1 // SPDX-License-Identifier: GPL-2.0-only
3 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
4 * Ethernet adapters. Based on earlier sk98lin, e100 and
5 * FreeBSD if_sk drivers.
7 * This driver intentionally does not support all the features
8 * of the original driver such as link fail-over and link management because
9 * those should be done at higher levels.
11 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/ethtool.h>
23 #include <linux/pci.h>
24 #include <linux/if_vlan.h>
26 #include <linux/delay.h>
27 #include <linux/crc32.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/debugfs.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/mii.h>
33 #include <linux/slab.h>
34 #include <linux/dmi.h>
35 #include <linux/prefetch.h>
40 #define DRV_NAME "skge"
41 #define DRV_VERSION "1.14"
43 #define DEFAULT_TX_RING_SIZE 128
44 #define DEFAULT_RX_RING_SIZE 512
45 #define MAX_TX_RING_SIZE 1024
46 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
47 #define MAX_RX_RING_SIZE 4096
48 #define RX_COPY_THRESHOLD 128
49 #define RX_BUF_SIZE 1536
50 #define PHY_RETRIES 1000
51 #define ETH_JUMBO_MTU 9000
52 #define TX_WATCHDOG (5 * HZ)
53 #define NAPI_WEIGHT 64
57 #define SKGE_EEPROM_MAGIC 0x9933aabb
60 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
61 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
62 MODULE_LICENSE("GPL");
63 MODULE_VERSION(DRV_VERSION
);
65 static const u32 default_msg
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
66 NETIF_MSG_LINK
| NETIF_MSG_IFUP
|
69 static int debug
= -1; /* defaults above */
70 module_param(debug
, int, 0);
71 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
73 static const struct pci_device_id skge_id_table
[] = {
74 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, 0x1700) }, /* 3Com 3C940 */
75 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, 0x80EB) }, /* 3Com 3C940B */
76 #ifdef CONFIG_SKGE_GENESIS
77 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, 0x4300) }, /* SK-9xx */
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, 0x4320) }, /* SK-98xx V2.0 */
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4b01) }, /* D-Link DGE-530T (rev.B) */
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4c00) }, /* D-Link DGE-530T */
82 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4302) }, /* D-Link DGE-530T Rev C1 */
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */
84 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5005) }, /* Belkin */
85 { PCI_DEVICE(PCI_VENDOR_ID_CNET
, 0x434E) }, /* CNet PowerG-2000 */
86 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, 0x1064) }, /* Linksys EG1064 v2 */
87 { PCI_VENDOR_ID_LINKSYS
, 0x1032, PCI_ANY_ID
, 0x0015 }, /* Linksys EG1032 v2 */
90 MODULE_DEVICE_TABLE(pci
, skge_id_table
);
92 static int skge_up(struct net_device
*dev
);
93 static int skge_down(struct net_device
*dev
);
94 static void skge_phy_reset(struct skge_port
*skge
);
95 static void skge_tx_clean(struct net_device
*dev
);
96 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
97 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
98 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
);
99 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
);
100 static void yukon_init(struct skge_hw
*hw
, int port
);
101 static void genesis_mac_init(struct skge_hw
*hw
, int port
);
102 static void genesis_link_up(struct skge_port
*skge
);
103 static void skge_set_multicast(struct net_device
*dev
);
104 static irqreturn_t
skge_intr(int irq
, void *dev_id
);
106 /* Avoid conditionals by using array */
107 static const int txqaddr
[] = { Q_XA1
, Q_XA2
};
108 static const int rxqaddr
[] = { Q_R1
, Q_R2
};
109 static const u32 rxirqmask
[] = { IS_R1_F
, IS_R2_F
};
110 static const u32 txirqmask
[] = { IS_XA1_F
, IS_XA2_F
};
111 static const u32 napimask
[] = { IS_R1_F
|IS_XA1_F
, IS_R2_F
|IS_XA2_F
};
112 static const u32 portmask
[] = { IS_PORT_1
, IS_PORT_2
};
114 static inline bool is_genesis(const struct skge_hw
*hw
)
116 #ifdef CONFIG_SKGE_GENESIS
117 return hw
->chip_id
== CHIP_ID_GENESIS
;
123 static int skge_get_regs_len(struct net_device
*dev
)
129 * Returns copy of whole control register region
130 * Note: skip RAM address register because accessing it will
133 static void skge_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
136 const struct skge_port
*skge
= netdev_priv(dev
);
137 const void __iomem
*io
= skge
->hw
->regs
;
140 memset(p
, 0, regs
->len
);
141 memcpy_fromio(p
, io
, B3_RAM_ADDR
);
143 if (regs
->len
> B3_RI_WTO_R1
) {
144 memcpy_fromio(p
+ B3_RI_WTO_R1
, io
+ B3_RI_WTO_R1
,
145 regs
->len
- B3_RI_WTO_R1
);
149 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
150 static u32
wol_supported(const struct skge_hw
*hw
)
155 if (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
158 return WAKE_MAGIC
| WAKE_PHY
;
161 static void skge_wol_init(struct skge_port
*skge
)
163 struct skge_hw
*hw
= skge
->hw
;
164 int port
= skge
->port
;
167 skge_write16(hw
, B0_CTST
, CS_RST_CLR
);
168 skge_write16(hw
, SK_REG(port
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
171 skge_write8(hw
, B0_POWER_CTRL
,
172 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_ON
| PC_VCC_OFF
);
174 /* WA code for COMA mode -- clear PHY reset */
175 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
176 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
177 u32 reg
= skge_read32(hw
, B2_GP_IO
);
180 skge_write32(hw
, B2_GP_IO
, reg
);
183 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
185 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
186 GPC_ANEG_1
| GPC_RST_SET
);
188 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
190 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
191 GPC_ANEG_1
| GPC_RST_CLR
);
193 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_CLR
);
195 /* Force to 10/100 skge_reset will re-enable on resume */
196 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
,
197 (PHY_AN_100FULL
| PHY_AN_100HALF
|
198 PHY_AN_10FULL
| PHY_AN_10HALF
| PHY_AN_CSMA
));
200 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, 0);
201 gm_phy_write(hw
, port
, PHY_MARV_CTRL
,
202 PHY_CT_RESET
| PHY_CT_SPS_LSB
| PHY_CT_ANE
|
203 PHY_CT_RE_CFG
| PHY_CT_DUP_MD
);
206 /* Set GMAC to no flow control and auto update for speed/duplex */
207 gma_write16(hw
, port
, GM_GP_CTRL
,
208 GM_GPCR_FC_TX_DIS
|GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
|
209 GM_GPCR_DUP_FULL
|GM_GPCR_FC_RX_DIS
|GM_GPCR_AU_FCT_DIS
);
211 /* Set WOL address */
212 memcpy_toio(hw
->regs
+ WOL_REGS(port
, WOL_MAC_ADDR
),
213 skge
->netdev
->dev_addr
, ETH_ALEN
);
215 /* Turn on appropriate WOL control bits */
216 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), WOL_CTL_CLEAR_RESULT
);
218 if (skge
->wol
& WAKE_PHY
)
219 ctrl
|= WOL_CTL_ENA_PME_ON_LINK_CHG
|WOL_CTL_ENA_LINK_CHG_UNIT
;
221 ctrl
|= WOL_CTL_DIS_PME_ON_LINK_CHG
|WOL_CTL_DIS_LINK_CHG_UNIT
;
223 if (skge
->wol
& WAKE_MAGIC
)
224 ctrl
|= WOL_CTL_ENA_PME_ON_MAGIC_PKT
|WOL_CTL_ENA_MAGIC_PKT_UNIT
;
226 ctrl
|= WOL_CTL_DIS_PME_ON_MAGIC_PKT
|WOL_CTL_DIS_MAGIC_PKT_UNIT
;
228 ctrl
|= WOL_CTL_DIS_PME_ON_PATTERN
|WOL_CTL_DIS_PATTERN_UNIT
;
229 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), ctrl
);
232 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
235 static void skge_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
237 struct skge_port
*skge
= netdev_priv(dev
);
239 wol
->supported
= wol_supported(skge
->hw
);
240 wol
->wolopts
= skge
->wol
;
243 static int skge_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
245 struct skge_port
*skge
= netdev_priv(dev
);
246 struct skge_hw
*hw
= skge
->hw
;
248 if ((wol
->wolopts
& ~wol_supported(hw
)) ||
249 !device_can_wakeup(&hw
->pdev
->dev
))
252 skge
->wol
= wol
->wolopts
;
254 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
259 /* Determine supported/advertised modes based on hardware.
260 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
262 static u32
skge_supported_modes(const struct skge_hw
*hw
)
267 supported
= (SUPPORTED_10baseT_Half
|
268 SUPPORTED_10baseT_Full
|
269 SUPPORTED_100baseT_Half
|
270 SUPPORTED_100baseT_Full
|
271 SUPPORTED_1000baseT_Half
|
272 SUPPORTED_1000baseT_Full
|
277 supported
&= ~(SUPPORTED_10baseT_Half
|
278 SUPPORTED_10baseT_Full
|
279 SUPPORTED_100baseT_Half
|
280 SUPPORTED_100baseT_Full
);
282 else if (hw
->chip_id
== CHIP_ID_YUKON
)
283 supported
&= ~SUPPORTED_1000baseT_Half
;
285 supported
= (SUPPORTED_1000baseT_Full
|
286 SUPPORTED_1000baseT_Half
|
293 static int skge_get_link_ksettings(struct net_device
*dev
,
294 struct ethtool_link_ksettings
*cmd
)
296 struct skge_port
*skge
= netdev_priv(dev
);
297 struct skge_hw
*hw
= skge
->hw
;
298 u32 supported
, advertising
;
300 supported
= skge_supported_modes(hw
);
303 cmd
->base
.port
= PORT_TP
;
304 cmd
->base
.phy_address
= hw
->phy_addr
;
306 cmd
->base
.port
= PORT_FIBRE
;
308 advertising
= skge
->advertising
;
309 cmd
->base
.autoneg
= skge
->autoneg
;
310 cmd
->base
.speed
= skge
->speed
;
311 cmd
->base
.duplex
= skge
->duplex
;
313 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.supported
,
315 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.advertising
,
321 static int skge_set_link_ksettings(struct net_device
*dev
,
322 const struct ethtool_link_ksettings
*cmd
)
324 struct skge_port
*skge
= netdev_priv(dev
);
325 const struct skge_hw
*hw
= skge
->hw
;
326 u32 supported
= skge_supported_modes(hw
);
330 ethtool_convert_link_mode_to_legacy_u32(&advertising
,
331 cmd
->link_modes
.advertising
);
333 if (cmd
->base
.autoneg
== AUTONEG_ENABLE
) {
334 advertising
= supported
;
339 u32 speed
= cmd
->base
.speed
;
343 if (cmd
->base
.duplex
== DUPLEX_FULL
)
344 setting
= SUPPORTED_1000baseT_Full
;
345 else if (cmd
->base
.duplex
== DUPLEX_HALF
)
346 setting
= SUPPORTED_1000baseT_Half
;
351 if (cmd
->base
.duplex
== DUPLEX_FULL
)
352 setting
= SUPPORTED_100baseT_Full
;
353 else if (cmd
->base
.duplex
== DUPLEX_HALF
)
354 setting
= SUPPORTED_100baseT_Half
;
360 if (cmd
->base
.duplex
== DUPLEX_FULL
)
361 setting
= SUPPORTED_10baseT_Full
;
362 else if (cmd
->base
.duplex
== DUPLEX_HALF
)
363 setting
= SUPPORTED_10baseT_Half
;
371 if ((setting
& supported
) == 0)
375 skge
->duplex
= cmd
->base
.duplex
;
378 skge
->autoneg
= cmd
->base
.autoneg
;
379 skge
->advertising
= advertising
;
381 if (netif_running(dev
)) {
393 static void skge_get_drvinfo(struct net_device
*dev
,
394 struct ethtool_drvinfo
*info
)
396 struct skge_port
*skge
= netdev_priv(dev
);
398 strlcpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
399 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
400 strlcpy(info
->bus_info
, pci_name(skge
->hw
->pdev
),
401 sizeof(info
->bus_info
));
404 static const struct skge_stat
{
405 char name
[ETH_GSTRING_LEN
];
409 { "tx_bytes", XM_TXO_OK_HI
, GM_TXO_OK_HI
},
410 { "rx_bytes", XM_RXO_OK_HI
, GM_RXO_OK_HI
},
412 { "tx_broadcast", XM_TXF_BC_OK
, GM_TXF_BC_OK
},
413 { "rx_broadcast", XM_RXF_BC_OK
, GM_RXF_BC_OK
},
414 { "tx_multicast", XM_TXF_MC_OK
, GM_TXF_MC_OK
},
415 { "rx_multicast", XM_RXF_MC_OK
, GM_RXF_MC_OK
},
416 { "tx_unicast", XM_TXF_UC_OK
, GM_TXF_UC_OK
},
417 { "rx_unicast", XM_RXF_UC_OK
, GM_RXF_UC_OK
},
418 { "tx_mac_pause", XM_TXF_MPAUSE
, GM_TXF_MPAUSE
},
419 { "rx_mac_pause", XM_RXF_MPAUSE
, GM_RXF_MPAUSE
},
421 { "collisions", XM_TXF_SNG_COL
, GM_TXF_SNG_COL
},
422 { "multi_collisions", XM_TXF_MUL_COL
, GM_TXF_MUL_COL
},
423 { "aborted", XM_TXF_ABO_COL
, GM_TXF_ABO_COL
},
424 { "late_collision", XM_TXF_LAT_COL
, GM_TXF_LAT_COL
},
425 { "fifo_underrun", XM_TXE_FIFO_UR
, GM_TXE_FIFO_UR
},
426 { "fifo_overflow", XM_RXE_FIFO_OV
, GM_RXE_FIFO_OV
},
428 { "rx_toolong", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
429 { "rx_jabber", XM_RXF_JAB_PKT
, GM_RXF_JAB_PKT
},
430 { "rx_runt", XM_RXE_RUNT
, GM_RXE_FRAG
},
431 { "rx_too_long", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
432 { "rx_fcs_error", XM_RXF_FCS_ERR
, GM_RXF_FCS_ERR
},
435 static int skge_get_sset_count(struct net_device
*dev
, int sset
)
439 return ARRAY_SIZE(skge_stats
);
445 static void skge_get_ethtool_stats(struct net_device
*dev
,
446 struct ethtool_stats
*stats
, u64
*data
)
448 struct skge_port
*skge
= netdev_priv(dev
);
450 if (is_genesis(skge
->hw
))
451 genesis_get_stats(skge
, data
);
453 yukon_get_stats(skge
, data
);
456 /* Use hardware MIB variables for critical path statistics and
457 * transmit feedback not reported at interrupt.
458 * Other errors are accounted for in interrupt handler.
460 static struct net_device_stats
*skge_get_stats(struct net_device
*dev
)
462 struct skge_port
*skge
= netdev_priv(dev
);
463 u64 data
[ARRAY_SIZE(skge_stats
)];
465 if (is_genesis(skge
->hw
))
466 genesis_get_stats(skge
, data
);
468 yukon_get_stats(skge
, data
);
470 dev
->stats
.tx_bytes
= data
[0];
471 dev
->stats
.rx_bytes
= data
[1];
472 dev
->stats
.tx_packets
= data
[2] + data
[4] + data
[6];
473 dev
->stats
.rx_packets
= data
[3] + data
[5] + data
[7];
474 dev
->stats
.multicast
= data
[3] + data
[5];
475 dev
->stats
.collisions
= data
[10];
476 dev
->stats
.tx_aborted_errors
= data
[12];
481 static void skge_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
487 for (i
= 0; i
< ARRAY_SIZE(skge_stats
); i
++)
488 memcpy(data
+ i
* ETH_GSTRING_LEN
,
489 skge_stats
[i
].name
, ETH_GSTRING_LEN
);
494 static void skge_get_ring_param(struct net_device
*dev
,
495 struct ethtool_ringparam
*p
)
497 struct skge_port
*skge
= netdev_priv(dev
);
499 p
->rx_max_pending
= MAX_RX_RING_SIZE
;
500 p
->tx_max_pending
= MAX_TX_RING_SIZE
;
502 p
->rx_pending
= skge
->rx_ring
.count
;
503 p
->tx_pending
= skge
->tx_ring
.count
;
506 static int skge_set_ring_param(struct net_device
*dev
,
507 struct ethtool_ringparam
*p
)
509 struct skge_port
*skge
= netdev_priv(dev
);
512 if (p
->rx_pending
== 0 || p
->rx_pending
> MAX_RX_RING_SIZE
||
513 p
->tx_pending
< TX_LOW_WATER
|| p
->tx_pending
> MAX_TX_RING_SIZE
)
516 skge
->rx_ring
.count
= p
->rx_pending
;
517 skge
->tx_ring
.count
= p
->tx_pending
;
519 if (netif_running(dev
)) {
529 static u32
skge_get_msglevel(struct net_device
*netdev
)
531 struct skge_port
*skge
= netdev_priv(netdev
);
532 return skge
->msg_enable
;
535 static void skge_set_msglevel(struct net_device
*netdev
, u32 value
)
537 struct skge_port
*skge
= netdev_priv(netdev
);
538 skge
->msg_enable
= value
;
541 static int skge_nway_reset(struct net_device
*dev
)
543 struct skge_port
*skge
= netdev_priv(dev
);
545 if (skge
->autoneg
!= AUTONEG_ENABLE
|| !netif_running(dev
))
548 skge_phy_reset(skge
);
552 static void skge_get_pauseparam(struct net_device
*dev
,
553 struct ethtool_pauseparam
*ecmd
)
555 struct skge_port
*skge
= netdev_priv(dev
);
557 ecmd
->rx_pause
= ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
) ||
558 (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
));
559 ecmd
->tx_pause
= (ecmd
->rx_pause
||
560 (skge
->flow_control
== FLOW_MODE_LOC_SEND
));
562 ecmd
->autoneg
= ecmd
->rx_pause
|| ecmd
->tx_pause
;
565 static int skge_set_pauseparam(struct net_device
*dev
,
566 struct ethtool_pauseparam
*ecmd
)
568 struct skge_port
*skge
= netdev_priv(dev
);
569 struct ethtool_pauseparam old
;
572 skge_get_pauseparam(dev
, &old
);
574 if (ecmd
->autoneg
!= old
.autoneg
)
575 skge
->flow_control
= ecmd
->autoneg
? FLOW_MODE_NONE
: FLOW_MODE_SYMMETRIC
;
577 if (ecmd
->rx_pause
&& ecmd
->tx_pause
)
578 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
579 else if (ecmd
->rx_pause
&& !ecmd
->tx_pause
)
580 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
581 else if (!ecmd
->rx_pause
&& ecmd
->tx_pause
)
582 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
584 skge
->flow_control
= FLOW_MODE_NONE
;
587 if (netif_running(dev
)) {
599 /* Chip internal frequency for clock calculations */
600 static inline u32
hwkhz(const struct skge_hw
*hw
)
602 return is_genesis(hw
) ? 53125 : 78125;
605 /* Chip HZ to microseconds */
606 static inline u32
skge_clk2usec(const struct skge_hw
*hw
, u32 ticks
)
608 return (ticks
* 1000) / hwkhz(hw
);
611 /* Microseconds to chip HZ */
612 static inline u32
skge_usecs2clk(const struct skge_hw
*hw
, u32 usec
)
614 return hwkhz(hw
) * usec
/ 1000;
617 static int skge_get_coalesce(struct net_device
*dev
,
618 struct ethtool_coalesce
*ecmd
)
620 struct skge_port
*skge
= netdev_priv(dev
);
621 struct skge_hw
*hw
= skge
->hw
;
622 int port
= skge
->port
;
624 ecmd
->rx_coalesce_usecs
= 0;
625 ecmd
->tx_coalesce_usecs
= 0;
627 if (skge_read32(hw
, B2_IRQM_CTRL
) & TIM_START
) {
628 u32 delay
= skge_clk2usec(hw
, skge_read32(hw
, B2_IRQM_INI
));
629 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
631 if (msk
& rxirqmask
[port
])
632 ecmd
->rx_coalesce_usecs
= delay
;
633 if (msk
& txirqmask
[port
])
634 ecmd
->tx_coalesce_usecs
= delay
;
640 /* Note: interrupt timer is per board, but can turn on/off per port */
641 static int skge_set_coalesce(struct net_device
*dev
,
642 struct ethtool_coalesce
*ecmd
)
644 struct skge_port
*skge
= netdev_priv(dev
);
645 struct skge_hw
*hw
= skge
->hw
;
646 int port
= skge
->port
;
647 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
650 if (ecmd
->rx_coalesce_usecs
== 0)
651 msk
&= ~rxirqmask
[port
];
652 else if (ecmd
->rx_coalesce_usecs
< 25 ||
653 ecmd
->rx_coalesce_usecs
> 33333)
656 msk
|= rxirqmask
[port
];
657 delay
= ecmd
->rx_coalesce_usecs
;
660 if (ecmd
->tx_coalesce_usecs
== 0)
661 msk
&= ~txirqmask
[port
];
662 else if (ecmd
->tx_coalesce_usecs
< 25 ||
663 ecmd
->tx_coalesce_usecs
> 33333)
666 msk
|= txirqmask
[port
];
667 delay
= min(delay
, ecmd
->rx_coalesce_usecs
);
670 skge_write32(hw
, B2_IRQM_MSK
, msk
);
672 skge_write32(hw
, B2_IRQM_CTRL
, TIM_STOP
);
674 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, delay
));
675 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
680 enum led_mode
{ LED_MODE_OFF
, LED_MODE_ON
, LED_MODE_TST
};
681 static void skge_led(struct skge_port
*skge
, enum led_mode mode
)
683 struct skge_hw
*hw
= skge
->hw
;
684 int port
= skge
->port
;
686 spin_lock_bh(&hw
->phy_lock
);
687 if (is_genesis(hw
)) {
690 if (hw
->phy_type
== SK_PHY_BCOM
)
691 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_OFF
);
693 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 0);
694 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_T_OFF
);
696 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_OFF
);
697 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 0);
698 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_T_OFF
);
702 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
703 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_LINKSYNC_ON
);
705 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
706 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
711 skge_write8(hw
, SK_REG(port
, RX_LED_TST
), LED_T_ON
);
712 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 100);
713 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
715 if (hw
->phy_type
== SK_PHY_BCOM
)
716 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_ON
);
718 skge_write8(hw
, SK_REG(port
, TX_LED_TST
), LED_T_ON
);
719 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 100);
720 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
727 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
728 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
729 PHY_M_LED_MO_DUP(MO_LED_OFF
) |
730 PHY_M_LED_MO_10(MO_LED_OFF
) |
731 PHY_M_LED_MO_100(MO_LED_OFF
) |
732 PHY_M_LED_MO_1000(MO_LED_OFF
) |
733 PHY_M_LED_MO_RX(MO_LED_OFF
));
736 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
,
737 PHY_M_LED_PULS_DUR(PULS_170MS
) |
738 PHY_M_LED_BLINK_RT(BLINK_84MS
) |
742 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
743 PHY_M_LED_MO_RX(MO_LED_OFF
) |
744 (skge
->speed
== SPEED_100
?
745 PHY_M_LED_MO_100(MO_LED_ON
) : 0));
748 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
749 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
750 PHY_M_LED_MO_DUP(MO_LED_ON
) |
751 PHY_M_LED_MO_10(MO_LED_ON
) |
752 PHY_M_LED_MO_100(MO_LED_ON
) |
753 PHY_M_LED_MO_1000(MO_LED_ON
) |
754 PHY_M_LED_MO_RX(MO_LED_ON
));
757 spin_unlock_bh(&hw
->phy_lock
);
760 /* blink LED's for finding board */
761 static int skge_set_phys_id(struct net_device
*dev
,
762 enum ethtool_phys_id_state state
)
764 struct skge_port
*skge
= netdev_priv(dev
);
767 case ETHTOOL_ID_ACTIVE
:
768 return 2; /* cycle on/off twice per second */
771 skge_led(skge
, LED_MODE_TST
);
775 skge_led(skge
, LED_MODE_OFF
);
778 case ETHTOOL_ID_INACTIVE
:
779 /* back to regular LED state */
780 skge_led(skge
, netif_running(dev
) ? LED_MODE_ON
: LED_MODE_OFF
);
786 static int skge_get_eeprom_len(struct net_device
*dev
)
788 struct skge_port
*skge
= netdev_priv(dev
);
791 pci_read_config_dword(skge
->hw
->pdev
, PCI_DEV_REG2
, ®2
);
792 return 1 << (((reg2
& PCI_VPD_ROM_SZ
) >> 14) + 8);
795 static u32
skge_vpd_read(struct pci_dev
*pdev
, int cap
, u16 offset
)
799 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
, offset
);
802 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
803 } while (!(offset
& PCI_VPD_ADDR_F
));
805 pci_read_config_dword(pdev
, cap
+ PCI_VPD_DATA
, &val
);
809 static void skge_vpd_write(struct pci_dev
*pdev
, int cap
, u16 offset
, u32 val
)
811 pci_write_config_dword(pdev
, cap
+ PCI_VPD_DATA
, val
);
812 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
,
813 offset
| PCI_VPD_ADDR_F
);
816 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
817 } while (offset
& PCI_VPD_ADDR_F
);
820 static int skge_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
823 struct skge_port
*skge
= netdev_priv(dev
);
824 struct pci_dev
*pdev
= skge
->hw
->pdev
;
825 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
826 int length
= eeprom
->len
;
827 u16 offset
= eeprom
->offset
;
832 eeprom
->magic
= SKGE_EEPROM_MAGIC
;
835 u32 val
= skge_vpd_read(pdev
, cap
, offset
);
836 int n
= min_t(int, length
, sizeof(val
));
838 memcpy(data
, &val
, n
);
846 static int skge_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
849 struct skge_port
*skge
= netdev_priv(dev
);
850 struct pci_dev
*pdev
= skge
->hw
->pdev
;
851 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
852 int length
= eeprom
->len
;
853 u16 offset
= eeprom
->offset
;
858 if (eeprom
->magic
!= SKGE_EEPROM_MAGIC
)
863 int n
= min_t(int, length
, sizeof(val
));
866 val
= skge_vpd_read(pdev
, cap
, offset
);
867 memcpy(&val
, data
, n
);
869 skge_vpd_write(pdev
, cap
, offset
, val
);
878 static const struct ethtool_ops skge_ethtool_ops
= {
879 .supported_coalesce_params
= ETHTOOL_COALESCE_USECS
,
880 .get_drvinfo
= skge_get_drvinfo
,
881 .get_regs_len
= skge_get_regs_len
,
882 .get_regs
= skge_get_regs
,
883 .get_wol
= skge_get_wol
,
884 .set_wol
= skge_set_wol
,
885 .get_msglevel
= skge_get_msglevel
,
886 .set_msglevel
= skge_set_msglevel
,
887 .nway_reset
= skge_nway_reset
,
888 .get_link
= ethtool_op_get_link
,
889 .get_eeprom_len
= skge_get_eeprom_len
,
890 .get_eeprom
= skge_get_eeprom
,
891 .set_eeprom
= skge_set_eeprom
,
892 .get_ringparam
= skge_get_ring_param
,
893 .set_ringparam
= skge_set_ring_param
,
894 .get_pauseparam
= skge_get_pauseparam
,
895 .set_pauseparam
= skge_set_pauseparam
,
896 .get_coalesce
= skge_get_coalesce
,
897 .set_coalesce
= skge_set_coalesce
,
898 .get_strings
= skge_get_strings
,
899 .set_phys_id
= skge_set_phys_id
,
900 .get_sset_count
= skge_get_sset_count
,
901 .get_ethtool_stats
= skge_get_ethtool_stats
,
902 .get_link_ksettings
= skge_get_link_ksettings
,
903 .set_link_ksettings
= skge_set_link_ksettings
,
907 * Allocate ring elements and chain them together
908 * One-to-one association of board descriptors with ring elements
910 static int skge_ring_alloc(struct skge_ring
*ring
, void *vaddr
, u32 base
)
912 struct skge_tx_desc
*d
;
913 struct skge_element
*e
;
916 ring
->start
= kcalloc(ring
->count
, sizeof(*e
), GFP_KERNEL
);
920 for (i
= 0, e
= ring
->start
, d
= vaddr
; i
< ring
->count
; i
++, e
++, d
++) {
922 if (i
== ring
->count
- 1) {
923 e
->next
= ring
->start
;
924 d
->next_offset
= base
;
927 d
->next_offset
= base
+ (i
+1) * sizeof(*d
);
930 ring
->to_use
= ring
->to_clean
= ring
->start
;
935 /* Allocate and setup a new buffer for receiving */
936 static int skge_rx_setup(struct skge_port
*skge
, struct skge_element
*e
,
937 struct sk_buff
*skb
, unsigned int bufsize
)
939 struct skge_rx_desc
*rd
= e
->desc
;
942 map
= dma_map_single(&skge
->hw
->pdev
->dev
, skb
->data
, bufsize
,
945 if (dma_mapping_error(&skge
->hw
->pdev
->dev
, map
))
948 rd
->dma_lo
= lower_32_bits(map
);
949 rd
->dma_hi
= upper_32_bits(map
);
951 rd
->csum1_start
= ETH_HLEN
;
952 rd
->csum2_start
= ETH_HLEN
;
958 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| bufsize
;
959 dma_unmap_addr_set(e
, mapaddr
, map
);
960 dma_unmap_len_set(e
, maplen
, bufsize
);
964 /* Resume receiving using existing skb,
965 * Note: DMA address is not changed by chip.
966 * MTU not changed while receiver active.
968 static inline void skge_rx_reuse(struct skge_element
*e
, unsigned int size
)
970 struct skge_rx_desc
*rd
= e
->desc
;
973 rd
->csum2_start
= ETH_HLEN
;
977 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| size
;
981 /* Free all buffers in receive ring, assumes receiver stopped */
982 static void skge_rx_clean(struct skge_port
*skge
)
984 struct skge_hw
*hw
= skge
->hw
;
985 struct skge_ring
*ring
= &skge
->rx_ring
;
986 struct skge_element
*e
;
990 struct skge_rx_desc
*rd
= e
->desc
;
993 dma_unmap_single(&hw
->pdev
->dev
,
994 dma_unmap_addr(e
, mapaddr
),
995 dma_unmap_len(e
, maplen
),
997 dev_kfree_skb(e
->skb
);
1000 } while ((e
= e
->next
) != ring
->start
);
1004 /* Allocate buffers for receive ring
1005 * For receive: to_clean is next received frame.
1007 static int skge_rx_fill(struct net_device
*dev
)
1009 struct skge_port
*skge
= netdev_priv(dev
);
1010 struct skge_ring
*ring
= &skge
->rx_ring
;
1011 struct skge_element
*e
;
1015 struct sk_buff
*skb
;
1017 skb
= __netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
,
1022 skb_reserve(skb
, NET_IP_ALIGN
);
1023 if (skge_rx_setup(skge
, e
, skb
, skge
->rx_buf_size
) < 0) {
1027 } while ((e
= e
->next
) != ring
->start
);
1029 ring
->to_clean
= ring
->start
;
1033 static const char *skge_pause(enum pause_status status
)
1036 case FLOW_STAT_NONE
:
1038 case FLOW_STAT_REM_SEND
:
1040 case FLOW_STAT_LOC_SEND
:
1042 case FLOW_STAT_SYMMETRIC
: /* Both station may send PAUSE */
1045 return "indeterminated";
1050 static void skge_link_up(struct skge_port
*skge
)
1052 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
),
1053 LED_BLK_OFF
|LED_SYNC_OFF
|LED_REG_ON
);
1055 netif_carrier_on(skge
->netdev
);
1056 netif_wake_queue(skge
->netdev
);
1058 netif_info(skge
, link
, skge
->netdev
,
1059 "Link is up at %d Mbps, %s duplex, flow control %s\n",
1061 skge
->duplex
== DUPLEX_FULL
? "full" : "half",
1062 skge_pause(skge
->flow_status
));
1065 static void skge_link_down(struct skge_port
*skge
)
1067 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_REG_OFF
);
1068 netif_carrier_off(skge
->netdev
);
1069 netif_stop_queue(skge
->netdev
);
1071 netif_info(skge
, link
, skge
->netdev
, "Link is down\n");
1074 static void xm_link_down(struct skge_hw
*hw
, int port
)
1076 struct net_device
*dev
= hw
->dev
[port
];
1077 struct skge_port
*skge
= netdev_priv(dev
);
1079 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1081 if (netif_carrier_ok(dev
))
1082 skge_link_down(skge
);
1085 static int __xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1089 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1090 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1092 if (hw
->phy_type
== SK_PHY_XMAC
)
1095 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1096 if (xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_RDY
)
1103 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1108 static u16
xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1111 if (__xm_phy_read(hw
, port
, reg
, &v
))
1112 pr_warn("%s: phy read timed out\n", hw
->dev
[port
]->name
);
1116 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1120 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1121 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1122 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1129 xm_write16(hw
, port
, XM_PHY_DATA
, val
);
1130 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1131 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1138 static void genesis_init(struct skge_hw
*hw
)
1140 /* set blink source counter */
1141 skge_write32(hw
, B2_BSC_INI
, (SK_BLK_DUR
* SK_FACT_53
) / 100);
1142 skge_write8(hw
, B2_BSC_CTRL
, BSC_START
);
1144 /* configure mac arbiter */
1145 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1147 /* configure mac arbiter timeout values */
1148 skge_write8(hw
, B3_MA_TOINI_RX1
, SK_MAC_TO_53
);
1149 skge_write8(hw
, B3_MA_TOINI_RX2
, SK_MAC_TO_53
);
1150 skge_write8(hw
, B3_MA_TOINI_TX1
, SK_MAC_TO_53
);
1151 skge_write8(hw
, B3_MA_TOINI_TX2
, SK_MAC_TO_53
);
1153 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1154 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1155 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1156 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1158 /* configure packet arbiter timeout */
1159 skge_write16(hw
, B3_PA_CTRL
, PA_RST_CLR
);
1160 skge_write16(hw
, B3_PA_TOINI_RX1
, SK_PKT_TO_MAX
);
1161 skge_write16(hw
, B3_PA_TOINI_TX1
, SK_PKT_TO_MAX
);
1162 skge_write16(hw
, B3_PA_TOINI_RX2
, SK_PKT_TO_MAX
);
1163 skge_write16(hw
, B3_PA_TOINI_TX2
, SK_PKT_TO_MAX
);
1166 static void genesis_reset(struct skge_hw
*hw
, int port
)
1168 static const u8 zero
[8] = { 0 };
1171 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
1173 /* reset the statistics module */
1174 xm_write32(hw
, port
, XM_GP_PORT
, XM_GP_RES_STAT
);
1175 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1176 xm_write32(hw
, port
, XM_MODE
, 0); /* clear Mode Reg */
1177 xm_write16(hw
, port
, XM_TX_CMD
, 0); /* reset TX CMD Reg */
1178 xm_write16(hw
, port
, XM_RX_CMD
, 0); /* reset RX CMD Reg */
1180 /* disable Broadcom PHY IRQ */
1181 if (hw
->phy_type
== SK_PHY_BCOM
)
1182 xm_write16(hw
, port
, PHY_BCOM_INT_MASK
, 0xffff);
1184 xm_outhash(hw
, port
, XM_HSM
, zero
);
1186 /* Flush TX and RX fifo */
1187 reg
= xm_read32(hw
, port
, XM_MODE
);
1188 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FTF
);
1189 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FRF
);
1192 /* Convert mode to MII values */
1193 static const u16 phy_pause_map
[] = {
1194 [FLOW_MODE_NONE
] = 0,
1195 [FLOW_MODE_LOC_SEND
] = PHY_AN_PAUSE_ASYM
,
1196 [FLOW_MODE_SYMMETRIC
] = PHY_AN_PAUSE_CAP
,
1197 [FLOW_MODE_SYM_OR_REM
] = PHY_AN_PAUSE_CAP
| PHY_AN_PAUSE_ASYM
,
1200 /* special defines for FIBER (88E1011S only) */
1201 static const u16 fiber_pause_map
[] = {
1202 [FLOW_MODE_NONE
] = PHY_X_P_NO_PAUSE
,
1203 [FLOW_MODE_LOC_SEND
] = PHY_X_P_ASYM_MD
,
1204 [FLOW_MODE_SYMMETRIC
] = PHY_X_P_SYM_MD
,
1205 [FLOW_MODE_SYM_OR_REM
] = PHY_X_P_BOTH_MD
,
1209 /* Check status of Broadcom phy link */
1210 static void bcom_check_link(struct skge_hw
*hw
, int port
)
1212 struct net_device
*dev
= hw
->dev
[port
];
1213 struct skge_port
*skge
= netdev_priv(dev
);
1216 /* read twice because of latch */
1217 xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1218 status
= xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1220 if ((status
& PHY_ST_LSYNC
) == 0) {
1221 xm_link_down(hw
, port
);
1225 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1228 if (!(status
& PHY_ST_AN_OVER
))
1231 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1232 if (lpa
& PHY_B_AN_RF
) {
1233 netdev_notice(dev
, "remote fault\n");
1237 aux
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_STAT
);
1239 /* Check Duplex mismatch */
1240 switch (aux
& PHY_B_AS_AN_RES_MSK
) {
1241 case PHY_B_RES_1000FD
:
1242 skge
->duplex
= DUPLEX_FULL
;
1244 case PHY_B_RES_1000HD
:
1245 skge
->duplex
= DUPLEX_HALF
;
1248 netdev_notice(dev
, "duplex mismatch\n");
1252 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1253 switch (aux
& PHY_B_AS_PAUSE_MSK
) {
1254 case PHY_B_AS_PAUSE_MSK
:
1255 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1258 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1261 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1264 skge
->flow_status
= FLOW_STAT_NONE
;
1266 skge
->speed
= SPEED_1000
;
1269 if (!netif_carrier_ok(dev
))
1270 genesis_link_up(skge
);
1273 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1274 * Phy on for 100 or 10Mbit operation
1276 static void bcom_phy_init(struct skge_port
*skge
)
1278 struct skge_hw
*hw
= skge
->hw
;
1279 int port
= skge
->port
;
1281 u16 id1
, r
, ext
, ctl
;
1283 /* magic workaround patterns for Broadcom */
1284 static const struct {
1288 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1289 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1290 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1291 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1293 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1294 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1297 /* read Id from external PHY (all have the same address) */
1298 id1
= xm_phy_read(hw
, port
, PHY_XMAC_ID1
);
1300 /* Optimize MDIO transfer by suppressing preamble. */
1301 r
= xm_read16(hw
, port
, XM_MMU_CMD
);
1303 xm_write16(hw
, port
, XM_MMU_CMD
, r
);
1306 case PHY_BCOM_ID1_C0
:
1308 * Workaround BCOM Errata for the C0 type.
1309 * Write magic patterns to reserved registers.
1311 for (i
= 0; i
< ARRAY_SIZE(C0hack
); i
++)
1312 xm_phy_write(hw
, port
,
1313 C0hack
[i
].reg
, C0hack
[i
].val
);
1316 case PHY_BCOM_ID1_A1
:
1318 * Workaround BCOM Errata for the A1 type.
1319 * Write magic patterns to reserved registers.
1321 for (i
= 0; i
< ARRAY_SIZE(A1hack
); i
++)
1322 xm_phy_write(hw
, port
,
1323 A1hack
[i
].reg
, A1hack
[i
].val
);
1328 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1329 * Disable Power Management after reset.
1331 r
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
);
1332 r
|= PHY_B_AC_DIS_PM
;
1333 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
, r
);
1336 xm_read16(hw
, port
, XM_ISRC
);
1338 ext
= PHY_B_PEC_EN_LTR
; /* enable tx led */
1339 ctl
= PHY_CT_SP1000
; /* always 1000mbit */
1341 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1343 * Workaround BCOM Errata #1 for the C5 type.
1344 * 1000Base-T Link Acquisition Failure in Slave Mode
1345 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1347 u16 adv
= PHY_B_1000C_RD
;
1348 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1349 adv
|= PHY_B_1000C_AHD
;
1350 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1351 adv
|= PHY_B_1000C_AFD
;
1352 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, adv
);
1354 ctl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1356 if (skge
->duplex
== DUPLEX_FULL
)
1357 ctl
|= PHY_CT_DUP_MD
;
1358 /* Force to slave */
1359 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, PHY_B_1000C_MSE
);
1362 /* Set autonegotiation pause parameters */
1363 xm_phy_write(hw
, port
, PHY_BCOM_AUNE_ADV
,
1364 phy_pause_map
[skge
->flow_control
] | PHY_AN_CSMA
);
1366 /* Handle Jumbo frames */
1367 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
) {
1368 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1369 PHY_B_AC_TX_TST
| PHY_B_AC_LONG_PACK
);
1371 ext
|= PHY_B_PEC_HIGH_LA
;
1375 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, ext
);
1376 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
, ctl
);
1378 /* Use link status change interrupt */
1379 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1382 static void xm_phy_init(struct skge_port
*skge
)
1384 struct skge_hw
*hw
= skge
->hw
;
1385 int port
= skge
->port
;
1388 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1389 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1390 ctrl
|= PHY_X_AN_HD
;
1391 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1392 ctrl
|= PHY_X_AN_FD
;
1394 ctrl
|= fiber_pause_map
[skge
->flow_control
];
1396 xm_phy_write(hw
, port
, PHY_XMAC_AUNE_ADV
, ctrl
);
1398 /* Restart Auto-negotiation */
1399 ctrl
= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1401 /* Set DuplexMode in Config register */
1402 if (skge
->duplex
== DUPLEX_FULL
)
1403 ctrl
|= PHY_CT_DUP_MD
;
1405 * Do NOT enable Auto-negotiation here. This would hold
1406 * the link down because no IDLEs are transmitted
1410 xm_phy_write(hw
, port
, PHY_XMAC_CTRL
, ctrl
);
1412 /* Poll PHY for status changes */
1413 mod_timer(&skge
->link_timer
, jiffies
+ LINK_HZ
);
1416 static int xm_check_link(struct net_device
*dev
)
1418 struct skge_port
*skge
= netdev_priv(dev
);
1419 struct skge_hw
*hw
= skge
->hw
;
1420 int port
= skge
->port
;
1423 /* read twice because of latch */
1424 xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1425 status
= xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1427 if ((status
& PHY_ST_LSYNC
) == 0) {
1428 xm_link_down(hw
, port
);
1432 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1435 if (!(status
& PHY_ST_AN_OVER
))
1438 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1439 if (lpa
& PHY_B_AN_RF
) {
1440 netdev_notice(dev
, "remote fault\n");
1444 res
= xm_phy_read(hw
, port
, PHY_XMAC_RES_ABI
);
1446 /* Check Duplex mismatch */
1447 switch (res
& (PHY_X_RS_HD
| PHY_X_RS_FD
)) {
1449 skge
->duplex
= DUPLEX_FULL
;
1452 skge
->duplex
= DUPLEX_HALF
;
1455 netdev_notice(dev
, "duplex mismatch\n");
1459 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1460 if ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
||
1461 skge
->flow_control
== FLOW_MODE_SYM_OR_REM
) &&
1462 (lpa
& PHY_X_P_SYM_MD
))
1463 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1464 else if (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
&&
1465 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_ASYM_MD
)
1466 /* Enable PAUSE receive, disable PAUSE transmit */
1467 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1468 else if (skge
->flow_control
== FLOW_MODE_LOC_SEND
&&
1469 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_BOTH_MD
)
1470 /* Disable PAUSE receive, enable PAUSE transmit */
1471 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1473 skge
->flow_status
= FLOW_STAT_NONE
;
1475 skge
->speed
= SPEED_1000
;
1478 if (!netif_carrier_ok(dev
))
1479 genesis_link_up(skge
);
1483 /* Poll to check for link coming up.
1485 * Since internal PHY is wired to a level triggered pin, can't
1486 * get an interrupt when carrier is detected, need to poll for
1489 static void xm_link_timer(struct timer_list
*t
)
1491 struct skge_port
*skge
= from_timer(skge
, t
, link_timer
);
1492 struct net_device
*dev
= skge
->netdev
;
1493 struct skge_hw
*hw
= skge
->hw
;
1494 int port
= skge
->port
;
1496 unsigned long flags
;
1498 if (!netif_running(dev
))
1501 spin_lock_irqsave(&hw
->phy_lock
, flags
);
1504 * Verify that the link by checking GPIO register three times.
1505 * This pin has the signal from the link_sync pin connected to it.
1507 for (i
= 0; i
< 3; i
++) {
1508 if (xm_read16(hw
, port
, XM_GP_PORT
) & XM_GP_INP_ASS
)
1512 /* Re-enable interrupt to detect link down */
1513 if (xm_check_link(dev
)) {
1514 u16 msk
= xm_read16(hw
, port
, XM_IMSK
);
1515 msk
&= ~XM_IS_INP_ASS
;
1516 xm_write16(hw
, port
, XM_IMSK
, msk
);
1517 xm_read16(hw
, port
, XM_ISRC
);
1520 mod_timer(&skge
->link_timer
,
1521 round_jiffies(jiffies
+ LINK_HZ
));
1523 spin_unlock_irqrestore(&hw
->phy_lock
, flags
);
1526 static void genesis_mac_init(struct skge_hw
*hw
, int port
)
1528 struct net_device
*dev
= hw
->dev
[port
];
1529 struct skge_port
*skge
= netdev_priv(dev
);
1530 int jumbo
= hw
->dev
[port
]->mtu
> ETH_DATA_LEN
;
1533 static const u8 zero
[6] = { 0 };
1535 for (i
= 0; i
< 10; i
++) {
1536 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
1538 if (skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
)
1543 netdev_warn(dev
, "genesis reset failed\n");
1546 /* Unreset the XMAC. */
1547 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1550 * Perform additional initialization for external PHYs,
1551 * namely for the 1000baseTX cards that use the XMAC's
1554 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1555 /* Take external Phy out of reset */
1556 r
= skge_read32(hw
, B2_GP_IO
);
1558 r
|= GP_DIR_0
|GP_IO_0
;
1560 r
|= GP_DIR_2
|GP_IO_2
;
1562 skge_write32(hw
, B2_GP_IO
, r
);
1564 /* Enable GMII interface */
1565 xm_write16(hw
, port
, XM_HW_CFG
, XM_HW_GMII_MD
);
1569 switch (hw
->phy_type
) {
1574 bcom_phy_init(skge
);
1575 bcom_check_link(hw
, port
);
1578 /* Set Station Address */
1579 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
1581 /* We don't use match addresses so clear */
1582 for (i
= 1; i
< 16; i
++)
1583 xm_outaddr(hw
, port
, XM_EXM(i
), zero
);
1585 /* Clear MIB counters */
1586 xm_write16(hw
, port
, XM_STAT_CMD
,
1587 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1588 /* Clear two times according to Errata #3 */
1589 xm_write16(hw
, port
, XM_STAT_CMD
,
1590 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1592 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1593 xm_write16(hw
, port
, XM_RX_HI_WM
, 1450);
1595 /* We don't need the FCS appended to the packet. */
1596 r
= XM_RX_LENERR_OK
| XM_RX_STRIP_FCS
;
1598 r
|= XM_RX_BIG_PK_OK
;
1600 if (skge
->duplex
== DUPLEX_HALF
) {
1602 * If in manual half duplex mode the other side might be in
1603 * full duplex mode, so ignore if a carrier extension is not seen
1604 * on frames received
1606 r
|= XM_RX_DIS_CEXT
;
1608 xm_write16(hw
, port
, XM_RX_CMD
, r
);
1610 /* We want short frames padded to 60 bytes. */
1611 xm_write16(hw
, port
, XM_TX_CMD
, XM_TX_AUTO_PAD
);
1613 /* Increase threshold for jumbo frames on dual port */
1614 if (hw
->ports
> 1 && jumbo
)
1615 xm_write16(hw
, port
, XM_TX_THR
, 1020);
1617 xm_write16(hw
, port
, XM_TX_THR
, 512);
1620 * Enable the reception of all error frames. This is is
1621 * a necessary evil due to the design of the XMAC. The
1622 * XMAC's receive FIFO is only 8K in size, however jumbo
1623 * frames can be up to 9000 bytes in length. When bad
1624 * frame filtering is enabled, the XMAC's RX FIFO operates
1625 * in 'store and forward' mode. For this to work, the
1626 * entire frame has to fit into the FIFO, but that means
1627 * that jumbo frames larger than 8192 bytes will be
1628 * truncated. Disabling all bad frame filtering causes
1629 * the RX FIFO to operate in streaming mode, in which
1630 * case the XMAC will start transferring frames out of the
1631 * RX FIFO as soon as the FIFO threshold is reached.
1633 xm_write32(hw
, port
, XM_MODE
, XM_DEF_MODE
);
1637 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1638 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1639 * and 'Octets Rx OK Hi Cnt Ov'.
1641 xm_write32(hw
, port
, XM_RX_EV_MSK
, XMR_DEF_MSK
);
1644 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1645 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1646 * and 'Octets Tx OK Hi Cnt Ov'.
1648 xm_write32(hw
, port
, XM_TX_EV_MSK
, XMT_DEF_MSK
);
1650 /* Configure MAC arbiter */
1651 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1653 /* configure timeout values */
1654 skge_write8(hw
, B3_MA_TOINI_RX1
, 72);
1655 skge_write8(hw
, B3_MA_TOINI_RX2
, 72);
1656 skge_write8(hw
, B3_MA_TOINI_TX1
, 72);
1657 skge_write8(hw
, B3_MA_TOINI_TX2
, 72);
1659 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1660 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1661 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1662 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1664 /* Configure Rx MAC FIFO */
1665 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_CLR
);
1666 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_TIM_PAT
);
1667 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1669 /* Configure Tx MAC FIFO */
1670 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_CLR
);
1671 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_TX_CTRL_DEF
);
1672 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1675 /* Enable frame flushing if jumbo frames used */
1676 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_FLUSH
);
1678 /* enable timeout timers if normal frames */
1679 skge_write16(hw
, B3_PA_CTRL
,
1680 (port
== 0) ? PA_ENA_TO_TX1
: PA_ENA_TO_TX2
);
1684 static void genesis_stop(struct skge_port
*skge
)
1686 struct skge_hw
*hw
= skge
->hw
;
1687 int port
= skge
->port
;
1688 unsigned retries
= 1000;
1691 /* Disable Tx and Rx */
1692 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1693 cmd
&= ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1694 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1696 genesis_reset(hw
, port
);
1698 /* Clear Tx packet arbiter timeout IRQ */
1699 skge_write16(hw
, B3_PA_CTRL
,
1700 port
== 0 ? PA_CLR_TO_TX1
: PA_CLR_TO_TX2
);
1703 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1705 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_SET_MAC_RST
);
1706 if (!(skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
))
1708 } while (--retries
> 0);
1710 /* For external PHYs there must be special handling */
1711 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1712 u32 reg
= skge_read32(hw
, B2_GP_IO
);
1720 skge_write32(hw
, B2_GP_IO
, reg
);
1721 skge_read32(hw
, B2_GP_IO
);
1724 xm_write16(hw
, port
, XM_MMU_CMD
,
1725 xm_read16(hw
, port
, XM_MMU_CMD
)
1726 & ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
));
1728 xm_read16(hw
, port
, XM_MMU_CMD
);
1732 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
)
1734 struct skge_hw
*hw
= skge
->hw
;
1735 int port
= skge
->port
;
1737 unsigned long timeout
= jiffies
+ HZ
;
1739 xm_write16(hw
, port
,
1740 XM_STAT_CMD
, XM_SC_SNP_TXC
| XM_SC_SNP_RXC
);
1742 /* wait for update to complete */
1743 while (xm_read16(hw
, port
, XM_STAT_CMD
)
1744 & (XM_SC_SNP_TXC
| XM_SC_SNP_RXC
)) {
1745 if (time_after(jiffies
, timeout
))
1750 /* special case for 64 bit octet counter */
1751 data
[0] = (u64
) xm_read32(hw
, port
, XM_TXO_OK_HI
) << 32
1752 | xm_read32(hw
, port
, XM_TXO_OK_LO
);
1753 data
[1] = (u64
) xm_read32(hw
, port
, XM_RXO_OK_HI
) << 32
1754 | xm_read32(hw
, port
, XM_RXO_OK_LO
);
1756 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1757 data
[i
] = xm_read32(hw
, port
, skge_stats
[i
].xmac_offset
);
1760 static void genesis_mac_intr(struct skge_hw
*hw
, int port
)
1762 struct net_device
*dev
= hw
->dev
[port
];
1763 struct skge_port
*skge
= netdev_priv(dev
);
1764 u16 status
= xm_read16(hw
, port
, XM_ISRC
);
1766 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
1767 "mac interrupt status 0x%x\n", status
);
1769 if (hw
->phy_type
== SK_PHY_XMAC
&& (status
& XM_IS_INP_ASS
)) {
1770 xm_link_down(hw
, port
);
1771 mod_timer(&skge
->link_timer
, jiffies
+ 1);
1774 if (status
& XM_IS_TXF_UR
) {
1775 xm_write32(hw
, port
, XM_MODE
, XM_MD_FTF
);
1776 ++dev
->stats
.tx_fifo_errors
;
1780 static void genesis_link_up(struct skge_port
*skge
)
1782 struct skge_hw
*hw
= skge
->hw
;
1783 int port
= skge
->port
;
1787 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1790 * enabling pause frame reception is required for 1000BT
1791 * because the XMAC is not reset if the link is going down
1793 if (skge
->flow_status
== FLOW_STAT_NONE
||
1794 skge
->flow_status
== FLOW_STAT_LOC_SEND
)
1795 /* Disable Pause Frame Reception */
1796 cmd
|= XM_MMU_IGN_PF
;
1798 /* Enable Pause Frame Reception */
1799 cmd
&= ~XM_MMU_IGN_PF
;
1801 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1803 mode
= xm_read32(hw
, port
, XM_MODE
);
1804 if (skge
->flow_status
== FLOW_STAT_SYMMETRIC
||
1805 skge
->flow_status
== FLOW_STAT_LOC_SEND
) {
1807 * Configure Pause Frame Generation
1808 * Use internal and external Pause Frame Generation.
1809 * Sending pause frames is edge triggered.
1810 * Send a Pause frame with the maximum pause time if
1811 * internal oder external FIFO full condition occurs.
1812 * Send a zero pause time frame to re-start transmission.
1814 /* XM_PAUSE_DA = '010000C28001' (default) */
1815 /* XM_MAC_PTIME = 0xffff (maximum) */
1816 /* remember this value is defined in big endian (!) */
1817 xm_write16(hw
, port
, XM_MAC_PTIME
, 0xffff);
1819 mode
|= XM_PAUSE_MODE
;
1820 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_PAUSE
);
1823 * disable pause frame generation is required for 1000BT
1824 * because the XMAC is not reset if the link is going down
1826 /* Disable Pause Mode in Mode Register */
1827 mode
&= ~XM_PAUSE_MODE
;
1829 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_DIS_PAUSE
);
1832 xm_write32(hw
, port
, XM_MODE
, mode
);
1834 /* Turn on detection of Tx underrun */
1835 msk
= xm_read16(hw
, port
, XM_IMSK
);
1836 msk
&= ~XM_IS_TXF_UR
;
1837 xm_write16(hw
, port
, XM_IMSK
, msk
);
1839 xm_read16(hw
, port
, XM_ISRC
);
1841 /* get MMU Command Reg. */
1842 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1843 if (hw
->phy_type
!= SK_PHY_XMAC
&& skge
->duplex
== DUPLEX_FULL
)
1844 cmd
|= XM_MMU_GMII_FD
;
1847 * Workaround BCOM Errata (#10523) for all BCom Phys
1848 * Enable Power Management after link up
1850 if (hw
->phy_type
== SK_PHY_BCOM
) {
1851 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1852 xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
)
1853 & ~PHY_B_AC_DIS_PM
);
1854 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1858 xm_write16(hw
, port
, XM_MMU_CMD
,
1859 cmd
| XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1864 static inline void bcom_phy_intr(struct skge_port
*skge
)
1866 struct skge_hw
*hw
= skge
->hw
;
1867 int port
= skge
->port
;
1870 isrc
= xm_phy_read(hw
, port
, PHY_BCOM_INT_STAT
);
1871 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
1872 "phy interrupt status 0x%x\n", isrc
);
1874 if (isrc
& PHY_B_IS_PSE
)
1875 pr_err("%s: uncorrectable pair swap error\n",
1876 hw
->dev
[port
]->name
);
1878 /* Workaround BCom Errata:
1879 * enable and disable loopback mode if "NO HCD" occurs.
1881 if (isrc
& PHY_B_IS_NO_HDCL
) {
1882 u16 ctrl
= xm_phy_read(hw
, port
, PHY_BCOM_CTRL
);
1883 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1884 ctrl
| PHY_CT_LOOP
);
1885 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1886 ctrl
& ~PHY_CT_LOOP
);
1889 if (isrc
& (PHY_B_IS_AN_PR
| PHY_B_IS_LST_CHANGE
))
1890 bcom_check_link(hw
, port
);
1894 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1898 gma_write16(hw
, port
, GM_SMI_DATA
, val
);
1899 gma_write16(hw
, port
, GM_SMI_CTRL
,
1900 GM_SMI_CT_PHY_AD(hw
->phy_addr
) | GM_SMI_CT_REG_AD(reg
));
1901 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1904 if (!(gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_BUSY
))
1908 pr_warn("%s: phy write timeout\n", hw
->dev
[port
]->name
);
1912 static int __gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1916 gma_write16(hw
, port
, GM_SMI_CTRL
,
1917 GM_SMI_CT_PHY_AD(hw
->phy_addr
)
1918 | GM_SMI_CT_REG_AD(reg
) | GM_SMI_CT_OP_RD
);
1920 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1922 if (gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_RD_VAL
)
1928 *val
= gma_read16(hw
, port
, GM_SMI_DATA
);
1932 static u16
gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1935 if (__gm_phy_read(hw
, port
, reg
, &v
))
1936 pr_warn("%s: phy read timeout\n", hw
->dev
[port
]->name
);
1940 /* Marvell Phy Initialization */
1941 static void yukon_init(struct skge_hw
*hw
, int port
)
1943 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1944 u16 ctrl
, ct1000
, adv
;
1946 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1947 u16 ectrl
= gm_phy_read(hw
, port
, PHY_MARV_EXT_CTRL
);
1949 ectrl
&= ~(PHY_M_EC_M_DSC_MSK
| PHY_M_EC_S_DSC_MSK
|
1950 PHY_M_EC_MAC_S_MSK
);
1951 ectrl
|= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ
);
1953 ectrl
|= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1955 gm_phy_write(hw
, port
, PHY_MARV_EXT_CTRL
, ectrl
);
1958 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1959 if (skge
->autoneg
== AUTONEG_DISABLE
)
1960 ctrl
&= ~PHY_CT_ANE
;
1962 ctrl
|= PHY_CT_RESET
;
1963 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1969 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1971 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1972 ct1000
|= PHY_M_1000C_AFD
;
1973 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1974 ct1000
|= PHY_M_1000C_AHD
;
1975 if (skge
->advertising
& ADVERTISED_100baseT_Full
)
1976 adv
|= PHY_M_AN_100_FD
;
1977 if (skge
->advertising
& ADVERTISED_100baseT_Half
)
1978 adv
|= PHY_M_AN_100_HD
;
1979 if (skge
->advertising
& ADVERTISED_10baseT_Full
)
1980 adv
|= PHY_M_AN_10_FD
;
1981 if (skge
->advertising
& ADVERTISED_10baseT_Half
)
1982 adv
|= PHY_M_AN_10_HD
;
1984 /* Set Flow-control capabilities */
1985 adv
|= phy_pause_map
[skge
->flow_control
];
1987 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1988 adv
|= PHY_M_AN_1000X_AFD
;
1989 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1990 adv
|= PHY_M_AN_1000X_AHD
;
1992 adv
|= fiber_pause_map
[skge
->flow_control
];
1995 /* Restart Auto-negotiation */
1996 ctrl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1998 /* forced speed/duplex settings */
1999 ct1000
= PHY_M_1000C_MSE
;
2001 if (skge
->duplex
== DUPLEX_FULL
)
2002 ctrl
|= PHY_CT_DUP_MD
;
2004 switch (skge
->speed
) {
2006 ctrl
|= PHY_CT_SP1000
;
2009 ctrl
|= PHY_CT_SP100
;
2013 ctrl
|= PHY_CT_RESET
;
2016 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, ct1000
);
2018 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, adv
);
2019 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2021 /* Enable phy interrupt on autonegotiation complete (or link up) */
2022 if (skge
->autoneg
== AUTONEG_ENABLE
)
2023 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_AN_MSK
);
2025 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2028 static void yukon_reset(struct skge_hw
*hw
, int port
)
2030 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);/* disable PHY IRQs */
2031 gma_write16(hw
, port
, GM_MC_ADDR_H1
, 0); /* clear MC hash */
2032 gma_write16(hw
, port
, GM_MC_ADDR_H2
, 0);
2033 gma_write16(hw
, port
, GM_MC_ADDR_H3
, 0);
2034 gma_write16(hw
, port
, GM_MC_ADDR_H4
, 0);
2036 gma_write16(hw
, port
, GM_RX_CTRL
,
2037 gma_read16(hw
, port
, GM_RX_CTRL
)
2038 | GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2041 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2042 static int is_yukon_lite_a0(struct skge_hw
*hw
)
2047 if (hw
->chip_id
!= CHIP_ID_YUKON
)
2050 reg
= skge_read32(hw
, B2_FAR
);
2051 skge_write8(hw
, B2_FAR
+ 3, 0xff);
2052 ret
= (skge_read8(hw
, B2_FAR
+ 3) != 0);
2053 skge_write32(hw
, B2_FAR
, reg
);
2057 static void yukon_mac_init(struct skge_hw
*hw
, int port
)
2059 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
2062 const u8
*addr
= hw
->dev
[port
]->dev_addr
;
2064 /* WA code for COMA mode -- set PHY reset */
2065 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2066 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2067 reg
= skge_read32(hw
, B2_GP_IO
);
2068 reg
|= GP_DIR_9
| GP_IO_9
;
2069 skge_write32(hw
, B2_GP_IO
, reg
);
2073 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2074 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2076 /* WA code for COMA mode -- clear PHY reset */
2077 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2078 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2079 reg
= skge_read32(hw
, B2_GP_IO
);
2082 skge_write32(hw
, B2_GP_IO
, reg
);
2085 /* Set hardware config mode */
2086 reg
= GPC_INT_POL_HI
| GPC_DIS_FC
| GPC_DIS_SLEEP
|
2087 GPC_ENA_XC
| GPC_ANEG_ADV_ALL_M
| GPC_ENA_PAUSE
;
2088 reg
|= hw
->copper
? GPC_HWCFG_GMII_COP
: GPC_HWCFG_GMII_FIB
;
2090 /* Clear GMC reset */
2091 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_SET
);
2092 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_CLR
);
2093 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
| GMC_RST_CLR
);
2095 if (skge
->autoneg
== AUTONEG_DISABLE
) {
2096 reg
= GM_GPCR_AU_ALL_DIS
;
2097 gma_write16(hw
, port
, GM_GP_CTRL
,
2098 gma_read16(hw
, port
, GM_GP_CTRL
) | reg
);
2100 switch (skge
->speed
) {
2102 reg
&= ~GM_GPCR_SPEED_100
;
2103 reg
|= GM_GPCR_SPEED_1000
;
2106 reg
&= ~GM_GPCR_SPEED_1000
;
2107 reg
|= GM_GPCR_SPEED_100
;
2110 reg
&= ~(GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
);
2114 if (skge
->duplex
== DUPLEX_FULL
)
2115 reg
|= GM_GPCR_DUP_FULL
;
2117 reg
= GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
| GM_GPCR_DUP_FULL
;
2119 switch (skge
->flow_control
) {
2120 case FLOW_MODE_NONE
:
2121 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2122 reg
|= GM_GPCR_FC_TX_DIS
| GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2124 case FLOW_MODE_LOC_SEND
:
2125 /* disable Rx flow-control */
2126 reg
|= GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2128 case FLOW_MODE_SYMMETRIC
:
2129 case FLOW_MODE_SYM_OR_REM
:
2130 /* enable Tx & Rx flow-control */
2134 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2135 skge_read16(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2137 yukon_init(hw
, port
);
2140 reg
= gma_read16(hw
, port
, GM_PHY_ADDR
);
2141 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
| GM_PAR_MIB_CLR
);
2143 for (i
= 0; i
< GM_MIB_CNT_SIZE
; i
++)
2144 gma_read16(hw
, port
, GM_MIB_CNT_BASE
+ 8*i
);
2145 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
);
2147 /* transmit control */
2148 gma_write16(hw
, port
, GM_TX_CTRL
, TX_COL_THR(TX_COL_DEF
));
2150 /* receive control reg: unicast + multicast + no FCS */
2151 gma_write16(hw
, port
, GM_RX_CTRL
,
2152 GM_RXCR_UCF_ENA
| GM_RXCR_CRC_DIS
| GM_RXCR_MCF_ENA
);
2154 /* transmit flow control */
2155 gma_write16(hw
, port
, GM_TX_FLOW_CTRL
, 0xffff);
2157 /* transmit parameter */
2158 gma_write16(hw
, port
, GM_TX_PARAM
,
2159 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF
) |
2160 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF
) |
2161 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF
));
2163 /* configure the Serial Mode Register */
2164 reg
= DATA_BLIND_VAL(DATA_BLIND_DEF
)
2166 | IPG_DATA_VAL(IPG_DATA_DEF
);
2168 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
)
2169 reg
|= GM_SMOD_JUMBO_ENA
;
2171 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
2173 /* physical address: used for pause frames */
2174 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, addr
);
2175 /* virtual address for data */
2176 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, addr
);
2178 /* enable interrupt mask for counter overflows */
2179 gma_write16(hw
, port
, GM_TX_IRQ_MSK
, 0);
2180 gma_write16(hw
, port
, GM_RX_IRQ_MSK
, 0);
2181 gma_write16(hw
, port
, GM_TR_IRQ_MSK
, 0);
2183 /* Initialize Mac Fifo */
2185 /* Configure Rx MAC FIFO */
2186 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_MSK
), RX_FF_FL_DEF_MSK
);
2187 reg
= GMF_OPER_ON
| GMF_RX_F_FL_ON
;
2189 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2190 if (is_yukon_lite_a0(hw
))
2191 reg
&= ~GMF_RX_F_FL_ON
;
2193 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_CLR
);
2194 skge_write16(hw
, SK_REG(port
, RX_GMF_CTRL_T
), reg
);
2196 * because Pause Packet Truncation in GMAC is not working
2197 * we have to increase the Flush Threshold to 64 bytes
2198 * in order to flush pause packets in Rx FIFO on Yukon-1
2200 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_THR
), RX_GMF_FL_THR_DEF
+1);
2202 /* Configure Tx MAC FIFO */
2203 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_CLR
);
2204 skge_write16(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_OPER_ON
);
2207 /* Go into power down mode */
2208 static void yukon_suspend(struct skge_hw
*hw
, int port
)
2212 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_PHY_CTRL
);
2213 ctrl
|= PHY_M_PC_POL_R_DIS
;
2214 gm_phy_write(hw
, port
, PHY_MARV_PHY_CTRL
, ctrl
);
2216 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2217 ctrl
|= PHY_CT_RESET
;
2218 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2220 /* switch IEEE compatible power down mode on */
2221 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2222 ctrl
|= PHY_CT_PDOWN
;
2223 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2226 static void yukon_stop(struct skge_port
*skge
)
2228 struct skge_hw
*hw
= skge
->hw
;
2229 int port
= skge
->port
;
2231 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
2232 yukon_reset(hw
, port
);
2234 gma_write16(hw
, port
, GM_GP_CTRL
,
2235 gma_read16(hw
, port
, GM_GP_CTRL
)
2236 & ~(GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
));
2237 gma_read16(hw
, port
, GM_GP_CTRL
);
2239 yukon_suspend(hw
, port
);
2241 /* set GPHY Control reset */
2242 skge_write8(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2243 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2246 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
)
2248 struct skge_hw
*hw
= skge
->hw
;
2249 int port
= skge
->port
;
2252 data
[0] = (u64
) gma_read32(hw
, port
, GM_TXO_OK_HI
) << 32
2253 | gma_read32(hw
, port
, GM_TXO_OK_LO
);
2254 data
[1] = (u64
) gma_read32(hw
, port
, GM_RXO_OK_HI
) << 32
2255 | gma_read32(hw
, port
, GM_RXO_OK_LO
);
2257 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
2258 data
[i
] = gma_read32(hw
, port
,
2259 skge_stats
[i
].gma_offset
);
2262 static void yukon_mac_intr(struct skge_hw
*hw
, int port
)
2264 struct net_device
*dev
= hw
->dev
[port
];
2265 struct skge_port
*skge
= netdev_priv(dev
);
2266 u8 status
= skge_read8(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2268 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
2269 "mac interrupt status 0x%x\n", status
);
2271 if (status
& GM_IS_RX_FF_OR
) {
2272 ++dev
->stats
.rx_fifo_errors
;
2273 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_CLI_RX_FO
);
2276 if (status
& GM_IS_TX_FF_UR
) {
2277 ++dev
->stats
.tx_fifo_errors
;
2278 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_CLI_TX_FU
);
2283 static u16
yukon_speed(const struct skge_hw
*hw
, u16 aux
)
2285 switch (aux
& PHY_M_PS_SPEED_MSK
) {
2286 case PHY_M_PS_SPEED_1000
:
2288 case PHY_M_PS_SPEED_100
:
2295 static void yukon_link_up(struct skge_port
*skge
)
2297 struct skge_hw
*hw
= skge
->hw
;
2298 int port
= skge
->port
;
2301 /* Enable Transmit FIFO Underrun */
2302 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), GMAC_DEF_MSK
);
2304 reg
= gma_read16(hw
, port
, GM_GP_CTRL
);
2305 if (skge
->duplex
== DUPLEX_FULL
|| skge
->autoneg
== AUTONEG_ENABLE
)
2306 reg
|= GM_GPCR_DUP_FULL
;
2309 reg
|= GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
;
2310 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2312 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2316 static void yukon_link_down(struct skge_port
*skge
)
2318 struct skge_hw
*hw
= skge
->hw
;
2319 int port
= skge
->port
;
2322 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
2323 ctrl
&= ~(GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
);
2324 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
2326 if (skge
->flow_status
== FLOW_STAT_REM_SEND
) {
2327 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_AUNE_ADV
);
2328 ctrl
|= PHY_M_AN_ASP
;
2329 /* restore Asymmetric Pause bit */
2330 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, ctrl
);
2333 skge_link_down(skge
);
2335 yukon_init(hw
, port
);
2338 static void yukon_phy_intr(struct skge_port
*skge
)
2340 struct skge_hw
*hw
= skge
->hw
;
2341 int port
= skge
->port
;
2342 const char *reason
= NULL
;
2343 u16 istatus
, phystat
;
2345 istatus
= gm_phy_read(hw
, port
, PHY_MARV_INT_STAT
);
2346 phystat
= gm_phy_read(hw
, port
, PHY_MARV_PHY_STAT
);
2348 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
2349 "phy interrupt status 0x%x 0x%x\n", istatus
, phystat
);
2351 if (istatus
& PHY_M_IS_AN_COMPL
) {
2352 if (gm_phy_read(hw
, port
, PHY_MARV_AUNE_LP
)
2354 reason
= "remote fault";
2358 if (gm_phy_read(hw
, port
, PHY_MARV_1000T_STAT
) & PHY_B_1000S_MSF
) {
2359 reason
= "master/slave fault";
2363 if (!(phystat
& PHY_M_PS_SPDUP_RES
)) {
2364 reason
= "speed/duplex";
2368 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
)
2369 ? DUPLEX_FULL
: DUPLEX_HALF
;
2370 skge
->speed
= yukon_speed(hw
, phystat
);
2372 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2373 switch (phystat
& PHY_M_PS_PAUSE_MSK
) {
2374 case PHY_M_PS_PAUSE_MSK
:
2375 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
2377 case PHY_M_PS_RX_P_EN
:
2378 skge
->flow_status
= FLOW_STAT_REM_SEND
;
2380 case PHY_M_PS_TX_P_EN
:
2381 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
2384 skge
->flow_status
= FLOW_STAT_NONE
;
2387 if (skge
->flow_status
== FLOW_STAT_NONE
||
2388 (skge
->speed
< SPEED_1000
&& skge
->duplex
== DUPLEX_HALF
))
2389 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2391 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
);
2392 yukon_link_up(skge
);
2396 if (istatus
& PHY_M_IS_LSP_CHANGE
)
2397 skge
->speed
= yukon_speed(hw
, phystat
);
2399 if (istatus
& PHY_M_IS_DUP_CHANGE
)
2400 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
) ? DUPLEX_FULL
: DUPLEX_HALF
;
2401 if (istatus
& PHY_M_IS_LST_CHANGE
) {
2402 if (phystat
& PHY_M_PS_LINK_UP
)
2403 yukon_link_up(skge
);
2405 yukon_link_down(skge
);
2409 pr_err("%s: autonegotiation failed (%s)\n", skge
->netdev
->name
, reason
);
2411 /* XXX restart autonegotiation? */
2414 static void skge_phy_reset(struct skge_port
*skge
)
2416 struct skge_hw
*hw
= skge
->hw
;
2417 int port
= skge
->port
;
2418 struct net_device
*dev
= hw
->dev
[port
];
2420 netif_stop_queue(skge
->netdev
);
2421 netif_carrier_off(skge
->netdev
);
2423 spin_lock_bh(&hw
->phy_lock
);
2424 if (is_genesis(hw
)) {
2425 genesis_reset(hw
, port
);
2426 genesis_mac_init(hw
, port
);
2428 yukon_reset(hw
, port
);
2429 yukon_init(hw
, port
);
2431 spin_unlock_bh(&hw
->phy_lock
);
2433 skge_set_multicast(dev
);
2436 /* Basic MII support */
2437 static int skge_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2439 struct mii_ioctl_data
*data
= if_mii(ifr
);
2440 struct skge_port
*skge
= netdev_priv(dev
);
2441 struct skge_hw
*hw
= skge
->hw
;
2442 int err
= -EOPNOTSUPP
;
2444 if (!netif_running(dev
))
2445 return -ENODEV
; /* Phy still in reset */
2449 data
->phy_id
= hw
->phy_addr
;
2454 spin_lock_bh(&hw
->phy_lock
);
2457 err
= __xm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2459 err
= __gm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2460 spin_unlock_bh(&hw
->phy_lock
);
2461 data
->val_out
= val
;
2466 spin_lock_bh(&hw
->phy_lock
);
2468 err
= xm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2471 err
= gm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2473 spin_unlock_bh(&hw
->phy_lock
);
2479 static void skge_ramset(struct skge_hw
*hw
, u16 q
, u32 start
, size_t len
)
2485 end
= start
+ len
- 1;
2487 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_RST_CLR
);
2488 skge_write32(hw
, RB_ADDR(q
, RB_START
), start
);
2489 skge_write32(hw
, RB_ADDR(q
, RB_WP
), start
);
2490 skge_write32(hw
, RB_ADDR(q
, RB_RP
), start
);
2491 skge_write32(hw
, RB_ADDR(q
, RB_END
), end
);
2493 if (q
== Q_R1
|| q
== Q_R2
) {
2494 /* Set thresholds on receive queue's */
2495 skge_write32(hw
, RB_ADDR(q
, RB_RX_UTPP
),
2497 skge_write32(hw
, RB_ADDR(q
, RB_RX_LTPP
),
2500 /* Enable store & forward on Tx queue's because
2501 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2503 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_STFWD
);
2506 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_OP_MD
);
2509 /* Setup Bus Memory Interface */
2510 static void skge_qset(struct skge_port
*skge
, u16 q
,
2511 const struct skge_element
*e
)
2513 struct skge_hw
*hw
= skge
->hw
;
2514 u32 watermark
= 0x600;
2515 u64 base
= skge
->dma
+ (e
->desc
- skge
->mem
);
2517 /* optimization to reduce window on 32bit/33mhz */
2518 if ((skge_read16(hw
, B0_CTST
) & (CS_BUS_CLOCK
| CS_BUS_SLOT_SZ
)) == 0)
2521 skge_write32(hw
, Q_ADDR(q
, Q_CSR
), CSR_CLR_RESET
);
2522 skge_write32(hw
, Q_ADDR(q
, Q_F
), watermark
);
2523 skge_write32(hw
, Q_ADDR(q
, Q_DA_H
), (u32
)(base
>> 32));
2524 skge_write32(hw
, Q_ADDR(q
, Q_DA_L
), (u32
)base
);
2527 static int skge_up(struct net_device
*dev
)
2529 struct skge_port
*skge
= netdev_priv(dev
);
2530 struct skge_hw
*hw
= skge
->hw
;
2531 int port
= skge
->port
;
2532 u32 chunk
, ram_addr
;
2533 size_t rx_size
, tx_size
;
2536 if (!is_valid_ether_addr(dev
->dev_addr
))
2539 netif_info(skge
, ifup
, skge
->netdev
, "enabling interface\n");
2541 if (dev
->mtu
> RX_BUF_SIZE
)
2542 skge
->rx_buf_size
= dev
->mtu
+ ETH_HLEN
;
2544 skge
->rx_buf_size
= RX_BUF_SIZE
;
2547 rx_size
= skge
->rx_ring
.count
* sizeof(struct skge_rx_desc
);
2548 tx_size
= skge
->tx_ring
.count
* sizeof(struct skge_tx_desc
);
2549 skge
->mem_size
= tx_size
+ rx_size
;
2550 skge
->mem
= dma_alloc_coherent(&hw
->pdev
->dev
, skge
->mem_size
,
2551 &skge
->dma
, GFP_KERNEL
);
2555 BUG_ON(skge
->dma
& 7);
2557 if (upper_32_bits(skge
->dma
) != upper_32_bits(skge
->dma
+ skge
->mem_size
)) {
2558 dev_err(&hw
->pdev
->dev
, "dma_alloc_coherent region crosses 4G boundary\n");
2563 err
= skge_ring_alloc(&skge
->rx_ring
, skge
->mem
, skge
->dma
);
2567 err
= skge_rx_fill(dev
);
2571 err
= skge_ring_alloc(&skge
->tx_ring
, skge
->mem
+ rx_size
,
2572 skge
->dma
+ rx_size
);
2576 if (hw
->ports
== 1) {
2577 err
= request_irq(hw
->pdev
->irq
, skge_intr
, IRQF_SHARED
,
2580 netdev_err(dev
, "Unable to allocate interrupt %d error: %d\n",
2581 hw
->pdev
->irq
, err
);
2586 /* Initialize MAC */
2587 netif_carrier_off(dev
);
2588 spin_lock_bh(&hw
->phy_lock
);
2590 genesis_mac_init(hw
, port
);
2592 yukon_mac_init(hw
, port
);
2593 spin_unlock_bh(&hw
->phy_lock
);
2595 /* Configure RAMbuffers - equally between ports and tx/rx */
2596 chunk
= (hw
->ram_size
- hw
->ram_offset
) / (hw
->ports
* 2);
2597 ram_addr
= hw
->ram_offset
+ 2 * chunk
* port
;
2599 skge_ramset(hw
, rxqaddr
[port
], ram_addr
, chunk
);
2600 skge_qset(skge
, rxqaddr
[port
], skge
->rx_ring
.to_clean
);
2602 BUG_ON(skge
->tx_ring
.to_use
!= skge
->tx_ring
.to_clean
);
2603 skge_ramset(hw
, txqaddr
[port
], ram_addr
+chunk
, chunk
);
2604 skge_qset(skge
, txqaddr
[port
], skge
->tx_ring
.to_use
);
2606 /* Start receiver BMU */
2608 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2609 skge_led(skge
, LED_MODE_ON
);
2611 spin_lock_irq(&hw
->hw_lock
);
2612 hw
->intr_mask
|= portmask
[port
];
2613 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2614 skge_read32(hw
, B0_IMSK
);
2615 spin_unlock_irq(&hw
->hw_lock
);
2617 napi_enable(&skge
->napi
);
2619 skge_set_multicast(dev
);
2624 kfree(skge
->tx_ring
.start
);
2626 skge_rx_clean(skge
);
2627 kfree(skge
->rx_ring
.start
);
2629 dma_free_coherent(&hw
->pdev
->dev
, skge
->mem_size
, skge
->mem
,
2637 static void skge_rx_stop(struct skge_hw
*hw
, int port
)
2639 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_STOP
);
2640 skge_write32(hw
, RB_ADDR(port
? Q_R2
: Q_R1
, RB_CTRL
),
2641 RB_RST_SET
|RB_DIS_OP_MD
);
2642 skge_write32(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2645 static int skge_down(struct net_device
*dev
)
2647 struct skge_port
*skge
= netdev_priv(dev
);
2648 struct skge_hw
*hw
= skge
->hw
;
2649 int port
= skge
->port
;
2654 netif_info(skge
, ifdown
, skge
->netdev
, "disabling interface\n");
2656 netif_tx_disable(dev
);
2658 if (is_genesis(hw
) && hw
->phy_type
== SK_PHY_XMAC
)
2659 del_timer_sync(&skge
->link_timer
);
2661 napi_disable(&skge
->napi
);
2662 netif_carrier_off(dev
);
2664 spin_lock_irq(&hw
->hw_lock
);
2665 hw
->intr_mask
&= ~portmask
[port
];
2666 skge_write32(hw
, B0_IMSK
, (hw
->ports
== 1) ? 0 : hw
->intr_mask
);
2667 skge_read32(hw
, B0_IMSK
);
2668 spin_unlock_irq(&hw
->hw_lock
);
2671 free_irq(hw
->pdev
->irq
, hw
);
2673 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_REG_OFF
);
2679 /* Stop transmitter */
2680 skge_write8(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_STOP
);
2681 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
),
2682 RB_RST_SET
|RB_DIS_OP_MD
);
2685 /* Disable Force Sync bit and Enable Alloc bit */
2686 skge_write8(hw
, SK_REG(port
, TXA_CTRL
),
2687 TXA_DIS_FSYNC
| TXA_DIS_ALLOC
| TXA_STOP_RC
);
2689 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2690 skge_write32(hw
, SK_REG(port
, TXA_ITI_INI
), 0L);
2691 skge_write32(hw
, SK_REG(port
, TXA_LIM_INI
), 0L);
2693 /* Reset PCI FIFO */
2694 skge_write32(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2695 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
), RB_RST_SET
);
2697 /* Reset the RAM Buffer async Tx queue */
2698 skge_write8(hw
, RB_ADDR(port
== 0 ? Q_XA1
: Q_XA2
, RB_CTRL
), RB_RST_SET
);
2700 skge_rx_stop(hw
, port
);
2702 if (is_genesis(hw
)) {
2703 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_SET
);
2704 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_SET
);
2706 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
2707 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_SET
);
2710 skge_led(skge
, LED_MODE_OFF
);
2712 netif_tx_lock_bh(dev
);
2714 netif_tx_unlock_bh(dev
);
2716 skge_rx_clean(skge
);
2718 kfree(skge
->rx_ring
.start
);
2719 kfree(skge
->tx_ring
.start
);
2720 dma_free_coherent(&hw
->pdev
->dev
, skge
->mem_size
, skge
->mem
,
2726 static inline int skge_avail(const struct skge_ring
*ring
)
2729 return ((ring
->to_clean
> ring
->to_use
) ? 0 : ring
->count
)
2730 + (ring
->to_clean
- ring
->to_use
) - 1;
2733 static netdev_tx_t
skge_xmit_frame(struct sk_buff
*skb
,
2734 struct net_device
*dev
)
2736 struct skge_port
*skge
= netdev_priv(dev
);
2737 struct skge_hw
*hw
= skge
->hw
;
2738 struct skge_element
*e
;
2739 struct skge_tx_desc
*td
;
2744 if (skb_padto(skb
, ETH_ZLEN
))
2745 return NETDEV_TX_OK
;
2747 if (unlikely(skge_avail(&skge
->tx_ring
) < skb_shinfo(skb
)->nr_frags
+ 1))
2748 return NETDEV_TX_BUSY
;
2750 e
= skge
->tx_ring
.to_use
;
2752 BUG_ON(td
->control
& BMU_OWN
);
2754 len
= skb_headlen(skb
);
2755 map
= dma_map_single(&hw
->pdev
->dev
, skb
->data
, len
, DMA_TO_DEVICE
);
2756 if (dma_mapping_error(&hw
->pdev
->dev
, map
))
2759 dma_unmap_addr_set(e
, mapaddr
, map
);
2760 dma_unmap_len_set(e
, maplen
, len
);
2762 td
->dma_lo
= lower_32_bits(map
);
2763 td
->dma_hi
= upper_32_bits(map
);
2765 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2766 const int offset
= skb_checksum_start_offset(skb
);
2768 /* This seems backwards, but it is what the sk98lin
2769 * does. Looks like hardware is wrong?
2771 if (ipip_hdr(skb
)->protocol
== IPPROTO_UDP
&&
2772 hw
->chip_rev
== 0 && hw
->chip_id
== CHIP_ID_YUKON
)
2773 control
= BMU_TCP_CHECK
;
2775 control
= BMU_UDP_CHECK
;
2778 td
->csum_start
= offset
;
2779 td
->csum_write
= offset
+ skb
->csum_offset
;
2781 control
= BMU_CHECK
;
2783 if (!skb_shinfo(skb
)->nr_frags
) /* single buffer i.e. no fragments */
2784 control
|= BMU_EOF
| BMU_IRQ_EOF
;
2786 struct skge_tx_desc
*tf
= td
;
2788 control
|= BMU_STFWD
;
2789 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2790 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2792 map
= skb_frag_dma_map(&hw
->pdev
->dev
, frag
, 0,
2793 skb_frag_size(frag
), DMA_TO_DEVICE
);
2794 if (dma_mapping_error(&hw
->pdev
->dev
, map
))
2795 goto mapping_unwind
;
2800 BUG_ON(tf
->control
& BMU_OWN
);
2802 tf
->dma_lo
= lower_32_bits(map
);
2803 tf
->dma_hi
= upper_32_bits(map
);
2804 dma_unmap_addr_set(e
, mapaddr
, map
);
2805 dma_unmap_len_set(e
, maplen
, skb_frag_size(frag
));
2807 tf
->control
= BMU_OWN
| BMU_SW
| control
| skb_frag_size(frag
);
2809 tf
->control
|= BMU_EOF
| BMU_IRQ_EOF
;
2811 /* Make sure all the descriptors written */
2813 td
->control
= BMU_OWN
| BMU_SW
| BMU_STF
| control
| len
;
2816 netdev_sent_queue(dev
, skb
->len
);
2818 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2820 netif_printk(skge
, tx_queued
, KERN_DEBUG
, skge
->netdev
,
2821 "tx queued, slot %td, len %d\n",
2822 e
- skge
->tx_ring
.start
, skb
->len
);
2824 skge
->tx_ring
.to_use
= e
->next
;
2827 if (skge_avail(&skge
->tx_ring
) <= TX_LOW_WATER
) {
2828 netdev_dbg(dev
, "transmit queue full\n");
2829 netif_stop_queue(dev
);
2832 return NETDEV_TX_OK
;
2835 e
= skge
->tx_ring
.to_use
;
2836 dma_unmap_single(&hw
->pdev
->dev
, dma_unmap_addr(e
, mapaddr
),
2837 dma_unmap_len(e
, maplen
), DMA_TO_DEVICE
);
2840 dma_unmap_page(&hw
->pdev
->dev
, dma_unmap_addr(e
, mapaddr
),
2841 dma_unmap_len(e
, maplen
), DMA_TO_DEVICE
);
2845 if (net_ratelimit())
2846 dev_warn(&hw
->pdev
->dev
, "%s: tx mapping error\n", dev
->name
);
2847 dev_kfree_skb_any(skb
);
2848 return NETDEV_TX_OK
;
2852 /* Free resources associated with this reing element */
2853 static inline void skge_tx_unmap(struct pci_dev
*pdev
, struct skge_element
*e
,
2856 /* skb header vs. fragment */
2857 if (control
& BMU_STF
)
2858 dma_unmap_single(&pdev
->dev
, dma_unmap_addr(e
, mapaddr
),
2859 dma_unmap_len(e
, maplen
), DMA_TO_DEVICE
);
2861 dma_unmap_page(&pdev
->dev
, dma_unmap_addr(e
, mapaddr
),
2862 dma_unmap_len(e
, maplen
), DMA_TO_DEVICE
);
2865 /* Free all buffers in transmit ring */
2866 static void skge_tx_clean(struct net_device
*dev
)
2868 struct skge_port
*skge
= netdev_priv(dev
);
2869 struct skge_element
*e
;
2871 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
2872 struct skge_tx_desc
*td
= e
->desc
;
2874 skge_tx_unmap(skge
->hw
->pdev
, e
, td
->control
);
2876 if (td
->control
& BMU_EOF
)
2877 dev_kfree_skb(e
->skb
);
2881 netdev_reset_queue(dev
);
2882 skge
->tx_ring
.to_clean
= e
;
2885 static void skge_tx_timeout(struct net_device
*dev
, unsigned int txqueue
)
2887 struct skge_port
*skge
= netdev_priv(dev
);
2889 netif_printk(skge
, timer
, KERN_DEBUG
, skge
->netdev
, "tx timeout\n");
2891 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_STOP
);
2893 netif_wake_queue(dev
);
2896 static int skge_change_mtu(struct net_device
*dev
, int new_mtu
)
2900 if (!netif_running(dev
)) {
2916 static const u8 pause_mc_addr
[ETH_ALEN
] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2918 static void genesis_add_filter(u8 filter
[8], const u8
*addr
)
2922 crc
= ether_crc_le(ETH_ALEN
, addr
);
2924 filter
[bit
/8] |= 1 << (bit
%8);
2927 static void genesis_set_multicast(struct net_device
*dev
)
2929 struct skge_port
*skge
= netdev_priv(dev
);
2930 struct skge_hw
*hw
= skge
->hw
;
2931 int port
= skge
->port
;
2932 struct netdev_hw_addr
*ha
;
2936 mode
= xm_read32(hw
, port
, XM_MODE
);
2937 mode
|= XM_MD_ENA_HASH
;
2938 if (dev
->flags
& IFF_PROMISC
)
2939 mode
|= XM_MD_ENA_PROM
;
2941 mode
&= ~XM_MD_ENA_PROM
;
2943 if (dev
->flags
& IFF_ALLMULTI
)
2944 memset(filter
, 0xff, sizeof(filter
));
2946 memset(filter
, 0, sizeof(filter
));
2948 if (skge
->flow_status
== FLOW_STAT_REM_SEND
||
2949 skge
->flow_status
== FLOW_STAT_SYMMETRIC
)
2950 genesis_add_filter(filter
, pause_mc_addr
);
2952 netdev_for_each_mc_addr(ha
, dev
)
2953 genesis_add_filter(filter
, ha
->addr
);
2956 xm_write32(hw
, port
, XM_MODE
, mode
);
2957 xm_outhash(hw
, port
, XM_HSM
, filter
);
2960 static void yukon_add_filter(u8 filter
[8], const u8
*addr
)
2962 u32 bit
= ether_crc(ETH_ALEN
, addr
) & 0x3f;
2963 filter
[bit
/8] |= 1 << (bit
%8);
2966 static void yukon_set_multicast(struct net_device
*dev
)
2968 struct skge_port
*skge
= netdev_priv(dev
);
2969 struct skge_hw
*hw
= skge
->hw
;
2970 int port
= skge
->port
;
2971 struct netdev_hw_addr
*ha
;
2972 int rx_pause
= (skge
->flow_status
== FLOW_STAT_REM_SEND
||
2973 skge
->flow_status
== FLOW_STAT_SYMMETRIC
);
2977 memset(filter
, 0, sizeof(filter
));
2979 reg
= gma_read16(hw
, port
, GM_RX_CTRL
);
2980 reg
|= GM_RXCR_UCF_ENA
;
2982 if (dev
->flags
& IFF_PROMISC
) /* promiscuous */
2983 reg
&= ~(GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2984 else if (dev
->flags
& IFF_ALLMULTI
) /* all multicast */
2985 memset(filter
, 0xff, sizeof(filter
));
2986 else if (netdev_mc_empty(dev
) && !rx_pause
)/* no multicast */
2987 reg
&= ~GM_RXCR_MCF_ENA
;
2989 reg
|= GM_RXCR_MCF_ENA
;
2992 yukon_add_filter(filter
, pause_mc_addr
);
2994 netdev_for_each_mc_addr(ha
, dev
)
2995 yukon_add_filter(filter
, ha
->addr
);
2999 gma_write16(hw
, port
, GM_MC_ADDR_H1
,
3000 (u16
)filter
[0] | ((u16
)filter
[1] << 8));
3001 gma_write16(hw
, port
, GM_MC_ADDR_H2
,
3002 (u16
)filter
[2] | ((u16
)filter
[3] << 8));
3003 gma_write16(hw
, port
, GM_MC_ADDR_H3
,
3004 (u16
)filter
[4] | ((u16
)filter
[5] << 8));
3005 gma_write16(hw
, port
, GM_MC_ADDR_H4
,
3006 (u16
)filter
[6] | ((u16
)filter
[7] << 8));
3008 gma_write16(hw
, port
, GM_RX_CTRL
, reg
);
3011 static inline u16
phy_length(const struct skge_hw
*hw
, u32 status
)
3014 return status
>> XMR_FS_LEN_SHIFT
;
3016 return status
>> GMR_FS_LEN_SHIFT
;
3019 static inline int bad_phy_status(const struct skge_hw
*hw
, u32 status
)
3022 return (status
& (XMR_FS_ERR
| XMR_FS_2L_VLAN
)) != 0;
3024 return (status
& GMR_FS_ANY_ERR
) ||
3025 (status
& GMR_FS_RX_OK
) == 0;
3028 static void skge_set_multicast(struct net_device
*dev
)
3030 struct skge_port
*skge
= netdev_priv(dev
);
3032 if (is_genesis(skge
->hw
))
3033 genesis_set_multicast(dev
);
3035 yukon_set_multicast(dev
);
3040 /* Get receive buffer from descriptor.
3041 * Handles copy of small buffers and reallocation failures
3043 static struct sk_buff
*skge_rx_get(struct net_device
*dev
,
3044 struct skge_element
*e
,
3045 u32 control
, u32 status
, u16 csum
)
3047 struct skge_port
*skge
= netdev_priv(dev
);
3048 struct sk_buff
*skb
;
3049 u16 len
= control
& BMU_BBC
;
3051 netif_printk(skge
, rx_status
, KERN_DEBUG
, skge
->netdev
,
3052 "rx slot %td status 0x%x len %d\n",
3053 e
- skge
->rx_ring
.start
, status
, len
);
3055 if (len
> skge
->rx_buf_size
)
3058 if ((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
))
3061 if (bad_phy_status(skge
->hw
, status
))
3064 if (phy_length(skge
->hw
, status
) != len
)
3067 if (len
< RX_COPY_THRESHOLD
) {
3068 skb
= netdev_alloc_skb_ip_align(dev
, len
);
3072 dma_sync_single_for_cpu(&skge
->hw
->pdev
->dev
,
3073 dma_unmap_addr(e
, mapaddr
),
3074 dma_unmap_len(e
, maplen
),
3076 skb_copy_from_linear_data(e
->skb
, skb
->data
, len
);
3077 dma_sync_single_for_device(&skge
->hw
->pdev
->dev
,
3078 dma_unmap_addr(e
, mapaddr
),
3079 dma_unmap_len(e
, maplen
),
3081 skge_rx_reuse(e
, skge
->rx_buf_size
);
3083 struct skge_element ee
;
3084 struct sk_buff
*nskb
;
3086 nskb
= netdev_alloc_skb_ip_align(dev
, skge
->rx_buf_size
);
3093 prefetch(skb
->data
);
3095 if (skge_rx_setup(skge
, e
, nskb
, skge
->rx_buf_size
) < 0) {
3096 dev_kfree_skb(nskb
);
3100 dma_unmap_single(&skge
->hw
->pdev
->dev
,
3101 dma_unmap_addr(&ee
, mapaddr
),
3102 dma_unmap_len(&ee
, maplen
), DMA_FROM_DEVICE
);
3107 if (dev
->features
& NETIF_F_RXCSUM
) {
3108 skb
->csum
= le16_to_cpu(csum
);
3109 skb
->ip_summed
= CHECKSUM_COMPLETE
;
3112 skb
->protocol
= eth_type_trans(skb
, dev
);
3117 netif_printk(skge
, rx_err
, KERN_DEBUG
, skge
->netdev
,
3118 "rx err, slot %td control 0x%x status 0x%x\n",
3119 e
- skge
->rx_ring
.start
, control
, status
);
3121 if (is_genesis(skge
->hw
)) {
3122 if (status
& (XMR_FS_RUNT
|XMR_FS_LNG_ERR
))
3123 dev
->stats
.rx_length_errors
++;
3124 if (status
& XMR_FS_FRA_ERR
)
3125 dev
->stats
.rx_frame_errors
++;
3126 if (status
& XMR_FS_FCS_ERR
)
3127 dev
->stats
.rx_crc_errors
++;
3129 if (status
& (GMR_FS_LONG_ERR
|GMR_FS_UN_SIZE
))
3130 dev
->stats
.rx_length_errors
++;
3131 if (status
& GMR_FS_FRAGMENT
)
3132 dev
->stats
.rx_frame_errors
++;
3133 if (status
& GMR_FS_CRC_ERR
)
3134 dev
->stats
.rx_crc_errors
++;
3138 skge_rx_reuse(e
, skge
->rx_buf_size
);
3142 /* Free all buffers in Tx ring which are no longer owned by device */
3143 static void skge_tx_done(struct net_device
*dev
)
3145 struct skge_port
*skge
= netdev_priv(dev
);
3146 struct skge_ring
*ring
= &skge
->tx_ring
;
3147 struct skge_element
*e
;
3148 unsigned int bytes_compl
= 0, pkts_compl
= 0;
3150 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3152 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
3153 u32 control
= ((const struct skge_tx_desc
*) e
->desc
)->control
;
3155 if (control
& BMU_OWN
)
3158 skge_tx_unmap(skge
->hw
->pdev
, e
, control
);
3160 if (control
& BMU_EOF
) {
3161 netif_printk(skge
, tx_done
, KERN_DEBUG
, skge
->netdev
,
3162 "tx done slot %td\n",
3163 e
- skge
->tx_ring
.start
);
3166 bytes_compl
+= e
->skb
->len
;
3168 dev_consume_skb_any(e
->skb
);
3171 netdev_completed_queue(dev
, pkts_compl
, bytes_compl
);
3172 skge
->tx_ring
.to_clean
= e
;
3174 /* Can run lockless until we need to synchronize to restart queue. */
3177 if (unlikely(netif_queue_stopped(dev
) &&
3178 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3180 if (unlikely(netif_queue_stopped(dev
) &&
3181 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3182 netif_wake_queue(dev
);
3185 netif_tx_unlock(dev
);
3189 static int skge_poll(struct napi_struct
*napi
, int budget
)
3191 struct skge_port
*skge
= container_of(napi
, struct skge_port
, napi
);
3192 struct net_device
*dev
= skge
->netdev
;
3193 struct skge_hw
*hw
= skge
->hw
;
3194 struct skge_ring
*ring
= &skge
->rx_ring
;
3195 struct skge_element
*e
;
3200 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3202 for (e
= ring
->to_clean
; prefetch(e
->next
), work_done
< budget
; e
= e
->next
) {
3203 struct skge_rx_desc
*rd
= e
->desc
;
3204 struct sk_buff
*skb
;
3208 control
= rd
->control
;
3209 if (control
& BMU_OWN
)
3212 skb
= skge_rx_get(dev
, e
, control
, rd
->status
, rd
->csum2
);
3214 napi_gro_receive(napi
, skb
);
3220 /* restart receiver */
3222 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_START
);
3224 if (work_done
< budget
&& napi_complete_done(napi
, work_done
)) {
3225 unsigned long flags
;
3227 spin_lock_irqsave(&hw
->hw_lock
, flags
);
3228 hw
->intr_mask
|= napimask
[skge
->port
];
3229 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3230 skge_read32(hw
, B0_IMSK
);
3231 spin_unlock_irqrestore(&hw
->hw_lock
, flags
);
3237 /* Parity errors seem to happen when Genesis is connected to a switch
3238 * with no other ports present. Heartbeat error??
3240 static void skge_mac_parity(struct skge_hw
*hw
, int port
)
3242 struct net_device
*dev
= hw
->dev
[port
];
3244 ++dev
->stats
.tx_heartbeat_errors
;
3247 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
3250 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3251 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
),
3252 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
3253 ? GMF_CLI_TX_FC
: GMF_CLI_TX_PE
);
3256 static void skge_mac_intr(struct skge_hw
*hw
, int port
)
3259 genesis_mac_intr(hw
, port
);
3261 yukon_mac_intr(hw
, port
);
3264 /* Handle device specific framing and timeout interrupts */
3265 static void skge_error_irq(struct skge_hw
*hw
)
3267 struct pci_dev
*pdev
= hw
->pdev
;
3268 u32 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3270 if (is_genesis(hw
)) {
3271 /* clear xmac errors */
3272 if (hwstatus
& (IS_NO_STAT_M1
|IS_NO_TIST_M1
))
3273 skge_write16(hw
, RX_MFF_CTRL1
, MFF_CLR_INSTAT
);
3274 if (hwstatus
& (IS_NO_STAT_M2
|IS_NO_TIST_M2
))
3275 skge_write16(hw
, RX_MFF_CTRL2
, MFF_CLR_INSTAT
);
3277 /* Timestamp (unused) overflow */
3278 if (hwstatus
& IS_IRQ_TIST_OV
)
3279 skge_write8(hw
, GMAC_TI_ST_CTRL
, GMT_ST_CLR_IRQ
);
3282 if (hwstatus
& IS_RAM_RD_PAR
) {
3283 dev_err(&pdev
->dev
, "Ram read data parity error\n");
3284 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_RD_PERR
);
3287 if (hwstatus
& IS_RAM_WR_PAR
) {
3288 dev_err(&pdev
->dev
, "Ram write data parity error\n");
3289 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_WR_PERR
);
3292 if (hwstatus
& IS_M1_PAR_ERR
)
3293 skge_mac_parity(hw
, 0);
3295 if (hwstatus
& IS_M2_PAR_ERR
)
3296 skge_mac_parity(hw
, 1);
3298 if (hwstatus
& IS_R1_PAR_ERR
) {
3299 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3301 skge_write32(hw
, B0_R1_CSR
, CSR_IRQ_CL_P
);
3304 if (hwstatus
& IS_R2_PAR_ERR
) {
3305 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3307 skge_write32(hw
, B0_R2_CSR
, CSR_IRQ_CL_P
);
3310 if (hwstatus
& (IS_IRQ_MST_ERR
|IS_IRQ_STAT
)) {
3311 u16 pci_status
, pci_cmd
;
3313 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
3314 pci_read_config_word(pdev
, PCI_STATUS
, &pci_status
);
3316 dev_err(&pdev
->dev
, "PCI error cmd=%#x status=%#x\n",
3317 pci_cmd
, pci_status
);
3319 /* Write the error bits back to clear them. */
3320 pci_status
&= PCI_STATUS_ERROR_BITS
;
3321 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3322 pci_write_config_word(pdev
, PCI_COMMAND
,
3323 pci_cmd
| PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
3324 pci_write_config_word(pdev
, PCI_STATUS
, pci_status
);
3325 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3327 /* if error still set then just ignore it */
3328 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3329 if (hwstatus
& IS_IRQ_STAT
) {
3330 dev_warn(&hw
->pdev
->dev
, "unable to clear error (so ignoring them)\n");
3331 hw
->intr_mask
&= ~IS_HW_ERR
;
3337 * Interrupt from PHY are handled in tasklet (softirq)
3338 * because accessing phy registers requires spin wait which might
3339 * cause excess interrupt latency.
3341 static void skge_extirq(struct tasklet_struct
*t
)
3343 struct skge_hw
*hw
= from_tasklet(hw
, t
, phy_task
);
3346 for (port
= 0; port
< hw
->ports
; port
++) {
3347 struct net_device
*dev
= hw
->dev
[port
];
3349 if (netif_running(dev
)) {
3350 struct skge_port
*skge
= netdev_priv(dev
);
3352 spin_lock(&hw
->phy_lock
);
3353 if (!is_genesis(hw
))
3354 yukon_phy_intr(skge
);
3355 else if (hw
->phy_type
== SK_PHY_BCOM
)
3356 bcom_phy_intr(skge
);
3357 spin_unlock(&hw
->phy_lock
);
3361 spin_lock_irq(&hw
->hw_lock
);
3362 hw
->intr_mask
|= IS_EXT_REG
;
3363 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3364 skge_read32(hw
, B0_IMSK
);
3365 spin_unlock_irq(&hw
->hw_lock
);
3368 static irqreturn_t
skge_intr(int irq
, void *dev_id
)
3370 struct skge_hw
*hw
= dev_id
;
3374 spin_lock(&hw
->hw_lock
);
3375 /* Reading this register masks IRQ */
3376 status
= skge_read32(hw
, B0_SP_ISRC
);
3377 if (status
== 0 || status
== ~0)
3381 status
&= hw
->intr_mask
;
3382 if (status
& IS_EXT_REG
) {
3383 hw
->intr_mask
&= ~IS_EXT_REG
;
3384 tasklet_schedule(&hw
->phy_task
);
3387 if (status
& (IS_XA1_F
|IS_R1_F
)) {
3388 struct skge_port
*skge
= netdev_priv(hw
->dev
[0]);
3389 hw
->intr_mask
&= ~(IS_XA1_F
|IS_R1_F
);
3390 napi_schedule(&skge
->napi
);
3393 if (status
& IS_PA_TO_TX1
)
3394 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX1
);
3396 if (status
& IS_PA_TO_RX1
) {
3397 ++hw
->dev
[0]->stats
.rx_over_errors
;
3398 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX1
);
3402 if (status
& IS_MAC1
)
3403 skge_mac_intr(hw
, 0);
3406 struct skge_port
*skge
= netdev_priv(hw
->dev
[1]);
3408 if (status
& (IS_XA2_F
|IS_R2_F
)) {
3409 hw
->intr_mask
&= ~(IS_XA2_F
|IS_R2_F
);
3410 napi_schedule(&skge
->napi
);
3413 if (status
& IS_PA_TO_RX2
) {
3414 ++hw
->dev
[1]->stats
.rx_over_errors
;
3415 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX2
);
3418 if (status
& IS_PA_TO_TX2
)
3419 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX2
);
3421 if (status
& IS_MAC2
)
3422 skge_mac_intr(hw
, 1);
3425 if (status
& IS_HW_ERR
)
3428 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3429 skge_read32(hw
, B0_IMSK
);
3430 spin_unlock(&hw
->hw_lock
);
3432 return IRQ_RETVAL(handled
);
3435 #ifdef CONFIG_NET_POLL_CONTROLLER
3436 static void skge_netpoll(struct net_device
*dev
)
3438 struct skge_port
*skge
= netdev_priv(dev
);
3440 disable_irq(dev
->irq
);
3441 skge_intr(dev
->irq
, skge
->hw
);
3442 enable_irq(dev
->irq
);
3446 static int skge_set_mac_address(struct net_device
*dev
, void *p
)
3448 struct skge_port
*skge
= netdev_priv(dev
);
3449 struct skge_hw
*hw
= skge
->hw
;
3450 unsigned port
= skge
->port
;
3451 const struct sockaddr
*addr
= p
;
3454 if (!is_valid_ether_addr(addr
->sa_data
))
3455 return -EADDRNOTAVAIL
;
3457 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
3459 if (!netif_running(dev
)) {
3460 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3461 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3464 spin_lock_bh(&hw
->phy_lock
);
3465 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
3466 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
& ~GM_GPCR_RX_ENA
);
3468 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3469 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3472 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
3474 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, dev
->dev_addr
);
3475 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, dev
->dev_addr
);
3478 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
3479 spin_unlock_bh(&hw
->phy_lock
);
3485 static const struct {
3489 { CHIP_ID_GENESIS
, "Genesis" },
3490 { CHIP_ID_YUKON
, "Yukon" },
3491 { CHIP_ID_YUKON_LITE
, "Yukon-Lite"},
3492 { CHIP_ID_YUKON_LP
, "Yukon-LP"},
3495 static const char *skge_board_name(const struct skge_hw
*hw
)
3498 static char buf
[16];
3500 for (i
= 0; i
< ARRAY_SIZE(skge_chips
); i
++)
3501 if (skge_chips
[i
].id
== hw
->chip_id
)
3502 return skge_chips
[i
].name
;
3504 snprintf(buf
, sizeof(buf
), "chipid 0x%x", hw
->chip_id
);
3510 * Setup the board data structure, but don't bring up
3513 static int skge_reset(struct skge_hw
*hw
)
3516 u16 ctst
, pci_status
;
3517 u8 t8
, mac_cfg
, pmd_type
;
3520 ctst
= skge_read16(hw
, B0_CTST
);
3523 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3524 skge_write8(hw
, B0_CTST
, CS_RST_CLR
);
3526 /* clear PCI errors, if any */
3527 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3528 skge_write8(hw
, B2_TST_CTRL2
, 0);
3530 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &pci_status
);
3531 pci_write_config_word(hw
->pdev
, PCI_STATUS
,
3532 pci_status
| PCI_STATUS_ERROR_BITS
);
3533 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3534 skge_write8(hw
, B0_CTST
, CS_MRST_CLR
);
3536 /* restore CLK_RUN bits (for Yukon-Lite) */
3537 skge_write16(hw
, B0_CTST
,
3538 ctst
& (CS_CLK_RUN_HOT
|CS_CLK_RUN_RST
|CS_CLK_RUN_ENA
));
3540 hw
->chip_id
= skge_read8(hw
, B2_CHIP_ID
);
3541 hw
->phy_type
= skge_read8(hw
, B2_E_1
) & 0xf;
3542 pmd_type
= skge_read8(hw
, B2_PMD_TYP
);
3543 hw
->copper
= (pmd_type
== 'T' || pmd_type
== '1');
3545 switch (hw
->chip_id
) {
3546 case CHIP_ID_GENESIS
:
3547 #ifdef CONFIG_SKGE_GENESIS
3548 switch (hw
->phy_type
) {
3550 hw
->phy_addr
= PHY_ADDR_XMAC
;
3553 hw
->phy_addr
= PHY_ADDR_BCOM
;
3556 dev_err(&hw
->pdev
->dev
, "unsupported phy type 0x%x\n",
3562 dev_err(&hw
->pdev
->dev
, "Genesis chip detected but not configured\n");
3567 case CHIP_ID_YUKON_LITE
:
3568 case CHIP_ID_YUKON_LP
:
3569 if (hw
->phy_type
< SK_PHY_MARV_COPPER
&& pmd_type
!= 'S')
3572 hw
->phy_addr
= PHY_ADDR_MARV
;
3576 dev_err(&hw
->pdev
->dev
, "unsupported chip type 0x%x\n",
3581 mac_cfg
= skge_read8(hw
, B2_MAC_CFG
);
3582 hw
->ports
= (mac_cfg
& CFG_SNG_MAC
) ? 1 : 2;
3583 hw
->chip_rev
= (mac_cfg
& CFG_CHIP_R_MSK
) >> 4;
3585 /* read the adapters RAM size */
3586 t8
= skge_read8(hw
, B2_E_0
);
3587 if (is_genesis(hw
)) {
3589 /* special case: 4 x 64k x 36, offset = 0x80000 */
3590 hw
->ram_size
= 0x100000;
3591 hw
->ram_offset
= 0x80000;
3593 hw
->ram_size
= t8
* 512;
3595 hw
->ram_size
= 0x20000;
3597 hw
->ram_size
= t8
* 4096;
3599 hw
->intr_mask
= IS_HW_ERR
;
3601 /* Use PHY IRQ for all but fiber based Genesis board */
3602 if (!(is_genesis(hw
) && hw
->phy_type
== SK_PHY_XMAC
))
3603 hw
->intr_mask
|= IS_EXT_REG
;
3608 /* switch power to VCC (WA for VAUX problem) */
3609 skge_write8(hw
, B0_POWER_CTRL
,
3610 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_OFF
| PC_VCC_ON
);
3612 /* avoid boards with stuck Hardware error bits */
3613 if ((skge_read32(hw
, B0_ISRC
) & IS_HW_ERR
) &&
3614 (skge_read32(hw
, B0_HWE_ISRC
) & IS_IRQ_SENSOR
)) {
3615 dev_warn(&hw
->pdev
->dev
, "stuck hardware sensor bit\n");
3616 hw
->intr_mask
&= ~IS_HW_ERR
;
3619 /* Clear PHY COMA */
3620 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3621 pci_read_config_dword(hw
->pdev
, PCI_DEV_REG1
, ®
);
3622 reg
&= ~PCI_PHY_COMA
;
3623 pci_write_config_dword(hw
->pdev
, PCI_DEV_REG1
, reg
);
3624 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3627 for (i
= 0; i
< hw
->ports
; i
++) {
3628 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_SET
);
3629 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
3633 /* turn off hardware timer (unused) */
3634 skge_write8(hw
, B2_TI_CTRL
, TIM_STOP
);
3635 skge_write8(hw
, B2_TI_CTRL
, TIM_CLR_IRQ
);
3636 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
3638 /* enable the Tx Arbiters */
3639 for (i
= 0; i
< hw
->ports
; i
++)
3640 skge_write8(hw
, SK_REG(i
, TXA_CTRL
), TXA_ENA_ARB
);
3642 /* Initialize ram interface */
3643 skge_write16(hw
, B3_RI_CTRL
, RI_RST_CLR
);
3645 skge_write8(hw
, B3_RI_WTO_R1
, SK_RI_TO_53
);
3646 skge_write8(hw
, B3_RI_WTO_XA1
, SK_RI_TO_53
);
3647 skge_write8(hw
, B3_RI_WTO_XS1
, SK_RI_TO_53
);
3648 skge_write8(hw
, B3_RI_RTO_R1
, SK_RI_TO_53
);
3649 skge_write8(hw
, B3_RI_RTO_XA1
, SK_RI_TO_53
);
3650 skge_write8(hw
, B3_RI_RTO_XS1
, SK_RI_TO_53
);
3651 skge_write8(hw
, B3_RI_WTO_R2
, SK_RI_TO_53
);
3652 skge_write8(hw
, B3_RI_WTO_XA2
, SK_RI_TO_53
);
3653 skge_write8(hw
, B3_RI_WTO_XS2
, SK_RI_TO_53
);
3654 skge_write8(hw
, B3_RI_RTO_R2
, SK_RI_TO_53
);
3655 skge_write8(hw
, B3_RI_RTO_XA2
, SK_RI_TO_53
);
3656 skge_write8(hw
, B3_RI_RTO_XS2
, SK_RI_TO_53
);
3658 skge_write32(hw
, B0_HWE_IMSK
, IS_ERR_MSK
);
3660 /* Set interrupt moderation for Transmit only
3661 * Receive interrupts avoided by NAPI
3663 skge_write32(hw
, B2_IRQM_MSK
, IS_XA1_F
|IS_XA2_F
);
3664 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, 100));
3665 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
3667 /* Leave irq disabled until first port is brought up. */
3668 skge_write32(hw
, B0_IMSK
, 0);
3670 for (i
= 0; i
< hw
->ports
; i
++) {
3672 genesis_reset(hw
, i
);
3681 #ifdef CONFIG_SKGE_DEBUG
3683 static struct dentry
*skge_debug
;
3685 static int skge_debug_show(struct seq_file
*seq
, void *v
)
3687 struct net_device
*dev
= seq
->private;
3688 const struct skge_port
*skge
= netdev_priv(dev
);
3689 const struct skge_hw
*hw
= skge
->hw
;
3690 const struct skge_element
*e
;
3692 if (!netif_running(dev
))
3695 seq_printf(seq
, "IRQ src=%x mask=%x\n", skge_read32(hw
, B0_ISRC
),
3696 skge_read32(hw
, B0_IMSK
));
3698 seq_printf(seq
, "Tx Ring: (%d)\n", skge_avail(&skge
->tx_ring
));
3699 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
3700 const struct skge_tx_desc
*t
= e
->desc
;
3701 seq_printf(seq
, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3702 t
->control
, t
->dma_hi
, t
->dma_lo
, t
->status
,
3703 t
->csum_offs
, t
->csum_write
, t
->csum_start
);
3706 seq_puts(seq
, "\nRx Ring:\n");
3707 for (e
= skge
->rx_ring
.to_clean
; ; e
= e
->next
) {
3708 const struct skge_rx_desc
*r
= e
->desc
;
3710 if (r
->control
& BMU_OWN
)
3713 seq_printf(seq
, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3714 r
->control
, r
->dma_hi
, r
->dma_lo
, r
->status
,
3715 r
->timestamp
, r
->csum1
, r
->csum1_start
);
3720 DEFINE_SHOW_ATTRIBUTE(skge_debug
);
3723 * Use network device events to create/remove/rename
3724 * debugfs file entries
3726 static int skge_device_event(struct notifier_block
*unused
,
3727 unsigned long event
, void *ptr
)
3729 struct net_device
*dev
= netdev_notifier_info_to_dev(ptr
);
3730 struct skge_port
*skge
;
3732 if (dev
->netdev_ops
->ndo_open
!= &skge_up
|| !skge_debug
)
3735 skge
= netdev_priv(dev
);
3737 case NETDEV_CHANGENAME
:
3739 skge
->debugfs
= debugfs_rename(skge_debug
,
3741 skge_debug
, dev
->name
);
3744 case NETDEV_GOING_DOWN
:
3745 debugfs_remove(skge
->debugfs
);
3746 skge
->debugfs
= NULL
;
3750 skge
->debugfs
= debugfs_create_file(dev
->name
, 0444, skge_debug
,
3751 dev
, &skge_debug_fops
);
3759 static struct notifier_block skge_notifier
= {
3760 .notifier_call
= skge_device_event
,
3764 static __init
void skge_debug_init(void)
3766 skge_debug
= debugfs_create_dir("skge", NULL
);
3768 register_netdevice_notifier(&skge_notifier
);
3771 static __exit
void skge_debug_cleanup(void)
3774 unregister_netdevice_notifier(&skge_notifier
);
3775 debugfs_remove(skge_debug
);
3781 #define skge_debug_init()
3782 #define skge_debug_cleanup()
3785 static const struct net_device_ops skge_netdev_ops
= {
3786 .ndo_open
= skge_up
,
3787 .ndo_stop
= skge_down
,
3788 .ndo_start_xmit
= skge_xmit_frame
,
3789 .ndo_do_ioctl
= skge_ioctl
,
3790 .ndo_get_stats
= skge_get_stats
,
3791 .ndo_tx_timeout
= skge_tx_timeout
,
3792 .ndo_change_mtu
= skge_change_mtu
,
3793 .ndo_validate_addr
= eth_validate_addr
,
3794 .ndo_set_rx_mode
= skge_set_multicast
,
3795 .ndo_set_mac_address
= skge_set_mac_address
,
3796 #ifdef CONFIG_NET_POLL_CONTROLLER
3797 .ndo_poll_controller
= skge_netpoll
,
3802 /* Initialize network device */
3803 static struct net_device
*skge_devinit(struct skge_hw
*hw
, int port
,
3806 struct skge_port
*skge
;
3807 struct net_device
*dev
= alloc_etherdev(sizeof(*skge
));
3812 SET_NETDEV_DEV(dev
, &hw
->pdev
->dev
);
3813 dev
->netdev_ops
= &skge_netdev_ops
;
3814 dev
->ethtool_ops
= &skge_ethtool_ops
;
3815 dev
->watchdog_timeo
= TX_WATCHDOG
;
3816 dev
->irq
= hw
->pdev
->irq
;
3818 /* MTU range: 60 - 9000 */
3819 dev
->min_mtu
= ETH_ZLEN
;
3820 dev
->max_mtu
= ETH_JUMBO_MTU
;
3823 dev
->features
|= NETIF_F_HIGHDMA
;
3825 skge
= netdev_priv(dev
);
3826 netif_napi_add(dev
, &skge
->napi
, skge_poll
, NAPI_WEIGHT
);
3829 skge
->msg_enable
= netif_msg_init(debug
, default_msg
);
3831 skge
->tx_ring
.count
= DEFAULT_TX_RING_SIZE
;
3832 skge
->rx_ring
.count
= DEFAULT_RX_RING_SIZE
;
3834 /* Auto speed and flow control */
3835 skge
->autoneg
= AUTONEG_ENABLE
;
3836 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
3839 skge
->advertising
= skge_supported_modes(hw
);
3841 if (device_can_wakeup(&hw
->pdev
->dev
)) {
3842 skge
->wol
= wol_supported(hw
) & WAKE_MAGIC
;
3843 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
3846 hw
->dev
[port
] = dev
;
3850 /* Only used for Genesis XMAC */
3852 timer_setup(&skge
->link_timer
, xm_link_timer
, 0);
3854 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
3856 dev
->features
|= dev
->hw_features
;
3859 /* read the mac address */
3860 memcpy_fromio(dev
->dev_addr
, hw
->regs
+ B2_MAC_1
+ port
*8, ETH_ALEN
);
3865 static void skge_show_addr(struct net_device
*dev
)
3867 const struct skge_port
*skge
= netdev_priv(dev
);
3869 netif_info(skge
, probe
, skge
->netdev
, "addr %pM\n", dev
->dev_addr
);
3872 static int only_32bit_dma
;
3874 static int skge_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
3876 struct net_device
*dev
, *dev1
;
3878 int err
, using_dac
= 0;
3880 err
= pci_enable_device(pdev
);
3882 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
3886 err
= pci_request_regions(pdev
, DRV_NAME
);
3888 dev_err(&pdev
->dev
, "cannot obtain PCI resources\n");
3889 goto err_out_disable_pdev
;
3892 pci_set_master(pdev
);
3894 if (!only_32bit_dma
&& !dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64))) {
3896 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
3897 } else if (!(err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32)))) {
3899 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
3903 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
3904 goto err_out_free_regions
;
3908 /* byte swap descriptors in hardware */
3912 pci_read_config_dword(pdev
, PCI_DEV_REG2
, ®
);
3913 reg
|= PCI_REV_DESC
;
3914 pci_write_config_dword(pdev
, PCI_DEV_REG2
, reg
);
3919 /* space for skge@pci:0000:04:00.0 */
3920 hw
= kzalloc(sizeof(*hw
) + strlen(DRV_NAME
"@pci:")
3921 + strlen(pci_name(pdev
)) + 1, GFP_KERNEL
);
3923 goto err_out_free_regions
;
3925 sprintf(hw
->irq_name
, DRV_NAME
"@pci:%s", pci_name(pdev
));
3928 spin_lock_init(&hw
->hw_lock
);
3929 spin_lock_init(&hw
->phy_lock
);
3930 tasklet_setup(&hw
->phy_task
, skge_extirq
);
3932 hw
->regs
= ioremap(pci_resource_start(pdev
, 0), 0x4000);
3934 dev_err(&pdev
->dev
, "cannot map device registers\n");
3935 goto err_out_free_hw
;
3938 err
= skge_reset(hw
);
3940 goto err_out_iounmap
;
3942 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3944 (unsigned long long)pci_resource_start(pdev
, 0), pdev
->irq
,
3945 skge_board_name(hw
), hw
->chip_rev
);
3947 dev
= skge_devinit(hw
, 0, using_dac
);
3950 goto err_out_led_off
;
3953 /* Some motherboards are broken and has zero in ROM. */
3954 if (!is_valid_ether_addr(dev
->dev_addr
))
3955 dev_warn(&pdev
->dev
, "bad (zero?) ethernet address in rom\n");
3957 err
= register_netdev(dev
);
3959 dev_err(&pdev
->dev
, "cannot register net device\n");
3960 goto err_out_free_netdev
;
3963 skge_show_addr(dev
);
3965 if (hw
->ports
> 1) {
3966 dev1
= skge_devinit(hw
, 1, using_dac
);
3969 goto err_out_unregister
;
3972 err
= register_netdev(dev1
);
3974 dev_err(&pdev
->dev
, "cannot register second net device\n");
3975 goto err_out_free_dev1
;
3978 err
= request_irq(pdev
->irq
, skge_intr
, IRQF_SHARED
,
3981 dev_err(&pdev
->dev
, "cannot assign irq %d\n",
3983 goto err_out_unregister_dev1
;
3986 skge_show_addr(dev1
);
3988 pci_set_drvdata(pdev
, hw
);
3992 err_out_unregister_dev1
:
3993 unregister_netdev(dev1
);
3997 unregister_netdev(dev
);
3998 err_out_free_netdev
:
4001 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
4006 err_out_free_regions
:
4007 pci_release_regions(pdev
);
4008 err_out_disable_pdev
:
4009 pci_disable_device(pdev
);
4014 static void skge_remove(struct pci_dev
*pdev
)
4016 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4017 struct net_device
*dev0
, *dev1
;
4024 unregister_netdev(dev1
);
4026 unregister_netdev(dev0
);
4028 tasklet_kill(&hw
->phy_task
);
4030 spin_lock_irq(&hw
->hw_lock
);
4033 if (hw
->ports
> 1) {
4034 skge_write32(hw
, B0_IMSK
, 0);
4035 skge_read32(hw
, B0_IMSK
);
4037 spin_unlock_irq(&hw
->hw_lock
);
4039 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
4040 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
4043 free_irq(pdev
->irq
, hw
);
4044 pci_release_regions(pdev
);
4045 pci_disable_device(pdev
);
4054 #ifdef CONFIG_PM_SLEEP
4055 static int skge_suspend(struct device
*dev
)
4057 struct skge_hw
*hw
= dev_get_drvdata(dev
);
4063 for (i
= 0; i
< hw
->ports
; i
++) {
4064 struct net_device
*dev
= hw
->dev
[i
];
4065 struct skge_port
*skge
= netdev_priv(dev
);
4067 if (netif_running(dev
))
4071 skge_wol_init(skge
);
4074 skge_write32(hw
, B0_IMSK
, 0);
4079 static int skge_resume(struct device
*dev
)
4081 struct skge_hw
*hw
= dev_get_drvdata(dev
);
4087 err
= skge_reset(hw
);
4091 for (i
= 0; i
< hw
->ports
; i
++) {
4092 struct net_device
*dev
= hw
->dev
[i
];
4094 if (netif_running(dev
)) {
4098 netdev_err(dev
, "could not up: %d\n", err
);
4108 static SIMPLE_DEV_PM_OPS(skge_pm_ops
, skge_suspend
, skge_resume
);
4109 #define SKGE_PM_OPS (&skge_pm_ops)
4113 #define SKGE_PM_OPS NULL
4114 #endif /* CONFIG_PM_SLEEP */
4116 static void skge_shutdown(struct pci_dev
*pdev
)
4118 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4124 for (i
= 0; i
< hw
->ports
; i
++) {
4125 struct net_device
*dev
= hw
->dev
[i
];
4126 struct skge_port
*skge
= netdev_priv(dev
);
4129 skge_wol_init(skge
);
4132 pci_wake_from_d3(pdev
, device_may_wakeup(&pdev
->dev
));
4133 pci_set_power_state(pdev
, PCI_D3hot
);
4136 static struct pci_driver skge_driver
= {
4138 .id_table
= skge_id_table
,
4139 .probe
= skge_probe
,
4140 .remove
= skge_remove
,
4141 .shutdown
= skge_shutdown
,
4142 .driver
.pm
= SKGE_PM_OPS
,
4145 static const struct dmi_system_id skge_32bit_dma_boards
[] = {
4147 .ident
= "Gigabyte nForce boards",
4149 DMI_MATCH(DMI_BOARD_VENDOR
, "Gigabyte Technology Co"),
4150 DMI_MATCH(DMI_BOARD_NAME
, "nForce"),
4154 .ident
= "ASUS P5NSLI",
4156 DMI_MATCH(DMI_BOARD_VENDOR
, "ASUSTeK Computer INC."),
4157 DMI_MATCH(DMI_BOARD_NAME
, "P5NSLI")
4161 .ident
= "FUJITSU SIEMENS A8NE-FM",
4163 DMI_MATCH(DMI_BOARD_VENDOR
, "ASUSTek Computer INC."),
4164 DMI_MATCH(DMI_BOARD_NAME
, "A8NE-FM")
4170 static int __init
skge_init_module(void)
4172 if (dmi_check_system(skge_32bit_dma_boards
))
4175 return pci_register_driver(&skge_driver
);
4178 static void __exit
skge_cleanup_module(void)
4180 pci_unregister_driver(&skge_driver
);
4181 skge_debug_cleanup();
4184 module_init(skge_init_module
);
4185 module_exit(skge_cleanup_module
);