 /* construct the net_device struct */
7417 netdev->netdev_ops = &e1000e_netdev_ops;
7418 e1000e_set_ethtool_ops(netdev);
7419 netdev->watchdog_timeo = 5 * HZ;
7420 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7421 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7423 netdev->mem_start = mmio_start;
7424 netdev->mem_end = mmio_start + mmio_len;
7426 adapter->bd_number = cards_found++;
7428 e1000e_check_options(adapter);
7430 /* setup adapter struct */
7431 err = e1000_sw_init(adapter);
7432 if (err)
7433 goto err_sw_init;
7435 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7436 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7437 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7439 err = ei->get_variants(adapter);
7440 if (err)
7441 goto err_hw_init;
7443 if ((adapter->flags & FLAG_IS_ICH) &&
7444 (adapter->flags & FLAG_READ_ONLY_NVM) &&
7445 (hw->mac.type < e1000_pch_spt))
7446 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7448 hw->mac.ops.get_bus_info(&adapter->hw);
7450 adapter->hw.phy.autoneg_wait_to_complete = 0;
7452 /* Copper options */
7453 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7454 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7455 adapter->hw.phy.disable_polarity_correction = 0;
7456 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7459 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7460 dev_info(&pdev->dev,
7461 "PHY reset is blocked due to SOL/IDER session.\n");
7463 /* Set initial default active device features */
7464 netdev->features = (NETIF_F_SG |
7465 NETIF_F_HW_VLAN_CTAG_RX |
7466 NETIF_F_HW_VLAN_CTAG_TX |
7467 NETIF_F_TSO |
7468 NETIF_F_TSO6 |
7469 NETIF_F_RXHASH |
7470 NETIF_F_RXCSUM |
7471 NETIF_F_HW_CSUM);
7473 /* Set user-changeable features (subset of all device features) */
7474 netdev->hw_features = netdev->features;
7475 netdev->hw_features |= NETIF_F_RXFCS;
7476 netdev->priv_flags |= IFF_SUPP_NOFCS;
7477 netdev->hw_features |= NETIF_F_RXALL;
7479 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7480 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7482 netdev->vlan_features |= (NETIF_F_SG |
7483 NETIF_F_TSO |
7484 NETIF_F_TSO6 |
7485 NETIF_F_HW_CSUM);
7487 netdev->priv_flags |= IFF_UNICAST_FLT;
7489 if (pci_using_dac) {
7490 netdev->features |= NETIF_F_HIGHDMA;
7491 netdev->vlan_features |= NETIF_F_HIGHDMA;
7494 /* MTU range: 68 - max_hw_frame_size */
7495 netdev->min_mtu = ETH_MIN_MTU;
7496 netdev->max_mtu = adapter->max_hw_frame_size -
7497 (VLAN_ETH_HLEN + ETH_FCS_LEN);
7499 if (e1000e_enable_mng_pass_thru(&adapter->hw))
7500 adapter->flags |= FLAG_MNG_PT_ENABLED;
7502 /* before reading the NVM, reset the controller to
7503 * put the device in a known good starting state
7505 adapter->hw.mac.ops.reset_hw(&adapter->hw);
7507 /* systems with ASPM and others may see the checksum fail on the first
7508 * attempt. Let's give it a few tries
7510 for (i = 0;; i++) {
7511 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7512 break;
7513 if (i == 2) {
7514 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7515 err = -EIO;
7516 goto err_eeprom;
7520 e1000_eeprom_checks(adapter);
7522 /* copy the MAC address */
7523 if (e1000e_read_mac_addr(&adapter->hw))
7524 dev_err(&pdev->dev,
7525 "NVM Read Error while reading MAC address\n");
7527 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7529 if (!is_valid_ether_addr(netdev->dev_addr)) {
7530 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7531 netdev->dev_addr);
7532 err = -EIO;
7533 goto err_eeprom;
7536 timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7537 timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7539 INIT_WORK(&adapter->reset_task, e1000_reset_task);
7540 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7541 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7542 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7543 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7545 /* Initialize link parameters. User can change them with ethtool */
7546 adapter->hw.mac.autoneg = 1;
7547 adapter->fc_autoneg = true;
7548 adapter->hw.fc.requested_mode = e1000_fc_default;
7549 adapter->hw.fc.current_mode = e1000_fc_default;
7550 adapter->hw.phy.autoneg_advertised = 0x2f;
7552 /* Initial Wake on LAN setting - If APM wake is enabled in
7553 * the EEPROM, enable the ACPI Magic Packet filter
7555 if (adapter->flags & FLAG_APME_IN_WUC) {
7556 /* APME bit in EEPROM is mapped to WUC.APME */
7557 eeprom_data = er32(WUC);
7558 eeprom_apme_mask = E1000_WUC_APME;
7559 if ((hw->mac.type > e1000_ich10lan) &&
7560 (eeprom_data & E1000_WUC_PHY_WAKE))
7561 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7562 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7563 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7564 (adapter->hw.bus.func == 1))
7565 ret_val = e1000_read_nvm(&adapter->hw,
7566 NVM_INIT_CONTROL3_PORT_B,
7567 1, &eeprom_data);
7568 else
7569 ret_val = e1000_read_nvm(&adapter->hw,
7570 NVM_INIT_CONTROL3_PORT_A,
7571 1, &eeprom_data);
7574 /* fetch WoL from EEPROM */
7575 if (ret_val)
7576 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7577 else if (eeprom_data & eeprom_apme_mask)
7578 adapter->eeprom_wol |= E1000_WUFC_MAG;
7580 /* now that we have the eeprom settings, apply the special cases
7581 * where the eeprom may be wrong or the board simply won't support
7582 * wake on lan on a particular port
7584 if (!(adapter->flags & FLAG_HAS_WOL))
7585 adapter->eeprom_wol = 0;
7587 /* initialize the wol settings based on the eeprom settings */
7588 adapter->wol = adapter->eeprom_wol;
7590 /* make sure adapter isn't asleep if manageability is enabled */
7591 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7592 (hw->mac.ops.check_mng_mode(hw)))
7593 device_wakeup_enable(&pdev->dev);
7595 /* save off EEPROM version number */
7596 ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7598 if (ret_val) {
7599 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7600 adapter->eeprom_vers = 0;
7603 /* init PTP hardware clock */
7604 e1000e_ptp_init(adapter);
7606 /* reset the hardware with the new settings */
7607 e1000e_reset(adapter);
7609 /* If the controller has AMT, do not set DRV_LOAD until the interface
7610 * is up. For all other cases, let the f/w know that the h/w is now
7611 * under the control of the driver.
7613 if (!(adapter->flags & FLAG_HAS_AMT))
7614 e1000e_get_hw_control(adapter);
7616 if (hw->mac.type >= e1000_pch_cnp)
7617 adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7619 strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7620 err = register_netdev(netdev);
7621 if (err)
7622 goto err_register;
7624 /* carrier off reporting is important to ethtool even BEFORE open */
7625 netif_carrier_off(netdev);
7627 e1000_print_device_info(adapter);
7629 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7631 if (pci_dev_run_wake(pdev) && hw->mac.type < e1000_pch_cnp)
7632 pm_runtime_put_noidle(&pdev->dev);
7634 return 0;
7636 err_register:
7637 if (!(adapter->flags & FLAG_HAS_AMT))
7638 e1000e_release_hw_control(adapter);
7639 err_eeprom:
7640 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7641 e1000_phy_hw_reset(&adapter->hw);
7642 err_hw_init:
7643 kfree(adapter->tx_ring);
7644 kfree(adapter->rx_ring);
7645 err_sw_init:
7646 if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7647 iounmap(adapter->hw.flash_address);
7648 e1000e_reset_interrupt_capability(adapter);
7649 err_flashmap:
7650 iounmap(adapter->hw.hw_addr);
7651 err_ioremap:
7652 free_netdev(netdev);
7653 err_alloc_etherdev:
7654 pci_release_mem_regions(pdev);
7655 err_pci_reg:
7656 err_dma:
7657 pci_disable_device(pdev);
7658 return err;
7662 * e1000_remove - Device Removal Routine
7663 * @pdev: PCI device information struct
7665 * e1000_remove is called by the PCI subsystem to alert the driver
7666 * that it should release a PCI device. The could be caused by a
7667 * Hot-Plug event, or because the driver is going to be removed from
7668 * memory.
7670 static void e1000_remove(struct pci_dev *pdev)
7672 struct net_device *netdev = pci_get_drvdata(pdev);
7673 struct e1000_adapter *adapter = netdev_priv(netdev);
7675 e1000e_ptp_remove(adapter);
7677 /* The timers may be rescheduled, so explicitly disable them
7678 * from being rescheduled.
7680 set_bit(__E1000_DOWN, &adapter->state);
7681 del_timer_sync(&adapter->watchdog_timer);
7682 del_timer_sync(&adapter->phy_info_timer);
7684 cancel_work_sync(&adapter->reset_task);
7685 cancel_work_sync(&adapter->watchdog_task);
7686 cancel_work_sync(&adapter->downshift_task);
7687 cancel_work_sync(&adapter->update_phy_task);
7688 cancel_work_sync(&adapter->print_hang_task);
7690 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7691 cancel_work_sync(&adapter->tx_hwtstamp_work);
7692 if (adapter->tx_hwtstamp_skb) {
7693 dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7694 adapter->tx_hwtstamp_skb = NULL;
7698 unregister_netdev(netdev);
7700 if (pci_dev_run_wake(pdev))
7701 pm_runtime_get_noresume(&pdev->dev);
7703 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7704 * would have already happened in close and is redundant.
7706 e1000e_release_hw_control(adapter);
7708 e1000e_reset_interrupt_capability(adapter);
7709 kfree(adapter->tx_ring);
7710 kfree(adapter->rx_ring);
7712 iounmap(adapter->hw.hw_addr);
7713 if ((adapter->hw.flash_address) &&
7714 (adapter->hw.mac.type < e1000_pch_spt))
7715 iounmap(adapter->hw.flash_address);
7716 pci_release_mem_regions(pdev);
7718 free_netdev(netdev);
7720 /* AER disable */
7721 pci_disable_pcie_error_reporting(pdev);
7723 pci_disable_device(pdev);
7726 /* PCI Error Recovery (ERS) */
7727 static const struct pci_error_handlers e1000_err_handler = {
7728 .error_detected = e1000_io_error_detected,
7729 .slot_reset = e1000_io_slot_reset,
7730 .resume = e1000_io_resume,
7733 static const struct pci_device_id e1000_pci_tbl[] = {
7734 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7735 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7736 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7737 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7738 board_82571 },
7739 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7740 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7741 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7742 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7743 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7745 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7746 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7747 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7748 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7750 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7751 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7752 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7754 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7755 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7756 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7758 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7759 board_80003es2lan },
7760 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7761 board_80003es2lan },
7762 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7763 board_80003es2lan },
7764 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7765 board_80003es2lan },
7767 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7768 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7769 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7770 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7771 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7772 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7773 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7774 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7776 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7777 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7778 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7779 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7780 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7781 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7782 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7783 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7784 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7786 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7787 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7788 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7790 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7791 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7792 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7794 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7795 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7796 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7797 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7799 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7800 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7802 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7803 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7804 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7805 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7806 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7807 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7808 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7809 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7810 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7811 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7812 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7813 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7814 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7815 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7816 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7817 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7818 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7819 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7820 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7821 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7822 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7823 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7824 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7825 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7826 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7827 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7828 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7829 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7830 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7831 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7832 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7833 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_cnp },
7834 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_cnp },
7835 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_cnp },
7836 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_cnp },
7837 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_cnp },
7838 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_cnp },
7839 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_cnp },
7840 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_cnp },
7841 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_cnp },
7842 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_cnp },
7843 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_cnp },
7844 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_cnp },
7845 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_cnp },
7846 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_cnp },
7848 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7850 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7852 static const struct dev_pm_ops e1000_pm_ops = {
7853 #ifdef CONFIG_PM_SLEEP
7854 .suspend = e1000e_pm_suspend,
7855 .resume = e1000e_pm_resume,
7856 .freeze = e1000e_pm_freeze,
7857 .thaw = e1000e_pm_thaw,
7858 .poweroff = e1000e_pm_suspend,
7859 .restore = e1000e_pm_resume,
7860 #endif
7861 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7862 e1000e_pm_runtime_idle)
7865 /* PCI Device API Driver */
7866 static struct pci_driver e1000_driver = {
7867 .name = e1000e_driver_name,
7868 .id_table = e1000_pci_tbl,
7869 .probe = e1000_probe,
7870 .remove = e1000_remove,
7871 .driver = {
7872 .pm = &e1000_pm_ops,
7874 .shutdown = e1000_shutdown,
7875 .err_handler = &e1000_err_handler
7879 * e1000_init_module - Driver Registration Routine
7881 * e1000_init_module is the first routine called when the driver is
7882 * loaded. All it does is register with the PCI subsystem.
7884 static int __init e1000_init_module(void)
7886 pr_info("Intel(R) PRO/1000 Network Driver\n");
7887 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7889 return pci_register_driver(&e1000_driver);
7891 module_init(e1000_init_module);
7894 * e1000_exit_module - Driver Exit Cleanup Routine
7896 * e1000_exit_module is called just before the driver is removed
7897 * from memory.
7899 static void __exit e1000_exit_module(void)
7901 pci_unregister_driver(&e1000_driver);
7903 module_exit(e1000_exit_module);
7905 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7906 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7907 MODULE_LICENSE("GPL v2");
7909 /* netdev.c */