1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
4 #include <linux/if_ether.h>
5 #include <linux/delay.h>
10 static s32
igb_phy_setup_autoneg(struct e1000_hw
*hw
);
11 static void igb_phy_force_speed_duplex_setup(struct e1000_hw
*hw
,
13 static s32
igb_wait_autoneg(struct e1000_hw
*hw
);
14 static s32
igb_set_master_slave_mode(struct e1000_hw
*hw
);
16 /* Cable length tables */
17 static const u16 e1000_m88_cable_length_table
[] = {
18 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
};
20 static const u16 e1000_igp_2_cable_length_table
[] = {
21 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
22 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
23 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
24 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
25 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
26 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
27 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
28 104, 109, 114, 118, 121, 124};
31 * igb_check_reset_block - Check if PHY reset is blocked
32 * @hw: pointer to the HW structure
34 * Read the PHY management control register and check whether a PHY reset
35 * is blocked. If a reset is not blocked return 0, otherwise
36 * return E1000_BLK_PHY_RESET (12).
38 s32
igb_check_reset_block(struct e1000_hw
*hw
)
42 manc
= rd32(E1000_MANC
);
44 return (manc
& E1000_MANC_BLK_PHY_RST_ON_IDE
) ? E1000_BLK_PHY_RESET
: 0;
48 * igb_get_phy_id - Retrieve the PHY ID and revision
49 * @hw: pointer to the HW structure
51 * Reads the PHY registers and stores the PHY ID and possibly the PHY
52 * revision in the hardware structure.
54 s32
igb_get_phy_id(struct e1000_hw
*hw
)
56 struct e1000_phy_info
*phy
= &hw
->phy
;
60 /* ensure PHY page selection to fix misconfigured i210 */
61 if ((hw
->mac
.type
== e1000_i210
) || (hw
->mac
.type
== e1000_i211
))
62 phy
->ops
.write_reg(hw
, I347AT4_PAGE_SELECT
, 0);
64 ret_val
= phy
->ops
.read_reg(hw
, PHY_ID1
, &phy_id
);
68 phy
->id
= (u32
)(phy_id
<< 16);
70 ret_val
= phy
->ops
.read_reg(hw
, PHY_ID2
, &phy_id
);
74 phy
->id
|= (u32
)(phy_id
& PHY_REVISION_MASK
);
75 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
82 * igb_phy_reset_dsp - Reset PHY DSP
83 * @hw: pointer to the HW structure
85 * Reset the digital signal processor.
87 static s32
igb_phy_reset_dsp(struct e1000_hw
*hw
)
91 if (!(hw
->phy
.ops
.write_reg
))
94 ret_val
= hw
->phy
.ops
.write_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0xC1);
98 ret_val
= hw
->phy
.ops
.write_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0);
105 * igb_read_phy_reg_mdic - Read MDI control register
106 * @hw: pointer to the HW structure
107 * @offset: register offset to be read
108 * @data: pointer to the read data
110 * Reads the MDI control register in the PHY at offset and stores the
111 * information read to data.
113 s32
igb_read_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
115 struct e1000_phy_info
*phy
= &hw
->phy
;
119 if (offset
> MAX_PHY_REG_ADDRESS
) {
120 hw_dbg("PHY Address %d is out of range\n", offset
);
121 ret_val
= -E1000_ERR_PARAM
;
125 /* Set up Op-code, Phy Address, and register offset in the MDI
126 * Control register. The MAC will take care of interfacing with the
127 * PHY to retrieve the desired data.
129 mdic
= ((offset
<< E1000_MDIC_REG_SHIFT
) |
130 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
131 (E1000_MDIC_OP_READ
));
133 wr32(E1000_MDIC
, mdic
);
135 /* Poll the ready bit to see if the MDI read completed
136 * Increasing the time out as testing showed failures with
139 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
141 mdic
= rd32(E1000_MDIC
);
142 if (mdic
& E1000_MDIC_READY
)
145 if (!(mdic
& E1000_MDIC_READY
)) {
146 hw_dbg("MDI Read did not complete\n");
147 ret_val
= -E1000_ERR_PHY
;
150 if (mdic
& E1000_MDIC_ERROR
) {
151 hw_dbg("MDI Error\n");
152 ret_val
= -E1000_ERR_PHY
;
162 * igb_write_phy_reg_mdic - Write MDI control register
163 * @hw: pointer to the HW structure
164 * @offset: register offset to write to
165 * @data: data to write to register at offset
167 * Writes data to MDI control register in the PHY at offset.
169 s32
igb_write_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16 data
)
171 struct e1000_phy_info
*phy
= &hw
->phy
;
175 if (offset
> MAX_PHY_REG_ADDRESS
) {
176 hw_dbg("PHY Address %d is out of range\n", offset
);
177 ret_val
= -E1000_ERR_PARAM
;
181 /* Set up Op-code, Phy Address, and register offset in the MDI
182 * Control register. The MAC will take care of interfacing with the
183 * PHY to retrieve the desired data.
185 mdic
= (((u32
)data
) |
186 (offset
<< E1000_MDIC_REG_SHIFT
) |
187 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
188 (E1000_MDIC_OP_WRITE
));
190 wr32(E1000_MDIC
, mdic
);
192 /* Poll the ready bit to see if the MDI read completed
193 * Increasing the time out as testing showed failures with
196 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
198 mdic
= rd32(E1000_MDIC
);
199 if (mdic
& E1000_MDIC_READY
)
202 if (!(mdic
& E1000_MDIC_READY
)) {
203 hw_dbg("MDI Write did not complete\n");
204 ret_val
= -E1000_ERR_PHY
;
207 if (mdic
& E1000_MDIC_ERROR
) {
208 hw_dbg("MDI Error\n");
209 ret_val
= -E1000_ERR_PHY
;
218 * igb_read_phy_reg_i2c - Read PHY register using i2c
219 * @hw: pointer to the HW structure
220 * @offset: register offset to be read
221 * @data: pointer to the read data
223 * Reads the PHY register at offset using the i2c interface and stores the
224 * retrieved information in data.
226 s32
igb_read_phy_reg_i2c(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
228 struct e1000_phy_info
*phy
= &hw
->phy
;
231 /* Set up Op-code, Phy Address, and register address in the I2CCMD
232 * register. The MAC will take care of interfacing with the
233 * PHY to retrieve the desired data.
235 i2ccmd
= ((offset
<< E1000_I2CCMD_REG_ADDR_SHIFT
) |
236 (phy
->addr
<< E1000_I2CCMD_PHY_ADDR_SHIFT
) |
237 (E1000_I2CCMD_OPCODE_READ
));
239 wr32(E1000_I2CCMD
, i2ccmd
);
241 /* Poll the ready bit to see if the I2C read completed */
242 for (i
= 0; i
< E1000_I2CCMD_PHY_TIMEOUT
; i
++) {
244 i2ccmd
= rd32(E1000_I2CCMD
);
245 if (i2ccmd
& E1000_I2CCMD_READY
)
248 if (!(i2ccmd
& E1000_I2CCMD_READY
)) {
249 hw_dbg("I2CCMD Read did not complete\n");
250 return -E1000_ERR_PHY
;
252 if (i2ccmd
& E1000_I2CCMD_ERROR
) {
253 hw_dbg("I2CCMD Error bit set\n");
254 return -E1000_ERR_PHY
;
257 /* Need to byte-swap the 16-bit value. */
258 *data
= ((i2ccmd
>> 8) & 0x00FF) | ((i2ccmd
<< 8) & 0xFF00);
264 * igb_write_phy_reg_i2c - Write PHY register using i2c
265 * @hw: pointer to the HW structure
266 * @offset: register offset to write to
267 * @data: data to write at register offset
269 * Writes the data to PHY register at the offset using the i2c interface.
271 s32
igb_write_phy_reg_i2c(struct e1000_hw
*hw
, u32 offset
, u16 data
)
273 struct e1000_phy_info
*phy
= &hw
->phy
;
275 u16 phy_data_swapped
;
277 /* Prevent overwriting SFP I2C EEPROM which is at A0 address.*/
278 if ((hw
->phy
.addr
== 0) || (hw
->phy
.addr
> 7)) {
279 hw_dbg("PHY I2C Address %d is out of range.\n",
281 return -E1000_ERR_CONFIG
;
284 /* Swap the data bytes for the I2C interface */
285 phy_data_swapped
= ((data
>> 8) & 0x00FF) | ((data
<< 8) & 0xFF00);
287 /* Set up Op-code, Phy Address, and register address in the I2CCMD
288 * register. The MAC will take care of interfacing with the
289 * PHY to retrieve the desired data.
291 i2ccmd
= ((offset
<< E1000_I2CCMD_REG_ADDR_SHIFT
) |
292 (phy
->addr
<< E1000_I2CCMD_PHY_ADDR_SHIFT
) |
293 E1000_I2CCMD_OPCODE_WRITE
|
296 wr32(E1000_I2CCMD
, i2ccmd
);
298 /* Poll the ready bit to see if the I2C read completed */
299 for (i
= 0; i
< E1000_I2CCMD_PHY_TIMEOUT
; i
++) {
301 i2ccmd
= rd32(E1000_I2CCMD
);
302 if (i2ccmd
& E1000_I2CCMD_READY
)
305 if (!(i2ccmd
& E1000_I2CCMD_READY
)) {
306 hw_dbg("I2CCMD Write did not complete\n");
307 return -E1000_ERR_PHY
;
309 if (i2ccmd
& E1000_I2CCMD_ERROR
) {
310 hw_dbg("I2CCMD Error bit set\n");
311 return -E1000_ERR_PHY
;
318 * igb_read_sfp_data_byte - Reads SFP module data.
319 * @hw: pointer to the HW structure
320 * @offset: byte location offset to be read
321 * @data: read data buffer pointer
323 * Reads one byte from SFP module data stored
324 * in SFP resided EEPROM memory or SFP diagnostic area.
325 * Function should be called with
326 * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
327 * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
330 s32
igb_read_sfp_data_byte(struct e1000_hw
*hw
, u16 offset
, u8
*data
)
336 if (offset
> E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
337 hw_dbg("I2CCMD command address exceeds upper limit\n");
338 return -E1000_ERR_PHY
;
341 /* Set up Op-code, EEPROM Address,in the I2CCMD
342 * register. The MAC will take care of interfacing with the
343 * EEPROM to retrieve the desired data.
345 i2ccmd
= ((offset
<< E1000_I2CCMD_REG_ADDR_SHIFT
) |
346 E1000_I2CCMD_OPCODE_READ
);
348 wr32(E1000_I2CCMD
, i2ccmd
);
350 /* Poll the ready bit to see if the I2C read completed */
351 for (i
= 0; i
< E1000_I2CCMD_PHY_TIMEOUT
; i
++) {
353 data_local
= rd32(E1000_I2CCMD
);
354 if (data_local
& E1000_I2CCMD_READY
)
357 if (!(data_local
& E1000_I2CCMD_READY
)) {
358 hw_dbg("I2CCMD Read did not complete\n");
359 return -E1000_ERR_PHY
;
361 if (data_local
& E1000_I2CCMD_ERROR
) {
362 hw_dbg("I2CCMD Error bit set\n");
363 return -E1000_ERR_PHY
;
365 *data
= (u8
) data_local
& 0xFF;
371 * igb_read_phy_reg_igp - Read igp PHY register
372 * @hw: pointer to the HW structure
373 * @offset: register offset to be read
374 * @data: pointer to the read data
376 * Acquires semaphore, if necessary, then reads the PHY register at offset
377 * and storing the retrieved information in data. Release any acquired
378 * semaphores before exiting.
380 s32
igb_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
384 if (!(hw
->phy
.ops
.acquire
))
387 ret_val
= hw
->phy
.ops
.acquire(hw
);
391 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
392 ret_val
= igb_write_phy_reg_mdic(hw
,
393 IGP01E1000_PHY_PAGE_SELECT
,
396 hw
->phy
.ops
.release(hw
);
401 ret_val
= igb_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
404 hw
->phy
.ops
.release(hw
);
411 * igb_write_phy_reg_igp - Write igp PHY register
412 * @hw: pointer to the HW structure
413 * @offset: register offset to write to
414 * @data: data to write at register offset
416 * Acquires semaphore, if necessary, then writes the data to PHY register
417 * at the offset. Release any acquired semaphores before exiting.
419 s32
igb_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
)
423 if (!(hw
->phy
.ops
.acquire
))
426 ret_val
= hw
->phy
.ops
.acquire(hw
);
430 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
431 ret_val
= igb_write_phy_reg_mdic(hw
,
432 IGP01E1000_PHY_PAGE_SELECT
,
435 hw
->phy
.ops
.release(hw
);
440 ret_val
= igb_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
443 hw
->phy
.ops
.release(hw
);
450 * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
451 * @hw: pointer to the HW structure
453 * Sets up Carrier-sense on Transmit and downshift values.
455 s32
igb_copper_link_setup_82580(struct e1000_hw
*hw
)
457 struct e1000_phy_info
*phy
= &hw
->phy
;
461 if (phy
->reset_disable
) {
466 if (phy
->type
== e1000_phy_82580
) {
467 ret_val
= hw
->phy
.ops
.reset(hw
);
469 hw_dbg("Error resetting the PHY.\n");
474 /* Enable CRS on TX. This must be set for half-duplex operation. */
475 ret_val
= phy
->ops
.read_reg(hw
, I82580_CFG_REG
, &phy_data
);
479 phy_data
|= I82580_CFG_ASSERT_CRS_ON_TX
;
481 /* Enable downshift */
482 phy_data
|= I82580_CFG_ENABLE_DOWNSHIFT
;
484 ret_val
= phy
->ops
.write_reg(hw
, I82580_CFG_REG
, phy_data
);
488 /* Set MDI/MDIX mode */
489 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_CTRL_2
, &phy_data
);
492 phy_data
&= ~I82580_PHY_CTRL2_MDIX_CFG_MASK
;
498 switch (hw
->phy
.mdix
) {
502 phy_data
|= I82580_PHY_CTRL2_MANUAL_MDIX
;
506 phy_data
|= I82580_PHY_CTRL2_AUTO_MDI_MDIX
;
509 ret_val
= hw
->phy
.ops
.write_reg(hw
, I82580_PHY_CTRL_2
, phy_data
);
516 * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
517 * @hw: pointer to the HW structure
519 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
520 * and downshift values are set also.
522 s32
igb_copper_link_setup_m88(struct e1000_hw
*hw
)
524 struct e1000_phy_info
*phy
= &hw
->phy
;
528 if (phy
->reset_disable
) {
533 /* Enable CRS on TX. This must be set for half-duplex operation. */
534 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
538 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
541 * MDI/MDI-X = 0 (default)
542 * 0 - Auto for all speeds
545 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
547 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
551 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
554 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
557 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
561 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
566 * disable_polarity_correction = 0 (default)
567 * Automatic Correction for Reversed Cable Polarity
571 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
572 if (phy
->disable_polarity_correction
== 1)
573 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
575 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
579 if (phy
->revision
< E1000_REVISION_4
) {
580 /* Force TX_CLK in the Extended PHY Specific Control Register
583 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
,
588 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
590 if ((phy
->revision
== E1000_REVISION_2
) &&
591 (phy
->id
== M88E1111_I_PHY_ID
)) {
592 /* 82573L PHY - set the downshift counter to 5x. */
593 phy_data
&= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK
;
594 phy_data
|= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X
;
596 /* Configure Master and Slave downshift values */
597 phy_data
&= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
|
598 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK
);
599 phy_data
|= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
|
600 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X
);
602 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
,
608 /* Commit the changes. */
609 ret_val
= igb_phy_sw_reset(hw
);
611 hw_dbg("Error committing the PHY changes\n");
620 * igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
621 * @hw: pointer to the HW structure
623 * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
624 * Also enables and sets the downshift parameters.
626 s32
igb_copper_link_setup_m88_gen2(struct e1000_hw
*hw
)
628 struct e1000_phy_info
*phy
= &hw
->phy
;
632 if (phy
->reset_disable
)
635 /* Enable CRS on Tx. This must be set for half-duplex operation. */
636 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
641 * MDI/MDI-X = 0 (default)
642 * 0 - Auto for all speeds
645 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
647 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
651 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
654 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
657 /* M88E1112 does not support this mode) */
658 if (phy
->id
!= M88E1112_E_PHY_ID
) {
659 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
665 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
670 * disable_polarity_correction = 0 (default)
671 * Automatic Correction for Reversed Cable Polarity
675 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
676 if (phy
->disable_polarity_correction
== 1)
677 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
679 /* Enable downshift and setting it to X6 */
680 if (phy
->id
== M88E1543_E_PHY_ID
) {
681 phy_data
&= ~I347AT4_PSCR_DOWNSHIFT_ENABLE
;
683 phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
687 ret_val
= igb_phy_sw_reset(hw
);
689 hw_dbg("Error committing the PHY changes\n");
694 phy_data
&= ~I347AT4_PSCR_DOWNSHIFT_MASK
;
695 phy_data
|= I347AT4_PSCR_DOWNSHIFT_6X
;
696 phy_data
|= I347AT4_PSCR_DOWNSHIFT_ENABLE
;
698 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
702 /* Commit the changes. */
703 ret_val
= igb_phy_sw_reset(hw
);
705 hw_dbg("Error committing the PHY changes\n");
708 ret_val
= igb_set_master_slave_mode(hw
);
716 * igb_copper_link_setup_igp - Setup igp PHY's for copper link
717 * @hw: pointer to the HW structure
719 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
722 s32
igb_copper_link_setup_igp(struct e1000_hw
*hw
)
724 struct e1000_phy_info
*phy
= &hw
->phy
;
728 if (phy
->reset_disable
) {
733 ret_val
= phy
->ops
.reset(hw
);
735 hw_dbg("Error resetting the PHY.\n");
739 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
740 * timeout issues when LFS is enabled.
744 /* The NVM settings will configure LPLU in D3 for
747 if (phy
->type
== e1000_phy_igp
) {
748 /* disable lplu d3 during driver init */
749 if (phy
->ops
.set_d3_lplu_state
)
750 ret_val
= phy
->ops
.set_d3_lplu_state(hw
, false);
752 hw_dbg("Error Disabling LPLU D3\n");
757 /* disable lplu d0 during driver init */
758 ret_val
= phy
->ops
.set_d0_lplu_state(hw
, false);
760 hw_dbg("Error Disabling LPLU D0\n");
763 /* Configure mdi-mdix settings */
764 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, &data
);
768 data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
772 data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
775 data
|= IGP01E1000_PSCR_FORCE_MDI_MDIX
;
779 data
|= IGP01E1000_PSCR_AUTO_MDIX
;
782 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, data
);
786 /* set auto-master slave resolution settings */
787 if (hw
->mac
.autoneg
) {
788 /* when autonegotiation advertisement is only 1000Mbps then we
789 * should disable SmartSpeed and enable Auto MasterSlave
790 * resolution as hardware default.
792 if (phy
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
793 /* Disable SmartSpeed */
794 ret_val
= phy
->ops
.read_reg(hw
,
795 IGP01E1000_PHY_PORT_CONFIG
,
800 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
801 ret_val
= phy
->ops
.write_reg(hw
,
802 IGP01E1000_PHY_PORT_CONFIG
,
807 /* Set auto Master/Slave resolution process */
808 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_CTRL
, &data
);
812 data
&= ~CR_1000T_MS_ENABLE
;
813 ret_val
= phy
->ops
.write_reg(hw
, PHY_1000T_CTRL
, data
);
818 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_CTRL
, &data
);
822 /* load defaults for future use */
823 phy
->original_ms_type
= (data
& CR_1000T_MS_ENABLE
) ?
824 ((data
& CR_1000T_MS_VALUE
) ?
825 e1000_ms_force_master
:
826 e1000_ms_force_slave
) :
829 switch (phy
->ms_type
) {
830 case e1000_ms_force_master
:
831 data
|= (CR_1000T_MS_ENABLE
| CR_1000T_MS_VALUE
);
833 case e1000_ms_force_slave
:
834 data
|= CR_1000T_MS_ENABLE
;
835 data
&= ~(CR_1000T_MS_VALUE
);
838 data
&= ~CR_1000T_MS_ENABLE
;
842 ret_val
= phy
->ops
.write_reg(hw
, PHY_1000T_CTRL
, data
);
852 * igb_copper_link_autoneg - Setup/Enable autoneg for copper link
853 * @hw: pointer to the HW structure
855 * Performs initial bounds checking on autoneg advertisement parameter, then
856 * configure to advertise the full capability. Setup the PHY to autoneg
857 * and restart the negotiation process between the link partner. If
858 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
860 static s32
igb_copper_link_autoneg(struct e1000_hw
*hw
)
862 struct e1000_phy_info
*phy
= &hw
->phy
;
866 /* Perform some bounds checking on the autoneg advertisement
869 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
871 /* If autoneg_advertised is zero, we assume it was not defaulted
872 * by the calling code so we set to advertise full capability.
874 if (phy
->autoneg_advertised
== 0)
875 phy
->autoneg_advertised
= phy
->autoneg_mask
;
877 hw_dbg("Reconfiguring auto-neg advertisement params\n");
878 ret_val
= igb_phy_setup_autoneg(hw
);
880 hw_dbg("Error Setting up Auto-Negotiation\n");
883 hw_dbg("Restarting Auto-Neg\n");
885 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
886 * the Auto Neg Restart bit in the PHY control register.
888 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_ctrl
);
892 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
| MII_CR_RESTART_AUTO_NEG
);
893 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_ctrl
);
897 /* Does the user want to wait for Auto-Neg to complete here, or
898 * check at a later time (for example, callback routine).
900 if (phy
->autoneg_wait_to_complete
) {
901 ret_val
= igb_wait_autoneg(hw
);
903 hw_dbg("Error while waiting for autoneg to complete\n");
908 hw
->mac
.get_link_status
= true;
915 * igb_phy_setup_autoneg - Configure PHY for auto-negotiation
916 * @hw: pointer to the HW structure
918 * Reads the MII auto-neg advertisement register and/or the 1000T control
919 * register and if the PHY is already setup for auto-negotiation, then
920 * return successful. Otherwise, setup advertisement and flow control to
921 * the appropriate values for the wanted auto-negotiation.
923 static s32
igb_phy_setup_autoneg(struct e1000_hw
*hw
)
925 struct e1000_phy_info
*phy
= &hw
->phy
;
927 u16 mii_autoneg_adv_reg
;
928 u16 mii_1000t_ctrl_reg
= 0;
930 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
932 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
933 ret_val
= phy
->ops
.read_reg(hw
, PHY_AUTONEG_ADV
, &mii_autoneg_adv_reg
);
937 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
938 /* Read the MII 1000Base-T Control Register (Address 9). */
939 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_CTRL
,
940 &mii_1000t_ctrl_reg
);
945 /* Need to parse both autoneg_advertised and fc and set up
946 * the appropriate PHY registers. First we will parse for
947 * autoneg_advertised software override. Since we can advertise
948 * a plethora of combinations, we need to check each bit
952 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
953 * Advertisement Register (Address 4) and the 1000 mb speed bits in
954 * the 1000Base-T Control Register (Address 9).
956 mii_autoneg_adv_reg
&= ~(NWAY_AR_100TX_FD_CAPS
|
957 NWAY_AR_100TX_HD_CAPS
|
958 NWAY_AR_10T_FD_CAPS
|
959 NWAY_AR_10T_HD_CAPS
);
960 mii_1000t_ctrl_reg
&= ~(CR_1000T_HD_CAPS
| CR_1000T_FD_CAPS
);
962 hw_dbg("autoneg_advertised %x\n", phy
->autoneg_advertised
);
964 /* Do we want to advertise 10 Mb Half Duplex? */
965 if (phy
->autoneg_advertised
& ADVERTISE_10_HALF
) {
966 hw_dbg("Advertise 10mb Half duplex\n");
967 mii_autoneg_adv_reg
|= NWAY_AR_10T_HD_CAPS
;
970 /* Do we want to advertise 10 Mb Full Duplex? */
971 if (phy
->autoneg_advertised
& ADVERTISE_10_FULL
) {
972 hw_dbg("Advertise 10mb Full duplex\n");
973 mii_autoneg_adv_reg
|= NWAY_AR_10T_FD_CAPS
;
976 /* Do we want to advertise 100 Mb Half Duplex? */
977 if (phy
->autoneg_advertised
& ADVERTISE_100_HALF
) {
978 hw_dbg("Advertise 100mb Half duplex\n");
979 mii_autoneg_adv_reg
|= NWAY_AR_100TX_HD_CAPS
;
982 /* Do we want to advertise 100 Mb Full Duplex? */
983 if (phy
->autoneg_advertised
& ADVERTISE_100_FULL
) {
984 hw_dbg("Advertise 100mb Full duplex\n");
985 mii_autoneg_adv_reg
|= NWAY_AR_100TX_FD_CAPS
;
988 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
989 if (phy
->autoneg_advertised
& ADVERTISE_1000_HALF
)
990 hw_dbg("Advertise 1000mb Half duplex request denied!\n");
992 /* Do we want to advertise 1000 Mb Full Duplex? */
993 if (phy
->autoneg_advertised
& ADVERTISE_1000_FULL
) {
994 hw_dbg("Advertise 1000mb Full duplex\n");
995 mii_1000t_ctrl_reg
|= CR_1000T_FD_CAPS
;
998 /* Check for a software override of the flow control settings, and
999 * setup the PHY advertisement registers accordingly. If
1000 * auto-negotiation is enabled, then software will have to set the
1001 * "PAUSE" bits to the correct value in the Auto-Negotiation
1002 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1005 * The possible values of the "fc" parameter are:
1006 * 0: Flow control is completely disabled
1007 * 1: Rx flow control is enabled (we can receive pause frames
1008 * but not send pause frames).
1009 * 2: Tx flow control is enabled (we can send pause frames
1010 * but we do not support receiving pause frames).
1011 * 3: Both Rx and TX flow control (symmetric) are enabled.
1012 * other: No software override. The flow control configuration
1013 * in the EEPROM is used.
1015 switch (hw
->fc
.current_mode
) {
1017 /* Flow control (RX & TX) is completely disabled by a
1018 * software over-ride.
1020 mii_autoneg_adv_reg
&= ~(NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
1022 case e1000_fc_rx_pause
:
1023 /* RX Flow control is enabled, and TX Flow control is
1024 * disabled, by a software over-ride.
1026 * Since there really isn't a way to advertise that we are
1027 * capable of RX Pause ONLY, we will advertise that we
1028 * support both symmetric and asymmetric RX PAUSE. Later
1029 * (in e1000_config_fc_after_link_up) we will disable the
1030 * hw's ability to send PAUSE frames.
1032 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
1034 case e1000_fc_tx_pause
:
1035 /* TX Flow control is enabled, and RX Flow control is
1036 * disabled, by a software over-ride.
1038 mii_autoneg_adv_reg
|= NWAY_AR_ASM_DIR
;
1039 mii_autoneg_adv_reg
&= ~NWAY_AR_PAUSE
;
1042 /* Flow control (both RX and TX) is enabled by a software
1045 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
1048 hw_dbg("Flow control param set incorrectly\n");
1049 ret_val
= -E1000_ERR_CONFIG
;
1053 ret_val
= phy
->ops
.write_reg(hw
, PHY_AUTONEG_ADV
, mii_autoneg_adv_reg
);
1057 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg
);
1059 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
1060 ret_val
= phy
->ops
.write_reg(hw
,
1062 mii_1000t_ctrl_reg
);
1072 * igb_setup_copper_link - Configure copper link settings
1073 * @hw: pointer to the HW structure
1075 * Calls the appropriate function to configure the link for auto-neg or forced
1076 * speed and duplex. Then we check for link, once link is established calls
1077 * to configure collision distance and flow control are called. If link is
1078 * not established, we return -E1000_ERR_PHY (-2).
1080 s32
igb_setup_copper_link(struct e1000_hw
*hw
)
1085 if (hw
->mac
.autoneg
) {
1086 /* Setup autoneg and flow control advertisement and perform
1089 ret_val
= igb_copper_link_autoneg(hw
);
1093 /* PHY will be set to 10H, 10F, 100H or 100F
1094 * depending on user settings.
1096 hw_dbg("Forcing Speed and Duplex\n");
1097 ret_val
= hw
->phy
.ops
.force_speed_duplex(hw
);
1099 hw_dbg("Error Forcing Speed and Duplex\n");
1104 /* Check link status. Wait up to 100 microseconds for link to become
1107 ret_val
= igb_phy_has_link(hw
, COPPER_LINK_UP_LIMIT
, 10, &link
);
1112 hw_dbg("Valid link established!!!\n");
1113 igb_config_collision_dist(hw
);
1114 ret_val
= igb_config_fc_after_link_up(hw
);
1116 hw_dbg("Unable to establish link!!!\n");
1124 * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1125 * @hw: pointer to the HW structure
1127 * Calls the PHY setup function to force speed and duplex. Clears the
1128 * auto-crossover to force MDI manually. Waits for link and returns
1129 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1131 s32
igb_phy_force_speed_duplex_igp(struct e1000_hw
*hw
)
1133 struct e1000_phy_info
*phy
= &hw
->phy
;
1138 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_data
);
1142 igb_phy_force_speed_duplex_setup(hw
, &phy_data
);
1144 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_data
);
1148 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1149 * forced whenever speed and duplex are forced.
1151 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, &phy_data
);
1155 phy_data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
1156 phy_data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
1158 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, phy_data
);
1162 hw_dbg("IGP PSCR: %X\n", phy_data
);
1166 if (phy
->autoneg_wait_to_complete
) {
1167 hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1169 ret_val
= igb_phy_has_link(hw
, PHY_FORCE_LIMIT
, 10000, &link
);
1174 hw_dbg("Link taking longer than expected.\n");
1177 ret_val
= igb_phy_has_link(hw
, PHY_FORCE_LIMIT
, 10000, &link
);
1187 * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1188 * @hw: pointer to the HW structure
1190 * Calls the PHY setup function to force speed and duplex. Clears the
1191 * auto-crossover to force MDI manually. Resets the PHY to commit the
1192 * changes. If time expires while waiting for link up, we reset the DSP.
1193 * After reset, TX_CLK and CRS on TX must be set. Return successful upon
1194 * successful completion, else return corresponding error code.
1196 s32
igb_phy_force_speed_duplex_m88(struct e1000_hw
*hw
)
1198 struct e1000_phy_info
*phy
= &hw
->phy
;
1203 /* I210 and I211 devices support Auto-Crossover in forced operation. */
1204 if (phy
->type
!= e1000_phy_i210
) {
1205 /* Clear Auto-Crossover to force MDI manually. M88E1000
1206 * requires MDI forced whenever speed and duplex are forced.
1208 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
,
1213 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1214 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
,
1219 hw_dbg("M88E1000 PSCR: %X\n", phy_data
);
1222 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_data
);
1226 igb_phy_force_speed_duplex_setup(hw
, &phy_data
);
1228 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_data
);
1232 /* Reset the phy to commit changes. */
1233 ret_val
= igb_phy_sw_reset(hw
);
1237 if (phy
->autoneg_wait_to_complete
) {
1238 hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1240 ret_val
= igb_phy_has_link(hw
, PHY_FORCE_LIMIT
, 100000, &link
);
1245 bool reset_dsp
= true;
1247 switch (hw
->phy
.id
) {
1248 case I347AT4_E_PHY_ID
:
1249 case M88E1112_E_PHY_ID
:
1250 case M88E1543_E_PHY_ID
:
1251 case M88E1512_E_PHY_ID
:
1256 if (hw
->phy
.type
!= e1000_phy_m88
)
1261 hw_dbg("Link taking longer than expected.\n");
1263 /* We didn't get link.
1264 * Reset the DSP and cross our fingers.
1266 ret_val
= phy
->ops
.write_reg(hw
,
1267 M88E1000_PHY_PAGE_SELECT
,
1271 ret_val
= igb_phy_reset_dsp(hw
);
1278 ret_val
= igb_phy_has_link(hw
, PHY_FORCE_LIMIT
,
1284 if (hw
->phy
.type
!= e1000_phy_m88
||
1285 hw
->phy
.id
== I347AT4_E_PHY_ID
||
1286 hw
->phy
.id
== M88E1112_E_PHY_ID
||
1287 hw
->phy
.id
== M88E1543_E_PHY_ID
||
1288 hw
->phy
.id
== M88E1512_E_PHY_ID
||
1289 hw
->phy
.id
== I210_I_PHY_ID
)
1292 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
1296 /* Resetting the phy means we need to re-force TX_CLK in the
1297 * Extended PHY Specific Control Register to 25MHz clock from
1298 * the reset value of 2.5MHz.
1300 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
1301 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
1305 /* In addition, we must re-enable CRS on Tx for both half and full
1308 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1312 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1313 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1320 * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1321 * @hw: pointer to the HW structure
1322 * @phy_ctrl: pointer to current value of PHY_CONTROL
1324 * Forces speed and duplex on the PHY by doing the following: disable flow
1325 * control, force speed/duplex on the MAC, disable auto speed detection,
1326 * disable auto-negotiation, configure duplex, configure speed, configure
1327 * the collision distance, write configuration to CTRL register. The
1328 * caller must write to the PHY_CONTROL register for these settings to
1331 static void igb_phy_force_speed_duplex_setup(struct e1000_hw
*hw
,
1334 struct e1000_mac_info
*mac
= &hw
->mac
;
1337 /* Turn off flow control when forcing speed/duplex */
1338 hw
->fc
.current_mode
= e1000_fc_none
;
1340 /* Force speed/duplex on the mac */
1341 ctrl
= rd32(E1000_CTRL
);
1342 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1343 ctrl
&= ~E1000_CTRL_SPD_SEL
;
1345 /* Disable Auto Speed Detection */
1346 ctrl
&= ~E1000_CTRL_ASDE
;
1348 /* Disable autoneg on the phy */
1349 *phy_ctrl
&= ~MII_CR_AUTO_NEG_EN
;
1351 /* Forcing Full or Half Duplex? */
1352 if (mac
->forced_speed_duplex
& E1000_ALL_HALF_DUPLEX
) {
1353 ctrl
&= ~E1000_CTRL_FD
;
1354 *phy_ctrl
&= ~MII_CR_FULL_DUPLEX
;
1355 hw_dbg("Half Duplex\n");
1357 ctrl
|= E1000_CTRL_FD
;
1358 *phy_ctrl
|= MII_CR_FULL_DUPLEX
;
1359 hw_dbg("Full Duplex\n");
1362 /* Forcing 10mb or 100mb? */
1363 if (mac
->forced_speed_duplex
& E1000_ALL_100_SPEED
) {
1364 ctrl
|= E1000_CTRL_SPD_100
;
1365 *phy_ctrl
|= MII_CR_SPEED_100
;
1366 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_10
);
1367 hw_dbg("Forcing 100mb\n");
1369 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1370 *phy_ctrl
|= MII_CR_SPEED_10
;
1371 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_100
);
1372 hw_dbg("Forcing 10mb\n");
1375 igb_config_collision_dist(hw
);
1377 wr32(E1000_CTRL
, ctrl
);
1381 * igb_set_d3_lplu_state - Sets low power link up state for D3
1382 * @hw: pointer to the HW structure
1383 * @active: boolean used to enable/disable lplu
1385 * Success returns 0, Failure returns 1
1387 * The low power link up (lplu) state is set to the power management level D3
1388 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1389 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1390 * is used during Dx states where the power conservation is most important.
1391 * During driver activity, SmartSpeed should be enabled so performance is
1394 s32
igb_set_d3_lplu_state(struct e1000_hw
*hw
, bool active
)
1396 struct e1000_phy_info
*phy
= &hw
->phy
;
1400 if (!(hw
->phy
.ops
.read_reg
))
1403 ret_val
= phy
->ops
.read_reg(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
1408 data
&= ~IGP02E1000_PM_D3_LPLU
;
1409 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
1413 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1414 * during Dx states where the power conservation is most
1415 * important. During driver activity we should enable
1416 * SmartSpeed, so performance is maintained.
1418 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1419 ret_val
= phy
->ops
.read_reg(hw
,
1420 IGP01E1000_PHY_PORT_CONFIG
,
1425 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1426 ret_val
= phy
->ops
.write_reg(hw
,
1427 IGP01E1000_PHY_PORT_CONFIG
,
1431 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1432 ret_val
= phy
->ops
.read_reg(hw
,
1433 IGP01E1000_PHY_PORT_CONFIG
,
1438 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1439 ret_val
= phy
->ops
.write_reg(hw
,
1440 IGP01E1000_PHY_PORT_CONFIG
,
1445 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1446 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1447 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1448 data
|= IGP02E1000_PM_D3_LPLU
;
1449 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
1454 /* When LPLU is enabled, we should disable SmartSpeed */
1455 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1460 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1461 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1470 * igb_check_downshift - Checks whether a downshift in speed occurred
1471 * @hw: pointer to the HW structure
1473 * Success returns 0, Failure returns 1
1475 * A downshift is detected by querying the PHY link health.
1477 s32
igb_check_downshift(struct e1000_hw
*hw
)
1479 struct e1000_phy_info
*phy
= &hw
->phy
;
1481 u16 phy_data
, offset
, mask
;
1483 switch (phy
->type
) {
1484 case e1000_phy_i210
:
1486 case e1000_phy_gg82563
:
1487 offset
= M88E1000_PHY_SPEC_STATUS
;
1488 mask
= M88E1000_PSSR_DOWNSHIFT
;
1490 case e1000_phy_igp_2
:
1492 case e1000_phy_igp_3
:
1493 offset
= IGP01E1000_PHY_LINK_HEALTH
;
1494 mask
= IGP01E1000_PLHR_SS_DOWNGRADE
;
1497 /* speed downshift not supported */
1498 phy
->speed_downgraded
= false;
1503 ret_val
= phy
->ops
.read_reg(hw
, offset
, &phy_data
);
1506 phy
->speed_downgraded
= (phy_data
& mask
) ? true : false;
1513 * igb_check_polarity_m88 - Checks the polarity.
1514 * @hw: pointer to the HW structure
1516 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1518 * Polarity is determined based on the PHY specific status register.
1520 s32
igb_check_polarity_m88(struct e1000_hw
*hw
)
1522 struct e1000_phy_info
*phy
= &hw
->phy
;
1526 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &data
);
1529 phy
->cable_polarity
= (data
& M88E1000_PSSR_REV_POLARITY
)
1530 ? e1000_rev_polarity_reversed
1531 : e1000_rev_polarity_normal
;
1537 * igb_check_polarity_igp - Checks the polarity.
1538 * @hw: pointer to the HW structure
1540 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1542 * Polarity is determined based on the PHY port status register, and the
1543 * current speed (since there is no polarity at 100Mbps).
1545 static s32
igb_check_polarity_igp(struct e1000_hw
*hw
)
1547 struct e1000_phy_info
*phy
= &hw
->phy
;
1549 u16 data
, offset
, mask
;
1551 /* Polarity is determined based on the speed of
1554 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1558 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1559 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1560 offset
= IGP01E1000_PHY_PCS_INIT_REG
;
1561 mask
= IGP01E1000_PHY_POLARITY_MASK
;
1563 /* This really only applies to 10Mbps since
1564 * there is no polarity for 100Mbps (always 0).
1566 offset
= IGP01E1000_PHY_PORT_STATUS
;
1567 mask
= IGP01E1000_PSSR_POLARITY_REVERSED
;
1570 ret_val
= phy
->ops
.read_reg(hw
, offset
, &data
);
1573 phy
->cable_polarity
= (data
& mask
)
1574 ? e1000_rev_polarity_reversed
1575 : e1000_rev_polarity_normal
;
1582 * igb_wait_autoneg - Wait for auto-neg completion
1583 * @hw: pointer to the HW structure
1585 * Waits for auto-negotiation to complete or for the auto-negotiation time
1586 * limit to expire, which ever happens first.
1588 static s32
igb_wait_autoneg(struct e1000_hw
*hw
)
1593 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1594 for (i
= PHY_AUTO_NEG_LIMIT
; i
> 0; i
--) {
1595 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1598 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1601 if (phy_status
& MII_SR_AUTONEG_COMPLETE
)
1606 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1613 * igb_phy_has_link - Polls PHY for link
1614 * @hw: pointer to the HW structure
1615 * @iterations: number of times to poll for link
1616 * @usec_interval: delay between polling attempts
1617 * @success: pointer to whether polling was successful or not
1619 * Polls the PHY status register for link, 'iterations' number of times.
1621 s32
igb_phy_has_link(struct e1000_hw
*hw
, u32 iterations
,
1622 u32 usec_interval
, bool *success
)
1627 for (i
= 0; i
< iterations
; i
++) {
1628 /* Some PHYs require the PHY_STATUS register to be read
1629 * twice due to the link bit being sticky. No harm doing
1630 * it across the board.
1632 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1633 if (ret_val
&& usec_interval
> 0) {
1634 /* If the first read fails, another entity may have
1635 * ownership of the resources, wait and try again to
1636 * see if they have relinquished the resources yet.
1638 if (usec_interval
>= 1000)
1639 mdelay(usec_interval
/1000);
1641 udelay(usec_interval
);
1643 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1646 if (phy_status
& MII_SR_LINK_STATUS
)
1648 if (usec_interval
>= 1000)
1649 mdelay(usec_interval
/1000);
1651 udelay(usec_interval
);
1654 *success
= (i
< iterations
) ? true : false;
1660 * igb_get_cable_length_m88 - Determine cable length for m88 PHY
1661 * @hw: pointer to the HW structure
1663 * Reads the PHY specific status register to retrieve the cable length
1664 * information. The cable length is determined by averaging the minimum and
1665 * maximum values to get the "average" cable length. The m88 PHY has four
1666 * possible cable length values, which are:
1667 * Register Value Cable Length
1671 * 3 110 - 140 meters
1674 s32
igb_get_cable_length_m88(struct e1000_hw
*hw
)
1676 struct e1000_phy_info
*phy
= &hw
->phy
;
1678 u16 phy_data
, index
;
1680 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1684 index
= (phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
1685 M88E1000_PSSR_CABLE_LENGTH_SHIFT
;
1686 if (index
>= ARRAY_SIZE(e1000_m88_cable_length_table
) - 1) {
1687 ret_val
= -E1000_ERR_PHY
;
1691 phy
->min_cable_length
= e1000_m88_cable_length_table
[index
];
1692 phy
->max_cable_length
= e1000_m88_cable_length_table
[index
+ 1];
1694 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1700 s32
igb_get_cable_length_m88_gen2(struct e1000_hw
*hw
)
1702 struct e1000_phy_info
*phy
= &hw
->phy
;
1704 u16 phy_data
, phy_data2
, index
, default_page
, is_cm
;
1709 switch (hw
->phy
.id
) {
1710 case M88E1543_E_PHY_ID
:
1711 case M88E1512_E_PHY_ID
:
1712 case I347AT4_E_PHY_ID
:
1714 /* Remember the original page select and set it to 7 */
1715 ret_val
= phy
->ops
.read_reg(hw
, I347AT4_PAGE_SELECT
,
1720 ret_val
= phy
->ops
.write_reg(hw
, I347AT4_PAGE_SELECT
, 0x07);
1724 /* Check if the unit of cable length is meters or cm */
1725 ret_val
= phy
->ops
.read_reg(hw
, I347AT4_PCDC
, &phy_data2
);
1729 is_cm
= !(phy_data2
& I347AT4_PCDC_CABLE_LENGTH_UNIT
);
1731 /* Get cable length from Pair 0 length Regs */
1732 ret_val
= phy
->ops
.read_reg(hw
, I347AT4_PCDL0
, &phy_data
);
1736 phy
->pair_length
[0] = phy_data
/ (is_cm
? 100 : 1);
1737 len_tot
= phy
->pair_length
[0];
1738 len_min
= phy
->pair_length
[0];
1739 len_max
= phy
->pair_length
[0];
1741 /* Get cable length from Pair 1 length Regs */
1742 ret_val
= phy
->ops
.read_reg(hw
, I347AT4_PCDL1
, &phy_data
);
1746 phy
->pair_length
[1] = phy_data
/ (is_cm
? 100 : 1);
1747 len_tot
+= phy
->pair_length
[1];
1748 len_min
= min(len_min
, phy
->pair_length
[1]);
1749 len_max
= max(len_max
, phy
->pair_length
[1]);
1751 /* Get cable length from Pair 2 length Regs */
1752 ret_val
= phy
->ops
.read_reg(hw
, I347AT4_PCDL2
, &phy_data
);
1756 phy
->pair_length
[2] = phy_data
/ (is_cm
? 100 : 1);
1757 len_tot
+= phy
->pair_length
[2];
1758 len_min
= min(len_min
, phy
->pair_length
[2]);
1759 len_max
= max(len_max
, phy
->pair_length
[2]);
1761 /* Get cable length from Pair 3 length Regs */
1762 ret_val
= phy
->ops
.read_reg(hw
, I347AT4_PCDL3
, &phy_data
);
1766 phy
->pair_length
[3] = phy_data
/ (is_cm
? 100 : 1);
1767 len_tot
+= phy
->pair_length
[3];
1768 len_min
= min(len_min
, phy
->pair_length
[3]);
1769 len_max
= max(len_max
, phy
->pair_length
[3]);
1771 /* Populate the phy structure with cable length in meters */
1772 phy
->min_cable_length
= len_min
;
1773 phy
->max_cable_length
= len_max
;
1774 phy
->cable_length
= len_tot
/ 4;
1776 /* Reset the page selec to its original value */
1777 ret_val
= phy
->ops
.write_reg(hw
, I347AT4_PAGE_SELECT
,
1782 case M88E1112_E_PHY_ID
:
1783 /* Remember the original page select and set it to 5 */
1784 ret_val
= phy
->ops
.read_reg(hw
, I347AT4_PAGE_SELECT
,
1789 ret_val
= phy
->ops
.write_reg(hw
, I347AT4_PAGE_SELECT
, 0x05);
1793 ret_val
= phy
->ops
.read_reg(hw
, M88E1112_VCT_DSP_DISTANCE
,
1798 index
= (phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
1799 M88E1000_PSSR_CABLE_LENGTH_SHIFT
;
1800 if (index
>= ARRAY_SIZE(e1000_m88_cable_length_table
) - 1) {
1801 ret_val
= -E1000_ERR_PHY
;
1805 phy
->min_cable_length
= e1000_m88_cable_length_table
[index
];
1806 phy
->max_cable_length
= e1000_m88_cable_length_table
[index
+ 1];
1808 phy
->cable_length
= (phy
->min_cable_length
+
1809 phy
->max_cable_length
) / 2;
1811 /* Reset the page select to its original value */
1812 ret_val
= phy
->ops
.write_reg(hw
, I347AT4_PAGE_SELECT
,
1819 ret_val
= -E1000_ERR_PHY
;
1828 * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1829 * @hw: pointer to the HW structure
1831 * The automatic gain control (agc) normalizes the amplitude of the
1832 * received signal, adjusting for the attenuation produced by the
1833 * cable. By reading the AGC registers, which represent the
1834 * combination of coarse and fine gain value, the value can be put
1835 * into a lookup table to obtain the approximate cable length
1838 s32
igb_get_cable_length_igp_2(struct e1000_hw
*hw
)
1840 struct e1000_phy_info
*phy
= &hw
->phy
;
1842 u16 phy_data
, i
, agc_value
= 0;
1843 u16 cur_agc_index
, max_agc_index
= 0;
1844 u16 min_agc_index
= ARRAY_SIZE(e1000_igp_2_cable_length_table
) - 1;
1845 static const u16 agc_reg_array
[IGP02E1000_PHY_CHANNEL_NUM
] = {
1846 IGP02E1000_PHY_AGC_A
,
1847 IGP02E1000_PHY_AGC_B
,
1848 IGP02E1000_PHY_AGC_C
,
1849 IGP02E1000_PHY_AGC_D
1852 /* Read the AGC registers for all channels */
1853 for (i
= 0; i
< IGP02E1000_PHY_CHANNEL_NUM
; i
++) {
1854 ret_val
= phy
->ops
.read_reg(hw
, agc_reg_array
[i
], &phy_data
);
1858 /* Getting bits 15:9, which represent the combination of
1859 * coarse and fine gain values. The result is a number
1860 * that can be put into the lookup table to obtain the
1861 * approximate cable length.
1863 cur_agc_index
= (phy_data
>> IGP02E1000_AGC_LENGTH_SHIFT
) &
1864 IGP02E1000_AGC_LENGTH_MASK
;
1866 /* Array index bound check. */
1867 if ((cur_agc_index
>= ARRAY_SIZE(e1000_igp_2_cable_length_table
)) ||
1868 (cur_agc_index
== 0)) {
1869 ret_val
= -E1000_ERR_PHY
;
1873 /* Remove min & max AGC values from calculation. */
1874 if (e1000_igp_2_cable_length_table
[min_agc_index
] >
1875 e1000_igp_2_cable_length_table
[cur_agc_index
])
1876 min_agc_index
= cur_agc_index
;
1877 if (e1000_igp_2_cable_length_table
[max_agc_index
] <
1878 e1000_igp_2_cable_length_table
[cur_agc_index
])
1879 max_agc_index
= cur_agc_index
;
1881 agc_value
+= e1000_igp_2_cable_length_table
[cur_agc_index
];
1884 agc_value
-= (e1000_igp_2_cable_length_table
[min_agc_index
] +
1885 e1000_igp_2_cable_length_table
[max_agc_index
]);
1886 agc_value
/= (IGP02E1000_PHY_CHANNEL_NUM
- 2);
1888 /* Calculate cable length with the error range of +/- 10 meters. */
1889 phy
->min_cable_length
= ((agc_value
- IGP02E1000_AGC_RANGE
) > 0) ?
1890 (agc_value
- IGP02E1000_AGC_RANGE
) : 0;
1891 phy
->max_cable_length
= agc_value
+ IGP02E1000_AGC_RANGE
;
1893 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1900 * igb_get_phy_info_m88 - Retrieve PHY information
1901 * @hw: pointer to the HW structure
1903 * Valid for only copper links. Read the PHY status register (sticky read)
1904 * to verify that link is up. Read the PHY special control register to
1905 * determine the polarity and 10base-T extended distance. Read the PHY
1906 * special status register to determine MDI/MDIx and current speed. If
1907 * speed is 1000, then determine cable length, local and remote receiver.
1909 s32
igb_get_phy_info_m88(struct e1000_hw
*hw
)
1911 struct e1000_phy_info
*phy
= &hw
->phy
;
1916 if (phy
->media_type
!= e1000_media_type_copper
) {
1917 hw_dbg("Phy info is only valid for copper media\n");
1918 ret_val
= -E1000_ERR_CONFIG
;
1922 ret_val
= igb_phy_has_link(hw
, 1, 0, &link
);
1927 hw_dbg("Phy info is only valid if link is up\n");
1928 ret_val
= -E1000_ERR_CONFIG
;
1932 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1936 phy
->polarity_correction
= (phy_data
& M88E1000_PSCR_POLARITY_REVERSAL
)
1939 ret_val
= igb_check_polarity_m88(hw
);
1943 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1947 phy
->is_mdix
= (phy_data
& M88E1000_PSSR_MDIX
) ? true : false;
1949 if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_1000MBS
) {
1950 ret_val
= phy
->ops
.get_cable_length(hw
);
1954 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
1958 phy
->local_rx
= (phy_data
& SR_1000T_LOCAL_RX_STATUS
)
1959 ? e1000_1000t_rx_status_ok
1960 : e1000_1000t_rx_status_not_ok
;
1962 phy
->remote_rx
= (phy_data
& SR_1000T_REMOTE_RX_STATUS
)
1963 ? e1000_1000t_rx_status_ok
1964 : e1000_1000t_rx_status_not_ok
;
1966 /* Set values to "undefined" */
1967 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1968 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1969 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1977 * igb_get_phy_info_igp - Retrieve igp PHY information
1978 * @hw: pointer to the HW structure
1980 * Read PHY status to determine if link is up. If link is up, then
1981 * set/determine 10base-T extended distance and polarity correction. Read
1982 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1983 * determine on the cable length, local and remote receiver.
1985 s32
igb_get_phy_info_igp(struct e1000_hw
*hw
)
1987 struct e1000_phy_info
*phy
= &hw
->phy
;
1992 ret_val
= igb_phy_has_link(hw
, 1, 0, &link
);
1997 hw_dbg("Phy info is only valid if link is up\n");
1998 ret_val
= -E1000_ERR_CONFIG
;
2002 phy
->polarity_correction
= true;
2004 ret_val
= igb_check_polarity_igp(hw
);
2008 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
2012 phy
->is_mdix
= (data
& IGP01E1000_PSSR_MDIX
) ? true : false;
2014 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
2015 IGP01E1000_PSSR_SPEED_1000MBPS
) {
2016 ret_val
= phy
->ops
.get_cable_length(hw
);
2020 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_STATUS
, &data
);
2024 phy
->local_rx
= (data
& SR_1000T_LOCAL_RX_STATUS
)
2025 ? e1000_1000t_rx_status_ok
2026 : e1000_1000t_rx_status_not_ok
;
2028 phy
->remote_rx
= (data
& SR_1000T_REMOTE_RX_STATUS
)
2029 ? e1000_1000t_rx_status_ok
2030 : e1000_1000t_rx_status_not_ok
;
2032 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2033 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2034 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2042 * igb_phy_sw_reset - PHY software reset
2043 * @hw: pointer to the HW structure
2045 * Does a software reset of the PHY by reading the PHY control register and
2046 * setting/write the control register reset bit to the PHY.
2048 s32
igb_phy_sw_reset(struct e1000_hw
*hw
)
2053 if (!(hw
->phy
.ops
.read_reg
))
2056 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &phy_ctrl
);
2060 phy_ctrl
|= MII_CR_RESET
;
2061 ret_val
= hw
->phy
.ops
.write_reg(hw
, PHY_CONTROL
, phy_ctrl
);
2072 * igb_phy_hw_reset - PHY hardware reset
2073 * @hw: pointer to the HW structure
2075 * Verify the reset block is not blocking us from resetting. Acquire
2076 * semaphore (if necessary) and read/set/write the device control reset
2077 * bit in the PHY. Wait the appropriate delay time for the device to
2078 * reset and release the semaphore (if necessary).
2080 s32
igb_phy_hw_reset(struct e1000_hw
*hw
)
2082 struct e1000_phy_info
*phy
= &hw
->phy
;
2086 ret_val
= igb_check_reset_block(hw
);
2092 ret_val
= phy
->ops
.acquire(hw
);
2096 ctrl
= rd32(E1000_CTRL
);
2097 wr32(E1000_CTRL
, ctrl
| E1000_CTRL_PHY_RST
);
2100 udelay(phy
->reset_delay_us
);
2102 wr32(E1000_CTRL
, ctrl
);
2107 phy
->ops
.release(hw
);
2109 ret_val
= phy
->ops
.get_cfg_done(hw
);
2116 * igb_phy_init_script_igp3 - Inits the IGP3 PHY
2117 * @hw: pointer to the HW structure
2119 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2121 s32
igb_phy_init_script_igp3(struct e1000_hw
*hw
)
2123 hw_dbg("Running IGP 3 PHY init script\n");
2125 /* PHY init IGP 3 */
2126 /* Enable rise/fall, 10-mode work in class-A */
2127 hw
->phy
.ops
.write_reg(hw
, 0x2F5B, 0x9018);
2128 /* Remove all caps from Replica path filter */
2129 hw
->phy
.ops
.write_reg(hw
, 0x2F52, 0x0000);
2130 /* Bias trimming for ADC, AFE and Driver (Default) */
2131 hw
->phy
.ops
.write_reg(hw
, 0x2FB1, 0x8B24);
2132 /* Increase Hybrid poly bias */
2133 hw
->phy
.ops
.write_reg(hw
, 0x2FB2, 0xF8F0);
2134 /* Add 4% to TX amplitude in Giga mode */
2135 hw
->phy
.ops
.write_reg(hw
, 0x2010, 0x10B0);
2136 /* Disable trimming (TTT) */
2137 hw
->phy
.ops
.write_reg(hw
, 0x2011, 0x0000);
2138 /* Poly DC correction to 94.6% + 2% for all channels */
2139 hw
->phy
.ops
.write_reg(hw
, 0x20DD, 0x249A);
2140 /* ABS DC correction to 95.9% */
2141 hw
->phy
.ops
.write_reg(hw
, 0x20DE, 0x00D3);
2142 /* BG temp curve trim */
2143 hw
->phy
.ops
.write_reg(hw
, 0x28B4, 0x04CE);
2144 /* Increasing ADC OPAMP stage 1 currents to max */
2145 hw
->phy
.ops
.write_reg(hw
, 0x2F70, 0x29E4);
2146 /* Force 1000 ( required for enabling PHY regs configuration) */
2147 hw
->phy
.ops
.write_reg(hw
, 0x0000, 0x0140);
2148 /* Set upd_freq to 6 */
2149 hw
->phy
.ops
.write_reg(hw
, 0x1F30, 0x1606);
2151 hw
->phy
.ops
.write_reg(hw
, 0x1F31, 0xB814);
2152 /* Disable adaptive fixed FFE (Default) */
2153 hw
->phy
.ops
.write_reg(hw
, 0x1F35, 0x002A);
2154 /* Enable FFE hysteresis */
2155 hw
->phy
.ops
.write_reg(hw
, 0x1F3E, 0x0067);
2156 /* Fixed FFE for short cable lengths */
2157 hw
->phy
.ops
.write_reg(hw
, 0x1F54, 0x0065);
2158 /* Fixed FFE for medium cable lengths */
2159 hw
->phy
.ops
.write_reg(hw
, 0x1F55, 0x002A);
2160 /* Fixed FFE for long cable lengths */
2161 hw
->phy
.ops
.write_reg(hw
, 0x1F56, 0x002A);
2162 /* Enable Adaptive Clip Threshold */
2163 hw
->phy
.ops
.write_reg(hw
, 0x1F72, 0x3FB0);
2164 /* AHT reset limit to 1 */
2165 hw
->phy
.ops
.write_reg(hw
, 0x1F76, 0xC0FF);
2166 /* Set AHT master delay to 127 msec */
2167 hw
->phy
.ops
.write_reg(hw
, 0x1F77, 0x1DEC);
2168 /* Set scan bits for AHT */
2169 hw
->phy
.ops
.write_reg(hw
, 0x1F78, 0xF9EF);
2170 /* Set AHT Preset bits */
2171 hw
->phy
.ops
.write_reg(hw
, 0x1F79, 0x0210);
2172 /* Change integ_factor of channel A to 3 */
2173 hw
->phy
.ops
.write_reg(hw
, 0x1895, 0x0003);
2174 /* Change prop_factor of channels BCD to 8 */
2175 hw
->phy
.ops
.write_reg(hw
, 0x1796, 0x0008);
2176 /* Change cg_icount + enable integbp for channels BCD */
2177 hw
->phy
.ops
.write_reg(hw
, 0x1798, 0xD008);
2178 /* Change cg_icount + enable integbp + change prop_factor_master
2179 * to 8 for channel A
2181 hw
->phy
.ops
.write_reg(hw
, 0x1898, 0xD918);
2182 /* Disable AHT in Slave mode on channel A */
2183 hw
->phy
.ops
.write_reg(hw
, 0x187A, 0x0800);
2184 /* Enable LPLU and disable AN to 1000 in non-D0a states,
2187 hw
->phy
.ops
.write_reg(hw
, 0x0019, 0x008D);
2188 /* Enable restart AN on an1000_dis change */
2189 hw
->phy
.ops
.write_reg(hw
, 0x001B, 0x2080);
2190 /* Enable wh_fifo read clock in 10/100 modes */
2191 hw
->phy
.ops
.write_reg(hw
, 0x0014, 0x0045);
2192 /* Restart AN, Speed selection is 1000 */
2193 hw
->phy
.ops
.write_reg(hw
, 0x0000, 0x1340);
2199 * igb_initialize_M88E1512_phy - Initialize M88E1512 PHY
2200 * @hw: pointer to the HW structure
2202 * Initialize Marvel 1512 to work correctly with Avoton.
2204 s32
igb_initialize_M88E1512_phy(struct e1000_hw
*hw
)
2206 struct e1000_phy_info
*phy
= &hw
->phy
;
2209 /* Switch to PHY page 0xFF. */
2210 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_PAGE_ADDR
, 0x00FF);
2214 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_2
, 0x214B);
2218 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_1
, 0x2144);
2222 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_2
, 0x0C28);
2226 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_1
, 0x2146);
2230 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_2
, 0xB233);
2234 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_1
, 0x214D);
2238 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_2
, 0xCC0C);
2242 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_1
, 0x2159);
2246 /* Switch to PHY page 0xFB. */
2247 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_PAGE_ADDR
, 0x00FB);
2251 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_3
, 0x000D);
2255 /* Switch to PHY page 0x12. */
2256 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_PAGE_ADDR
, 0x12);
2260 /* Change mode to SGMII-to-Copper */
2261 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_MODE
, 0x8001);
2265 /* Return the PHY to page 0. */
2266 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_PAGE_ADDR
, 0);
2270 ret_val
= igb_phy_sw_reset(hw
);
2272 hw_dbg("Error committing the PHY changes\n");
2276 /* msec_delay(1000); */
2277 usleep_range(1000, 2000);
2283 * igb_initialize_M88E1543_phy - Initialize M88E1512 PHY
2284 * @hw: pointer to the HW structure
2286 * Initialize Marvell 1543 to work correctly with Avoton.
2288 s32
igb_initialize_M88E1543_phy(struct e1000_hw
*hw
)
2290 struct e1000_phy_info
*phy
= &hw
->phy
;
2293 /* Switch to PHY page 0xFF. */
2294 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_PAGE_ADDR
, 0x00FF);
2298 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_2
, 0x214B);
2302 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_1
, 0x2144);
2306 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_2
, 0x0C28);
2310 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_1
, 0x2146);
2314 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_2
, 0xB233);
2318 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_1
, 0x214D);
2322 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_2
, 0xDC0C);
2326 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_1
, 0x2159);
2330 /* Switch to PHY page 0xFB. */
2331 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_PAGE_ADDR
, 0x00FB);
2335 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_CFG_REG_3
, 0x0C0D);
2339 /* Switch to PHY page 0x12. */
2340 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_PAGE_ADDR
, 0x12);
2344 /* Change mode to SGMII-to-Copper */
2345 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1512_MODE
, 0x8001);
2349 /* Switch to PHY page 1. */
2350 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_PAGE_ADDR
, 0x1);
2354 /* Change mode to 1000BASE-X/SGMII and autoneg enable */
2355 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_FIBER_CTRL
, 0x9140);
2359 /* Return the PHY to page 0. */
2360 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_PAGE_ADDR
, 0);
2364 ret_val
= igb_phy_sw_reset(hw
);
2366 hw_dbg("Error committing the PHY changes\n");
2370 /* msec_delay(1000); */
2371 usleep_range(1000, 2000);
2377 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2378 * @hw: pointer to the HW structure
2380 * In the case of a PHY power down to save power, or to turn off link during a
2381 * driver unload, restore the link to previous settings.
2383 void igb_power_up_phy_copper(struct e1000_hw
*hw
)
2387 /* The PHY will retain its settings across a power down/up cycle */
2388 hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &mii_reg
);
2389 mii_reg
&= ~MII_CR_POWER_DOWN
;
2390 hw
->phy
.ops
.write_reg(hw
, PHY_CONTROL
, mii_reg
);
2394 * igb_power_down_phy_copper - Power down copper PHY
2395 * @hw: pointer to the HW structure
2397 * Power down PHY to save power when interface is down and wake on lan
2400 void igb_power_down_phy_copper(struct e1000_hw
*hw
)
2404 /* The PHY will retain its settings across a power down/up cycle */
2405 hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &mii_reg
);
2406 mii_reg
|= MII_CR_POWER_DOWN
;
2407 hw
->phy
.ops
.write_reg(hw
, PHY_CONTROL
, mii_reg
);
2408 usleep_range(1000, 2000);
2412 * igb_check_polarity_82580 - Checks the polarity.
2413 * @hw: pointer to the HW structure
2415 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2417 * Polarity is determined based on the PHY specific status register.
2419 static s32
igb_check_polarity_82580(struct e1000_hw
*hw
)
2421 struct e1000_phy_info
*phy
= &hw
->phy
;
2426 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_STATUS_2
, &data
);
2429 phy
->cable_polarity
= (data
& I82580_PHY_STATUS2_REV_POLARITY
)
2430 ? e1000_rev_polarity_reversed
2431 : e1000_rev_polarity_normal
;
2437 * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2438 * @hw: pointer to the HW structure
2440 * Calls the PHY setup function to force speed and duplex. Clears the
2441 * auto-crossover to force MDI manually. Waits for link and returns
2442 * successful if link up is successful, else -E1000_ERR_PHY (-2).
2444 s32
igb_phy_force_speed_duplex_82580(struct e1000_hw
*hw
)
2446 struct e1000_phy_info
*phy
= &hw
->phy
;
2451 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_data
);
2455 igb_phy_force_speed_duplex_setup(hw
, &phy_data
);
2457 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_data
);
2461 /* Clear Auto-Crossover to force MDI manually. 82580 requires MDI
2462 * forced whenever speed and duplex are forced.
2464 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_CTRL_2
, &phy_data
);
2468 phy_data
&= ~I82580_PHY_CTRL2_MDIX_CFG_MASK
;
2470 ret_val
= phy
->ops
.write_reg(hw
, I82580_PHY_CTRL_2
, phy_data
);
2474 hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data
);
2478 if (phy
->autoneg_wait_to_complete
) {
2479 hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2481 ret_val
= igb_phy_has_link(hw
, PHY_FORCE_LIMIT
, 100000, &link
);
2486 hw_dbg("Link taking longer than expected.\n");
2489 ret_val
= igb_phy_has_link(hw
, PHY_FORCE_LIMIT
, 100000, &link
);
2499 * igb_get_phy_info_82580 - Retrieve I82580 PHY information
2500 * @hw: pointer to the HW structure
2502 * Read PHY status to determine if link is up. If link is up, then
2503 * set/determine 10base-T extended distance and polarity correction. Read
2504 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2505 * determine on the cable length, local and remote receiver.
2507 s32
igb_get_phy_info_82580(struct e1000_hw
*hw
)
2509 struct e1000_phy_info
*phy
= &hw
->phy
;
2514 ret_val
= igb_phy_has_link(hw
, 1, 0, &link
);
2519 hw_dbg("Phy info is only valid if link is up\n");
2520 ret_val
= -E1000_ERR_CONFIG
;
2524 phy
->polarity_correction
= true;
2526 ret_val
= igb_check_polarity_82580(hw
);
2530 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_STATUS_2
, &data
);
2534 phy
->is_mdix
= (data
& I82580_PHY_STATUS2_MDIX
) ? true : false;
2536 if ((data
& I82580_PHY_STATUS2_SPEED_MASK
) ==
2537 I82580_PHY_STATUS2_SPEED_1000MBPS
) {
2538 ret_val
= hw
->phy
.ops
.get_cable_length(hw
);
2542 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_STATUS
, &data
);
2546 phy
->local_rx
= (data
& SR_1000T_LOCAL_RX_STATUS
)
2547 ? e1000_1000t_rx_status_ok
2548 : e1000_1000t_rx_status_not_ok
;
2550 phy
->remote_rx
= (data
& SR_1000T_REMOTE_RX_STATUS
)
2551 ? e1000_1000t_rx_status_ok
2552 : e1000_1000t_rx_status_not_ok
;
2554 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2555 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2556 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2564 * igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2565 * @hw: pointer to the HW structure
2567 * Reads the diagnostic status register and verifies result is valid before
2568 * placing it in the phy_cable_length field.
2570 s32
igb_get_cable_length_82580(struct e1000_hw
*hw
)
2572 struct e1000_phy_info
*phy
= &hw
->phy
;
2574 u16 phy_data
, length
;
2576 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_DIAG_STATUS
, &phy_data
);
2580 length
= (phy_data
& I82580_DSTATUS_CABLE_LENGTH
) >>
2581 I82580_DSTATUS_CABLE_LENGTH_SHIFT
;
2583 if (length
== E1000_CABLE_LENGTH_UNDEFINED
)
2584 ret_val
= -E1000_ERR_PHY
;
2586 phy
->cable_length
= length
;
2593 * igb_set_master_slave_mode - Setup PHY for Master/slave mode
2594 * @hw: pointer to the HW structure
2596 * Sets up Master/slave mode
2598 static s32
igb_set_master_slave_mode(struct e1000_hw
*hw
)
2603 /* Resolve Master/Slave mode */
2604 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_1000T_CTRL
, &phy_data
);
2608 /* load defaults for future use */
2609 hw
->phy
.original_ms_type
= (phy_data
& CR_1000T_MS_ENABLE
) ?
2610 ((phy_data
& CR_1000T_MS_VALUE
) ?
2611 e1000_ms_force_master
:
2612 e1000_ms_force_slave
) : e1000_ms_auto
;
2614 switch (hw
->phy
.ms_type
) {
2615 case e1000_ms_force_master
:
2616 phy_data
|= (CR_1000T_MS_ENABLE
| CR_1000T_MS_VALUE
);
2618 case e1000_ms_force_slave
:
2619 phy_data
|= CR_1000T_MS_ENABLE
;
2620 phy_data
&= ~(CR_1000T_MS_VALUE
);
2623 phy_data
&= ~CR_1000T_MS_ENABLE
;
2629 return hw
->phy
.ops
.write_reg(hw
, PHY_1000T_CTRL
, phy_data
);