1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/aer.h>
27 #include <linux/prefetch.h>
31 char e1000e_driver_name
[] = "e1000e";
33 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34 static int debug
= -1;
35 module_param(debug
, int, 0);
36 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
38 static const struct e1000_info
*e1000_info_tbl
[] = {
39 [board_82571
] = &e1000_82571_info
,
40 [board_82572
] = &e1000_82572_info
,
41 [board_82573
] = &e1000_82573_info
,
42 [board_82574
] = &e1000_82574_info
,
43 [board_82583
] = &e1000_82583_info
,
44 [board_80003es2lan
] = &e1000_es2_info
,
45 [board_ich8lan
] = &e1000_ich8_info
,
46 [board_ich9lan
] = &e1000_ich9_info
,
47 [board_ich10lan
] = &e1000_ich10_info
,
48 [board_pchlan
] = &e1000_pch_info
,
49 [board_pch2lan
] = &e1000_pch2_info
,
50 [board_pch_lpt
] = &e1000_pch_lpt_info
,
51 [board_pch_spt
] = &e1000_pch_spt_info
,
52 [board_pch_cnp
] = &e1000_pch_cnp_info
,
55 struct e1000_reg_info
{
60 static const struct e1000_reg_info e1000_reg_info_tbl
[] = {
61 /* General Registers */
63 {E1000_STATUS
, "STATUS"},
64 {E1000_CTRL_EXT
, "CTRL_EXT"},
66 /* Interrupt Registers */
71 {E1000_RDLEN(0), "RDLEN"},
72 {E1000_RDH(0), "RDH"},
73 {E1000_RDT(0), "RDT"},
75 {E1000_RXDCTL(0), "RXDCTL"},
77 {E1000_RDBAL(0), "RDBAL"},
78 {E1000_RDBAH(0), "RDBAH"},
81 {E1000_RDFHS
, "RDFHS"},
82 {E1000_RDFTS
, "RDFTS"},
83 {E1000_RDFPC
, "RDFPC"},
87 {E1000_TDBAL(0), "TDBAL"},
88 {E1000_TDBAH(0), "TDBAH"},
89 {E1000_TDLEN(0), "TDLEN"},
90 {E1000_TDH(0), "TDH"},
91 {E1000_TDT(0), "TDT"},
93 {E1000_TXDCTL(0), "TXDCTL"},
95 {E1000_TARC(0), "TARC"},
98 {E1000_TDFHS
, "TDFHS"},
99 {E1000_TDFTS
, "TDFTS"},
100 {E1000_TDFPC
, "TDFPC"},
102 /* List Terminator */
107 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
108 * @hw: pointer to the HW structure
110 * When updating the MAC CSR registers, the Manageability Engine (ME) could
111 * be accessing the registers at the same time. Normally, this is handled in
112 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
113 * accesses later than it should which could result in the register to have
114 * an incorrect value. Workaround this by checking the FWSM register which
115 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
116 * and try again a number of times.
118 static void __ew32_prepare(struct e1000_hw
*hw
)
120 s32 i
= E1000_ICH_FWSM_PCIM2PCI_COUNT
;
122 while ((er32(FWSM
) & E1000_ICH_FWSM_PCIM2PCI
) && --i
)
126 void __ew32(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
128 if (hw
->adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
131 writel(val
, hw
->hw_addr
+ reg
);
135 * e1000_regdump - register printout routine
136 * @hw: pointer to the HW structure
137 * @reginfo: pointer to the register info table
139 static void e1000_regdump(struct e1000_hw
*hw
, struct e1000_reg_info
*reginfo
)
145 switch (reginfo
->ofs
) {
146 case E1000_RXDCTL(0):
147 for (n
= 0; n
< 2; n
++)
148 regs
[n
] = __er32(hw
, E1000_RXDCTL(n
));
150 case E1000_TXDCTL(0):
151 for (n
= 0; n
< 2; n
++)
152 regs
[n
] = __er32(hw
, E1000_TXDCTL(n
));
155 for (n
= 0; n
< 2; n
++)
156 regs
[n
] = __er32(hw
, E1000_TARC(n
));
159 pr_info("%-15s %08x\n",
160 reginfo
->name
, __er32(hw
, reginfo
->ofs
));
164 snprintf(rname
, 16, "%s%s", reginfo
->name
, "[0-1]");
165 pr_info("%-15s %08x %08x\n", rname
, regs
[0], regs
[1]);
168 static void e1000e_dump_ps_pages(struct e1000_adapter
*adapter
,
169 struct e1000_buffer
*bi
)
172 struct e1000_ps_page
*ps_page
;
174 for (i
= 0; i
< adapter
->rx_ps_pages
; i
++) {
175 ps_page
= &bi
->ps_pages
[i
];
178 pr_info("packet dump for ps_page %d:\n", i
);
179 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
180 16, 1, page_address(ps_page
->page
),
187 * e1000e_dump - Print registers, Tx-ring and Rx-ring
188 * @adapter: board private structure
190 static void e1000e_dump(struct e1000_adapter
*adapter
)
192 struct net_device
*netdev
= adapter
->netdev
;
193 struct e1000_hw
*hw
= &adapter
->hw
;
194 struct e1000_reg_info
*reginfo
;
195 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
196 struct e1000_tx_desc
*tx_desc
;
201 struct e1000_buffer
*buffer_info
;
202 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
203 union e1000_rx_desc_packet_split
*rx_desc_ps
;
204 union e1000_rx_desc_extended
*rx_desc
;
214 if (!netif_msg_hw(adapter
))
217 /* Print netdevice Info */
219 dev_info(&adapter
->pdev
->dev
, "Net device Info\n");
220 pr_info("Device Name state trans_start\n");
221 pr_info("%-15s %016lX %016lX\n", netdev
->name
,
222 netdev
->state
, dev_trans_start(netdev
));
225 /* Print Registers */
226 dev_info(&adapter
->pdev
->dev
, "Register Dump\n");
227 pr_info(" Register Name Value\n");
228 for (reginfo
= (struct e1000_reg_info
*)e1000_reg_info_tbl
;
229 reginfo
->name
; reginfo
++) {
230 e1000_regdump(hw
, reginfo
);
233 /* Print Tx Ring Summary */
234 if (!netdev
|| !netif_running(netdev
))
237 dev_info(&adapter
->pdev
->dev
, "Tx Ring Summary\n");
238 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
239 buffer_info
= &tx_ring
->buffer_info
[tx_ring
->next_to_clean
];
240 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
241 0, tx_ring
->next_to_use
, tx_ring
->next_to_clean
,
242 (unsigned long long)buffer_info
->dma
,
244 buffer_info
->next_to_watch
,
245 (unsigned long long)buffer_info
->time_stamp
);
248 if (!netif_msg_tx_done(adapter
))
249 goto rx_ring_summary
;
251 dev_info(&adapter
->pdev
->dev
, "Tx Ring Dump\n");
253 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
255 * Legacy Transmit Descriptor
256 * +--------------------------------------------------------------+
257 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
258 * +--------------------------------------------------------------+
259 * 8 | Special | CSS | Status | CMD | CSO | Length |
260 * +--------------------------------------------------------------+
261 * 63 48 47 36 35 32 31 24 23 16 15 0
263 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
264 * 63 48 47 40 39 32 31 16 15 8 7 0
265 * +----------------------------------------------------------------+
266 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
267 * +----------------------------------------------------------------+
268 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
269 * +----------------------------------------------------------------+
270 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
272 * Extended Data Descriptor (DTYP=0x1)
273 * +----------------------------------------------------------------+
274 * 0 | Buffer Address [63:0] |
275 * +----------------------------------------------------------------+
276 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
277 * +----------------------------------------------------------------+
278 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
280 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
281 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
282 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
283 for (i
= 0; tx_ring
->desc
&& (i
< tx_ring
->count
); i
++) {
284 const char *next_desc
;
285 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
286 buffer_info
= &tx_ring
->buffer_info
[i
];
287 u0
= (struct my_u0
*)tx_desc
;
288 if (i
== tx_ring
->next_to_use
&& i
== tx_ring
->next_to_clean
)
289 next_desc
= " NTC/U";
290 else if (i
== tx_ring
->next_to_use
)
292 else if (i
== tx_ring
->next_to_clean
)
296 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
297 (!(le64_to_cpu(u0
->b
) & BIT(29)) ? 'l' :
298 ((le64_to_cpu(u0
->b
) & BIT(20)) ? 'd' : 'c')),
300 (unsigned long long)le64_to_cpu(u0
->a
),
301 (unsigned long long)le64_to_cpu(u0
->b
),
302 (unsigned long long)buffer_info
->dma
,
303 buffer_info
->length
, buffer_info
->next_to_watch
,
304 (unsigned long long)buffer_info
->time_stamp
,
305 buffer_info
->skb
, next_desc
);
307 if (netif_msg_pktdata(adapter
) && buffer_info
->skb
)
308 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
309 16, 1, buffer_info
->skb
->data
,
310 buffer_info
->skb
->len
, true);
313 /* Print Rx Ring Summary */
315 dev_info(&adapter
->pdev
->dev
, "Rx Ring Summary\n");
316 pr_info("Queue [NTU] [NTC]\n");
317 pr_info(" %5d %5X %5X\n",
318 0, rx_ring
->next_to_use
, rx_ring
->next_to_clean
);
321 if (!netif_msg_rx_status(adapter
))
324 dev_info(&adapter
->pdev
->dev
, "Rx Ring Dump\n");
325 switch (adapter
->rx_ps_pages
) {
329 /* [Extended] Packet Split Receive Descriptor Format
331 * +-----------------------------------------------------+
332 * 0 | Buffer Address 0 [63:0] |
333 * +-----------------------------------------------------+
334 * 8 | Buffer Address 1 [63:0] |
335 * +-----------------------------------------------------+
336 * 16 | Buffer Address 2 [63:0] |
337 * +-----------------------------------------------------+
338 * 24 | Buffer Address 3 [63:0] |
339 * +-----------------------------------------------------+
341 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
342 /* [Extended] Receive Descriptor (Write-Back) Format
344 * 63 48 47 32 31 13 12 8 7 4 3 0
345 * +------------------------------------------------------+
346 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
347 * | Checksum | Ident | | Queue | | Type |
348 * +------------------------------------------------------+
349 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
350 * +------------------------------------------------------+
351 * 63 48 47 32 31 20 19 0
353 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
354 for (i
= 0; i
< rx_ring
->count
; i
++) {
355 const char *next_desc
;
356 buffer_info
= &rx_ring
->buffer_info
[i
];
357 rx_desc_ps
= E1000_RX_DESC_PS(*rx_ring
, i
);
358 u1
= (struct my_u1
*)rx_desc_ps
;
360 le32_to_cpu(rx_desc_ps
->wb
.middle
.status_error
);
362 if (i
== rx_ring
->next_to_use
)
364 else if (i
== rx_ring
->next_to_clean
)
369 if (staterr
& E1000_RXD_STAT_DD
) {
370 /* Descriptor Done */
371 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
373 (unsigned long long)le64_to_cpu(u1
->a
),
374 (unsigned long long)le64_to_cpu(u1
->b
),
375 (unsigned long long)le64_to_cpu(u1
->c
),
376 (unsigned long long)le64_to_cpu(u1
->d
),
377 buffer_info
->skb
, next_desc
);
379 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
381 (unsigned long long)le64_to_cpu(u1
->a
),
382 (unsigned long long)le64_to_cpu(u1
->b
),
383 (unsigned long long)le64_to_cpu(u1
->c
),
384 (unsigned long long)le64_to_cpu(u1
->d
),
385 (unsigned long long)buffer_info
->dma
,
386 buffer_info
->skb
, next_desc
);
388 if (netif_msg_pktdata(adapter
))
389 e1000e_dump_ps_pages(adapter
,
396 /* Extended Receive Descriptor (Read) Format
398 * +-----------------------------------------------------+
399 * 0 | Buffer Address [63:0] |
400 * +-----------------------------------------------------+
402 * +-----------------------------------------------------+
404 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
405 /* Extended Receive Descriptor (Write-Back) Format
407 * 63 48 47 32 31 24 23 4 3 0
408 * +------------------------------------------------------+
410 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
411 * | Packet | IP | | | Type |
412 * | Checksum | Ident | | | |
413 * +------------------------------------------------------+
414 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
415 * +------------------------------------------------------+
416 * 63 48 47 32 31 20 19 0
418 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
420 for (i
= 0; i
< rx_ring
->count
; i
++) {
421 const char *next_desc
;
423 buffer_info
= &rx_ring
->buffer_info
[i
];
424 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
425 u1
= (struct my_u1
*)rx_desc
;
426 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
428 if (i
== rx_ring
->next_to_use
)
430 else if (i
== rx_ring
->next_to_clean
)
435 if (staterr
& E1000_RXD_STAT_DD
) {
436 /* Descriptor Done */
437 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
439 (unsigned long long)le64_to_cpu(u1
->a
),
440 (unsigned long long)le64_to_cpu(u1
->b
),
441 buffer_info
->skb
, next_desc
);
443 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
445 (unsigned long long)le64_to_cpu(u1
->a
),
446 (unsigned long long)le64_to_cpu(u1
->b
),
447 (unsigned long long)buffer_info
->dma
,
448 buffer_info
->skb
, next_desc
);
450 if (netif_msg_pktdata(adapter
) &&
452 print_hex_dump(KERN_INFO
, "",
453 DUMP_PREFIX_ADDRESS
, 16,
455 buffer_info
->skb
->data
,
456 adapter
->rx_buffer_len
,
464 * e1000_desc_unused - calculate if we have unused descriptors
465 * @ring: pointer to ring struct to perform calculation on
467 static int e1000_desc_unused(struct e1000_ring
*ring
)
469 if (ring
->next_to_clean
> ring
->next_to_use
)
470 return ring
->next_to_clean
- ring
->next_to_use
- 1;
472 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
476 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
477 * @adapter: board private structure
478 * @hwtstamps: time stamp structure to update
479 * @systim: unsigned 64bit system time value.
481 * Convert the system time value stored in the RX/TXSTMP registers into a
482 * hwtstamp which can be used by the upper level time stamping functions.
484 * The 'systim_lock' spinlock is used to protect the consistency of the
485 * system time value. This is needed because reading the 64 bit time
486 * value involves reading two 32 bit registers. The first read latches the
489 static void e1000e_systim_to_hwtstamp(struct e1000_adapter
*adapter
,
490 struct skb_shared_hwtstamps
*hwtstamps
,
496 spin_lock_irqsave(&adapter
->systim_lock
, flags
);
497 ns
= timecounter_cyc2time(&adapter
->tc
, systim
);
498 spin_unlock_irqrestore(&adapter
->systim_lock
, flags
);
500 memset(hwtstamps
, 0, sizeof(*hwtstamps
));
501 hwtstamps
->hwtstamp
= ns_to_ktime(ns
);
505 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
506 * @adapter: board private structure
507 * @status: descriptor extended error and status field
508 * @skb: particular skb to include time stamp
510 * If the time stamp is valid, convert it into the timecounter ns value
511 * and store that result into the shhwtstamps structure which is passed
512 * up the network stack.
514 static void e1000e_rx_hwtstamp(struct e1000_adapter
*adapter
, u32 status
,
517 struct e1000_hw
*hw
= &adapter
->hw
;
520 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) ||
521 !(status
& E1000_RXDEXT_STATERR_TST
) ||
522 !(er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
))
525 /* The Rx time stamp registers contain the time stamp. No other
526 * received packet will be time stamped until the Rx time stamp
527 * registers are read. Because only one packet can be time stamped
528 * at a time, the register values must belong to this packet and
529 * therefore none of the other additional attributes need to be
532 rxstmp
= (u64
)er32(RXSTMPL
);
533 rxstmp
|= (u64
)er32(RXSTMPH
) << 32;
534 e1000e_systim_to_hwtstamp(adapter
, skb_hwtstamps(skb
), rxstmp
);
536 adapter
->flags2
&= ~FLAG2_CHECK_RX_HWTSTAMP
;
540 * e1000_receive_skb - helper function to handle Rx indications
541 * @adapter: board private structure
542 * @netdev: pointer to netdev struct
543 * @staterr: descriptor extended error and status field as written by hardware
544 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
545 * @skb: pointer to sk_buff to be indicated to stack
547 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
548 struct net_device
*netdev
, struct sk_buff
*skb
,
549 u32 staterr
, __le16 vlan
)
551 u16 tag
= le16_to_cpu(vlan
);
553 e1000e_rx_hwtstamp(adapter
, staterr
, skb
);
555 skb
->protocol
= eth_type_trans(skb
, netdev
);
557 if (staterr
& E1000_RXD_STAT_VP
)
558 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), tag
);
560 napi_gro_receive(&adapter
->napi
, skb
);
564 * e1000_rx_checksum - Receive Checksum Offload
565 * @adapter: board private structure
566 * @status_err: receive descriptor status and error fields
567 * @skb: socket buffer with received data
569 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
572 u16 status
= (u16
)status_err
;
573 u8 errors
= (u8
)(status_err
>> 24);
575 skb_checksum_none_assert(skb
);
577 /* Rx checksum disabled */
578 if (!(adapter
->netdev
->features
& NETIF_F_RXCSUM
))
581 /* Ignore Checksum bit is set */
582 if (status
& E1000_RXD_STAT_IXSM
)
585 /* TCP/UDP checksum error bit or IP checksum error bit is set */
586 if (errors
& (E1000_RXD_ERR_TCPE
| E1000_RXD_ERR_IPE
)) {
587 /* let the stack verify checksum errors */
588 adapter
->hw_csum_err
++;
592 /* TCP/UDP Checksum has not been calculated */
593 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
596 /* It must be a TCP or UDP packet with a valid checksum */
597 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
598 adapter
->hw_csum_good
++;
601 static void e1000e_update_rdt_wa(struct e1000_ring
*rx_ring
, unsigned int i
)
603 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
604 struct e1000_hw
*hw
= &adapter
->hw
;
607 writel(i
, rx_ring
->tail
);
609 if (unlikely(i
!= readl(rx_ring
->tail
))) {
610 u32 rctl
= er32(RCTL
);
612 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
613 e_err("ME firmware caused invalid RDT - resetting\n");
614 schedule_work(&adapter
->reset_task
);
618 static void e1000e_update_tdt_wa(struct e1000_ring
*tx_ring
, unsigned int i
)
620 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
621 struct e1000_hw
*hw
= &adapter
->hw
;
624 writel(i
, tx_ring
->tail
);
626 if (unlikely(i
!= readl(tx_ring
->tail
))) {
627 u32 tctl
= er32(TCTL
);
629 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
630 e_err("ME firmware caused invalid TDT - resetting\n");
631 schedule_work(&adapter
->reset_task
);
636 * e1000_alloc_rx_buffers - Replace used receive buffers
637 * @rx_ring: Rx descriptor ring
638 * @cleaned_count: number to reallocate
639 * @gfp: flags for allocation
641 static void e1000_alloc_rx_buffers(struct e1000_ring
*rx_ring
,
642 int cleaned_count
, gfp_t gfp
)
644 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
645 struct net_device
*netdev
= adapter
->netdev
;
646 struct pci_dev
*pdev
= adapter
->pdev
;
647 union e1000_rx_desc_extended
*rx_desc
;
648 struct e1000_buffer
*buffer_info
;
651 unsigned int bufsz
= adapter
->rx_buffer_len
;
653 i
= rx_ring
->next_to_use
;
654 buffer_info
= &rx_ring
->buffer_info
[i
];
656 while (cleaned_count
--) {
657 skb
= buffer_info
->skb
;
663 skb
= __netdev_alloc_skb_ip_align(netdev
, bufsz
, gfp
);
665 /* Better luck next round */
666 adapter
->alloc_rx_buff_failed
++;
670 buffer_info
->skb
= skb
;
672 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
673 adapter
->rx_buffer_len
,
675 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
676 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
677 adapter
->rx_dma_failed
++;
681 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
682 rx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
684 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
685 /* Force memory writes to complete before letting h/w
686 * know there are new descriptors to fetch. (Only
687 * applicable for weak-ordered memory model archs,
691 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
692 e1000e_update_rdt_wa(rx_ring
, i
);
694 writel(i
, rx_ring
->tail
);
697 if (i
== rx_ring
->count
)
699 buffer_info
= &rx_ring
->buffer_info
[i
];
702 rx_ring
->next_to_use
= i
;
706 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
707 * @rx_ring: Rx descriptor ring
708 * @cleaned_count: number to reallocate
709 * @gfp: flags for allocation
711 static void e1000_alloc_rx_buffers_ps(struct e1000_ring
*rx_ring
,
712 int cleaned_count
, gfp_t gfp
)
714 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
715 struct net_device
*netdev
= adapter
->netdev
;
716 struct pci_dev
*pdev
= adapter
->pdev
;
717 union e1000_rx_desc_packet_split
*rx_desc
;
718 struct e1000_buffer
*buffer_info
;
719 struct e1000_ps_page
*ps_page
;
723 i
= rx_ring
->next_to_use
;
724 buffer_info
= &rx_ring
->buffer_info
[i
];
726 while (cleaned_count
--) {
727 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
729 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
730 ps_page
= &buffer_info
->ps_pages
[j
];
731 if (j
>= adapter
->rx_ps_pages
) {
732 /* all unused desc entries get hw null ptr */
733 rx_desc
->read
.buffer_addr
[j
+ 1] =
737 if (!ps_page
->page
) {
738 ps_page
->page
= alloc_page(gfp
);
739 if (!ps_page
->page
) {
740 adapter
->alloc_rx_buff_failed
++;
743 ps_page
->dma
= dma_map_page(&pdev
->dev
,
747 if (dma_mapping_error(&pdev
->dev
,
749 dev_err(&adapter
->pdev
->dev
,
750 "Rx DMA page map failed\n");
751 adapter
->rx_dma_failed
++;
755 /* Refresh the desc even if buffer_addrs
756 * didn't change because each write-back
759 rx_desc
->read
.buffer_addr
[j
+ 1] =
760 cpu_to_le64(ps_page
->dma
);
763 skb
= __netdev_alloc_skb_ip_align(netdev
, adapter
->rx_ps_bsize0
,
767 adapter
->alloc_rx_buff_failed
++;
771 buffer_info
->skb
= skb
;
772 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
773 adapter
->rx_ps_bsize0
,
775 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
776 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
777 adapter
->rx_dma_failed
++;
779 dev_kfree_skb_any(skb
);
780 buffer_info
->skb
= NULL
;
784 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
786 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
787 /* Force memory writes to complete before letting h/w
788 * know there are new descriptors to fetch. (Only
789 * applicable for weak-ordered memory model archs,
793 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
794 e1000e_update_rdt_wa(rx_ring
, i
<< 1);
796 writel(i
<< 1, rx_ring
->tail
);
800 if (i
== rx_ring
->count
)
802 buffer_info
= &rx_ring
->buffer_info
[i
];
806 rx_ring
->next_to_use
= i
;
810 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
811 * @rx_ring: Rx descriptor ring
812 * @cleaned_count: number of buffers to allocate this pass
813 * @gfp: flags for allocation
816 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring
*rx_ring
,
817 int cleaned_count
, gfp_t gfp
)
819 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
820 struct net_device
*netdev
= adapter
->netdev
;
821 struct pci_dev
*pdev
= adapter
->pdev
;
822 union e1000_rx_desc_extended
*rx_desc
;
823 struct e1000_buffer
*buffer_info
;
826 unsigned int bufsz
= 256 - 16; /* for skb_reserve */
828 i
= rx_ring
->next_to_use
;
829 buffer_info
= &rx_ring
->buffer_info
[i
];
831 while (cleaned_count
--) {
832 skb
= buffer_info
->skb
;
838 skb
= __netdev_alloc_skb_ip_align(netdev
, bufsz
, gfp
);
839 if (unlikely(!skb
)) {
840 /* Better luck next round */
841 adapter
->alloc_rx_buff_failed
++;
845 buffer_info
->skb
= skb
;
847 /* allocate a new page if necessary */
848 if (!buffer_info
->page
) {
849 buffer_info
->page
= alloc_page(gfp
);
850 if (unlikely(!buffer_info
->page
)) {
851 adapter
->alloc_rx_buff_failed
++;
856 if (!buffer_info
->dma
) {
857 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
858 buffer_info
->page
, 0,
861 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
862 adapter
->alloc_rx_buff_failed
++;
867 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
868 rx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
870 if (unlikely(++i
== rx_ring
->count
))
872 buffer_info
= &rx_ring
->buffer_info
[i
];
875 if (likely(rx_ring
->next_to_use
!= i
)) {
876 rx_ring
->next_to_use
= i
;
877 if (unlikely(i
-- == 0))
878 i
= (rx_ring
->count
- 1);
880 /* Force memory writes to complete before letting h/w
881 * know there are new descriptors to fetch. (Only
882 * applicable for weak-ordered memory model archs,
886 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
887 e1000e_update_rdt_wa(rx_ring
, i
);
889 writel(i
, rx_ring
->tail
);
893 static inline void e1000_rx_hash(struct net_device
*netdev
, __le32 rss
,
896 if (netdev
->features
& NETIF_F_RXHASH
)
897 skb_set_hash(skb
, le32_to_cpu(rss
), PKT_HASH_TYPE_L3
);
901 * e1000_clean_rx_irq - Send received data up the network stack
902 * @rx_ring: Rx descriptor ring
903 * @work_done: output parameter for indicating completed work
904 * @work_to_do: how many packets we can clean
906 * the return value indicates whether actual cleaning was done, there
907 * is no guarantee that everything was cleaned
909 static bool e1000_clean_rx_irq(struct e1000_ring
*rx_ring
, int *work_done
,
912 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
913 struct net_device
*netdev
= adapter
->netdev
;
914 struct pci_dev
*pdev
= adapter
->pdev
;
915 struct e1000_hw
*hw
= &adapter
->hw
;
916 union e1000_rx_desc_extended
*rx_desc
, *next_rxd
;
917 struct e1000_buffer
*buffer_info
, *next_buffer
;
920 int cleaned_count
= 0;
921 bool cleaned
= false;
922 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
924 i
= rx_ring
->next_to_clean
;
925 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
926 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
927 buffer_info
= &rx_ring
->buffer_info
[i
];
929 while (staterr
& E1000_RXD_STAT_DD
) {
932 if (*work_done
>= work_to_do
)
935 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
937 skb
= buffer_info
->skb
;
938 buffer_info
->skb
= NULL
;
940 prefetch(skb
->data
- NET_IP_ALIGN
);
943 if (i
== rx_ring
->count
)
945 next_rxd
= E1000_RX_DESC_EXT(*rx_ring
, i
);
948 next_buffer
= &rx_ring
->buffer_info
[i
];
952 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
953 adapter
->rx_buffer_len
, DMA_FROM_DEVICE
);
954 buffer_info
->dma
= 0;
956 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
958 /* !EOP means multiple descriptors were used to store a single
959 * packet, if that's the case we need to toss it. In fact, we
960 * need to toss every packet with the EOP bit clear and the
961 * next frame that _does_ have the EOP bit set, as it is by
962 * definition only a frame fragment
964 if (unlikely(!(staterr
& E1000_RXD_STAT_EOP
)))
965 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
967 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
968 /* All receives must fit into a single buffer */
969 e_dbg("Receive packet consumed multiple buffers\n");
971 buffer_info
->skb
= skb
;
972 if (staterr
& E1000_RXD_STAT_EOP
)
973 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
977 if (unlikely((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
978 !(netdev
->features
& NETIF_F_RXALL
))) {
980 buffer_info
->skb
= skb
;
984 /* adjust length to remove Ethernet CRC */
985 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
986 /* If configured to store CRC, don't subtract FCS,
987 * but keep the FCS bytes out of the total_rx_bytes
990 if (netdev
->features
& NETIF_F_RXFCS
)
996 total_rx_bytes
+= length
;
999 /* code added for copybreak, this should improve
1000 * performance for small packets with large amounts
1001 * of reassembly being done in the stack
1003 if (length
< copybreak
) {
1004 struct sk_buff
*new_skb
=
1005 napi_alloc_skb(&adapter
->napi
, length
);
1007 skb_copy_to_linear_data_offset(new_skb
,
1013 /* save the skb in buffer_info as good */
1014 buffer_info
->skb
= skb
;
1017 /* else just continue with the old one */
1019 /* end copybreak code */
1020 skb_put(skb
, length
);
1022 /* Receive Checksum Offload */
1023 e1000_rx_checksum(adapter
, staterr
, skb
);
1025 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1027 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1028 rx_desc
->wb
.upper
.vlan
);
1031 rx_desc
->wb
.upper
.status_error
&= cpu_to_le32(~0xFF);
1033 /* return some buffers to hardware, one at a time is too slow */
1034 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1035 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1040 /* use prefetched values */
1042 buffer_info
= next_buffer
;
1044 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1046 rx_ring
->next_to_clean
= i
;
1048 cleaned_count
= e1000_desc_unused(rx_ring
);
1050 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1052 adapter
->total_rx_bytes
+= total_rx_bytes
;
1053 adapter
->total_rx_packets
+= total_rx_packets
;
1057 static void e1000_put_txbuf(struct e1000_ring
*tx_ring
,
1058 struct e1000_buffer
*buffer_info
,
1061 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
1063 if (buffer_info
->dma
) {
1064 if (buffer_info
->mapped_as_page
)
1065 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
1066 buffer_info
->length
, DMA_TO_DEVICE
);
1068 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
1069 buffer_info
->length
, DMA_TO_DEVICE
);
1070 buffer_info
->dma
= 0;
1072 if (buffer_info
->skb
) {
1074 dev_kfree_skb_any(buffer_info
->skb
);
1076 dev_consume_skb_any(buffer_info
->skb
);
1077 buffer_info
->skb
= NULL
;
1079 buffer_info
->time_stamp
= 0;
1082 static void e1000_print_hw_hang(struct work_struct
*work
)
1084 struct e1000_adapter
*adapter
= container_of(work
,
1085 struct e1000_adapter
,
1087 struct net_device
*netdev
= adapter
->netdev
;
1088 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1089 unsigned int i
= tx_ring
->next_to_clean
;
1090 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1091 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1092 struct e1000_hw
*hw
= &adapter
->hw
;
1093 u16 phy_status
, phy_1000t_status
, phy_ext_status
;
1096 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1099 if (!adapter
->tx_hang_recheck
&& (adapter
->flags2
& FLAG2_DMA_BURST
)) {
1100 /* May be block on write-back, flush and detect again
1101 * flush pending descriptor writebacks to memory
1103 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
1104 /* execute the writes immediately */
1106 /* Due to rare timing issues, write to TIDV again to ensure
1107 * the write is successful
1109 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
1110 /* execute the writes immediately */
1112 adapter
->tx_hang_recheck
= true;
1115 adapter
->tx_hang_recheck
= false;
1117 if (er32(TDH(0)) == er32(TDT(0))) {
1118 e_dbg("false hang detected, ignoring\n");
1122 /* Real hang detected */
1123 netif_stop_queue(netdev
);
1125 e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1126 e1e_rphy(hw
, MII_STAT1000
, &phy_1000t_status
);
1127 e1e_rphy(hw
, MII_ESTATUS
, &phy_ext_status
);
1129 pci_read_config_word(adapter
->pdev
, PCI_STATUS
, &pci_status
);
1131 /* detected Hardware unit hang */
1132 e_err("Detected Hardware Unit Hang:\n"
1135 " next_to_use <%x>\n"
1136 " next_to_clean <%x>\n"
1137 "buffer_info[next_to_clean]:\n"
1138 " time_stamp <%lx>\n"
1139 " next_to_watch <%x>\n"
1141 " next_to_watch.status <%x>\n"
1144 "PHY 1000BASE-T Status <%x>\n"
1145 "PHY Extended Status <%x>\n"
1146 "PCI Status <%x>\n",
1147 readl(tx_ring
->head
), readl(tx_ring
->tail
), tx_ring
->next_to_use
,
1148 tx_ring
->next_to_clean
, tx_ring
->buffer_info
[eop
].time_stamp
,
1149 eop
, jiffies
, eop_desc
->upper
.fields
.status
, er32(STATUS
),
1150 phy_status
, phy_1000t_status
, phy_ext_status
, pci_status
);
1152 e1000e_dump(adapter
);
1154 /* Suggest workaround for known h/w issue */
1155 if ((hw
->mac
.type
== e1000_pchlan
) && (er32(CTRL
) & E1000_CTRL_TFCE
))
1156 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1160 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1161 * @work: pointer to work struct
1163 * This work function polls the TSYNCTXCTL valid bit to determine when a
1164 * timestamp has been taken for the current stored skb. The timestamp must
1165 * be for this skb because only one such packet is allowed in the queue.
1167 static void e1000e_tx_hwtstamp_work(struct work_struct
*work
)
1169 struct e1000_adapter
*adapter
= container_of(work
, struct e1000_adapter
,
1171 struct e1000_hw
*hw
= &adapter
->hw
;
1173 if (er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_VALID
) {
1174 struct sk_buff
*skb
= adapter
->tx_hwtstamp_skb
;
1175 struct skb_shared_hwtstamps shhwtstamps
;
1178 txstmp
= er32(TXSTMPL
);
1179 txstmp
|= (u64
)er32(TXSTMPH
) << 32;
1181 e1000e_systim_to_hwtstamp(adapter
, &shhwtstamps
, txstmp
);
1183 /* Clear the global tx_hwtstamp_skb pointer and force writes
1184 * prior to notifying the stack of a Tx timestamp.
1186 adapter
->tx_hwtstamp_skb
= NULL
;
1187 wmb(); /* force write prior to skb_tstamp_tx */
1189 skb_tstamp_tx(skb
, &shhwtstamps
);
1190 dev_consume_skb_any(skb
);
1191 } else if (time_after(jiffies
, adapter
->tx_hwtstamp_start
1192 + adapter
->tx_timeout_factor
* HZ
)) {
1193 dev_kfree_skb_any(adapter
->tx_hwtstamp_skb
);
1194 adapter
->tx_hwtstamp_skb
= NULL
;
1195 adapter
->tx_hwtstamp_timeouts
++;
1196 e_warn("clearing Tx timestamp hang\n");
1198 /* reschedule to check later */
1199 schedule_work(&adapter
->tx_hwtstamp_work
);
1204 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1205 * @tx_ring: Tx descriptor ring
1207 * the return value indicates whether actual cleaning was done, there
1208 * is no guarantee that everything was cleaned
1210 static bool e1000_clean_tx_irq(struct e1000_ring
*tx_ring
)
1212 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
1213 struct net_device
*netdev
= adapter
->netdev
;
1214 struct e1000_hw
*hw
= &adapter
->hw
;
1215 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
1216 struct e1000_buffer
*buffer_info
;
1217 unsigned int i
, eop
;
1218 unsigned int count
= 0;
1219 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
1220 unsigned int bytes_compl
= 0, pkts_compl
= 0;
1222 i
= tx_ring
->next_to_clean
;
1223 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1224 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1226 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
1227 (count
< tx_ring
->count
)) {
1228 bool cleaned
= false;
1230 dma_rmb(); /* read buffer_info after eop_desc */
1231 for (; !cleaned
; count
++) {
1232 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1233 buffer_info
= &tx_ring
->buffer_info
[i
];
1234 cleaned
= (i
== eop
);
1237 total_tx_packets
+= buffer_info
->segs
;
1238 total_tx_bytes
+= buffer_info
->bytecount
;
1239 if (buffer_info
->skb
) {
1240 bytes_compl
+= buffer_info
->skb
->len
;
1245 e1000_put_txbuf(tx_ring
, buffer_info
, false);
1246 tx_desc
->upper
.data
= 0;
1249 if (i
== tx_ring
->count
)
1253 if (i
== tx_ring
->next_to_use
)
1255 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1256 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1259 tx_ring
->next_to_clean
= i
;
1261 netdev_completed_queue(netdev
, pkts_compl
, bytes_compl
);
1263 #define TX_WAKE_THRESHOLD 32
1264 if (count
&& netif_carrier_ok(netdev
) &&
1265 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
1266 /* Make sure that anybody stopping the queue after this
1267 * sees the new next_to_clean.
1271 if (netif_queue_stopped(netdev
) &&
1272 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
1273 netif_wake_queue(netdev
);
1274 ++adapter
->restart_queue
;
1278 if (adapter
->detect_tx_hung
) {
1279 /* Detect a transmit hang in hardware, this serializes the
1280 * check with the clearing of time_stamp and movement of i
1282 adapter
->detect_tx_hung
= false;
1283 if (tx_ring
->buffer_info
[i
].time_stamp
&&
1284 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
1285 + (adapter
->tx_timeout_factor
* HZ
)) &&
1286 !(er32(STATUS
) & E1000_STATUS_TXOFF
))
1287 schedule_work(&adapter
->print_hang_task
);
1289 adapter
->tx_hang_recheck
= false;
1291 adapter
->total_tx_bytes
+= total_tx_bytes
;
1292 adapter
->total_tx_packets
+= total_tx_packets
;
1293 return count
< tx_ring
->count
;
1297 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1298 * @rx_ring: Rx descriptor ring
1299 * @work_done: output parameter for indicating completed work
1300 * @work_to_do: how many packets we can clean
1302 * the return value indicates whether actual cleaning was done, there
1303 * is no guarantee that everything was cleaned
1305 static bool e1000_clean_rx_irq_ps(struct e1000_ring
*rx_ring
, int *work_done
,
1308 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1309 struct e1000_hw
*hw
= &adapter
->hw
;
1310 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
1311 struct net_device
*netdev
= adapter
->netdev
;
1312 struct pci_dev
*pdev
= adapter
->pdev
;
1313 struct e1000_buffer
*buffer_info
, *next_buffer
;
1314 struct e1000_ps_page
*ps_page
;
1315 struct sk_buff
*skb
;
1317 u32 length
, staterr
;
1318 int cleaned_count
= 0;
1319 bool cleaned
= false;
1320 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1322 i
= rx_ring
->next_to_clean
;
1323 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
1324 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1325 buffer_info
= &rx_ring
->buffer_info
[i
];
1327 while (staterr
& E1000_RXD_STAT_DD
) {
1328 if (*work_done
>= work_to_do
)
1331 skb
= buffer_info
->skb
;
1332 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1334 /* in the packet split case this is header only */
1335 prefetch(skb
->data
- NET_IP_ALIGN
);
1338 if (i
== rx_ring
->count
)
1340 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
1343 next_buffer
= &rx_ring
->buffer_info
[i
];
1347 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1348 adapter
->rx_ps_bsize0
, DMA_FROM_DEVICE
);
1349 buffer_info
->dma
= 0;
1351 /* see !EOP comment in other Rx routine */
1352 if (!(staterr
& E1000_RXD_STAT_EOP
))
1353 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
1355 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
1356 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1357 dev_kfree_skb_irq(skb
);
1358 if (staterr
& E1000_RXD_STAT_EOP
)
1359 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1363 if (unlikely((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
1364 !(netdev
->features
& NETIF_F_RXALL
))) {
1365 dev_kfree_skb_irq(skb
);
1369 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
1372 e_dbg("Last part of the packet spanning multiple descriptors\n");
1373 dev_kfree_skb_irq(skb
);
1378 skb_put(skb
, length
);
1381 /* this looks ugly, but it seems compiler issues make
1382 * it more efficient than reusing j
1384 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
1386 /* page alloc/put takes too long and effects small
1387 * packet throughput, so unsplit small packets and
1388 * save the alloc/put only valid in softirq (napi)
1389 * context to call kmap_*
1391 if (l1
&& (l1
<= copybreak
) &&
1392 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
1395 ps_page
= &buffer_info
->ps_pages
[0];
1397 /* there is no documentation about how to call
1398 * kmap_atomic, so we can't hold the mapping
1401 dma_sync_single_for_cpu(&pdev
->dev
,
1405 vaddr
= kmap_atomic(ps_page
->page
);
1406 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
1407 kunmap_atomic(vaddr
);
1408 dma_sync_single_for_device(&pdev
->dev
,
1413 /* remove the CRC */
1414 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
1415 if (!(netdev
->features
& NETIF_F_RXFCS
))
1424 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1425 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
1429 ps_page
= &buffer_info
->ps_pages
[j
];
1430 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1433 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
1434 ps_page
->page
= NULL
;
1436 skb
->data_len
+= length
;
1437 skb
->truesize
+= PAGE_SIZE
;
1440 /* strip the ethernet crc, problem is we're using pages now so
1441 * this whole operation can get a little cpu intensive
1443 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
1444 if (!(netdev
->features
& NETIF_F_RXFCS
))
1445 pskb_trim(skb
, skb
->len
- 4);
1449 total_rx_bytes
+= skb
->len
;
1452 e1000_rx_checksum(adapter
, staterr
, skb
);
1454 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1456 if (rx_desc
->wb
.upper
.header_status
&
1457 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
1458 adapter
->rx_hdr_split
++;
1460 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1461 rx_desc
->wb
.middle
.vlan
);
1464 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
1465 buffer_info
->skb
= NULL
;
1467 /* return some buffers to hardware, one at a time is too slow */
1468 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1469 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1474 /* use prefetched values */
1476 buffer_info
= next_buffer
;
1478 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1480 rx_ring
->next_to_clean
= i
;
1482 cleaned_count
= e1000_desc_unused(rx_ring
);
1484 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1486 adapter
->total_rx_bytes
+= total_rx_bytes
;
1487 adapter
->total_rx_packets
+= total_rx_packets
;
1491 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
1496 skb
->data_len
+= length
;
1497 skb
->truesize
+= PAGE_SIZE
;
1501 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1502 * @rx_ring: Rx descriptor ring
1503 * @work_done: output parameter for indicating completed work
1504 * @work_to_do: how many packets we can clean
1506 * the return value indicates whether actual cleaning was done, there
1507 * is no guarantee that everything was cleaned
1509 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring
*rx_ring
, int *work_done
,
1512 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1513 struct net_device
*netdev
= adapter
->netdev
;
1514 struct pci_dev
*pdev
= adapter
->pdev
;
1515 union e1000_rx_desc_extended
*rx_desc
, *next_rxd
;
1516 struct e1000_buffer
*buffer_info
, *next_buffer
;
1517 u32 length
, staterr
;
1519 int cleaned_count
= 0;
1520 bool cleaned
= false;
1521 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1522 struct skb_shared_info
*shinfo
;
1524 i
= rx_ring
->next_to_clean
;
1525 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1526 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1527 buffer_info
= &rx_ring
->buffer_info
[i
];
1529 while (staterr
& E1000_RXD_STAT_DD
) {
1530 struct sk_buff
*skb
;
1532 if (*work_done
>= work_to_do
)
1535 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1537 skb
= buffer_info
->skb
;
1538 buffer_info
->skb
= NULL
;
1541 if (i
== rx_ring
->count
)
1543 next_rxd
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1546 next_buffer
= &rx_ring
->buffer_info
[i
];
1550 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
, PAGE_SIZE
,
1552 buffer_info
->dma
= 0;
1554 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
1556 /* errors is only valid for DD + EOP descriptors */
1557 if (unlikely((staterr
& E1000_RXD_STAT_EOP
) &&
1558 ((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
1559 !(netdev
->features
& NETIF_F_RXALL
)))) {
1560 /* recycle both page and skb */
1561 buffer_info
->skb
= skb
;
1562 /* an error means any chain goes out the window too */
1563 if (rx_ring
->rx_skb_top
)
1564 dev_kfree_skb_irq(rx_ring
->rx_skb_top
);
1565 rx_ring
->rx_skb_top
= NULL
;
1568 #define rxtop (rx_ring->rx_skb_top)
1569 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
1570 /* this descriptor is only the beginning (or middle) */
1572 /* this is the beginning of a chain */
1574 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
1577 /* this is the middle of a chain */
1578 shinfo
= skb_shinfo(rxtop
);
1579 skb_fill_page_desc(rxtop
, shinfo
->nr_frags
,
1580 buffer_info
->page
, 0,
1582 /* re-use the skb, only consumed the page */
1583 buffer_info
->skb
= skb
;
1585 e1000_consume_page(buffer_info
, rxtop
, length
);
1589 /* end of the chain */
1590 shinfo
= skb_shinfo(rxtop
);
1591 skb_fill_page_desc(rxtop
, shinfo
->nr_frags
,
1592 buffer_info
->page
, 0,
1594 /* re-use the current skb, we only consumed the
1597 buffer_info
->skb
= skb
;
1600 e1000_consume_page(buffer_info
, skb
, length
);
1602 /* no chain, got EOP, this buf is the packet
1603 * copybreak to save the put_page/alloc_page
1605 if (length
<= copybreak
&&
1606 skb_tailroom(skb
) >= length
) {
1608 vaddr
= kmap_atomic(buffer_info
->page
);
1609 memcpy(skb_tail_pointer(skb
), vaddr
,
1611 kunmap_atomic(vaddr
);
1612 /* re-use the page, so don't erase
1615 skb_put(skb
, length
);
1617 skb_fill_page_desc(skb
, 0,
1618 buffer_info
->page
, 0,
1620 e1000_consume_page(buffer_info
, skb
,
1626 /* Receive Checksum Offload */
1627 e1000_rx_checksum(adapter
, staterr
, skb
);
1629 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1631 /* probably a little skewed due to removing CRC */
1632 total_rx_bytes
+= skb
->len
;
1635 /* eth type trans needs skb->data to point to something */
1636 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
1637 e_err("pskb_may_pull failed.\n");
1638 dev_kfree_skb_irq(skb
);
1642 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1643 rx_desc
->wb
.upper
.vlan
);
1646 rx_desc
->wb
.upper
.status_error
&= cpu_to_le32(~0xFF);
1648 /* return some buffers to hardware, one at a time is too slow */
1649 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
1650 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1655 /* use prefetched values */
1657 buffer_info
= next_buffer
;
1659 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1661 rx_ring
->next_to_clean
= i
;
1663 cleaned_count
= e1000_desc_unused(rx_ring
);
1665 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1667 adapter
->total_rx_bytes
+= total_rx_bytes
;
1668 adapter
->total_rx_packets
+= total_rx_packets
;
1673 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1674 * @rx_ring: Rx descriptor ring
1676 static void e1000_clean_rx_ring(struct e1000_ring
*rx_ring
)
1678 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1679 struct e1000_buffer
*buffer_info
;
1680 struct e1000_ps_page
*ps_page
;
1681 struct pci_dev
*pdev
= adapter
->pdev
;
1684 /* Free all the Rx ring sk_buffs */
1685 for (i
= 0; i
< rx_ring
->count
; i
++) {
1686 buffer_info
= &rx_ring
->buffer_info
[i
];
1687 if (buffer_info
->dma
) {
1688 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
1689 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1690 adapter
->rx_buffer_len
,
1692 else if (adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
)
1693 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
1694 PAGE_SIZE
, DMA_FROM_DEVICE
);
1695 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
1696 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1697 adapter
->rx_ps_bsize0
,
1699 buffer_info
->dma
= 0;
1702 if (buffer_info
->page
) {
1703 put_page(buffer_info
->page
);
1704 buffer_info
->page
= NULL
;
1707 if (buffer_info
->skb
) {
1708 dev_kfree_skb(buffer_info
->skb
);
1709 buffer_info
->skb
= NULL
;
1712 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1713 ps_page
= &buffer_info
->ps_pages
[j
];
1716 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1719 put_page(ps_page
->page
);
1720 ps_page
->page
= NULL
;
1724 /* there also may be some cached data from a chained receive */
1725 if (rx_ring
->rx_skb_top
) {
1726 dev_kfree_skb(rx_ring
->rx_skb_top
);
1727 rx_ring
->rx_skb_top
= NULL
;
1730 /* Zero out the descriptor ring */
1731 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1733 rx_ring
->next_to_clean
= 0;
1734 rx_ring
->next_to_use
= 0;
1735 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1738 static void e1000e_downshift_workaround(struct work_struct
*work
)
1740 struct e1000_adapter
*adapter
= container_of(work
,
1741 struct e1000_adapter
,
1744 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1747 e1000e_gig_downshift_workaround_ich8lan(&adapter
->hw
);
1751 * e1000_intr_msi - Interrupt Handler
1752 * @irq: interrupt number
1753 * @data: pointer to a network interface device structure
1755 static irqreturn_t
e1000_intr_msi(int __always_unused irq
, void *data
)
1757 struct net_device
*netdev
= data
;
1758 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1759 struct e1000_hw
*hw
= &adapter
->hw
;
1760 u32 icr
= er32(ICR
);
1762 /* read ICR disables interrupts using IAM */
1763 if (icr
& E1000_ICR_LSC
) {
1764 hw
->mac
.get_link_status
= true;
1765 /* ICH8 workaround-- Call gig speed drop workaround on cable
1766 * disconnect (LSC) before accessing any PHY registers
1768 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1769 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1770 schedule_work(&adapter
->downshift_task
);
1772 /* 80003ES2LAN workaround-- For packet buffer work-around on
1773 * link down event; disable receives here in the ISR and reset
1774 * adapter in watchdog
1776 if (netif_carrier_ok(netdev
) &&
1777 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
1778 /* disable receives */
1779 u32 rctl
= er32(RCTL
);
1781 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1782 adapter
->flags
|= FLAG_RESTART_NOW
;
1784 /* guard against interrupt when we're going down */
1785 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1786 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1789 /* Reset on uncorrectable ECC error */
1790 if ((icr
& E1000_ICR_ECCER
) && (hw
->mac
.type
>= e1000_pch_lpt
)) {
1791 u32 pbeccsts
= er32(PBECCSTS
);
1793 adapter
->corr_errors
+=
1794 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
1795 adapter
->uncorr_errors
+=
1796 (pbeccsts
& E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
) >>
1797 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT
;
1799 /* Do the reset outside of interrupt context */
1800 schedule_work(&adapter
->reset_task
);
1802 /* return immediately since reset is imminent */
1806 if (napi_schedule_prep(&adapter
->napi
)) {
1807 adapter
->total_tx_bytes
= 0;
1808 adapter
->total_tx_packets
= 0;
1809 adapter
->total_rx_bytes
= 0;
1810 adapter
->total_rx_packets
= 0;
1811 __napi_schedule(&adapter
->napi
);
1818 * e1000_intr - Interrupt Handler
1819 * @irq: interrupt number
1820 * @data: pointer to a network interface device structure
1822 static irqreturn_t
e1000_intr(int __always_unused irq
, void *data
)
1824 struct net_device
*netdev
= data
;
1825 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1826 struct e1000_hw
*hw
= &adapter
->hw
;
1827 u32 rctl
, icr
= er32(ICR
);
1829 if (!icr
|| test_bit(__E1000_DOWN
, &adapter
->state
))
1830 return IRQ_NONE
; /* Not our interrupt */
1832 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1833 * not set, then the adapter didn't send an interrupt
1835 if (!(icr
& E1000_ICR_INT_ASSERTED
))
1838 /* Interrupt Auto-Mask...upon reading ICR,
1839 * interrupts are masked. No need for the
1843 if (icr
& E1000_ICR_LSC
) {
1844 hw
->mac
.get_link_status
= true;
1845 /* ICH8 workaround-- Call gig speed drop workaround on cable
1846 * disconnect (LSC) before accessing any PHY registers
1848 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1849 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1850 schedule_work(&adapter
->downshift_task
);
1852 /* 80003ES2LAN workaround--
1853 * For packet buffer work-around on link down event;
1854 * disable receives here in the ISR and
1855 * reset adapter in watchdog
1857 if (netif_carrier_ok(netdev
) &&
1858 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
1859 /* disable receives */
1861 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1862 adapter
->flags
|= FLAG_RESTART_NOW
;
1864 /* guard against interrupt when we're going down */
1865 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1866 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1869 /* Reset on uncorrectable ECC error */
1870 if ((icr
& E1000_ICR_ECCER
) && (hw
->mac
.type
>= e1000_pch_lpt
)) {
1871 u32 pbeccsts
= er32(PBECCSTS
);
1873 adapter
->corr_errors
+=
1874 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
1875 adapter
->uncorr_errors
+=
1876 (pbeccsts
& E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
) >>
1877 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT
;
1879 /* Do the reset outside of interrupt context */
1880 schedule_work(&adapter
->reset_task
);
1882 /* return immediately since reset is imminent */
1886 if (napi_schedule_prep(&adapter
->napi
)) {
1887 adapter
->total_tx_bytes
= 0;
1888 adapter
->total_tx_packets
= 0;
1889 adapter
->total_rx_bytes
= 0;
1890 adapter
->total_rx_packets
= 0;
1891 __napi_schedule(&adapter
->napi
);
1897 static irqreturn_t
e1000_msix_other(int __always_unused irq
, void *data
)
1899 struct net_device
*netdev
= data
;
1900 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1901 struct e1000_hw
*hw
= &adapter
->hw
;
1902 u32 icr
= er32(ICR
);
1904 if (icr
& adapter
->eiac_mask
)
1905 ew32(ICS
, (icr
& adapter
->eiac_mask
));
1907 if (icr
& E1000_ICR_LSC
) {
1908 hw
->mac
.get_link_status
= true;
1909 /* guard against interrupt when we're going down */
1910 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1911 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1914 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1915 ew32(IMS
, E1000_IMS_OTHER
| IMS_OTHER_MASK
);
1920 static irqreturn_t
e1000_intr_msix_tx(int __always_unused irq
, void *data
)
1922 struct net_device
*netdev
= data
;
1923 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1924 struct e1000_hw
*hw
= &adapter
->hw
;
1925 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1927 adapter
->total_tx_bytes
= 0;
1928 adapter
->total_tx_packets
= 0;
1930 if (!e1000_clean_tx_irq(tx_ring
))
1931 /* Ring was not completely cleaned, so fire another interrupt */
1932 ew32(ICS
, tx_ring
->ims_val
);
1934 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1935 ew32(IMS
, adapter
->tx_ring
->ims_val
);
1940 static irqreturn_t
e1000_intr_msix_rx(int __always_unused irq
, void *data
)
1942 struct net_device
*netdev
= data
;
1943 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1944 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1946 /* Write the ITR value calculated at the end of the
1947 * previous interrupt.
1949 if (rx_ring
->set_itr
) {
1950 u32 itr
= rx_ring
->itr_val
?
1951 1000000000 / (rx_ring
->itr_val
* 256) : 0;
1953 writel(itr
, rx_ring
->itr_register
);
1954 rx_ring
->set_itr
= 0;
1957 if (napi_schedule_prep(&adapter
->napi
)) {
1958 adapter
->total_rx_bytes
= 0;
1959 adapter
->total_rx_packets
= 0;
1960 __napi_schedule(&adapter
->napi
);
1966 * e1000_configure_msix - Configure MSI-X hardware
1967 * @adapter: board private structure
1969 * e1000_configure_msix sets up the hardware to properly
1970 * generate MSI-X interrupts.
1972 static void e1000_configure_msix(struct e1000_adapter
*adapter
)
1974 struct e1000_hw
*hw
= &adapter
->hw
;
1975 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1976 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1978 u32 ctrl_ext
, ivar
= 0;
1980 adapter
->eiac_mask
= 0;
1982 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1983 if (hw
->mac
.type
== e1000_82574
) {
1984 u32 rfctl
= er32(RFCTL
);
1986 rfctl
|= E1000_RFCTL_ACK_DIS
;
1990 /* Configure Rx vector */
1991 rx_ring
->ims_val
= E1000_IMS_RXQ0
;
1992 adapter
->eiac_mask
|= rx_ring
->ims_val
;
1993 if (rx_ring
->itr_val
)
1994 writel(1000000000 / (rx_ring
->itr_val
* 256),
1995 rx_ring
->itr_register
);
1997 writel(1, rx_ring
->itr_register
);
1998 ivar
= E1000_IVAR_INT_ALLOC_VALID
| vector
;
2000 /* Configure Tx vector */
2001 tx_ring
->ims_val
= E1000_IMS_TXQ0
;
2003 if (tx_ring
->itr_val
)
2004 writel(1000000000 / (tx_ring
->itr_val
* 256),
2005 tx_ring
->itr_register
);
2007 writel(1, tx_ring
->itr_register
);
2008 adapter
->eiac_mask
|= tx_ring
->ims_val
;
2009 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 8);
2011 /* set vector for Other Causes, e.g. link changes */
2013 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 16);
2014 if (rx_ring
->itr_val
)
2015 writel(1000000000 / (rx_ring
->itr_val
* 256),
2016 hw
->hw_addr
+ E1000_EITR_82574(vector
));
2018 writel(1, hw
->hw_addr
+ E1000_EITR_82574(vector
));
2020 /* Cause Tx interrupts on every write back */
2025 /* enable MSI-X PBA support */
2026 ctrl_ext
= er32(CTRL_EXT
) & ~E1000_CTRL_EXT_IAME
;
2027 ctrl_ext
|= E1000_CTRL_EXT_PBA_CLR
| E1000_CTRL_EXT_EIAME
;
2028 ew32(CTRL_EXT
, ctrl_ext
);
2032 void e1000e_reset_interrupt_capability(struct e1000_adapter
*adapter
)
2034 if (adapter
->msix_entries
) {
2035 pci_disable_msix(adapter
->pdev
);
2036 kfree(adapter
->msix_entries
);
2037 adapter
->msix_entries
= NULL
;
2038 } else if (adapter
->flags
& FLAG_MSI_ENABLED
) {
2039 pci_disable_msi(adapter
->pdev
);
2040 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
2045 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2046 * @adapter: board private structure
2048 * Attempt to configure interrupts using the best available
2049 * capabilities of the hardware and kernel.
2051 void e1000e_set_interrupt_capability(struct e1000_adapter
*adapter
)
2056 switch (adapter
->int_mode
) {
2057 case E1000E_INT_MODE_MSIX
:
2058 if (adapter
->flags
& FLAG_HAS_MSIX
) {
2059 adapter
->num_vectors
= 3; /* RxQ0, TxQ0 and other */
2060 adapter
->msix_entries
= kcalloc(adapter
->num_vectors
,
2064 if (adapter
->msix_entries
) {
2065 struct e1000_adapter
*a
= adapter
;
2067 for (i
= 0; i
< adapter
->num_vectors
; i
++)
2068 adapter
->msix_entries
[i
].entry
= i
;
2070 err
= pci_enable_msix_range(a
->pdev
,
2077 /* MSI-X failed, so fall through and try MSI */
2078 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2079 e1000e_reset_interrupt_capability(adapter
);
2081 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
2083 case E1000E_INT_MODE_MSI
:
2084 if (!pci_enable_msi(adapter
->pdev
)) {
2085 adapter
->flags
|= FLAG_MSI_ENABLED
;
2087 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
2088 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2091 case E1000E_INT_MODE_LEGACY
:
2092 /* Don't do anything; this is the system default */
2096 /* store the number of vectors being used */
2097 adapter
->num_vectors
= 1;
2101 * e1000_request_msix - Initialize MSI-X interrupts
2102 * @adapter: board private structure
2104 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2107 static int e1000_request_msix(struct e1000_adapter
*adapter
)
2109 struct net_device
*netdev
= adapter
->netdev
;
2110 int err
= 0, vector
= 0;
2112 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
2113 snprintf(adapter
->rx_ring
->name
,
2114 sizeof(adapter
->rx_ring
->name
) - 1,
2115 "%.14s-rx-0", netdev
->name
);
2117 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
2118 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2119 e1000_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
2123 adapter
->rx_ring
->itr_register
= adapter
->hw
.hw_addr
+
2124 E1000_EITR_82574(vector
);
2125 adapter
->rx_ring
->itr_val
= adapter
->itr
;
2128 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
2129 snprintf(adapter
->tx_ring
->name
,
2130 sizeof(adapter
->tx_ring
->name
) - 1,
2131 "%.14s-tx-0", netdev
->name
);
2133 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
2134 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2135 e1000_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
2139 adapter
->tx_ring
->itr_register
= adapter
->hw
.hw_addr
+
2140 E1000_EITR_82574(vector
);
2141 adapter
->tx_ring
->itr_val
= adapter
->itr
;
2144 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2145 e1000_msix_other
, 0, netdev
->name
, netdev
);
2149 e1000_configure_msix(adapter
);
2155 * e1000_request_irq - initialize interrupts
2156 * @adapter: board private structure
2158 * Attempts to configure interrupts using the best available
2159 * capabilities of the hardware and kernel.
2161 static int e1000_request_irq(struct e1000_adapter
*adapter
)
2163 struct net_device
*netdev
= adapter
->netdev
;
2166 if (adapter
->msix_entries
) {
2167 err
= e1000_request_msix(adapter
);
2170 /* fall back to MSI */
2171 e1000e_reset_interrupt_capability(adapter
);
2172 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
2173 e1000e_set_interrupt_capability(adapter
);
2175 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
2176 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi
, 0,
2177 netdev
->name
, netdev
);
2181 /* fall back to legacy interrupt */
2182 e1000e_reset_interrupt_capability(adapter
);
2183 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
2186 err
= request_irq(adapter
->pdev
->irq
, e1000_intr
, IRQF_SHARED
,
2187 netdev
->name
, netdev
);
2189 e_err("Unable to allocate interrupt, Error: %d\n", err
);
2194 static void e1000_free_irq(struct e1000_adapter
*adapter
)
2196 struct net_device
*netdev
= adapter
->netdev
;
2198 if (adapter
->msix_entries
) {
2201 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2204 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2207 /* Other Causes interrupt vector */
2208 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2212 free_irq(adapter
->pdev
->irq
, netdev
);
2216 * e1000_irq_disable - Mask off interrupt generation on the NIC
2217 * @adapter: board private structure
2219 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
2221 struct e1000_hw
*hw
= &adapter
->hw
;
2224 if (adapter
->msix_entries
)
2225 ew32(EIAC_82574
, 0);
2228 if (adapter
->msix_entries
) {
2231 for (i
= 0; i
< adapter
->num_vectors
; i
++)
2232 synchronize_irq(adapter
->msix_entries
[i
].vector
);
2234 synchronize_irq(adapter
->pdev
->irq
);
2239 * e1000_irq_enable - Enable default interrupt generation settings
2240 * @adapter: board private structure
2242 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
2244 struct e1000_hw
*hw
= &adapter
->hw
;
2246 if (adapter
->msix_entries
) {
2247 ew32(EIAC_82574
, adapter
->eiac_mask
& E1000_EIAC_MASK_82574
);
2248 ew32(IMS
, adapter
->eiac_mask
| E1000_IMS_OTHER
|
2250 } else if (hw
->mac
.type
>= e1000_pch_lpt
) {
2251 ew32(IMS
, IMS_ENABLE_MASK
| E1000_IMS_ECCER
);
2253 ew32(IMS
, IMS_ENABLE_MASK
);
2259 * e1000e_get_hw_control - get control of the h/w from f/w
2260 * @adapter: address of board private structure
2262 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2263 * For ASF and Pass Through versions of f/w this means that
2264 * the driver is loaded. For AMT version (only with 82573)
2265 * of the f/w this means that the network i/f is open.
2267 void e1000e_get_hw_control(struct e1000_adapter
*adapter
)
2269 struct e1000_hw
*hw
= &adapter
->hw
;
2273 /* Let firmware know the driver has taken over */
2274 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2276 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
2277 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2278 ctrl_ext
= er32(CTRL_EXT
);
2279 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
2284 * e1000e_release_hw_control - release control of the h/w to f/w
2285 * @adapter: address of board private structure
2287 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2288 * For ASF and Pass Through versions of f/w this means that the
2289 * driver is no longer loaded. For AMT version (only with 82573) i
2290 * of the f/w this means that the network i/f is closed.
2293 void e1000e_release_hw_control(struct e1000_adapter
*adapter
)
2295 struct e1000_hw
*hw
= &adapter
->hw
;
2299 /* Let firmware taken over control of h/w */
2300 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2302 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
2303 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2304 ctrl_ext
= er32(CTRL_EXT
);
2305 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
2310 * e1000_alloc_ring_dma - allocate memory for a ring structure
2311 * @adapter: board private structure
2312 * @ring: ring struct for which to allocate dma
2314 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
2315 struct e1000_ring
*ring
)
2317 struct pci_dev
*pdev
= adapter
->pdev
;
2319 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
2328 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2329 * @tx_ring: Tx descriptor ring
2331 * Return 0 on success, negative on failure
2333 int e1000e_setup_tx_resources(struct e1000_ring
*tx_ring
)
2335 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2336 int err
= -ENOMEM
, size
;
2338 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2339 tx_ring
->buffer_info
= vzalloc(size
);
2340 if (!tx_ring
->buffer_info
)
2343 /* round up to nearest 4K */
2344 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2345 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
2347 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
2351 tx_ring
->next_to_use
= 0;
2352 tx_ring
->next_to_clean
= 0;
2356 vfree(tx_ring
->buffer_info
);
2357 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2362 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2363 * @rx_ring: Rx descriptor ring
2365 * Returns 0 on success, negative on failure
2367 int e1000e_setup_rx_resources(struct e1000_ring
*rx_ring
)
2369 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
2370 struct e1000_buffer
*buffer_info
;
2371 int i
, size
, desc_len
, err
= -ENOMEM
;
2373 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2374 rx_ring
->buffer_info
= vzalloc(size
);
2375 if (!rx_ring
->buffer_info
)
2378 for (i
= 0; i
< rx_ring
->count
; i
++) {
2379 buffer_info
= &rx_ring
->buffer_info
[i
];
2380 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
2381 sizeof(struct e1000_ps_page
),
2383 if (!buffer_info
->ps_pages
)
2387 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
2389 /* Round up to nearest 4K */
2390 rx_ring
->size
= rx_ring
->count
* desc_len
;
2391 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
2393 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
2397 rx_ring
->next_to_clean
= 0;
2398 rx_ring
->next_to_use
= 0;
2399 rx_ring
->rx_skb_top
= NULL
;
2404 for (i
= 0; i
< rx_ring
->count
; i
++) {
2405 buffer_info
= &rx_ring
->buffer_info
[i
];
2406 kfree(buffer_info
->ps_pages
);
2409 vfree(rx_ring
->buffer_info
);
2410 e_err("Unable to allocate memory for the receive descriptor ring\n");
2415 * e1000_clean_tx_ring - Free Tx Buffers
2416 * @tx_ring: Tx descriptor ring
2418 static void e1000_clean_tx_ring(struct e1000_ring
*tx_ring
)
2420 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2421 struct e1000_buffer
*buffer_info
;
2425 for (i
= 0; i
< tx_ring
->count
; i
++) {
2426 buffer_info
= &tx_ring
->buffer_info
[i
];
2427 e1000_put_txbuf(tx_ring
, buffer_info
, false);
2430 netdev_reset_queue(adapter
->netdev
);
2431 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2432 memset(tx_ring
->buffer_info
, 0, size
);
2434 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2436 tx_ring
->next_to_use
= 0;
2437 tx_ring
->next_to_clean
= 0;
2441 * e1000e_free_tx_resources - Free Tx Resources per Queue
2442 * @tx_ring: Tx descriptor ring
2444 * Free all transmit software resources
2446 void e1000e_free_tx_resources(struct e1000_ring
*tx_ring
)
2448 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2449 struct pci_dev
*pdev
= adapter
->pdev
;
2451 e1000_clean_tx_ring(tx_ring
);
2453 vfree(tx_ring
->buffer_info
);
2454 tx_ring
->buffer_info
= NULL
;
2456 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
2458 tx_ring
->desc
= NULL
;
2462 * e1000e_free_rx_resources - Free Rx Resources
2463 * @rx_ring: Rx descriptor ring
2465 * Free all receive software resources
2467 void e1000e_free_rx_resources(struct e1000_ring
*rx_ring
)
2469 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
2470 struct pci_dev
*pdev
= adapter
->pdev
;
2473 e1000_clean_rx_ring(rx_ring
);
2475 for (i
= 0; i
< rx_ring
->count
; i
++)
2476 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
2478 vfree(rx_ring
->buffer_info
);
2479 rx_ring
->buffer_info
= NULL
;
2481 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
2483 rx_ring
->desc
= NULL
;
2487 * e1000_update_itr - update the dynamic ITR value based on statistics
2488 * @itr_setting: current adapter->itr
2489 * @packets: the number of packets during this measurement interval
2490 * @bytes: the number of bytes during this measurement interval
2492 * Stores a new ITR value based on packets and byte
2493 * counts during the last interrupt. The advantage of per interrupt
2494 * computation is faster updates and more accurate ITR for the current
2495 * traffic pattern. Constants in this function were computed
2496 * based on theoretical maximum wire speed and thresholds were set based
2497 * on testing data as well as attempting to minimize response time
2498 * while increasing bulk throughput. This functionality is controlled
2499 * by the InterruptThrottleRate module parameter.
2501 static unsigned int e1000_update_itr(u16 itr_setting
, int packets
, int bytes
)
2503 unsigned int retval
= itr_setting
;
2508 switch (itr_setting
) {
2509 case lowest_latency
:
2510 /* handle TSO and jumbo frames */
2511 if (bytes
/ packets
> 8000)
2512 retval
= bulk_latency
;
2513 else if ((packets
< 5) && (bytes
> 512))
2514 retval
= low_latency
;
2516 case low_latency
: /* 50 usec aka 20000 ints/s */
2517 if (bytes
> 10000) {
2518 /* this if handles the TSO accounting */
2519 if (bytes
/ packets
> 8000)
2520 retval
= bulk_latency
;
2521 else if ((packets
< 10) || ((bytes
/ packets
) > 1200))
2522 retval
= bulk_latency
;
2523 else if ((packets
> 35))
2524 retval
= lowest_latency
;
2525 } else if (bytes
/ packets
> 2000) {
2526 retval
= bulk_latency
;
2527 } else if (packets
<= 2 && bytes
< 512) {
2528 retval
= lowest_latency
;
2531 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2532 if (bytes
> 25000) {
2534 retval
= low_latency
;
2535 } else if (bytes
< 6000) {
2536 retval
= low_latency
;
2544 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2547 u32 new_itr
= adapter
->itr
;
2549 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2550 if (adapter
->link_speed
!= SPEED_1000
) {
2556 if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
2561 adapter
->tx_itr
= e1000_update_itr(adapter
->tx_itr
,
2562 adapter
->total_tx_packets
,
2563 adapter
->total_tx_bytes
);
2564 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2565 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2566 adapter
->tx_itr
= low_latency
;
2568 adapter
->rx_itr
= e1000_update_itr(adapter
->rx_itr
,
2569 adapter
->total_rx_packets
,
2570 adapter
->total_rx_bytes
);
2571 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2572 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2573 adapter
->rx_itr
= low_latency
;
2575 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2577 /* counts and packets in update_itr are dependent on these numbers */
2578 switch (current_itr
) {
2579 case lowest_latency
:
2583 new_itr
= 20000; /* aka hwitr = ~200 */
2593 if (new_itr
!= adapter
->itr
) {
2594 /* this attempts to bias the interrupt rate towards Bulk
2595 * by adding intermediate steps when interrupt rate is
2598 new_itr
= new_itr
> adapter
->itr
?
2599 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) : new_itr
;
2600 adapter
->itr
= new_itr
;
2601 adapter
->rx_ring
->itr_val
= new_itr
;
2602 if (adapter
->msix_entries
)
2603 adapter
->rx_ring
->set_itr
= 1;
2605 e1000e_write_itr(adapter
, new_itr
);
2610 * e1000e_write_itr - write the ITR value to the appropriate registers
2611 * @adapter: address of board private structure
2612 * @itr: new ITR value to program
2614 * e1000e_write_itr determines if the adapter is in MSI-X mode
2615 * and, if so, writes the EITR registers with the ITR value.
2616 * Otherwise, it writes the ITR value into the ITR register.
2618 void e1000e_write_itr(struct e1000_adapter
*adapter
, u32 itr
)
2620 struct e1000_hw
*hw
= &adapter
->hw
;
2621 u32 new_itr
= itr
? 1000000000 / (itr
* 256) : 0;
2623 if (adapter
->msix_entries
) {
2626 for (vector
= 0; vector
< adapter
->num_vectors
; vector
++)
2627 writel(new_itr
, hw
->hw_addr
+ E1000_EITR_82574(vector
));
2634 * e1000_alloc_queues - Allocate memory for all rings
2635 * @adapter: board private structure to initialize
2637 static int e1000_alloc_queues(struct e1000_adapter
*adapter
)
2639 int size
= sizeof(struct e1000_ring
);
2641 adapter
->tx_ring
= kzalloc(size
, GFP_KERNEL
);
2642 if (!adapter
->tx_ring
)
2644 adapter
->tx_ring
->count
= adapter
->tx_ring_count
;
2645 adapter
->tx_ring
->adapter
= adapter
;
2647 adapter
->rx_ring
= kzalloc(size
, GFP_KERNEL
);
2648 if (!adapter
->rx_ring
)
2650 adapter
->rx_ring
->count
= adapter
->rx_ring_count
;
2651 adapter
->rx_ring
->adapter
= adapter
;
2655 e_err("Unable to allocate memory for queues\n");
2656 kfree(adapter
->rx_ring
);
2657 kfree(adapter
->tx_ring
);
2662 * e1000e_poll - NAPI Rx polling callback
2663 * @napi: struct associated with this polling callback
2664 * @budget: number of packets driver is allowed to process this poll
2666 static int e1000e_poll(struct napi_struct
*napi
, int budget
)
2668 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
,
2670 struct e1000_hw
*hw
= &adapter
->hw
;
2671 struct net_device
*poll_dev
= adapter
->netdev
;
2672 int tx_cleaned
= 1, work_done
= 0;
2674 adapter
= netdev_priv(poll_dev
);
2676 if (!adapter
->msix_entries
||
2677 (adapter
->rx_ring
->ims_val
& adapter
->tx_ring
->ims_val
))
2678 tx_cleaned
= e1000_clean_tx_irq(adapter
->tx_ring
);
2680 adapter
->clean_rx(adapter
->rx_ring
, &work_done
, budget
);
2682 if (!tx_cleaned
|| work_done
== budget
)
2685 /* Exit the polling mode, but don't re-enable interrupts if stack might
2686 * poll us due to busy-polling
2688 if (likely(napi_complete_done(napi
, work_done
))) {
2689 if (adapter
->itr_setting
& 3)
2690 e1000_set_itr(adapter
);
2691 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
2692 if (adapter
->msix_entries
)
2693 ew32(IMS
, adapter
->rx_ring
->ims_val
);
2695 e1000_irq_enable(adapter
);
2702 static int e1000_vlan_rx_add_vid(struct net_device
*netdev
,
2703 __always_unused __be16 proto
, u16 vid
)
2705 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2706 struct e1000_hw
*hw
= &adapter
->hw
;
2709 /* don't update vlan cookie if already programmed */
2710 if ((adapter
->hw
.mng_cookie
.status
&
2711 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2712 (vid
== adapter
->mng_vlan_id
))
2715 /* add VID to filter table */
2716 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2717 index
= (vid
>> 5) & 0x7F;
2718 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2719 vfta
|= BIT((vid
& 0x1F));
2720 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2723 set_bit(vid
, adapter
->active_vlans
);
2728 static int e1000_vlan_rx_kill_vid(struct net_device
*netdev
,
2729 __always_unused __be16 proto
, u16 vid
)
2731 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2732 struct e1000_hw
*hw
= &adapter
->hw
;
2735 if ((adapter
->hw
.mng_cookie
.status
&
2736 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2737 (vid
== adapter
->mng_vlan_id
)) {
2738 /* release control to f/w */
2739 e1000e_release_hw_control(adapter
);
2743 /* remove VID from filter table */
2744 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2745 index
= (vid
>> 5) & 0x7F;
2746 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2747 vfta
&= ~BIT((vid
& 0x1F));
2748 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2751 clear_bit(vid
, adapter
->active_vlans
);
2757 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2758 * @adapter: board private structure to initialize
2760 static void e1000e_vlan_filter_disable(struct e1000_adapter
*adapter
)
2762 struct net_device
*netdev
= adapter
->netdev
;
2763 struct e1000_hw
*hw
= &adapter
->hw
;
2766 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2767 /* disable VLAN receive filtering */
2769 rctl
&= ~(E1000_RCTL_VFE
| E1000_RCTL_CFIEN
);
2772 if (adapter
->mng_vlan_id
!= (u16
)E1000_MNG_VLAN_NONE
) {
2773 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
),
2774 adapter
->mng_vlan_id
);
2775 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2781 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2782 * @adapter: board private structure to initialize
2784 static void e1000e_vlan_filter_enable(struct e1000_adapter
*adapter
)
2786 struct e1000_hw
*hw
= &adapter
->hw
;
2789 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2790 /* enable VLAN receive filtering */
2792 rctl
|= E1000_RCTL_VFE
;
2793 rctl
&= ~E1000_RCTL_CFIEN
;
2799 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2800 * @adapter: board private structure to initialize
2802 static void e1000e_vlan_strip_disable(struct e1000_adapter
*adapter
)
2804 struct e1000_hw
*hw
= &adapter
->hw
;
2807 /* disable VLAN tag insert/strip */
2809 ctrl
&= ~E1000_CTRL_VME
;
2814 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2815 * @adapter: board private structure to initialize
2817 static void e1000e_vlan_strip_enable(struct e1000_adapter
*adapter
)
2819 struct e1000_hw
*hw
= &adapter
->hw
;
2822 /* enable VLAN tag insert/strip */
2824 ctrl
|= E1000_CTRL_VME
;
2828 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
2830 struct net_device
*netdev
= adapter
->netdev
;
2831 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
2832 u16 old_vid
= adapter
->mng_vlan_id
;
2834 if (adapter
->hw
.mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
2835 e1000_vlan_rx_add_vid(netdev
, htons(ETH_P_8021Q
), vid
);
2836 adapter
->mng_vlan_id
= vid
;
2839 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) && (vid
!= old_vid
))
2840 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
), old_vid
);
2843 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
2847 e1000_vlan_rx_add_vid(adapter
->netdev
, htons(ETH_P_8021Q
), 0);
2849 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
2850 e1000_vlan_rx_add_vid(adapter
->netdev
, htons(ETH_P_8021Q
), vid
);
2853 static void e1000_init_manageability_pt(struct e1000_adapter
*adapter
)
2855 struct e1000_hw
*hw
= &adapter
->hw
;
2856 u32 manc
, manc2h
, mdef
, i
, j
;
2858 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
2863 /* enable receiving management packets to the host. this will probably
2864 * generate destination unreachable messages from the host OS, but
2865 * the packets will be handled on SMBUS
2867 manc
|= E1000_MANC_EN_MNG2HOST
;
2868 manc2h
= er32(MANC2H
);
2870 switch (hw
->mac
.type
) {
2872 manc2h
|= (E1000_MANC2H_PORT_623
| E1000_MANC2H_PORT_664
);
2876 /* Check if IPMI pass-through decision filter already exists;
2879 for (i
= 0, j
= 0; i
< 8; i
++) {
2880 mdef
= er32(MDEF(i
));
2882 /* Ignore filters with anything other than IPMI ports */
2883 if (mdef
& ~(E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2886 /* Enable this decision filter in MANC2H */
2893 if (j
== (E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2896 /* Create new decision filter in an empty filter */
2897 for (i
= 0, j
= 0; i
< 8; i
++)
2898 if (er32(MDEF(i
)) == 0) {
2899 ew32(MDEF(i
), (E1000_MDEF_PORT_623
|
2900 E1000_MDEF_PORT_664
));
2907 e_warn("Unable to create IPMI pass-through filter\n");
2911 ew32(MANC2H
, manc2h
);
2916 * e1000_configure_tx - Configure Transmit Unit after Reset
2917 * @adapter: board private structure
2919 * Configure the Tx unit of the MAC after a reset.
2921 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
2923 struct e1000_hw
*hw
= &adapter
->hw
;
2924 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2926 u32 tdlen
, tctl
, tarc
;
2928 /* Setup the HW Tx Head and Tail descriptor pointers */
2929 tdba
= tx_ring
->dma
;
2930 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2931 ew32(TDBAL(0), (tdba
& DMA_BIT_MASK(32)));
2932 ew32(TDBAH(0), (tdba
>> 32));
2933 ew32(TDLEN(0), tdlen
);
2936 tx_ring
->head
= adapter
->hw
.hw_addr
+ E1000_TDH(0);
2937 tx_ring
->tail
= adapter
->hw
.hw_addr
+ E1000_TDT(0);
2939 writel(0, tx_ring
->head
);
2940 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
2941 e1000e_update_tdt_wa(tx_ring
, 0);
2943 writel(0, tx_ring
->tail
);
2945 /* Set the Tx Interrupt Delay register */
2946 ew32(TIDV
, adapter
->tx_int_delay
);
2947 /* Tx irq moderation */
2948 ew32(TADV
, adapter
->tx_abs_int_delay
);
2950 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
2951 u32 txdctl
= er32(TXDCTL(0));
2953 txdctl
&= ~(E1000_TXDCTL_PTHRESH
| E1000_TXDCTL_HTHRESH
|
2954 E1000_TXDCTL_WTHRESH
);
2955 /* set up some performance related parameters to encourage the
2956 * hardware to use the bus more efficiently in bursts, depends
2957 * on the tx_int_delay to be enabled,
2958 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2959 * hthresh = 1 ==> prefetch when one or more available
2960 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2961 * BEWARE: this seems to work but should be considered first if
2962 * there are Tx hangs or other Tx related bugs
2964 txdctl
|= E1000_TXDCTL_DMA_BURST_ENABLE
;
2965 ew32(TXDCTL(0), txdctl
);
2967 /* erratum work around: set txdctl the same for both queues */
2968 ew32(TXDCTL(1), er32(TXDCTL(0)));
2970 /* Program the Transmit Control Register */
2972 tctl
&= ~E1000_TCTL_CT
;
2973 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
2974 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
2976 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
2977 tarc
= er32(TARC(0));
2978 /* set the speed mode bit, we'll clear it if we're not at
2979 * gigabit link later
2981 #define SPEED_MODE_BIT BIT(21)
2982 tarc
|= SPEED_MODE_BIT
;
2983 ew32(TARC(0), tarc
);
2986 /* errata: program both queues to unweighted RR */
2987 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
2988 tarc
= er32(TARC(0));
2990 ew32(TARC(0), tarc
);
2991 tarc
= er32(TARC(1));
2993 ew32(TARC(1), tarc
);
2996 /* Setup Transmit Descriptor Settings for eop descriptor */
2997 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
2999 /* only set IDE if we are delaying interrupts using the timers */
3000 if (adapter
->tx_int_delay
)
3001 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
3003 /* enable Report Status bit */
3004 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
3008 hw
->mac
.ops
.config_collision_dist(hw
);
3010 /* SPT and KBL Si errata workaround to avoid data corruption */
3011 if (hw
->mac
.type
== e1000_pch_spt
) {
3014 reg_val
= er32(IOSFPC
);
3015 reg_val
|= E1000_RCTL_RDMTS_HEX
;
3016 ew32(IOSFPC
, reg_val
);
3018 reg_val
= er32(TARC(0));
3019 /* SPT and KBL Si errata workaround to avoid Tx hang.
3020 * Dropping the number of outstanding requests from
3021 * 3 to 2 in order to avoid a buffer overrun.
3023 reg_val
&= ~E1000_TARC0_CB_MULTIQ_3_REQ
;
3024 reg_val
|= E1000_TARC0_CB_MULTIQ_2_REQ
;
3025 ew32(TARC(0), reg_val
);
3029 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3030 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3033 * e1000_setup_rctl - configure the receive control registers
3034 * @adapter: Board private structure
3036 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
3038 struct e1000_hw
*hw
= &adapter
->hw
;
3042 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3043 * If jumbo frames not set, program related MAC/PHY registers
3046 if (hw
->mac
.type
>= e1000_pch2lan
) {
3049 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
)
3050 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, true);
3052 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, false);
3055 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3058 /* Program MC offset vector base */
3060 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
3061 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
3062 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
3063 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
3065 /* Do not Store bad packets */
3066 rctl
&= ~E1000_RCTL_SBP
;
3068 /* Enable Long Packet receive */
3069 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
3070 rctl
&= ~E1000_RCTL_LPE
;
3072 rctl
|= E1000_RCTL_LPE
;
3074 /* Some systems expect that the CRC is included in SMBUS traffic. The
3075 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3076 * host memory when this is enabled
3078 if (adapter
->flags2
& FLAG2_CRC_STRIPPING
)
3079 rctl
|= E1000_RCTL_SECRC
;
3081 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3082 if ((hw
->phy
.type
== e1000_phy_82577
) && (rctl
& E1000_RCTL_LPE
)) {
3085 e1e_rphy(hw
, PHY_REG(770, 26), &phy_data
);
3088 e1e_wphy(hw
, PHY_REG(770, 26), phy_data
);
3090 e1e_rphy(hw
, 22, &phy_data
);
3092 phy_data
|= BIT(14);
3093 e1e_wphy(hw
, 0x10, 0x2823);
3094 e1e_wphy(hw
, 0x11, 0x0003);
3095 e1e_wphy(hw
, 22, phy_data
);
3098 /* Setup buffer sizes */
3099 rctl
&= ~E1000_RCTL_SZ_4096
;
3100 rctl
|= E1000_RCTL_BSEX
;
3101 switch (adapter
->rx_buffer_len
) {
3104 rctl
|= E1000_RCTL_SZ_2048
;
3105 rctl
&= ~E1000_RCTL_BSEX
;
3108 rctl
|= E1000_RCTL_SZ_4096
;
3111 rctl
|= E1000_RCTL_SZ_8192
;
3114 rctl
|= E1000_RCTL_SZ_16384
;
3118 /* Enable Extended Status in all Receive Descriptors */
3119 rfctl
= er32(RFCTL
);
3120 rfctl
|= E1000_RFCTL_EXTEN
;
3123 /* 82571 and greater support packet-split where the protocol
3124 * header is placed in skb->data and the packet data is
3125 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3126 * In the case of a non-split, skb->data is linearly filled,
3127 * followed by the page buffers. Therefore, skb->data is
3128 * sized to hold the largest protocol header.
3130 * allocations using alloc_page take too long for regular MTU
3131 * so only enable packet split for jumbo frames
3133 * Using pages when the page size is greater than 16k wastes
3134 * a lot of memory, since we allocate 3 pages at all times
3137 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
3138 if ((pages
<= 3) && (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
3139 adapter
->rx_ps_pages
= pages
;
3141 adapter
->rx_ps_pages
= 0;
3143 if (adapter
->rx_ps_pages
) {
3146 /* Enable Packet split descriptors */
3147 rctl
|= E1000_RCTL_DTYP_PS
;
3149 psrctl
|= adapter
->rx_ps_bsize0
>> E1000_PSRCTL_BSIZE0_SHIFT
;
3151 switch (adapter
->rx_ps_pages
) {
3153 psrctl
|= PAGE_SIZE
<< E1000_PSRCTL_BSIZE3_SHIFT
;
3156 psrctl
|= PAGE_SIZE
<< E1000_PSRCTL_BSIZE2_SHIFT
;
3159 psrctl
|= PAGE_SIZE
>> E1000_PSRCTL_BSIZE1_SHIFT
;
3163 ew32(PSRCTL
, psrctl
);
3166 /* This is useful for sniffing bad packets. */
3167 if (adapter
->netdev
->features
& NETIF_F_RXALL
) {
3168 /* UPE and MPE will be handled by normal PROMISC logic
3169 * in e1000e_set_rx_mode
3171 rctl
|= (E1000_RCTL_SBP
| /* Receive bad packets */
3172 E1000_RCTL_BAM
| /* RX All Bcast Pkts */
3173 E1000_RCTL_PMCF
); /* RX All MAC Ctrl Pkts */
3175 rctl
&= ~(E1000_RCTL_VFE
| /* Disable VLAN filter */
3176 E1000_RCTL_DPF
| /* Allow filtered pause */
3177 E1000_RCTL_CFIEN
); /* Dis VLAN CFIEN Filter */
3178 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3179 * and that breaks VLANs.
3184 /* just started the receive unit, no need to restart */
3185 adapter
->flags
&= ~FLAG_RESTART_NOW
;
3189 * e1000_configure_rx - Configure Receive Unit after Reset
3190 * @adapter: board private structure
3192 * Configure the Rx unit of the MAC after a reset.
3194 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
3196 struct e1000_hw
*hw
= &adapter
->hw
;
3197 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
3199 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
3201 if (adapter
->rx_ps_pages
) {
3202 /* this is a 32 byte descriptor */
3203 rdlen
= rx_ring
->count
*
3204 sizeof(union e1000_rx_desc_packet_split
);
3205 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
3206 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
3207 } else if (adapter
->netdev
->mtu
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3208 rdlen
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
3209 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
3210 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
3212 rdlen
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
3213 adapter
->clean_rx
= e1000_clean_rx_irq
;
3214 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
3217 /* disable receives while setting up the descriptors */
3219 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
3220 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3222 usleep_range(10000, 11000);
3224 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
3225 /* set the writeback threshold (only takes effect if the RDTR
3226 * is set). set GRAN=1 and write back up to 0x4 worth, and
3227 * enable prefetching of 0x20 Rx descriptors
3233 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE
);
3234 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE
);
3237 /* set the Receive Delay Timer Register */
3238 ew32(RDTR
, adapter
->rx_int_delay
);
3240 /* irq moderation */
3241 ew32(RADV
, adapter
->rx_abs_int_delay
);
3242 if ((adapter
->itr_setting
!= 0) && (adapter
->itr
!= 0))
3243 e1000e_write_itr(adapter
, adapter
->itr
);
3245 ctrl_ext
= er32(CTRL_EXT
);
3246 /* Auto-Mask interrupts upon ICR access */
3247 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
3248 ew32(IAM
, 0xffffffff);
3249 ew32(CTRL_EXT
, ctrl_ext
);
3252 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3253 * the Base and Length of the Rx Descriptor Ring
3255 rdba
= rx_ring
->dma
;
3256 ew32(RDBAL(0), (rdba
& DMA_BIT_MASK(32)));
3257 ew32(RDBAH(0), (rdba
>> 32));
3258 ew32(RDLEN(0), rdlen
);
3261 rx_ring
->head
= adapter
->hw
.hw_addr
+ E1000_RDH(0);
3262 rx_ring
->tail
= adapter
->hw
.hw_addr
+ E1000_RDT(0);
3264 writel(0, rx_ring
->head
);
3265 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
3266 e1000e_update_rdt_wa(rx_ring
, 0);
3268 writel(0, rx_ring
->tail
);
3270 /* Enable Receive Checksum Offload for TCP and UDP */
3271 rxcsum
= er32(RXCSUM
);
3272 if (adapter
->netdev
->features
& NETIF_F_RXCSUM
)
3273 rxcsum
|= E1000_RXCSUM_TUOFL
;
3275 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
3276 ew32(RXCSUM
, rxcsum
);
3278 /* With jumbo frames, excessive C-state transition latencies result
3279 * in dropped transactions.
3281 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3283 ((er32(PBA
) & E1000_PBA_RXA_MASK
) * 1024 -
3284 adapter
->max_frame_size
) * 8 / 1000;
3286 if (adapter
->flags
& FLAG_IS_ICH
) {
3287 u32 rxdctl
= er32(RXDCTL(0));
3289 ew32(RXDCTL(0), rxdctl
| 0x3 | BIT(8));
3292 dev_info(&adapter
->pdev
->dev
,
3293 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3294 cpu_latency_qos_update_request(&adapter
->pm_qos_req
, lat
);
3296 cpu_latency_qos_update_request(&adapter
->pm_qos_req
,
3297 PM_QOS_DEFAULT_VALUE
);
3300 /* Enable Receives */
3305 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3306 * @netdev: network interface device structure
3308 * Writes multicast address list to the MTA hash table.
3309 * Returns: -ENOMEM on failure
3310 * 0 on no addresses written
3311 * X on writing X addresses to MTA
3313 static int e1000e_write_mc_addr_list(struct net_device
*netdev
)
3315 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3316 struct e1000_hw
*hw
= &adapter
->hw
;
3317 struct netdev_hw_addr
*ha
;
3321 if (netdev_mc_empty(netdev
)) {
3322 /* nothing to program, so clear mc list */
3323 hw
->mac
.ops
.update_mc_addr_list(hw
, NULL
, 0);
3327 mta_list
= kcalloc(netdev_mc_count(netdev
), ETH_ALEN
, GFP_ATOMIC
);
3331 /* update_mc_addr_list expects a packed array of only addresses. */
3333 netdev_for_each_mc_addr(ha
, netdev
)
3334 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
3336 hw
->mac
.ops
.update_mc_addr_list(hw
, mta_list
, i
);
3339 return netdev_mc_count(netdev
);
3343 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3344 * @netdev: network interface device structure
3346 * Writes unicast address list to the RAR table.
3347 * Returns: -ENOMEM on failure/insufficient address space
3348 * 0 on no addresses written
3349 * X on writing X addresses to the RAR table
3351 static int e1000e_write_uc_addr_list(struct net_device
*netdev
)
3353 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3354 struct e1000_hw
*hw
= &adapter
->hw
;
3355 unsigned int rar_entries
;
3358 rar_entries
= hw
->mac
.ops
.rar_get_count(hw
);
3360 /* save a rar entry for our hardware address */
3363 /* save a rar entry for the LAA workaround */
3364 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
)
3367 /* return ENOMEM indicating insufficient memory for addresses */
3368 if (netdev_uc_count(netdev
) > rar_entries
)
3371 if (!netdev_uc_empty(netdev
) && rar_entries
) {
3372 struct netdev_hw_addr
*ha
;
3374 /* write the addresses in reverse order to avoid write
3377 netdev_for_each_uc_addr(ha
, netdev
) {
3382 ret_val
= hw
->mac
.ops
.rar_set(hw
, ha
->addr
, rar_entries
--);
3389 /* zero out the remaining RAR entries not used above */
3390 for (; rar_entries
> 0; rar_entries
--) {
3391 ew32(RAH(rar_entries
), 0);
3392 ew32(RAL(rar_entries
), 0);
3400 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3401 * @netdev: network interface device structure
3403 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3404 * address list or the network interface flags are updated. This routine is
3405 * responsible for configuring the hardware for proper unicast, multicast,
3406 * promiscuous mode, and all-multi behavior.
3408 static void e1000e_set_rx_mode(struct net_device
*netdev
)
3410 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3411 struct e1000_hw
*hw
= &adapter
->hw
;
3414 if (pm_runtime_suspended(netdev
->dev
.parent
))
3417 /* Check for Promiscuous and All Multicast modes */
3420 /* clear the affected bits */
3421 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3423 if (netdev
->flags
& IFF_PROMISC
) {
3424 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3425 /* Do not hardware filter VLANs in promisc mode */
3426 e1000e_vlan_filter_disable(adapter
);
3430 if (netdev
->flags
& IFF_ALLMULTI
) {
3431 rctl
|= E1000_RCTL_MPE
;
3433 /* Write addresses to the MTA, if the attempt fails
3434 * then we should just turn on promiscuous mode so
3435 * that we can at least receive multicast traffic
3437 count
= e1000e_write_mc_addr_list(netdev
);
3439 rctl
|= E1000_RCTL_MPE
;
3441 e1000e_vlan_filter_enable(adapter
);
3442 /* Write addresses to available RAR registers, if there is not
3443 * sufficient space to store all the addresses then enable
3444 * unicast promiscuous mode
3446 count
= e1000e_write_uc_addr_list(netdev
);
3448 rctl
|= E1000_RCTL_UPE
;
3453 if (netdev
->features
& NETIF_F_HW_VLAN_CTAG_RX
)
3454 e1000e_vlan_strip_enable(adapter
);
3456 e1000e_vlan_strip_disable(adapter
);
3459 static void e1000e_setup_rss_hash(struct e1000_adapter
*adapter
)
3461 struct e1000_hw
*hw
= &adapter
->hw
;
3466 netdev_rss_key_fill(rss_key
, sizeof(rss_key
));
3467 for (i
= 0; i
< 10; i
++)
3468 ew32(RSSRK(i
), rss_key
[i
]);
3470 /* Direct all traffic to queue 0 */
3471 for (i
= 0; i
< 32; i
++)
3474 /* Disable raw packet checksumming so that RSS hash is placed in
3475 * descriptor on writeback.
3477 rxcsum
= er32(RXCSUM
);
3478 rxcsum
|= E1000_RXCSUM_PCSD
;
3480 ew32(RXCSUM
, rxcsum
);
3482 mrqc
= (E1000_MRQC_RSS_FIELD_IPV4
|
3483 E1000_MRQC_RSS_FIELD_IPV4_TCP
|
3484 E1000_MRQC_RSS_FIELD_IPV6
|
3485 E1000_MRQC_RSS_FIELD_IPV6_TCP
|
3486 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
);
3492 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3493 * @adapter: board private structure
3494 * @timinca: pointer to returned time increment attributes
3496 * Get attributes for incrementing the System Time Register SYSTIML/H at
3497 * the default base frequency, and set the cyclecounter shift value.
3499 s32
e1000e_get_base_timinca(struct e1000_adapter
*adapter
, u32
*timinca
)
3501 struct e1000_hw
*hw
= &adapter
->hw
;
3502 u32 incvalue
, incperiod
, shift
;
3504 /* Make sure clock is enabled on I217/I218/I219 before checking
3507 if ((hw
->mac
.type
>= e1000_pch_lpt
) &&
3508 !(er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_ENABLED
) &&
3509 !(er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_ENABLED
)) {
3510 u32 fextnvm7
= er32(FEXTNVM7
);
3512 if (!(fextnvm7
& BIT(0))) {
3513 ew32(FEXTNVM7
, fextnvm7
| BIT(0));
3518 switch (hw
->mac
.type
) {
3520 /* Stable 96MHz frequency */
3521 incperiod
= INCPERIOD_96MHZ
;
3522 incvalue
= INCVALUE_96MHZ
;
3523 shift
= INCVALUE_SHIFT_96MHZ
;
3524 adapter
->cc
.shift
= shift
+ INCPERIOD_SHIFT_96MHZ
;
3527 if (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_SYSCFI
) {
3528 /* Stable 96MHz frequency */
3529 incperiod
= INCPERIOD_96MHZ
;
3530 incvalue
= INCVALUE_96MHZ
;
3531 shift
= INCVALUE_SHIFT_96MHZ
;
3532 adapter
->cc
.shift
= shift
+ INCPERIOD_SHIFT_96MHZ
;
3534 /* Stable 25MHz frequency */
3535 incperiod
= INCPERIOD_25MHZ
;
3536 incvalue
= INCVALUE_25MHZ
;
3537 shift
= INCVALUE_SHIFT_25MHZ
;
3538 adapter
->cc
.shift
= shift
;
3542 /* Stable 24MHz frequency */
3543 incperiod
= INCPERIOD_24MHZ
;
3544 incvalue
= INCVALUE_24MHZ
;
3545 shift
= INCVALUE_SHIFT_24MHZ
;
3546 adapter
->cc
.shift
= shift
;
3552 if (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_SYSCFI
) {
3553 /* Stable 24MHz frequency */
3554 incperiod
= INCPERIOD_24MHZ
;
3555 incvalue
= INCVALUE_24MHZ
;
3556 shift
= INCVALUE_SHIFT_24MHZ
;
3557 adapter
->cc
.shift
= shift
;
3559 /* Stable 38400KHz frequency */
3560 incperiod
= INCPERIOD_38400KHZ
;
3561 incvalue
= INCVALUE_38400KHZ
;
3562 shift
= INCVALUE_SHIFT_38400KHZ
;
3563 adapter
->cc
.shift
= shift
;
3568 /* Stable 25MHz frequency */
3569 incperiod
= INCPERIOD_25MHZ
;
3570 incvalue
= INCVALUE_25MHZ
;
3571 shift
= INCVALUE_SHIFT_25MHZ
;
3572 adapter
->cc
.shift
= shift
;
3578 *timinca
= ((incperiod
<< E1000_TIMINCA_INCPERIOD_SHIFT
) |
3579 ((incvalue
<< shift
) & E1000_TIMINCA_INCVALUE_MASK
));
3585 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3586 * @adapter: board private structure
3587 * @config: timestamp configuration
3589 * Outgoing time stamping can be enabled and disabled. Play nice and
3590 * disable it when requested, although it shouldn't cause any overhead
3591 * when no packet needs it. At most one packet in the queue may be
3592 * marked for time stamping, otherwise it would be impossible to tell
3593 * for sure to which packet the hardware time stamp belongs.
3595 * Incoming time stamping has to be configured via the hardware filters.
3596 * Not all combinations are supported, in particular event type has to be
3597 * specified. Matching the kind of event packet is not supported, with the
3598 * exception of "all V2 events regardless of level 2 or 4".
3600 static int e1000e_config_hwtstamp(struct e1000_adapter
*adapter
,
3601 struct hwtstamp_config
*config
)
3603 struct e1000_hw
*hw
= &adapter
->hw
;
3604 u32 tsync_tx_ctl
= E1000_TSYNCTXCTL_ENABLED
;
3605 u32 tsync_rx_ctl
= E1000_TSYNCRXCTL_ENABLED
;
3612 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
))
3615 /* flags reserved for future extensions - must be zero */
3619 switch (config
->tx_type
) {
3620 case HWTSTAMP_TX_OFF
:
3623 case HWTSTAMP_TX_ON
:
3629 switch (config
->rx_filter
) {
3630 case HWTSTAMP_FILTER_NONE
:
3633 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
3634 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
3635 rxmtrl
= E1000_RXMTRL_PTP_V1_SYNC_MESSAGE
;
3638 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
3639 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
3640 rxmtrl
= E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE
;
3643 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
3644 /* Also time stamps V2 L2 Path Delay Request/Response */
3645 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_V2
;
3646 rxmtrl
= E1000_RXMTRL_PTP_V2_SYNC_MESSAGE
;
3649 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
3650 /* Also time stamps V2 L2 Path Delay Request/Response. */
3651 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_V2
;
3652 rxmtrl
= E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE
;
3655 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
3656 /* Hardware cannot filter just V2 L4 Sync messages */
3658 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
3659 /* Also time stamps V2 Path Delay Request/Response. */
3660 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
3661 rxmtrl
= E1000_RXMTRL_PTP_V2_SYNC_MESSAGE
;
3665 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
3666 /* Hardware cannot filter just V2 L4 Delay Request messages */
3668 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
3669 /* Also time stamps V2 Path Delay Request/Response. */
3670 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
3671 rxmtrl
= E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE
;
3675 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
3676 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
3677 /* Hardware cannot filter just V2 L4 or L2 Event messages */
3679 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
3680 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_EVENT_V2
;
3681 config
->rx_filter
= HWTSTAMP_FILTER_PTP_V2_EVENT
;
3685 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
3686 /* For V1, the hardware can only filter Sync messages or
3687 * Delay Request messages but not both so fall-through to
3688 * time stamp all packets.
3691 case HWTSTAMP_FILTER_NTP_ALL
:
3692 case HWTSTAMP_FILTER_ALL
:
3695 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_ALL
;
3696 config
->rx_filter
= HWTSTAMP_FILTER_ALL
;
3702 adapter
->hwtstamp_config
= *config
;
3704 /* enable/disable Tx h/w time stamping */
3705 regval
= er32(TSYNCTXCTL
);
3706 regval
&= ~E1000_TSYNCTXCTL_ENABLED
;
3707 regval
|= tsync_tx_ctl
;
3708 ew32(TSYNCTXCTL
, regval
);
3709 if ((er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_ENABLED
) !=
3710 (regval
& E1000_TSYNCTXCTL_ENABLED
)) {
3711 e_err("Timesync Tx Control register not set as expected\n");
3715 /* enable/disable Rx h/w time stamping */
3716 regval
= er32(TSYNCRXCTL
);
3717 regval
&= ~(E1000_TSYNCRXCTL_ENABLED
| E1000_TSYNCRXCTL_TYPE_MASK
);
3718 regval
|= tsync_rx_ctl
;
3719 ew32(TSYNCRXCTL
, regval
);
3720 if ((er32(TSYNCRXCTL
) & (E1000_TSYNCRXCTL_ENABLED
|
3721 E1000_TSYNCRXCTL_TYPE_MASK
)) !=
3722 (regval
& (E1000_TSYNCRXCTL_ENABLED
|
3723 E1000_TSYNCRXCTL_TYPE_MASK
))) {
3724 e_err("Timesync Rx Control register not set as expected\n");
3728 /* L2: define ethertype filter for time stamped packets */
3730 rxmtrl
|= ETH_P_1588
;
3732 /* define which PTP packets get time stamped */
3733 ew32(RXMTRL
, rxmtrl
);
3735 /* Filter by destination port */
3737 rxudp
= PTP_EV_PORT
;
3738 cpu_to_be16s(&rxudp
);
3744 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3752 * e1000_configure - configure the hardware for Rx and Tx
3753 * @adapter: private board structure
3755 static void e1000_configure(struct e1000_adapter
*adapter
)
3757 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
3759 e1000e_set_rx_mode(adapter
->netdev
);
3761 e1000_restore_vlan(adapter
);
3762 e1000_init_manageability_pt(adapter
);
3764 e1000_configure_tx(adapter
);
3766 if (adapter
->netdev
->features
& NETIF_F_RXHASH
)
3767 e1000e_setup_rss_hash(adapter
);
3768 e1000_setup_rctl(adapter
);
3769 e1000_configure_rx(adapter
);
3770 adapter
->alloc_rx_buf(rx_ring
, e1000_desc_unused(rx_ring
), GFP_KERNEL
);
3774 * e1000e_power_up_phy - restore link in case the phy was powered down
3775 * @adapter: address of board private structure
3777 * The phy may be powered down to save power and turn off link when the
3778 * driver is unloaded and wake on lan is not enabled (among others)
3779 * *** this routine MUST be followed by a call to e1000e_reset ***
3781 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
3783 if (adapter
->hw
.phy
.ops
.power_up
)
3784 adapter
->hw
.phy
.ops
.power_up(&adapter
->hw
);
3786 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
3790 * e1000_power_down_phy - Power down the PHY
3791 * @adapter: board private structure
3793 * Power down the PHY so no link is implied when interface is down.
3794 * The PHY cannot be powered down if management or WoL is active.
3796 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
3798 if (adapter
->hw
.phy
.ops
.power_down
)
3799 adapter
->hw
.phy
.ops
.power_down(&adapter
->hw
);
3803 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3804 * @adapter: board private structure
3806 * We want to clear all pending descriptors from the TX ring.
3807 * zeroing happens when the HW reads the regs. We assign the ring itself as
3808 * the data of the next descriptor. We don't care about the data we are about
3811 static void e1000_flush_tx_ring(struct e1000_adapter
*adapter
)
3813 struct e1000_hw
*hw
= &adapter
->hw
;
3814 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3815 struct e1000_tx_desc
*tx_desc
= NULL
;
3816 u32 tdt
, tctl
, txd_lower
= E1000_TXD_CMD_IFCS
;
3820 ew32(TCTL
, tctl
| E1000_TCTL_EN
);
3822 BUG_ON(tdt
!= tx_ring
->next_to_use
);
3823 tx_desc
= E1000_TX_DESC(*tx_ring
, tx_ring
->next_to_use
);
3824 tx_desc
->buffer_addr
= cpu_to_le64(tx_ring
->dma
);
3826 tx_desc
->lower
.data
= cpu_to_le32(txd_lower
| size
);
3827 tx_desc
->upper
.data
= 0;
3828 /* flush descriptors to memory before notifying the HW */
3830 tx_ring
->next_to_use
++;
3831 if (tx_ring
->next_to_use
== tx_ring
->count
)
3832 tx_ring
->next_to_use
= 0;
3833 ew32(TDT(0), tx_ring
->next_to_use
);
3834 usleep_range(200, 250);
3838 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3839 * @adapter: board private structure
3841 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3843 static void e1000_flush_rx_ring(struct e1000_adapter
*adapter
)
3846 struct e1000_hw
*hw
= &adapter
->hw
;
3849 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3851 usleep_range(100, 150);
3853 rxdctl
= er32(RXDCTL(0));
3854 /* zero the lower 14 bits (prefetch and host thresholds) */
3855 rxdctl
&= 0xffffc000;
3857 /* update thresholds: prefetch threshold to 31, host threshold to 1
3858 * and make sure the granularity is "descriptors" and not "cache lines"
3860 rxdctl
|= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC
);
3862 ew32(RXDCTL(0), rxdctl
);
3863 /* momentarily enable the RX ring for the changes to take effect */
3864 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
3866 usleep_range(100, 150);
3867 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3871 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3872 * @adapter: board private structure
3874 * In i219, the descriptor rings must be emptied before resetting the HW
3875 * or before changing the device state to D3 during runtime (runtime PM).
3877 * Failure to do this will cause the HW to enter a unit hang state which can
3878 * only be released by PCI reset on the device
3882 static void e1000_flush_desc_rings(struct e1000_adapter
*adapter
)
3885 u32 fext_nvm11
, tdlen
;
3886 struct e1000_hw
*hw
= &adapter
->hw
;
3888 /* First, disable MULR fix in FEXTNVM11 */
3889 fext_nvm11
= er32(FEXTNVM11
);
3890 fext_nvm11
|= E1000_FEXTNVM11_DISABLE_MULR_FIX
;
3891 ew32(FEXTNVM11
, fext_nvm11
);
3892 /* do nothing if we're not in faulty state, or if the queue is empty */
3893 tdlen
= er32(TDLEN(0));
3894 pci_read_config_word(adapter
->pdev
, PCICFG_DESC_RING_STATUS
,
3896 if (!(hang_state
& FLUSH_DESC_REQUIRED
) || !tdlen
)
3898 e1000_flush_tx_ring(adapter
);
3899 /* recheck, maybe the fault is caused by the rx ring */
3900 pci_read_config_word(adapter
->pdev
, PCICFG_DESC_RING_STATUS
,
3902 if (hang_state
& FLUSH_DESC_REQUIRED
)
3903 e1000_flush_rx_ring(adapter
);
3907 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3908 * @adapter: board private structure
3910 * When the MAC is reset, all hardware bits for timesync will be reset to the
3911 * default values. This function will restore the settings last in place.
3912 * Since the clock SYSTIME registers are reset, we will simply restore the
3913 * cyclecounter to the kernel real clock time.
3915 static void e1000e_systim_reset(struct e1000_adapter
*adapter
)
3917 struct ptp_clock_info
*info
= &adapter
->ptp_clock_info
;
3918 struct e1000_hw
*hw
= &adapter
->hw
;
3919 unsigned long flags
;
3923 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
))
3926 if (info
->adjfreq
) {
3927 /* restore the previous ptp frequency delta */
3928 ret_val
= info
->adjfreq(info
, adapter
->ptp_delta
);
3930 /* set the default base frequency if no adjustment possible */
3931 ret_val
= e1000e_get_base_timinca(adapter
, &timinca
);
3933 ew32(TIMINCA
, timinca
);
3937 dev_warn(&adapter
->pdev
->dev
,
3938 "Failed to restore TIMINCA clock rate delta: %d\n",
3943 /* reset the systim ns time counter */
3944 spin_lock_irqsave(&adapter
->systim_lock
, flags
);
3945 timecounter_init(&adapter
->tc
, &adapter
->cc
,
3946 ktime_to_ns(ktime_get_real()));
3947 spin_unlock_irqrestore(&adapter
->systim_lock
, flags
);
3949 /* restore the previous hwtstamp configuration settings */
3950 e1000e_config_hwtstamp(adapter
, &adapter
->hwtstamp_config
);
3954 * e1000e_reset - bring the hardware into a known good state
3955 * @adapter: board private structure
3957 * This function boots the hardware and enables some settings that
3958 * require a configuration cycle of the hardware - those cannot be
3959 * set/changed during runtime. After reset the device needs to be
3960 * properly configured for Rx, Tx etc.
3962 void e1000e_reset(struct e1000_adapter
*adapter
)
3964 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3965 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
3966 struct e1000_hw
*hw
= &adapter
->hw
;
3967 u32 tx_space
, min_tx_space
, min_rx_space
;
3968 u32 pba
= adapter
->pba
;
3971 /* reset Packet Buffer Allocation to default */
3974 if (adapter
->max_frame_size
> (VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
3975 /* To maintain wire speed transmits, the Tx FIFO should be
3976 * large enough to accommodate two full transmit packets,
3977 * rounded up to the next 1KB and expressed in KB. Likewise,
3978 * the Rx FIFO should be large enough to accommodate at least
3979 * one full receive packet and is similarly rounded up and
3983 /* upper 16 bits has Tx packet buffer allocation size in KB */
3984 tx_space
= pba
>> 16;
3985 /* lower 16 bits has Rx packet buffer allocation size in KB */
3987 /* the Tx fifo also stores 16 bytes of information about the Tx
3988 * but don't include ethernet FCS because hardware appends it
3990 min_tx_space
= (adapter
->max_frame_size
+
3991 sizeof(struct e1000_tx_desc
) - ETH_FCS_LEN
) * 2;
3992 min_tx_space
= ALIGN(min_tx_space
, 1024);
3993 min_tx_space
>>= 10;
3994 /* software strips receive CRC, so leave room for it */
3995 min_rx_space
= adapter
->max_frame_size
;
3996 min_rx_space
= ALIGN(min_rx_space
, 1024);
3997 min_rx_space
>>= 10;
3999 /* If current Tx allocation is less than the min Tx FIFO size,
4000 * and the min Tx FIFO size is less than the current Rx FIFO
4001 * allocation, take space away from current Rx allocation
4003 if ((tx_space
< min_tx_space
) &&
4004 ((min_tx_space
- tx_space
) < pba
)) {
4005 pba
-= min_tx_space
- tx_space
;
4007 /* if short on Rx space, Rx wins and must trump Tx
4010 if (pba
< min_rx_space
)
4017 /* flow control settings
4019 * The high water mark must be low enough to fit one full frame
4020 * (or the size used for early receive) above it in the Rx FIFO.
4021 * Set it to the lower of:
4022 * - 90% of the Rx FIFO size, and
4023 * - the full Rx FIFO size minus one full frame
4025 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
4026 fc
->pause_time
= 0xFFFF;
4028 fc
->pause_time
= E1000_FC_PAUSE_TIME
;
4029 fc
->send_xon
= true;
4030 fc
->current_mode
= fc
->requested_mode
;
4032 switch (hw
->mac
.type
) {
4034 case e1000_ich10lan
:
4035 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
4038 fc
->high_water
= 0x2800;
4039 fc
->low_water
= fc
->high_water
- 8;
4044 hwm
= min(((pba
<< 10) * 9 / 10),
4045 ((pba
<< 10) - adapter
->max_frame_size
));
4047 fc
->high_water
= hwm
& E1000_FCRTH_RTH
; /* 8-byte granularity */
4048 fc
->low_water
= fc
->high_water
- 8;
4051 /* Workaround PCH LOM adapter hangs with certain network
4052 * loads. If hangs persist, try disabling Tx flow control.
4054 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
4055 fc
->high_water
= 0x3500;
4056 fc
->low_water
= 0x1500;
4058 fc
->high_water
= 0x5000;
4059 fc
->low_water
= 0x3000;
4061 fc
->refresh_time
= 0x1000;
4070 fc
->refresh_time
= 0xFFFF;
4071 fc
->pause_time
= 0xFFFF;
4073 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
) {
4074 fc
->high_water
= 0x05C20;
4075 fc
->low_water
= 0x05048;
4081 fc
->high_water
= ((pba
<< 10) * 9 / 10) & E1000_FCRTH_RTH
;
4082 fc
->low_water
= ((pba
<< 10) * 8 / 10) & E1000_FCRTL_RTL
;
4086 /* Alignment of Tx data is on an arbitrary byte boundary with the
4087 * maximum size per Tx descriptor limited only to the transmit
4088 * allocation of the packet buffer minus 96 bytes with an upper
4089 * limit of 24KB due to receive synchronization limitations.
4091 adapter
->tx_fifo_limit
= min_t(u32
, ((er32(PBA
) >> 16) << 10) - 96,
4094 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4095 * fit in receive buffer.
4097 if (adapter
->itr_setting
& 0x3) {
4098 if ((adapter
->max_frame_size
* 2) > (pba
<< 10)) {
4099 if (!(adapter
->flags2
& FLAG2_DISABLE_AIM
)) {
4100 dev_info(&adapter
->pdev
->dev
,
4101 "Interrupt Throttle Rate off\n");
4102 adapter
->flags2
|= FLAG2_DISABLE_AIM
;
4103 e1000e_write_itr(adapter
, 0);
4105 } else if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
4106 dev_info(&adapter
->pdev
->dev
,
4107 "Interrupt Throttle Rate on\n");
4108 adapter
->flags2
&= ~FLAG2_DISABLE_AIM
;
4109 adapter
->itr
= 20000;
4110 e1000e_write_itr(adapter
, adapter
->itr
);
4114 if (hw
->mac
.type
>= e1000_pch_spt
)
4115 e1000_flush_desc_rings(adapter
);
4116 /* Allow time for pending master requests to run */
4117 mac
->ops
.reset_hw(hw
);
4119 /* For parts with AMT enabled, let the firmware know
4120 * that the network interface is in control
4122 if (adapter
->flags
& FLAG_HAS_AMT
)
4123 e1000e_get_hw_control(adapter
);
4127 if (mac
->ops
.init_hw(hw
))
4128 e_err("Hardware Error\n");
4130 e1000_update_mng_vlan(adapter
);
4132 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4133 ew32(VET
, ETH_P_8021Q
);
4135 e1000e_reset_adaptive(hw
);
4137 /* restore systim and hwtstamp settings */
4138 e1000e_systim_reset(adapter
);
4140 /* Set EEE advertisement as appropriate */
4141 if (adapter
->flags2
& FLAG2_HAS_EEE
) {
4145 switch (hw
->phy
.type
) {
4146 case e1000_phy_82579
:
4147 adv_addr
= I82579_EEE_ADVERTISEMENT
;
4149 case e1000_phy_i217
:
4150 adv_addr
= I217_EEE_ADVERTISEMENT
;
4153 dev_err(&adapter
->pdev
->dev
,
4154 "Invalid PHY type setting EEE advertisement\n");
4158 ret_val
= hw
->phy
.ops
.acquire(hw
);
4160 dev_err(&adapter
->pdev
->dev
,
4161 "EEE advertisement - unable to acquire PHY\n");
4165 e1000_write_emi_reg_locked(hw
, adv_addr
,
4166 hw
->dev_spec
.ich8lan
.eee_disable
?
4167 0 : adapter
->eee_advert
);
4169 hw
->phy
.ops
.release(hw
);
4172 if (!netif_running(adapter
->netdev
) &&
4173 !test_bit(__E1000_TESTING
, &adapter
->state
))
4174 e1000_power_down_phy(adapter
);
4176 e1000_get_phy_info(hw
);
4178 if ((adapter
->flags
& FLAG_HAS_SMART_POWER_DOWN
) &&
4179 !(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
4181 /* speed up time to link by disabling smart power down, ignore
4182 * the return value of this function because there is nothing
4183 * different we would do if it failed
4185 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
4186 phy_data
&= ~IGP02E1000_PM_SPD
;
4187 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
4189 if (hw
->mac
.type
>= e1000_pch_spt
&& adapter
->int_mode
== 0) {
4192 /* Fextnvm7 @ 0xe4[2] = 1 */
4193 reg
= er32(FEXTNVM7
);
4194 reg
|= E1000_FEXTNVM7_SIDE_CLK_UNGATE
;
4195 ew32(FEXTNVM7
, reg
);
4196 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4197 reg
= er32(FEXTNVM9
);
4198 reg
|= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS
|
4199 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS
;
4200 ew32(FEXTNVM9
, reg
);
4206 * e1000e_trigger_lsc - trigger an LSC interrupt
4209 * Fire a link status change interrupt to start the watchdog.
4211 static void e1000e_trigger_lsc(struct e1000_adapter
*adapter
)
4213 struct e1000_hw
*hw
= &adapter
->hw
;
4215 if (adapter
->msix_entries
)
4216 ew32(ICS
, E1000_ICS_LSC
| E1000_ICS_OTHER
);
4218 ew32(ICS
, E1000_ICS_LSC
);
4221 void e1000e_up(struct e1000_adapter
*adapter
)
4223 /* hardware has been reset, we need to reload some things */
4224 e1000_configure(adapter
);
4226 clear_bit(__E1000_DOWN
, &adapter
->state
);
4228 if (adapter
->msix_entries
)
4229 e1000_configure_msix(adapter
);
4230 e1000_irq_enable(adapter
);
4232 /* Tx queue started by watchdog timer when link is up */
4234 e1000e_trigger_lsc(adapter
);
4237 static void e1000e_flush_descriptors(struct e1000_adapter
*adapter
)
4239 struct e1000_hw
*hw
= &adapter
->hw
;
4241 if (!(adapter
->flags2
& FLAG2_DMA_BURST
))
4244 /* flush pending descriptor writebacks to memory */
4245 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
4246 ew32(RDTR
, adapter
->rx_int_delay
| E1000_RDTR_FPD
);
4248 /* execute the writes immediately */
4251 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4252 * write is successful
4254 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
4255 ew32(RDTR
, adapter
->rx_int_delay
| E1000_RDTR_FPD
);
4257 /* execute the writes immediately */
4261 static void e1000e_update_stats(struct e1000_adapter
*adapter
);
4264 * e1000e_down - quiesce the device and optionally reset the hardware
4265 * @adapter: board private structure
4266 * @reset: boolean flag to reset the hardware or not
4268 void e1000e_down(struct e1000_adapter
*adapter
, bool reset
)
4270 struct net_device
*netdev
= adapter
->netdev
;
4271 struct e1000_hw
*hw
= &adapter
->hw
;
4274 /* signal that we're down so the interrupt handler does not
4275 * reschedule our watchdog timer
4277 set_bit(__E1000_DOWN
, &adapter
->state
);
4279 netif_carrier_off(netdev
);
4281 /* disable receives in the hardware */
4283 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
4284 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
4285 /* flush and sleep below */
4287 netif_stop_queue(netdev
);
4289 /* disable transmits in the hardware */
4291 tctl
&= ~E1000_TCTL_EN
;
4294 /* flush both disables and wait for them to finish */
4296 usleep_range(10000, 11000);
4298 e1000_irq_disable(adapter
);
4300 napi_synchronize(&adapter
->napi
);
4302 del_timer_sync(&adapter
->watchdog_timer
);
4303 del_timer_sync(&adapter
->phy_info_timer
);
4305 spin_lock(&adapter
->stats64_lock
);
4306 e1000e_update_stats(adapter
);
4307 spin_unlock(&adapter
->stats64_lock
);
4309 e1000e_flush_descriptors(adapter
);
4311 adapter
->link_speed
= 0;
4312 adapter
->link_duplex
= 0;
4314 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4315 if ((hw
->mac
.type
>= e1000_pch2lan
) &&
4316 (adapter
->netdev
->mtu
> ETH_DATA_LEN
) &&
4317 e1000_lv_jumbo_workaround_ich8lan(hw
, false))
4318 e_dbg("failed to disable jumbo frame workaround mode\n");
4320 if (!pci_channel_offline(adapter
->pdev
)) {
4322 e1000e_reset(adapter
);
4323 else if (hw
->mac
.type
>= e1000_pch_spt
)
4324 e1000_flush_desc_rings(adapter
);
4326 e1000_clean_tx_ring(adapter
->tx_ring
);
4327 e1000_clean_rx_ring(adapter
->rx_ring
);
4330 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
4333 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
4334 usleep_range(1000, 1100);
4335 e1000e_down(adapter
, true);
4337 clear_bit(__E1000_RESETTING
, &adapter
->state
);
4341 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4342 * @hw: pointer to the HW structure
4343 * @systim: PHC time value read, sanitized and returned
4344 * @sts: structure to hold system time before and after reading SYSTIML,
4347 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4348 * check to see that the time is incrementing at a reasonable
4349 * rate and is a multiple of incvalue.
4351 static u64
e1000e_sanitize_systim(struct e1000_hw
*hw
, u64 systim
,
4352 struct ptp_system_timestamp
*sts
)
4354 u64 time_delta
, rem
, temp
;
4359 incvalue
= er32(TIMINCA
) & E1000_TIMINCA_INCVALUE_MASK
;
4360 for (i
= 0; i
< E1000_MAX_82574_SYSTIM_REREADS
; i
++) {
4361 /* latch SYSTIMH on read of SYSTIML */
4362 ptp_read_system_prets(sts
);
4363 systim_next
= (u64
)er32(SYSTIML
);
4364 ptp_read_system_postts(sts
);
4365 systim_next
|= (u64
)er32(SYSTIMH
) << 32;
4367 time_delta
= systim_next
- systim
;
4369 /* VMWare users have seen incvalue of zero, don't div / 0 */
4370 rem
= incvalue
? do_div(temp
, incvalue
) : (time_delta
!= 0);
4372 systim
= systim_next
;
4374 if ((time_delta
< E1000_82574_SYSTIM_EPSILON
) && (rem
== 0))
4382 * e1000e_read_systim - read SYSTIM register
4383 * @adapter: board private structure
4384 * @sts: structure which will contain system time before and after reading
4385 * SYSTIML, may be NULL
4387 u64
e1000e_read_systim(struct e1000_adapter
*adapter
,
4388 struct ptp_system_timestamp
*sts
)
4390 struct e1000_hw
*hw
= &adapter
->hw
;
4391 u32 systimel
, systimel_2
, systimeh
;
4393 /* SYSTIMH latching upon SYSTIML read does not work well.
4394 * This means that if SYSTIML overflows after we read it but before
4395 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4396 * will experience a huge non linear increment in the systime value
4397 * to fix that we test for overflow and if true, we re-read systime.
4399 ptp_read_system_prets(sts
);
4400 systimel
= er32(SYSTIML
);
4401 ptp_read_system_postts(sts
);
4402 systimeh
= er32(SYSTIMH
);
4403 /* Is systimel is so large that overflow is possible? */
4404 if (systimel
>= (u32
)0xffffffff - E1000_TIMINCA_INCVALUE_MASK
) {
4405 ptp_read_system_prets(sts
);
4406 systimel_2
= er32(SYSTIML
);
4407 ptp_read_system_postts(sts
);
4408 if (systimel
> systimel_2
) {
4409 /* There was an overflow, read again SYSTIMH, and use
4412 systimeh
= er32(SYSTIMH
);
4413 systimel
= systimel_2
;
4416 systim
= (u64
)systimel
;
4417 systim
|= (u64
)systimeh
<< 32;
4419 if (adapter
->flags2
& FLAG2_CHECK_SYSTIM_OVERFLOW
)
4420 systim
= e1000e_sanitize_systim(hw
, systim
, sts
);
4426 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4427 * @cc: cyclecounter structure
4429 static u64
e1000e_cyclecounter_read(const struct cyclecounter
*cc
)
4431 struct e1000_adapter
*adapter
= container_of(cc
, struct e1000_adapter
,
4434 return e1000e_read_systim(adapter
, NULL
);
4438 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4439 * @adapter: board private structure to initialize
4441 * e1000_sw_init initializes the Adapter private data structure.
4442 * Fields are initialized based on PCI device information and
4443 * OS network device settings (MTU size).
4445 static int e1000_sw_init(struct e1000_adapter
*adapter
)
4447 struct net_device
*netdev
= adapter
->netdev
;
4449 adapter
->rx_buffer_len
= VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
;
4450 adapter
->rx_ps_bsize0
= 128;
4451 adapter
->max_frame_size
= netdev
->mtu
+ VLAN_ETH_HLEN
+ ETH_FCS_LEN
;
4452 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
4453 adapter
->tx_ring_count
= E1000_DEFAULT_TXD
;
4454 adapter
->rx_ring_count
= E1000_DEFAULT_RXD
;
4456 spin_lock_init(&adapter
->stats64_lock
);
4458 e1000e_set_interrupt_capability(adapter
);
4460 if (e1000_alloc_queues(adapter
))
4463 /* Setup hardware time stamping cyclecounter */
4464 if (adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) {
4465 adapter
->cc
.read
= e1000e_cyclecounter_read
;
4466 adapter
->cc
.mask
= CYCLECOUNTER_MASK(64);
4467 adapter
->cc
.mult
= 1;
4468 /* cc.shift set in e1000e_get_base_tininca() */
4470 spin_lock_init(&adapter
->systim_lock
);
4471 INIT_WORK(&adapter
->tx_hwtstamp_work
, e1000e_tx_hwtstamp_work
);
4474 /* Explicitly disable IRQ since the NIC can be in any state. */
4475 e1000_irq_disable(adapter
);
4477 set_bit(__E1000_DOWN
, &adapter
->state
);
4482 * e1000_intr_msi_test - Interrupt Handler
4483 * @irq: interrupt number
4484 * @data: pointer to a network interface device structure
4486 static irqreturn_t
e1000_intr_msi_test(int __always_unused irq
, void *data
)
4488 struct net_device
*netdev
= data
;
4489 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4490 struct e1000_hw
*hw
= &adapter
->hw
;
4491 u32 icr
= er32(ICR
);
4493 e_dbg("icr is %08X\n", icr
);
4494 if (icr
& E1000_ICR_RXSEQ
) {
4495 adapter
->flags
&= ~FLAG_MSI_TEST_FAILED
;
4496 /* Force memory writes to complete before acknowledging the
4497 * interrupt is handled.
4506 * e1000_test_msi_interrupt - Returns 0 for successful test
4507 * @adapter: board private struct
4509 * code flow taken from tg3.c
4511 static int e1000_test_msi_interrupt(struct e1000_adapter
*adapter
)
4513 struct net_device
*netdev
= adapter
->netdev
;
4514 struct e1000_hw
*hw
= &adapter
->hw
;
4517 /* poll_enable hasn't been called yet, so don't need disable */
4518 /* clear any pending events */
4521 /* free the real vector and request a test handler */
4522 e1000_free_irq(adapter
);
4523 e1000e_reset_interrupt_capability(adapter
);
4525 /* Assume that the test fails, if it succeeds then the test
4526 * MSI irq handler will unset this flag
4528 adapter
->flags
|= FLAG_MSI_TEST_FAILED
;
4530 err
= pci_enable_msi(adapter
->pdev
);
4532 goto msi_test_failed
;
4534 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi_test
, 0,
4535 netdev
->name
, netdev
);
4537 pci_disable_msi(adapter
->pdev
);
4538 goto msi_test_failed
;
4541 /* Force memory writes to complete before enabling and firing an
4546 e1000_irq_enable(adapter
);
4548 /* fire an unusual interrupt on the test handler */
4549 ew32(ICS
, E1000_ICS_RXSEQ
);
4553 e1000_irq_disable(adapter
);
4555 rmb(); /* read flags after interrupt has been fired */
4557 if (adapter
->flags
& FLAG_MSI_TEST_FAILED
) {
4558 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
4559 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4561 e_dbg("MSI interrupt test succeeded!\n");
4564 free_irq(adapter
->pdev
->irq
, netdev
);
4565 pci_disable_msi(adapter
->pdev
);
4568 e1000e_set_interrupt_capability(adapter
);
4569 return e1000_request_irq(adapter
);
4573 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4574 * @adapter: board private struct
4576 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4578 static int e1000_test_msi(struct e1000_adapter
*adapter
)
4583 if (!(adapter
->flags
& FLAG_MSI_ENABLED
))
4586 /* disable SERR in case the MSI write causes a master abort */
4587 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
4588 if (pci_cmd
& PCI_COMMAND_SERR
)
4589 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
,
4590 pci_cmd
& ~PCI_COMMAND_SERR
);
4592 err
= e1000_test_msi_interrupt(adapter
);
4594 /* re-enable SERR */
4595 if (pci_cmd
& PCI_COMMAND_SERR
) {
4596 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
4597 pci_cmd
|= PCI_COMMAND_SERR
;
4598 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
, pci_cmd
);
4605 * e1000e_open - Called when a network interface is made active
4606 * @netdev: network interface device structure
4608 * Returns 0 on success, negative value on failure
4610 * The open entry point is called when a network interface is made
4611 * active by the system (IFF_UP). At this point all resources needed
4612 * for transmit and receive operations are allocated, the interrupt
4613 * handler is registered with the OS, the watchdog timer is started,
4614 * and the stack is notified that the interface is ready.
4616 int e1000e_open(struct net_device
*netdev
)
4618 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4619 struct e1000_hw
*hw
= &adapter
->hw
;
4620 struct pci_dev
*pdev
= adapter
->pdev
;
4623 /* disallow open during test */
4624 if (test_bit(__E1000_TESTING
, &adapter
->state
))
4627 pm_runtime_get_sync(&pdev
->dev
);
4629 netif_carrier_off(netdev
);
4630 netif_stop_queue(netdev
);
4632 /* allocate transmit descriptors */
4633 err
= e1000e_setup_tx_resources(adapter
->tx_ring
);
4637 /* allocate receive descriptors */
4638 err
= e1000e_setup_rx_resources(adapter
->rx_ring
);
4642 /* If AMT is enabled, let the firmware know that the network
4643 * interface is now open and reset the part to a known state.
4645 if (adapter
->flags
& FLAG_HAS_AMT
) {
4646 e1000e_get_hw_control(adapter
);
4647 e1000e_reset(adapter
);
4650 e1000e_power_up_phy(adapter
);
4652 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4653 if ((adapter
->hw
.mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
4654 e1000_update_mng_vlan(adapter
);
4656 /* DMA latency requirement to workaround jumbo issue */
4657 cpu_latency_qos_add_request(&adapter
->pm_qos_req
, PM_QOS_DEFAULT_VALUE
);
4659 /* before we allocate an interrupt, we must be ready to handle it.
4660 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4661 * as soon as we call pci_request_irq, so we have to setup our
4662 * clean_rx handler before we do so.
4664 e1000_configure(adapter
);
4666 err
= e1000_request_irq(adapter
);
4670 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4671 * ignore e1000e MSI messages, which means we need to test our MSI
4674 if (adapter
->int_mode
!= E1000E_INT_MODE_LEGACY
) {
4675 err
= e1000_test_msi(adapter
);
4677 e_err("Interrupt allocation failed\n");
4682 /* From here on the code is the same as e1000e_up() */
4683 clear_bit(__E1000_DOWN
, &adapter
->state
);
4685 napi_enable(&adapter
->napi
);
4687 e1000_irq_enable(adapter
);
4689 adapter
->tx_hang_recheck
= false;
4691 hw
->mac
.get_link_status
= true;
4692 pm_runtime_put(&pdev
->dev
);
4694 e1000e_trigger_lsc(adapter
);
4699 cpu_latency_qos_remove_request(&adapter
->pm_qos_req
);
4700 e1000e_release_hw_control(adapter
);
4701 e1000_power_down_phy(adapter
);
4702 e1000e_free_rx_resources(adapter
->rx_ring
);
4704 e1000e_free_tx_resources(adapter
->tx_ring
);
4706 e1000e_reset(adapter
);
4707 pm_runtime_put_sync(&pdev
->dev
);
4713 * e1000e_close - Disables a network interface
4714 * @netdev: network interface device structure
4716 * Returns 0, this is not allowed to fail
4718 * The close entry point is called when an interface is de-activated
4719 * by the OS. The hardware is still under the drivers control, but
4720 * needs to be disabled. A global MAC reset is issued to stop the
4721 * hardware, and all transmit and receive resources are freed.
4723 int e1000e_close(struct net_device
*netdev
)
4725 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4726 struct pci_dev
*pdev
= adapter
->pdev
;
4727 int count
= E1000_CHECK_RESET_COUNT
;
4729 while (test_bit(__E1000_RESETTING
, &adapter
->state
) && count
--)
4730 usleep_range(10000, 11000);
4732 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
4734 pm_runtime_get_sync(&pdev
->dev
);
4736 if (netif_device_present(netdev
)) {
4737 e1000e_down(adapter
, true);
4738 e1000_free_irq(adapter
);
4740 /* Link status message must follow this format */
4741 netdev_info(netdev
, "NIC Link is Down\n");
4744 napi_disable(&adapter
->napi
);
4746 e1000e_free_tx_resources(adapter
->tx_ring
);
4747 e1000e_free_rx_resources(adapter
->rx_ring
);
4749 /* kill manageability vlan ID if supported, but not if a vlan with
4750 * the same ID is registered on the host OS (let 8021q kill it)
4752 if (adapter
->hw
.mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)
4753 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
),
4754 adapter
->mng_vlan_id
);
4756 /* If AMT is enabled, let the firmware know that the network
4757 * interface is now closed
4759 if ((adapter
->flags
& FLAG_HAS_AMT
) &&
4760 !test_bit(__E1000_TESTING
, &adapter
->state
))
4761 e1000e_release_hw_control(adapter
);
4763 cpu_latency_qos_remove_request(&adapter
->pm_qos_req
);
4765 pm_runtime_put_sync(&pdev
->dev
);
4771 * e1000_set_mac - Change the Ethernet Address of the NIC
4772 * @netdev: network interface device structure
4773 * @p: pointer to an address structure
4775 * Returns 0 on success, negative on failure
4777 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
4779 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4780 struct e1000_hw
*hw
= &adapter
->hw
;
4781 struct sockaddr
*addr
= p
;
4783 if (!is_valid_ether_addr(addr
->sa_data
))
4784 return -EADDRNOTAVAIL
;
4786 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
4787 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
4789 hw
->mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
4791 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
4792 /* activate the work around */
4793 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
4795 /* Hold a copy of the LAA in RAR[14] This is done so that
4796 * between the time RAR[0] gets clobbered and the time it
4797 * gets fixed (in e1000_watchdog), the actual LAA is in one
4798 * of the RARs and no incoming packets directed to this port
4799 * are dropped. Eventually the LAA will be in RAR[0] and
4802 hw
->mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
,
4803 adapter
->hw
.mac
.rar_entry_count
- 1);
4810 * e1000e_update_phy_task - work thread to update phy
4811 * @work: pointer to our work struct
4813 * this worker thread exists because we must acquire a
4814 * semaphore to read the phy, which we could msleep while
4815 * waiting for it, and we can't msleep in a timer.
4817 static void e1000e_update_phy_task(struct work_struct
*work
)
4819 struct e1000_adapter
*adapter
= container_of(work
,
4820 struct e1000_adapter
,
4822 struct e1000_hw
*hw
= &adapter
->hw
;
4824 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4827 e1000_get_phy_info(hw
);
4829 /* Enable EEE on 82579 after link up */
4830 if (hw
->phy
.type
>= e1000_phy_82579
)
4831 e1000_set_eee_pchlan(hw
);
4835 * e1000_update_phy_info - timre call-back to update PHY info
4836 * @t: pointer to timer_list containing private info adapter
4838 * Need to wait a few seconds after link up to get diagnostic information from
4841 static void e1000_update_phy_info(struct timer_list
*t
)
4843 struct e1000_adapter
*adapter
= from_timer(adapter
, t
, phy_info_timer
);
4845 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4848 schedule_work(&adapter
->update_phy_task
);
4852 * e1000e_update_phy_stats - Update the PHY statistics counters
4853 * @adapter: board private structure
4855 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4857 static void e1000e_update_phy_stats(struct e1000_adapter
*adapter
)
4859 struct e1000_hw
*hw
= &adapter
->hw
;
4863 ret_val
= hw
->phy
.ops
.acquire(hw
);
4867 /* A page set is expensive so check if already on desired page.
4868 * If not, set to the page with the PHY status registers.
4871 ret_val
= e1000e_read_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
4875 if (phy_data
!= (HV_STATS_PAGE
<< IGP_PAGE_SHIFT
)) {
4876 ret_val
= hw
->phy
.ops
.set_page(hw
,
4877 HV_STATS_PAGE
<< IGP_PAGE_SHIFT
);
4882 /* Single Collision Count */
4883 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_UPPER
, &phy_data
);
4884 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_LOWER
, &phy_data
);
4886 adapter
->stats
.scc
+= phy_data
;
4888 /* Excessive Collision Count */
4889 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_UPPER
, &phy_data
);
4890 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_LOWER
, &phy_data
);
4892 adapter
->stats
.ecol
+= phy_data
;
4894 /* Multiple Collision Count */
4895 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_UPPER
, &phy_data
);
4896 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_LOWER
, &phy_data
);
4898 adapter
->stats
.mcc
+= phy_data
;
4900 /* Late Collision Count */
4901 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_UPPER
, &phy_data
);
4902 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_LOWER
, &phy_data
);
4904 adapter
->stats
.latecol
+= phy_data
;
4906 /* Collision Count - also used for adaptive IFS */
4907 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_UPPER
, &phy_data
);
4908 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_LOWER
, &phy_data
);
4910 hw
->mac
.collision_delta
= phy_data
;
4913 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_UPPER
, &phy_data
);
4914 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_DC_LOWER
, &phy_data
);
4916 adapter
->stats
.dc
+= phy_data
;
4918 /* Transmit with no CRS */
4919 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_UPPER
, &phy_data
);
4920 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_LOWER
, &phy_data
);
4922 adapter
->stats
.tncrs
+= phy_data
;
4925 hw
->phy
.ops
.release(hw
);
4929 * e1000e_update_stats - Update the board statistics counters
4930 * @adapter: board private structure
4932 static void e1000e_update_stats(struct e1000_adapter
*adapter
)
4934 struct net_device
*netdev
= adapter
->netdev
;
4935 struct e1000_hw
*hw
= &adapter
->hw
;
4936 struct pci_dev
*pdev
= adapter
->pdev
;
4938 /* Prevent stats update while adapter is being reset, or if the pci
4939 * connection is down.
4941 if (adapter
->link_speed
== 0)
4943 if (pci_channel_offline(pdev
))
4946 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
4947 adapter
->stats
.gprc
+= er32(GPRC
);
4948 adapter
->stats
.gorc
+= er32(GORCL
);
4949 er32(GORCH
); /* Clear gorc */
4950 adapter
->stats
.bprc
+= er32(BPRC
);
4951 adapter
->stats
.mprc
+= er32(MPRC
);
4952 adapter
->stats
.roc
+= er32(ROC
);
4954 adapter
->stats
.mpc
+= er32(MPC
);
4956 /* Half-duplex statistics */
4957 if (adapter
->link_duplex
== HALF_DUPLEX
) {
4958 if (adapter
->flags2
& FLAG2_HAS_PHY_STATS
) {
4959 e1000e_update_phy_stats(adapter
);
4961 adapter
->stats
.scc
+= er32(SCC
);
4962 adapter
->stats
.ecol
+= er32(ECOL
);
4963 adapter
->stats
.mcc
+= er32(MCC
);
4964 adapter
->stats
.latecol
+= er32(LATECOL
);
4965 adapter
->stats
.dc
+= er32(DC
);
4967 hw
->mac
.collision_delta
= er32(COLC
);
4969 if ((hw
->mac
.type
!= e1000_82574
) &&
4970 (hw
->mac
.type
!= e1000_82583
))
4971 adapter
->stats
.tncrs
+= er32(TNCRS
);
4973 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
4976 adapter
->stats
.xonrxc
+= er32(XONRXC
);
4977 adapter
->stats
.xontxc
+= er32(XONTXC
);
4978 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
4979 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
4980 adapter
->stats
.gptc
+= er32(GPTC
);
4981 adapter
->stats
.gotc
+= er32(GOTCL
);
4982 er32(GOTCH
); /* Clear gotc */
4983 adapter
->stats
.rnbc
+= er32(RNBC
);
4984 adapter
->stats
.ruc
+= er32(RUC
);
4986 adapter
->stats
.mptc
+= er32(MPTC
);
4987 adapter
->stats
.bptc
+= er32(BPTC
);
4989 /* used for adaptive IFS */
4991 hw
->mac
.tx_packet_delta
= er32(TPT
);
4992 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
4994 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
4995 adapter
->stats
.rxerrc
+= er32(RXERRC
);
4996 adapter
->stats
.cexterr
+= er32(CEXTERR
);
4997 adapter
->stats
.tsctc
+= er32(TSCTC
);
4998 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
5000 /* Fill out the OS statistics structure */
5001 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
5002 netdev
->stats
.collisions
= adapter
->stats
.colc
;
5006 /* RLEC on some newer hardware can be incorrect so build
5007 * our own version based on RUC and ROC
5009 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
5010 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
5011 adapter
->stats
.ruc
+ adapter
->stats
.roc
+ adapter
->stats
.cexterr
;
5012 netdev
->stats
.rx_length_errors
= adapter
->stats
.ruc
+
5014 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
5015 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
5016 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
5019 netdev
->stats
.tx_errors
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
5020 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
5021 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
5022 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
5024 /* Tx Dropped needs to be maintained elsewhere */
5026 /* Management Stats */
5027 adapter
->stats
.mgptc
+= er32(MGTPTC
);
5028 adapter
->stats
.mgprc
+= er32(MGTPRC
);
5029 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
5031 /* Correctable ECC Errors */
5032 if (hw
->mac
.type
>= e1000_pch_lpt
) {
5033 u32 pbeccsts
= er32(PBECCSTS
);
5035 adapter
->corr_errors
+=
5036 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
5037 adapter
->uncorr_errors
+=
5038 (pbeccsts
& E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
) >>
5039 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT
;
5044 * e1000_phy_read_status - Update the PHY register status snapshot
5045 * @adapter: board private structure
5047 static void e1000_phy_read_status(struct e1000_adapter
*adapter
)
5049 struct e1000_hw
*hw
= &adapter
->hw
;
5050 struct e1000_phy_regs
*phy
= &adapter
->phy_regs
;
5052 if (!pm_runtime_suspended((&adapter
->pdev
->dev
)->parent
) &&
5053 (er32(STATUS
) & E1000_STATUS_LU
) &&
5054 (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)) {
5057 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy
->bmcr
);
5058 ret_val
|= e1e_rphy(hw
, MII_BMSR
, &phy
->bmsr
);
5059 ret_val
|= e1e_rphy(hw
, MII_ADVERTISE
, &phy
->advertise
);
5060 ret_val
|= e1e_rphy(hw
, MII_LPA
, &phy
->lpa
);
5061 ret_val
|= e1e_rphy(hw
, MII_EXPANSION
, &phy
->expansion
);
5062 ret_val
|= e1e_rphy(hw
, MII_CTRL1000
, &phy
->ctrl1000
);
5063 ret_val
|= e1e_rphy(hw
, MII_STAT1000
, &phy
->stat1000
);
5064 ret_val
|= e1e_rphy(hw
, MII_ESTATUS
, &phy
->estatus
);
5066 e_warn("Error reading PHY register\n");
5068 /* Do not read PHY registers if link is not up
5069 * Set values to typical power-on defaults
5071 phy
->bmcr
= (BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_FULLDPLX
);
5072 phy
->bmsr
= (BMSR_100FULL
| BMSR_100HALF
| BMSR_10FULL
|
5073 BMSR_10HALF
| BMSR_ESTATEN
| BMSR_ANEGCAPABLE
|
5075 phy
->advertise
= (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
|
5076 ADVERTISE_ALL
| ADVERTISE_CSMA
);
5078 phy
->expansion
= EXPANSION_ENABLENPAGE
;
5079 phy
->ctrl1000
= ADVERTISE_1000FULL
;
5081 phy
->estatus
= (ESTATUS_1000_TFULL
| ESTATUS_1000_THALF
);
5085 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
5087 struct e1000_hw
*hw
= &adapter
->hw
;
5088 u32 ctrl
= er32(CTRL
);
5090 /* Link status message must follow this format for user tools */
5091 netdev_info(adapter
->netdev
,
5092 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5093 adapter
->link_speed
,
5094 adapter
->link_duplex
== FULL_DUPLEX
? "Full" : "Half",
5095 (ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
) ? "Rx/Tx" :
5096 (ctrl
& E1000_CTRL_RFCE
) ? "Rx" :
5097 (ctrl
& E1000_CTRL_TFCE
) ? "Tx" : "None");
5100 static bool e1000e_has_link(struct e1000_adapter
*adapter
)
5102 struct e1000_hw
*hw
= &adapter
->hw
;
5103 bool link_active
= false;
5106 /* get_link_status is set on LSC (link status) interrupt or
5107 * Rx sequence error interrupt. get_link_status will stay
5108 * true until the check_for_link establishes link
5109 * for copper adapters ONLY
5111 switch (hw
->phy
.media_type
) {
5112 case e1000_media_type_copper
:
5113 if (hw
->mac
.get_link_status
) {
5114 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
5115 link_active
= !hw
->mac
.get_link_status
;
5120 case e1000_media_type_fiber
:
5121 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
5122 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
5124 case e1000_media_type_internal_serdes
:
5125 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
5126 link_active
= hw
->mac
.serdes_has_link
;
5129 case e1000_media_type_unknown
:
5133 if ((ret_val
== -E1000_ERR_PHY
) && (hw
->phy
.type
== e1000_phy_igp_3
) &&
5134 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
5135 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5136 e_info("Gigabit has been disabled, downgrading speed\n");
5142 static void e1000e_enable_receives(struct e1000_adapter
*adapter
)
5144 /* make sure the receive unit is started */
5145 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
5146 (adapter
->flags
& FLAG_RESTART_NOW
)) {
5147 struct e1000_hw
*hw
= &adapter
->hw
;
5148 u32 rctl
= er32(RCTL
);
5150 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
5151 adapter
->flags
&= ~FLAG_RESTART_NOW
;
5155 static void e1000e_check_82574_phy_workaround(struct e1000_adapter
*adapter
)
5157 struct e1000_hw
*hw
= &adapter
->hw
;
5159 /* With 82574 controllers, PHY needs to be checked periodically
5160 * for hung state and reset, if two calls return true
5162 if (e1000_check_phy_82574(hw
))
5163 adapter
->phy_hang_count
++;
5165 adapter
->phy_hang_count
= 0;
5167 if (adapter
->phy_hang_count
> 1) {
5168 adapter
->phy_hang_count
= 0;
5169 e_dbg("PHY appears hung - resetting\n");
5170 schedule_work(&adapter
->reset_task
);
5175 * e1000_watchdog - Timer Call-back
5176 * @t: pointer to timer_list containing private info adapter
5178 static void e1000_watchdog(struct timer_list
*t
)
5180 struct e1000_adapter
*adapter
= from_timer(adapter
, t
, watchdog_timer
);
5182 /* Do the rest outside of interrupt context */
5183 schedule_work(&adapter
->watchdog_task
);
5185 /* TODO: make this use queue_delayed_work() */
5188 static void e1000_watchdog_task(struct work_struct
*work
)
5190 struct e1000_adapter
*adapter
= container_of(work
,
5191 struct e1000_adapter
,
5193 struct net_device
*netdev
= adapter
->netdev
;
5194 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
5195 struct e1000_phy_info
*phy
= &adapter
->hw
.phy
;
5196 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
5197 u32 dmoff_exit_timeout
= 100, tries
= 0;
5198 struct e1000_hw
*hw
= &adapter
->hw
;
5199 u32 link
, tctl
, pcim_state
;
5201 if (test_bit(__E1000_DOWN
, &adapter
->state
))
5204 link
= e1000e_has_link(adapter
);
5205 if ((netif_carrier_ok(netdev
)) && link
) {
5206 /* Cancel scheduled suspend requests. */
5207 pm_runtime_resume(netdev
->dev
.parent
);
5209 e1000e_enable_receives(adapter
);
5213 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
5214 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
5215 e1000_update_mng_vlan(adapter
);
5218 if (!netif_carrier_ok(netdev
)) {
5221 /* Cancel scheduled suspend requests. */
5222 pm_runtime_resume(netdev
->dev
.parent
);
5224 /* Checking if MAC is in DMoff state*/
5225 pcim_state
= er32(STATUS
);
5226 while (pcim_state
& E1000_STATUS_PCIM_STATE
) {
5227 if (tries
++ == dmoff_exit_timeout
) {
5228 e_dbg("Error in exiting dmoff\n");
5231 usleep_range(10000, 20000);
5232 pcim_state
= er32(STATUS
);
5234 /* Checking if MAC exited DMoff state */
5235 if (!(pcim_state
& E1000_STATUS_PCIM_STATE
))
5236 e1000_phy_hw_reset(&adapter
->hw
);
5239 /* update snapshot of PHY registers on LSC */
5240 e1000_phy_read_status(adapter
);
5241 mac
->ops
.get_link_up_info(&adapter
->hw
,
5242 &adapter
->link_speed
,
5243 &adapter
->link_duplex
);
5244 e1000_print_link_info(adapter
);
5246 /* check if SmartSpeed worked */
5247 e1000e_check_downshift(hw
);
5248 if (phy
->speed_downgraded
)
5250 "Link Speed was downgraded by SmartSpeed\n");
5252 /* On supported PHYs, check for duplex mismatch only
5253 * if link has autonegotiated at 10/100 half
5255 if ((hw
->phy
.type
== e1000_phy_igp_3
||
5256 hw
->phy
.type
== e1000_phy_bm
) &&
5258 (adapter
->link_speed
== SPEED_10
||
5259 adapter
->link_speed
== SPEED_100
) &&
5260 (adapter
->link_duplex
== HALF_DUPLEX
)) {
5263 e1e_rphy(hw
, MII_EXPANSION
, &autoneg_exp
);
5265 if (!(autoneg_exp
& EXPANSION_NWAY
))
5266 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
5269 /* adjust timeout factor according to speed/duplex */
5270 adapter
->tx_timeout_factor
= 1;
5271 switch (adapter
->link_speed
) {
5274 adapter
->tx_timeout_factor
= 16;
5278 adapter
->tx_timeout_factor
= 10;
5282 /* workaround: re-program speed mode bit after
5285 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
5289 tarc0
= er32(TARC(0));
5290 tarc0
&= ~SPEED_MODE_BIT
;
5291 ew32(TARC(0), tarc0
);
5294 /* disable TSO for pcie and 10/100 speeds, to avoid
5295 * some hardware issues
5297 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
5298 switch (adapter
->link_speed
) {
5301 e_info("10/100 speed: disabling TSO\n");
5302 netdev
->features
&= ~NETIF_F_TSO
;
5303 netdev
->features
&= ~NETIF_F_TSO6
;
5306 netdev
->features
|= NETIF_F_TSO
;
5307 netdev
->features
|= NETIF_F_TSO6
;
5313 if (hw
->mac
.type
== e1000_pch_spt
) {
5314 netdev
->features
&= ~NETIF_F_TSO
;
5315 netdev
->features
&= ~NETIF_F_TSO6
;
5319 /* enable transmits in the hardware, need to do this
5320 * after setting TARC(0)
5323 tctl
|= E1000_TCTL_EN
;
5326 /* Perform any post-link-up configuration before
5327 * reporting link up.
5329 if (phy
->ops
.cfg_on_link_up
)
5330 phy
->ops
.cfg_on_link_up(hw
);
5332 netif_wake_queue(netdev
);
5333 netif_carrier_on(netdev
);
5335 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
5336 mod_timer(&adapter
->phy_info_timer
,
5337 round_jiffies(jiffies
+ 2 * HZ
));
5340 if (netif_carrier_ok(netdev
)) {
5341 adapter
->link_speed
= 0;
5342 adapter
->link_duplex
= 0;
5343 /* Link status message must follow this format */
5344 netdev_info(netdev
, "NIC Link is Down\n");
5345 netif_carrier_off(netdev
);
5346 netif_stop_queue(netdev
);
5347 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
5348 mod_timer(&adapter
->phy_info_timer
,
5349 round_jiffies(jiffies
+ 2 * HZ
));
5351 /* 8000ES2LAN requires a Rx packet buffer work-around
5352 * on link down event; reset the controller to flush
5353 * the Rx packet buffer.
5355 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)
5356 adapter
->flags
|= FLAG_RESTART_NOW
;
5358 pm_schedule_suspend(netdev
->dev
.parent
,
5364 spin_lock(&adapter
->stats64_lock
);
5365 e1000e_update_stats(adapter
);
5367 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
5368 adapter
->tpt_old
= adapter
->stats
.tpt
;
5369 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
5370 adapter
->colc_old
= adapter
->stats
.colc
;
5372 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
5373 adapter
->gorc_old
= adapter
->stats
.gorc
;
5374 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
5375 adapter
->gotc_old
= adapter
->stats
.gotc
;
5376 spin_unlock(&adapter
->stats64_lock
);
5378 /* If the link is lost the controller stops DMA, but
5379 * if there is queued Tx work it cannot be done. So
5380 * reset the controller to flush the Tx packet buffers.
5382 if (!netif_carrier_ok(netdev
) &&
5383 (e1000_desc_unused(tx_ring
) + 1 < tx_ring
->count
))
5384 adapter
->flags
|= FLAG_RESTART_NOW
;
5386 /* If reset is necessary, do it outside of interrupt context. */
5387 if (adapter
->flags
& FLAG_RESTART_NOW
) {
5388 schedule_work(&adapter
->reset_task
);
5389 /* return immediately since reset is imminent */
5393 e1000e_update_adaptive(&adapter
->hw
);
5395 /* Simple mode for Interrupt Throttle Rate (ITR) */
5396 if (adapter
->itr_setting
== 4) {
5397 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5398 * Total asymmetrical Tx or Rx gets ITR=8000;
5399 * everyone else is between 2000-8000.
5401 u32 goc
= (adapter
->gotc
+ adapter
->gorc
) / 10000;
5402 u32 dif
= (adapter
->gotc
> adapter
->gorc
?
5403 adapter
->gotc
- adapter
->gorc
:
5404 adapter
->gorc
- adapter
->gotc
) / 10000;
5405 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
5407 e1000e_write_itr(adapter
, itr
);
5410 /* Cause software interrupt to ensure Rx ring is cleaned */
5411 if (adapter
->msix_entries
)
5412 ew32(ICS
, adapter
->rx_ring
->ims_val
);
5414 ew32(ICS
, E1000_ICS_RXDMT0
);
5416 /* flush pending descriptors to memory before detecting Tx hang */
5417 e1000e_flush_descriptors(adapter
);
5419 /* Force detection of hung controller every watchdog period */
5420 adapter
->detect_tx_hung
= true;
5422 /* With 82571 controllers, LAA may be overwritten due to controller
5423 * reset from the other port. Set the appropriate LAA in RAR[0]
5425 if (e1000e_get_laa_state_82571(hw
))
5426 hw
->mac
.ops
.rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
5428 if (adapter
->flags2
& FLAG2_CHECK_PHY_HANG
)
5429 e1000e_check_82574_phy_workaround(adapter
);
5431 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5432 if (adapter
->hwtstamp_config
.rx_filter
!= HWTSTAMP_FILTER_NONE
) {
5433 if ((adapter
->flags2
& FLAG2_CHECK_RX_HWTSTAMP
) &&
5434 (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
)) {
5436 adapter
->rx_hwtstamp_cleared
++;
5438 adapter
->flags2
|= FLAG2_CHECK_RX_HWTSTAMP
;
5442 /* Reset the timer */
5443 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
5444 mod_timer(&adapter
->watchdog_timer
,
5445 round_jiffies(jiffies
+ 2 * HZ
));
5448 #define E1000_TX_FLAGS_CSUM 0x00000001
5449 #define E1000_TX_FLAGS_VLAN 0x00000002
5450 #define E1000_TX_FLAGS_TSO 0x00000004
5451 #define E1000_TX_FLAGS_IPV4 0x00000008
5452 #define E1000_TX_FLAGS_NO_FCS 0x00000010
5453 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5454 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5455 #define E1000_TX_FLAGS_VLAN_SHIFT 16
5457 static int e1000_tso(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
,
5460 struct e1000_context_desc
*context_desc
;
5461 struct e1000_buffer
*buffer_info
;
5465 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
5468 if (!skb_is_gso(skb
))
5471 err
= skb_cow_head(skb
, 0);
5475 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
5476 mss
= skb_shinfo(skb
)->gso_size
;
5477 if (protocol
== htons(ETH_P_IP
)) {
5478 struct iphdr
*iph
= ip_hdr(skb
);
5481 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
, iph
->daddr
,
5483 cmd_length
= E1000_TXD_CMD_IP
;
5484 ipcse
= skb_transport_offset(skb
) - 1;
5485 } else if (skb_is_gso_v6(skb
)) {
5486 tcp_v6_gso_csum_prep(skb
);
5489 ipcss
= skb_network_offset(skb
);
5490 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
5491 tucss
= skb_transport_offset(skb
);
5492 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
5494 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
5495 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
5497 i
= tx_ring
->next_to_use
;
5498 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
5499 buffer_info
= &tx_ring
->buffer_info
[i
];
5501 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
5502 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
5503 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
5504 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
5505 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
5506 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
5507 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
5508 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
5509 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
5511 buffer_info
->time_stamp
= jiffies
;
5512 buffer_info
->next_to_watch
= i
;
5515 if (i
== tx_ring
->count
)
5517 tx_ring
->next_to_use
= i
;
5522 static bool e1000_tx_csum(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
,
5525 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5526 struct e1000_context_desc
*context_desc
;
5527 struct e1000_buffer
*buffer_info
;
5530 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
5532 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
5536 case cpu_to_be16(ETH_P_IP
):
5537 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
5538 cmd_len
|= E1000_TXD_CMD_TCP
;
5540 case cpu_to_be16(ETH_P_IPV6
):
5541 /* XXX not handling all IPV6 headers */
5542 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
5543 cmd_len
|= E1000_TXD_CMD_TCP
;
5546 if (unlikely(net_ratelimit()))
5547 e_warn("checksum_partial proto=%x!\n",
5548 be16_to_cpu(protocol
));
5552 css
= skb_checksum_start_offset(skb
);
5554 i
= tx_ring
->next_to_use
;
5555 buffer_info
= &tx_ring
->buffer_info
[i
];
5556 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
5558 context_desc
->lower_setup
.ip_config
= 0;
5559 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
5560 context_desc
->upper_setup
.tcp_fields
.tucso
= css
+ skb
->csum_offset
;
5561 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
5562 context_desc
->tcp_seg_setup
.data
= 0;
5563 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
5565 buffer_info
->time_stamp
= jiffies
;
5566 buffer_info
->next_to_watch
= i
;
5569 if (i
== tx_ring
->count
)
5571 tx_ring
->next_to_use
= i
;
5576 static int e1000_tx_map(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
,
5577 unsigned int first
, unsigned int max_per_txd
,
5578 unsigned int nr_frags
)
5580 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5581 struct pci_dev
*pdev
= adapter
->pdev
;
5582 struct e1000_buffer
*buffer_info
;
5583 unsigned int len
= skb_headlen(skb
);
5584 unsigned int offset
= 0, size
, count
= 0, i
;
5585 unsigned int f
, bytecount
, segs
;
5587 i
= tx_ring
->next_to_use
;
5590 buffer_info
= &tx_ring
->buffer_info
[i
];
5591 size
= min(len
, max_per_txd
);
5593 buffer_info
->length
= size
;
5594 buffer_info
->time_stamp
= jiffies
;
5595 buffer_info
->next_to_watch
= i
;
5596 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
5598 size
, DMA_TO_DEVICE
);
5599 buffer_info
->mapped_as_page
= false;
5600 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
5609 if (i
== tx_ring
->count
)
5614 for (f
= 0; f
< nr_frags
; f
++) {
5615 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[f
];
5617 len
= skb_frag_size(frag
);
5622 if (i
== tx_ring
->count
)
5625 buffer_info
= &tx_ring
->buffer_info
[i
];
5626 size
= min(len
, max_per_txd
);
5628 buffer_info
->length
= size
;
5629 buffer_info
->time_stamp
= jiffies
;
5630 buffer_info
->next_to_watch
= i
;
5631 buffer_info
->dma
= skb_frag_dma_map(&pdev
->dev
, frag
,
5634 buffer_info
->mapped_as_page
= true;
5635 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
5644 segs
= skb_shinfo(skb
)->gso_segs
? : 1;
5645 /* multiply data chunks by size of headers */
5646 bytecount
= ((segs
- 1) * skb_headlen(skb
)) + skb
->len
;
5648 tx_ring
->buffer_info
[i
].skb
= skb
;
5649 tx_ring
->buffer_info
[i
].segs
= segs
;
5650 tx_ring
->buffer_info
[i
].bytecount
= bytecount
;
5651 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
5656 dev_err(&pdev
->dev
, "Tx DMA map failed\n");
5657 buffer_info
->dma
= 0;
5663 i
+= tx_ring
->count
;
5665 buffer_info
= &tx_ring
->buffer_info
[i
];
5666 e1000_put_txbuf(tx_ring
, buffer_info
, true);
5672 static void e1000_tx_queue(struct e1000_ring
*tx_ring
, int tx_flags
, int count
)
5674 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5675 struct e1000_tx_desc
*tx_desc
= NULL
;
5676 struct e1000_buffer
*buffer_info
;
5677 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
5680 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
5681 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
5683 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
5685 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
5686 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
5689 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
5690 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
5691 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
5694 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
5695 txd_lower
|= E1000_TXD_CMD_VLE
;
5696 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
5699 if (unlikely(tx_flags
& E1000_TX_FLAGS_NO_FCS
))
5700 txd_lower
&= ~(E1000_TXD_CMD_IFCS
);
5702 if (unlikely(tx_flags
& E1000_TX_FLAGS_HWTSTAMP
)) {
5703 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
5704 txd_upper
|= E1000_TXD_EXTCMD_TSTAMP
;
5707 i
= tx_ring
->next_to_use
;
5710 buffer_info
= &tx_ring
->buffer_info
[i
];
5711 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
5712 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
5713 tx_desc
->lower
.data
= cpu_to_le32(txd_lower
|
5714 buffer_info
->length
);
5715 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
5718 if (i
== tx_ring
->count
)
5720 } while (--count
> 0);
5722 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
5724 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5725 if (unlikely(tx_flags
& E1000_TX_FLAGS_NO_FCS
))
5726 tx_desc
->lower
.data
&= ~(cpu_to_le32(E1000_TXD_CMD_IFCS
));
5728 /* Force memory writes to complete before letting h/w
5729 * know there are new descriptors to fetch. (Only
5730 * applicable for weak-ordered memory model archs,
5735 tx_ring
->next_to_use
= i
;
5738 #define MINIMUM_DHCP_PACKET_SIZE 282
5739 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
5740 struct sk_buff
*skb
)
5742 struct e1000_hw
*hw
= &adapter
->hw
;
5745 if (skb_vlan_tag_present(skb
) &&
5746 !((skb_vlan_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
5747 (adapter
->hw
.mng_cookie
.status
&
5748 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
5751 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
5754 if (((struct ethhdr
*)skb
->data
)->h_proto
!= htons(ETH_P_IP
))
5758 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+ 14);
5761 if (ip
->protocol
!= IPPROTO_UDP
)
5764 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
5765 if (ntohs(udp
->dest
) != 67)
5768 offset
= (u8
*)udp
+ 8 - skb
->data
;
5769 length
= skb
->len
- offset
;
5770 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
5776 static int __e1000_maybe_stop_tx(struct e1000_ring
*tx_ring
, int size
)
5778 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5780 netif_stop_queue(adapter
->netdev
);
5781 /* Herbert's original patch had:
5782 * smp_mb__after_netif_stop_queue();
5783 * but since that doesn't exist yet, just open code it.
5787 /* We need to check again in a case another CPU has just
5788 * made room available.
5790 if (e1000_desc_unused(tx_ring
) < size
)
5794 netif_start_queue(adapter
->netdev
);
5795 ++adapter
->restart_queue
;
5799 static int e1000_maybe_stop_tx(struct e1000_ring
*tx_ring
, int size
)
5801 BUG_ON(size
> tx_ring
->count
);
5803 if (e1000_desc_unused(tx_ring
) >= size
)
5805 return __e1000_maybe_stop_tx(tx_ring
, size
);
5808 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
5809 struct net_device
*netdev
)
5811 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5812 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
5814 unsigned int tx_flags
= 0;
5815 unsigned int len
= skb_headlen(skb
);
5816 unsigned int nr_frags
;
5821 __be16 protocol
= vlan_get_protocol(skb
);
5823 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
5824 dev_kfree_skb_any(skb
);
5825 return NETDEV_TX_OK
;
5828 if (skb
->len
<= 0) {
5829 dev_kfree_skb_any(skb
);
5830 return NETDEV_TX_OK
;
5833 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5834 * pad skb in order to meet this minimum size requirement
5836 if (skb_put_padto(skb
, 17))
5837 return NETDEV_TX_OK
;
5839 mss
= skb_shinfo(skb
)->gso_size
;
5843 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5844 * points to just header, pull a few bytes of payload from
5845 * frags into skb->data
5847 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
5848 /* we do this workaround for ES2LAN, but it is un-necessary,
5849 * avoiding it could save a lot of cycles
5851 if (skb
->data_len
&& (hdr_len
== len
)) {
5852 unsigned int pull_size
;
5854 pull_size
= min_t(unsigned int, 4, skb
->data_len
);
5855 if (!__pskb_pull_tail(skb
, pull_size
)) {
5856 e_err("__pskb_pull_tail failed.\n");
5857 dev_kfree_skb_any(skb
);
5858 return NETDEV_TX_OK
;
5860 len
= skb_headlen(skb
);
5864 /* reserve a descriptor for the offload context */
5865 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
5869 count
+= DIV_ROUND_UP(len
, adapter
->tx_fifo_limit
);
5871 nr_frags
= skb_shinfo(skb
)->nr_frags
;
5872 for (f
= 0; f
< nr_frags
; f
++)
5873 count
+= DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb
)->frags
[f
]),
5874 adapter
->tx_fifo_limit
);
5876 if (adapter
->hw
.mac
.tx_pkt_filtering
)
5877 e1000_transfer_dhcp_info(adapter
, skb
);
5879 /* need: count + 2 desc gap to keep tail from touching
5880 * head, otherwise try next time
5882 if (e1000_maybe_stop_tx(tx_ring
, count
+ 2))
5883 return NETDEV_TX_BUSY
;
5885 if (skb_vlan_tag_present(skb
)) {
5886 tx_flags
|= E1000_TX_FLAGS_VLAN
;
5887 tx_flags
|= (skb_vlan_tag_get(skb
) <<
5888 E1000_TX_FLAGS_VLAN_SHIFT
);
5891 first
= tx_ring
->next_to_use
;
5893 tso
= e1000_tso(tx_ring
, skb
, protocol
);
5895 dev_kfree_skb_any(skb
);
5896 return NETDEV_TX_OK
;
5900 tx_flags
|= E1000_TX_FLAGS_TSO
;
5901 else if (e1000_tx_csum(tx_ring
, skb
, protocol
))
5902 tx_flags
|= E1000_TX_FLAGS_CSUM
;
5904 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5905 * 82571 hardware supports TSO capabilities for IPv6 as well...
5906 * no longer assume, we must.
5908 if (protocol
== htons(ETH_P_IP
))
5909 tx_flags
|= E1000_TX_FLAGS_IPV4
;
5911 if (unlikely(skb
->no_fcs
))
5912 tx_flags
|= E1000_TX_FLAGS_NO_FCS
;
5914 /* if count is 0 then mapping error has occurred */
5915 count
= e1000_tx_map(tx_ring
, skb
, first
, adapter
->tx_fifo_limit
,
5918 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
) &&
5919 (adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
)) {
5920 if (!adapter
->tx_hwtstamp_skb
) {
5921 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
5922 tx_flags
|= E1000_TX_FLAGS_HWTSTAMP
;
5923 adapter
->tx_hwtstamp_skb
= skb_get(skb
);
5924 adapter
->tx_hwtstamp_start
= jiffies
;
5925 schedule_work(&adapter
->tx_hwtstamp_work
);
5927 adapter
->tx_hwtstamp_skipped
++;
5931 skb_tx_timestamp(skb
);
5933 netdev_sent_queue(netdev
, skb
->len
);
5934 e1000_tx_queue(tx_ring
, tx_flags
, count
);
5935 /* Make sure there is space in the ring for the next send. */
5936 e1000_maybe_stop_tx(tx_ring
,
5938 DIV_ROUND_UP(PAGE_SIZE
,
5939 adapter
->tx_fifo_limit
) + 2));
5941 if (!netdev_xmit_more() ||
5942 netif_xmit_stopped(netdev_get_tx_queue(netdev
, 0))) {
5943 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
5944 e1000e_update_tdt_wa(tx_ring
,
5945 tx_ring
->next_to_use
);
5947 writel(tx_ring
->next_to_use
, tx_ring
->tail
);
5950 dev_kfree_skb_any(skb
);
5951 tx_ring
->buffer_info
[first
].time_stamp
= 0;
5952 tx_ring
->next_to_use
= first
;
5955 return NETDEV_TX_OK
;
5959 * e1000_tx_timeout - Respond to a Tx Hang
5960 * @netdev: network interface device structure
5961 * @txqueue: index of the hung queue (unused)
5963 static void e1000_tx_timeout(struct net_device
*netdev
, unsigned int __always_unused txqueue
)
5965 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5967 /* Do the reset outside of interrupt context */
5968 adapter
->tx_timeout_count
++;
5969 schedule_work(&adapter
->reset_task
);
5972 static void e1000_reset_task(struct work_struct
*work
)
5974 struct e1000_adapter
*adapter
;
5975 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
5977 /* don't run the task if already down */
5978 if (test_bit(__E1000_DOWN
, &adapter
->state
))
5981 if (!(adapter
->flags
& FLAG_RESTART_NOW
)) {
5982 e1000e_dump(adapter
);
5983 e_err("Reset adapter unexpectedly\n");
5985 e1000e_reinit_locked(adapter
);
5989 * e1000_get_stats64 - Get System Network Statistics
5990 * @netdev: network interface device structure
5991 * @stats: rtnl_link_stats64 pointer
5993 * Returns the address of the device statistics structure.
5995 void e1000e_get_stats64(struct net_device
*netdev
,
5996 struct rtnl_link_stats64
*stats
)
5998 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6000 spin_lock(&adapter
->stats64_lock
);
6001 e1000e_update_stats(adapter
);
6002 /* Fill out the OS statistics structure */
6003 stats
->rx_bytes
= adapter
->stats
.gorc
;
6004 stats
->rx_packets
= adapter
->stats
.gprc
;
6005 stats
->tx_bytes
= adapter
->stats
.gotc
;
6006 stats
->tx_packets
= adapter
->stats
.gptc
;
6007 stats
->multicast
= adapter
->stats
.mprc
;
6008 stats
->collisions
= adapter
->stats
.colc
;
6012 /* RLEC on some newer hardware can be incorrect so build
6013 * our own version based on RUC and ROC
6015 stats
->rx_errors
= adapter
->stats
.rxerrc
+
6016 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
6017 adapter
->stats
.ruc
+ adapter
->stats
.roc
+ adapter
->stats
.cexterr
;
6018 stats
->rx_length_errors
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
6019 stats
->rx_crc_errors
= adapter
->stats
.crcerrs
;
6020 stats
->rx_frame_errors
= adapter
->stats
.algnerrc
;
6021 stats
->rx_missed_errors
= adapter
->stats
.mpc
;
6024 stats
->tx_errors
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
6025 stats
->tx_aborted_errors
= adapter
->stats
.ecol
;
6026 stats
->tx_window_errors
= adapter
->stats
.latecol
;
6027 stats
->tx_carrier_errors
= adapter
->stats
.tncrs
;
6029 /* Tx Dropped needs to be maintained elsewhere */
6031 spin_unlock(&adapter
->stats64_lock
);
6035 * e1000_change_mtu - Change the Maximum Transfer Unit
6036 * @netdev: network interface device structure
6037 * @new_mtu: new value for maximum frame size
6039 * Returns 0 on success, negative on failure
6041 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
6043 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6044 int max_frame
= new_mtu
+ VLAN_ETH_HLEN
+ ETH_FCS_LEN
;
6046 /* Jumbo frame support */
6047 if ((new_mtu
> ETH_DATA_LEN
) &&
6048 !(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
6049 e_err("Jumbo Frames not supported.\n");
6053 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6054 if ((adapter
->hw
.mac
.type
>= e1000_pch2lan
) &&
6055 !(adapter
->flags2
& FLAG2_CRC_STRIPPING
) &&
6056 (new_mtu
> ETH_DATA_LEN
)) {
6057 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6061 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
6062 usleep_range(1000, 1100);
6063 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6064 adapter
->max_frame_size
= max_frame
;
6065 netdev_dbg(netdev
, "changing MTU from %d to %d\n",
6066 netdev
->mtu
, new_mtu
);
6067 netdev
->mtu
= new_mtu
;
6069 pm_runtime_get_sync(netdev
->dev
.parent
);
6071 if (netif_running(netdev
))
6072 e1000e_down(adapter
, true);
6074 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6075 * means we reserve 2 more, this pushes us to allocate from the next
6077 * i.e. RXBUFFER_2048 --> size-4096 slab
6078 * However with the new *_jumbo_rx* routines, jumbo receives will use
6082 if (max_frame
<= 2048)
6083 adapter
->rx_buffer_len
= 2048;
6085 adapter
->rx_buffer_len
= 4096;
6087 /* adjust allocation if LPE protects us, and we aren't using SBP */
6088 if (max_frame
<= (VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
))
6089 adapter
->rx_buffer_len
= VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
;
6091 if (netif_running(netdev
))
6094 e1000e_reset(adapter
);
6096 pm_runtime_put_sync(netdev
->dev
.parent
);
6098 clear_bit(__E1000_RESETTING
, &adapter
->state
);
6103 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
6106 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6107 struct mii_ioctl_data
*data
= if_mii(ifr
);
6109 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
6114 data
->phy_id
= adapter
->hw
.phy
.addr
;
6117 e1000_phy_read_status(adapter
);
6119 switch (data
->reg_num
& 0x1F) {
6121 data
->val_out
= adapter
->phy_regs
.bmcr
;
6124 data
->val_out
= adapter
->phy_regs
.bmsr
;
6127 data
->val_out
= (adapter
->hw
.phy
.id
>> 16);
6130 data
->val_out
= (adapter
->hw
.phy
.id
& 0xFFFF);
6133 data
->val_out
= adapter
->phy_regs
.advertise
;
6136 data
->val_out
= adapter
->phy_regs
.lpa
;
6139 data
->val_out
= adapter
->phy_regs
.expansion
;
6142 data
->val_out
= adapter
->phy_regs
.ctrl1000
;
6145 data
->val_out
= adapter
->phy_regs
.stat1000
;
6148 data
->val_out
= adapter
->phy_regs
.estatus
;
6162 * e1000e_hwtstamp_ioctl - control hardware time stamping
6163 * @netdev: network interface device structure
6164 * @ifr: interface request
6166 * Outgoing time stamping can be enabled and disabled. Play nice and
6167 * disable it when requested, although it shouldn't cause any overhead
6168 * when no packet needs it. At most one packet in the queue may be
6169 * marked for time stamping, otherwise it would be impossible to tell
6170 * for sure to which packet the hardware time stamp belongs.
6172 * Incoming time stamping has to be configured via the hardware filters.
6173 * Not all combinations are supported, in particular event type has to be
6174 * specified. Matching the kind of event packet is not supported, with the
6175 * exception of "all V2 events regardless of level 2 or 4".
6177 static int e1000e_hwtstamp_set(struct net_device
*netdev
, struct ifreq
*ifr
)
6179 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6180 struct hwtstamp_config config
;
6183 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
6186 ret_val
= e1000e_config_hwtstamp(adapter
, &config
);
6190 switch (config
.rx_filter
) {
6191 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
6192 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
6193 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
6194 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
6195 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
6196 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
6197 /* With V2 type filters which specify a Sync or Delay Request,
6198 * Path Delay Request/Response messages are also time stamped
6199 * by hardware so notify the caller the requested packets plus
6200 * some others are time stamped.
6202 config
.rx_filter
= HWTSTAMP_FILTER_SOME
;
6208 return copy_to_user(ifr
->ifr_data
, &config
,
6209 sizeof(config
)) ? -EFAULT
: 0;
6212 static int e1000e_hwtstamp_get(struct net_device
*netdev
, struct ifreq
*ifr
)
6214 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6216 return copy_to_user(ifr
->ifr_data
, &adapter
->hwtstamp_config
,
6217 sizeof(adapter
->hwtstamp_config
)) ? -EFAULT
: 0;
6220 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
6226 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
6228 return e1000e_hwtstamp_set(netdev
, ifr
);
6230 return e1000e_hwtstamp_get(netdev
, ifr
);
6236 static int e1000_init_phy_wakeup(struct e1000_adapter
*adapter
, u32 wufc
)
6238 struct e1000_hw
*hw
= &adapter
->hw
;
6239 u32 i
, mac_reg
, wuc
;
6240 u16 phy_reg
, wuc_enable
;
6243 /* copy MAC RARs to PHY RARs */
6244 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
6246 retval
= hw
->phy
.ops
.acquire(hw
);
6248 e_err("Could not acquire PHY\n");
6252 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6253 retval
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &wuc_enable
);
6257 /* copy MAC MTA to PHY MTA - only needed for pchlan */
6258 for (i
= 0; i
< adapter
->hw
.mac
.mta_reg_count
; i
++) {
6259 mac_reg
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, i
);
6260 hw
->phy
.ops
.write_reg_page(hw
, BM_MTA(i
),
6261 (u16
)(mac_reg
& 0xFFFF));
6262 hw
->phy
.ops
.write_reg_page(hw
, BM_MTA(i
) + 1,
6263 (u16
)((mac_reg
>> 16) & 0xFFFF));
6266 /* configure PHY Rx Control register */
6267 hw
->phy
.ops
.read_reg_page(&adapter
->hw
, BM_RCTL
, &phy_reg
);
6268 mac_reg
= er32(RCTL
);
6269 if (mac_reg
& E1000_RCTL_UPE
)
6270 phy_reg
|= BM_RCTL_UPE
;
6271 if (mac_reg
& E1000_RCTL_MPE
)
6272 phy_reg
|= BM_RCTL_MPE
;
6273 phy_reg
&= ~(BM_RCTL_MO_MASK
);
6274 if (mac_reg
& E1000_RCTL_MO_3
)
6275 phy_reg
|= (((mac_reg
& E1000_RCTL_MO_3
) >> E1000_RCTL_MO_SHIFT
)
6276 << BM_RCTL_MO_SHIFT
);
6277 if (mac_reg
& E1000_RCTL_BAM
)
6278 phy_reg
|= BM_RCTL_BAM
;
6279 if (mac_reg
& E1000_RCTL_PMCF
)
6280 phy_reg
|= BM_RCTL_PMCF
;
6281 mac_reg
= er32(CTRL
);
6282 if (mac_reg
& E1000_CTRL_RFCE
)
6283 phy_reg
|= BM_RCTL_RFCE
;
6284 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_RCTL
, phy_reg
);
6286 wuc
= E1000_WUC_PME_EN
;
6287 if (wufc
& (E1000_WUFC_MAG
| E1000_WUFC_LNKC
))
6288 wuc
|= E1000_WUC_APME
;
6290 /* enable PHY wakeup in MAC register */
6292 ew32(WUC
, (E1000_WUC_PHY_WAKE
| E1000_WUC_APMPME
|
6293 E1000_WUC_PME_STATUS
| wuc
));
6295 /* configure and enable PHY wakeup in PHY registers */
6296 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_WUFC
, wufc
);
6297 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_WUC
, wuc
);
6299 /* activate PHY wakeup */
6300 wuc_enable
|= BM_WUC_ENABLE_BIT
| BM_WUC_HOST_WU_BIT
;
6301 retval
= e1000_disable_phy_wakeup_reg_access_bm(hw
, &wuc_enable
);
6303 e_err("Could not set PHY Host Wakeup bit\n");
6305 hw
->phy
.ops
.release(hw
);
6310 static void e1000e_flush_lpic(struct pci_dev
*pdev
)
6312 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6313 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6314 struct e1000_hw
*hw
= &adapter
->hw
;
6317 pm_runtime_get_sync(netdev
->dev
.parent
);
6319 ret_val
= hw
->phy
.ops
.acquire(hw
);
6323 pr_info("EEE TX LPI TIMER: %08X\n",
6324 er32(LPIC
) >> E1000_LPIC_LPIET_SHIFT
);
6326 hw
->phy
.ops
.release(hw
);
6329 pm_runtime_put_sync(netdev
->dev
.parent
);
6332 /* S0ix implementation */
6333 static void e1000e_s0ix_entry_flow(struct e1000_adapter
*adapter
)
6335 struct e1000_hw
*hw
= &adapter
->hw
;
6339 /* Disable the periodic inband message,
6340 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6342 e1e_rphy(hw
, HV_PM_CTRL
, &phy_data
);
6343 phy_data
&= ~HV_PM_CTRL_K1_CLK_REQ
;
6344 phy_data
|= BIT(10);
6345 e1e_wphy(hw
, HV_PM_CTRL
, phy_data
);
6347 /* Make sure we don't exit K1 every time a new packet arrives
6348 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6350 e1e_rphy(hw
, I217_CGFREG
, &phy_data
);
6352 e1e_wphy(hw
, I217_CGFREG
, phy_data
);
6354 /* Change the MAC/PHY interface to SMBus
6355 * Force the SMBus in PHY page769_23[0] = 1
6356 * Force the SMBus in MAC CTRL_EXT[11] = 1
6358 e1e_rphy(hw
, CV_SMB_CTRL
, &phy_data
);
6359 phy_data
|= CV_SMB_CTRL_FORCE_SMBUS
;
6360 e1e_wphy(hw
, CV_SMB_CTRL
, phy_data
);
6361 mac_data
= er32(CTRL_EXT
);
6362 mac_data
|= E1000_CTRL_EXT_FORCE_SMBUS
;
6363 ew32(CTRL_EXT
, mac_data
);
6365 /* DFT control: PHY bit: page769_20[0] = 1
6366 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6368 e1e_rphy(hw
, I82579_DFT_CTRL
, &phy_data
);
6370 e1e_wphy(hw
, I82579_DFT_CTRL
, phy_data
);
6372 mac_data
= er32(EXTCNF_CTRL
);
6373 mac_data
|= E1000_EXTCNF_CTRL_GATE_PHY_CFG
;
6374 ew32(EXTCNF_CTRL
, mac_data
);
6376 /* Check MAC Tx/Rx packet buffer pointers.
6377 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6378 * pending traffic indication that would prevent power gating.
6380 mac_data
= er32(TDFH
);
6383 mac_data
= er32(TDFT
);
6386 mac_data
= er32(TDFHS
);
6389 mac_data
= er32(TDFTS
);
6392 mac_data
= er32(TDFPC
);
6395 mac_data
= er32(RDFH
);
6398 mac_data
= er32(RDFT
);
6401 mac_data
= er32(RDFHS
);
6404 mac_data
= er32(RDFTS
);
6407 mac_data
= er32(RDFPC
);
6411 /* Enable the Dynamic Power Gating in the MAC */
6412 mac_data
= er32(FEXTNVM7
);
6413 mac_data
|= BIT(22);
6414 ew32(FEXTNVM7
, mac_data
);
6416 /* Disable the time synchronization clock */
6417 mac_data
= er32(FEXTNVM7
);
6418 mac_data
|= BIT(31);
6419 mac_data
&= ~BIT(0);
6420 ew32(FEXTNVM7
, mac_data
);
6422 /* Dynamic Power Gating Enable */
6423 mac_data
= er32(CTRL_EXT
);
6425 ew32(CTRL_EXT
, mac_data
);
6427 /* Disable disconnected cable conditioning for Power Gating */
6428 mac_data
= er32(DPGFR
);
6430 ew32(DPGFR
, mac_data
);
6432 /* Don't wake from dynamic Power Gating with clock request */
6433 mac_data
= er32(FEXTNVM12
);
6434 mac_data
|= BIT(12);
6435 ew32(FEXTNVM12
, mac_data
);
6437 /* Ungate PGCB clock */
6438 mac_data
= er32(FEXTNVM9
);
6439 mac_data
&= ~BIT(28);
6440 ew32(FEXTNVM9
, mac_data
);
6442 /* Enable K1 off to enable mPHY Power Gating */
6443 mac_data
= er32(FEXTNVM6
);
6444 mac_data
|= BIT(31);
6445 ew32(FEXTNVM6
, mac_data
);
6447 /* Enable mPHY power gating for any link and speed */
6448 mac_data
= er32(FEXTNVM8
);
6450 ew32(FEXTNVM8
, mac_data
);
6452 /* Enable the Dynamic Clock Gating in the DMA and MAC */
6453 mac_data
= er32(CTRL_EXT
);
6454 mac_data
|= E1000_CTRL_EXT_DMA_DYN_CLK_EN
;
6455 ew32(CTRL_EXT
, mac_data
);
6457 /* No MAC DPG gating SLP_S0 in modern standby
6458 * Switch the logic of the lanphypc to use PMC counter
6460 mac_data
= er32(FEXTNVM5
);
6462 ew32(FEXTNVM5
, mac_data
);
6465 static void e1000e_s0ix_exit_flow(struct e1000_adapter
*adapter
)
6467 struct e1000_hw
*hw
= &adapter
->hw
;
6471 /* Disable the Dynamic Power Gating in the MAC */
6472 mac_data
= er32(FEXTNVM7
);
6473 mac_data
&= 0xFFBFFFFF;
6474 ew32(FEXTNVM7
, mac_data
);
6476 /* Enable the time synchronization clock */
6477 mac_data
= er32(FEXTNVM7
);
6479 ew32(FEXTNVM7
, mac_data
);
6481 /* Disable mPHY power gating for any link and speed */
6482 mac_data
= er32(FEXTNVM8
);
6483 mac_data
&= ~BIT(9);
6484 ew32(FEXTNVM8
, mac_data
);
6486 /* Disable K1 off */
6487 mac_data
= er32(FEXTNVM6
);
6488 mac_data
&= ~BIT(31);
6489 ew32(FEXTNVM6
, mac_data
);
6491 /* Disable Ungate PGCB clock */
6492 mac_data
= er32(FEXTNVM9
);
6493 mac_data
|= BIT(28);
6494 ew32(FEXTNVM9
, mac_data
);
6496 /* Cancel not waking from dynamic
6497 * Power Gating with clock request
6499 mac_data
= er32(FEXTNVM12
);
6500 mac_data
&= ~BIT(12);
6501 ew32(FEXTNVM12
, mac_data
);
6503 /* Cancel disable disconnected cable conditioning
6506 mac_data
= er32(DPGFR
);
6507 mac_data
&= ~BIT(2);
6508 ew32(DPGFR
, mac_data
);
6510 /* Disable Dynamic Power Gating */
6511 mac_data
= er32(CTRL_EXT
);
6512 mac_data
&= 0xFFFFFFF7;
6513 ew32(CTRL_EXT
, mac_data
);
6515 /* Disable the Dynamic Clock Gating in the DMA and MAC */
6516 mac_data
= er32(CTRL_EXT
);
6517 mac_data
&= 0xFFF7FFFF;
6518 ew32(CTRL_EXT
, mac_data
);
6520 /* Revert the lanphypc logic to use the internal Gbe counter
6521 * and not the PMC counter
6523 mac_data
= er32(FEXTNVM5
);
6524 mac_data
&= 0xFFFFFF7F;
6525 ew32(FEXTNVM5
, mac_data
);
6527 /* Enable the periodic inband message,
6528 * Request PCIe clock in K1 page770_17[10:9] =01b
6530 e1e_rphy(hw
, HV_PM_CTRL
, &phy_data
);
6532 phy_data
|= HV_PM_CTRL_K1_CLK_REQ
;
6533 e1e_wphy(hw
, HV_PM_CTRL
, phy_data
);
6535 /* Return back configuration
6536 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6538 e1e_rphy(hw
, I217_CGFREG
, &phy_data
);
6540 e1e_wphy(hw
, I217_CGFREG
, phy_data
);
6542 /* Change the MAC/PHY interface to Kumeran
6543 * Unforce the SMBus in PHY page769_23[0] = 0
6544 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6546 e1e_rphy(hw
, CV_SMB_CTRL
, &phy_data
);
6547 phy_data
&= ~CV_SMB_CTRL_FORCE_SMBUS
;
6548 e1e_wphy(hw
, CV_SMB_CTRL
, phy_data
);
6549 mac_data
= er32(CTRL_EXT
);
6550 mac_data
&= ~E1000_CTRL_EXT_FORCE_SMBUS
;
6551 ew32(CTRL_EXT
, mac_data
);
6554 static int e1000e_pm_freeze(struct device
*dev
)
6556 struct net_device
*netdev
= dev_get_drvdata(dev
);
6557 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6562 present
= netif_device_present(netdev
);
6563 netif_device_detach(netdev
);
6565 if (present
&& netif_running(netdev
)) {
6566 int count
= E1000_CHECK_RESET_COUNT
;
6568 while (test_bit(__E1000_RESETTING
, &adapter
->state
) && count
--)
6569 usleep_range(10000, 11000);
6571 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
6573 /* Quiesce the device without resetting the hardware */
6574 e1000e_down(adapter
, false);
6575 e1000_free_irq(adapter
);
6579 e1000e_reset_interrupt_capability(adapter
);
6581 /* Allow time for pending master requests to run */
6582 e1000e_disable_pcie_master(&adapter
->hw
);
6587 static int __e1000_shutdown(struct pci_dev
*pdev
, bool runtime
)
6589 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6590 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6591 struct e1000_hw
*hw
= &adapter
->hw
;
6592 u32 ctrl
, ctrl_ext
, rctl
, status
, wufc
;
6595 /* Runtime suspend should only enable wakeup for link changes */
6597 wufc
= E1000_WUFC_LNKC
;
6598 else if (device_may_wakeup(&pdev
->dev
))
6599 wufc
= adapter
->wol
;
6603 status
= er32(STATUS
);
6604 if (status
& E1000_STATUS_LU
)
6605 wufc
&= ~E1000_WUFC_LNKC
;
6608 e1000_setup_rctl(adapter
);
6609 e1000e_set_rx_mode(netdev
);
6611 /* turn on all-multi mode if wake on multicast is enabled */
6612 if (wufc
& E1000_WUFC_MC
) {
6614 rctl
|= E1000_RCTL_MPE
;
6619 ctrl
|= E1000_CTRL_ADVD3WUC
;
6620 if (!(adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
))
6621 ctrl
|= E1000_CTRL_EN_PHY_PWR_MGMT
;
6624 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
6625 adapter
->hw
.phy
.media_type
==
6626 e1000_media_type_internal_serdes
) {
6627 /* keep the laser running in D3 */
6628 ctrl_ext
= er32(CTRL_EXT
);
6629 ctrl_ext
|= E1000_CTRL_EXT_SDP3_DATA
;
6630 ew32(CTRL_EXT
, ctrl_ext
);
6634 e1000e_power_up_phy(adapter
);
6636 if (adapter
->flags
& FLAG_IS_ICH
)
6637 e1000_suspend_workarounds_ich8lan(&adapter
->hw
);
6639 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
6640 /* enable wakeup by the PHY */
6641 retval
= e1000_init_phy_wakeup(adapter
, wufc
);
6645 /* enable wakeup by the MAC */
6647 ew32(WUC
, E1000_WUC_PME_EN
);
6653 e1000_power_down_phy(adapter
);
6656 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
) {
6657 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
6658 } else if (hw
->mac
.type
>= e1000_pch_lpt
) {
6659 if (wufc
&& !(wufc
& (E1000_WUFC_EX
| E1000_WUFC_MC
| E1000_WUFC_BC
)))
6660 /* ULP does not support wake from unicast, multicast
6663 retval
= e1000_enable_ulp_lpt_lp(hw
, !runtime
);
6669 /* Ensure that the appropriate bits are set in LPI_CTRL
6672 if ((hw
->phy
.type
>= e1000_phy_i217
) &&
6673 adapter
->eee_advert
&& hw
->dev_spec
.ich8lan
.eee_lp_ability
) {
6676 retval
= hw
->phy
.ops
.acquire(hw
);
6678 retval
= e1e_rphy_locked(hw
, I82579_LPI_CTRL
,
6681 if (adapter
->eee_advert
&
6682 hw
->dev_spec
.ich8lan
.eee_lp_ability
&
6683 I82579_EEE_100_SUPPORTED
)
6684 lpi_ctrl
|= I82579_LPI_CTRL_100_ENABLE
;
6685 if (adapter
->eee_advert
&
6686 hw
->dev_spec
.ich8lan
.eee_lp_ability
&
6687 I82579_EEE_1000_SUPPORTED
)
6688 lpi_ctrl
|= I82579_LPI_CTRL_1000_ENABLE
;
6690 retval
= e1e_wphy_locked(hw
, I82579_LPI_CTRL
,
6694 hw
->phy
.ops
.release(hw
);
6697 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6698 * would have already happened in close and is redundant.
6700 e1000e_release_hw_control(adapter
);
6702 pci_clear_master(pdev
);
6704 /* The pci-e switch on some quad port adapters will report a
6705 * correctable error when the MAC transitions from D0 to D3. To
6706 * prevent this we need to mask off the correctable errors on the
6707 * downstream port of the pci-e switch.
6709 * We don't have the associated upstream bridge while assigning
6710 * the PCI device into guest. For example, the KVM on power is
6713 if (adapter
->flags
& FLAG_IS_QUAD_PORT
) {
6714 struct pci_dev
*us_dev
= pdev
->bus
->self
;
6720 pcie_capability_read_word(us_dev
, PCI_EXP_DEVCTL
, &devctl
);
6721 pcie_capability_write_word(us_dev
, PCI_EXP_DEVCTL
,
6722 (devctl
& ~PCI_EXP_DEVCTL_CERE
));
6724 pci_save_state(pdev
);
6725 pci_prepare_to_sleep(pdev
);
6727 pcie_capability_write_word(us_dev
, PCI_EXP_DEVCTL
, devctl
);
6734 * __e1000e_disable_aspm - Disable ASPM states
6735 * @pdev: pointer to PCI device struct
6736 * @state: bit-mask of ASPM states to disable
6737 * @locked: indication if this context holds pci_bus_sem locked.
6739 * Some devices *must* have certain ASPM states disabled per hardware errata.
6741 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
, int locked
)
6743 struct pci_dev
*parent
= pdev
->bus
->self
;
6744 u16 aspm_dis_mask
= 0;
6745 u16 pdev_aspmc
, parent_aspmc
;
6748 case PCIE_LINK_STATE_L0S
:
6749 case PCIE_LINK_STATE_L0S
| PCIE_LINK_STATE_L1
:
6750 aspm_dis_mask
|= PCI_EXP_LNKCTL_ASPM_L0S
;
6751 fallthrough
; /* can't have L1 without L0s */
6752 case PCIE_LINK_STATE_L1
:
6753 aspm_dis_mask
|= PCI_EXP_LNKCTL_ASPM_L1
;
6759 pcie_capability_read_word(pdev
, PCI_EXP_LNKCTL
, &pdev_aspmc
);
6760 pdev_aspmc
&= PCI_EXP_LNKCTL_ASPMC
;
6763 pcie_capability_read_word(parent
, PCI_EXP_LNKCTL
,
6765 parent_aspmc
&= PCI_EXP_LNKCTL_ASPMC
;
6768 /* Nothing to do if the ASPM states to be disabled already are */
6769 if (!(pdev_aspmc
& aspm_dis_mask
) &&
6770 (!parent
|| !(parent_aspmc
& aspm_dis_mask
)))
6773 dev_info(&pdev
->dev
, "Disabling ASPM %s %s\n",
6774 (aspm_dis_mask
& pdev_aspmc
& PCI_EXP_LNKCTL_ASPM_L0S
) ?
6776 (aspm_dis_mask
& pdev_aspmc
& PCI_EXP_LNKCTL_ASPM_L1
) ?
6779 #ifdef CONFIG_PCIEASPM
6781 pci_disable_link_state_locked(pdev
, state
);
6783 pci_disable_link_state(pdev
, state
);
6785 /* Double-check ASPM control. If not disabled by the above, the
6786 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6787 * not enabled); override by writing PCI config space directly.
6789 pcie_capability_read_word(pdev
, PCI_EXP_LNKCTL
, &pdev_aspmc
);
6790 pdev_aspmc
&= PCI_EXP_LNKCTL_ASPMC
;
6792 if (!(aspm_dis_mask
& pdev_aspmc
))
6796 /* Both device and parent should have the same ASPM setting.
6797 * Disable ASPM in downstream component first and then upstream.
6799 pcie_capability_clear_word(pdev
, PCI_EXP_LNKCTL
, aspm_dis_mask
);
6802 pcie_capability_clear_word(parent
, PCI_EXP_LNKCTL
,
6807 * e1000e_disable_aspm - Disable ASPM states.
6808 * @pdev: pointer to PCI device struct
6809 * @state: bit-mask of ASPM states to disable
6811 * This function acquires the pci_bus_sem!
6812 * Some devices *must* have certain ASPM states disabled per hardware errata.
6814 static void e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
6816 __e1000e_disable_aspm(pdev
, state
, 0);
6820 * e1000e_disable_aspm_locked Disable ASPM states.
6821 * @pdev: pointer to PCI device struct
6822 * @state: bit-mask of ASPM states to disable
6824 * This function must be called with pci_bus_sem acquired!
6825 * Some devices *must* have certain ASPM states disabled per hardware errata.
6827 static void e1000e_disable_aspm_locked(struct pci_dev
*pdev
, u16 state
)
6829 __e1000e_disable_aspm(pdev
, state
, 1);
6832 static int e1000e_pm_thaw(struct device
*dev
)
6834 struct net_device
*netdev
= dev_get_drvdata(dev
);
6835 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6838 e1000e_set_interrupt_capability(adapter
);
6841 if (netif_running(netdev
)) {
6842 rc
= e1000_request_irq(adapter
);
6849 netif_device_attach(netdev
);
6856 static int __e1000_resume(struct pci_dev
*pdev
)
6858 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6859 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6860 struct e1000_hw
*hw
= &adapter
->hw
;
6861 u16 aspm_disable_flag
= 0;
6863 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
6864 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
6865 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
6866 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
6867 if (aspm_disable_flag
)
6868 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
6870 pci_set_master(pdev
);
6872 if (hw
->mac
.type
>= e1000_pch2lan
)
6873 e1000_resume_workarounds_pchlan(&adapter
->hw
);
6875 e1000e_power_up_phy(adapter
);
6877 /* report the system wakeup cause from S3/S4 */
6878 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
6881 e1e_rphy(&adapter
->hw
, BM_WUS
, &phy_data
);
6883 e_info("PHY Wakeup cause - %s\n",
6884 phy_data
& E1000_WUS_EX
? "Unicast Packet" :
6885 phy_data
& E1000_WUS_MC
? "Multicast Packet" :
6886 phy_data
& E1000_WUS_BC
? "Broadcast Packet" :
6887 phy_data
& E1000_WUS_MAG
? "Magic Packet" :
6888 phy_data
& E1000_WUS_LNKC
?
6889 "Link Status Change" : "other");
6891 e1e_wphy(&adapter
->hw
, BM_WUS
, ~0);
6893 u32 wus
= er32(WUS
);
6896 e_info("MAC Wakeup cause - %s\n",
6897 wus
& E1000_WUS_EX
? "Unicast Packet" :
6898 wus
& E1000_WUS_MC
? "Multicast Packet" :
6899 wus
& E1000_WUS_BC
? "Broadcast Packet" :
6900 wus
& E1000_WUS_MAG
? "Magic Packet" :
6901 wus
& E1000_WUS_LNKC
? "Link Status Change" :
6907 e1000e_reset(adapter
);
6909 e1000_init_manageability_pt(adapter
);
6911 /* If the controller has AMT, do not set DRV_LOAD until the interface
6912 * is up. For all other cases, let the f/w know that the h/w is now
6913 * under the control of the driver.
6915 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6916 e1000e_get_hw_control(adapter
);
6921 static __maybe_unused
int e1000e_pm_suspend(struct device
*dev
)
6923 struct net_device
*netdev
= pci_get_drvdata(to_pci_dev(dev
));
6924 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6925 struct pci_dev
*pdev
= to_pci_dev(dev
);
6928 e1000e_flush_lpic(pdev
);
6930 e1000e_pm_freeze(dev
);
6932 rc
= __e1000_shutdown(pdev
, false);
6934 e1000e_pm_thaw(dev
);
6936 /* Introduce S0ix implementation */
6937 if (adapter
->flags2
& FLAG2_ENABLE_S0IX_FLOWS
)
6938 e1000e_s0ix_entry_flow(adapter
);
6944 static __maybe_unused
int e1000e_pm_resume(struct device
*dev
)
6946 struct net_device
*netdev
= pci_get_drvdata(to_pci_dev(dev
));
6947 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6948 struct pci_dev
*pdev
= to_pci_dev(dev
);
6951 /* Introduce S0ix implementation */
6952 if (adapter
->flags2
& FLAG2_ENABLE_S0IX_FLOWS
)
6953 e1000e_s0ix_exit_flow(adapter
);
6955 rc
= __e1000_resume(pdev
);
6959 return e1000e_pm_thaw(dev
);
6962 static __maybe_unused
int e1000e_pm_runtime_idle(struct device
*dev
)
6964 struct net_device
*netdev
= dev_get_drvdata(dev
);
6965 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6968 eee_lp
= adapter
->hw
.dev_spec
.ich8lan
.eee_lp_ability
;
6970 if (!e1000e_has_link(adapter
)) {
6971 adapter
->hw
.dev_spec
.ich8lan
.eee_lp_ability
= eee_lp
;
6972 pm_schedule_suspend(dev
, 5 * MSEC_PER_SEC
);
6978 static __maybe_unused
int e1000e_pm_runtime_resume(struct device
*dev
)
6980 struct pci_dev
*pdev
= to_pci_dev(dev
);
6981 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6982 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6985 rc
= __e1000_resume(pdev
);
6989 if (netdev
->flags
& IFF_UP
)
6995 static __maybe_unused
int e1000e_pm_runtime_suspend(struct device
*dev
)
6997 struct pci_dev
*pdev
= to_pci_dev(dev
);
6998 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6999 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
7001 if (netdev
->flags
& IFF_UP
) {
7002 int count
= E1000_CHECK_RESET_COUNT
;
7004 while (test_bit(__E1000_RESETTING
, &adapter
->state
) && count
--)
7005 usleep_range(10000, 11000);
7007 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
7009 /* Down the device without resetting the hardware */
7010 e1000e_down(adapter
, false);
7013 if (__e1000_shutdown(pdev
, true)) {
7014 e1000e_pm_runtime_resume(dev
);
7021 static void e1000_shutdown(struct pci_dev
*pdev
)
7023 e1000e_flush_lpic(pdev
);
7025 e1000e_pm_freeze(&pdev
->dev
);
7027 __e1000_shutdown(pdev
, false);
7030 #ifdef CONFIG_NET_POLL_CONTROLLER
7032 static irqreturn_t
e1000_intr_msix(int __always_unused irq
, void *data
)
7034 struct net_device
*netdev
= data
;
7035 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
7037 if (adapter
->msix_entries
) {
7038 int vector
, msix_irq
;
7041 msix_irq
= adapter
->msix_entries
[vector
].vector
;
7042 if (disable_hardirq(msix_irq
))
7043 e1000_intr_msix_rx(msix_irq
, netdev
);
7044 enable_irq(msix_irq
);
7047 msix_irq
= adapter
->msix_entries
[vector
].vector
;
7048 if (disable_hardirq(msix_irq
))
7049 e1000_intr_msix_tx(msix_irq
, netdev
);
7050 enable_irq(msix_irq
);
7053 msix_irq
= adapter
->msix_entries
[vector
].vector
;
7054 if (disable_hardirq(msix_irq
))
7055 e1000_msix_other(msix_irq
, netdev
);
7056 enable_irq(msix_irq
);
7064 * @netdev: network interface device structure
7066 * Polling 'interrupt' - used by things like netconsole to send skbs
7067 * without having to re-enable interrupts. It's not called while
7068 * the interrupt routine is executing.
7070 static void e1000_netpoll(struct net_device
*netdev
)
7072 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
7074 switch (adapter
->int_mode
) {
7075 case E1000E_INT_MODE_MSIX
:
7076 e1000_intr_msix(adapter
->pdev
->irq
, netdev
);
7078 case E1000E_INT_MODE_MSI
:
7079 if (disable_hardirq(adapter
->pdev
->irq
))
7080 e1000_intr_msi(adapter
->pdev
->irq
, netdev
);
7081 enable_irq(adapter
->pdev
->irq
);
7083 default: /* E1000E_INT_MODE_LEGACY */
7084 if (disable_hardirq(adapter
->pdev
->irq
))
7085 e1000_intr(adapter
->pdev
->irq
, netdev
);
7086 enable_irq(adapter
->pdev
->irq
);
7093 * e1000_io_error_detected - called when PCI error is detected
7094 * @pdev: Pointer to PCI device
7095 * @state: The current pci connection state
7097 * This function is called after a PCI bus error affecting
7098 * this device has been detected.
7100 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
7101 pci_channel_state_t state
)
7103 e1000e_pm_freeze(&pdev
->dev
);
7105 if (state
== pci_channel_io_perm_failure
)
7106 return PCI_ERS_RESULT_DISCONNECT
;
7108 pci_disable_device(pdev
);
7110 /* Request a slot slot reset. */
7111 return PCI_ERS_RESULT_NEED_RESET
;
7115 * e1000_io_slot_reset - called after the pci bus has been reset.
7116 * @pdev: Pointer to PCI device
7118 * Restart the card from scratch, as if from a cold-boot. Implementation
7119 * resembles the first-half of the e1000e_pm_resume routine.
7121 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
7123 struct net_device
*netdev
= pci_get_drvdata(pdev
);
7124 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
7125 struct e1000_hw
*hw
= &adapter
->hw
;
7126 u16 aspm_disable_flag
= 0;
7128 pci_ers_result_t result
;
7130 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
7131 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
7132 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
7133 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
7134 if (aspm_disable_flag
)
7135 e1000e_disable_aspm_locked(pdev
, aspm_disable_flag
);
7137 err
= pci_enable_device_mem(pdev
);
7140 "Cannot re-enable PCI device after reset.\n");
7141 result
= PCI_ERS_RESULT_DISCONNECT
;
7143 pdev
->state_saved
= true;
7144 pci_restore_state(pdev
);
7145 pci_set_master(pdev
);
7147 pci_enable_wake(pdev
, PCI_D3hot
, 0);
7148 pci_enable_wake(pdev
, PCI_D3cold
, 0);
7150 e1000e_reset(adapter
);
7152 result
= PCI_ERS_RESULT_RECOVERED
;
7159 * e1000_io_resume - called when traffic can start flowing again.
7160 * @pdev: Pointer to PCI device
7162 * This callback is called when the error recovery driver tells us that
7163 * its OK to resume normal operation. Implementation resembles the
7164 * second-half of the e1000e_pm_resume routine.
7166 static void e1000_io_resume(struct pci_dev
*pdev
)
7168 struct net_device
*netdev
= pci_get_drvdata(pdev
);
7169 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
7171 e1000_init_manageability_pt(adapter
);
7173 e1000e_pm_thaw(&pdev
->dev
);
7175 /* If the controller has AMT, do not set DRV_LOAD until the interface
7176 * is up. For all other cases, let the f/w know that the h/w is now
7177 * under the control of the driver.
7179 if (!(adapter
->flags
& FLAG_HAS_AMT
))
7180 e1000e_get_hw_control(adapter
);
7183 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
7185 struct e1000_hw
*hw
= &adapter
->hw
;
7186 struct net_device
*netdev
= adapter
->netdev
;
7188 u8 pba_str
[E1000_PBANUM_LENGTH
];
7190 /* print bus type/speed/width info */
7191 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7193 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
7197 e_info("Intel(R) PRO/%s Network Connection\n",
7198 (hw
->phy
.type
== e1000_phy_ife
) ? "10/100" : "1000");
7199 ret_val
= e1000_read_pba_string_generic(hw
, pba_str
,
7200 E1000_PBANUM_LENGTH
);
7202 strlcpy((char *)pba_str
, "Unknown", sizeof(pba_str
));
7203 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7204 hw
->mac
.type
, hw
->phy
.type
, pba_str
);
7207 static void e1000_eeprom_checks(struct e1000_adapter
*adapter
)
7209 struct e1000_hw
*hw
= &adapter
->hw
;
7213 if (hw
->mac
.type
!= e1000_82573
)
7216 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &buf
);
7218 if (!ret_val
&& (!(buf
& BIT(0)))) {
7219 /* Deep Smart Power Down (DSPD) */
7220 dev_warn(&adapter
->pdev
->dev
,
7221 "Warning: detected DSPD enabled in EEPROM\n");
7225 static netdev_features_t
e1000_fix_features(struct net_device
*netdev
,
7226 netdev_features_t features
)
7228 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
7229 struct e1000_hw
*hw
= &adapter
->hw
;
7231 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7232 if ((hw
->mac
.type
>= e1000_pch2lan
) && (netdev
->mtu
> ETH_DATA_LEN
))
7233 features
&= ~NETIF_F_RXFCS
;
7235 /* Since there is no support for separate Rx/Tx vlan accel
7236 * enable/disable make sure Tx flag is always in same state as Rx.
7238 if (features
& NETIF_F_HW_VLAN_CTAG_RX
)
7239 features
|= NETIF_F_HW_VLAN_CTAG_TX
;
7241 features
&= ~NETIF_F_HW_VLAN_CTAG_TX
;
7246 static int e1000_set_features(struct net_device
*netdev
,
7247 netdev_features_t features
)
7249 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
7250 netdev_features_t changed
= features
^ netdev
->features
;
7252 if (changed
& (NETIF_F_TSO
| NETIF_F_TSO6
))
7253 adapter
->flags
|= FLAG_TSO_FORCE
;
7255 if (!(changed
& (NETIF_F_HW_VLAN_CTAG_RX
| NETIF_F_HW_VLAN_CTAG_TX
|
7256 NETIF_F_RXCSUM
| NETIF_F_RXHASH
| NETIF_F_RXFCS
|
7260 if (changed
& NETIF_F_RXFCS
) {
7261 if (features
& NETIF_F_RXFCS
) {
7262 adapter
->flags2
&= ~FLAG2_CRC_STRIPPING
;
7264 /* We need to take it back to defaults, which might mean
7265 * stripping is still disabled at the adapter level.
7267 if (adapter
->flags2
& FLAG2_DFLT_CRC_STRIPPING
)
7268 adapter
->flags2
|= FLAG2_CRC_STRIPPING
;
7270 adapter
->flags2
&= ~FLAG2_CRC_STRIPPING
;
7274 netdev
->features
= features
;
7276 if (netif_running(netdev
))
7277 e1000e_reinit_locked(adapter
);
7279 e1000e_reset(adapter
);
7284 static const struct net_device_ops e1000e_netdev_ops
= {
7285 .ndo_open
= e1000e_open
,
7286 .ndo_stop
= e1000e_close
,
7287 .ndo_start_xmit
= e1000_xmit_frame
,
7288 .ndo_get_stats64
= e1000e_get_stats64
,
7289 .ndo_set_rx_mode
= e1000e_set_rx_mode
,
7290 .ndo_set_mac_address
= e1000_set_mac
,
7291 .ndo_change_mtu
= e1000_change_mtu
,
7292 .ndo_do_ioctl
= e1000_ioctl
,
7293 .ndo_tx_timeout
= e1000_tx_timeout
,
7294 .ndo_validate_addr
= eth_validate_addr
,
7296 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
7297 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
7298 #ifdef CONFIG_NET_POLL_CONTROLLER
7299 .ndo_poll_controller
= e1000_netpoll
,
7301 .ndo_set_features
= e1000_set_features
,
7302 .ndo_fix_features
= e1000_fix_features
,
7303 .ndo_features_check
= passthru_features_check
,
7307 * e1000_probe - Device Initialization Routine
7308 * @pdev: PCI device information struct
7309 * @ent: entry in e1000_pci_tbl
7311 * Returns 0 on success, negative on failure
7313 * e1000_probe initializes an adapter identified by a pci_dev structure.
7314 * The OS initialization, configuring of the adapter private structure,
7315 * and a hardware reset occur.
7317 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
7319 struct net_device
*netdev
;
7320 struct e1000_adapter
*adapter
;
7321 struct e1000_hw
*hw
;
7322 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
7323 resource_size_t mmio_start
, mmio_len
;
7324 resource_size_t flash_start
, flash_len
;
7325 static int cards_found
;
7326 u16 aspm_disable_flag
= 0;
7327 int bars
, i
, err
, pci_using_dac
;
7328 u16 eeprom_data
= 0;
7329 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
7332 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
7333 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
7334 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L1
)
7335 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
7336 if (aspm_disable_flag
)
7337 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
7339 err
= pci_enable_device_mem(pdev
);
7344 err
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(64));
7348 err
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32));
7351 "No usable DMA configuration, aborting\n");
7356 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
7357 err
= pci_request_selected_regions_exclusive(pdev
, bars
,
7358 e1000e_driver_name
);
7362 /* AER (Advanced Error Reporting) hooks */
7363 pci_enable_pcie_error_reporting(pdev
);
7365 pci_set_master(pdev
);
7366 /* PCI config space info */
7367 err
= pci_save_state(pdev
);
7369 goto err_alloc_etherdev
;
7372 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
7374 goto err_alloc_etherdev
;
7376 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
7378 netdev
->irq
= pdev
->irq
;
7380 pci_set_drvdata(pdev
, netdev
);
7381 adapter
= netdev_priv(netdev
);
7383 adapter
->netdev
= netdev
;
7384 adapter
->pdev
= pdev
;
7386 adapter
->pba
= ei
->pba
;
7387 adapter
->flags
= ei
->flags
;
7388 adapter
->flags2
= ei
->flags2
;
7389 adapter
->hw
.adapter
= adapter
;
7390 adapter
->hw
.mac
.type
= ei
->mac
;
7391 adapter
->max_hw_frame_size
= ei
->max_hw_frame_size
;
7392 adapter
->msg_enable
= netif_msg_init(debug
, DEFAULT_MSG_ENABLE
);
7394 mmio_start
= pci_resource_start(pdev
, 0);
7395 mmio_len
= pci_resource_len(pdev
, 0);
7398 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
7399 if (!adapter
->hw
.hw_addr
)
7402 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
7403 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
) &&
7404 (hw
->mac
.type
< e1000_pch_spt
)) {
7405 flash_start
= pci_resource_start(pdev
, 1);
7406 flash_len
= pci_resource_len(pdev
, 1);
7407 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
7408 if (!adapter
->hw
.flash_address
)
7412 /* Set default EEE advertisement */
7413 if (adapter
->flags2
& FLAG2_HAS_EEE
)
7414 adapter
->eee_advert
= MDIO_EEE_100TX
| MDIO_EEE_1000T
;
7416 /* construct the net_device struct */
7417 netdev
->netdev_ops
= &e1000e_netdev_ops
;
7418 e1000e_set_ethtool_ops(netdev
);
7419 netdev
->watchdog_timeo
= 5 * HZ
;
7420 netif_napi_add(netdev
, &adapter
->napi
, e1000e_poll
, 64);
7421 strlcpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
));
7423 netdev
->mem_start
= mmio_start
;
7424 netdev
->mem_end
= mmio_start
+ mmio_len
;
7426 adapter
->bd_number
= cards_found
++;
7428 e1000e_check_options(adapter
);
7430 /* setup adapter struct */
7431 err
= e1000_sw_init(adapter
);
7435 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
7436 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
7437 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
7439 err
= ei
->get_variants(adapter
);
7443 if ((adapter
->flags
& FLAG_IS_ICH
) &&
7444 (adapter
->flags
& FLAG_READ_ONLY_NVM
) &&
7445 (hw
->mac
.type
< e1000_pch_spt
))
7446 e1000e_write_protect_nvm_ich8lan(&adapter
->hw
);
7448 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
7450 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
7452 /* Copper options */
7453 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
7454 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
7455 adapter
->hw
.phy
.disable_polarity_correction
= 0;
7456 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
7459 if (hw
->phy
.ops
.check_reset_block
&& hw
->phy
.ops
.check_reset_block(hw
))
7460 dev_info(&pdev
->dev
,
7461 "PHY reset is blocked due to SOL/IDER session.\n");
7463 /* Set initial default active device features */
7464 netdev
->features
= (NETIF_F_SG
|
7465 NETIF_F_HW_VLAN_CTAG_RX
|
7466 NETIF_F_HW_VLAN_CTAG_TX
|
7473 /* Set user-changeable features (subset of all device features) */
7474 netdev
->hw_features
= netdev
->features
;
7475 netdev
->hw_features
|= NETIF_F_RXFCS
;
7476 netdev
->priv_flags
|= IFF_SUPP_NOFCS
;
7477 netdev
->hw_features
|= NETIF_F_RXALL
;
7479 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
7480 netdev
->features
|= NETIF_F_HW_VLAN_CTAG_FILTER
;
7482 netdev
->vlan_features
|= (NETIF_F_SG
|
7487 netdev
->priv_flags
|= IFF_UNICAST_FLT
;
7489 if (pci_using_dac
) {
7490 netdev
->features
|= NETIF_F_HIGHDMA
;
7491 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
7494 /* MTU range: 68 - max_hw_frame_size */
7495 netdev
->min_mtu
= ETH_MIN_MTU
;
7496 netdev
->max_mtu
= adapter
->max_hw_frame_size
-
7497 (VLAN_ETH_HLEN
+ ETH_FCS_LEN
);
7499 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
7500 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
7502 /* before reading the NVM, reset the controller to
7503 * put the device in a known good starting state
7505 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
7507 /* systems with ASPM and others may see the checksum fail on the first
7508 * attempt. Let's give it a few tries
7511 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
7514 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
7520 e1000_eeprom_checks(adapter
);
7522 /* copy the MAC address */
7523 if (e1000e_read_mac_addr(&adapter
->hw
))
7525 "NVM Read Error while reading MAC address\n");
7527 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
7529 if (!is_valid_ether_addr(netdev
->dev_addr
)) {
7530 dev_err(&pdev
->dev
, "Invalid MAC Address: %pM\n",
7536 timer_setup(&adapter
->watchdog_timer
, e1000_watchdog
, 0);
7537 timer_setup(&adapter
->phy_info_timer
, e1000_update_phy_info
, 0);
7539 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
7540 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
7541 INIT_WORK(&adapter
->downshift_task
, e1000e_downshift_workaround
);
7542 INIT_WORK(&adapter
->update_phy_task
, e1000e_update_phy_task
);
7543 INIT_WORK(&adapter
->print_hang_task
, e1000_print_hw_hang
);
7545 /* Initialize link parameters. User can change them with ethtool */
7546 adapter
->hw
.mac
.autoneg
= 1;
7547 adapter
->fc_autoneg
= true;
7548 adapter
->hw
.fc
.requested_mode
= e1000_fc_default
;
7549 adapter
->hw
.fc
.current_mode
= e1000_fc_default
;
7550 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
7552 /* Initial Wake on LAN setting - If APM wake is enabled in
7553 * the EEPROM, enable the ACPI Magic Packet filter
7555 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
7556 /* APME bit in EEPROM is mapped to WUC.APME */
7557 eeprom_data
= er32(WUC
);
7558 eeprom_apme_mask
= E1000_WUC_APME
;
7559 if ((hw
->mac
.type
> e1000_ich10lan
) &&
7560 (eeprom_data
& E1000_WUC_PHY_WAKE
))
7561 adapter
->flags2
|= FLAG2_HAS_PHY_WAKEUP
;
7562 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
7563 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
7564 (adapter
->hw
.bus
.func
== 1))
7565 ret_val
= e1000_read_nvm(&adapter
->hw
,
7566 NVM_INIT_CONTROL3_PORT_B
,
7569 ret_val
= e1000_read_nvm(&adapter
->hw
,
7570 NVM_INIT_CONTROL3_PORT_A
,
7574 /* fetch WoL from EEPROM */
7576 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val
);
7577 else if (eeprom_data
& eeprom_apme_mask
)
7578 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
7580 /* now that we have the eeprom settings, apply the special cases
7581 * where the eeprom may be wrong or the board simply won't support
7582 * wake on lan on a particular port
7584 if (!(adapter
->flags
& FLAG_HAS_WOL
))
7585 adapter
->eeprom_wol
= 0;
7587 /* initialize the wol settings based on the eeprom settings */
7588 adapter
->wol
= adapter
->eeprom_wol
;
7590 /* make sure adapter isn't asleep if manageability is enabled */
7591 if (adapter
->wol
|| (adapter
->flags
& FLAG_MNG_PT_ENABLED
) ||
7592 (hw
->mac
.ops
.check_mng_mode(hw
)))
7593 device_wakeup_enable(&pdev
->dev
);
7595 /* save off EEPROM version number */
7596 ret_val
= e1000_read_nvm(&adapter
->hw
, 5, 1, &adapter
->eeprom_vers
);
7599 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val
);
7600 adapter
->eeprom_vers
= 0;
7603 /* init PTP hardware clock */
7604 e1000e_ptp_init(adapter
);
7606 /* reset the hardware with the new settings */
7607 e1000e_reset(adapter
);
7609 /* If the controller has AMT, do not set DRV_LOAD until the interface
7610 * is up. For all other cases, let the f/w know that the h/w is now
7611 * under the control of the driver.
7613 if (!(adapter
->flags
& FLAG_HAS_AMT
))
7614 e1000e_get_hw_control(adapter
);
7616 if (hw
->mac
.type
>= e1000_pch_cnp
)
7617 adapter
->flags2
|= FLAG2_ENABLE_S0IX_FLOWS
;
7619 strlcpy(netdev
->name
, "eth%d", sizeof(netdev
->name
));
7620 err
= register_netdev(netdev
);
7624 /* carrier off reporting is important to ethtool even BEFORE open */
7625 netif_carrier_off(netdev
);
7627 e1000_print_device_info(adapter
);
7629 dev_pm_set_driver_flags(&pdev
->dev
, DPM_FLAG_NO_DIRECT_COMPLETE
);
7631 if (pci_dev_run_wake(pdev
) && hw
->mac
.type
< e1000_pch_cnp
)
7632 pm_runtime_put_noidle(&pdev
->dev
);
7637 if (!(adapter
->flags
& FLAG_HAS_AMT
))
7638 e1000e_release_hw_control(adapter
);
7640 if (hw
->phy
.ops
.check_reset_block
&& !hw
->phy
.ops
.check_reset_block(hw
))
7641 e1000_phy_hw_reset(&adapter
->hw
);
7643 kfree(adapter
->tx_ring
);
7644 kfree(adapter
->rx_ring
);
7646 if ((adapter
->hw
.flash_address
) && (hw
->mac
.type
< e1000_pch_spt
))
7647 iounmap(adapter
->hw
.flash_address
);
7648 e1000e_reset_interrupt_capability(adapter
);
7650 iounmap(adapter
->hw
.hw_addr
);
7652 free_netdev(netdev
);
7654 pci_release_mem_regions(pdev
);
7657 pci_disable_device(pdev
);
7662 * e1000_remove - Device Removal Routine
7663 * @pdev: PCI device information struct
7665 * e1000_remove is called by the PCI subsystem to alert the driver
7666 * that it should release a PCI device. The could be caused by a
7667 * Hot-Plug event, or because the driver is going to be removed from
7670 static void e1000_remove(struct pci_dev
*pdev
)
7672 struct net_device
*netdev
= pci_get_drvdata(pdev
);
7673 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
7675 e1000e_ptp_remove(adapter
);
7677 /* The timers may be rescheduled, so explicitly disable them
7678 * from being rescheduled.
7680 set_bit(__E1000_DOWN
, &adapter
->state
);
7681 del_timer_sync(&adapter
->watchdog_timer
);
7682 del_timer_sync(&adapter
->phy_info_timer
);
7684 cancel_work_sync(&adapter
->reset_task
);
7685 cancel_work_sync(&adapter
->watchdog_task
);
7686 cancel_work_sync(&adapter
->downshift_task
);
7687 cancel_work_sync(&adapter
->update_phy_task
);
7688 cancel_work_sync(&adapter
->print_hang_task
);
7690 if (adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) {
7691 cancel_work_sync(&adapter
->tx_hwtstamp_work
);
7692 if (adapter
->tx_hwtstamp_skb
) {
7693 dev_consume_skb_any(adapter
->tx_hwtstamp_skb
);
7694 adapter
->tx_hwtstamp_skb
= NULL
;
7698 unregister_netdev(netdev
);
7700 if (pci_dev_run_wake(pdev
))
7701 pm_runtime_get_noresume(&pdev
->dev
);
7703 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7704 * would have already happened in close and is redundant.
7706 e1000e_release_hw_control(adapter
);
7708 e1000e_reset_interrupt_capability(adapter
);
7709 kfree(adapter
->tx_ring
);
7710 kfree(adapter
->rx_ring
);
7712 iounmap(adapter
->hw
.hw_addr
);
7713 if ((adapter
->hw
.flash_address
) &&
7714 (adapter
->hw
.mac
.type
< e1000_pch_spt
))
7715 iounmap(adapter
->hw
.flash_address
);
7716 pci_release_mem_regions(pdev
);
7718 free_netdev(netdev
);
7721 pci_disable_pcie_error_reporting(pdev
);
7723 pci_disable_device(pdev
);
7726 /* PCI Error Recovery (ERS) */
7727 static const struct pci_error_handlers e1000_err_handler
= {
7728 .error_detected
= e1000_io_error_detected
,
7729 .slot_reset
= e1000_io_slot_reset
,
7730 .resume
= e1000_io_resume
,
7733 static const struct pci_device_id e1000_pci_tbl
[] = {
7734 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_COPPER
), board_82571
},
7735 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_FIBER
), board_82571
},
7736 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER
), board_82571
},
7737 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER_LP
),
7739 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_FIBER
), board_82571
},
7740 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES
), board_82571
},
7741 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_DUAL
), board_82571
},
7742 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_QUAD
), board_82571
},
7743 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571PT_QUAD_COPPER
), board_82571
},
7745 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI
), board_82572
},
7746 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_COPPER
), board_82572
},
7747 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_FIBER
), board_82572
},
7748 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_SERDES
), board_82572
},
7750 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E
), board_82573
},
7751 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E_IAMT
), board_82573
},
7752 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573L
), board_82573
},
7754 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574L
), board_82574
},
7755 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574LA
), board_82574
},
7756 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82583V
), board_82583
},
7758 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_DPT
),
7759 board_80003es2lan
},
7760 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_SPT
),
7761 board_80003es2lan
},
7762 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_DPT
),
7763 board_80003es2lan
},
7764 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_SPT
),
7765 board_80003es2lan
},
7767 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE
), board_ich8lan
},
7768 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_G
), board_ich8lan
},
7769 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_GT
), board_ich8lan
},
7770 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_AMT
), board_ich8lan
},
7771 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_C
), board_ich8lan
},
7772 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M
), board_ich8lan
},
7773 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M_AMT
), board_ich8lan
},
7774 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_82567V_3
), board_ich8lan
},
7776 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
7777 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
7778 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
7779 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
7780 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
7781 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_BM
), board_ich9lan
},
7782 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M
), board_ich9lan
},
7783 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_AMT
), board_ich9lan
},
7784 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_V
), board_ich9lan
},
7786 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LM
), board_ich9lan
},
7787 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LF
), board_ich9lan
},
7788 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_V
), board_ich9lan
},
7790 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LM
), board_ich10lan
},
7791 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LF
), board_ich10lan
},
7792 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_V
), board_ich10lan
},
7794 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LM
), board_pchlan
},
7795 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LC
), board_pchlan
},
7796 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DM
), board_pchlan
},
7797 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DC
), board_pchlan
},
7799 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_LM
), board_pch2lan
},
7800 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_V
), board_pch2lan
},
7802 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPT_I217_LM
), board_pch_lpt
},
7803 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPT_I217_V
), board_pch_lpt
},
7804 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPTLP_I218_LM
), board_pch_lpt
},
7805 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPTLP_I218_V
), board_pch_lpt
},
7806 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_LM2
), board_pch_lpt
},
7807 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_V2
), board_pch_lpt
},
7808 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_LM3
), board_pch_lpt
},
7809 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_V3
), board_pch_lpt
},
7810 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_LM
), board_pch_spt
},
7811 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_V
), board_pch_spt
},
7812 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_LM2
), board_pch_spt
},
7813 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_V2
), board_pch_spt
},
7814 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LBG_I219_LM3
), board_pch_spt
},
7815 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_LM4
), board_pch_spt
},
7816 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_V4
), board_pch_spt
},
7817 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_LM5
), board_pch_spt
},
7818 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_V5
), board_pch_spt
},
7819 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CNP_I219_LM6
), board_pch_cnp
},
7820 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CNP_I219_V6
), board_pch_cnp
},
7821 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CNP_I219_LM7
), board_pch_cnp
},
7822 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CNP_I219_V7
), board_pch_cnp
},
7823 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ICP_I219_LM8
), board_pch_cnp
},
7824 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ICP_I219_V8
), board_pch_cnp
},
7825 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ICP_I219_LM9
), board_pch_cnp
},
7826 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ICP_I219_V9
), board_pch_cnp
},
7827 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CMP_I219_LM10
), board_pch_cnp
},
7828 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CMP_I219_V10
), board_pch_cnp
},
7829 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CMP_I219_LM11
), board_pch_cnp
},
7830 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CMP_I219_V11
), board_pch_cnp
},
7831 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CMP_I219_LM12
), board_pch_spt
},
7832 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_CMP_I219_V12
), board_pch_spt
},
7833 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_TGP_I219_LM13
), board_pch_cnp
},
7834 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_TGP_I219_V13
), board_pch_cnp
},
7835 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_TGP_I219_LM14
), board_pch_cnp
},
7836 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_TGP_I219_V14
), board_pch_cnp
},
7837 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_TGP_I219_LM15
), board_pch_cnp
},
7838 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_TGP_I219_V15
), board_pch_cnp
},
7839 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ADP_I219_LM16
), board_pch_cnp
},
7840 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ADP_I219_V16
), board_pch_cnp
},
7841 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ADP_I219_LM17
), board_pch_cnp
},
7842 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_ADP_I219_V17
), board_pch_cnp
},
7843 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_MTP_I219_LM18
), board_pch_cnp
},
7844 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_MTP_I219_V18
), board_pch_cnp
},
7845 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_MTP_I219_LM19
), board_pch_cnp
},
7846 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_MTP_I219_V19
), board_pch_cnp
},
7848 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7850 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
7852 static const struct dev_pm_ops e1000_pm_ops
= {
7853 #ifdef CONFIG_PM_SLEEP
7854 .suspend
= e1000e_pm_suspend
,
7855 .resume
= e1000e_pm_resume
,
7856 .freeze
= e1000e_pm_freeze
,
7857 .thaw
= e1000e_pm_thaw
,
7858 .poweroff
= e1000e_pm_suspend
,
7859 .restore
= e1000e_pm_resume
,
7861 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend
, e1000e_pm_runtime_resume
,
7862 e1000e_pm_runtime_idle
)
7865 /* PCI Device API Driver */
7866 static struct pci_driver e1000_driver
= {
7867 .name
= e1000e_driver_name
,
7868 .id_table
= e1000_pci_tbl
,
7869 .probe
= e1000_probe
,
7870 .remove
= e1000_remove
,
7872 .pm
= &e1000_pm_ops
,
7874 .shutdown
= e1000_shutdown
,
7875 .err_handler
= &e1000_err_handler
7879 * e1000_init_module - Driver Registration Routine
7881 * e1000_init_module is the first routine called when the driver is
7882 * loaded. All it does is register with the PCI subsystem.
7884 static int __init
e1000_init_module(void)
7886 pr_info("Intel(R) PRO/1000 Network Driver\n");
7887 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7889 return pci_register_driver(&e1000_driver
);
7891 module_init(e1000_init_module
);
7894 * e1000_exit_module - Driver Exit Cleanup Routine
7896 * e1000_exit_module is called just before the driver is removed
7899 static void __exit
e1000_exit_module(void)
7901 pci_unregister_driver(&e1000_driver
);
7903 module_exit(e1000_exit_module
);
7905 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7906 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7907 MODULE_LICENSE("GPL v2");