WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / hamradio / dmascc.c
blobc25c8c99c5c74bec00f0b6e78905c5ac456207f7
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for high-speed SCC boards (those with DMA support)
4 * Copyright (C) 1997-2000 Klaus Kudielka
6 * S5SCC/DMA support by Janko Koleznik S52HI
7 */
10 #include <linux/module.h>
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/if_arp.h>
15 #include <linux/in.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/netdevice.h>
22 #include <linux/slab.h>
23 #include <linux/rtnetlink.h>
24 #include <linux/sockios.h>
25 #include <linux/workqueue.h>
26 #include <linux/atomic.h>
27 #include <asm/dma.h>
28 #include <asm/io.h>
29 #include <asm/irq.h>
30 #include <linux/uaccess.h>
31 #include <net/ax25.h>
32 #include "z8530.h"
35 /* Number of buffers per channel */
37 #define NUM_TX_BUF 2 /* NUM_TX_BUF >= 1 (min. 2 recommended) */
38 #define NUM_RX_BUF 6 /* NUM_RX_BUF >= 1 (min. 2 recommended) */
39 #define BUF_SIZE 1576 /* BUF_SIZE >= mtu + hard_header_len */
42 /* Cards supported */
44 #define HW_PI { "Ottawa PI", 0x300, 0x20, 0x10, 8, \
45 0, 8, 1843200, 3686400 }
46 #define HW_PI2 { "Ottawa PI2", 0x300, 0x20, 0x10, 8, \
47 0, 8, 3686400, 7372800 }
48 #define HW_TWIN { "Gracilis PackeTwin", 0x200, 0x10, 0x10, 32, \
49 0, 4, 6144000, 6144000 }
50 #define HW_S5 { "S5SCC/DMA", 0x200, 0x10, 0x10, 32, \
51 0, 8, 4915200, 9830400 }
53 #define HARDWARE { HW_PI, HW_PI2, HW_TWIN, HW_S5 }
55 #define TMR_0_HZ 25600 /* Frequency of timer 0 */
57 #define TYPE_PI 0
58 #define TYPE_PI2 1
59 #define TYPE_TWIN 2
60 #define TYPE_S5 3
61 #define NUM_TYPES 4
63 #define MAX_NUM_DEVS 32
66 /* SCC chips supported */
68 #define Z8530 0
69 #define Z85C30 1
70 #define Z85230 2
72 #define CHIPNAMES { "Z8530", "Z85C30", "Z85230" }
75 /* I/O registers */
77 /* 8530 registers relative to card base */
78 #define SCCB_CMD 0x00
79 #define SCCB_DATA 0x01
80 #define SCCA_CMD 0x02
81 #define SCCA_DATA 0x03
83 /* 8253/8254 registers relative to card base */
84 #define TMR_CNT0 0x00
85 #define TMR_CNT1 0x01
86 #define TMR_CNT2 0x02
87 #define TMR_CTRL 0x03
89 /* Additional PI/PI2 registers relative to card base */
90 #define PI_DREQ_MASK 0x04
92 /* Additional PackeTwin registers relative to card base */
93 #define TWIN_INT_REG 0x08
94 #define TWIN_CLR_TMR1 0x09
95 #define TWIN_CLR_TMR2 0x0a
96 #define TWIN_SPARE_1 0x0b
97 #define TWIN_DMA_CFG 0x08
98 #define TWIN_SERIAL_CFG 0x09
99 #define TWIN_DMA_CLR_FF 0x0a
100 #define TWIN_SPARE_2 0x0b
103 /* PackeTwin I/O register values */
105 /* INT_REG */
106 #define TWIN_SCC_MSK 0x01
107 #define TWIN_TMR1_MSK 0x02
108 #define TWIN_TMR2_MSK 0x04
109 #define TWIN_INT_MSK 0x07
111 /* SERIAL_CFG */
112 #define TWIN_DTRA_ON 0x01
113 #define TWIN_DTRB_ON 0x02
114 #define TWIN_EXTCLKA 0x04
115 #define TWIN_EXTCLKB 0x08
116 #define TWIN_LOOPA_ON 0x10
117 #define TWIN_LOOPB_ON 0x20
118 #define TWIN_EI 0x80
120 /* DMA_CFG */
121 #define TWIN_DMA_HDX_T1 0x08
122 #define TWIN_DMA_HDX_R1 0x0a
123 #define TWIN_DMA_HDX_T3 0x14
124 #define TWIN_DMA_HDX_R3 0x16
125 #define TWIN_DMA_FDX_T3R1 0x1b
126 #define TWIN_DMA_FDX_T1R3 0x1d
129 /* Status values */
131 #define IDLE 0
132 #define TX_HEAD 1
133 #define TX_DATA 2
134 #define TX_PAUSE 3
135 #define TX_TAIL 4
136 #define RTS_OFF 5
137 #define WAIT 6
138 #define DCD_ON 7
139 #define RX_ON 8
140 #define DCD_OFF 9
143 /* Ioctls */
145 #define SIOCGSCCPARAM SIOCDEVPRIVATE
146 #define SIOCSSCCPARAM (SIOCDEVPRIVATE+1)
149 /* Data types */
151 struct scc_param {
152 int pclk_hz; /* frequency of BRG input (don't change) */
153 int brg_tc; /* BRG terminal count; BRG disabled if < 0 */
154 int nrzi; /* 0 (nrz), 1 (nrzi) */
155 int clocks; /* see dmascc_cfg documentation */
156 int txdelay; /* [1/TMR_0_HZ] */
157 int txtimeout; /* [1/HZ] */
158 int txtail; /* [1/TMR_0_HZ] */
159 int waittime; /* [1/TMR_0_HZ] */
160 int slottime; /* [1/TMR_0_HZ] */
161 int persist; /* 1 ... 256 */
162 int dma; /* -1 (disable), 0, 1, 3 */
163 int txpause; /* [1/TMR_0_HZ] */
164 int rtsoff; /* [1/TMR_0_HZ] */
165 int dcdon; /* [1/TMR_0_HZ] */
166 int dcdoff; /* [1/TMR_0_HZ] */
169 struct scc_hardware {
170 char *name;
171 int io_region;
172 int io_delta;
173 int io_size;
174 int num_devs;
175 int scc_offset;
176 int tmr_offset;
177 int tmr_hz;
178 int pclk_hz;
181 struct scc_priv {
182 int type;
183 int chip;
184 struct net_device *dev;
185 struct scc_info *info;
187 int channel;
188 int card_base, scc_cmd, scc_data;
189 int tmr_cnt, tmr_ctrl, tmr_mode;
190 struct scc_param param;
191 char rx_buf[NUM_RX_BUF][BUF_SIZE];
192 int rx_len[NUM_RX_BUF];
193 int rx_ptr;
194 struct work_struct rx_work;
195 int rx_head, rx_tail, rx_count;
196 int rx_over;
197 char tx_buf[NUM_TX_BUF][BUF_SIZE];
198 int tx_len[NUM_TX_BUF];
199 int tx_ptr;
200 int tx_head, tx_tail, tx_count;
201 int state;
202 unsigned long tx_start;
203 int rr0;
204 spinlock_t *register_lock; /* Per scc_info */
205 spinlock_t ring_lock;
208 struct scc_info {
209 int irq_used;
210 int twin_serial_cfg;
211 struct net_device *dev[2];
212 struct scc_priv priv[2];
213 struct scc_info *next;
214 spinlock_t register_lock; /* Per device register lock */
218 /* Function declarations */
219 static int setup_adapter(int card_base, int type, int n) __init;
221 static void write_scc(struct scc_priv *priv, int reg, int val);
222 static void write_scc_data(struct scc_priv *priv, int val, int fast);
223 static int read_scc(struct scc_priv *priv, int reg);
224 static int read_scc_data(struct scc_priv *priv);
226 static int scc_open(struct net_device *dev);
227 static int scc_close(struct net_device *dev);
228 static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
229 static int scc_send_packet(struct sk_buff *skb, struct net_device *dev);
230 static int scc_set_mac_address(struct net_device *dev, void *sa);
232 static inline void tx_on(struct scc_priv *priv);
233 static inline void rx_on(struct scc_priv *priv);
234 static inline void rx_off(struct scc_priv *priv);
235 static void start_timer(struct scc_priv *priv, int t, int r15);
236 static inline unsigned char random(void);
238 static inline void z8530_isr(struct scc_info *info);
239 static irqreturn_t scc_isr(int irq, void *dev_id);
240 static void rx_isr(struct scc_priv *priv);
241 static void special_condition(struct scc_priv *priv, int rc);
242 static void rx_bh(struct work_struct *);
243 static void tx_isr(struct scc_priv *priv);
244 static void es_isr(struct scc_priv *priv);
245 static void tm_isr(struct scc_priv *priv);
248 /* Initialization variables */
250 static int io[MAX_NUM_DEVS] __initdata = { 0, };
252 /* Beware! hw[] is also used in dmascc_exit(). */
253 static struct scc_hardware hw[NUM_TYPES] = HARDWARE;
256 /* Global variables */
258 static struct scc_info *first;
259 static unsigned long rand;
262 MODULE_AUTHOR("Klaus Kudielka");
263 MODULE_DESCRIPTION("Driver for high-speed SCC boards");
264 module_param_hw_array(io, int, ioport, NULL, 0);
265 MODULE_LICENSE("GPL");
267 static void __exit dmascc_exit(void)
269 int i;
270 struct scc_info *info;
272 while (first) {
273 info = first;
275 /* Unregister devices */
276 for (i = 0; i < 2; i++)
277 unregister_netdev(info->dev[i]);
279 /* Reset board */
280 if (info->priv[0].type == TYPE_TWIN)
281 outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG);
282 write_scc(&info->priv[0], R9, FHWRES);
283 release_region(info->dev[0]->base_addr,
284 hw[info->priv[0].type].io_size);
286 for (i = 0; i < 2; i++)
287 free_netdev(info->dev[i]);
289 /* Free memory */
290 first = info->next;
291 kfree(info);
295 static int __init dmascc_init(void)
297 int h, i, j, n;
298 int base[MAX_NUM_DEVS], tcmd[MAX_NUM_DEVS], t0[MAX_NUM_DEVS],
299 t1[MAX_NUM_DEVS];
300 unsigned t_val;
301 unsigned long time, start[MAX_NUM_DEVS], delay[MAX_NUM_DEVS],
302 counting[MAX_NUM_DEVS];
304 /* Initialize random number generator */
305 rand = jiffies;
306 /* Cards found = 0 */
307 n = 0;
308 /* Warning message */
309 if (!io[0])
310 printk(KERN_INFO "dmascc: autoprobing (dangerous)\n");
312 /* Run autodetection for each card type */
313 for (h = 0; h < NUM_TYPES; h++) {
315 if (io[0]) {
316 /* User-specified I/O address regions */
317 for (i = 0; i < hw[h].num_devs; i++)
318 base[i] = 0;
319 for (i = 0; i < MAX_NUM_DEVS && io[i]; i++) {
320 j = (io[i] -
321 hw[h].io_region) / hw[h].io_delta;
322 if (j >= 0 && j < hw[h].num_devs &&
323 hw[h].io_region +
324 j * hw[h].io_delta == io[i]) {
325 base[j] = io[i];
328 } else {
329 /* Default I/O address regions */
330 for (i = 0; i < hw[h].num_devs; i++) {
331 base[i] =
332 hw[h].io_region + i * hw[h].io_delta;
336 /* Check valid I/O address regions */
337 for (i = 0; i < hw[h].num_devs; i++)
338 if (base[i]) {
339 if (!request_region
340 (base[i], hw[h].io_size, "dmascc"))
341 base[i] = 0;
342 else {
343 tcmd[i] =
344 base[i] + hw[h].tmr_offset +
345 TMR_CTRL;
346 t0[i] =
347 base[i] + hw[h].tmr_offset +
348 TMR_CNT0;
349 t1[i] =
350 base[i] + hw[h].tmr_offset +
351 TMR_CNT1;
355 /* Start timers */
356 for (i = 0; i < hw[h].num_devs; i++)
357 if (base[i]) {
358 /* Timer 0: LSB+MSB, Mode 3, TMR_0_HZ */
359 outb(0x36, tcmd[i]);
360 outb((hw[h].tmr_hz / TMR_0_HZ) & 0xFF,
361 t0[i]);
362 outb((hw[h].tmr_hz / TMR_0_HZ) >> 8,
363 t0[i]);
364 /* Timer 1: LSB+MSB, Mode 0, HZ/10 */
365 outb(0x70, tcmd[i]);
366 outb((TMR_0_HZ / HZ * 10) & 0xFF, t1[i]);
367 outb((TMR_0_HZ / HZ * 10) >> 8, t1[i]);
368 start[i] = jiffies;
369 delay[i] = 0;
370 counting[i] = 1;
371 /* Timer 2: LSB+MSB, Mode 0 */
372 outb(0xb0, tcmd[i]);
374 time = jiffies;
375 /* Wait until counter registers are loaded */
376 udelay(2000000 / TMR_0_HZ);
378 /* Timing loop */
379 while (jiffies - time < 13) {
380 for (i = 0; i < hw[h].num_devs; i++)
381 if (base[i] && counting[i]) {
382 /* Read back Timer 1: latch; read LSB; read MSB */
383 outb(0x40, tcmd[i]);
384 t_val =
385 inb(t1[i]) + (inb(t1[i]) << 8);
386 /* Also check whether counter did wrap */
387 if (t_val == 0 ||
388 t_val > TMR_0_HZ / HZ * 10)
389 counting[i] = 0;
390 delay[i] = jiffies - start[i];
394 /* Evaluate measurements */
395 for (i = 0; i < hw[h].num_devs; i++)
396 if (base[i]) {
397 if ((delay[i] >= 9 && delay[i] <= 11) &&
398 /* Ok, we have found an adapter */
399 (setup_adapter(base[i], h, n) == 0))
400 n++;
401 else
402 release_region(base[i],
403 hw[h].io_size);
406 } /* NUM_TYPES */
408 /* If any adapter was successfully initialized, return ok */
409 if (n)
410 return 0;
412 /* If no adapter found, return error */
413 printk(KERN_INFO "dmascc: no adapters found\n");
414 return -EIO;
417 module_init(dmascc_init);
418 module_exit(dmascc_exit);
420 static void __init dev_setup(struct net_device *dev)
422 dev->type = ARPHRD_AX25;
423 dev->hard_header_len = AX25_MAX_HEADER_LEN;
424 dev->mtu = 1500;
425 dev->addr_len = AX25_ADDR_LEN;
426 dev->tx_queue_len = 64;
427 memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
428 memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
431 static const struct net_device_ops scc_netdev_ops = {
432 .ndo_open = scc_open,
433 .ndo_stop = scc_close,
434 .ndo_start_xmit = scc_send_packet,
435 .ndo_do_ioctl = scc_ioctl,
436 .ndo_set_mac_address = scc_set_mac_address,
439 static int __init setup_adapter(int card_base, int type, int n)
441 int i, irq, chip, err;
442 struct scc_info *info;
443 struct net_device *dev;
444 struct scc_priv *priv;
445 unsigned long time;
446 unsigned int irqs;
447 int tmr_base = card_base + hw[type].tmr_offset;
448 int scc_base = card_base + hw[type].scc_offset;
449 char *chipnames[] = CHIPNAMES;
451 /* Initialize what is necessary for write_scc and write_scc_data */
452 info = kzalloc(sizeof(struct scc_info), GFP_KERNEL | GFP_DMA);
453 if (!info) {
454 err = -ENOMEM;
455 goto out;
458 info->dev[0] = alloc_netdev(0, "", NET_NAME_UNKNOWN, dev_setup);
459 if (!info->dev[0]) {
460 printk(KERN_ERR "dmascc: "
461 "could not allocate memory for %s at %#3x\n",
462 hw[type].name, card_base);
463 err = -ENOMEM;
464 goto out1;
467 info->dev[1] = alloc_netdev(0, "", NET_NAME_UNKNOWN, dev_setup);
468 if (!info->dev[1]) {
469 printk(KERN_ERR "dmascc: "
470 "could not allocate memory for %s at %#3x\n",
471 hw[type].name, card_base);
472 err = -ENOMEM;
473 goto out2;
475 spin_lock_init(&info->register_lock);
477 priv = &info->priv[0];
478 priv->type = type;
479 priv->card_base = card_base;
480 priv->scc_cmd = scc_base + SCCA_CMD;
481 priv->scc_data = scc_base + SCCA_DATA;
482 priv->register_lock = &info->register_lock;
484 /* Reset SCC */
485 write_scc(priv, R9, FHWRES | MIE | NV);
487 /* Determine type of chip by enabling SDLC/HDLC enhancements */
488 write_scc(priv, R15, SHDLCE);
489 if (!read_scc(priv, R15)) {
490 /* WR7' not present. This is an ordinary Z8530 SCC. */
491 chip = Z8530;
492 } else {
493 /* Put one character in TX FIFO */
494 write_scc_data(priv, 0, 0);
495 if (read_scc(priv, R0) & Tx_BUF_EMP) {
496 /* TX FIFO not full. This is a Z85230 ESCC with a 4-byte FIFO. */
497 chip = Z85230;
498 } else {
499 /* TX FIFO full. This is a Z85C30 SCC with a 1-byte FIFO. */
500 chip = Z85C30;
503 write_scc(priv, R15, 0);
505 /* Start IRQ auto-detection */
506 irqs = probe_irq_on();
508 /* Enable interrupts */
509 if (type == TYPE_TWIN) {
510 outb(0, card_base + TWIN_DMA_CFG);
511 inb(card_base + TWIN_CLR_TMR1);
512 inb(card_base + TWIN_CLR_TMR2);
513 info->twin_serial_cfg = TWIN_EI;
514 outb(info->twin_serial_cfg, card_base + TWIN_SERIAL_CFG);
515 } else {
516 write_scc(priv, R15, CTSIE);
517 write_scc(priv, R0, RES_EXT_INT);
518 write_scc(priv, R1, EXT_INT_ENAB);
521 /* Start timer */
522 outb(1, tmr_base + TMR_CNT1);
523 outb(0, tmr_base + TMR_CNT1);
525 /* Wait and detect IRQ */
526 time = jiffies;
527 while (jiffies - time < 2 + HZ / TMR_0_HZ);
528 irq = probe_irq_off(irqs);
530 /* Clear pending interrupt, disable interrupts */
531 if (type == TYPE_TWIN) {
532 inb(card_base + TWIN_CLR_TMR1);
533 } else {
534 write_scc(priv, R1, 0);
535 write_scc(priv, R15, 0);
536 write_scc(priv, R0, RES_EXT_INT);
539 if (irq <= 0) {
540 printk(KERN_ERR
541 "dmascc: could not find irq of %s at %#3x (irq=%d)\n",
542 hw[type].name, card_base, irq);
543 err = -ENODEV;
544 goto out3;
547 /* Set up data structures */
548 for (i = 0; i < 2; i++) {
549 dev = info->dev[i];
550 priv = &info->priv[i];
551 priv->type = type;
552 priv->chip = chip;
553 priv->dev = dev;
554 priv->info = info;
555 priv->channel = i;
556 spin_lock_init(&priv->ring_lock);
557 priv->register_lock = &info->register_lock;
558 priv->card_base = card_base;
559 priv->scc_cmd = scc_base + (i ? SCCB_CMD : SCCA_CMD);
560 priv->scc_data = scc_base + (i ? SCCB_DATA : SCCA_DATA);
561 priv->tmr_cnt = tmr_base + (i ? TMR_CNT2 : TMR_CNT1);
562 priv->tmr_ctrl = tmr_base + TMR_CTRL;
563 priv->tmr_mode = i ? 0xb0 : 0x70;
564 priv->param.pclk_hz = hw[type].pclk_hz;
565 priv->param.brg_tc = -1;
566 priv->param.clocks = TCTRxCP | RCRTxCP;
567 priv->param.persist = 256;
568 priv->param.dma = -1;
569 INIT_WORK(&priv->rx_work, rx_bh);
570 dev->ml_priv = priv;
571 snprintf(dev->name, sizeof(dev->name), "dmascc%i", 2 * n + i);
572 dev->base_addr = card_base;
573 dev->irq = irq;
574 dev->netdev_ops = &scc_netdev_ops;
575 dev->header_ops = &ax25_header_ops;
577 if (register_netdev(info->dev[0])) {
578 printk(KERN_ERR "dmascc: could not register %s\n",
579 info->dev[0]->name);
580 err = -ENODEV;
581 goto out3;
583 if (register_netdev(info->dev[1])) {
584 printk(KERN_ERR "dmascc: could not register %s\n",
585 info->dev[1]->name);
586 err = -ENODEV;
587 goto out4;
591 info->next = first;
592 first = info;
593 printk(KERN_INFO "dmascc: found %s (%s) at %#3x, irq %d\n",
594 hw[type].name, chipnames[chip], card_base, irq);
595 return 0;
597 out4:
598 unregister_netdev(info->dev[0]);
599 out3:
600 if (info->priv[0].type == TYPE_TWIN)
601 outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG);
602 write_scc(&info->priv[0], R9, FHWRES);
603 free_netdev(info->dev[1]);
604 out2:
605 free_netdev(info->dev[0]);
606 out1:
607 kfree(info);
608 out:
609 return err;
613 /* Driver functions */
615 static void write_scc(struct scc_priv *priv, int reg, int val)
617 unsigned long flags;
618 switch (priv->type) {
619 case TYPE_S5:
620 if (reg)
621 outb(reg, priv->scc_cmd);
622 outb(val, priv->scc_cmd);
623 return;
624 case TYPE_TWIN:
625 if (reg)
626 outb_p(reg, priv->scc_cmd);
627 outb_p(val, priv->scc_cmd);
628 return;
629 default:
630 spin_lock_irqsave(priv->register_lock, flags);
631 outb_p(0, priv->card_base + PI_DREQ_MASK);
632 if (reg)
633 outb_p(reg, priv->scc_cmd);
634 outb_p(val, priv->scc_cmd);
635 outb(1, priv->card_base + PI_DREQ_MASK);
636 spin_unlock_irqrestore(priv->register_lock, flags);
637 return;
642 static void write_scc_data(struct scc_priv *priv, int val, int fast)
644 unsigned long flags;
645 switch (priv->type) {
646 case TYPE_S5:
647 outb(val, priv->scc_data);
648 return;
649 case TYPE_TWIN:
650 outb_p(val, priv->scc_data);
651 return;
652 default:
653 if (fast)
654 outb_p(val, priv->scc_data);
655 else {
656 spin_lock_irqsave(priv->register_lock, flags);
657 outb_p(0, priv->card_base + PI_DREQ_MASK);
658 outb_p(val, priv->scc_data);
659 outb(1, priv->card_base + PI_DREQ_MASK);
660 spin_unlock_irqrestore(priv->register_lock, flags);
662 return;
667 static int read_scc(struct scc_priv *priv, int reg)
669 int rc;
670 unsigned long flags;
671 switch (priv->type) {
672 case TYPE_S5:
673 if (reg)
674 outb(reg, priv->scc_cmd);
675 return inb(priv->scc_cmd);
676 case TYPE_TWIN:
677 if (reg)
678 outb_p(reg, priv->scc_cmd);
679 return inb_p(priv->scc_cmd);
680 default:
681 spin_lock_irqsave(priv->register_lock, flags);
682 outb_p(0, priv->card_base + PI_DREQ_MASK);
683 if (reg)
684 outb_p(reg, priv->scc_cmd);
685 rc = inb_p(priv->scc_cmd);
686 outb(1, priv->card_base + PI_DREQ_MASK);
687 spin_unlock_irqrestore(priv->register_lock, flags);
688 return rc;
693 static int read_scc_data(struct scc_priv *priv)
695 int rc;
696 unsigned long flags;
697 switch (priv->type) {
698 case TYPE_S5:
699 return inb(priv->scc_data);
700 case TYPE_TWIN:
701 return inb_p(priv->scc_data);
702 default:
703 spin_lock_irqsave(priv->register_lock, flags);
704 outb_p(0, priv->card_base + PI_DREQ_MASK);
705 rc = inb_p(priv->scc_data);
706 outb(1, priv->card_base + PI_DREQ_MASK);
707 spin_unlock_irqrestore(priv->register_lock, flags);
708 return rc;
713 static int scc_open(struct net_device *dev)
715 struct scc_priv *priv = dev->ml_priv;
716 struct scc_info *info = priv->info;
717 int card_base = priv->card_base;
719 /* Request IRQ if not already used by other channel */
720 if (!info->irq_used) {
721 if (request_irq(dev->irq, scc_isr, 0, "dmascc", info)) {
722 return -EAGAIN;
725 info->irq_used++;
727 /* Request DMA if required */
728 if (priv->param.dma >= 0) {
729 if (request_dma(priv->param.dma, "dmascc")) {
730 if (--info->irq_used == 0)
731 free_irq(dev->irq, info);
732 return -EAGAIN;
733 } else {
734 unsigned long flags = claim_dma_lock();
735 clear_dma_ff(priv->param.dma);
736 release_dma_lock(flags);
740 /* Initialize local variables */
741 priv->rx_ptr = 0;
742 priv->rx_over = 0;
743 priv->rx_head = priv->rx_tail = priv->rx_count = 0;
744 priv->state = IDLE;
745 priv->tx_head = priv->tx_tail = priv->tx_count = 0;
746 priv->tx_ptr = 0;
748 /* Reset channel */
749 write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV);
750 /* X1 clock, SDLC mode */
751 write_scc(priv, R4, SDLC | X1CLK);
752 /* DMA */
753 write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
754 /* 8 bit RX char, RX disable */
755 write_scc(priv, R3, Rx8);
756 /* 8 bit TX char, TX disable */
757 write_scc(priv, R5, Tx8);
758 /* SDLC address field */
759 write_scc(priv, R6, 0);
760 /* SDLC flag */
761 write_scc(priv, R7, FLAG);
762 switch (priv->chip) {
763 case Z85C30:
764 /* Select WR7' */
765 write_scc(priv, R15, SHDLCE);
766 /* Auto EOM reset */
767 write_scc(priv, R7, AUTOEOM);
768 write_scc(priv, R15, 0);
769 break;
770 case Z85230:
771 /* Select WR7' */
772 write_scc(priv, R15, SHDLCE);
773 /* The following bits are set (see 2.5.2.1):
774 - Automatic EOM reset
775 - Interrupt request if RX FIFO is half full
776 This bit should be ignored in DMA mode (according to the
777 documentation), but actually isn't. The receiver doesn't work if
778 it is set. Thus, we have to clear it in DMA mode.
779 - Interrupt/DMA request if TX FIFO is completely empty
780 a) If set, the ESCC behaves as if it had no TX FIFO (Z85C30
781 compatibility).
782 b) If cleared, DMA requests may follow each other very quickly,
783 filling up the TX FIFO.
784 Advantage: TX works even in case of high bus latency.
785 Disadvantage: Edge-triggered DMA request circuitry may miss
786 a request. No more data is delivered, resulting
787 in a TX FIFO underrun.
788 Both PI2 and S5SCC/DMA seem to work fine with TXFIFOE cleared.
789 The PackeTwin doesn't. I don't know about the PI, but let's
790 assume it behaves like the PI2.
792 if (priv->param.dma >= 0) {
793 if (priv->type == TYPE_TWIN)
794 write_scc(priv, R7, AUTOEOM | TXFIFOE);
795 else
796 write_scc(priv, R7, AUTOEOM);
797 } else {
798 write_scc(priv, R7, AUTOEOM | RXFIFOH);
800 write_scc(priv, R15, 0);
801 break;
803 /* Preset CRC, NRZ(I) encoding */
804 write_scc(priv, R10, CRCPS | (priv->param.nrzi ? NRZI : NRZ));
806 /* Configure baud rate generator */
807 if (priv->param.brg_tc >= 0) {
808 /* Program BR generator */
809 write_scc(priv, R12, priv->param.brg_tc & 0xFF);
810 write_scc(priv, R13, (priv->param.brg_tc >> 8) & 0xFF);
811 /* BRG source = SYS CLK; enable BRG; DTR REQ function (required by
812 PackeTwin, not connected on the PI2); set DPLL source to BRG */
813 write_scc(priv, R14, SSBR | DTRREQ | BRSRC | BRENABL);
814 /* Enable DPLL */
815 write_scc(priv, R14, SEARCH | DTRREQ | BRSRC | BRENABL);
816 } else {
817 /* Disable BR generator */
818 write_scc(priv, R14, DTRREQ | BRSRC);
821 /* Configure clocks */
822 if (priv->type == TYPE_TWIN) {
823 /* Disable external TX clock receiver */
824 outb((info->twin_serial_cfg &=
825 ~(priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)),
826 card_base + TWIN_SERIAL_CFG);
828 write_scc(priv, R11, priv->param.clocks);
829 if ((priv->type == TYPE_TWIN) && !(priv->param.clocks & TRxCOI)) {
830 /* Enable external TX clock receiver */
831 outb((info->twin_serial_cfg |=
832 (priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)),
833 card_base + TWIN_SERIAL_CFG);
836 /* Configure PackeTwin */
837 if (priv->type == TYPE_TWIN) {
838 /* Assert DTR, enable interrupts */
839 outb((info->twin_serial_cfg |= TWIN_EI |
840 (priv->channel ? TWIN_DTRB_ON : TWIN_DTRA_ON)),
841 card_base + TWIN_SERIAL_CFG);
844 /* Read current status */
845 priv->rr0 = read_scc(priv, R0);
846 /* Enable DCD interrupt */
847 write_scc(priv, R15, DCDIE);
849 netif_start_queue(dev);
851 return 0;
855 static int scc_close(struct net_device *dev)
857 struct scc_priv *priv = dev->ml_priv;
858 struct scc_info *info = priv->info;
859 int card_base = priv->card_base;
861 netif_stop_queue(dev);
863 if (priv->type == TYPE_TWIN) {
864 /* Drop DTR */
865 outb((info->twin_serial_cfg &=
866 (priv->channel ? ~TWIN_DTRB_ON : ~TWIN_DTRA_ON)),
867 card_base + TWIN_SERIAL_CFG);
870 /* Reset channel, free DMA and IRQ */
871 write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV);
872 if (priv->param.dma >= 0) {
873 if (priv->type == TYPE_TWIN)
874 outb(0, card_base + TWIN_DMA_CFG);
875 free_dma(priv->param.dma);
877 if (--info->irq_used == 0)
878 free_irq(dev->irq, info);
880 return 0;
884 static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
886 struct scc_priv *priv = dev->ml_priv;
888 switch (cmd) {
889 case SIOCGSCCPARAM:
890 if (copy_to_user
891 (ifr->ifr_data, &priv->param,
892 sizeof(struct scc_param)))
893 return -EFAULT;
894 return 0;
895 case SIOCSSCCPARAM:
896 if (!capable(CAP_NET_ADMIN))
897 return -EPERM;
898 if (netif_running(dev))
899 return -EAGAIN;
900 if (copy_from_user
901 (&priv->param, ifr->ifr_data,
902 sizeof(struct scc_param)))
903 return -EFAULT;
904 return 0;
905 default:
906 return -EINVAL;
911 static int scc_send_packet(struct sk_buff *skb, struct net_device *dev)
913 struct scc_priv *priv = dev->ml_priv;
914 unsigned long flags;
915 int i;
917 if (skb->protocol == htons(ETH_P_IP))
918 return ax25_ip_xmit(skb);
920 /* Temporarily stop the scheduler feeding us packets */
921 netif_stop_queue(dev);
923 /* Transfer data to DMA buffer */
924 i = priv->tx_head;
925 skb_copy_from_linear_data_offset(skb, 1, priv->tx_buf[i], skb->len - 1);
926 priv->tx_len[i] = skb->len - 1;
928 /* Clear interrupts while we touch our circular buffers */
930 spin_lock_irqsave(&priv->ring_lock, flags);
931 /* Move the ring buffer's head */
932 priv->tx_head = (i + 1) % NUM_TX_BUF;
933 priv->tx_count++;
935 /* If we just filled up the last buffer, leave queue stopped.
936 The higher layers must wait until we have a DMA buffer
937 to accept the data. */
938 if (priv->tx_count < NUM_TX_BUF)
939 netif_wake_queue(dev);
941 /* Set new TX state */
942 if (priv->state == IDLE) {
943 /* Assert RTS, start timer */
944 priv->state = TX_HEAD;
945 priv->tx_start = jiffies;
946 write_scc(priv, R5, TxCRC_ENAB | RTS | TxENAB | Tx8);
947 write_scc(priv, R15, 0);
948 start_timer(priv, priv->param.txdelay, 0);
951 /* Turn interrupts back on and free buffer */
952 spin_unlock_irqrestore(&priv->ring_lock, flags);
953 dev_kfree_skb(skb);
955 return NETDEV_TX_OK;
959 static int scc_set_mac_address(struct net_device *dev, void *sa)
961 memcpy(dev->dev_addr, ((struct sockaddr *) sa)->sa_data,
962 dev->addr_len);
963 return 0;
967 static inline void tx_on(struct scc_priv *priv)
969 int i, n;
970 unsigned long flags;
972 if (priv->param.dma >= 0) {
973 n = (priv->chip == Z85230) ? 3 : 1;
974 /* Program DMA controller */
975 flags = claim_dma_lock();
976 set_dma_mode(priv->param.dma, DMA_MODE_WRITE);
977 set_dma_addr(priv->param.dma,
978 (int) priv->tx_buf[priv->tx_tail] + n);
979 set_dma_count(priv->param.dma,
980 priv->tx_len[priv->tx_tail] - n);
981 release_dma_lock(flags);
982 /* Enable TX underrun interrupt */
983 write_scc(priv, R15, TxUIE);
984 /* Configure DREQ */
985 if (priv->type == TYPE_TWIN)
986 outb((priv->param.dma ==
987 1) ? TWIN_DMA_HDX_T1 : TWIN_DMA_HDX_T3,
988 priv->card_base + TWIN_DMA_CFG);
989 else
990 write_scc(priv, R1,
991 EXT_INT_ENAB | WT_FN_RDYFN |
992 WT_RDY_ENAB);
993 /* Write first byte(s) */
994 spin_lock_irqsave(priv->register_lock, flags);
995 for (i = 0; i < n; i++)
996 write_scc_data(priv,
997 priv->tx_buf[priv->tx_tail][i], 1);
998 enable_dma(priv->param.dma);
999 spin_unlock_irqrestore(priv->register_lock, flags);
1000 } else {
1001 write_scc(priv, R15, TxUIE);
1002 write_scc(priv, R1,
1003 EXT_INT_ENAB | WT_FN_RDYFN | TxINT_ENAB);
1004 tx_isr(priv);
1006 /* Reset EOM latch if we do not have the AUTOEOM feature */
1007 if (priv->chip == Z8530)
1008 write_scc(priv, R0, RES_EOM_L);
1012 static inline void rx_on(struct scc_priv *priv)
1014 unsigned long flags;
1016 /* Clear RX FIFO */
1017 while (read_scc(priv, R0) & Rx_CH_AV)
1018 read_scc_data(priv);
1019 priv->rx_over = 0;
1020 if (priv->param.dma >= 0) {
1021 /* Program DMA controller */
1022 flags = claim_dma_lock();
1023 set_dma_mode(priv->param.dma, DMA_MODE_READ);
1024 set_dma_addr(priv->param.dma,
1025 (int) priv->rx_buf[priv->rx_head]);
1026 set_dma_count(priv->param.dma, BUF_SIZE);
1027 release_dma_lock(flags);
1028 enable_dma(priv->param.dma);
1029 /* Configure PackeTwin DMA */
1030 if (priv->type == TYPE_TWIN) {
1031 outb((priv->param.dma ==
1032 1) ? TWIN_DMA_HDX_R1 : TWIN_DMA_HDX_R3,
1033 priv->card_base + TWIN_DMA_CFG);
1035 /* Sp. cond. intr. only, ext int enable, RX DMA enable */
1036 write_scc(priv, R1, EXT_INT_ENAB | INT_ERR_Rx |
1037 WT_RDY_RT | WT_FN_RDYFN | WT_RDY_ENAB);
1038 } else {
1039 /* Reset current frame */
1040 priv->rx_ptr = 0;
1041 /* Intr. on all Rx characters and Sp. cond., ext int enable */
1042 write_scc(priv, R1, EXT_INT_ENAB | INT_ALL_Rx | WT_RDY_RT |
1043 WT_FN_RDYFN);
1045 write_scc(priv, R0, ERR_RES);
1046 write_scc(priv, R3, RxENABLE | Rx8 | RxCRC_ENAB);
1050 static inline void rx_off(struct scc_priv *priv)
1052 /* Disable receiver */
1053 write_scc(priv, R3, Rx8);
1054 /* Disable DREQ / RX interrupt */
1055 if (priv->param.dma >= 0 && priv->type == TYPE_TWIN)
1056 outb(0, priv->card_base + TWIN_DMA_CFG);
1057 else
1058 write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
1059 /* Disable DMA */
1060 if (priv->param.dma >= 0)
1061 disable_dma(priv->param.dma);
1065 static void start_timer(struct scc_priv *priv, int t, int r15)
1067 outb(priv->tmr_mode, priv->tmr_ctrl);
1068 if (t == 0) {
1069 tm_isr(priv);
1070 } else if (t > 0) {
1071 outb(t & 0xFF, priv->tmr_cnt);
1072 outb((t >> 8) & 0xFF, priv->tmr_cnt);
1073 if (priv->type != TYPE_TWIN) {
1074 write_scc(priv, R15, r15 | CTSIE);
1075 priv->rr0 |= CTS;
1081 static inline unsigned char random(void)
1083 /* See "Numerical Recipes in C", second edition, p. 284 */
1084 rand = rand * 1664525L + 1013904223L;
1085 return (unsigned char) (rand >> 24);
1088 static inline void z8530_isr(struct scc_info *info)
1090 int is, i = 100;
1092 while ((is = read_scc(&info->priv[0], R3)) && i--) {
1093 if (is & CHARxIP) {
1094 rx_isr(&info->priv[0]);
1095 } else if (is & CHATxIP) {
1096 tx_isr(&info->priv[0]);
1097 } else if (is & CHAEXT) {
1098 es_isr(&info->priv[0]);
1099 } else if (is & CHBRxIP) {
1100 rx_isr(&info->priv[1]);
1101 } else if (is & CHBTxIP) {
1102 tx_isr(&info->priv[1]);
1103 } else {
1104 es_isr(&info->priv[1]);
1106 write_scc(&info->priv[0], R0, RES_H_IUS);
1107 i++;
1109 if (i < 0) {
1110 printk(KERN_ERR "dmascc: stuck in ISR with RR3=0x%02x.\n",
1111 is);
1113 /* Ok, no interrupts pending from this 8530. The INT line should
1114 be inactive now. */
1118 static irqreturn_t scc_isr(int irq, void *dev_id)
1120 struct scc_info *info = dev_id;
1122 spin_lock(info->priv[0].register_lock);
1123 /* At this point interrupts are enabled, and the interrupt under service
1124 is already acknowledged, but masked off.
1126 Interrupt processing: We loop until we know that the IRQ line is
1127 low. If another positive edge occurs afterwards during the ISR,
1128 another interrupt will be triggered by the interrupt controller
1129 as soon as the IRQ level is enabled again (see asm/irq.h).
1131 Bottom-half handlers will be processed after scc_isr(). This is
1132 important, since we only have small ringbuffers and want new data
1133 to be fetched/delivered immediately. */
1135 if (info->priv[0].type == TYPE_TWIN) {
1136 int is, card_base = info->priv[0].card_base;
1137 while ((is = ~inb(card_base + TWIN_INT_REG)) &
1138 TWIN_INT_MSK) {
1139 if (is & TWIN_SCC_MSK) {
1140 z8530_isr(info);
1141 } else if (is & TWIN_TMR1_MSK) {
1142 inb(card_base + TWIN_CLR_TMR1);
1143 tm_isr(&info->priv[0]);
1144 } else {
1145 inb(card_base + TWIN_CLR_TMR2);
1146 tm_isr(&info->priv[1]);
1149 } else
1150 z8530_isr(info);
1151 spin_unlock(info->priv[0].register_lock);
1152 return IRQ_HANDLED;
1156 static void rx_isr(struct scc_priv *priv)
1158 if (priv->param.dma >= 0) {
1159 /* Check special condition and perform error reset. See 2.4.7.5. */
1160 special_condition(priv, read_scc(priv, R1));
1161 write_scc(priv, R0, ERR_RES);
1162 } else {
1163 /* Check special condition for each character. Error reset not necessary.
1164 Same algorithm for SCC and ESCC. See 2.4.7.1 and 2.4.7.4. */
1165 int rc;
1166 while (read_scc(priv, R0) & Rx_CH_AV) {
1167 rc = read_scc(priv, R1);
1168 if (priv->rx_ptr < BUF_SIZE)
1169 priv->rx_buf[priv->rx_head][priv->
1170 rx_ptr++] =
1171 read_scc_data(priv);
1172 else {
1173 priv->rx_over = 2;
1174 read_scc_data(priv);
1176 special_condition(priv, rc);
1182 static void special_condition(struct scc_priv *priv, int rc)
1184 int cb;
1185 unsigned long flags;
1187 /* See Figure 2-15. Only overrun and EOF need to be checked. */
1189 if (rc & Rx_OVR) {
1190 /* Receiver overrun */
1191 priv->rx_over = 1;
1192 if (priv->param.dma < 0)
1193 write_scc(priv, R0, ERR_RES);
1194 } else if (rc & END_FR) {
1195 /* End of frame. Get byte count */
1196 if (priv->param.dma >= 0) {
1197 flags = claim_dma_lock();
1198 cb = BUF_SIZE - get_dma_residue(priv->param.dma) -
1200 release_dma_lock(flags);
1201 } else {
1202 cb = priv->rx_ptr - 2;
1204 if (priv->rx_over) {
1205 /* We had an overrun */
1206 priv->dev->stats.rx_errors++;
1207 if (priv->rx_over == 2)
1208 priv->dev->stats.rx_length_errors++;
1209 else
1210 priv->dev->stats.rx_fifo_errors++;
1211 priv->rx_over = 0;
1212 } else if (rc & CRC_ERR) {
1213 /* Count invalid CRC only if packet length >= minimum */
1214 if (cb >= 15) {
1215 priv->dev->stats.rx_errors++;
1216 priv->dev->stats.rx_crc_errors++;
1218 } else {
1219 if (cb >= 15) {
1220 if (priv->rx_count < NUM_RX_BUF - 1) {
1221 /* Put good frame in FIFO */
1222 priv->rx_len[priv->rx_head] = cb;
1223 priv->rx_head =
1224 (priv->rx_head +
1225 1) % NUM_RX_BUF;
1226 priv->rx_count++;
1227 schedule_work(&priv->rx_work);
1228 } else {
1229 priv->dev->stats.rx_errors++;
1230 priv->dev->stats.rx_over_errors++;
1234 /* Get ready for new frame */
1235 if (priv->param.dma >= 0) {
1236 flags = claim_dma_lock();
1237 set_dma_addr(priv->param.dma,
1238 (int) priv->rx_buf[priv->rx_head]);
1239 set_dma_count(priv->param.dma, BUF_SIZE);
1240 release_dma_lock(flags);
1241 } else {
1242 priv->rx_ptr = 0;
1248 static void rx_bh(struct work_struct *ugli_api)
1250 struct scc_priv *priv = container_of(ugli_api, struct scc_priv, rx_work);
1251 int i = priv->rx_tail;
1252 int cb;
1253 unsigned long flags;
1254 struct sk_buff *skb;
1255 unsigned char *data;
1257 spin_lock_irqsave(&priv->ring_lock, flags);
1258 while (priv->rx_count) {
1259 spin_unlock_irqrestore(&priv->ring_lock, flags);
1260 cb = priv->rx_len[i];
1261 /* Allocate buffer */
1262 skb = dev_alloc_skb(cb + 1);
1263 if (skb == NULL) {
1264 /* Drop packet */
1265 priv->dev->stats.rx_dropped++;
1266 } else {
1267 /* Fill buffer */
1268 data = skb_put(skb, cb + 1);
1269 data[0] = 0;
1270 memcpy(&data[1], priv->rx_buf[i], cb);
1271 skb->protocol = ax25_type_trans(skb, priv->dev);
1272 netif_rx(skb);
1273 priv->dev->stats.rx_packets++;
1274 priv->dev->stats.rx_bytes += cb;
1276 spin_lock_irqsave(&priv->ring_lock, flags);
1277 /* Move tail */
1278 priv->rx_tail = i = (i + 1) % NUM_RX_BUF;
1279 priv->rx_count--;
1281 spin_unlock_irqrestore(&priv->ring_lock, flags);
1285 static void tx_isr(struct scc_priv *priv)
1287 int i = priv->tx_tail, p = priv->tx_ptr;
1289 /* Suspend TX interrupts if we don't want to send anything.
1290 See Figure 2-22. */
1291 if (p == priv->tx_len[i]) {
1292 write_scc(priv, R0, RES_Tx_P);
1293 return;
1296 /* Write characters */
1297 while ((read_scc(priv, R0) & Tx_BUF_EMP) && p < priv->tx_len[i]) {
1298 write_scc_data(priv, priv->tx_buf[i][p++], 0);
1301 /* Reset EOM latch of Z8530 */
1302 if (!priv->tx_ptr && p && priv->chip == Z8530)
1303 write_scc(priv, R0, RES_EOM_L);
1305 priv->tx_ptr = p;
1309 static void es_isr(struct scc_priv *priv)
1311 int i, rr0, drr0, res;
1312 unsigned long flags;
1314 /* Read status, reset interrupt bit (open latches) */
1315 rr0 = read_scc(priv, R0);
1316 write_scc(priv, R0, RES_EXT_INT);
1317 drr0 = priv->rr0 ^ rr0;
1318 priv->rr0 = rr0;
1320 /* Transmit underrun (2.4.9.6). We can't check the TxEOM flag, since
1321 it might have already been cleared again by AUTOEOM. */
1322 if (priv->state == TX_DATA) {
1323 /* Get remaining bytes */
1324 i = priv->tx_tail;
1325 if (priv->param.dma >= 0) {
1326 disable_dma(priv->param.dma);
1327 flags = claim_dma_lock();
1328 res = get_dma_residue(priv->param.dma);
1329 release_dma_lock(flags);
1330 } else {
1331 res = priv->tx_len[i] - priv->tx_ptr;
1332 priv->tx_ptr = 0;
1334 /* Disable DREQ / TX interrupt */
1335 if (priv->param.dma >= 0 && priv->type == TYPE_TWIN)
1336 outb(0, priv->card_base + TWIN_DMA_CFG);
1337 else
1338 write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
1339 if (res) {
1340 /* Update packet statistics */
1341 priv->dev->stats.tx_errors++;
1342 priv->dev->stats.tx_fifo_errors++;
1343 /* Other underrun interrupts may already be waiting */
1344 write_scc(priv, R0, RES_EXT_INT);
1345 write_scc(priv, R0, RES_EXT_INT);
1346 } else {
1347 /* Update packet statistics */
1348 priv->dev->stats.tx_packets++;
1349 priv->dev->stats.tx_bytes += priv->tx_len[i];
1350 /* Remove frame from FIFO */
1351 priv->tx_tail = (i + 1) % NUM_TX_BUF;
1352 priv->tx_count--;
1353 /* Inform upper layers */
1354 netif_wake_queue(priv->dev);
1356 /* Switch state */
1357 write_scc(priv, R15, 0);
1358 if (priv->tx_count &&
1359 (jiffies - priv->tx_start) < priv->param.txtimeout) {
1360 priv->state = TX_PAUSE;
1361 start_timer(priv, priv->param.txpause, 0);
1362 } else {
1363 priv->state = TX_TAIL;
1364 start_timer(priv, priv->param.txtail, 0);
1368 /* DCD transition */
1369 if (drr0 & DCD) {
1370 if (rr0 & DCD) {
1371 switch (priv->state) {
1372 case IDLE:
1373 case WAIT:
1374 priv->state = DCD_ON;
1375 write_scc(priv, R15, 0);
1376 start_timer(priv, priv->param.dcdon, 0);
1378 } else {
1379 switch (priv->state) {
1380 case RX_ON:
1381 rx_off(priv);
1382 priv->state = DCD_OFF;
1383 write_scc(priv, R15, 0);
1384 start_timer(priv, priv->param.dcdoff, 0);
1389 /* CTS transition */
1390 if ((drr0 & CTS) && (~rr0 & CTS) && priv->type != TYPE_TWIN)
1391 tm_isr(priv);
1396 static void tm_isr(struct scc_priv *priv)
1398 switch (priv->state) {
1399 case TX_HEAD:
1400 case TX_PAUSE:
1401 tx_on(priv);
1402 priv->state = TX_DATA;
1403 break;
1404 case TX_TAIL:
1405 write_scc(priv, R5, TxCRC_ENAB | Tx8);
1406 priv->state = RTS_OFF;
1407 if (priv->type != TYPE_TWIN)
1408 write_scc(priv, R15, 0);
1409 start_timer(priv, priv->param.rtsoff, 0);
1410 break;
1411 case RTS_OFF:
1412 write_scc(priv, R15, DCDIE);
1413 priv->rr0 = read_scc(priv, R0);
1414 if (priv->rr0 & DCD) {
1415 priv->dev->stats.collisions++;
1416 rx_on(priv);
1417 priv->state = RX_ON;
1418 } else {
1419 priv->state = WAIT;
1420 start_timer(priv, priv->param.waittime, DCDIE);
1422 break;
1423 case WAIT:
1424 if (priv->tx_count) {
1425 priv->state = TX_HEAD;
1426 priv->tx_start = jiffies;
1427 write_scc(priv, R5,
1428 TxCRC_ENAB | RTS | TxENAB | Tx8);
1429 write_scc(priv, R15, 0);
1430 start_timer(priv, priv->param.txdelay, 0);
1431 } else {
1432 priv->state = IDLE;
1433 if (priv->type != TYPE_TWIN)
1434 write_scc(priv, R15, DCDIE);
1436 break;
1437 case DCD_ON:
1438 case DCD_OFF:
1439 write_scc(priv, R15, DCDIE);
1440 priv->rr0 = read_scc(priv, R0);
1441 if (priv->rr0 & DCD) {
1442 rx_on(priv);
1443 priv->state = RX_ON;
1444 } else {
1445 priv->state = WAIT;
1446 start_timer(priv,
1447 random() / priv->param.persist *
1448 priv->param.slottime, DCDIE);
1450 break;