WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / fddi / skfp / skfddi.c
blob69c29a2ef95db471c2d32f8cea3ece99e2821dad
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * File Name:
4 * skfddi.c
6 * Copyright Information:
7 * Copyright SysKonnect 1998,1999.
9 * The information in this file is provided "AS IS" without warranty.
11 * Abstract:
12 * A Linux device driver supporting the SysKonnect FDDI PCI controller
13 * familie.
15 * Maintainers:
16 * CG Christoph Goos (cgoos@syskonnect.de)
18 * Contributors:
19 * DM David S. Miller
21 * Address all question to:
22 * linux@syskonnect.de
24 * The technical manual for the adapters is available from SysKonnect's
25 * web pages: www.syskonnect.com
26 * Goto "Support" and search Knowledge Base for "manual".
28 * Driver Architecture:
29 * The driver architecture is based on the DEC FDDI driver by
30 * Lawrence V. Stefani and several ethernet drivers.
31 * I also used an existing Windows NT miniport driver.
32 * All hardware dependent functions are handled by the SysKonnect
33 * Hardware Module.
34 * The only headerfiles that are directly related to this source
35 * are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
36 * The others belong to the SysKonnect FDDI Hardware Module and
37 * should better not be changed.
39 * Modification History:
40 * Date Name Description
41 * 02-Mar-98 CG Created.
43 * 10-Mar-99 CG Support for 2.2.x added.
44 * 25-Mar-99 CG Corrected IRQ routing for SMP (APIC)
45 * 26-Oct-99 CG Fixed compilation error on 2.2.13
46 * 12-Nov-99 CG Source code release
47 * 22-Nov-99 CG Included in kernel source.
48 * 07-May-00 DM 64 bit fixes, new dma interface
49 * 31-Jul-03 DB Audit copy_*_user in skfp_ioctl
50 * Daniele Bellucci <bellucda@tiscali.it>
51 * 03-Dec-03 SH Convert to PCI device model
53 * Compilation options (-Dxxx):
54 * DRIVERDEBUG print lots of messages to log file
55 * DUMPPACKETS print received/transmitted packets to logfile
57 * Tested cpu architectures:
58 * - i386
59 * - sparc64
62 /* Version information string - should be updated prior to */
63 /* each new release!!! */
64 #define VERSION "2.07"
66 static const char * const boot_msg =
67 "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
68 " SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
70 /* Include files */
72 #include <linux/capability.h>
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/errno.h>
76 #include <linux/ioport.h>
77 #include <linux/interrupt.h>
78 #include <linux/pci.h>
79 #include <linux/netdevice.h>
80 #include <linux/fddidevice.h>
81 #include <linux/skbuff.h>
82 #include <linux/bitops.h>
83 #include <linux/gfp.h>
85 #include <asm/byteorder.h>
86 #include <asm/io.h>
87 #include <linux/uaccess.h>
89 #include "h/types.h"
90 #undef ADDR // undo Linux definition
91 #include "h/skfbi.h"
92 #include "h/fddi.h"
93 #include "h/smc.h"
94 #include "h/smtstate.h"
97 // Define module-wide (static) routines
98 static int skfp_driver_init(struct net_device *dev);
99 static int skfp_open(struct net_device *dev);
100 static int skfp_close(struct net_device *dev);
101 static irqreturn_t skfp_interrupt(int irq, void *dev_id);
102 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
103 static void skfp_ctl_set_multicast_list(struct net_device *dev);
104 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
105 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
106 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
107 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
108 struct net_device *dev);
109 static void send_queued_packets(struct s_smc *smc);
110 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
111 static void ResetAdapter(struct s_smc *smc);
114 // Functions needed by the hardware module
115 void *mac_drv_get_space(struct s_smc *smc, u_int size);
116 void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
117 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
118 unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
119 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
120 int flag);
121 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
122 void llc_restart_tx(struct s_smc *smc);
123 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
124 int frag_count, int len);
125 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
126 int frag_count);
127 void mac_drv_fill_rxd(struct s_smc *smc);
128 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
129 int frag_count);
130 int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
131 int la_len);
132 void dump_data(unsigned char *Data, int length);
134 // External functions from the hardware module
135 extern u_int mac_drv_check_space(void);
136 extern int mac_drv_init(struct s_smc *smc);
137 extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
138 int len, int frame_status);
139 extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
140 int frame_len, int frame_status);
141 extern void fddi_isr(struct s_smc *smc);
142 extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
143 int len, int frame_status);
144 extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
145 extern void mac_drv_clear_rx_queue(struct s_smc *smc);
146 extern void enable_tx_irq(struct s_smc *smc, u_short queue);
148 static const struct pci_device_id skfddi_pci_tbl[] = {
149 { PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
150 { } /* Terminating entry */
152 MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
153 MODULE_LICENSE("GPL");
154 MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
156 // Define module-wide (static) variables
158 static int num_boards; /* total number of adapters configured */
160 static const struct net_device_ops skfp_netdev_ops = {
161 .ndo_open = skfp_open,
162 .ndo_stop = skfp_close,
163 .ndo_start_xmit = skfp_send_pkt,
164 .ndo_get_stats = skfp_ctl_get_stats,
165 .ndo_set_rx_mode = skfp_ctl_set_multicast_list,
166 .ndo_set_mac_address = skfp_ctl_set_mac_address,
167 .ndo_do_ioctl = skfp_ioctl,
171 * =================
172 * = skfp_init_one =
173 * =================
175 * Overview:
176 * Probes for supported FDDI PCI controllers
178 * Returns:
179 * Condition code
181 * Arguments:
182 * pdev - pointer to PCI device information
184 * Functional Description:
185 * This is now called by PCI driver registration process
186 * for each board found.
188 * Return Codes:
189 * 0 - This device (fddi0, fddi1, etc) configured successfully
190 * -ENODEV - No devices present, or no SysKonnect FDDI PCI device
191 * present for this device name
194 * Side Effects:
195 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
196 * initialized and the board resources are read and stored in
197 * the device structure.
199 static int skfp_init_one(struct pci_dev *pdev,
200 const struct pci_device_id *ent)
202 struct net_device *dev;
203 struct s_smc *smc; /* board pointer */
204 void __iomem *mem;
205 int err;
207 pr_debug("entering skfp_init_one\n");
209 if (num_boards == 0)
210 printk("%s\n", boot_msg);
212 err = pci_enable_device(pdev);
213 if (err)
214 return err;
216 err = pci_request_regions(pdev, "skfddi");
217 if (err)
218 goto err_out1;
220 pci_set_master(pdev);
222 #ifdef MEM_MAPPED_IO
223 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
224 printk(KERN_ERR "skfp: region is not an MMIO resource\n");
225 err = -EIO;
226 goto err_out2;
229 mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
230 #else
231 if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
232 printk(KERN_ERR "skfp: region is not PIO resource\n");
233 err = -EIO;
234 goto err_out2;
237 mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
238 #endif
239 if (!mem) {
240 printk(KERN_ERR "skfp: Unable to map register, "
241 "FDDI adapter will be disabled.\n");
242 err = -EIO;
243 goto err_out2;
246 dev = alloc_fddidev(sizeof(struct s_smc));
247 if (!dev) {
248 printk(KERN_ERR "skfp: Unable to allocate fddi device, "
249 "FDDI adapter will be disabled.\n");
250 err = -ENOMEM;
251 goto err_out3;
254 dev->irq = pdev->irq;
255 dev->netdev_ops = &skfp_netdev_ops;
257 SET_NETDEV_DEV(dev, &pdev->dev);
259 /* Initialize board structure with bus-specific info */
260 smc = netdev_priv(dev);
261 smc->os.dev = dev;
262 smc->os.bus_type = SK_BUS_TYPE_PCI;
263 smc->os.pdev = *pdev;
264 smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
265 smc->os.MaxFrameSize = MAX_FRAME_SIZE;
266 smc->os.dev = dev;
267 smc->hw.slot = -1;
268 smc->hw.iop = mem;
269 smc->os.ResetRequested = FALSE;
270 skb_queue_head_init(&smc->os.SendSkbQueue);
272 dev->base_addr = (unsigned long)mem;
274 err = skfp_driver_init(dev);
275 if (err)
276 goto err_out4;
278 err = register_netdev(dev);
279 if (err)
280 goto err_out5;
282 ++num_boards;
283 pci_set_drvdata(pdev, dev);
285 if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
286 (pdev->subsystem_device & 0xff00) == 0x5800)
287 printk("%s: SysKonnect FDDI PCI adapter"
288 " found (SK-%04X)\n", dev->name,
289 pdev->subsystem_device);
290 else
291 printk("%s: FDDI PCI adapter found\n", dev->name);
293 return 0;
294 err_out5:
295 if (smc->os.SharedMemAddr)
296 dma_free_coherent(&pdev->dev, smc->os.SharedMemSize,
297 smc->os.SharedMemAddr,
298 smc->os.SharedMemDMA);
299 dma_free_coherent(&pdev->dev, MAX_FRAME_SIZE,
300 smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
301 err_out4:
302 free_netdev(dev);
303 err_out3:
304 #ifdef MEM_MAPPED_IO
305 iounmap(mem);
306 #else
307 ioport_unmap(mem);
308 #endif
309 err_out2:
310 pci_release_regions(pdev);
311 err_out1:
312 pci_disable_device(pdev);
313 return err;
317 * Called for each adapter board from pci_unregister_driver
319 static void skfp_remove_one(struct pci_dev *pdev)
321 struct net_device *p = pci_get_drvdata(pdev);
322 struct s_smc *lp = netdev_priv(p);
324 unregister_netdev(p);
326 if (lp->os.SharedMemAddr) {
327 dma_free_coherent(&pdev->dev,
328 lp->os.SharedMemSize,
329 lp->os.SharedMemAddr,
330 lp->os.SharedMemDMA);
331 lp->os.SharedMemAddr = NULL;
333 if (lp->os.LocalRxBuffer) {
334 dma_free_coherent(&pdev->dev,
335 MAX_FRAME_SIZE,
336 lp->os.LocalRxBuffer,
337 lp->os.LocalRxBufferDMA);
338 lp->os.LocalRxBuffer = NULL;
340 #ifdef MEM_MAPPED_IO
341 iounmap(lp->hw.iop);
342 #else
343 ioport_unmap(lp->hw.iop);
344 #endif
345 pci_release_regions(pdev);
346 free_netdev(p);
348 pci_disable_device(pdev);
352 * ====================
353 * = skfp_driver_init =
354 * ====================
356 * Overview:
357 * Initializes remaining adapter board structure information
358 * and makes sure adapter is in a safe state prior to skfp_open().
360 * Returns:
361 * Condition code
363 * Arguments:
364 * dev - pointer to device information
366 * Functional Description:
367 * This function allocates additional resources such as the host memory
368 * blocks needed by the adapter.
369 * The adapter is also reset. The OS must call skfp_open() to open
370 * the adapter and bring it on-line.
372 * Return Codes:
373 * 0 - initialization succeeded
374 * -1 - initialization failed
376 static int skfp_driver_init(struct net_device *dev)
378 struct s_smc *smc = netdev_priv(dev);
379 skfddi_priv *bp = &smc->os;
380 int err = -EIO;
382 pr_debug("entering skfp_driver_init\n");
384 // set the io address in private structures
385 bp->base_addr = dev->base_addr;
387 // Get the interrupt level from the PCI Configuration Table
388 smc->hw.irq = dev->irq;
390 spin_lock_init(&bp->DriverLock);
392 // Allocate invalid frame
393 bp->LocalRxBuffer = dma_alloc_coherent(&bp->pdev.dev, MAX_FRAME_SIZE,
394 &bp->LocalRxBufferDMA,
395 GFP_ATOMIC);
396 if (!bp->LocalRxBuffer) {
397 printk("could not allocate mem for ");
398 printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
399 goto fail;
402 // Determine the required size of the 'shared' memory area.
403 bp->SharedMemSize = mac_drv_check_space();
404 pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize);
405 if (bp->SharedMemSize > 0) {
406 bp->SharedMemSize += 16; // for descriptor alignment
408 bp->SharedMemAddr = dma_alloc_coherent(&bp->pdev.dev,
409 bp->SharedMemSize,
410 &bp->SharedMemDMA,
411 GFP_ATOMIC);
412 if (!bp->SharedMemAddr) {
413 printk("could not allocate mem for ");
414 printk("hardware module: %ld byte\n",
415 bp->SharedMemSize);
416 goto fail;
419 } else {
420 bp->SharedMemAddr = NULL;
423 bp->SharedMemHeap = 0;
425 card_stop(smc); // Reset adapter.
427 pr_debug("mac_drv_init()..\n");
428 if (mac_drv_init(smc) != 0) {
429 pr_debug("mac_drv_init() failed\n");
430 goto fail;
432 read_address(smc, NULL);
433 pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a);
434 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN);
436 smt_reset_defaults(smc, 0);
438 return 0;
440 fail:
441 if (bp->SharedMemAddr) {
442 dma_free_coherent(&bp->pdev.dev,
443 bp->SharedMemSize,
444 bp->SharedMemAddr,
445 bp->SharedMemDMA);
446 bp->SharedMemAddr = NULL;
448 if (bp->LocalRxBuffer) {
449 dma_free_coherent(&bp->pdev.dev, MAX_FRAME_SIZE,
450 bp->LocalRxBuffer, bp->LocalRxBufferDMA);
451 bp->LocalRxBuffer = NULL;
453 return err;
454 } // skfp_driver_init
458 * =============
459 * = skfp_open =
460 * =============
462 * Overview:
463 * Opens the adapter
465 * Returns:
466 * Condition code
468 * Arguments:
469 * dev - pointer to device information
471 * Functional Description:
472 * This function brings the adapter to an operational state.
474 * Return Codes:
475 * 0 - Adapter was successfully opened
476 * -EAGAIN - Could not register IRQ
478 static int skfp_open(struct net_device *dev)
480 struct s_smc *smc = netdev_priv(dev);
481 int err;
483 pr_debug("entering skfp_open\n");
484 /* Register IRQ - support shared interrupts by passing device ptr */
485 err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
486 dev->name, dev);
487 if (err)
488 return err;
491 * Set current address to factory MAC address
493 * Note: We've already done this step in skfp_driver_init.
494 * However, it's possible that a user has set a node
495 * address override, then closed and reopened the
496 * adapter. Unless we reset the device address field
497 * now, we'll continue to use the existing modified
498 * address.
500 read_address(smc, NULL);
501 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN);
503 init_smt(smc, NULL);
504 smt_online(smc, 1);
505 STI_FBI();
507 /* Clear local multicast address tables */
508 mac_clear_multicast(smc);
510 /* Disable promiscuous filter settings */
511 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
513 netif_start_queue(dev);
514 return 0;
515 } // skfp_open
519 * ==============
520 * = skfp_close =
521 * ==============
523 * Overview:
524 * Closes the device/module.
526 * Returns:
527 * Condition code
529 * Arguments:
530 * dev - pointer to device information
532 * Functional Description:
533 * This routine closes the adapter and brings it to a safe state.
534 * The interrupt service routine is deregistered with the OS.
535 * The adapter can be opened again with another call to skfp_open().
537 * Return Codes:
538 * Always return 0.
540 * Assumptions:
541 * No further requests for this adapter are made after this routine is
542 * called. skfp_open() can be called to reset and reinitialize the
543 * adapter.
545 static int skfp_close(struct net_device *dev)
547 struct s_smc *smc = netdev_priv(dev);
548 skfddi_priv *bp = &smc->os;
550 CLI_FBI();
551 smt_reset_defaults(smc, 1);
552 card_stop(smc);
553 mac_drv_clear_tx_queue(smc);
554 mac_drv_clear_rx_queue(smc);
556 netif_stop_queue(dev);
557 /* Deregister (free) IRQ */
558 free_irq(dev->irq, dev);
560 skb_queue_purge(&bp->SendSkbQueue);
561 bp->QueueSkb = MAX_TX_QUEUE_LEN;
563 return 0;
564 } // skfp_close
568 * ==================
569 * = skfp_interrupt =
570 * ==================
572 * Overview:
573 * Interrupt processing routine
575 * Returns:
576 * None
578 * Arguments:
579 * irq - interrupt vector
580 * dev_id - pointer to device information
582 * Functional Description:
583 * This routine calls the interrupt processing routine for this adapter. It
584 * disables and reenables adapter interrupts, as appropriate. We can support
585 * shared interrupts since the incoming dev_id pointer provides our device
586 * structure context. All the real work is done in the hardware module.
588 * Return Codes:
589 * None
591 * Assumptions:
592 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
593 * on Intel-based systems) is done by the operating system outside this
594 * routine.
596 * System interrupts are enabled through this call.
598 * Side Effects:
599 * Interrupts are disabled, then reenabled at the adapter.
602 static irqreturn_t skfp_interrupt(int irq, void *dev_id)
604 struct net_device *dev = dev_id;
605 struct s_smc *smc; /* private board structure pointer */
606 skfddi_priv *bp;
608 smc = netdev_priv(dev);
609 bp = &smc->os;
611 // IRQs enabled or disabled ?
612 if (inpd(ADDR(B0_IMSK)) == 0) {
613 // IRQs are disabled: must be shared interrupt
614 return IRQ_NONE;
616 // Note: At this point, IRQs are enabled.
617 if ((inpd(ISR_A) & smc->hw.is_imask) == 0) { // IRQ?
618 // Adapter did not issue an IRQ: must be shared interrupt
619 return IRQ_NONE;
621 CLI_FBI(); // Disable IRQs from our adapter.
622 spin_lock(&bp->DriverLock);
624 // Call interrupt handler in hardware module (HWM).
625 fddi_isr(smc);
627 if (smc->os.ResetRequested) {
628 ResetAdapter(smc);
629 smc->os.ResetRequested = FALSE;
631 spin_unlock(&bp->DriverLock);
632 STI_FBI(); // Enable IRQs from our adapter.
634 return IRQ_HANDLED;
635 } // skfp_interrupt
639 * ======================
640 * = skfp_ctl_get_stats =
641 * ======================
643 * Overview:
644 * Get statistics for FDDI adapter
646 * Returns:
647 * Pointer to FDDI statistics structure
649 * Arguments:
650 * dev - pointer to device information
652 * Functional Description:
653 * Gets current MIB objects from adapter, then
654 * returns FDDI statistics structure as defined
655 * in if_fddi.h.
657 * Note: Since the FDDI statistics structure is
658 * still new and the device structure doesn't
659 * have an FDDI-specific get statistics handler,
660 * we'll return the FDDI statistics structure as
661 * a pointer to an Ethernet statistics structure.
662 * That way, at least the first part of the statistics
663 * structure can be decoded properly.
664 * We'll have to pay attention to this routine as the
665 * device structure becomes more mature and LAN media
666 * independent.
669 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
671 struct s_smc *bp = netdev_priv(dev);
673 /* Fill the bp->stats structure with driver-maintained counters */
675 bp->os.MacStat.port_bs_flag[0] = 0x1234;
676 bp->os.MacStat.port_bs_flag[1] = 0x5678;
677 // goos: need to fill out fddi statistic
678 #if 0
679 /* Get FDDI SMT MIB objects */
681 /* Fill the bp->stats structure with the SMT MIB object values */
683 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
684 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
685 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
686 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
687 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
688 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
689 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
690 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
691 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
692 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
693 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
694 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
695 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
696 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
697 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
698 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
699 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
700 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
701 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
702 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
703 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
704 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
705 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
706 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
707 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
708 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
709 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
710 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
711 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
712 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
713 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
714 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
715 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
716 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
717 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
718 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
719 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
720 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
721 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
722 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
723 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
724 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
725 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
726 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
727 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
728 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
729 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
730 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
731 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
732 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
733 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
734 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
735 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
736 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
737 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
738 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
739 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
740 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
741 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
742 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
743 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
744 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
745 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
746 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
747 memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
748 memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
749 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
750 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
751 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
752 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
753 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
754 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
755 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
756 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
757 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
758 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
759 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
760 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
761 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
762 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
763 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
764 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
765 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
766 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
767 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
768 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
769 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
770 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
771 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
772 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
773 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
774 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
777 /* Fill the bp->stats structure with the FDDI counter values */
779 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
780 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
781 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
782 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
783 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
784 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
785 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
786 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
787 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
788 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
789 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
791 #endif
792 return (struct net_device_stats *)&bp->os.MacStat;
793 } // ctl_get_stat
797 * ==============================
798 * = skfp_ctl_set_multicast_list =
799 * ==============================
801 * Overview:
802 * Enable/Disable LLC frame promiscuous mode reception
803 * on the adapter and/or update multicast address table.
805 * Returns:
806 * None
808 * Arguments:
809 * dev - pointer to device information
811 * Functional Description:
812 * This function acquires the driver lock and only calls
813 * skfp_ctl_set_multicast_list_wo_lock then.
814 * This routine follows a fairly simple algorithm for setting the
815 * adapter filters and CAM:
817 * if IFF_PROMISC flag is set
818 * enable promiscuous mode
819 * else
820 * disable promiscuous mode
821 * if number of multicast addresses <= max. multicast number
822 * add mc addresses to adapter table
823 * else
824 * enable promiscuous mode
825 * update adapter filters
827 * Assumptions:
828 * Multicast addresses are presented in canonical (LSB) format.
830 * Side Effects:
831 * On-board adapter filters are updated.
833 static void skfp_ctl_set_multicast_list(struct net_device *dev)
835 struct s_smc *smc = netdev_priv(dev);
836 skfddi_priv *bp = &smc->os;
837 unsigned long Flags;
839 spin_lock_irqsave(&bp->DriverLock, Flags);
840 skfp_ctl_set_multicast_list_wo_lock(dev);
841 spin_unlock_irqrestore(&bp->DriverLock, Flags);
842 } // skfp_ctl_set_multicast_list
846 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
848 struct s_smc *smc = netdev_priv(dev);
849 struct netdev_hw_addr *ha;
851 /* Enable promiscuous mode, if necessary */
852 if (dev->flags & IFF_PROMISC) {
853 mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
854 pr_debug("PROMISCUOUS MODE ENABLED\n");
856 /* Else, update multicast address table */
857 else {
858 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
859 pr_debug("PROMISCUOUS MODE DISABLED\n");
861 // Reset all MC addresses
862 mac_clear_multicast(smc);
863 mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
865 if (dev->flags & IFF_ALLMULTI) {
866 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
867 pr_debug("ENABLE ALL MC ADDRESSES\n");
868 } else if (!netdev_mc_empty(dev)) {
869 if (netdev_mc_count(dev) <= FPMAX_MULTICAST) {
870 /* use exact filtering */
872 // point to first multicast addr
873 netdev_for_each_mc_addr(ha, dev) {
874 mac_add_multicast(smc,
875 (struct fddi_addr *)ha->addr,
878 pr_debug("ENABLE MC ADDRESS: %pMF\n",
879 ha->addr);
882 } else { // more MC addresses than HW supports
884 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
885 pr_debug("ENABLE ALL MC ADDRESSES\n");
887 } else { // no MC addresses
889 pr_debug("DISABLE ALL MC ADDRESSES\n");
892 /* Update adapter filters */
893 mac_update_multicast(smc);
895 } // skfp_ctl_set_multicast_list_wo_lock
899 * ===========================
900 * = skfp_ctl_set_mac_address =
901 * ===========================
903 * Overview:
904 * set new mac address on adapter and update dev_addr field in device table.
906 * Returns:
907 * None
909 * Arguments:
910 * dev - pointer to device information
911 * addr - pointer to sockaddr structure containing unicast address to set
913 * Assumptions:
914 * The address pointed to by addr->sa_data is a valid unicast
915 * address and is presented in canonical (LSB) format.
917 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
919 struct s_smc *smc = netdev_priv(dev);
920 struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
921 skfddi_priv *bp = &smc->os;
922 unsigned long Flags;
925 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
926 spin_lock_irqsave(&bp->DriverLock, Flags);
927 ResetAdapter(smc);
928 spin_unlock_irqrestore(&bp->DriverLock, Flags);
930 return 0; /* always return zero */
931 } // skfp_ctl_set_mac_address
935 * ==============
936 * = skfp_ioctl =
937 * ==============
939 * Overview:
941 * Perform IOCTL call functions here. Some are privileged operations and the
942 * effective uid is checked in those cases.
944 * Returns:
945 * status value
946 * 0 - success
947 * other - failure
949 * Arguments:
950 * dev - pointer to device information
951 * rq - pointer to ioctl request structure
952 * cmd - ?
957 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
959 struct s_smc *smc = netdev_priv(dev);
960 skfddi_priv *lp = &smc->os;
961 struct s_skfp_ioctl ioc;
962 int status = 0;
964 if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
965 return -EFAULT;
967 switch (ioc.cmd) {
968 case SKFP_GET_STATS: /* Get the driver statistics */
969 ioc.len = sizeof(lp->MacStat);
970 status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
971 ? -EFAULT : 0;
972 break;
973 case SKFP_CLR_STATS: /* Zero out the driver statistics */
974 if (!capable(CAP_NET_ADMIN)) {
975 status = -EPERM;
976 } else {
977 memset(&lp->MacStat, 0, sizeof(lp->MacStat));
979 break;
980 default:
981 printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd);
982 status = -EOPNOTSUPP;
984 } // switch
986 return status;
987 } // skfp_ioctl
991 * =====================
992 * = skfp_send_pkt =
993 * =====================
995 * Overview:
996 * Queues a packet for transmission and try to transmit it.
998 * Returns:
999 * Condition code
1001 * Arguments:
1002 * skb - pointer to sk_buff to queue for transmission
1003 * dev - pointer to device information
1005 * Functional Description:
1006 * Here we assume that an incoming skb transmit request
1007 * is contained in a single physically contiguous buffer
1008 * in which the virtual address of the start of packet
1009 * (skb->data) can be converted to a physical address
1010 * by using pci_map_single().
1012 * We have an internal queue for packets we can not send
1013 * immediately. Packets in this queue can be given to the
1014 * adapter if transmit buffers are freed.
1016 * We can't free the skb until after it's been DMA'd
1017 * out by the adapter, so we'll keep it in the driver and
1018 * return it in mac_drv_tx_complete.
1020 * Return Codes:
1021 * 0 - driver has queued and/or sent packet
1022 * 1 - caller should requeue the sk_buff for later transmission
1024 * Assumptions:
1025 * The entire packet is stored in one physically
1026 * contiguous buffer which is not cached and whose
1027 * 32-bit physical address can be determined.
1029 * It's vital that this routine is NOT reentered for the
1030 * same board and that the OS is not in another section of
1031 * code (eg. skfp_interrupt) for the same board on a
1032 * different thread.
1034 * Side Effects:
1035 * None
1037 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
1038 struct net_device *dev)
1040 struct s_smc *smc = netdev_priv(dev);
1041 skfddi_priv *bp = &smc->os;
1043 pr_debug("skfp_send_pkt\n");
1046 * Verify that incoming transmit request is OK
1048 * Note: The packet size check is consistent with other
1049 * Linux device drivers, although the correct packet
1050 * size should be verified before calling the
1051 * transmit routine.
1054 if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1055 bp->MacStat.gen.tx_errors++; /* bump error counter */
1056 // dequeue packets from xmt queue and send them
1057 netif_start_queue(dev);
1058 dev_kfree_skb(skb);
1059 return NETDEV_TX_OK; /* return "success" */
1061 if (bp->QueueSkb == 0) { // return with tbusy set: queue full
1063 netif_stop_queue(dev);
1064 return NETDEV_TX_BUSY;
1066 bp->QueueSkb--;
1067 skb_queue_tail(&bp->SendSkbQueue, skb);
1068 send_queued_packets(netdev_priv(dev));
1069 if (bp->QueueSkb == 0) {
1070 netif_stop_queue(dev);
1072 return NETDEV_TX_OK;
1074 } // skfp_send_pkt
1078 * =======================
1079 * = send_queued_packets =
1080 * =======================
1082 * Overview:
1083 * Send packets from the driver queue as long as there are some and
1084 * transmit resources are available.
1086 * Returns:
1087 * None
1089 * Arguments:
1090 * smc - pointer to smc (adapter) structure
1092 * Functional Description:
1093 * Take a packet from queue if there is any. If not, then we are done.
1094 * Check if there are resources to send the packet. If not, requeue it
1095 * and exit.
1096 * Set packet descriptor flags and give packet to adapter.
1097 * Check if any send resources can be freed (we do not use the
1098 * transmit complete interrupt).
1100 static void send_queued_packets(struct s_smc *smc)
1102 skfddi_priv *bp = &smc->os;
1103 struct sk_buff *skb;
1104 unsigned char fc;
1105 int queue;
1106 struct s_smt_fp_txd *txd; // Current TxD.
1107 dma_addr_t dma_address;
1108 unsigned long Flags;
1110 int frame_status; // HWM tx frame status.
1112 pr_debug("send queued packets\n");
1113 for (;;) {
1114 // send first buffer from queue
1115 skb = skb_dequeue(&bp->SendSkbQueue);
1117 if (!skb) {
1118 pr_debug("queue empty\n");
1119 return;
1120 } // queue empty !
1122 spin_lock_irqsave(&bp->DriverLock, Flags);
1123 fc = skb->data[0];
1124 queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1125 #ifdef ESS
1126 // Check if the frame may/must be sent as a synchronous frame.
1128 if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1129 // It's an LLC frame.
1130 if (!smc->ess.sync_bw_available)
1131 fc &= ~FC_SYNC_BIT; // No bandwidth available.
1133 else { // Bandwidth is available.
1135 if (smc->mib.fddiESSSynchTxMode) {
1136 // Send as sync. frame.
1137 fc |= FC_SYNC_BIT;
1141 #endif // ESS
1142 frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1144 if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1145 // Unable to send the frame.
1147 if ((frame_status & RING_DOWN) != 0) {
1148 // Ring is down.
1149 pr_debug("Tx attempt while ring down.\n");
1150 } else if ((frame_status & OUT_OF_TXD) != 0) {
1151 pr_debug("%s: out of TXDs.\n", bp->dev->name);
1152 } else {
1153 pr_debug("%s: out of transmit resources",
1154 bp->dev->name);
1157 // Note: We will retry the operation as soon as
1158 // transmit resources become available.
1159 skb_queue_head(&bp->SendSkbQueue, skb);
1160 spin_unlock_irqrestore(&bp->DriverLock, Flags);
1161 return; // Packet has been queued.
1163 } // if (unable to send frame)
1165 bp->QueueSkb++; // one packet less in local queue
1167 // source address in packet ?
1168 CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1170 txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1172 dma_address = pci_map_single(&bp->pdev, skb->data,
1173 skb->len, PCI_DMA_TODEVICE);
1174 if (frame_status & LAN_TX) {
1175 txd->txd_os.skb = skb; // save skb
1176 txd->txd_os.dma_addr = dma_address; // save dma mapping
1178 hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1179 frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1181 if (!(frame_status & LAN_TX)) { // local only frame
1182 pci_unmap_single(&bp->pdev, dma_address,
1183 skb->len, PCI_DMA_TODEVICE);
1184 dev_kfree_skb_irq(skb);
1186 spin_unlock_irqrestore(&bp->DriverLock, Flags);
1187 } // for
1189 return; // never reached
1191 } // send_queued_packets
1194 /************************
1196 * CheckSourceAddress
1198 * Verify if the source address is set. Insert it if necessary.
1200 ************************/
1201 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1203 unsigned char SRBit;
1205 if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1207 return;
1208 if ((unsigned short) frame[1 + 10] != 0)
1209 return;
1210 SRBit = frame[1 + 6] & 0x01;
1211 memcpy(&frame[1 + 6], hw_addr, ETH_ALEN);
1212 frame[8] |= SRBit;
1213 } // CheckSourceAddress
1216 /************************
1218 * ResetAdapter
1220 * Reset the adapter and bring it back to operational mode.
1221 * Args
1222 * smc - A pointer to the SMT context struct.
1223 * Out
1224 * Nothing.
1226 ************************/
1227 static void ResetAdapter(struct s_smc *smc)
1230 pr_debug("[fddi: ResetAdapter]\n");
1232 // Stop the adapter.
1234 card_stop(smc); // Stop all activity.
1236 // Clear the transmit and receive descriptor queues.
1237 mac_drv_clear_tx_queue(smc);
1238 mac_drv_clear_rx_queue(smc);
1240 // Restart the adapter.
1242 smt_reset_defaults(smc, 1); // Initialize the SMT module.
1244 init_smt(smc, (smc->os.dev)->dev_addr); // Initialize the hardware.
1246 smt_online(smc, 1); // Insert into the ring again.
1247 STI_FBI();
1249 // Restore original receive mode (multicasts, promiscuous, etc.).
1250 skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1251 } // ResetAdapter
1254 //--------------- functions called by hardware module ----------------
1256 /************************
1258 * llc_restart_tx
1260 * The hardware driver calls this routine when the transmit complete
1261 * interrupt bits (end of frame) for the synchronous or asynchronous
1262 * queue is set.
1264 * NOTE The hardware driver calls this function also if no packets are queued.
1265 * The routine must be able to handle this case.
1266 * Args
1267 * smc - A pointer to the SMT context struct.
1268 * Out
1269 * Nothing.
1271 ************************/
1272 void llc_restart_tx(struct s_smc *smc)
1274 skfddi_priv *bp = &smc->os;
1276 pr_debug("[llc_restart_tx]\n");
1278 // Try to send queued packets
1279 spin_unlock(&bp->DriverLock);
1280 send_queued_packets(smc);
1281 spin_lock(&bp->DriverLock);
1282 netif_start_queue(bp->dev);// system may send again if it was blocked
1284 } // llc_restart_tx
1287 /************************
1289 * mac_drv_get_space
1291 * The hardware module calls this function to allocate the memory
1292 * for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1293 * Args
1294 * smc - A pointer to the SMT context struct.
1296 * size - Size of memory in bytes to allocate.
1297 * Out
1298 * != 0 A pointer to the virtual address of the allocated memory.
1299 * == 0 Allocation error.
1301 ************************/
1302 void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1304 void *virt;
1306 pr_debug("mac_drv_get_space (%d bytes), ", size);
1307 virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1309 if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1310 printk("Unexpected SMT memory size requested: %d\n", size);
1311 return NULL;
1313 smc->os.SharedMemHeap += size; // Move heap pointer.
1315 pr_debug("mac_drv_get_space end\n");
1316 pr_debug("virt addr: %lx\n", (ulong) virt);
1317 pr_debug("bus addr: %lx\n", (ulong)
1318 (smc->os.SharedMemDMA +
1319 ((char *) virt - (char *)smc->os.SharedMemAddr)));
1320 return virt;
1321 } // mac_drv_get_space
1324 /************************
1326 * mac_drv_get_desc_mem
1328 * This function is called by the hardware dependent module.
1329 * It allocates the memory for the RxD and TxD descriptors.
1331 * This memory must be non-cached, non-movable and non-swappable.
1332 * This memory should start at a physical page boundary.
1333 * Args
1334 * smc - A pointer to the SMT context struct.
1336 * size - Size of memory in bytes to allocate.
1337 * Out
1338 * != 0 A pointer to the virtual address of the allocated memory.
1339 * == 0 Allocation error.
1341 ************************/
1342 void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1345 char *virt;
1347 pr_debug("mac_drv_get_desc_mem\n");
1349 // Descriptor memory must be aligned on 16-byte boundary.
1351 virt = mac_drv_get_space(smc, size);
1353 size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1354 size = size % 16;
1356 pr_debug("Allocate %u bytes alignment gap ", size);
1357 pr_debug("for descriptor memory.\n");
1359 if (!mac_drv_get_space(smc, size)) {
1360 printk("fddi: Unable to align descriptor memory.\n");
1361 return NULL;
1363 return virt + size;
1364 } // mac_drv_get_desc_mem
1367 /************************
1369 * mac_drv_virt2phys
1371 * Get the physical address of a given virtual address.
1372 * Args
1373 * smc - A pointer to the SMT context struct.
1375 * virt - A (virtual) pointer into our 'shared' memory area.
1376 * Out
1377 * Physical address of the given virtual address.
1379 ************************/
1380 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1382 return smc->os.SharedMemDMA +
1383 ((char *) virt - (char *)smc->os.SharedMemAddr);
1384 } // mac_drv_virt2phys
1387 /************************
1389 * dma_master
1391 * The HWM calls this function, when the driver leads through a DMA
1392 * transfer. If the OS-specific module must prepare the system hardware
1393 * for the DMA transfer, it should do it in this function.
1395 * The hardware module calls this dma_master if it wants to send an SMT
1396 * frame. This means that the virt address passed in here is part of
1397 * the 'shared' memory area.
1398 * Args
1399 * smc - A pointer to the SMT context struct.
1401 * virt - The virtual address of the data.
1403 * len - The length in bytes of the data.
1405 * flag - Indicates the transmit direction and the buffer type:
1406 * DMA_RD (0x01) system RAM ==> adapter buffer memory
1407 * DMA_WR (0x02) adapter buffer memory ==> system RAM
1408 * SMT_BUF (0x80) SMT buffer
1410 * >> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1411 * Out
1412 * Returns the pyhsical address for the DMA transfer.
1414 ************************/
1415 u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1417 return smc->os.SharedMemDMA +
1418 ((char *) virt - (char *)smc->os.SharedMemAddr);
1419 } // dma_master
1422 /************************
1424 * dma_complete
1426 * The hardware module calls this routine when it has completed a DMA
1427 * transfer. If the operating system dependent module has set up the DMA
1428 * channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1429 * the DMA channel.
1430 * Args
1431 * smc - A pointer to the SMT context struct.
1433 * descr - A pointer to a TxD or RxD, respectively.
1435 * flag - Indicates the DMA transfer direction / SMT buffer:
1436 * DMA_RD (0x01) system RAM ==> adapter buffer memory
1437 * DMA_WR (0x02) adapter buffer memory ==> system RAM
1438 * SMT_BUF (0x80) SMT buffer (managed by HWM)
1439 * Out
1440 * Nothing.
1442 ************************/
1443 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1445 /* For TX buffers, there are two cases. If it is an SMT transmit
1446 * buffer, there is nothing to do since we use consistent memory
1447 * for the 'shared' memory area. The other case is for normal
1448 * transmit packets given to us by the networking stack, and in
1449 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1450 * below.
1452 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1453 * because the hardware module is about to potentially look at
1454 * the contents of the buffer. If we did not call the PCI DMA
1455 * unmap first, the hardware module could read inconsistent data.
1457 if (flag & DMA_WR) {
1458 skfddi_priv *bp = &smc->os;
1459 volatile struct s_smt_fp_rxd *r = &descr->r;
1461 /* If SKB is NULL, we used the local buffer. */
1462 if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1463 int MaxFrameSize = bp->MaxFrameSize;
1465 pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
1466 MaxFrameSize, PCI_DMA_FROMDEVICE);
1467 r->rxd_os.dma_addr = 0;
1470 } // dma_complete
1473 /************************
1475 * mac_drv_tx_complete
1477 * Transmit of a packet is complete. Release the tx staging buffer.
1479 * Args
1480 * smc - A pointer to the SMT context struct.
1482 * txd - A pointer to the last TxD which is used by the frame.
1483 * Out
1484 * Returns nothing.
1486 ************************/
1487 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1489 struct sk_buff *skb;
1491 pr_debug("entering mac_drv_tx_complete\n");
1492 // Check if this TxD points to a skb
1494 if (!(skb = txd->txd_os.skb)) {
1495 pr_debug("TXD with no skb assigned.\n");
1496 return;
1498 txd->txd_os.skb = NULL;
1500 // release the DMA mapping
1501 pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
1502 skb->len, PCI_DMA_TODEVICE);
1503 txd->txd_os.dma_addr = 0;
1505 smc->os.MacStat.gen.tx_packets++; // Count transmitted packets.
1506 smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes
1508 // free the skb
1509 dev_kfree_skb_irq(skb);
1511 pr_debug("leaving mac_drv_tx_complete\n");
1512 } // mac_drv_tx_complete
1515 /************************
1517 * dump packets to logfile
1519 ************************/
1520 #ifdef DUMPPACKETS
1521 void dump_data(unsigned char *Data, int length)
1523 printk(KERN_INFO "---Packet start---\n");
1524 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_NONE, 16, 1, Data, min_t(size_t, length, 64), false);
1525 printk(KERN_INFO "------------------\n");
1526 } // dump_data
1527 #else
1528 #define dump_data(data,len)
1529 #endif // DUMPPACKETS
1531 /************************
1533 * mac_drv_rx_complete
1535 * The hardware module calls this function if an LLC frame is received
1536 * in a receive buffer. Also the SMT, NSA, and directed beacon frames
1537 * from the network will be passed to the LLC layer by this function
1538 * if passing is enabled.
1540 * mac_drv_rx_complete forwards the frame to the LLC layer if it should
1541 * be received. It also fills the RxD ring with new receive buffers if
1542 * some can be queued.
1543 * Args
1544 * smc - A pointer to the SMT context struct.
1546 * rxd - A pointer to the first RxD which is used by the receive frame.
1548 * frag_count - Count of RxDs used by the received frame.
1550 * len - Frame length.
1551 * Out
1552 * Nothing.
1554 ************************/
1555 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1556 int frag_count, int len)
1558 skfddi_priv *bp = &smc->os;
1559 struct sk_buff *skb;
1560 unsigned char *virt, *cp;
1561 unsigned short ri;
1562 u_int RifLength;
1564 pr_debug("entering mac_drv_rx_complete (len=%d)\n", len);
1565 if (frag_count != 1) { // This is not allowed to happen.
1567 printk("fddi: Multi-fragment receive!\n");
1568 goto RequeueRxd; // Re-use the given RXD(s).
1571 skb = rxd->rxd_os.skb;
1572 if (!skb) {
1573 pr_debug("No skb in rxd\n");
1574 smc->os.MacStat.gen.rx_errors++;
1575 goto RequeueRxd;
1577 virt = skb->data;
1579 // The DMA mapping was released in dma_complete above.
1581 dump_data(skb->data, len);
1584 * FDDI Frame format:
1585 * +-------+-------+-------+------------+--------+------------+
1586 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1587 * +-------+-------+-------+------------+--------+------------+
1589 * FC = Frame Control
1590 * DA = Destination Address
1591 * SA = Source Address
1592 * RIF = Routing Information Field
1593 * LLC = Logical Link Control
1596 // Remove Routing Information Field (RIF), if present.
1598 if ((virt[1 + 6] & FDDI_RII) == 0)
1599 RifLength = 0;
1600 else {
1601 int n;
1602 // goos: RIF removal has still to be tested
1603 pr_debug("RIF found\n");
1604 // Get RIF length from Routing Control (RC) field.
1605 cp = virt + FDDI_MAC_HDR_LEN; // Point behind MAC header.
1607 ri = ntohs(*((__be16 *) cp));
1608 RifLength = ri & FDDI_RCF_LEN_MASK;
1609 if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1610 printk("fddi: Invalid RIF.\n");
1611 goto RequeueRxd; // Discard the frame.
1614 virt[1 + 6] &= ~FDDI_RII; // Clear RII bit.
1615 // regions overlap
1617 virt = cp + RifLength;
1618 for (n = FDDI_MAC_HDR_LEN; n; n--)
1619 *--virt = *--cp;
1620 // adjust sbd->data pointer
1621 skb_pull(skb, RifLength);
1622 len -= RifLength;
1623 RifLength = 0;
1626 // Count statistics.
1627 smc->os.MacStat.gen.rx_packets++; // Count indicated receive
1628 // packets.
1629 smc->os.MacStat.gen.rx_bytes+=len; // Count bytes.
1631 // virt points to header again
1632 if (virt[1] & 0x01) { // Check group (multicast) bit.
1634 smc->os.MacStat.gen.multicast++;
1637 // deliver frame to system
1638 rxd->rxd_os.skb = NULL;
1639 skb_trim(skb, len);
1640 skb->protocol = fddi_type_trans(skb, bp->dev);
1642 netif_rx(skb);
1644 HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1645 return;
1647 RequeueRxd:
1648 pr_debug("Rx: re-queue RXD.\n");
1649 mac_drv_requeue_rxd(smc, rxd, frag_count);
1650 smc->os.MacStat.gen.rx_errors++; // Count receive packets
1651 // not indicated.
1653 } // mac_drv_rx_complete
1656 /************************
1658 * mac_drv_requeue_rxd
1660 * The hardware module calls this function to request the OS-specific
1661 * module to queue the receive buffer(s) represented by the pointer
1662 * to the RxD and the frag_count into the receive queue again. This
1663 * buffer was filled with an invalid frame or an SMT frame.
1664 * Args
1665 * smc - A pointer to the SMT context struct.
1667 * rxd - A pointer to the first RxD which is used by the receive frame.
1669 * frag_count - Count of RxDs used by the received frame.
1670 * Out
1671 * Nothing.
1673 ************************/
1674 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1675 int frag_count)
1677 volatile struct s_smt_fp_rxd *next_rxd;
1678 volatile struct s_smt_fp_rxd *src_rxd;
1679 struct sk_buff *skb;
1680 int MaxFrameSize;
1681 unsigned char *v_addr;
1682 dma_addr_t b_addr;
1684 if (frag_count != 1) // This is not allowed to happen.
1686 printk("fddi: Multi-fragment requeue!\n");
1688 MaxFrameSize = smc->os.MaxFrameSize;
1689 src_rxd = rxd;
1690 for (; frag_count > 0; frag_count--) {
1691 next_rxd = src_rxd->rxd_next;
1692 rxd = HWM_GET_CURR_RXD(smc);
1694 skb = src_rxd->rxd_os.skb;
1695 if (skb == NULL) { // this should not happen
1697 pr_debug("Requeue with no skb in rxd!\n");
1698 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1699 if (skb) {
1700 // we got a skb
1701 rxd->rxd_os.skb = skb;
1702 skb_reserve(skb, 3);
1703 skb_put(skb, MaxFrameSize);
1704 v_addr = skb->data;
1705 b_addr = pci_map_single(&smc->os.pdev,
1706 v_addr,
1707 MaxFrameSize,
1708 PCI_DMA_FROMDEVICE);
1709 rxd->rxd_os.dma_addr = b_addr;
1710 } else {
1711 // no skb available, use local buffer
1712 pr_debug("Queueing invalid buffer!\n");
1713 rxd->rxd_os.skb = NULL;
1714 v_addr = smc->os.LocalRxBuffer;
1715 b_addr = smc->os.LocalRxBufferDMA;
1717 } else {
1718 // we use skb from old rxd
1719 rxd->rxd_os.skb = skb;
1720 v_addr = skb->data;
1721 b_addr = pci_map_single(&smc->os.pdev,
1722 v_addr,
1723 MaxFrameSize,
1724 PCI_DMA_FROMDEVICE);
1725 rxd->rxd_os.dma_addr = b_addr;
1727 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1728 FIRST_FRAG | LAST_FRAG);
1730 src_rxd = next_rxd;
1732 } // mac_drv_requeue_rxd
1735 /************************
1737 * mac_drv_fill_rxd
1739 * The hardware module calls this function at initialization time
1740 * to fill the RxD ring with receive buffers. It is also called by
1741 * mac_drv_rx_complete if rx_free is large enough to queue some new
1742 * receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1743 * receive buffers as long as enough RxDs and receive buffers are
1744 * available.
1745 * Args
1746 * smc - A pointer to the SMT context struct.
1747 * Out
1748 * Nothing.
1750 ************************/
1751 void mac_drv_fill_rxd(struct s_smc *smc)
1753 int MaxFrameSize;
1754 unsigned char *v_addr;
1755 unsigned long b_addr;
1756 struct sk_buff *skb;
1757 volatile struct s_smt_fp_rxd *rxd;
1759 pr_debug("entering mac_drv_fill_rxd\n");
1761 // Walk through the list of free receive buffers, passing receive
1762 // buffers to the HWM as long as RXDs are available.
1764 MaxFrameSize = smc->os.MaxFrameSize;
1765 // Check if there is any RXD left.
1766 while (HWM_GET_RX_FREE(smc) > 0) {
1767 pr_debug(".\n");
1769 rxd = HWM_GET_CURR_RXD(smc);
1770 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1771 if (skb) {
1772 // we got a skb
1773 skb_reserve(skb, 3);
1774 skb_put(skb, MaxFrameSize);
1775 v_addr = skb->data;
1776 b_addr = pci_map_single(&smc->os.pdev,
1777 v_addr,
1778 MaxFrameSize,
1779 PCI_DMA_FROMDEVICE);
1780 rxd->rxd_os.dma_addr = b_addr;
1781 } else {
1782 // no skb available, use local buffer
1783 // System has run out of buffer memory, but we want to
1784 // keep the receiver running in hope of better times.
1785 // Multiple descriptors may point to this local buffer,
1786 // so data in it must be considered invalid.
1787 pr_debug("Queueing invalid buffer!\n");
1788 v_addr = smc->os.LocalRxBuffer;
1789 b_addr = smc->os.LocalRxBufferDMA;
1792 rxd->rxd_os.skb = skb;
1794 // Pass receive buffer to HWM.
1795 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1796 FIRST_FRAG | LAST_FRAG);
1798 pr_debug("leaving mac_drv_fill_rxd\n");
1799 } // mac_drv_fill_rxd
1802 /************************
1804 * mac_drv_clear_rxd
1806 * The hardware module calls this function to release unused
1807 * receive buffers.
1808 * Args
1809 * smc - A pointer to the SMT context struct.
1811 * rxd - A pointer to the first RxD which is used by the receive buffer.
1813 * frag_count - Count of RxDs used by the receive buffer.
1814 * Out
1815 * Nothing.
1817 ************************/
1818 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1819 int frag_count)
1822 struct sk_buff *skb;
1824 pr_debug("entering mac_drv_clear_rxd\n");
1826 if (frag_count != 1) // This is not allowed to happen.
1828 printk("fddi: Multi-fragment clear!\n");
1830 for (; frag_count > 0; frag_count--) {
1831 skb = rxd->rxd_os.skb;
1832 if (skb != NULL) {
1833 skfddi_priv *bp = &smc->os;
1834 int MaxFrameSize = bp->MaxFrameSize;
1836 pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
1837 MaxFrameSize, PCI_DMA_FROMDEVICE);
1839 dev_kfree_skb(skb);
1840 rxd->rxd_os.skb = NULL;
1842 rxd = rxd->rxd_next; // Next RXD.
1845 } // mac_drv_clear_rxd
1848 /************************
1850 * mac_drv_rx_init
1852 * The hardware module calls this routine when an SMT or NSA frame of the
1853 * local SMT should be delivered to the LLC layer.
1855 * It is necessary to have this function, because there is no other way to
1856 * copy the contents of SMT MBufs into receive buffers.
1858 * mac_drv_rx_init allocates the required target memory for this frame,
1859 * and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1860 * Args
1861 * smc - A pointer to the SMT context struct.
1863 * len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1865 * fc - The Frame Control field of the received frame.
1867 * look_ahead - A pointer to the lookahead data buffer (may be NULL).
1869 * la_len - The length of the lookahead data stored in the lookahead
1870 * buffer (may be zero).
1871 * Out
1872 * Always returns zero (0).
1874 ************************/
1875 int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1876 char *look_ahead, int la_len)
1878 struct sk_buff *skb;
1880 pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
1882 // "Received" a SMT or NSA frame of the local SMT.
1884 if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1885 pr_debug("fddi: Discard invalid local SMT frame\n");
1886 pr_debug(" len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1887 len, la_len, (unsigned long) look_ahead);
1888 return 0;
1890 skb = alloc_skb(len + 3, GFP_ATOMIC);
1891 if (!skb) {
1892 pr_debug("fddi: Local SMT: skb memory exhausted.\n");
1893 return 0;
1895 skb_reserve(skb, 3);
1896 skb_put(skb, len);
1897 skb_copy_to_linear_data(skb, look_ahead, len);
1899 // deliver frame to system
1900 skb->protocol = fddi_type_trans(skb, smc->os.dev);
1901 netif_rx(skb);
1903 return 0;
1904 } // mac_drv_rx_init
1907 /************************
1909 * smt_timer_poll
1911 * This routine is called periodically by the SMT module to clean up the
1912 * driver.
1914 * Return any queued frames back to the upper protocol layers if the ring
1915 * is down.
1916 * Args
1917 * smc - A pointer to the SMT context struct.
1918 * Out
1919 * Nothing.
1921 ************************/
1922 void smt_timer_poll(struct s_smc *smc)
1924 } // smt_timer_poll
1927 /************************
1929 * ring_status_indication
1931 * This function indicates a change of the ring state.
1932 * Args
1933 * smc - A pointer to the SMT context struct.
1935 * status - The current ring status.
1936 * Out
1937 * Nothing.
1939 ************************/
1940 void ring_status_indication(struct s_smc *smc, u_long status)
1942 pr_debug("ring_status_indication( ");
1943 if (status & RS_RES15)
1944 pr_debug("RS_RES15 ");
1945 if (status & RS_HARDERROR)
1946 pr_debug("RS_HARDERROR ");
1947 if (status & RS_SOFTERROR)
1948 pr_debug("RS_SOFTERROR ");
1949 if (status & RS_BEACON)
1950 pr_debug("RS_BEACON ");
1951 if (status & RS_PATHTEST)
1952 pr_debug("RS_PATHTEST ");
1953 if (status & RS_SELFTEST)
1954 pr_debug("RS_SELFTEST ");
1955 if (status & RS_RES9)
1956 pr_debug("RS_RES9 ");
1957 if (status & RS_DISCONNECT)
1958 pr_debug("RS_DISCONNECT ");
1959 if (status & RS_RES7)
1960 pr_debug("RS_RES7 ");
1961 if (status & RS_DUPADDR)
1962 pr_debug("RS_DUPADDR ");
1963 if (status & RS_NORINGOP)
1964 pr_debug("RS_NORINGOP ");
1965 if (status & RS_VERSION)
1966 pr_debug("RS_VERSION ");
1967 if (status & RS_STUCKBYPASSS)
1968 pr_debug("RS_STUCKBYPASSS ");
1969 if (status & RS_EVENT)
1970 pr_debug("RS_EVENT ");
1971 if (status & RS_RINGOPCHANGE)
1972 pr_debug("RS_RINGOPCHANGE ");
1973 if (status & RS_RES0)
1974 pr_debug("RS_RES0 ");
1975 pr_debug("]\n");
1976 } // ring_status_indication
1979 /************************
1981 * smt_get_time
1983 * Gets the current time from the system.
1984 * Args
1985 * None.
1986 * Out
1987 * The current time in TICKS_PER_SECOND.
1989 * TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
1990 * defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
1991 * to the time returned by smt_get_time().
1993 ************************/
1994 unsigned long smt_get_time(void)
1996 return jiffies;
1997 } // smt_get_time
2000 /************************
2002 * smt_stat_counter
2004 * Status counter update (ring_op, fifo full).
2005 * Args
2006 * smc - A pointer to the SMT context struct.
2008 * stat - = 0: A ring operational change occurred.
2009 * = 1: The FORMAC FIFO buffer is full / FIFO overflow.
2010 * Out
2011 * Nothing.
2013 ************************/
2014 void smt_stat_counter(struct s_smc *smc, int stat)
2016 // BOOLEAN RingIsUp ;
2018 pr_debug("smt_stat_counter\n");
2019 switch (stat) {
2020 case 0:
2021 pr_debug("Ring operational change.\n");
2022 break;
2023 case 1:
2024 pr_debug("Receive fifo overflow.\n");
2025 smc->os.MacStat.gen.rx_errors++;
2026 break;
2027 default:
2028 pr_debug("Unknown status (%d).\n", stat);
2029 break;
2031 } // smt_stat_counter
2034 /************************
2036 * cfm_state_change
2038 * Sets CFM state in custom statistics.
2039 * Args
2040 * smc - A pointer to the SMT context struct.
2042 * c_state - Possible values are:
2044 * EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2045 * EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2046 * Out
2047 * Nothing.
2049 ************************/
2050 void cfm_state_change(struct s_smc *smc, int c_state)
2052 #ifdef DRIVERDEBUG
2053 char *s;
2055 switch (c_state) {
2056 case SC0_ISOLATED:
2057 s = "SC0_ISOLATED";
2058 break;
2059 case SC1_WRAP_A:
2060 s = "SC1_WRAP_A";
2061 break;
2062 case SC2_WRAP_B:
2063 s = "SC2_WRAP_B";
2064 break;
2065 case SC4_THRU_A:
2066 s = "SC4_THRU_A";
2067 break;
2068 case SC5_THRU_B:
2069 s = "SC5_THRU_B";
2070 break;
2071 case SC7_WRAP_S:
2072 s = "SC7_WRAP_S";
2073 break;
2074 case SC9_C_WRAP_A:
2075 s = "SC9_C_WRAP_A";
2076 break;
2077 case SC10_C_WRAP_B:
2078 s = "SC10_C_WRAP_B";
2079 break;
2080 case SC11_C_WRAP_S:
2081 s = "SC11_C_WRAP_S";
2082 break;
2083 default:
2084 pr_debug("cfm_state_change: unknown %d\n", c_state);
2085 return;
2087 pr_debug("cfm_state_change: %s\n", s);
2088 #endif // DRIVERDEBUG
2089 } // cfm_state_change
2092 /************************
2094 * ecm_state_change
2096 * Sets ECM state in custom statistics.
2097 * Args
2098 * smc - A pointer to the SMT context struct.
2100 * e_state - Possible values are:
2102 * SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2103 * SC5_THRU_B (7), SC7_WRAP_S (8)
2104 * Out
2105 * Nothing.
2107 ************************/
2108 void ecm_state_change(struct s_smc *smc, int e_state)
2110 #ifdef DRIVERDEBUG
2111 char *s;
2113 switch (e_state) {
2114 case EC0_OUT:
2115 s = "EC0_OUT";
2116 break;
2117 case EC1_IN:
2118 s = "EC1_IN";
2119 break;
2120 case EC2_TRACE:
2121 s = "EC2_TRACE";
2122 break;
2123 case EC3_LEAVE:
2124 s = "EC3_LEAVE";
2125 break;
2126 case EC4_PATH_TEST:
2127 s = "EC4_PATH_TEST";
2128 break;
2129 case EC5_INSERT:
2130 s = "EC5_INSERT";
2131 break;
2132 case EC6_CHECK:
2133 s = "EC6_CHECK";
2134 break;
2135 case EC7_DEINSERT:
2136 s = "EC7_DEINSERT";
2137 break;
2138 default:
2139 s = "unknown";
2140 break;
2142 pr_debug("ecm_state_change: %s\n", s);
2143 #endif //DRIVERDEBUG
2144 } // ecm_state_change
2147 /************************
2149 * rmt_state_change
2151 * Sets RMT state in custom statistics.
2152 * Args
2153 * smc - A pointer to the SMT context struct.
2155 * r_state - Possible values are:
2157 * RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2158 * RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2159 * Out
2160 * Nothing.
2162 ************************/
2163 void rmt_state_change(struct s_smc *smc, int r_state)
2165 #ifdef DRIVERDEBUG
2166 char *s;
2168 switch (r_state) {
2169 case RM0_ISOLATED:
2170 s = "RM0_ISOLATED";
2171 break;
2172 case RM1_NON_OP:
2173 s = "RM1_NON_OP - not operational";
2174 break;
2175 case RM2_RING_OP:
2176 s = "RM2_RING_OP - ring operational";
2177 break;
2178 case RM3_DETECT:
2179 s = "RM3_DETECT - detect dupl addresses";
2180 break;
2181 case RM4_NON_OP_DUP:
2182 s = "RM4_NON_OP_DUP - dupl. addr detected";
2183 break;
2184 case RM5_RING_OP_DUP:
2185 s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2186 break;
2187 case RM6_DIRECTED:
2188 s = "RM6_DIRECTED - sending directed beacons";
2189 break;
2190 case RM7_TRACE:
2191 s = "RM7_TRACE - trace initiated";
2192 break;
2193 default:
2194 s = "unknown";
2195 break;
2197 pr_debug("[rmt_state_change: %s]\n", s);
2198 #endif // DRIVERDEBUG
2199 } // rmt_state_change
2202 /************************
2204 * drv_reset_indication
2206 * This function is called by the SMT when it has detected a severe
2207 * hardware problem. The driver should perform a reset on the adapter
2208 * as soon as possible, but not from within this function.
2209 * Args
2210 * smc - A pointer to the SMT context struct.
2211 * Out
2212 * Nothing.
2214 ************************/
2215 void drv_reset_indication(struct s_smc *smc)
2217 pr_debug("entering drv_reset_indication\n");
2219 smc->os.ResetRequested = TRUE; // Set flag.
2221 } // drv_reset_indication
2223 static struct pci_driver skfddi_pci_driver = {
2224 .name = "skfddi",
2225 .id_table = skfddi_pci_tbl,
2226 .probe = skfp_init_one,
2227 .remove = skfp_remove_one,
2230 module_pci_driver(skfddi_pci_driver);