1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
4 #include <linux/module.h>
5 #include <linux/device.h>
7 #include <linux/ptp_classify.h>
11 #define INCVALUE_MASK 0x7fffffff
12 #define ISGN 0x80000000
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15 * and this update value cannot be reprogrammed.
17 * Neither the 82576 nor the 82580 offer registers wide enough to hold
18 * nanoseconds time values for very long. For the 82580, SYSTIM always
19 * counts nanoseconds, but the upper 24 bits are not available. The
20 * frequency is adjusted by changing the 32 bit fractional nanoseconds
23 * For the 82576, the SYSTIM register time unit is affect by the
24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25 * field are needed to provide the nominal 16 nanosecond period,
26 * leaving 19 bits for fractional nanoseconds.
28 * We scale the NIC clock cycle by a large factor so that relatively
29 * small clock corrections can be added or subtracted at each clock
30 * tick. The drawbacks of a large factor are a) that the clock
31 * register overflows more quickly (not such a big deal) and b) that
32 * the increment per tick has to fit into 24 bits. As a result we
33 * need to use a shift of 19 so we can fit a value of 16 into the
38 * +--------------+ +---+---+------+
39 * 82576 | 32 | | 8 | 5 | 19 |
40 * +--------------+ +---+---+------+
41 * \________ 45 bits _______/ fract
43 * +----------+---+ +--------------+
44 * 82580 | 24 | 8 | | 32 |
45 * +----------+---+ +--------------+
46 * reserved \______ 40 bits _____/
49 * The 45 bit 82576 SYSTIM overflows every
50 * 2^45 * 10^-9 / 3600 = 9.77 hours.
52 * The 40 bit 82580 SYSTIM overflows every
53 * 2^40 * 10^-9 / 60 = 18.3 minutes.
55 * SYSTIM is converted to real time using a timecounter. As
56 * timecounter_cyc2time() allows old timestamps, the timecounter needs
57 * to be updated at least once per half of the SYSTIM interval.
58 * Scheduling of delayed work is not very accurate, and also the NIC
59 * clock can be adjusted to run up to 6% faster and the system clock
60 * up to 10% slower, so we aim for 6 minutes to be sure the actual
61 * interval in the NIC time is shorter than 9.16 minutes.
64 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 6)
65 #define IGB_PTP_TX_TIMEOUT (HZ * 15)
66 #define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT)
67 #define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68 #define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT)
69 #define IGB_NBITS_82580 40
71 static void igb_ptp_tx_hwtstamp(struct igb_adapter
*adapter
);
73 /* SYSTIM read access for the 82576 */
74 static u64
igb_ptp_read_82576(const struct cyclecounter
*cc
)
76 struct igb_adapter
*igb
= container_of(cc
, struct igb_adapter
, cc
);
77 struct e1000_hw
*hw
= &igb
->hw
;
81 lo
= rd32(E1000_SYSTIML
);
82 hi
= rd32(E1000_SYSTIMH
);
84 val
= ((u64
) hi
) << 32;
90 /* SYSTIM read access for the 82580 */
91 static u64
igb_ptp_read_82580(const struct cyclecounter
*cc
)
93 struct igb_adapter
*igb
= container_of(cc
, struct igb_adapter
, cc
);
94 struct e1000_hw
*hw
= &igb
->hw
;
98 /* The timestamp latches on lowest register read. For the 82580
99 * the lowest register is SYSTIMR instead of SYSTIML. However we only
100 * need to provide nanosecond resolution, so we just ignore it.
103 lo
= rd32(E1000_SYSTIML
);
104 hi
= rd32(E1000_SYSTIMH
);
106 val
= ((u64
) hi
) << 32;
112 /* SYSTIM read access for I210/I211 */
113 static void igb_ptp_read_i210(struct igb_adapter
*adapter
,
114 struct timespec64
*ts
)
116 struct e1000_hw
*hw
= &adapter
->hw
;
119 /* The timestamp latches on lowest register read. For I210/I211, the
120 * lowest register is SYSTIMR. Since we only need to provide nanosecond
121 * resolution, we can ignore it.
124 nsec
= rd32(E1000_SYSTIML
);
125 sec
= rd32(E1000_SYSTIMH
);
131 static void igb_ptp_write_i210(struct igb_adapter
*adapter
,
132 const struct timespec64
*ts
)
134 struct e1000_hw
*hw
= &adapter
->hw
;
136 /* Writing the SYSTIMR register is not necessary as it only provides
137 * sub-nanosecond resolution.
139 wr32(E1000_SYSTIML
, ts
->tv_nsec
);
140 wr32(E1000_SYSTIMH
, (u32
)ts
->tv_sec
);
144 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
145 * @adapter: board private structure
146 * @hwtstamps: timestamp structure to update
147 * @systim: unsigned 64bit system time value.
149 * We need to convert the system time value stored in the RX/TXSTMP registers
150 * into a hwtstamp which can be used by the upper level timestamping functions.
152 * The 'tmreg_lock' spinlock is used to protect the consistency of the
153 * system time value. This is needed because reading the 64 bit time
154 * value involves reading two (or three) 32 bit registers. The first
155 * read latches the value. Ditto for writing.
157 * In addition, here have extended the system time with an overflow
158 * counter in software.
160 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter
*adapter
,
161 struct skb_shared_hwtstamps
*hwtstamps
,
167 switch (adapter
->hw
.mac
.type
) {
172 spin_lock_irqsave(&adapter
->tmreg_lock
, flags
);
174 ns
= timecounter_cyc2time(&adapter
->tc
, systim
);
176 spin_unlock_irqrestore(&adapter
->tmreg_lock
, flags
);
178 memset(hwtstamps
, 0, sizeof(*hwtstamps
));
179 hwtstamps
->hwtstamp
= ns_to_ktime(ns
);
183 memset(hwtstamps
, 0, sizeof(*hwtstamps
));
184 /* Upper 32 bits contain s, lower 32 bits contain ns. */
185 hwtstamps
->hwtstamp
= ktime_set(systim
>> 32,
186 systim
& 0xFFFFFFFF);
193 /* PTP clock operations */
194 static int igb_ptp_adjfreq_82576(struct ptp_clock_info
*ptp
, s32 ppb
)
196 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
198 struct e1000_hw
*hw
= &igb
->hw
;
209 rate
= div_u64(rate
, 1953125);
211 incvalue
= 16 << IGB_82576_TSYNC_SHIFT
;
218 wr32(E1000_TIMINCA
, INCPERIOD_82576
| (incvalue
& INCVALUE_82576_MASK
));
223 static int igb_ptp_adjfine_82580(struct ptp_clock_info
*ptp
, long scaled_ppm
)
225 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
227 struct e1000_hw
*hw
= &igb
->hw
;
232 if (scaled_ppm
< 0) {
234 scaled_ppm
= -scaled_ppm
;
238 rate
= div_u64(rate
, 15625);
240 inca
= rate
& INCVALUE_MASK
;
244 wr32(E1000_TIMINCA
, inca
);
249 static int igb_ptp_adjtime_82576(struct ptp_clock_info
*ptp
, s64 delta
)
251 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
255 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
256 timecounter_adjtime(&igb
->tc
, delta
);
257 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
262 static int igb_ptp_adjtime_i210(struct ptp_clock_info
*ptp
, s64 delta
)
264 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
267 struct timespec64 now
, then
= ns_to_timespec64(delta
);
269 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
271 igb_ptp_read_i210(igb
, &now
);
272 now
= timespec64_add(now
, then
);
273 igb_ptp_write_i210(igb
, (const struct timespec64
*)&now
);
275 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
280 static int igb_ptp_gettimex_82576(struct ptp_clock_info
*ptp
,
281 struct timespec64
*ts
,
282 struct ptp_system_timestamp
*sts
)
284 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
286 struct e1000_hw
*hw
= &igb
->hw
;
291 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
293 ptp_read_system_prets(sts
);
294 lo
= rd32(E1000_SYSTIML
);
295 ptp_read_system_postts(sts
);
296 hi
= rd32(E1000_SYSTIMH
);
298 ns
= timecounter_cyc2time(&igb
->tc
, ((u64
)hi
<< 32) | lo
);
300 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
302 *ts
= ns_to_timespec64(ns
);
307 static int igb_ptp_gettimex_82580(struct ptp_clock_info
*ptp
,
308 struct timespec64
*ts
,
309 struct ptp_system_timestamp
*sts
)
311 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
313 struct e1000_hw
*hw
= &igb
->hw
;
318 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
320 ptp_read_system_prets(sts
);
322 ptp_read_system_postts(sts
);
323 lo
= rd32(E1000_SYSTIML
);
324 hi
= rd32(E1000_SYSTIMH
);
326 ns
= timecounter_cyc2time(&igb
->tc
, ((u64
)hi
<< 32) | lo
);
328 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
330 *ts
= ns_to_timespec64(ns
);
335 static int igb_ptp_gettimex_i210(struct ptp_clock_info
*ptp
,
336 struct timespec64
*ts
,
337 struct ptp_system_timestamp
*sts
)
339 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
341 struct e1000_hw
*hw
= &igb
->hw
;
344 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
346 ptp_read_system_prets(sts
);
348 ptp_read_system_postts(sts
);
349 ts
->tv_nsec
= rd32(E1000_SYSTIML
);
350 ts
->tv_sec
= rd32(E1000_SYSTIMH
);
352 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
357 static int igb_ptp_settime_82576(struct ptp_clock_info
*ptp
,
358 const struct timespec64
*ts
)
360 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
365 ns
= timespec64_to_ns(ts
);
367 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
369 timecounter_init(&igb
->tc
, &igb
->cc
, ns
);
371 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
376 static int igb_ptp_settime_i210(struct ptp_clock_info
*ptp
,
377 const struct timespec64
*ts
)
379 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
383 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
385 igb_ptp_write_i210(igb
, ts
);
387 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
392 static void igb_pin_direction(int pin
, int input
, u32
*ctrl
, u32
*ctrl_ext
)
394 u32
*ptr
= pin
< 2 ? ctrl
: ctrl_ext
;
395 static const u32 mask
[IGB_N_SDP
] = {
398 E1000_CTRL_EXT_SDP2_DIR
,
399 E1000_CTRL_EXT_SDP3_DIR
,
408 static void igb_pin_extts(struct igb_adapter
*igb
, int chan
, int pin
)
410 static const u32 aux0_sel_sdp
[IGB_N_SDP
] = {
411 AUX0_SEL_SDP0
, AUX0_SEL_SDP1
, AUX0_SEL_SDP2
, AUX0_SEL_SDP3
,
413 static const u32 aux1_sel_sdp
[IGB_N_SDP
] = {
414 AUX1_SEL_SDP0
, AUX1_SEL_SDP1
, AUX1_SEL_SDP2
, AUX1_SEL_SDP3
,
416 static const u32 ts_sdp_en
[IGB_N_SDP
] = {
417 TS_SDP0_EN
, TS_SDP1_EN
, TS_SDP2_EN
, TS_SDP3_EN
,
419 struct e1000_hw
*hw
= &igb
->hw
;
420 u32 ctrl
, ctrl_ext
, tssdp
= 0;
422 ctrl
= rd32(E1000_CTRL
);
423 ctrl_ext
= rd32(E1000_CTRL_EXT
);
424 tssdp
= rd32(E1000_TSSDP
);
426 igb_pin_direction(pin
, 1, &ctrl
, &ctrl_ext
);
428 /* Make sure this pin is not enabled as an output. */
429 tssdp
&= ~ts_sdp_en
[pin
];
432 tssdp
&= ~AUX1_SEL_SDP3
;
433 tssdp
|= aux1_sel_sdp
[pin
] | AUX1_TS_SDP_EN
;
435 tssdp
&= ~AUX0_SEL_SDP3
;
436 tssdp
|= aux0_sel_sdp
[pin
] | AUX0_TS_SDP_EN
;
439 wr32(E1000_TSSDP
, tssdp
);
440 wr32(E1000_CTRL
, ctrl
);
441 wr32(E1000_CTRL_EXT
, ctrl_ext
);
444 static void igb_pin_perout(struct igb_adapter
*igb
, int chan
, int pin
, int freq
)
446 static const u32 aux0_sel_sdp
[IGB_N_SDP
] = {
447 AUX0_SEL_SDP0
, AUX0_SEL_SDP1
, AUX0_SEL_SDP2
, AUX0_SEL_SDP3
,
449 static const u32 aux1_sel_sdp
[IGB_N_SDP
] = {
450 AUX1_SEL_SDP0
, AUX1_SEL_SDP1
, AUX1_SEL_SDP2
, AUX1_SEL_SDP3
,
452 static const u32 ts_sdp_en
[IGB_N_SDP
] = {
453 TS_SDP0_EN
, TS_SDP1_EN
, TS_SDP2_EN
, TS_SDP3_EN
,
455 static const u32 ts_sdp_sel_tt0
[IGB_N_SDP
] = {
456 TS_SDP0_SEL_TT0
, TS_SDP1_SEL_TT0
,
457 TS_SDP2_SEL_TT0
, TS_SDP3_SEL_TT0
,
459 static const u32 ts_sdp_sel_tt1
[IGB_N_SDP
] = {
460 TS_SDP0_SEL_TT1
, TS_SDP1_SEL_TT1
,
461 TS_SDP2_SEL_TT1
, TS_SDP3_SEL_TT1
,
463 static const u32 ts_sdp_sel_fc0
[IGB_N_SDP
] = {
464 TS_SDP0_SEL_FC0
, TS_SDP1_SEL_FC0
,
465 TS_SDP2_SEL_FC0
, TS_SDP3_SEL_FC0
,
467 static const u32 ts_sdp_sel_fc1
[IGB_N_SDP
] = {
468 TS_SDP0_SEL_FC1
, TS_SDP1_SEL_FC1
,
469 TS_SDP2_SEL_FC1
, TS_SDP3_SEL_FC1
,
471 static const u32 ts_sdp_sel_clr
[IGB_N_SDP
] = {
472 TS_SDP0_SEL_FC1
, TS_SDP1_SEL_FC1
,
473 TS_SDP2_SEL_FC1
, TS_SDP3_SEL_FC1
,
475 struct e1000_hw
*hw
= &igb
->hw
;
476 u32 ctrl
, ctrl_ext
, tssdp
= 0;
478 ctrl
= rd32(E1000_CTRL
);
479 ctrl_ext
= rd32(E1000_CTRL_EXT
);
480 tssdp
= rd32(E1000_TSSDP
);
482 igb_pin_direction(pin
, 0, &ctrl
, &ctrl_ext
);
484 /* Make sure this pin is not enabled as an input. */
485 if ((tssdp
& AUX0_SEL_SDP3
) == aux0_sel_sdp
[pin
])
486 tssdp
&= ~AUX0_TS_SDP_EN
;
488 if ((tssdp
& AUX1_SEL_SDP3
) == aux1_sel_sdp
[pin
])
489 tssdp
&= ~AUX1_TS_SDP_EN
;
491 tssdp
&= ~ts_sdp_sel_clr
[pin
];
494 tssdp
|= ts_sdp_sel_fc1
[pin
];
496 tssdp
|= ts_sdp_sel_fc0
[pin
];
499 tssdp
|= ts_sdp_sel_tt1
[pin
];
501 tssdp
|= ts_sdp_sel_tt0
[pin
];
503 tssdp
|= ts_sdp_en
[pin
];
505 wr32(E1000_TSSDP
, tssdp
);
506 wr32(E1000_CTRL
, ctrl
);
507 wr32(E1000_CTRL_EXT
, ctrl_ext
);
510 static int igb_ptp_feature_enable_i210(struct ptp_clock_info
*ptp
,
511 struct ptp_clock_request
*rq
, int on
)
513 struct igb_adapter
*igb
=
514 container_of(ptp
, struct igb_adapter
, ptp_caps
);
515 struct e1000_hw
*hw
= &igb
->hw
;
516 u32 tsauxc
, tsim
, tsauxc_mask
, tsim_mask
, trgttiml
, trgttimh
, freqout
;
518 struct timespec64 ts
;
519 int use_freq
= 0, pin
= -1;
523 case PTP_CLK_REQ_EXTTS
:
524 /* Reject requests with unsupported flags */
525 if (rq
->extts
.flags
& ~(PTP_ENABLE_FEATURE
|
531 /* Reject requests failing to enable both edges. */
532 if ((rq
->extts
.flags
& PTP_STRICT_FLAGS
) &&
533 (rq
->extts
.flags
& PTP_ENABLE_FEATURE
) &&
534 (rq
->extts
.flags
& PTP_EXTTS_EDGES
) != PTP_EXTTS_EDGES
)
538 pin
= ptp_find_pin(igb
->ptp_clock
, PTP_PF_EXTTS
,
543 if (rq
->extts
.index
== 1) {
544 tsauxc_mask
= TSAUXC_EN_TS1
;
545 tsim_mask
= TSINTR_AUTT1
;
547 tsauxc_mask
= TSAUXC_EN_TS0
;
548 tsim_mask
= TSINTR_AUTT0
;
550 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
551 tsauxc
= rd32(E1000_TSAUXC
);
552 tsim
= rd32(E1000_TSIM
);
554 igb_pin_extts(igb
, rq
->extts
.index
, pin
);
555 tsauxc
|= tsauxc_mask
;
558 tsauxc
&= ~tsauxc_mask
;
561 wr32(E1000_TSAUXC
, tsauxc
);
562 wr32(E1000_TSIM
, tsim
);
563 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
566 case PTP_CLK_REQ_PEROUT
:
567 /* Reject requests with unsupported flags */
568 if (rq
->perout
.flags
)
572 pin
= ptp_find_pin(igb
->ptp_clock
, PTP_PF_PEROUT
,
577 ts
.tv_sec
= rq
->perout
.period
.sec
;
578 ts
.tv_nsec
= rq
->perout
.period
.nsec
;
579 ns
= timespec64_to_ns(&ts
);
581 if (on
&& ((ns
<= 70000000LL) || (ns
== 125000000LL) ||
582 (ns
== 250000000LL) || (ns
== 500000000LL))) {
587 ts
= ns_to_timespec64(ns
);
588 if (rq
->perout
.index
== 1) {
590 tsauxc_mask
= TSAUXC_EN_CLK1
| TSAUXC_ST1
;
593 tsauxc_mask
= TSAUXC_EN_TT1
;
594 tsim_mask
= TSINTR_TT1
;
596 trgttiml
= E1000_TRGTTIML1
;
597 trgttimh
= E1000_TRGTTIMH1
;
598 freqout
= E1000_FREQOUT1
;
601 tsauxc_mask
= TSAUXC_EN_CLK0
| TSAUXC_ST0
;
604 tsauxc_mask
= TSAUXC_EN_TT0
;
605 tsim_mask
= TSINTR_TT0
;
607 trgttiml
= E1000_TRGTTIML0
;
608 trgttimh
= E1000_TRGTTIMH0
;
609 freqout
= E1000_FREQOUT0
;
611 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
612 tsauxc
= rd32(E1000_TSAUXC
);
613 tsim
= rd32(E1000_TSIM
);
614 if (rq
->perout
.index
== 1) {
615 tsauxc
&= ~(TSAUXC_EN_TT1
| TSAUXC_EN_CLK1
| TSAUXC_ST1
);
618 tsauxc
&= ~(TSAUXC_EN_TT0
| TSAUXC_EN_CLK0
| TSAUXC_ST0
);
622 int i
= rq
->perout
.index
;
623 igb_pin_perout(igb
, i
, pin
, use_freq
);
624 igb
->perout
[i
].start
.tv_sec
= rq
->perout
.start
.sec
;
625 igb
->perout
[i
].start
.tv_nsec
= rq
->perout
.start
.nsec
;
626 igb
->perout
[i
].period
.tv_sec
= ts
.tv_sec
;
627 igb
->perout
[i
].period
.tv_nsec
= ts
.tv_nsec
;
628 wr32(trgttimh
, rq
->perout
.start
.sec
);
629 wr32(trgttiml
, rq
->perout
.start
.nsec
);
632 tsauxc
|= tsauxc_mask
;
635 wr32(E1000_TSAUXC
, tsauxc
);
636 wr32(E1000_TSIM
, tsim
);
637 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
640 case PTP_CLK_REQ_PPS
:
641 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
642 tsim
= rd32(E1000_TSIM
);
644 tsim
|= TSINTR_SYS_WRAP
;
646 tsim
&= ~TSINTR_SYS_WRAP
;
647 igb
->pps_sys_wrap_on
= !!on
;
648 wr32(E1000_TSIM
, tsim
);
649 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
656 static int igb_ptp_feature_enable(struct ptp_clock_info
*ptp
,
657 struct ptp_clock_request
*rq
, int on
)
662 static int igb_ptp_verify_pin(struct ptp_clock_info
*ptp
, unsigned int pin
,
663 enum ptp_pin_function func
, unsigned int chan
)
678 * @work: pointer to work struct
680 * This work function polls the TSYNCTXCTL valid bit to determine when a
681 * timestamp has been taken for the current stored skb.
683 static void igb_ptp_tx_work(struct work_struct
*work
)
685 struct igb_adapter
*adapter
= container_of(work
, struct igb_adapter
,
687 struct e1000_hw
*hw
= &adapter
->hw
;
690 if (!adapter
->ptp_tx_skb
)
693 if (time_is_before_jiffies(adapter
->ptp_tx_start
+
694 IGB_PTP_TX_TIMEOUT
)) {
695 dev_kfree_skb_any(adapter
->ptp_tx_skb
);
696 adapter
->ptp_tx_skb
= NULL
;
697 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS
, &adapter
->state
);
698 adapter
->tx_hwtstamp_timeouts
++;
699 /* Clear the tx valid bit in TSYNCTXCTL register to enable
703 dev_warn(&adapter
->pdev
->dev
, "clearing Tx timestamp hang\n");
707 tsynctxctl
= rd32(E1000_TSYNCTXCTL
);
708 if (tsynctxctl
& E1000_TSYNCTXCTL_VALID
)
709 igb_ptp_tx_hwtstamp(adapter
);
711 /* reschedule to check later */
712 schedule_work(&adapter
->ptp_tx_work
);
715 static void igb_ptp_overflow_check(struct work_struct
*work
)
717 struct igb_adapter
*igb
=
718 container_of(work
, struct igb_adapter
, ptp_overflow_work
.work
);
719 struct timespec64 ts
;
722 /* Update the timecounter */
723 ns
= timecounter_read(&igb
->tc
);
725 ts
= ns_to_timespec64(ns
);
726 pr_debug("igb overflow check at %lld.%09lu\n",
727 (long long) ts
.tv_sec
, ts
.tv_nsec
);
729 schedule_delayed_work(&igb
->ptp_overflow_work
,
730 IGB_SYSTIM_OVERFLOW_PERIOD
);
734 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
735 * @adapter: private network adapter structure
737 * This watchdog task is scheduled to detect error case where hardware has
738 * dropped an Rx packet that was timestamped when the ring is full. The
739 * particular error is rare but leaves the device in a state unable to timestamp
740 * any future packets.
742 void igb_ptp_rx_hang(struct igb_adapter
*adapter
)
744 struct e1000_hw
*hw
= &adapter
->hw
;
745 u32 tsyncrxctl
= rd32(E1000_TSYNCRXCTL
);
746 unsigned long rx_event
;
748 /* Other hardware uses per-packet timestamps */
749 if (hw
->mac
.type
!= e1000_82576
)
752 /* If we don't have a valid timestamp in the registers, just update the
753 * timeout counter and exit
755 if (!(tsyncrxctl
& E1000_TSYNCRXCTL_VALID
)) {
756 adapter
->last_rx_ptp_check
= jiffies
;
760 /* Determine the most recent watchdog or rx_timestamp event */
761 rx_event
= adapter
->last_rx_ptp_check
;
762 if (time_after(adapter
->last_rx_timestamp
, rx_event
))
763 rx_event
= adapter
->last_rx_timestamp
;
765 /* Only need to read the high RXSTMP register to clear the lock */
766 if (time_is_before_jiffies(rx_event
+ 5 * HZ
)) {
768 adapter
->last_rx_ptp_check
= jiffies
;
769 adapter
->rx_hwtstamp_cleared
++;
770 dev_warn(&adapter
->pdev
->dev
, "clearing Rx timestamp hang\n");
775 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
776 * @adapter: private network adapter structure
778 void igb_ptp_tx_hang(struct igb_adapter
*adapter
)
780 struct e1000_hw
*hw
= &adapter
->hw
;
781 bool timeout
= time_is_before_jiffies(adapter
->ptp_tx_start
+
784 if (!adapter
->ptp_tx_skb
)
787 if (!test_bit(__IGB_PTP_TX_IN_PROGRESS
, &adapter
->state
))
790 /* If we haven't received a timestamp within the timeout, it is
791 * reasonable to assume that it will never occur, so we can unlock the
792 * timestamp bit when this occurs.
795 cancel_work_sync(&adapter
->ptp_tx_work
);
796 dev_kfree_skb_any(adapter
->ptp_tx_skb
);
797 adapter
->ptp_tx_skb
= NULL
;
798 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS
, &adapter
->state
);
799 adapter
->tx_hwtstamp_timeouts
++;
800 /* Clear the tx valid bit in TSYNCTXCTL register to enable
804 dev_warn(&adapter
->pdev
->dev
, "clearing Tx timestamp hang\n");
809 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
810 * @adapter: Board private structure.
812 * If we were asked to do hardware stamping and such a time stamp is
813 * available, then it must have been for this skb here because we only
814 * allow only one such packet into the queue.
816 static void igb_ptp_tx_hwtstamp(struct igb_adapter
*adapter
)
818 struct sk_buff
*skb
= adapter
->ptp_tx_skb
;
819 struct e1000_hw
*hw
= &adapter
->hw
;
820 struct skb_shared_hwtstamps shhwtstamps
;
824 regval
= rd32(E1000_TXSTMPL
);
825 regval
|= (u64
)rd32(E1000_TXSTMPH
) << 32;
827 igb_ptp_systim_to_hwtstamp(adapter
, &shhwtstamps
, regval
);
828 /* adjust timestamp for the TX latency based on link speed */
829 if (adapter
->hw
.mac
.type
== e1000_i210
) {
830 switch (adapter
->link_speed
) {
832 adjust
= IGB_I210_TX_LATENCY_10
;
835 adjust
= IGB_I210_TX_LATENCY_100
;
838 adjust
= IGB_I210_TX_LATENCY_1000
;
843 shhwtstamps
.hwtstamp
=
844 ktime_add_ns(shhwtstamps
.hwtstamp
, adjust
);
846 /* Clear the lock early before calling skb_tstamp_tx so that
847 * applications are not woken up before the lock bit is clear. We use
848 * a copy of the skb pointer to ensure other threads can't change it
849 * while we're notifying the stack.
851 adapter
->ptp_tx_skb
= NULL
;
852 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS
, &adapter
->state
);
854 /* Notify the stack and free the skb after we've unlocked */
855 skb_tstamp_tx(skb
, &shhwtstamps
);
856 dev_kfree_skb_any(skb
);
860 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
861 * @q_vector: Pointer to interrupt specific structure
862 * @va: Pointer to address containing Rx buffer
863 * @skb: Buffer containing timestamp and packet
865 * This function is meant to retrieve a timestamp from the first buffer of an
866 * incoming frame. The value is stored in little endian format starting on
869 void igb_ptp_rx_pktstamp(struct igb_q_vector
*q_vector
, void *va
,
872 __le64
*regval
= (__le64
*)va
;
873 struct igb_adapter
*adapter
= q_vector
->adapter
;
876 /* The timestamp is recorded in little endian format.
878 * Field: Reserved Reserved SYSTIML SYSTIMH
880 igb_ptp_systim_to_hwtstamp(adapter
, skb_hwtstamps(skb
),
881 le64_to_cpu(regval
[1]));
883 /* adjust timestamp for the RX latency based on link speed */
884 if (adapter
->hw
.mac
.type
== e1000_i210
) {
885 switch (adapter
->link_speed
) {
887 adjust
= IGB_I210_RX_LATENCY_10
;
890 adjust
= IGB_I210_RX_LATENCY_100
;
893 adjust
= IGB_I210_RX_LATENCY_1000
;
897 skb_hwtstamps(skb
)->hwtstamp
=
898 ktime_sub_ns(skb_hwtstamps(skb
)->hwtstamp
, adjust
);
902 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
903 * @q_vector: Pointer to interrupt specific structure
904 * @skb: Buffer containing timestamp and packet
906 * This function is meant to retrieve a timestamp from the internal registers
907 * of the adapter and store it in the skb.
909 void igb_ptp_rx_rgtstamp(struct igb_q_vector
*q_vector
,
912 struct igb_adapter
*adapter
= q_vector
->adapter
;
913 struct e1000_hw
*hw
= &adapter
->hw
;
917 /* If this bit is set, then the RX registers contain the time stamp. No
918 * other packet will be time stamped until we read these registers, so
919 * read the registers to make them available again. Because only one
920 * packet can be time stamped at a time, we know that the register
921 * values must belong to this one here and therefore we don't need to
922 * compare any of the additional attributes stored for it.
924 * If nothing went wrong, then it should have a shared tx_flags that we
925 * can turn into a skb_shared_hwtstamps.
927 if (!(rd32(E1000_TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
))
930 regval
= rd32(E1000_RXSTMPL
);
931 regval
|= (u64
)rd32(E1000_RXSTMPH
) << 32;
933 igb_ptp_systim_to_hwtstamp(adapter
, skb_hwtstamps(skb
), regval
);
935 /* adjust timestamp for the RX latency based on link speed */
936 if (adapter
->hw
.mac
.type
== e1000_i210
) {
937 switch (adapter
->link_speed
) {
939 adjust
= IGB_I210_RX_LATENCY_10
;
942 adjust
= IGB_I210_RX_LATENCY_100
;
945 adjust
= IGB_I210_RX_LATENCY_1000
;
949 skb_hwtstamps(skb
)->hwtstamp
=
950 ktime_sub_ns(skb_hwtstamps(skb
)->hwtstamp
, adjust
);
952 /* Update the last_rx_timestamp timer in order to enable watchdog check
953 * for error case of latched timestamp on a dropped packet.
955 adapter
->last_rx_timestamp
= jiffies
;
959 * igb_ptp_get_ts_config - get hardware time stamping config
960 * @netdev: netdev struct
961 * @ifr: interface struct
963 * Get the hwtstamp_config settings to return to the user. Rather than attempt
964 * to deconstruct the settings from the registers, just return a shadow copy
965 * of the last known settings.
967 int igb_ptp_get_ts_config(struct net_device
*netdev
, struct ifreq
*ifr
)
969 struct igb_adapter
*adapter
= netdev_priv(netdev
);
970 struct hwtstamp_config
*config
= &adapter
->tstamp_config
;
972 return copy_to_user(ifr
->ifr_data
, config
, sizeof(*config
)) ?
977 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
978 * @adapter: networking device structure
979 * @config: hwtstamp configuration
981 * Outgoing time stamping can be enabled and disabled. Play nice and
982 * disable it when requested, although it shouldn't case any overhead
983 * when no packet needs it. At most one packet in the queue may be
984 * marked for time stamping, otherwise it would be impossible to tell
985 * for sure to which packet the hardware time stamp belongs.
987 * Incoming time stamping has to be configured via the hardware
988 * filters. Not all combinations are supported, in particular event
989 * type has to be specified. Matching the kind of event packet is
990 * not supported, with the exception of "all V2 events regardless of
993 static int igb_ptp_set_timestamp_mode(struct igb_adapter
*adapter
,
994 struct hwtstamp_config
*config
)
996 struct e1000_hw
*hw
= &adapter
->hw
;
997 u32 tsync_tx_ctl
= E1000_TSYNCTXCTL_ENABLED
;
998 u32 tsync_rx_ctl
= E1000_TSYNCRXCTL_ENABLED
;
999 u32 tsync_rx_cfg
= 0;
1004 /* reserved for future extensions */
1008 switch (config
->tx_type
) {
1009 case HWTSTAMP_TX_OFF
:
1011 case HWTSTAMP_TX_ON
:
1017 switch (config
->rx_filter
) {
1018 case HWTSTAMP_FILTER_NONE
:
1021 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
1022 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
1023 tsync_rx_cfg
= E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE
;
1026 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
1027 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
1028 tsync_rx_cfg
= E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE
;
1031 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
1032 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
1033 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
1034 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
1035 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
1036 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
1037 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
1038 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
1039 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
1040 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_EVENT_V2
;
1041 config
->rx_filter
= HWTSTAMP_FILTER_PTP_V2_EVENT
;
1045 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
1046 case HWTSTAMP_FILTER_NTP_ALL
:
1047 case HWTSTAMP_FILTER_ALL
:
1048 /* 82576 cannot timestamp all packets, which it needs to do to
1049 * support both V1 Sync and Delay_Req messages
1051 if (hw
->mac
.type
!= e1000_82576
) {
1052 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_ALL
;
1053 config
->rx_filter
= HWTSTAMP_FILTER_ALL
;
1058 config
->rx_filter
= HWTSTAMP_FILTER_NONE
;
1062 if (hw
->mac
.type
== e1000_82575
) {
1063 if (tsync_rx_ctl
| tsync_tx_ctl
)
1068 /* Per-packet timestamping only works if all packets are
1069 * timestamped, so enable timestamping in all packets as
1070 * long as one Rx filter was configured.
1072 if ((hw
->mac
.type
>= e1000_82580
) && tsync_rx_ctl
) {
1073 tsync_rx_ctl
= E1000_TSYNCRXCTL_ENABLED
;
1074 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_ALL
;
1075 config
->rx_filter
= HWTSTAMP_FILTER_ALL
;
1079 if ((hw
->mac
.type
== e1000_i210
) ||
1080 (hw
->mac
.type
== e1000_i211
)) {
1081 regval
= rd32(E1000_RXPBS
);
1082 regval
|= E1000_RXPBS_CFG_TS_EN
;
1083 wr32(E1000_RXPBS
, regval
);
1087 /* enable/disable TX */
1088 regval
= rd32(E1000_TSYNCTXCTL
);
1089 regval
&= ~E1000_TSYNCTXCTL_ENABLED
;
1090 regval
|= tsync_tx_ctl
;
1091 wr32(E1000_TSYNCTXCTL
, regval
);
1093 /* enable/disable RX */
1094 regval
= rd32(E1000_TSYNCRXCTL
);
1095 regval
&= ~(E1000_TSYNCRXCTL_ENABLED
| E1000_TSYNCRXCTL_TYPE_MASK
);
1096 regval
|= tsync_rx_ctl
;
1097 wr32(E1000_TSYNCRXCTL
, regval
);
1099 /* define which PTP packets are time stamped */
1100 wr32(E1000_TSYNCRXCFG
, tsync_rx_cfg
);
1102 /* define ethertype filter for timestamped packets */
1104 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588
),
1105 (E1000_ETQF_FILTER_ENABLE
| /* enable filter */
1106 E1000_ETQF_1588
| /* enable timestamping */
1107 ETH_P_1588
)); /* 1588 eth protocol type */
1109 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588
), 0);
1111 /* L4 Queue Filter[3]: filter by destination port and protocol */
1113 u32 ftqf
= (IPPROTO_UDP
/* UDP */
1114 | E1000_FTQF_VF_BP
/* VF not compared */
1115 | E1000_FTQF_1588_TIME_STAMP
/* Enable Timestamping */
1116 | E1000_FTQF_MASK
); /* mask all inputs */
1117 ftqf
&= ~E1000_FTQF_MASK_PROTO_BP
; /* enable protocol check */
1119 wr32(E1000_IMIR(3), htons(PTP_EV_PORT
));
1120 wr32(E1000_IMIREXT(3),
1121 (E1000_IMIREXT_SIZE_BP
| E1000_IMIREXT_CTRL_BP
));
1122 if (hw
->mac
.type
== e1000_82576
) {
1123 /* enable source port check */
1124 wr32(E1000_SPQF(3), htons(PTP_EV_PORT
));
1125 ftqf
&= ~E1000_FTQF_MASK_SOURCE_PORT_BP
;
1127 wr32(E1000_FTQF(3), ftqf
);
1129 wr32(E1000_FTQF(3), E1000_FTQF_MASK
);
1133 /* clear TX/RX time stamp registers, just to be sure */
1134 regval
= rd32(E1000_TXSTMPL
);
1135 regval
= rd32(E1000_TXSTMPH
);
1136 regval
= rd32(E1000_RXSTMPL
);
1137 regval
= rd32(E1000_RXSTMPH
);
1143 * igb_ptp_set_ts_config - set hardware time stamping config
1144 * @netdev: netdev struct
1145 * @ifr: interface struct
1148 int igb_ptp_set_ts_config(struct net_device
*netdev
, struct ifreq
*ifr
)
1150 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1151 struct hwtstamp_config config
;
1154 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
1157 err
= igb_ptp_set_timestamp_mode(adapter
, &config
);
1161 /* save these settings for future reference */
1162 memcpy(&adapter
->tstamp_config
, &config
,
1163 sizeof(adapter
->tstamp_config
));
1165 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
)) ?
1170 * igb_ptp_init - Initialize PTP functionality
1171 * @adapter: Board private structure
1173 * This function is called at device probe to initialize the PTP
1176 void igb_ptp_init(struct igb_adapter
*adapter
)
1178 struct e1000_hw
*hw
= &adapter
->hw
;
1179 struct net_device
*netdev
= adapter
->netdev
;
1182 switch (hw
->mac
.type
) {
1184 snprintf(adapter
->ptp_caps
.name
, 16, "%pm", netdev
->dev_addr
);
1185 adapter
->ptp_caps
.owner
= THIS_MODULE
;
1186 adapter
->ptp_caps
.max_adj
= 999999881;
1187 adapter
->ptp_caps
.n_ext_ts
= 0;
1188 adapter
->ptp_caps
.pps
= 0;
1189 adapter
->ptp_caps
.adjfreq
= igb_ptp_adjfreq_82576
;
1190 adapter
->ptp_caps
.adjtime
= igb_ptp_adjtime_82576
;
1191 adapter
->ptp_caps
.gettimex64
= igb_ptp_gettimex_82576
;
1192 adapter
->ptp_caps
.settime64
= igb_ptp_settime_82576
;
1193 adapter
->ptp_caps
.enable
= igb_ptp_feature_enable
;
1194 adapter
->cc
.read
= igb_ptp_read_82576
;
1195 adapter
->cc
.mask
= CYCLECOUNTER_MASK(64);
1196 adapter
->cc
.mult
= 1;
1197 adapter
->cc
.shift
= IGB_82576_TSYNC_SHIFT
;
1198 adapter
->ptp_flags
|= IGB_PTP_OVERFLOW_CHECK
;
1203 snprintf(adapter
->ptp_caps
.name
, 16, "%pm", netdev
->dev_addr
);
1204 adapter
->ptp_caps
.owner
= THIS_MODULE
;
1205 adapter
->ptp_caps
.max_adj
= 62499999;
1206 adapter
->ptp_caps
.n_ext_ts
= 0;
1207 adapter
->ptp_caps
.pps
= 0;
1208 adapter
->ptp_caps
.adjfine
= igb_ptp_adjfine_82580
;
1209 adapter
->ptp_caps
.adjtime
= igb_ptp_adjtime_82576
;
1210 adapter
->ptp_caps
.gettimex64
= igb_ptp_gettimex_82580
;
1211 adapter
->ptp_caps
.settime64
= igb_ptp_settime_82576
;
1212 adapter
->ptp_caps
.enable
= igb_ptp_feature_enable
;
1213 adapter
->cc
.read
= igb_ptp_read_82580
;
1214 adapter
->cc
.mask
= CYCLECOUNTER_MASK(IGB_NBITS_82580
);
1215 adapter
->cc
.mult
= 1;
1216 adapter
->cc
.shift
= 0;
1217 adapter
->ptp_flags
|= IGB_PTP_OVERFLOW_CHECK
;
1221 for (i
= 0; i
< IGB_N_SDP
; i
++) {
1222 struct ptp_pin_desc
*ppd
= &adapter
->sdp_config
[i
];
1224 snprintf(ppd
->name
, sizeof(ppd
->name
), "SDP%d", i
);
1226 ppd
->func
= PTP_PF_NONE
;
1228 snprintf(adapter
->ptp_caps
.name
, 16, "%pm", netdev
->dev_addr
);
1229 adapter
->ptp_caps
.owner
= THIS_MODULE
;
1230 adapter
->ptp_caps
.max_adj
= 62499999;
1231 adapter
->ptp_caps
.n_ext_ts
= IGB_N_EXTTS
;
1232 adapter
->ptp_caps
.n_per_out
= IGB_N_PEROUT
;
1233 adapter
->ptp_caps
.n_pins
= IGB_N_SDP
;
1234 adapter
->ptp_caps
.pps
= 1;
1235 adapter
->ptp_caps
.pin_config
= adapter
->sdp_config
;
1236 adapter
->ptp_caps
.adjfine
= igb_ptp_adjfine_82580
;
1237 adapter
->ptp_caps
.adjtime
= igb_ptp_adjtime_i210
;
1238 adapter
->ptp_caps
.gettimex64
= igb_ptp_gettimex_i210
;
1239 adapter
->ptp_caps
.settime64
= igb_ptp_settime_i210
;
1240 adapter
->ptp_caps
.enable
= igb_ptp_feature_enable_i210
;
1241 adapter
->ptp_caps
.verify
= igb_ptp_verify_pin
;
1244 adapter
->ptp_clock
= NULL
;
1248 spin_lock_init(&adapter
->tmreg_lock
);
1249 INIT_WORK(&adapter
->ptp_tx_work
, igb_ptp_tx_work
);
1251 if (adapter
->ptp_flags
& IGB_PTP_OVERFLOW_CHECK
)
1252 INIT_DELAYED_WORK(&adapter
->ptp_overflow_work
,
1253 igb_ptp_overflow_check
);
1255 adapter
->tstamp_config
.rx_filter
= HWTSTAMP_FILTER_NONE
;
1256 adapter
->tstamp_config
.tx_type
= HWTSTAMP_TX_OFF
;
1258 igb_ptp_reset(adapter
);
1260 adapter
->ptp_clock
= ptp_clock_register(&adapter
->ptp_caps
,
1261 &adapter
->pdev
->dev
);
1262 if (IS_ERR(adapter
->ptp_clock
)) {
1263 adapter
->ptp_clock
= NULL
;
1264 dev_err(&adapter
->pdev
->dev
, "ptp_clock_register failed\n");
1265 } else if (adapter
->ptp_clock
) {
1266 dev_info(&adapter
->pdev
->dev
, "added PHC on %s\n",
1267 adapter
->netdev
->name
);
1268 adapter
->ptp_flags
|= IGB_PTP_ENABLED
;
1273 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1274 * @adapter: Board private structure
1276 * This function stops the overflow check work and PTP Tx timestamp work, and
1277 * will prepare the device for OS suspend.
1279 void igb_ptp_suspend(struct igb_adapter
*adapter
)
1281 if (!(adapter
->ptp_flags
& IGB_PTP_ENABLED
))
1284 if (adapter
->ptp_flags
& IGB_PTP_OVERFLOW_CHECK
)
1285 cancel_delayed_work_sync(&adapter
->ptp_overflow_work
);
1287 cancel_work_sync(&adapter
->ptp_tx_work
);
1288 if (adapter
->ptp_tx_skb
) {
1289 dev_kfree_skb_any(adapter
->ptp_tx_skb
);
1290 adapter
->ptp_tx_skb
= NULL
;
1291 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS
, &adapter
->state
);
1296 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1297 * @adapter: Board private structure.
1299 * This function stops the PTP support and cancels the delayed work.
1301 void igb_ptp_stop(struct igb_adapter
*adapter
)
1303 igb_ptp_suspend(adapter
);
1305 if (adapter
->ptp_clock
) {
1306 ptp_clock_unregister(adapter
->ptp_clock
);
1307 dev_info(&adapter
->pdev
->dev
, "removed PHC on %s\n",
1308 adapter
->netdev
->name
);
1309 adapter
->ptp_flags
&= ~IGB_PTP_ENABLED
;
1314 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1315 * @adapter: Board private structure.
1317 * This function handles the reset work required to re-enable the PTP device.
1319 void igb_ptp_reset(struct igb_adapter
*adapter
)
1321 struct e1000_hw
*hw
= &adapter
->hw
;
1322 unsigned long flags
;
1324 /* reset the tstamp_config */
1325 igb_ptp_set_timestamp_mode(adapter
, &adapter
->tstamp_config
);
1327 spin_lock_irqsave(&adapter
->tmreg_lock
, flags
);
1329 switch (adapter
->hw
.mac
.type
) {
1331 /* Dial the nominal frequency. */
1332 wr32(E1000_TIMINCA
, INCPERIOD_82576
| INCVALUE_82576
);
1339 wr32(E1000_TSAUXC
, 0x0);
1340 wr32(E1000_TSSDP
, 0x0);
1343 (adapter
->pps_sys_wrap_on
? TSINTR_SYS_WRAP
: 0));
1344 wr32(E1000_IMS
, E1000_IMS_TS
);
1347 /* No work to do. */
1351 /* Re-initialize the timer. */
1352 if ((hw
->mac
.type
== e1000_i210
) || (hw
->mac
.type
== e1000_i211
)) {
1353 struct timespec64 ts
= ktime_to_timespec64(ktime_get_real());
1355 igb_ptp_write_i210(adapter
, &ts
);
1357 timecounter_init(&adapter
->tc
, &adapter
->cc
,
1358 ktime_to_ns(ktime_get_real()));
1361 spin_unlock_irqrestore(&adapter
->tmreg_lock
, flags
);
1365 if (adapter
->ptp_flags
& IGB_PTP_OVERFLOW_CHECK
)
1366 schedule_delayed_work(&adapter
->ptp_overflow_work
,
1367 IGB_SYSTIM_OVERFLOW_PERIOD
);