WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / ethernet / marvell / skge.c
blob8a9c0f490bfb5a95460ca712e89729a71d12e001
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
4 * Ethernet adapters. Based on earlier sk98lin, e100 and
5 * FreeBSD if_sk drivers.
7 * This driver intentionally does not support all the features
8 * of the original driver such as link fail-over and link management because
9 * those should be done at higher levels.
11 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/in.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/ethtool.h>
23 #include <linux/pci.h>
24 #include <linux/if_vlan.h>
25 #include <linux/ip.h>
26 #include <linux/delay.h>
27 #include <linux/crc32.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/debugfs.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/mii.h>
33 #include <linux/slab.h>
34 #include <linux/dmi.h>
35 #include <linux/prefetch.h>
36 #include <asm/irq.h>
38 #include "skge.h"
40 #define DRV_NAME "skge"
41 #define DRV_VERSION "1.14"
43 #define DEFAULT_TX_RING_SIZE 128
44 #define DEFAULT_RX_RING_SIZE 512
45 #define MAX_TX_RING_SIZE 1024
46 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
47 #define MAX_RX_RING_SIZE 4096
48 #define RX_COPY_THRESHOLD 128
49 #define RX_BUF_SIZE 1536
50 #define PHY_RETRIES 1000
51 #define ETH_JUMBO_MTU 9000
52 #define TX_WATCHDOG (5 * HZ)
53 #define NAPI_WEIGHT 64
54 #define BLINK_MS 250
55 #define LINK_HZ HZ
57 #define SKGE_EEPROM_MAGIC 0x9933aabb
60 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
61 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
62 MODULE_LICENSE("GPL");
63 MODULE_VERSION(DRV_VERSION);
65 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
66 NETIF_MSG_LINK | NETIF_MSG_IFUP |
67 NETIF_MSG_IFDOWN);
69 static int debug = -1; /* defaults above */
70 module_param(debug, int, 0);
71 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
73 static const struct pci_device_id skge_id_table[] = {
74 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) }, /* 3Com 3C940 */
75 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) }, /* 3Com 3C940B */
76 #ifdef CONFIG_SKGE_GENESIS
77 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
78 #endif
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* D-Link DGE-530T (rev.B) */
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) }, /* D-Link DGE-530T */
82 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) }, /* D-Link DGE-530T Rev C1 */
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */
84 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
85 { PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, /* CNet PowerG-2000 */
86 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) }, /* Linksys EG1064 v2 */
87 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
88 { 0 }
90 MODULE_DEVICE_TABLE(pci, skge_id_table);
92 static int skge_up(struct net_device *dev);
93 static int skge_down(struct net_device *dev);
94 static void skge_phy_reset(struct skge_port *skge);
95 static void skge_tx_clean(struct net_device *dev);
96 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
98 static void genesis_get_stats(struct skge_port *skge, u64 *data);
99 static void yukon_get_stats(struct skge_port *skge, u64 *data);
100 static void yukon_init(struct skge_hw *hw, int port);
101 static void genesis_mac_init(struct skge_hw *hw, int port);
102 static void genesis_link_up(struct skge_port *skge);
103 static void skge_set_multicast(struct net_device *dev);
104 static irqreturn_t skge_intr(int irq, void *dev_id);
106 /* Avoid conditionals by using array */
107 static const int txqaddr[] = { Q_XA1, Q_XA2 };
108 static const int rxqaddr[] = { Q_R1, Q_R2 };
109 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
110 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
111 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
112 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
114 static inline bool is_genesis(const struct skge_hw *hw)
116 #ifdef CONFIG_SKGE_GENESIS
117 return hw->chip_id == CHIP_ID_GENESIS;
118 #else
119 return false;
120 #endif
123 static int skge_get_regs_len(struct net_device *dev)
125 return 0x4000;
129 * Returns copy of whole control register region
130 * Note: skip RAM address register because accessing it will
131 * cause bus hangs!
133 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
134 void *p)
136 const struct skge_port *skge = netdev_priv(dev);
137 const void __iomem *io = skge->hw->regs;
139 regs->version = 1;
140 memset(p, 0, regs->len);
141 memcpy_fromio(p, io, B3_RAM_ADDR);
143 if (regs->len > B3_RI_WTO_R1) {
144 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
145 regs->len - B3_RI_WTO_R1);
149 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
150 static u32 wol_supported(const struct skge_hw *hw)
152 if (is_genesis(hw))
153 return 0;
155 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
156 return 0;
158 return WAKE_MAGIC | WAKE_PHY;
161 static void skge_wol_init(struct skge_port *skge)
163 struct skge_hw *hw = skge->hw;
164 int port = skge->port;
165 u16 ctrl;
167 skge_write16(hw, B0_CTST, CS_RST_CLR);
168 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
170 /* Turn on Vaux */
171 skge_write8(hw, B0_POWER_CTRL,
172 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
174 /* WA code for COMA mode -- clear PHY reset */
175 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
176 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
177 u32 reg = skge_read32(hw, B2_GP_IO);
178 reg |= GP_DIR_9;
179 reg &= ~GP_IO_9;
180 skge_write32(hw, B2_GP_IO, reg);
183 skge_write32(hw, SK_REG(port, GPHY_CTRL),
184 GPC_DIS_SLEEP |
185 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
186 GPC_ANEG_1 | GPC_RST_SET);
188 skge_write32(hw, SK_REG(port, GPHY_CTRL),
189 GPC_DIS_SLEEP |
190 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
191 GPC_ANEG_1 | GPC_RST_CLR);
193 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
195 /* Force to 10/100 skge_reset will re-enable on resume */
196 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
197 (PHY_AN_100FULL | PHY_AN_100HALF |
198 PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
199 /* no 1000 HD/FD */
200 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
201 gm_phy_write(hw, port, PHY_MARV_CTRL,
202 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
203 PHY_CT_RE_CFG | PHY_CT_DUP_MD);
206 /* Set GMAC to no flow control and auto update for speed/duplex */
207 gma_write16(hw, port, GM_GP_CTRL,
208 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
209 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
211 /* Set WOL address */
212 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
213 skge->netdev->dev_addr, ETH_ALEN);
215 /* Turn on appropriate WOL control bits */
216 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
217 ctrl = 0;
218 if (skge->wol & WAKE_PHY)
219 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
220 else
221 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
223 if (skge->wol & WAKE_MAGIC)
224 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
225 else
226 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
228 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
229 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
231 /* block receiver */
232 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
235 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
237 struct skge_port *skge = netdev_priv(dev);
239 wol->supported = wol_supported(skge->hw);
240 wol->wolopts = skge->wol;
243 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
245 struct skge_port *skge = netdev_priv(dev);
246 struct skge_hw *hw = skge->hw;
248 if ((wol->wolopts & ~wol_supported(hw)) ||
249 !device_can_wakeup(&hw->pdev->dev))
250 return -EOPNOTSUPP;
252 skge->wol = wol->wolopts;
254 device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
256 return 0;
259 /* Determine supported/advertised modes based on hardware.
260 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
262 static u32 skge_supported_modes(const struct skge_hw *hw)
264 u32 supported;
266 if (hw->copper) {
267 supported = (SUPPORTED_10baseT_Half |
268 SUPPORTED_10baseT_Full |
269 SUPPORTED_100baseT_Half |
270 SUPPORTED_100baseT_Full |
271 SUPPORTED_1000baseT_Half |
272 SUPPORTED_1000baseT_Full |
273 SUPPORTED_Autoneg |
274 SUPPORTED_TP);
276 if (is_genesis(hw))
277 supported &= ~(SUPPORTED_10baseT_Half |
278 SUPPORTED_10baseT_Full |
279 SUPPORTED_100baseT_Half |
280 SUPPORTED_100baseT_Full);
282 else if (hw->chip_id == CHIP_ID_YUKON)
283 supported &= ~SUPPORTED_1000baseT_Half;
284 } else
285 supported = (SUPPORTED_1000baseT_Full |
286 SUPPORTED_1000baseT_Half |
287 SUPPORTED_FIBRE |
288 SUPPORTED_Autoneg);
290 return supported;
293 static int skge_get_link_ksettings(struct net_device *dev,
294 struct ethtool_link_ksettings *cmd)
296 struct skge_port *skge = netdev_priv(dev);
297 struct skge_hw *hw = skge->hw;
298 u32 supported, advertising;
300 supported = skge_supported_modes(hw);
302 if (hw->copper) {
303 cmd->base.port = PORT_TP;
304 cmd->base.phy_address = hw->phy_addr;
305 } else
306 cmd->base.port = PORT_FIBRE;
308 advertising = skge->advertising;
309 cmd->base.autoneg = skge->autoneg;
310 cmd->base.speed = skge->speed;
311 cmd->base.duplex = skge->duplex;
313 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
314 supported);
315 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
316 advertising);
318 return 0;
321 static int skge_set_link_ksettings(struct net_device *dev,
322 const struct ethtool_link_ksettings *cmd)
324 struct skge_port *skge = netdev_priv(dev);
325 const struct skge_hw *hw = skge->hw;
326 u32 supported = skge_supported_modes(hw);
327 int err = 0;
328 u32 advertising;
330 ethtool_convert_link_mode_to_legacy_u32(&advertising,
331 cmd->link_modes.advertising);
333 if (cmd->base.autoneg == AUTONEG_ENABLE) {
334 advertising = supported;
335 skge->duplex = -1;
336 skge->speed = -1;
337 } else {
338 u32 setting;
339 u32 speed = cmd->base.speed;
341 switch (speed) {
342 case SPEED_1000:
343 if (cmd->base.duplex == DUPLEX_FULL)
344 setting = SUPPORTED_1000baseT_Full;
345 else if (cmd->base.duplex == DUPLEX_HALF)
346 setting = SUPPORTED_1000baseT_Half;
347 else
348 return -EINVAL;
349 break;
350 case SPEED_100:
351 if (cmd->base.duplex == DUPLEX_FULL)
352 setting = SUPPORTED_100baseT_Full;
353 else if (cmd->base.duplex == DUPLEX_HALF)
354 setting = SUPPORTED_100baseT_Half;
355 else
356 return -EINVAL;
357 break;
359 case SPEED_10:
360 if (cmd->base.duplex == DUPLEX_FULL)
361 setting = SUPPORTED_10baseT_Full;
362 else if (cmd->base.duplex == DUPLEX_HALF)
363 setting = SUPPORTED_10baseT_Half;
364 else
365 return -EINVAL;
366 break;
367 default:
368 return -EINVAL;
371 if ((setting & supported) == 0)
372 return -EINVAL;
374 skge->speed = speed;
375 skge->duplex = cmd->base.duplex;
378 skge->autoneg = cmd->base.autoneg;
379 skge->advertising = advertising;
381 if (netif_running(dev)) {
382 skge_down(dev);
383 err = skge_up(dev);
384 if (err) {
385 dev_close(dev);
386 return err;
390 return 0;
393 static void skge_get_drvinfo(struct net_device *dev,
394 struct ethtool_drvinfo *info)
396 struct skge_port *skge = netdev_priv(dev);
398 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
399 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
400 strlcpy(info->bus_info, pci_name(skge->hw->pdev),
401 sizeof(info->bus_info));
404 static const struct skge_stat {
405 char name[ETH_GSTRING_LEN];
406 u16 xmac_offset;
407 u16 gma_offset;
408 } skge_stats[] = {
409 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
410 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
412 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
413 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
414 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
415 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
416 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
417 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
418 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
419 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
421 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
422 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
423 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
424 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
425 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
426 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
428 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
429 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
430 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
431 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
432 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
435 static int skge_get_sset_count(struct net_device *dev, int sset)
437 switch (sset) {
438 case ETH_SS_STATS:
439 return ARRAY_SIZE(skge_stats);
440 default:
441 return -EOPNOTSUPP;
445 static void skge_get_ethtool_stats(struct net_device *dev,
446 struct ethtool_stats *stats, u64 *data)
448 struct skge_port *skge = netdev_priv(dev);
450 if (is_genesis(skge->hw))
451 genesis_get_stats(skge, data);
452 else
453 yukon_get_stats(skge, data);
456 /* Use hardware MIB variables for critical path statistics and
457 * transmit feedback not reported at interrupt.
458 * Other errors are accounted for in interrupt handler.
460 static struct net_device_stats *skge_get_stats(struct net_device *dev)
462 struct skge_port *skge = netdev_priv(dev);
463 u64 data[ARRAY_SIZE(skge_stats)];
465 if (is_genesis(skge->hw))
466 genesis_get_stats(skge, data);
467 else
468 yukon_get_stats(skge, data);
470 dev->stats.tx_bytes = data[0];
471 dev->stats.rx_bytes = data[1];
472 dev->stats.tx_packets = data[2] + data[4] + data[6];
473 dev->stats.rx_packets = data[3] + data[5] + data[7];
474 dev->stats.multicast = data[3] + data[5];
475 dev->stats.collisions = data[10];
476 dev->stats.tx_aborted_errors = data[12];
478 return &dev->stats;
481 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
483 int i;
485 switch (stringset) {
486 case ETH_SS_STATS:
487 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
488 memcpy(data + i * ETH_GSTRING_LEN,
489 skge_stats[i].name, ETH_GSTRING_LEN);
490 break;
494 static void skge_get_ring_param(struct net_device *dev,
495 struct ethtool_ringparam *p)
497 struct skge_port *skge = netdev_priv(dev);
499 p->rx_max_pending = MAX_RX_RING_SIZE;
500 p->tx_max_pending = MAX_TX_RING_SIZE;
502 p->rx_pending = skge->rx_ring.count;
503 p->tx_pending = skge->tx_ring.count;
506 static int skge_set_ring_param(struct net_device *dev,
507 struct ethtool_ringparam *p)
509 struct skge_port *skge = netdev_priv(dev);
510 int err = 0;
512 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
513 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
514 return -EINVAL;
516 skge->rx_ring.count = p->rx_pending;
517 skge->tx_ring.count = p->tx_pending;
519 if (netif_running(dev)) {
520 skge_down(dev);
521 err = skge_up(dev);
522 if (err)
523 dev_close(dev);
526 return err;
529 static u32 skge_get_msglevel(struct net_device *netdev)
531 struct skge_port *skge = netdev_priv(netdev);
532 return skge->msg_enable;
535 static void skge_set_msglevel(struct net_device *netdev, u32 value)
537 struct skge_port *skge = netdev_priv(netdev);
538 skge->msg_enable = value;
541 static int skge_nway_reset(struct net_device *dev)
543 struct skge_port *skge = netdev_priv(dev);
545 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
546 return -EINVAL;
548 skge_phy_reset(skge);
549 return 0;
552 static void skge_get_pauseparam(struct net_device *dev,
553 struct ethtool_pauseparam *ecmd)
555 struct skge_port *skge = netdev_priv(dev);
557 ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
558 (skge->flow_control == FLOW_MODE_SYM_OR_REM));
559 ecmd->tx_pause = (ecmd->rx_pause ||
560 (skge->flow_control == FLOW_MODE_LOC_SEND));
562 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
565 static int skge_set_pauseparam(struct net_device *dev,
566 struct ethtool_pauseparam *ecmd)
568 struct skge_port *skge = netdev_priv(dev);
569 struct ethtool_pauseparam old;
570 int err = 0;
572 skge_get_pauseparam(dev, &old);
574 if (ecmd->autoneg != old.autoneg)
575 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
576 else {
577 if (ecmd->rx_pause && ecmd->tx_pause)
578 skge->flow_control = FLOW_MODE_SYMMETRIC;
579 else if (ecmd->rx_pause && !ecmd->tx_pause)
580 skge->flow_control = FLOW_MODE_SYM_OR_REM;
581 else if (!ecmd->rx_pause && ecmd->tx_pause)
582 skge->flow_control = FLOW_MODE_LOC_SEND;
583 else
584 skge->flow_control = FLOW_MODE_NONE;
587 if (netif_running(dev)) {
588 skge_down(dev);
589 err = skge_up(dev);
590 if (err) {
591 dev_close(dev);
592 return err;
596 return 0;
599 /* Chip internal frequency for clock calculations */
600 static inline u32 hwkhz(const struct skge_hw *hw)
602 return is_genesis(hw) ? 53125 : 78125;
605 /* Chip HZ to microseconds */
606 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
608 return (ticks * 1000) / hwkhz(hw);
611 /* Microseconds to chip HZ */
612 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
614 return hwkhz(hw) * usec / 1000;
617 static int skge_get_coalesce(struct net_device *dev,
618 struct ethtool_coalesce *ecmd)
620 struct skge_port *skge = netdev_priv(dev);
621 struct skge_hw *hw = skge->hw;
622 int port = skge->port;
624 ecmd->rx_coalesce_usecs = 0;
625 ecmd->tx_coalesce_usecs = 0;
627 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
628 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
629 u32 msk = skge_read32(hw, B2_IRQM_MSK);
631 if (msk & rxirqmask[port])
632 ecmd->rx_coalesce_usecs = delay;
633 if (msk & txirqmask[port])
634 ecmd->tx_coalesce_usecs = delay;
637 return 0;
640 /* Note: interrupt timer is per board, but can turn on/off per port */
641 static int skge_set_coalesce(struct net_device *dev,
642 struct ethtool_coalesce *ecmd)
644 struct skge_port *skge = netdev_priv(dev);
645 struct skge_hw *hw = skge->hw;
646 int port = skge->port;
647 u32 msk = skge_read32(hw, B2_IRQM_MSK);
648 u32 delay = 25;
650 if (ecmd->rx_coalesce_usecs == 0)
651 msk &= ~rxirqmask[port];
652 else if (ecmd->rx_coalesce_usecs < 25 ||
653 ecmd->rx_coalesce_usecs > 33333)
654 return -EINVAL;
655 else {
656 msk |= rxirqmask[port];
657 delay = ecmd->rx_coalesce_usecs;
660 if (ecmd->tx_coalesce_usecs == 0)
661 msk &= ~txirqmask[port];
662 else if (ecmd->tx_coalesce_usecs < 25 ||
663 ecmd->tx_coalesce_usecs > 33333)
664 return -EINVAL;
665 else {
666 msk |= txirqmask[port];
667 delay = min(delay, ecmd->rx_coalesce_usecs);
670 skge_write32(hw, B2_IRQM_MSK, msk);
671 if (msk == 0)
672 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
673 else {
674 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
675 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
677 return 0;
680 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
681 static void skge_led(struct skge_port *skge, enum led_mode mode)
683 struct skge_hw *hw = skge->hw;
684 int port = skge->port;
686 spin_lock_bh(&hw->phy_lock);
687 if (is_genesis(hw)) {
688 switch (mode) {
689 case LED_MODE_OFF:
690 if (hw->phy_type == SK_PHY_BCOM)
691 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
692 else {
693 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
694 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
696 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
697 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
698 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
699 break;
701 case LED_MODE_ON:
702 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
703 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
705 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
706 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
708 break;
710 case LED_MODE_TST:
711 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
712 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
713 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
715 if (hw->phy_type == SK_PHY_BCOM)
716 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
717 else {
718 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
719 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
720 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
724 } else {
725 switch (mode) {
726 case LED_MODE_OFF:
727 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
728 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
729 PHY_M_LED_MO_DUP(MO_LED_OFF) |
730 PHY_M_LED_MO_10(MO_LED_OFF) |
731 PHY_M_LED_MO_100(MO_LED_OFF) |
732 PHY_M_LED_MO_1000(MO_LED_OFF) |
733 PHY_M_LED_MO_RX(MO_LED_OFF));
734 break;
735 case LED_MODE_ON:
736 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
737 PHY_M_LED_PULS_DUR(PULS_170MS) |
738 PHY_M_LED_BLINK_RT(BLINK_84MS) |
739 PHY_M_LEDC_TX_CTRL |
740 PHY_M_LEDC_DP_CTRL);
742 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
743 PHY_M_LED_MO_RX(MO_LED_OFF) |
744 (skge->speed == SPEED_100 ?
745 PHY_M_LED_MO_100(MO_LED_ON) : 0));
746 break;
747 case LED_MODE_TST:
748 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
749 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
750 PHY_M_LED_MO_DUP(MO_LED_ON) |
751 PHY_M_LED_MO_10(MO_LED_ON) |
752 PHY_M_LED_MO_100(MO_LED_ON) |
753 PHY_M_LED_MO_1000(MO_LED_ON) |
754 PHY_M_LED_MO_RX(MO_LED_ON));
757 spin_unlock_bh(&hw->phy_lock);
760 /* blink LED's for finding board */
761 static int skge_set_phys_id(struct net_device *dev,
762 enum ethtool_phys_id_state state)
764 struct skge_port *skge = netdev_priv(dev);
766 switch (state) {
767 case ETHTOOL_ID_ACTIVE:
768 return 2; /* cycle on/off twice per second */
770 case ETHTOOL_ID_ON:
771 skge_led(skge, LED_MODE_TST);
772 break;
774 case ETHTOOL_ID_OFF:
775 skge_led(skge, LED_MODE_OFF);
776 break;
778 case ETHTOOL_ID_INACTIVE:
779 /* back to regular LED state */
780 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
783 return 0;
786 static int skge_get_eeprom_len(struct net_device *dev)
788 struct skge_port *skge = netdev_priv(dev);
789 u32 reg2;
791 pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
792 return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
795 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
797 u32 val;
799 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
801 do {
802 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
803 } while (!(offset & PCI_VPD_ADDR_F));
805 pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
806 return val;
809 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
811 pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
812 pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
813 offset | PCI_VPD_ADDR_F);
815 do {
816 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
817 } while (offset & PCI_VPD_ADDR_F);
820 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
821 u8 *data)
823 struct skge_port *skge = netdev_priv(dev);
824 struct pci_dev *pdev = skge->hw->pdev;
825 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
826 int length = eeprom->len;
827 u16 offset = eeprom->offset;
829 if (!cap)
830 return -EINVAL;
832 eeprom->magic = SKGE_EEPROM_MAGIC;
834 while (length > 0) {
835 u32 val = skge_vpd_read(pdev, cap, offset);
836 int n = min_t(int, length, sizeof(val));
838 memcpy(data, &val, n);
839 length -= n;
840 data += n;
841 offset += n;
843 return 0;
846 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
847 u8 *data)
849 struct skge_port *skge = netdev_priv(dev);
850 struct pci_dev *pdev = skge->hw->pdev;
851 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
852 int length = eeprom->len;
853 u16 offset = eeprom->offset;
855 if (!cap)
856 return -EINVAL;
858 if (eeprom->magic != SKGE_EEPROM_MAGIC)
859 return -EINVAL;
861 while (length > 0) {
862 u32 val;
863 int n = min_t(int, length, sizeof(val));
865 if (n < sizeof(val))
866 val = skge_vpd_read(pdev, cap, offset);
867 memcpy(&val, data, n);
869 skge_vpd_write(pdev, cap, offset, val);
871 length -= n;
872 data += n;
873 offset += n;
875 return 0;
878 static const struct ethtool_ops skge_ethtool_ops = {
879 .supported_coalesce_params = ETHTOOL_COALESCE_USECS,
880 .get_drvinfo = skge_get_drvinfo,
881 .get_regs_len = skge_get_regs_len,
882 .get_regs = skge_get_regs,
883 .get_wol = skge_get_wol,
884 .set_wol = skge_set_wol,
885 .get_msglevel = skge_get_msglevel,
886 .set_msglevel = skge_set_msglevel,
887 .nway_reset = skge_nway_reset,
888 .get_link = ethtool_op_get_link,
889 .get_eeprom_len = skge_get_eeprom_len,
890 .get_eeprom = skge_get_eeprom,
891 .set_eeprom = skge_set_eeprom,
892 .get_ringparam = skge_get_ring_param,
893 .set_ringparam = skge_set_ring_param,
894 .get_pauseparam = skge_get_pauseparam,
895 .set_pauseparam = skge_set_pauseparam,
896 .get_coalesce = skge_get_coalesce,
897 .set_coalesce = skge_set_coalesce,
898 .get_strings = skge_get_strings,
899 .set_phys_id = skge_set_phys_id,
900 .get_sset_count = skge_get_sset_count,
901 .get_ethtool_stats = skge_get_ethtool_stats,
902 .get_link_ksettings = skge_get_link_ksettings,
903 .set_link_ksettings = skge_set_link_ksettings,
907 * Allocate ring elements and chain them together
908 * One-to-one association of board descriptors with ring elements
910 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
912 struct skge_tx_desc *d;
913 struct skge_element *e;
914 int i;
916 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
917 if (!ring->start)
918 return -ENOMEM;
920 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
921 e->desc = d;
922 if (i == ring->count - 1) {
923 e->next = ring->start;
924 d->next_offset = base;
925 } else {
926 e->next = e + 1;
927 d->next_offset = base + (i+1) * sizeof(*d);
930 ring->to_use = ring->to_clean = ring->start;
932 return 0;
935 /* Allocate and setup a new buffer for receiving */
936 static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
937 struct sk_buff *skb, unsigned int bufsize)
939 struct skge_rx_desc *rd = e->desc;
940 dma_addr_t map;
942 map = dma_map_single(&skge->hw->pdev->dev, skb->data, bufsize,
943 DMA_FROM_DEVICE);
945 if (dma_mapping_error(&skge->hw->pdev->dev, map))
946 return -1;
948 rd->dma_lo = lower_32_bits(map);
949 rd->dma_hi = upper_32_bits(map);
950 e->skb = skb;
951 rd->csum1_start = ETH_HLEN;
952 rd->csum2_start = ETH_HLEN;
953 rd->csum1 = 0;
954 rd->csum2 = 0;
956 wmb();
958 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
959 dma_unmap_addr_set(e, mapaddr, map);
960 dma_unmap_len_set(e, maplen, bufsize);
961 return 0;
964 /* Resume receiving using existing skb,
965 * Note: DMA address is not changed by chip.
966 * MTU not changed while receiver active.
968 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
970 struct skge_rx_desc *rd = e->desc;
972 rd->csum2 = 0;
973 rd->csum2_start = ETH_HLEN;
975 wmb();
977 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
981 /* Free all buffers in receive ring, assumes receiver stopped */
982 static void skge_rx_clean(struct skge_port *skge)
984 struct skge_hw *hw = skge->hw;
985 struct skge_ring *ring = &skge->rx_ring;
986 struct skge_element *e;
988 e = ring->start;
989 do {
990 struct skge_rx_desc *rd = e->desc;
991 rd->control = 0;
992 if (e->skb) {
993 dma_unmap_single(&hw->pdev->dev,
994 dma_unmap_addr(e, mapaddr),
995 dma_unmap_len(e, maplen),
996 DMA_FROM_DEVICE);
997 dev_kfree_skb(e->skb);
998 e->skb = NULL;
1000 } while ((e = e->next) != ring->start);
1004 /* Allocate buffers for receive ring
1005 * For receive: to_clean is next received frame.
1007 static int skge_rx_fill(struct net_device *dev)
1009 struct skge_port *skge = netdev_priv(dev);
1010 struct skge_ring *ring = &skge->rx_ring;
1011 struct skge_element *e;
1013 e = ring->start;
1014 do {
1015 struct sk_buff *skb;
1017 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1018 GFP_KERNEL);
1019 if (!skb)
1020 return -ENOMEM;
1022 skb_reserve(skb, NET_IP_ALIGN);
1023 if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1024 dev_kfree_skb(skb);
1025 return -EIO;
1027 } while ((e = e->next) != ring->start);
1029 ring->to_clean = ring->start;
1030 return 0;
1033 static const char *skge_pause(enum pause_status status)
1035 switch (status) {
1036 case FLOW_STAT_NONE:
1037 return "none";
1038 case FLOW_STAT_REM_SEND:
1039 return "rx only";
1040 case FLOW_STAT_LOC_SEND:
1041 return "tx_only";
1042 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
1043 return "both";
1044 default:
1045 return "indeterminated";
1050 static void skge_link_up(struct skge_port *skge)
1052 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1053 LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
1055 netif_carrier_on(skge->netdev);
1056 netif_wake_queue(skge->netdev);
1058 netif_info(skge, link, skge->netdev,
1059 "Link is up at %d Mbps, %s duplex, flow control %s\n",
1060 skge->speed,
1061 skge->duplex == DUPLEX_FULL ? "full" : "half",
1062 skge_pause(skge->flow_status));
1065 static void skge_link_down(struct skge_port *skge)
1067 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
1068 netif_carrier_off(skge->netdev);
1069 netif_stop_queue(skge->netdev);
1071 netif_info(skge, link, skge->netdev, "Link is down\n");
1074 static void xm_link_down(struct skge_hw *hw, int port)
1076 struct net_device *dev = hw->dev[port];
1077 struct skge_port *skge = netdev_priv(dev);
1079 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1081 if (netif_carrier_ok(dev))
1082 skge_link_down(skge);
1085 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1087 int i;
1089 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1090 *val = xm_read16(hw, port, XM_PHY_DATA);
1092 if (hw->phy_type == SK_PHY_XMAC)
1093 goto ready;
1095 for (i = 0; i < PHY_RETRIES; i++) {
1096 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1097 goto ready;
1098 udelay(1);
1101 return -ETIMEDOUT;
1102 ready:
1103 *val = xm_read16(hw, port, XM_PHY_DATA);
1105 return 0;
1108 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1110 u16 v = 0;
1111 if (__xm_phy_read(hw, port, reg, &v))
1112 pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1113 return v;
1116 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1118 int i;
1120 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1121 for (i = 0; i < PHY_RETRIES; i++) {
1122 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1123 goto ready;
1124 udelay(1);
1126 return -EIO;
1128 ready:
1129 xm_write16(hw, port, XM_PHY_DATA, val);
1130 for (i = 0; i < PHY_RETRIES; i++) {
1131 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1132 return 0;
1133 udelay(1);
1135 return -ETIMEDOUT;
1138 static void genesis_init(struct skge_hw *hw)
1140 /* set blink source counter */
1141 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1142 skge_write8(hw, B2_BSC_CTRL, BSC_START);
1144 /* configure mac arbiter */
1145 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1147 /* configure mac arbiter timeout values */
1148 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1149 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1150 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1151 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1153 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1154 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1155 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1156 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1158 /* configure packet arbiter timeout */
1159 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1160 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1161 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1162 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1163 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1166 static void genesis_reset(struct skge_hw *hw, int port)
1168 static const u8 zero[8] = { 0 };
1169 u32 reg;
1171 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1173 /* reset the statistics module */
1174 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1175 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1176 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1177 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1178 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1180 /* disable Broadcom PHY IRQ */
1181 if (hw->phy_type == SK_PHY_BCOM)
1182 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1184 xm_outhash(hw, port, XM_HSM, zero);
1186 /* Flush TX and RX fifo */
1187 reg = xm_read32(hw, port, XM_MODE);
1188 xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1189 xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1192 /* Convert mode to MII values */
1193 static const u16 phy_pause_map[] = {
1194 [FLOW_MODE_NONE] = 0,
1195 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
1196 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1197 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1200 /* special defines for FIBER (88E1011S only) */
1201 static const u16 fiber_pause_map[] = {
1202 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
1203 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
1204 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
1205 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
1209 /* Check status of Broadcom phy link */
1210 static void bcom_check_link(struct skge_hw *hw, int port)
1212 struct net_device *dev = hw->dev[port];
1213 struct skge_port *skge = netdev_priv(dev);
1214 u16 status;
1216 /* read twice because of latch */
1217 xm_phy_read(hw, port, PHY_BCOM_STAT);
1218 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1220 if ((status & PHY_ST_LSYNC) == 0) {
1221 xm_link_down(hw, port);
1222 return;
1225 if (skge->autoneg == AUTONEG_ENABLE) {
1226 u16 lpa, aux;
1228 if (!(status & PHY_ST_AN_OVER))
1229 return;
1231 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1232 if (lpa & PHY_B_AN_RF) {
1233 netdev_notice(dev, "remote fault\n");
1234 return;
1237 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1239 /* Check Duplex mismatch */
1240 switch (aux & PHY_B_AS_AN_RES_MSK) {
1241 case PHY_B_RES_1000FD:
1242 skge->duplex = DUPLEX_FULL;
1243 break;
1244 case PHY_B_RES_1000HD:
1245 skge->duplex = DUPLEX_HALF;
1246 break;
1247 default:
1248 netdev_notice(dev, "duplex mismatch\n");
1249 return;
1252 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1253 switch (aux & PHY_B_AS_PAUSE_MSK) {
1254 case PHY_B_AS_PAUSE_MSK:
1255 skge->flow_status = FLOW_STAT_SYMMETRIC;
1256 break;
1257 case PHY_B_AS_PRR:
1258 skge->flow_status = FLOW_STAT_REM_SEND;
1259 break;
1260 case PHY_B_AS_PRT:
1261 skge->flow_status = FLOW_STAT_LOC_SEND;
1262 break;
1263 default:
1264 skge->flow_status = FLOW_STAT_NONE;
1266 skge->speed = SPEED_1000;
1269 if (!netif_carrier_ok(dev))
1270 genesis_link_up(skge);
1273 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1274 * Phy on for 100 or 10Mbit operation
1276 static void bcom_phy_init(struct skge_port *skge)
1278 struct skge_hw *hw = skge->hw;
1279 int port = skge->port;
1280 int i;
1281 u16 id1, r, ext, ctl;
1283 /* magic workaround patterns for Broadcom */
1284 static const struct {
1285 u16 reg;
1286 u16 val;
1287 } A1hack[] = {
1288 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1289 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1290 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1291 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1292 }, C0hack[] = {
1293 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1294 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1297 /* read Id from external PHY (all have the same address) */
1298 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1300 /* Optimize MDIO transfer by suppressing preamble. */
1301 r = xm_read16(hw, port, XM_MMU_CMD);
1302 r |= XM_MMU_NO_PRE;
1303 xm_write16(hw, port, XM_MMU_CMD, r);
1305 switch (id1) {
1306 case PHY_BCOM_ID1_C0:
1308 * Workaround BCOM Errata for the C0 type.
1309 * Write magic patterns to reserved registers.
1311 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1312 xm_phy_write(hw, port,
1313 C0hack[i].reg, C0hack[i].val);
1315 break;
1316 case PHY_BCOM_ID1_A1:
1318 * Workaround BCOM Errata for the A1 type.
1319 * Write magic patterns to reserved registers.
1321 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1322 xm_phy_write(hw, port,
1323 A1hack[i].reg, A1hack[i].val);
1324 break;
1328 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1329 * Disable Power Management after reset.
1331 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1332 r |= PHY_B_AC_DIS_PM;
1333 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1335 /* Dummy read */
1336 xm_read16(hw, port, XM_ISRC);
1338 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1339 ctl = PHY_CT_SP1000; /* always 1000mbit */
1341 if (skge->autoneg == AUTONEG_ENABLE) {
1343 * Workaround BCOM Errata #1 for the C5 type.
1344 * 1000Base-T Link Acquisition Failure in Slave Mode
1345 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1347 u16 adv = PHY_B_1000C_RD;
1348 if (skge->advertising & ADVERTISED_1000baseT_Half)
1349 adv |= PHY_B_1000C_AHD;
1350 if (skge->advertising & ADVERTISED_1000baseT_Full)
1351 adv |= PHY_B_1000C_AFD;
1352 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1354 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1355 } else {
1356 if (skge->duplex == DUPLEX_FULL)
1357 ctl |= PHY_CT_DUP_MD;
1358 /* Force to slave */
1359 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1362 /* Set autonegotiation pause parameters */
1363 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1364 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1366 /* Handle Jumbo frames */
1367 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1368 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1369 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1371 ext |= PHY_B_PEC_HIGH_LA;
1375 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1376 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1378 /* Use link status change interrupt */
1379 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1382 static void xm_phy_init(struct skge_port *skge)
1384 struct skge_hw *hw = skge->hw;
1385 int port = skge->port;
1386 u16 ctrl = 0;
1388 if (skge->autoneg == AUTONEG_ENABLE) {
1389 if (skge->advertising & ADVERTISED_1000baseT_Half)
1390 ctrl |= PHY_X_AN_HD;
1391 if (skge->advertising & ADVERTISED_1000baseT_Full)
1392 ctrl |= PHY_X_AN_FD;
1394 ctrl |= fiber_pause_map[skge->flow_control];
1396 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1398 /* Restart Auto-negotiation */
1399 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1400 } else {
1401 /* Set DuplexMode in Config register */
1402 if (skge->duplex == DUPLEX_FULL)
1403 ctrl |= PHY_CT_DUP_MD;
1405 * Do NOT enable Auto-negotiation here. This would hold
1406 * the link down because no IDLEs are transmitted
1410 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1412 /* Poll PHY for status changes */
1413 mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1416 static int xm_check_link(struct net_device *dev)
1418 struct skge_port *skge = netdev_priv(dev);
1419 struct skge_hw *hw = skge->hw;
1420 int port = skge->port;
1421 u16 status;
1423 /* read twice because of latch */
1424 xm_phy_read(hw, port, PHY_XMAC_STAT);
1425 status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1427 if ((status & PHY_ST_LSYNC) == 0) {
1428 xm_link_down(hw, port);
1429 return 0;
1432 if (skge->autoneg == AUTONEG_ENABLE) {
1433 u16 lpa, res;
1435 if (!(status & PHY_ST_AN_OVER))
1436 return 0;
1438 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1439 if (lpa & PHY_B_AN_RF) {
1440 netdev_notice(dev, "remote fault\n");
1441 return 0;
1444 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1446 /* Check Duplex mismatch */
1447 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1448 case PHY_X_RS_FD:
1449 skge->duplex = DUPLEX_FULL;
1450 break;
1451 case PHY_X_RS_HD:
1452 skge->duplex = DUPLEX_HALF;
1453 break;
1454 default:
1455 netdev_notice(dev, "duplex mismatch\n");
1456 return 0;
1459 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1460 if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1461 skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1462 (lpa & PHY_X_P_SYM_MD))
1463 skge->flow_status = FLOW_STAT_SYMMETRIC;
1464 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1465 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1466 /* Enable PAUSE receive, disable PAUSE transmit */
1467 skge->flow_status = FLOW_STAT_REM_SEND;
1468 else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1469 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1470 /* Disable PAUSE receive, enable PAUSE transmit */
1471 skge->flow_status = FLOW_STAT_LOC_SEND;
1472 else
1473 skge->flow_status = FLOW_STAT_NONE;
1475 skge->speed = SPEED_1000;
1478 if (!netif_carrier_ok(dev))
1479 genesis_link_up(skge);
1480 return 1;
1483 /* Poll to check for link coming up.
1485 * Since internal PHY is wired to a level triggered pin, can't
1486 * get an interrupt when carrier is detected, need to poll for
1487 * link coming up.
1489 static void xm_link_timer(struct timer_list *t)
1491 struct skge_port *skge = from_timer(skge, t, link_timer);
1492 struct net_device *dev = skge->netdev;
1493 struct skge_hw *hw = skge->hw;
1494 int port = skge->port;
1495 int i;
1496 unsigned long flags;
1498 if (!netif_running(dev))
1499 return;
1501 spin_lock_irqsave(&hw->phy_lock, flags);
1504 * Verify that the link by checking GPIO register three times.
1505 * This pin has the signal from the link_sync pin connected to it.
1507 for (i = 0; i < 3; i++) {
1508 if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1509 goto link_down;
1512 /* Re-enable interrupt to detect link down */
1513 if (xm_check_link(dev)) {
1514 u16 msk = xm_read16(hw, port, XM_IMSK);
1515 msk &= ~XM_IS_INP_ASS;
1516 xm_write16(hw, port, XM_IMSK, msk);
1517 xm_read16(hw, port, XM_ISRC);
1518 } else {
1519 link_down:
1520 mod_timer(&skge->link_timer,
1521 round_jiffies(jiffies + LINK_HZ));
1523 spin_unlock_irqrestore(&hw->phy_lock, flags);
1526 static void genesis_mac_init(struct skge_hw *hw, int port)
1528 struct net_device *dev = hw->dev[port];
1529 struct skge_port *skge = netdev_priv(dev);
1530 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1531 int i;
1532 u32 r;
1533 static const u8 zero[6] = { 0 };
1535 for (i = 0; i < 10; i++) {
1536 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1537 MFF_SET_MAC_RST);
1538 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1539 goto reset_ok;
1540 udelay(1);
1543 netdev_warn(dev, "genesis reset failed\n");
1545 reset_ok:
1546 /* Unreset the XMAC. */
1547 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1550 * Perform additional initialization for external PHYs,
1551 * namely for the 1000baseTX cards that use the XMAC's
1552 * GMII mode.
1554 if (hw->phy_type != SK_PHY_XMAC) {
1555 /* Take external Phy out of reset */
1556 r = skge_read32(hw, B2_GP_IO);
1557 if (port == 0)
1558 r |= GP_DIR_0|GP_IO_0;
1559 else
1560 r |= GP_DIR_2|GP_IO_2;
1562 skge_write32(hw, B2_GP_IO, r);
1564 /* Enable GMII interface */
1565 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1569 switch (hw->phy_type) {
1570 case SK_PHY_XMAC:
1571 xm_phy_init(skge);
1572 break;
1573 case SK_PHY_BCOM:
1574 bcom_phy_init(skge);
1575 bcom_check_link(hw, port);
1578 /* Set Station Address */
1579 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1581 /* We don't use match addresses so clear */
1582 for (i = 1; i < 16; i++)
1583 xm_outaddr(hw, port, XM_EXM(i), zero);
1585 /* Clear MIB counters */
1586 xm_write16(hw, port, XM_STAT_CMD,
1587 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1588 /* Clear two times according to Errata #3 */
1589 xm_write16(hw, port, XM_STAT_CMD,
1590 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1592 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1593 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1595 /* We don't need the FCS appended to the packet. */
1596 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1597 if (jumbo)
1598 r |= XM_RX_BIG_PK_OK;
1600 if (skge->duplex == DUPLEX_HALF) {
1602 * If in manual half duplex mode the other side might be in
1603 * full duplex mode, so ignore if a carrier extension is not seen
1604 * on frames received
1606 r |= XM_RX_DIS_CEXT;
1608 xm_write16(hw, port, XM_RX_CMD, r);
1610 /* We want short frames padded to 60 bytes. */
1611 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1613 /* Increase threshold for jumbo frames on dual port */
1614 if (hw->ports > 1 && jumbo)
1615 xm_write16(hw, port, XM_TX_THR, 1020);
1616 else
1617 xm_write16(hw, port, XM_TX_THR, 512);
1620 * Enable the reception of all error frames. This is is
1621 * a necessary evil due to the design of the XMAC. The
1622 * XMAC's receive FIFO is only 8K in size, however jumbo
1623 * frames can be up to 9000 bytes in length. When bad
1624 * frame filtering is enabled, the XMAC's RX FIFO operates
1625 * in 'store and forward' mode. For this to work, the
1626 * entire frame has to fit into the FIFO, but that means
1627 * that jumbo frames larger than 8192 bytes will be
1628 * truncated. Disabling all bad frame filtering causes
1629 * the RX FIFO to operate in streaming mode, in which
1630 * case the XMAC will start transferring frames out of the
1631 * RX FIFO as soon as the FIFO threshold is reached.
1633 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1637 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1638 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1639 * and 'Octets Rx OK Hi Cnt Ov'.
1641 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1644 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1645 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1646 * and 'Octets Tx OK Hi Cnt Ov'.
1648 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1650 /* Configure MAC arbiter */
1651 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1653 /* configure timeout values */
1654 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1655 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1656 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1657 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1659 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1660 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1661 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1662 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1664 /* Configure Rx MAC FIFO */
1665 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1666 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1667 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1669 /* Configure Tx MAC FIFO */
1670 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1671 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1672 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1674 if (jumbo) {
1675 /* Enable frame flushing if jumbo frames used */
1676 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1677 } else {
1678 /* enable timeout timers if normal frames */
1679 skge_write16(hw, B3_PA_CTRL,
1680 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1684 static void genesis_stop(struct skge_port *skge)
1686 struct skge_hw *hw = skge->hw;
1687 int port = skge->port;
1688 unsigned retries = 1000;
1689 u16 cmd;
1691 /* Disable Tx and Rx */
1692 cmd = xm_read16(hw, port, XM_MMU_CMD);
1693 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1694 xm_write16(hw, port, XM_MMU_CMD, cmd);
1696 genesis_reset(hw, port);
1698 /* Clear Tx packet arbiter timeout IRQ */
1699 skge_write16(hw, B3_PA_CTRL,
1700 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1702 /* Reset the MAC */
1703 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1704 do {
1705 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1706 if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1707 break;
1708 } while (--retries > 0);
1710 /* For external PHYs there must be special handling */
1711 if (hw->phy_type != SK_PHY_XMAC) {
1712 u32 reg = skge_read32(hw, B2_GP_IO);
1713 if (port == 0) {
1714 reg |= GP_DIR_0;
1715 reg &= ~GP_IO_0;
1716 } else {
1717 reg |= GP_DIR_2;
1718 reg &= ~GP_IO_2;
1720 skge_write32(hw, B2_GP_IO, reg);
1721 skge_read32(hw, B2_GP_IO);
1724 xm_write16(hw, port, XM_MMU_CMD,
1725 xm_read16(hw, port, XM_MMU_CMD)
1726 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1728 xm_read16(hw, port, XM_MMU_CMD);
1732 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1734 struct skge_hw *hw = skge->hw;
1735 int port = skge->port;
1736 int i;
1737 unsigned long timeout = jiffies + HZ;
1739 xm_write16(hw, port,
1740 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1742 /* wait for update to complete */
1743 while (xm_read16(hw, port, XM_STAT_CMD)
1744 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1745 if (time_after(jiffies, timeout))
1746 break;
1747 udelay(10);
1750 /* special case for 64 bit octet counter */
1751 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1752 | xm_read32(hw, port, XM_TXO_OK_LO);
1753 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1754 | xm_read32(hw, port, XM_RXO_OK_LO);
1756 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1757 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1760 static void genesis_mac_intr(struct skge_hw *hw, int port)
1762 struct net_device *dev = hw->dev[port];
1763 struct skge_port *skge = netdev_priv(dev);
1764 u16 status = xm_read16(hw, port, XM_ISRC);
1766 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1767 "mac interrupt status 0x%x\n", status);
1769 if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1770 xm_link_down(hw, port);
1771 mod_timer(&skge->link_timer, jiffies + 1);
1774 if (status & XM_IS_TXF_UR) {
1775 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1776 ++dev->stats.tx_fifo_errors;
1780 static void genesis_link_up(struct skge_port *skge)
1782 struct skge_hw *hw = skge->hw;
1783 int port = skge->port;
1784 u16 cmd, msk;
1785 u32 mode;
1787 cmd = xm_read16(hw, port, XM_MMU_CMD);
1790 * enabling pause frame reception is required for 1000BT
1791 * because the XMAC is not reset if the link is going down
1793 if (skge->flow_status == FLOW_STAT_NONE ||
1794 skge->flow_status == FLOW_STAT_LOC_SEND)
1795 /* Disable Pause Frame Reception */
1796 cmd |= XM_MMU_IGN_PF;
1797 else
1798 /* Enable Pause Frame Reception */
1799 cmd &= ~XM_MMU_IGN_PF;
1801 xm_write16(hw, port, XM_MMU_CMD, cmd);
1803 mode = xm_read32(hw, port, XM_MODE);
1804 if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1805 skge->flow_status == FLOW_STAT_LOC_SEND) {
1807 * Configure Pause Frame Generation
1808 * Use internal and external Pause Frame Generation.
1809 * Sending pause frames is edge triggered.
1810 * Send a Pause frame with the maximum pause time if
1811 * internal oder external FIFO full condition occurs.
1812 * Send a zero pause time frame to re-start transmission.
1814 /* XM_PAUSE_DA = '010000C28001' (default) */
1815 /* XM_MAC_PTIME = 0xffff (maximum) */
1816 /* remember this value is defined in big endian (!) */
1817 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1819 mode |= XM_PAUSE_MODE;
1820 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1821 } else {
1823 * disable pause frame generation is required for 1000BT
1824 * because the XMAC is not reset if the link is going down
1826 /* Disable Pause Mode in Mode Register */
1827 mode &= ~XM_PAUSE_MODE;
1829 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1832 xm_write32(hw, port, XM_MODE, mode);
1834 /* Turn on detection of Tx underrun */
1835 msk = xm_read16(hw, port, XM_IMSK);
1836 msk &= ~XM_IS_TXF_UR;
1837 xm_write16(hw, port, XM_IMSK, msk);
1839 xm_read16(hw, port, XM_ISRC);
1841 /* get MMU Command Reg. */
1842 cmd = xm_read16(hw, port, XM_MMU_CMD);
1843 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1844 cmd |= XM_MMU_GMII_FD;
1847 * Workaround BCOM Errata (#10523) for all BCom Phys
1848 * Enable Power Management after link up
1850 if (hw->phy_type == SK_PHY_BCOM) {
1851 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1852 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1853 & ~PHY_B_AC_DIS_PM);
1854 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1857 /* enable Rx/Tx */
1858 xm_write16(hw, port, XM_MMU_CMD,
1859 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1860 skge_link_up(skge);
1864 static inline void bcom_phy_intr(struct skge_port *skge)
1866 struct skge_hw *hw = skge->hw;
1867 int port = skge->port;
1868 u16 isrc;
1870 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1871 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1872 "phy interrupt status 0x%x\n", isrc);
1874 if (isrc & PHY_B_IS_PSE)
1875 pr_err("%s: uncorrectable pair swap error\n",
1876 hw->dev[port]->name);
1878 /* Workaround BCom Errata:
1879 * enable and disable loopback mode if "NO HCD" occurs.
1881 if (isrc & PHY_B_IS_NO_HDCL) {
1882 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1883 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1884 ctrl | PHY_CT_LOOP);
1885 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1886 ctrl & ~PHY_CT_LOOP);
1889 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1890 bcom_check_link(hw, port);
1894 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1896 int i;
1898 gma_write16(hw, port, GM_SMI_DATA, val);
1899 gma_write16(hw, port, GM_SMI_CTRL,
1900 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1901 for (i = 0; i < PHY_RETRIES; i++) {
1902 udelay(1);
1904 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1905 return 0;
1908 pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1909 return -EIO;
1912 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1914 int i;
1916 gma_write16(hw, port, GM_SMI_CTRL,
1917 GM_SMI_CT_PHY_AD(hw->phy_addr)
1918 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1920 for (i = 0; i < PHY_RETRIES; i++) {
1921 udelay(1);
1922 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1923 goto ready;
1926 return -ETIMEDOUT;
1927 ready:
1928 *val = gma_read16(hw, port, GM_SMI_DATA);
1929 return 0;
1932 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1934 u16 v = 0;
1935 if (__gm_phy_read(hw, port, reg, &v))
1936 pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1937 return v;
1940 /* Marvell Phy Initialization */
1941 static void yukon_init(struct skge_hw *hw, int port)
1943 struct skge_port *skge = netdev_priv(hw->dev[port]);
1944 u16 ctrl, ct1000, adv;
1946 if (skge->autoneg == AUTONEG_ENABLE) {
1947 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1949 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1950 PHY_M_EC_MAC_S_MSK);
1951 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1953 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1955 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1958 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1959 if (skge->autoneg == AUTONEG_DISABLE)
1960 ctrl &= ~PHY_CT_ANE;
1962 ctrl |= PHY_CT_RESET;
1963 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1965 ctrl = 0;
1966 ct1000 = 0;
1967 adv = PHY_AN_CSMA;
1969 if (skge->autoneg == AUTONEG_ENABLE) {
1970 if (hw->copper) {
1971 if (skge->advertising & ADVERTISED_1000baseT_Full)
1972 ct1000 |= PHY_M_1000C_AFD;
1973 if (skge->advertising & ADVERTISED_1000baseT_Half)
1974 ct1000 |= PHY_M_1000C_AHD;
1975 if (skge->advertising & ADVERTISED_100baseT_Full)
1976 adv |= PHY_M_AN_100_FD;
1977 if (skge->advertising & ADVERTISED_100baseT_Half)
1978 adv |= PHY_M_AN_100_HD;
1979 if (skge->advertising & ADVERTISED_10baseT_Full)
1980 adv |= PHY_M_AN_10_FD;
1981 if (skge->advertising & ADVERTISED_10baseT_Half)
1982 adv |= PHY_M_AN_10_HD;
1984 /* Set Flow-control capabilities */
1985 adv |= phy_pause_map[skge->flow_control];
1986 } else {
1987 if (skge->advertising & ADVERTISED_1000baseT_Full)
1988 adv |= PHY_M_AN_1000X_AFD;
1989 if (skge->advertising & ADVERTISED_1000baseT_Half)
1990 adv |= PHY_M_AN_1000X_AHD;
1992 adv |= fiber_pause_map[skge->flow_control];
1995 /* Restart Auto-negotiation */
1996 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1997 } else {
1998 /* forced speed/duplex settings */
1999 ct1000 = PHY_M_1000C_MSE;
2001 if (skge->duplex == DUPLEX_FULL)
2002 ctrl |= PHY_CT_DUP_MD;
2004 switch (skge->speed) {
2005 case SPEED_1000:
2006 ctrl |= PHY_CT_SP1000;
2007 break;
2008 case SPEED_100:
2009 ctrl |= PHY_CT_SP100;
2010 break;
2013 ctrl |= PHY_CT_RESET;
2016 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2018 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2019 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2021 /* Enable phy interrupt on autonegotiation complete (or link up) */
2022 if (skge->autoneg == AUTONEG_ENABLE)
2023 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2024 else
2025 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2028 static void yukon_reset(struct skge_hw *hw, int port)
2030 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2031 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
2032 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2033 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2034 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2036 gma_write16(hw, port, GM_RX_CTRL,
2037 gma_read16(hw, port, GM_RX_CTRL)
2038 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2041 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2042 static int is_yukon_lite_a0(struct skge_hw *hw)
2044 u32 reg;
2045 int ret;
2047 if (hw->chip_id != CHIP_ID_YUKON)
2048 return 0;
2050 reg = skge_read32(hw, B2_FAR);
2051 skge_write8(hw, B2_FAR + 3, 0xff);
2052 ret = (skge_read8(hw, B2_FAR + 3) != 0);
2053 skge_write32(hw, B2_FAR, reg);
2054 return ret;
2057 static void yukon_mac_init(struct skge_hw *hw, int port)
2059 struct skge_port *skge = netdev_priv(hw->dev[port]);
2060 int i;
2061 u32 reg;
2062 const u8 *addr = hw->dev[port]->dev_addr;
2064 /* WA code for COMA mode -- set PHY reset */
2065 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2066 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2067 reg = skge_read32(hw, B2_GP_IO);
2068 reg |= GP_DIR_9 | GP_IO_9;
2069 skge_write32(hw, B2_GP_IO, reg);
2072 /* hard reset */
2073 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2074 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2076 /* WA code for COMA mode -- clear PHY reset */
2077 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2078 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2079 reg = skge_read32(hw, B2_GP_IO);
2080 reg |= GP_DIR_9;
2081 reg &= ~GP_IO_9;
2082 skge_write32(hw, B2_GP_IO, reg);
2085 /* Set hardware config mode */
2086 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2087 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2088 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2090 /* Clear GMC reset */
2091 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2092 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2093 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2095 if (skge->autoneg == AUTONEG_DISABLE) {
2096 reg = GM_GPCR_AU_ALL_DIS;
2097 gma_write16(hw, port, GM_GP_CTRL,
2098 gma_read16(hw, port, GM_GP_CTRL) | reg);
2100 switch (skge->speed) {
2101 case SPEED_1000:
2102 reg &= ~GM_GPCR_SPEED_100;
2103 reg |= GM_GPCR_SPEED_1000;
2104 break;
2105 case SPEED_100:
2106 reg &= ~GM_GPCR_SPEED_1000;
2107 reg |= GM_GPCR_SPEED_100;
2108 break;
2109 case SPEED_10:
2110 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2111 break;
2114 if (skge->duplex == DUPLEX_FULL)
2115 reg |= GM_GPCR_DUP_FULL;
2116 } else
2117 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2119 switch (skge->flow_control) {
2120 case FLOW_MODE_NONE:
2121 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2122 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2123 break;
2124 case FLOW_MODE_LOC_SEND:
2125 /* disable Rx flow-control */
2126 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2127 break;
2128 case FLOW_MODE_SYMMETRIC:
2129 case FLOW_MODE_SYM_OR_REM:
2130 /* enable Tx & Rx flow-control */
2131 break;
2134 gma_write16(hw, port, GM_GP_CTRL, reg);
2135 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2137 yukon_init(hw, port);
2139 /* MIB clear */
2140 reg = gma_read16(hw, port, GM_PHY_ADDR);
2141 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2143 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2144 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2145 gma_write16(hw, port, GM_PHY_ADDR, reg);
2147 /* transmit control */
2148 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2150 /* receive control reg: unicast + multicast + no FCS */
2151 gma_write16(hw, port, GM_RX_CTRL,
2152 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2154 /* transmit flow control */
2155 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2157 /* transmit parameter */
2158 gma_write16(hw, port, GM_TX_PARAM,
2159 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2160 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2161 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2163 /* configure the Serial Mode Register */
2164 reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2165 | GM_SMOD_VLAN_ENA
2166 | IPG_DATA_VAL(IPG_DATA_DEF);
2168 if (hw->dev[port]->mtu > ETH_DATA_LEN)
2169 reg |= GM_SMOD_JUMBO_ENA;
2171 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2173 /* physical address: used for pause frames */
2174 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2175 /* virtual address for data */
2176 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2178 /* enable interrupt mask for counter overflows */
2179 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2180 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2181 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2183 /* Initialize Mac Fifo */
2185 /* Configure Rx MAC FIFO */
2186 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2187 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2189 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2190 if (is_yukon_lite_a0(hw))
2191 reg &= ~GMF_RX_F_FL_ON;
2193 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2194 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2196 * because Pause Packet Truncation in GMAC is not working
2197 * we have to increase the Flush Threshold to 64 bytes
2198 * in order to flush pause packets in Rx FIFO on Yukon-1
2200 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2202 /* Configure Tx MAC FIFO */
2203 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2204 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2207 /* Go into power down mode */
2208 static void yukon_suspend(struct skge_hw *hw, int port)
2210 u16 ctrl;
2212 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2213 ctrl |= PHY_M_PC_POL_R_DIS;
2214 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2216 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2217 ctrl |= PHY_CT_RESET;
2218 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2220 /* switch IEEE compatible power down mode on */
2221 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2222 ctrl |= PHY_CT_PDOWN;
2223 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2226 static void yukon_stop(struct skge_port *skge)
2228 struct skge_hw *hw = skge->hw;
2229 int port = skge->port;
2231 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2232 yukon_reset(hw, port);
2234 gma_write16(hw, port, GM_GP_CTRL,
2235 gma_read16(hw, port, GM_GP_CTRL)
2236 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2237 gma_read16(hw, port, GM_GP_CTRL);
2239 yukon_suspend(hw, port);
2241 /* set GPHY Control reset */
2242 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2243 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2246 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2248 struct skge_hw *hw = skge->hw;
2249 int port = skge->port;
2250 int i;
2252 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2253 | gma_read32(hw, port, GM_TXO_OK_LO);
2254 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2255 | gma_read32(hw, port, GM_RXO_OK_LO);
2257 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2258 data[i] = gma_read32(hw, port,
2259 skge_stats[i].gma_offset);
2262 static void yukon_mac_intr(struct skge_hw *hw, int port)
2264 struct net_device *dev = hw->dev[port];
2265 struct skge_port *skge = netdev_priv(dev);
2266 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2268 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2269 "mac interrupt status 0x%x\n", status);
2271 if (status & GM_IS_RX_FF_OR) {
2272 ++dev->stats.rx_fifo_errors;
2273 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2276 if (status & GM_IS_TX_FF_UR) {
2277 ++dev->stats.tx_fifo_errors;
2278 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2283 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2285 switch (aux & PHY_M_PS_SPEED_MSK) {
2286 case PHY_M_PS_SPEED_1000:
2287 return SPEED_1000;
2288 case PHY_M_PS_SPEED_100:
2289 return SPEED_100;
2290 default:
2291 return SPEED_10;
2295 static void yukon_link_up(struct skge_port *skge)
2297 struct skge_hw *hw = skge->hw;
2298 int port = skge->port;
2299 u16 reg;
2301 /* Enable Transmit FIFO Underrun */
2302 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2304 reg = gma_read16(hw, port, GM_GP_CTRL);
2305 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2306 reg |= GM_GPCR_DUP_FULL;
2308 /* enable Rx/Tx */
2309 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2310 gma_write16(hw, port, GM_GP_CTRL, reg);
2312 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2313 skge_link_up(skge);
2316 static void yukon_link_down(struct skge_port *skge)
2318 struct skge_hw *hw = skge->hw;
2319 int port = skge->port;
2320 u16 ctrl;
2322 ctrl = gma_read16(hw, port, GM_GP_CTRL);
2323 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2324 gma_write16(hw, port, GM_GP_CTRL, ctrl);
2326 if (skge->flow_status == FLOW_STAT_REM_SEND) {
2327 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2328 ctrl |= PHY_M_AN_ASP;
2329 /* restore Asymmetric Pause bit */
2330 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2333 skge_link_down(skge);
2335 yukon_init(hw, port);
2338 static void yukon_phy_intr(struct skge_port *skge)
2340 struct skge_hw *hw = skge->hw;
2341 int port = skge->port;
2342 const char *reason = NULL;
2343 u16 istatus, phystat;
2345 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2346 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2348 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2349 "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2351 if (istatus & PHY_M_IS_AN_COMPL) {
2352 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2353 & PHY_M_AN_RF) {
2354 reason = "remote fault";
2355 goto failed;
2358 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2359 reason = "master/slave fault";
2360 goto failed;
2363 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2364 reason = "speed/duplex";
2365 goto failed;
2368 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2369 ? DUPLEX_FULL : DUPLEX_HALF;
2370 skge->speed = yukon_speed(hw, phystat);
2372 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2373 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2374 case PHY_M_PS_PAUSE_MSK:
2375 skge->flow_status = FLOW_STAT_SYMMETRIC;
2376 break;
2377 case PHY_M_PS_RX_P_EN:
2378 skge->flow_status = FLOW_STAT_REM_SEND;
2379 break;
2380 case PHY_M_PS_TX_P_EN:
2381 skge->flow_status = FLOW_STAT_LOC_SEND;
2382 break;
2383 default:
2384 skge->flow_status = FLOW_STAT_NONE;
2387 if (skge->flow_status == FLOW_STAT_NONE ||
2388 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2389 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2390 else
2391 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2392 yukon_link_up(skge);
2393 return;
2396 if (istatus & PHY_M_IS_LSP_CHANGE)
2397 skge->speed = yukon_speed(hw, phystat);
2399 if (istatus & PHY_M_IS_DUP_CHANGE)
2400 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2401 if (istatus & PHY_M_IS_LST_CHANGE) {
2402 if (phystat & PHY_M_PS_LINK_UP)
2403 yukon_link_up(skge);
2404 else
2405 yukon_link_down(skge);
2407 return;
2408 failed:
2409 pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2411 /* XXX restart autonegotiation? */
2414 static void skge_phy_reset(struct skge_port *skge)
2416 struct skge_hw *hw = skge->hw;
2417 int port = skge->port;
2418 struct net_device *dev = hw->dev[port];
2420 netif_stop_queue(skge->netdev);
2421 netif_carrier_off(skge->netdev);
2423 spin_lock_bh(&hw->phy_lock);
2424 if (is_genesis(hw)) {
2425 genesis_reset(hw, port);
2426 genesis_mac_init(hw, port);
2427 } else {
2428 yukon_reset(hw, port);
2429 yukon_init(hw, port);
2431 spin_unlock_bh(&hw->phy_lock);
2433 skge_set_multicast(dev);
2436 /* Basic MII support */
2437 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2439 struct mii_ioctl_data *data = if_mii(ifr);
2440 struct skge_port *skge = netdev_priv(dev);
2441 struct skge_hw *hw = skge->hw;
2442 int err = -EOPNOTSUPP;
2444 if (!netif_running(dev))
2445 return -ENODEV; /* Phy still in reset */
2447 switch (cmd) {
2448 case SIOCGMIIPHY:
2449 data->phy_id = hw->phy_addr;
2451 fallthrough;
2452 case SIOCGMIIREG: {
2453 u16 val = 0;
2454 spin_lock_bh(&hw->phy_lock);
2456 if (is_genesis(hw))
2457 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2458 else
2459 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2460 spin_unlock_bh(&hw->phy_lock);
2461 data->val_out = val;
2462 break;
2465 case SIOCSMIIREG:
2466 spin_lock_bh(&hw->phy_lock);
2467 if (is_genesis(hw))
2468 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2469 data->val_in);
2470 else
2471 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2472 data->val_in);
2473 spin_unlock_bh(&hw->phy_lock);
2474 break;
2476 return err;
2479 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2481 u32 end;
2483 start /= 8;
2484 len /= 8;
2485 end = start + len - 1;
2487 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2488 skge_write32(hw, RB_ADDR(q, RB_START), start);
2489 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2490 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2491 skge_write32(hw, RB_ADDR(q, RB_END), end);
2493 if (q == Q_R1 || q == Q_R2) {
2494 /* Set thresholds on receive queue's */
2495 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2496 start + (2*len)/3);
2497 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2498 start + (len/3));
2499 } else {
2500 /* Enable store & forward on Tx queue's because
2501 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2503 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2506 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2509 /* Setup Bus Memory Interface */
2510 static void skge_qset(struct skge_port *skge, u16 q,
2511 const struct skge_element *e)
2513 struct skge_hw *hw = skge->hw;
2514 u32 watermark = 0x600;
2515 u64 base = skge->dma + (e->desc - skge->mem);
2517 /* optimization to reduce window on 32bit/33mhz */
2518 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2519 watermark /= 2;
2521 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2522 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2523 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2524 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2527 static int skge_up(struct net_device *dev)
2529 struct skge_port *skge = netdev_priv(dev);
2530 struct skge_hw *hw = skge->hw;
2531 int port = skge->port;
2532 u32 chunk, ram_addr;
2533 size_t rx_size, tx_size;
2534 int err;
2536 if (!is_valid_ether_addr(dev->dev_addr))
2537 return -EINVAL;
2539 netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2541 if (dev->mtu > RX_BUF_SIZE)
2542 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2543 else
2544 skge->rx_buf_size = RX_BUF_SIZE;
2547 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2548 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2549 skge->mem_size = tx_size + rx_size;
2550 skge->mem = dma_alloc_coherent(&hw->pdev->dev, skge->mem_size,
2551 &skge->dma, GFP_KERNEL);
2552 if (!skge->mem)
2553 return -ENOMEM;
2555 BUG_ON(skge->dma & 7);
2557 if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2558 dev_err(&hw->pdev->dev, "dma_alloc_coherent region crosses 4G boundary\n");
2559 err = -EINVAL;
2560 goto free_pci_mem;
2563 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2564 if (err)
2565 goto free_pci_mem;
2567 err = skge_rx_fill(dev);
2568 if (err)
2569 goto free_rx_ring;
2571 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2572 skge->dma + rx_size);
2573 if (err)
2574 goto free_rx_ring;
2576 if (hw->ports == 1) {
2577 err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2578 dev->name, hw);
2579 if (err) {
2580 netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2581 hw->pdev->irq, err);
2582 goto free_tx_ring;
2586 /* Initialize MAC */
2587 netif_carrier_off(dev);
2588 spin_lock_bh(&hw->phy_lock);
2589 if (is_genesis(hw))
2590 genesis_mac_init(hw, port);
2591 else
2592 yukon_mac_init(hw, port);
2593 spin_unlock_bh(&hw->phy_lock);
2595 /* Configure RAMbuffers - equally between ports and tx/rx */
2596 chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
2597 ram_addr = hw->ram_offset + 2 * chunk * port;
2599 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2600 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2602 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2603 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2604 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2606 /* Start receiver BMU */
2607 wmb();
2608 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2609 skge_led(skge, LED_MODE_ON);
2611 spin_lock_irq(&hw->hw_lock);
2612 hw->intr_mask |= portmask[port];
2613 skge_write32(hw, B0_IMSK, hw->intr_mask);
2614 skge_read32(hw, B0_IMSK);
2615 spin_unlock_irq(&hw->hw_lock);
2617 napi_enable(&skge->napi);
2619 skge_set_multicast(dev);
2621 return 0;
2623 free_tx_ring:
2624 kfree(skge->tx_ring.start);
2625 free_rx_ring:
2626 skge_rx_clean(skge);
2627 kfree(skge->rx_ring.start);
2628 free_pci_mem:
2629 dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2630 skge->dma);
2631 skge->mem = NULL;
2633 return err;
2636 /* stop receiver */
2637 static void skge_rx_stop(struct skge_hw *hw, int port)
2639 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2640 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2641 RB_RST_SET|RB_DIS_OP_MD);
2642 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2645 static int skge_down(struct net_device *dev)
2647 struct skge_port *skge = netdev_priv(dev);
2648 struct skge_hw *hw = skge->hw;
2649 int port = skge->port;
2651 if (!skge->mem)
2652 return 0;
2654 netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2656 netif_tx_disable(dev);
2658 if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2659 del_timer_sync(&skge->link_timer);
2661 napi_disable(&skge->napi);
2662 netif_carrier_off(dev);
2664 spin_lock_irq(&hw->hw_lock);
2665 hw->intr_mask &= ~portmask[port];
2666 skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2667 skge_read32(hw, B0_IMSK);
2668 spin_unlock_irq(&hw->hw_lock);
2670 if (hw->ports == 1)
2671 free_irq(hw->pdev->irq, hw);
2673 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
2674 if (is_genesis(hw))
2675 genesis_stop(skge);
2676 else
2677 yukon_stop(skge);
2679 /* Stop transmitter */
2680 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2681 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2682 RB_RST_SET|RB_DIS_OP_MD);
2685 /* Disable Force Sync bit and Enable Alloc bit */
2686 skge_write8(hw, SK_REG(port, TXA_CTRL),
2687 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2689 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2690 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2691 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2693 /* Reset PCI FIFO */
2694 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2695 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2697 /* Reset the RAM Buffer async Tx queue */
2698 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2700 skge_rx_stop(hw, port);
2702 if (is_genesis(hw)) {
2703 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2704 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2705 } else {
2706 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2707 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2710 skge_led(skge, LED_MODE_OFF);
2712 netif_tx_lock_bh(dev);
2713 skge_tx_clean(dev);
2714 netif_tx_unlock_bh(dev);
2716 skge_rx_clean(skge);
2718 kfree(skge->rx_ring.start);
2719 kfree(skge->tx_ring.start);
2720 dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2721 skge->dma);
2722 skge->mem = NULL;
2723 return 0;
2726 static inline int skge_avail(const struct skge_ring *ring)
2728 smp_mb();
2729 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2730 + (ring->to_clean - ring->to_use) - 1;
2733 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2734 struct net_device *dev)
2736 struct skge_port *skge = netdev_priv(dev);
2737 struct skge_hw *hw = skge->hw;
2738 struct skge_element *e;
2739 struct skge_tx_desc *td;
2740 int i;
2741 u32 control, len;
2742 dma_addr_t map;
2744 if (skb_padto(skb, ETH_ZLEN))
2745 return NETDEV_TX_OK;
2747 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2748 return NETDEV_TX_BUSY;
2750 e = skge->tx_ring.to_use;
2751 td = e->desc;
2752 BUG_ON(td->control & BMU_OWN);
2753 e->skb = skb;
2754 len = skb_headlen(skb);
2755 map = dma_map_single(&hw->pdev->dev, skb->data, len, DMA_TO_DEVICE);
2756 if (dma_mapping_error(&hw->pdev->dev, map))
2757 goto mapping_error;
2759 dma_unmap_addr_set(e, mapaddr, map);
2760 dma_unmap_len_set(e, maplen, len);
2762 td->dma_lo = lower_32_bits(map);
2763 td->dma_hi = upper_32_bits(map);
2765 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2766 const int offset = skb_checksum_start_offset(skb);
2768 /* This seems backwards, but it is what the sk98lin
2769 * does. Looks like hardware is wrong?
2771 if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2772 hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2773 control = BMU_TCP_CHECK;
2774 else
2775 control = BMU_UDP_CHECK;
2777 td->csum_offs = 0;
2778 td->csum_start = offset;
2779 td->csum_write = offset + skb->csum_offset;
2780 } else
2781 control = BMU_CHECK;
2783 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2784 control |= BMU_EOF | BMU_IRQ_EOF;
2785 else {
2786 struct skge_tx_desc *tf = td;
2788 control |= BMU_STFWD;
2789 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2790 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2792 map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2793 skb_frag_size(frag), DMA_TO_DEVICE);
2794 if (dma_mapping_error(&hw->pdev->dev, map))
2795 goto mapping_unwind;
2797 e = e->next;
2798 e->skb = skb;
2799 tf = e->desc;
2800 BUG_ON(tf->control & BMU_OWN);
2802 tf->dma_lo = lower_32_bits(map);
2803 tf->dma_hi = upper_32_bits(map);
2804 dma_unmap_addr_set(e, mapaddr, map);
2805 dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2807 tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2809 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2811 /* Make sure all the descriptors written */
2812 wmb();
2813 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2814 wmb();
2816 netdev_sent_queue(dev, skb->len);
2818 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2820 netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2821 "tx queued, slot %td, len %d\n",
2822 e - skge->tx_ring.start, skb->len);
2824 skge->tx_ring.to_use = e->next;
2825 smp_wmb();
2827 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2828 netdev_dbg(dev, "transmit queue full\n");
2829 netif_stop_queue(dev);
2832 return NETDEV_TX_OK;
2834 mapping_unwind:
2835 e = skge->tx_ring.to_use;
2836 dma_unmap_single(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2837 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2838 while (i-- > 0) {
2839 e = e->next;
2840 dma_unmap_page(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2841 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2844 mapping_error:
2845 if (net_ratelimit())
2846 dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2847 dev_kfree_skb_any(skb);
2848 return NETDEV_TX_OK;
2852 /* Free resources associated with this reing element */
2853 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2854 u32 control)
2856 /* skb header vs. fragment */
2857 if (control & BMU_STF)
2858 dma_unmap_single(&pdev->dev, dma_unmap_addr(e, mapaddr),
2859 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2860 else
2861 dma_unmap_page(&pdev->dev, dma_unmap_addr(e, mapaddr),
2862 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2865 /* Free all buffers in transmit ring */
2866 static void skge_tx_clean(struct net_device *dev)
2868 struct skge_port *skge = netdev_priv(dev);
2869 struct skge_element *e;
2871 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2872 struct skge_tx_desc *td = e->desc;
2874 skge_tx_unmap(skge->hw->pdev, e, td->control);
2876 if (td->control & BMU_EOF)
2877 dev_kfree_skb(e->skb);
2878 td->control = 0;
2881 netdev_reset_queue(dev);
2882 skge->tx_ring.to_clean = e;
2885 static void skge_tx_timeout(struct net_device *dev, unsigned int txqueue)
2887 struct skge_port *skge = netdev_priv(dev);
2889 netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2891 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2892 skge_tx_clean(dev);
2893 netif_wake_queue(dev);
2896 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2898 int err;
2900 if (!netif_running(dev)) {
2901 dev->mtu = new_mtu;
2902 return 0;
2905 skge_down(dev);
2907 dev->mtu = new_mtu;
2909 err = skge_up(dev);
2910 if (err)
2911 dev_close(dev);
2913 return err;
2916 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2918 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2920 u32 crc, bit;
2922 crc = ether_crc_le(ETH_ALEN, addr);
2923 bit = ~crc & 0x3f;
2924 filter[bit/8] |= 1 << (bit%8);
2927 static void genesis_set_multicast(struct net_device *dev)
2929 struct skge_port *skge = netdev_priv(dev);
2930 struct skge_hw *hw = skge->hw;
2931 int port = skge->port;
2932 struct netdev_hw_addr *ha;
2933 u32 mode;
2934 u8 filter[8];
2936 mode = xm_read32(hw, port, XM_MODE);
2937 mode |= XM_MD_ENA_HASH;
2938 if (dev->flags & IFF_PROMISC)
2939 mode |= XM_MD_ENA_PROM;
2940 else
2941 mode &= ~XM_MD_ENA_PROM;
2943 if (dev->flags & IFF_ALLMULTI)
2944 memset(filter, 0xff, sizeof(filter));
2945 else {
2946 memset(filter, 0, sizeof(filter));
2948 if (skge->flow_status == FLOW_STAT_REM_SEND ||
2949 skge->flow_status == FLOW_STAT_SYMMETRIC)
2950 genesis_add_filter(filter, pause_mc_addr);
2952 netdev_for_each_mc_addr(ha, dev)
2953 genesis_add_filter(filter, ha->addr);
2956 xm_write32(hw, port, XM_MODE, mode);
2957 xm_outhash(hw, port, XM_HSM, filter);
2960 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2962 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2963 filter[bit/8] |= 1 << (bit%8);
2966 static void yukon_set_multicast(struct net_device *dev)
2968 struct skge_port *skge = netdev_priv(dev);
2969 struct skge_hw *hw = skge->hw;
2970 int port = skge->port;
2971 struct netdev_hw_addr *ha;
2972 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2973 skge->flow_status == FLOW_STAT_SYMMETRIC);
2974 u16 reg;
2975 u8 filter[8];
2977 memset(filter, 0, sizeof(filter));
2979 reg = gma_read16(hw, port, GM_RX_CTRL);
2980 reg |= GM_RXCR_UCF_ENA;
2982 if (dev->flags & IFF_PROMISC) /* promiscuous */
2983 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2984 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2985 memset(filter, 0xff, sizeof(filter));
2986 else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2987 reg &= ~GM_RXCR_MCF_ENA;
2988 else {
2989 reg |= GM_RXCR_MCF_ENA;
2991 if (rx_pause)
2992 yukon_add_filter(filter, pause_mc_addr);
2994 netdev_for_each_mc_addr(ha, dev)
2995 yukon_add_filter(filter, ha->addr);
2999 gma_write16(hw, port, GM_MC_ADDR_H1,
3000 (u16)filter[0] | ((u16)filter[1] << 8));
3001 gma_write16(hw, port, GM_MC_ADDR_H2,
3002 (u16)filter[2] | ((u16)filter[3] << 8));
3003 gma_write16(hw, port, GM_MC_ADDR_H3,
3004 (u16)filter[4] | ((u16)filter[5] << 8));
3005 gma_write16(hw, port, GM_MC_ADDR_H4,
3006 (u16)filter[6] | ((u16)filter[7] << 8));
3008 gma_write16(hw, port, GM_RX_CTRL, reg);
3011 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3013 if (is_genesis(hw))
3014 return status >> XMR_FS_LEN_SHIFT;
3015 else
3016 return status >> GMR_FS_LEN_SHIFT;
3019 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3021 if (is_genesis(hw))
3022 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3023 else
3024 return (status & GMR_FS_ANY_ERR) ||
3025 (status & GMR_FS_RX_OK) == 0;
3028 static void skge_set_multicast(struct net_device *dev)
3030 struct skge_port *skge = netdev_priv(dev);
3032 if (is_genesis(skge->hw))
3033 genesis_set_multicast(dev);
3034 else
3035 yukon_set_multicast(dev);
3040 /* Get receive buffer from descriptor.
3041 * Handles copy of small buffers and reallocation failures
3043 static struct sk_buff *skge_rx_get(struct net_device *dev,
3044 struct skge_element *e,
3045 u32 control, u32 status, u16 csum)
3047 struct skge_port *skge = netdev_priv(dev);
3048 struct sk_buff *skb;
3049 u16 len = control & BMU_BBC;
3051 netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3052 "rx slot %td status 0x%x len %d\n",
3053 e - skge->rx_ring.start, status, len);
3055 if (len > skge->rx_buf_size)
3056 goto error;
3058 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3059 goto error;
3061 if (bad_phy_status(skge->hw, status))
3062 goto error;
3064 if (phy_length(skge->hw, status) != len)
3065 goto error;
3067 if (len < RX_COPY_THRESHOLD) {
3068 skb = netdev_alloc_skb_ip_align(dev, len);
3069 if (!skb)
3070 goto resubmit;
3072 dma_sync_single_for_cpu(&skge->hw->pdev->dev,
3073 dma_unmap_addr(e, mapaddr),
3074 dma_unmap_len(e, maplen),
3075 DMA_FROM_DEVICE);
3076 skb_copy_from_linear_data(e->skb, skb->data, len);
3077 dma_sync_single_for_device(&skge->hw->pdev->dev,
3078 dma_unmap_addr(e, mapaddr),
3079 dma_unmap_len(e, maplen),
3080 DMA_FROM_DEVICE);
3081 skge_rx_reuse(e, skge->rx_buf_size);
3082 } else {
3083 struct skge_element ee;
3084 struct sk_buff *nskb;
3086 nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3087 if (!nskb)
3088 goto resubmit;
3090 ee = *e;
3092 skb = ee.skb;
3093 prefetch(skb->data);
3095 if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3096 dev_kfree_skb(nskb);
3097 goto resubmit;
3100 dma_unmap_single(&skge->hw->pdev->dev,
3101 dma_unmap_addr(&ee, mapaddr),
3102 dma_unmap_len(&ee, maplen), DMA_FROM_DEVICE);
3105 skb_put(skb, len);
3107 if (dev->features & NETIF_F_RXCSUM) {
3108 skb->csum = le16_to_cpu(csum);
3109 skb->ip_summed = CHECKSUM_COMPLETE;
3112 skb->protocol = eth_type_trans(skb, dev);
3114 return skb;
3115 error:
3117 netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3118 "rx err, slot %td control 0x%x status 0x%x\n",
3119 e - skge->rx_ring.start, control, status);
3121 if (is_genesis(skge->hw)) {
3122 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3123 dev->stats.rx_length_errors++;
3124 if (status & XMR_FS_FRA_ERR)
3125 dev->stats.rx_frame_errors++;
3126 if (status & XMR_FS_FCS_ERR)
3127 dev->stats.rx_crc_errors++;
3128 } else {
3129 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3130 dev->stats.rx_length_errors++;
3131 if (status & GMR_FS_FRAGMENT)
3132 dev->stats.rx_frame_errors++;
3133 if (status & GMR_FS_CRC_ERR)
3134 dev->stats.rx_crc_errors++;
3137 resubmit:
3138 skge_rx_reuse(e, skge->rx_buf_size);
3139 return NULL;
3142 /* Free all buffers in Tx ring which are no longer owned by device */
3143 static void skge_tx_done(struct net_device *dev)
3145 struct skge_port *skge = netdev_priv(dev);
3146 struct skge_ring *ring = &skge->tx_ring;
3147 struct skge_element *e;
3148 unsigned int bytes_compl = 0, pkts_compl = 0;
3150 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3152 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3153 u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3155 if (control & BMU_OWN)
3156 break;
3158 skge_tx_unmap(skge->hw->pdev, e, control);
3160 if (control & BMU_EOF) {
3161 netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3162 "tx done slot %td\n",
3163 e - skge->tx_ring.start);
3165 pkts_compl++;
3166 bytes_compl += e->skb->len;
3168 dev_consume_skb_any(e->skb);
3171 netdev_completed_queue(dev, pkts_compl, bytes_compl);
3172 skge->tx_ring.to_clean = e;
3174 /* Can run lockless until we need to synchronize to restart queue. */
3175 smp_mb();
3177 if (unlikely(netif_queue_stopped(dev) &&
3178 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3179 netif_tx_lock(dev);
3180 if (unlikely(netif_queue_stopped(dev) &&
3181 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3182 netif_wake_queue(dev);
3185 netif_tx_unlock(dev);
3189 static int skge_poll(struct napi_struct *napi, int budget)
3191 struct skge_port *skge = container_of(napi, struct skge_port, napi);
3192 struct net_device *dev = skge->netdev;
3193 struct skge_hw *hw = skge->hw;
3194 struct skge_ring *ring = &skge->rx_ring;
3195 struct skge_element *e;
3196 int work_done = 0;
3198 skge_tx_done(dev);
3200 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3202 for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) {
3203 struct skge_rx_desc *rd = e->desc;
3204 struct sk_buff *skb;
3205 u32 control;
3207 rmb();
3208 control = rd->control;
3209 if (control & BMU_OWN)
3210 break;
3212 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3213 if (likely(skb)) {
3214 napi_gro_receive(napi, skb);
3215 ++work_done;
3218 ring->to_clean = e;
3220 /* restart receiver */
3221 wmb();
3222 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3224 if (work_done < budget && napi_complete_done(napi, work_done)) {
3225 unsigned long flags;
3227 spin_lock_irqsave(&hw->hw_lock, flags);
3228 hw->intr_mask |= napimask[skge->port];
3229 skge_write32(hw, B0_IMSK, hw->intr_mask);
3230 skge_read32(hw, B0_IMSK);
3231 spin_unlock_irqrestore(&hw->hw_lock, flags);
3234 return work_done;
3237 /* Parity errors seem to happen when Genesis is connected to a switch
3238 * with no other ports present. Heartbeat error??
3240 static void skge_mac_parity(struct skge_hw *hw, int port)
3242 struct net_device *dev = hw->dev[port];
3244 ++dev->stats.tx_heartbeat_errors;
3246 if (is_genesis(hw))
3247 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3248 MFF_CLR_PERR);
3249 else
3250 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3251 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3252 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3253 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3256 static void skge_mac_intr(struct skge_hw *hw, int port)
3258 if (is_genesis(hw))
3259 genesis_mac_intr(hw, port);
3260 else
3261 yukon_mac_intr(hw, port);
3264 /* Handle device specific framing and timeout interrupts */
3265 static void skge_error_irq(struct skge_hw *hw)
3267 struct pci_dev *pdev = hw->pdev;
3268 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3270 if (is_genesis(hw)) {
3271 /* clear xmac errors */
3272 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3273 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3274 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3275 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3276 } else {
3277 /* Timestamp (unused) overflow */
3278 if (hwstatus & IS_IRQ_TIST_OV)
3279 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3282 if (hwstatus & IS_RAM_RD_PAR) {
3283 dev_err(&pdev->dev, "Ram read data parity error\n");
3284 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3287 if (hwstatus & IS_RAM_WR_PAR) {
3288 dev_err(&pdev->dev, "Ram write data parity error\n");
3289 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3292 if (hwstatus & IS_M1_PAR_ERR)
3293 skge_mac_parity(hw, 0);
3295 if (hwstatus & IS_M2_PAR_ERR)
3296 skge_mac_parity(hw, 1);
3298 if (hwstatus & IS_R1_PAR_ERR) {
3299 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3300 hw->dev[0]->name);
3301 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3304 if (hwstatus & IS_R2_PAR_ERR) {
3305 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3306 hw->dev[1]->name);
3307 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3310 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3311 u16 pci_status, pci_cmd;
3313 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3314 pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3316 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3317 pci_cmd, pci_status);
3319 /* Write the error bits back to clear them. */
3320 pci_status &= PCI_STATUS_ERROR_BITS;
3321 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3322 pci_write_config_word(pdev, PCI_COMMAND,
3323 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3324 pci_write_config_word(pdev, PCI_STATUS, pci_status);
3325 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3327 /* if error still set then just ignore it */
3328 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3329 if (hwstatus & IS_IRQ_STAT) {
3330 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3331 hw->intr_mask &= ~IS_HW_ERR;
3337 * Interrupt from PHY are handled in tasklet (softirq)
3338 * because accessing phy registers requires spin wait which might
3339 * cause excess interrupt latency.
3341 static void skge_extirq(struct tasklet_struct *t)
3343 struct skge_hw *hw = from_tasklet(hw, t, phy_task);
3344 int port;
3346 for (port = 0; port < hw->ports; port++) {
3347 struct net_device *dev = hw->dev[port];
3349 if (netif_running(dev)) {
3350 struct skge_port *skge = netdev_priv(dev);
3352 spin_lock(&hw->phy_lock);
3353 if (!is_genesis(hw))
3354 yukon_phy_intr(skge);
3355 else if (hw->phy_type == SK_PHY_BCOM)
3356 bcom_phy_intr(skge);
3357 spin_unlock(&hw->phy_lock);
3361 spin_lock_irq(&hw->hw_lock);
3362 hw->intr_mask |= IS_EXT_REG;
3363 skge_write32(hw, B0_IMSK, hw->intr_mask);
3364 skge_read32(hw, B0_IMSK);
3365 spin_unlock_irq(&hw->hw_lock);
3368 static irqreturn_t skge_intr(int irq, void *dev_id)
3370 struct skge_hw *hw = dev_id;
3371 u32 status;
3372 int handled = 0;
3374 spin_lock(&hw->hw_lock);
3375 /* Reading this register masks IRQ */
3376 status = skge_read32(hw, B0_SP_ISRC);
3377 if (status == 0 || status == ~0)
3378 goto out;
3380 handled = 1;
3381 status &= hw->intr_mask;
3382 if (status & IS_EXT_REG) {
3383 hw->intr_mask &= ~IS_EXT_REG;
3384 tasklet_schedule(&hw->phy_task);
3387 if (status & (IS_XA1_F|IS_R1_F)) {
3388 struct skge_port *skge = netdev_priv(hw->dev[0]);
3389 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3390 napi_schedule(&skge->napi);
3393 if (status & IS_PA_TO_TX1)
3394 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3396 if (status & IS_PA_TO_RX1) {
3397 ++hw->dev[0]->stats.rx_over_errors;
3398 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3402 if (status & IS_MAC1)
3403 skge_mac_intr(hw, 0);
3405 if (hw->dev[1]) {
3406 struct skge_port *skge = netdev_priv(hw->dev[1]);
3408 if (status & (IS_XA2_F|IS_R2_F)) {
3409 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3410 napi_schedule(&skge->napi);
3413 if (status & IS_PA_TO_RX2) {
3414 ++hw->dev[1]->stats.rx_over_errors;
3415 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3418 if (status & IS_PA_TO_TX2)
3419 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3421 if (status & IS_MAC2)
3422 skge_mac_intr(hw, 1);
3425 if (status & IS_HW_ERR)
3426 skge_error_irq(hw);
3427 out:
3428 skge_write32(hw, B0_IMSK, hw->intr_mask);
3429 skge_read32(hw, B0_IMSK);
3430 spin_unlock(&hw->hw_lock);
3432 return IRQ_RETVAL(handled);
3435 #ifdef CONFIG_NET_POLL_CONTROLLER
3436 static void skge_netpoll(struct net_device *dev)
3438 struct skge_port *skge = netdev_priv(dev);
3440 disable_irq(dev->irq);
3441 skge_intr(dev->irq, skge->hw);
3442 enable_irq(dev->irq);
3444 #endif
3446 static int skge_set_mac_address(struct net_device *dev, void *p)
3448 struct skge_port *skge = netdev_priv(dev);
3449 struct skge_hw *hw = skge->hw;
3450 unsigned port = skge->port;
3451 const struct sockaddr *addr = p;
3452 u16 ctrl;
3454 if (!is_valid_ether_addr(addr->sa_data))
3455 return -EADDRNOTAVAIL;
3457 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3459 if (!netif_running(dev)) {
3460 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3461 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3462 } else {
3463 /* disable Rx */
3464 spin_lock_bh(&hw->phy_lock);
3465 ctrl = gma_read16(hw, port, GM_GP_CTRL);
3466 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3468 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3469 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3471 if (is_genesis(hw))
3472 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3473 else {
3474 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3475 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3478 gma_write16(hw, port, GM_GP_CTRL, ctrl);
3479 spin_unlock_bh(&hw->phy_lock);
3482 return 0;
3485 static const struct {
3486 u8 id;
3487 const char *name;
3488 } skge_chips[] = {
3489 { CHIP_ID_GENESIS, "Genesis" },
3490 { CHIP_ID_YUKON, "Yukon" },
3491 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3492 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3495 static const char *skge_board_name(const struct skge_hw *hw)
3497 int i;
3498 static char buf[16];
3500 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3501 if (skge_chips[i].id == hw->chip_id)
3502 return skge_chips[i].name;
3504 snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id);
3505 return buf;
3510 * Setup the board data structure, but don't bring up
3511 * the port(s)
3513 static int skge_reset(struct skge_hw *hw)
3515 u32 reg;
3516 u16 ctst, pci_status;
3517 u8 t8, mac_cfg, pmd_type;
3518 int i;
3520 ctst = skge_read16(hw, B0_CTST);
3522 /* do a SW reset */
3523 skge_write8(hw, B0_CTST, CS_RST_SET);
3524 skge_write8(hw, B0_CTST, CS_RST_CLR);
3526 /* clear PCI errors, if any */
3527 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3528 skge_write8(hw, B2_TST_CTRL2, 0);
3530 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3531 pci_write_config_word(hw->pdev, PCI_STATUS,
3532 pci_status | PCI_STATUS_ERROR_BITS);
3533 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3534 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3536 /* restore CLK_RUN bits (for Yukon-Lite) */
3537 skge_write16(hw, B0_CTST,
3538 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3540 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3541 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3542 pmd_type = skge_read8(hw, B2_PMD_TYP);
3543 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3545 switch (hw->chip_id) {
3546 case CHIP_ID_GENESIS:
3547 #ifdef CONFIG_SKGE_GENESIS
3548 switch (hw->phy_type) {
3549 case SK_PHY_XMAC:
3550 hw->phy_addr = PHY_ADDR_XMAC;
3551 break;
3552 case SK_PHY_BCOM:
3553 hw->phy_addr = PHY_ADDR_BCOM;
3554 break;
3555 default:
3556 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3557 hw->phy_type);
3558 return -EOPNOTSUPP;
3560 break;
3561 #else
3562 dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3563 return -EOPNOTSUPP;
3564 #endif
3566 case CHIP_ID_YUKON:
3567 case CHIP_ID_YUKON_LITE:
3568 case CHIP_ID_YUKON_LP:
3569 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3570 hw->copper = 1;
3572 hw->phy_addr = PHY_ADDR_MARV;
3573 break;
3575 default:
3576 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3577 hw->chip_id);
3578 return -EOPNOTSUPP;
3581 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3582 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3583 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3585 /* read the adapters RAM size */
3586 t8 = skge_read8(hw, B2_E_0);
3587 if (is_genesis(hw)) {
3588 if (t8 == 3) {
3589 /* special case: 4 x 64k x 36, offset = 0x80000 */
3590 hw->ram_size = 0x100000;
3591 hw->ram_offset = 0x80000;
3592 } else
3593 hw->ram_size = t8 * 512;
3594 } else if (t8 == 0)
3595 hw->ram_size = 0x20000;
3596 else
3597 hw->ram_size = t8 * 4096;
3599 hw->intr_mask = IS_HW_ERR;
3601 /* Use PHY IRQ for all but fiber based Genesis board */
3602 if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3603 hw->intr_mask |= IS_EXT_REG;
3605 if (is_genesis(hw))
3606 genesis_init(hw);
3607 else {
3608 /* switch power to VCC (WA for VAUX problem) */
3609 skge_write8(hw, B0_POWER_CTRL,
3610 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3612 /* avoid boards with stuck Hardware error bits */
3613 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3614 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3615 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3616 hw->intr_mask &= ~IS_HW_ERR;
3619 /* Clear PHY COMA */
3620 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3621 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3622 reg &= ~PCI_PHY_COMA;
3623 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3624 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3627 for (i = 0; i < hw->ports; i++) {
3628 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3629 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3633 /* turn off hardware timer (unused) */
3634 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3635 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3636 skge_write8(hw, B0_LED, LED_STAT_ON);
3638 /* enable the Tx Arbiters */
3639 for (i = 0; i < hw->ports; i++)
3640 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3642 /* Initialize ram interface */
3643 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3645 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3646 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3647 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3648 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3649 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3650 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3651 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3652 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3653 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3654 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3655 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3656 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3658 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3660 /* Set interrupt moderation for Transmit only
3661 * Receive interrupts avoided by NAPI
3663 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3664 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3665 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3667 /* Leave irq disabled until first port is brought up. */
3668 skge_write32(hw, B0_IMSK, 0);
3670 for (i = 0; i < hw->ports; i++) {
3671 if (is_genesis(hw))
3672 genesis_reset(hw, i);
3673 else
3674 yukon_reset(hw, i);
3677 return 0;
3681 #ifdef CONFIG_SKGE_DEBUG
3683 static struct dentry *skge_debug;
3685 static int skge_debug_show(struct seq_file *seq, void *v)
3687 struct net_device *dev = seq->private;
3688 const struct skge_port *skge = netdev_priv(dev);
3689 const struct skge_hw *hw = skge->hw;
3690 const struct skge_element *e;
3692 if (!netif_running(dev))
3693 return -ENETDOWN;
3695 seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3696 skge_read32(hw, B0_IMSK));
3698 seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3699 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3700 const struct skge_tx_desc *t = e->desc;
3701 seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3702 t->control, t->dma_hi, t->dma_lo, t->status,
3703 t->csum_offs, t->csum_write, t->csum_start);
3706 seq_puts(seq, "\nRx Ring:\n");
3707 for (e = skge->rx_ring.to_clean; ; e = e->next) {
3708 const struct skge_rx_desc *r = e->desc;
3710 if (r->control & BMU_OWN)
3711 break;
3713 seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3714 r->control, r->dma_hi, r->dma_lo, r->status,
3715 r->timestamp, r->csum1, r->csum1_start);
3718 return 0;
3720 DEFINE_SHOW_ATTRIBUTE(skge_debug);
3723 * Use network device events to create/remove/rename
3724 * debugfs file entries
3726 static int skge_device_event(struct notifier_block *unused,
3727 unsigned long event, void *ptr)
3729 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3730 struct skge_port *skge;
3732 if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3733 goto done;
3735 skge = netdev_priv(dev);
3736 switch (event) {
3737 case NETDEV_CHANGENAME:
3738 if (skge->debugfs)
3739 skge->debugfs = debugfs_rename(skge_debug,
3740 skge->debugfs,
3741 skge_debug, dev->name);
3742 break;
3744 case NETDEV_GOING_DOWN:
3745 debugfs_remove(skge->debugfs);
3746 skge->debugfs = NULL;
3747 break;
3749 case NETDEV_UP:
3750 skge->debugfs = debugfs_create_file(dev->name, 0444, skge_debug,
3751 dev, &skge_debug_fops);
3752 break;
3755 done:
3756 return NOTIFY_DONE;
3759 static struct notifier_block skge_notifier = {
3760 .notifier_call = skge_device_event,
3764 static __init void skge_debug_init(void)
3766 skge_debug = debugfs_create_dir("skge", NULL);
3768 register_netdevice_notifier(&skge_notifier);
3771 static __exit void skge_debug_cleanup(void)
3773 if (skge_debug) {
3774 unregister_netdevice_notifier(&skge_notifier);
3775 debugfs_remove(skge_debug);
3776 skge_debug = NULL;
3780 #else
3781 #define skge_debug_init()
3782 #define skge_debug_cleanup()
3783 #endif
3785 static const struct net_device_ops skge_netdev_ops = {
3786 .ndo_open = skge_up,
3787 .ndo_stop = skge_down,
3788 .ndo_start_xmit = skge_xmit_frame,
3789 .ndo_do_ioctl = skge_ioctl,
3790 .ndo_get_stats = skge_get_stats,
3791 .ndo_tx_timeout = skge_tx_timeout,
3792 .ndo_change_mtu = skge_change_mtu,
3793 .ndo_validate_addr = eth_validate_addr,
3794 .ndo_set_rx_mode = skge_set_multicast,
3795 .ndo_set_mac_address = skge_set_mac_address,
3796 #ifdef CONFIG_NET_POLL_CONTROLLER
3797 .ndo_poll_controller = skge_netpoll,
3798 #endif
3802 /* Initialize network device */
3803 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3804 int highmem)
3806 struct skge_port *skge;
3807 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3809 if (!dev)
3810 return NULL;
3812 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3813 dev->netdev_ops = &skge_netdev_ops;
3814 dev->ethtool_ops = &skge_ethtool_ops;
3815 dev->watchdog_timeo = TX_WATCHDOG;
3816 dev->irq = hw->pdev->irq;
3818 /* MTU range: 60 - 9000 */
3819 dev->min_mtu = ETH_ZLEN;
3820 dev->max_mtu = ETH_JUMBO_MTU;
3822 if (highmem)
3823 dev->features |= NETIF_F_HIGHDMA;
3825 skge = netdev_priv(dev);
3826 netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3827 skge->netdev = dev;
3828 skge->hw = hw;
3829 skge->msg_enable = netif_msg_init(debug, default_msg);
3831 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3832 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3834 /* Auto speed and flow control */
3835 skge->autoneg = AUTONEG_ENABLE;
3836 skge->flow_control = FLOW_MODE_SYM_OR_REM;
3837 skge->duplex = -1;
3838 skge->speed = -1;
3839 skge->advertising = skge_supported_modes(hw);
3841 if (device_can_wakeup(&hw->pdev->dev)) {
3842 skge->wol = wol_supported(hw) & WAKE_MAGIC;
3843 device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3846 hw->dev[port] = dev;
3848 skge->port = port;
3850 /* Only used for Genesis XMAC */
3851 if (is_genesis(hw))
3852 timer_setup(&skge->link_timer, xm_link_timer, 0);
3853 else {
3854 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3855 NETIF_F_RXCSUM;
3856 dev->features |= dev->hw_features;
3859 /* read the mac address */
3860 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3862 return dev;
3865 static void skge_show_addr(struct net_device *dev)
3867 const struct skge_port *skge = netdev_priv(dev);
3869 netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3872 static int only_32bit_dma;
3874 static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3876 struct net_device *dev, *dev1;
3877 struct skge_hw *hw;
3878 int err, using_dac = 0;
3880 err = pci_enable_device(pdev);
3881 if (err) {
3882 dev_err(&pdev->dev, "cannot enable PCI device\n");
3883 goto err_out;
3886 err = pci_request_regions(pdev, DRV_NAME);
3887 if (err) {
3888 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3889 goto err_out_disable_pdev;
3892 pci_set_master(pdev);
3894 if (!only_32bit_dma && !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3895 using_dac = 1;
3896 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
3897 } else if (!(err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
3898 using_dac = 0;
3899 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3902 if (err) {
3903 dev_err(&pdev->dev, "no usable DMA configuration\n");
3904 goto err_out_free_regions;
3907 #ifdef __BIG_ENDIAN
3908 /* byte swap descriptors in hardware */
3910 u32 reg;
3912 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3913 reg |= PCI_REV_DESC;
3914 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3916 #endif
3918 err = -ENOMEM;
3919 /* space for skge@pci:0000:04:00.0 */
3920 hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3921 + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3922 if (!hw)
3923 goto err_out_free_regions;
3925 sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3927 hw->pdev = pdev;
3928 spin_lock_init(&hw->hw_lock);
3929 spin_lock_init(&hw->phy_lock);
3930 tasklet_setup(&hw->phy_task, skge_extirq);
3932 hw->regs = ioremap(pci_resource_start(pdev, 0), 0x4000);
3933 if (!hw->regs) {
3934 dev_err(&pdev->dev, "cannot map device registers\n");
3935 goto err_out_free_hw;
3938 err = skge_reset(hw);
3939 if (err)
3940 goto err_out_iounmap;
3942 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3943 DRV_VERSION,
3944 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3945 skge_board_name(hw), hw->chip_rev);
3947 dev = skge_devinit(hw, 0, using_dac);
3948 if (!dev) {
3949 err = -ENOMEM;
3950 goto err_out_led_off;
3953 /* Some motherboards are broken and has zero in ROM. */
3954 if (!is_valid_ether_addr(dev->dev_addr))
3955 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3957 err = register_netdev(dev);
3958 if (err) {
3959 dev_err(&pdev->dev, "cannot register net device\n");
3960 goto err_out_free_netdev;
3963 skge_show_addr(dev);
3965 if (hw->ports > 1) {
3966 dev1 = skge_devinit(hw, 1, using_dac);
3967 if (!dev1) {
3968 err = -ENOMEM;
3969 goto err_out_unregister;
3972 err = register_netdev(dev1);
3973 if (err) {
3974 dev_err(&pdev->dev, "cannot register second net device\n");
3975 goto err_out_free_dev1;
3978 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
3979 hw->irq_name, hw);
3980 if (err) {
3981 dev_err(&pdev->dev, "cannot assign irq %d\n",
3982 pdev->irq);
3983 goto err_out_unregister_dev1;
3986 skge_show_addr(dev1);
3988 pci_set_drvdata(pdev, hw);
3990 return 0;
3992 err_out_unregister_dev1:
3993 unregister_netdev(dev1);
3994 err_out_free_dev1:
3995 free_netdev(dev1);
3996 err_out_unregister:
3997 unregister_netdev(dev);
3998 err_out_free_netdev:
3999 free_netdev(dev);
4000 err_out_led_off:
4001 skge_write16(hw, B0_LED, LED_STAT_OFF);
4002 err_out_iounmap:
4003 iounmap(hw->regs);
4004 err_out_free_hw:
4005 kfree(hw);
4006 err_out_free_regions:
4007 pci_release_regions(pdev);
4008 err_out_disable_pdev:
4009 pci_disable_device(pdev);
4010 err_out:
4011 return err;
4014 static void skge_remove(struct pci_dev *pdev)
4016 struct skge_hw *hw = pci_get_drvdata(pdev);
4017 struct net_device *dev0, *dev1;
4019 if (!hw)
4020 return;
4022 dev1 = hw->dev[1];
4023 if (dev1)
4024 unregister_netdev(dev1);
4025 dev0 = hw->dev[0];
4026 unregister_netdev(dev0);
4028 tasklet_kill(&hw->phy_task);
4030 spin_lock_irq(&hw->hw_lock);
4031 hw->intr_mask = 0;
4033 if (hw->ports > 1) {
4034 skge_write32(hw, B0_IMSK, 0);
4035 skge_read32(hw, B0_IMSK);
4037 spin_unlock_irq(&hw->hw_lock);
4039 skge_write16(hw, B0_LED, LED_STAT_OFF);
4040 skge_write8(hw, B0_CTST, CS_RST_SET);
4042 if (hw->ports > 1)
4043 free_irq(pdev->irq, hw);
4044 pci_release_regions(pdev);
4045 pci_disable_device(pdev);
4046 if (dev1)
4047 free_netdev(dev1);
4048 free_netdev(dev0);
4050 iounmap(hw->regs);
4051 kfree(hw);
4054 #ifdef CONFIG_PM_SLEEP
4055 static int skge_suspend(struct device *dev)
4057 struct skge_hw *hw = dev_get_drvdata(dev);
4058 int i;
4060 if (!hw)
4061 return 0;
4063 for (i = 0; i < hw->ports; i++) {
4064 struct net_device *dev = hw->dev[i];
4065 struct skge_port *skge = netdev_priv(dev);
4067 if (netif_running(dev))
4068 skge_down(dev);
4070 if (skge->wol)
4071 skge_wol_init(skge);
4074 skge_write32(hw, B0_IMSK, 0);
4076 return 0;
4079 static int skge_resume(struct device *dev)
4081 struct skge_hw *hw = dev_get_drvdata(dev);
4082 int i, err;
4084 if (!hw)
4085 return 0;
4087 err = skge_reset(hw);
4088 if (err)
4089 goto out;
4091 for (i = 0; i < hw->ports; i++) {
4092 struct net_device *dev = hw->dev[i];
4094 if (netif_running(dev)) {
4095 err = skge_up(dev);
4097 if (err) {
4098 netdev_err(dev, "could not up: %d\n", err);
4099 dev_close(dev);
4100 goto out;
4104 out:
4105 return err;
4108 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4109 #define SKGE_PM_OPS (&skge_pm_ops)
4111 #else
4113 #define SKGE_PM_OPS NULL
4114 #endif /* CONFIG_PM_SLEEP */
4116 static void skge_shutdown(struct pci_dev *pdev)
4118 struct skge_hw *hw = pci_get_drvdata(pdev);
4119 int i;
4121 if (!hw)
4122 return;
4124 for (i = 0; i < hw->ports; i++) {
4125 struct net_device *dev = hw->dev[i];
4126 struct skge_port *skge = netdev_priv(dev);
4128 if (skge->wol)
4129 skge_wol_init(skge);
4132 pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4133 pci_set_power_state(pdev, PCI_D3hot);
4136 static struct pci_driver skge_driver = {
4137 .name = DRV_NAME,
4138 .id_table = skge_id_table,
4139 .probe = skge_probe,
4140 .remove = skge_remove,
4141 .shutdown = skge_shutdown,
4142 .driver.pm = SKGE_PM_OPS,
4145 static const struct dmi_system_id skge_32bit_dma_boards[] = {
4147 .ident = "Gigabyte nForce boards",
4148 .matches = {
4149 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4150 DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4154 .ident = "ASUS P5NSLI",
4155 .matches = {
4156 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4157 DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4161 .ident = "FUJITSU SIEMENS A8NE-FM",
4162 .matches = {
4163 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4164 DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4170 static int __init skge_init_module(void)
4172 if (dmi_check_system(skge_32bit_dma_boards))
4173 only_32bit_dma = 1;
4174 skge_debug_init();
4175 return pci_register_driver(&skge_driver);
4178 static void __exit skge_cleanup_module(void)
4180 pci_unregister_driver(&skge_driver);
4181 skge_debug_cleanup();
4184 module_init(skge_init_module);
4185 module_exit(skge_cleanup_module);