WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / hippi / rrunner.c
blob22010384c4a3322ddb1c03e1e2a72aa34c753016
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
5 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
7 * Thanks to Essential Communication for providing us with hardware
8 * and very comprehensive documentation without which I would not have
9 * been able to write this driver. A special thank you to John Gibbon
10 * for sorting out the legal issues, with the NDA, allowing the code to
11 * be released under the GPL.
13 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
14 * stupid bugs in my code.
16 * Softnet support and various other patches from Val Henson of
17 * ODS/Essential.
19 * PCI DMA mapping code partly based on work by Francois Romieu.
23 #define DEBUG 1
24 #define RX_DMA_SKBUFF 1
25 #define PKT_COPY_THRESHOLD 512
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/pci.h>
32 #include <linux/kernel.h>
33 #include <linux/netdevice.h>
34 #include <linux/hippidevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/delay.h>
37 #include <linux/mm.h>
38 #include <linux/slab.h>
39 #include <net/sock.h>
41 #include <asm/cache.h>
42 #include <asm/byteorder.h>
43 #include <asm/io.h>
44 #include <asm/irq.h>
45 #include <linux/uaccess.h>
47 #define rr_if_busy(dev) netif_queue_stopped(dev)
48 #define rr_if_running(dev) netif_running(dev)
50 #include "rrunner.h"
52 #define RUN_AT(x) (jiffies + (x))
55 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
56 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
57 MODULE_LICENSE("GPL");
59 static const char version[] =
60 "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
63 static const struct net_device_ops rr_netdev_ops = {
64 .ndo_open = rr_open,
65 .ndo_stop = rr_close,
66 .ndo_do_ioctl = rr_ioctl,
67 .ndo_start_xmit = rr_start_xmit,
68 .ndo_set_mac_address = hippi_mac_addr,
72 * Implementation notes:
74 * The DMA engine only allows for DMA within physical 64KB chunks of
75 * memory. The current approach of the driver (and stack) is to use
76 * linear blocks of memory for the skbuffs. However, as the data block
77 * is always the first part of the skb and skbs are 2^n aligned so we
78 * are guarantted to get the whole block within one 64KB align 64KB
79 * chunk.
81 * On the long term, relying on being able to allocate 64KB linear
82 * chunks of memory is not feasible and the skb handling code and the
83 * stack will need to know about I/O vectors or something similar.
86 static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
88 struct net_device *dev;
89 static int version_disp;
90 u8 pci_latency;
91 struct rr_private *rrpriv;
92 void *tmpptr;
93 dma_addr_t ring_dma;
94 int ret = -ENOMEM;
96 dev = alloc_hippi_dev(sizeof(struct rr_private));
97 if (!dev)
98 goto out3;
100 ret = pci_enable_device(pdev);
101 if (ret) {
102 ret = -ENODEV;
103 goto out2;
106 rrpriv = netdev_priv(dev);
108 SET_NETDEV_DEV(dev, &pdev->dev);
110 ret = pci_request_regions(pdev, "rrunner");
111 if (ret < 0)
112 goto out;
114 pci_set_drvdata(pdev, dev);
116 rrpriv->pci_dev = pdev;
118 spin_lock_init(&rrpriv->lock);
120 dev->netdev_ops = &rr_netdev_ops;
122 /* display version info if adapter is found */
123 if (!version_disp) {
124 /* set display flag to TRUE so that */
125 /* we only display this string ONCE */
126 version_disp = 1;
127 printk(version);
130 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
131 if (pci_latency <= 0x58){
132 pci_latency = 0x58;
133 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
136 pci_set_master(pdev);
138 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
139 "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
140 (unsigned long long)pci_resource_start(pdev, 0),
141 pdev->irq, pci_latency);
144 * Remap the MMIO regs into kernel space.
146 rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
147 if (!rrpriv->regs) {
148 printk(KERN_ERR "%s: Unable to map I/O register, "
149 "RoadRunner will be disabled.\n", dev->name);
150 ret = -EIO;
151 goto out;
154 tmpptr = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
155 GFP_KERNEL);
156 rrpriv->tx_ring = tmpptr;
157 rrpriv->tx_ring_dma = ring_dma;
159 if (!tmpptr) {
160 ret = -ENOMEM;
161 goto out;
164 tmpptr = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
165 GFP_KERNEL);
166 rrpriv->rx_ring = tmpptr;
167 rrpriv->rx_ring_dma = ring_dma;
169 if (!tmpptr) {
170 ret = -ENOMEM;
171 goto out;
174 tmpptr = dma_alloc_coherent(&pdev->dev, EVT_RING_SIZE, &ring_dma,
175 GFP_KERNEL);
176 rrpriv->evt_ring = tmpptr;
177 rrpriv->evt_ring_dma = ring_dma;
179 if (!tmpptr) {
180 ret = -ENOMEM;
181 goto out;
185 * Don't access any register before this point!
187 #ifdef __BIG_ENDIAN
188 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
189 &rrpriv->regs->HostCtrl);
190 #endif
192 * Need to add a case for little-endian 64-bit hosts here.
195 rr_init(dev);
197 ret = register_netdev(dev);
198 if (ret)
199 goto out;
200 return 0;
202 out:
203 if (rrpriv->evt_ring)
204 dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rrpriv->evt_ring,
205 rrpriv->evt_ring_dma);
206 if (rrpriv->rx_ring)
207 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rrpriv->rx_ring,
208 rrpriv->rx_ring_dma);
209 if (rrpriv->tx_ring)
210 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rrpriv->tx_ring,
211 rrpriv->tx_ring_dma);
212 if (rrpriv->regs)
213 pci_iounmap(pdev, rrpriv->regs);
214 if (pdev)
215 pci_release_regions(pdev);
216 out2:
217 free_netdev(dev);
218 out3:
219 return ret;
222 static void rr_remove_one(struct pci_dev *pdev)
224 struct net_device *dev = pci_get_drvdata(pdev);
225 struct rr_private *rr = netdev_priv(dev);
227 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
228 printk(KERN_ERR "%s: trying to unload running NIC\n",
229 dev->name);
230 writel(HALT_NIC, &rr->regs->HostCtrl);
233 unregister_netdev(dev);
234 dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rr->evt_ring,
235 rr->evt_ring_dma);
236 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rr->rx_ring,
237 rr->rx_ring_dma);
238 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rr->tx_ring,
239 rr->tx_ring_dma);
240 pci_iounmap(pdev, rr->regs);
241 pci_release_regions(pdev);
242 pci_disable_device(pdev);
243 free_netdev(dev);
248 * Commands are considered to be slow, thus there is no reason to
249 * inline this.
251 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
253 struct rr_regs __iomem *regs;
254 u32 idx;
256 regs = rrpriv->regs;
258 * This is temporary - it will go away in the final version.
259 * We probably also want to make this function inline.
261 if (readl(&regs->HostCtrl) & NIC_HALTED){
262 printk("issuing command for halted NIC, code 0x%x, "
263 "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
264 if (readl(&regs->Mode) & FATAL_ERR)
265 printk("error codes Fail1 %02x, Fail2 %02x\n",
266 readl(&regs->Fail1), readl(&regs->Fail2));
269 idx = rrpriv->info->cmd_ctrl.pi;
271 writel(*(u32*)(cmd), &regs->CmdRing[idx]);
272 wmb();
274 idx = (idx - 1) % CMD_RING_ENTRIES;
275 rrpriv->info->cmd_ctrl.pi = idx;
276 wmb();
278 if (readl(&regs->Mode) & FATAL_ERR)
279 printk("error code %02x\n", readl(&regs->Fail1));
284 * Reset the board in a sensible manner. The NIC is already halted
285 * when we get here and a spin-lock is held.
287 static int rr_reset(struct net_device *dev)
289 struct rr_private *rrpriv;
290 struct rr_regs __iomem *regs;
291 u32 start_pc;
292 int i;
294 rrpriv = netdev_priv(dev);
295 regs = rrpriv->regs;
297 rr_load_firmware(dev);
299 writel(0x01000000, &regs->TX_state);
300 writel(0xff800000, &regs->RX_state);
301 writel(0, &regs->AssistState);
302 writel(CLEAR_INTA, &regs->LocalCtrl);
303 writel(0x01, &regs->BrkPt);
304 writel(0, &regs->Timer);
305 writel(0, &regs->TimerRef);
306 writel(RESET_DMA, &regs->DmaReadState);
307 writel(RESET_DMA, &regs->DmaWriteState);
308 writel(0, &regs->DmaWriteHostHi);
309 writel(0, &regs->DmaWriteHostLo);
310 writel(0, &regs->DmaReadHostHi);
311 writel(0, &regs->DmaReadHostLo);
312 writel(0, &regs->DmaReadLen);
313 writel(0, &regs->DmaWriteLen);
314 writel(0, &regs->DmaWriteLcl);
315 writel(0, &regs->DmaWriteIPchecksum);
316 writel(0, &regs->DmaReadLcl);
317 writel(0, &regs->DmaReadIPchecksum);
318 writel(0, &regs->PciState);
319 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
320 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
321 #elif (BITS_PER_LONG == 64)
322 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
323 #else
324 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
325 #endif
327 #if 0
329 * Don't worry, this is just black magic.
331 writel(0xdf000, &regs->RxBase);
332 writel(0xdf000, &regs->RxPrd);
333 writel(0xdf000, &regs->RxCon);
334 writel(0xce000, &regs->TxBase);
335 writel(0xce000, &regs->TxPrd);
336 writel(0xce000, &regs->TxCon);
337 writel(0, &regs->RxIndPro);
338 writel(0, &regs->RxIndCon);
339 writel(0, &regs->RxIndRef);
340 writel(0, &regs->TxIndPro);
341 writel(0, &regs->TxIndCon);
342 writel(0, &regs->TxIndRef);
343 writel(0xcc000, &regs->pad10[0]);
344 writel(0, &regs->DrCmndPro);
345 writel(0, &regs->DrCmndCon);
346 writel(0, &regs->DwCmndPro);
347 writel(0, &regs->DwCmndCon);
348 writel(0, &regs->DwCmndRef);
349 writel(0, &regs->DrDataPro);
350 writel(0, &regs->DrDataCon);
351 writel(0, &regs->DrDataRef);
352 writel(0, &regs->DwDataPro);
353 writel(0, &regs->DwDataCon);
354 writel(0, &regs->DwDataRef);
355 #endif
357 writel(0xffffffff, &regs->MbEvent);
358 writel(0, &regs->Event);
360 writel(0, &regs->TxPi);
361 writel(0, &regs->IpRxPi);
363 writel(0, &regs->EvtCon);
364 writel(0, &regs->EvtPrd);
366 rrpriv->info->evt_ctrl.pi = 0;
368 for (i = 0; i < CMD_RING_ENTRIES; i++)
369 writel(0, &regs->CmdRing[i]);
372 * Why 32 ? is this not cache line size dependent?
374 writel(RBURST_64|WBURST_64, &regs->PciState);
375 wmb();
377 start_pc = rr_read_eeprom_word(rrpriv,
378 offsetof(struct eeprom, rncd_info.FwStart));
380 #if (DEBUG > 1)
381 printk("%s: Executing firmware at address 0x%06x\n",
382 dev->name, start_pc);
383 #endif
385 writel(start_pc + 0x800, &regs->Pc);
386 wmb();
387 udelay(5);
389 writel(start_pc, &regs->Pc);
390 wmb();
392 return 0;
397 * Read a string from the EEPROM.
399 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
400 unsigned long offset,
401 unsigned char *buf,
402 unsigned long length)
404 struct rr_regs __iomem *regs = rrpriv->regs;
405 u32 misc, io, host, i;
407 io = readl(&regs->ExtIo);
408 writel(0, &regs->ExtIo);
409 misc = readl(&regs->LocalCtrl);
410 writel(0, &regs->LocalCtrl);
411 host = readl(&regs->HostCtrl);
412 writel(host | HALT_NIC, &regs->HostCtrl);
413 mb();
415 for (i = 0; i < length; i++){
416 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
417 mb();
418 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
419 mb();
422 writel(host, &regs->HostCtrl);
423 writel(misc, &regs->LocalCtrl);
424 writel(io, &regs->ExtIo);
425 mb();
426 return i;
431 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
432 * it to our CPU byte-order.
434 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
435 size_t offset)
437 __be32 word;
439 if ((rr_read_eeprom(rrpriv, offset,
440 (unsigned char *)&word, 4) == 4))
441 return be32_to_cpu(word);
442 return 0;
447 * Write a string to the EEPROM.
449 * This is only called when the firmware is not running.
451 static unsigned int write_eeprom(struct rr_private *rrpriv,
452 unsigned long offset,
453 unsigned char *buf,
454 unsigned long length)
456 struct rr_regs __iomem *regs = rrpriv->regs;
457 u32 misc, io, data, i, j, ready, error = 0;
459 io = readl(&regs->ExtIo);
460 writel(0, &regs->ExtIo);
461 misc = readl(&regs->LocalCtrl);
462 writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
463 mb();
465 for (i = 0; i < length; i++){
466 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
467 mb();
468 data = buf[i] << 24;
470 * Only try to write the data if it is not the same
471 * value already.
473 if ((readl(&regs->WinData) & 0xff000000) != data){
474 writel(data, &regs->WinData);
475 ready = 0;
476 j = 0;
477 mb();
478 while(!ready){
479 udelay(20);
480 if ((readl(&regs->WinData) & 0xff000000) ==
481 data)
482 ready = 1;
483 mb();
484 if (j++ > 5000){
485 printk("data mismatch: %08x, "
486 "WinData %08x\n", data,
487 readl(&regs->WinData));
488 ready = 1;
489 error = 1;
495 writel(misc, &regs->LocalCtrl);
496 writel(io, &regs->ExtIo);
497 mb();
499 return error;
503 static int rr_init(struct net_device *dev)
505 struct rr_private *rrpriv;
506 struct rr_regs __iomem *regs;
507 u32 sram_size, rev;
509 rrpriv = netdev_priv(dev);
510 regs = rrpriv->regs;
512 rev = readl(&regs->FwRev);
513 rrpriv->fw_rev = rev;
514 if (rev > 0x00020024)
515 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
516 ((rev >> 8) & 0xff), (rev & 0xff));
517 else if (rev >= 0x00020000) {
518 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
519 "later is recommended)\n", (rev >> 16),
520 ((rev >> 8) & 0xff), (rev & 0xff));
521 }else{
522 printk(" Firmware revision too old: %i.%i.%i, please "
523 "upgrade to 2.0.37 or later.\n",
524 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
527 #if (DEBUG > 2)
528 printk(" Maximum receive rings %i\n", readl(&regs->MaxRxRng));
529 #endif
532 * Read the hardware address from the eeprom. The HW address
533 * is not really necessary for HIPPI but awfully convenient.
534 * The pointer arithmetic to put it in dev_addr is ugly, but
535 * Donald Becker does it this way for the GigE version of this
536 * card and it's shorter and more portable than any
537 * other method I've seen. -VAL
540 *(__be16 *)(dev->dev_addr) =
541 htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
542 *(__be32 *)(dev->dev_addr+2) =
543 htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
545 printk(" MAC: %pM\n", dev->dev_addr);
547 sram_size = rr_read_eeprom_word(rrpriv, 8);
548 printk(" SRAM size 0x%06x\n", sram_size);
550 return 0;
554 static int rr_init1(struct net_device *dev)
556 struct rr_private *rrpriv;
557 struct rr_regs __iomem *regs;
558 unsigned long myjif, flags;
559 struct cmd cmd;
560 u32 hostctrl;
561 int ecode = 0;
562 short i;
564 rrpriv = netdev_priv(dev);
565 regs = rrpriv->regs;
567 spin_lock_irqsave(&rrpriv->lock, flags);
569 hostctrl = readl(&regs->HostCtrl);
570 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
571 wmb();
573 if (hostctrl & PARITY_ERR){
574 printk("%s: Parity error halting NIC - this is serious!\n",
575 dev->name);
576 spin_unlock_irqrestore(&rrpriv->lock, flags);
577 ecode = -EFAULT;
578 goto error;
581 set_rxaddr(regs, rrpriv->rx_ctrl_dma);
582 set_infoaddr(regs, rrpriv->info_dma);
584 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
585 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
586 rrpriv->info->evt_ctrl.mode = 0;
587 rrpriv->info->evt_ctrl.pi = 0;
588 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
590 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
591 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
592 rrpriv->info->cmd_ctrl.mode = 0;
593 rrpriv->info->cmd_ctrl.pi = 15;
595 for (i = 0; i < CMD_RING_ENTRIES; i++) {
596 writel(0, &regs->CmdRing[i]);
599 for (i = 0; i < TX_RING_ENTRIES; i++) {
600 rrpriv->tx_ring[i].size = 0;
601 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
602 rrpriv->tx_skbuff[i] = NULL;
604 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
605 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
606 rrpriv->info->tx_ctrl.mode = 0;
607 rrpriv->info->tx_ctrl.pi = 0;
608 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
611 * Set dirty_tx before we start receiving interrupts, otherwise
612 * the interrupt handler might think it is supposed to process
613 * tx ints before we are up and running, which may cause a null
614 * pointer access in the int handler.
616 rrpriv->tx_full = 0;
617 rrpriv->cur_rx = 0;
618 rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
620 rr_reset(dev);
622 /* Tuning values */
623 writel(0x5000, &regs->ConRetry);
624 writel(0x100, &regs->ConRetryTmr);
625 writel(0x500000, &regs->ConTmout);
626 writel(0x60, &regs->IntrTmr);
627 writel(0x500000, &regs->TxDataMvTimeout);
628 writel(0x200000, &regs->RxDataMvTimeout);
629 writel(0x80, &regs->WriteDmaThresh);
630 writel(0x80, &regs->ReadDmaThresh);
632 rrpriv->fw_running = 0;
633 wmb();
635 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
636 writel(hostctrl, &regs->HostCtrl);
637 wmb();
639 spin_unlock_irqrestore(&rrpriv->lock, flags);
641 for (i = 0; i < RX_RING_ENTRIES; i++) {
642 struct sk_buff *skb;
643 dma_addr_t addr;
645 rrpriv->rx_ring[i].mode = 0;
646 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
647 if (!skb) {
648 printk(KERN_WARNING "%s: Unable to allocate memory "
649 "for receive ring - halting NIC\n", dev->name);
650 ecode = -ENOMEM;
651 goto error;
653 rrpriv->rx_skbuff[i] = skb;
654 addr = dma_map_single(&rrpriv->pci_dev->dev, skb->data,
655 dev->mtu + HIPPI_HLEN, DMA_FROM_DEVICE);
657 * Sanity test to see if we conflict with the DMA
658 * limitations of the Roadrunner.
660 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
661 printk("skb alloc error\n");
663 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
664 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
667 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
668 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
669 rrpriv->rx_ctrl[4].mode = 8;
670 rrpriv->rx_ctrl[4].pi = 0;
671 wmb();
672 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
674 udelay(1000);
677 * Now start the FirmWare.
679 cmd.code = C_START_FW;
680 cmd.ring = 0;
681 cmd.index = 0;
683 rr_issue_cmd(rrpriv, &cmd);
686 * Give the FirmWare time to chew on the `get running' command.
688 myjif = jiffies + 5 * HZ;
689 while (time_before(jiffies, myjif) && !rrpriv->fw_running)
690 cpu_relax();
692 netif_start_queue(dev);
694 return ecode;
696 error:
698 * We might have gotten here because we are out of memory,
699 * make sure we release everything we allocated before failing
701 for (i = 0; i < RX_RING_ENTRIES; i++) {
702 struct sk_buff *skb = rrpriv->rx_skbuff[i];
704 if (skb) {
705 dma_unmap_single(&rrpriv->pci_dev->dev,
706 rrpriv->rx_ring[i].addr.addrlo,
707 dev->mtu + HIPPI_HLEN,
708 DMA_FROM_DEVICE);
709 rrpriv->rx_ring[i].size = 0;
710 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
711 dev_kfree_skb(skb);
712 rrpriv->rx_skbuff[i] = NULL;
715 return ecode;
720 * All events are considered to be slow (RX/TX ints do not generate
721 * events) and are handled here, outside the main interrupt handler,
722 * to reduce the size of the handler.
724 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
726 struct rr_private *rrpriv;
727 struct rr_regs __iomem *regs;
728 u32 tmp;
730 rrpriv = netdev_priv(dev);
731 regs = rrpriv->regs;
733 while (prodidx != eidx){
734 switch (rrpriv->evt_ring[eidx].code){
735 case E_NIC_UP:
736 tmp = readl(&regs->FwRev);
737 printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
738 "up and running\n", dev->name,
739 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
740 rrpriv->fw_running = 1;
741 writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
742 wmb();
743 break;
744 case E_LINK_ON:
745 printk(KERN_INFO "%s: Optical link ON\n", dev->name);
746 break;
747 case E_LINK_OFF:
748 printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
749 break;
750 case E_RX_IDLE:
751 printk(KERN_WARNING "%s: RX data not moving\n",
752 dev->name);
753 goto drop;
754 case E_WATCHDOG:
755 printk(KERN_INFO "%s: The watchdog is here to see "
756 "us\n", dev->name);
757 break;
758 case E_INTERN_ERR:
759 printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
760 dev->name);
761 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
762 &regs->HostCtrl);
763 wmb();
764 break;
765 case E_HOST_ERR:
766 printk(KERN_ERR "%s: Host software error\n",
767 dev->name);
768 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
769 &regs->HostCtrl);
770 wmb();
771 break;
773 * TX events.
775 case E_CON_REJ:
776 printk(KERN_WARNING "%s: Connection rejected\n",
777 dev->name);
778 dev->stats.tx_aborted_errors++;
779 break;
780 case E_CON_TMOUT:
781 printk(KERN_WARNING "%s: Connection timeout\n",
782 dev->name);
783 break;
784 case E_DISC_ERR:
785 printk(KERN_WARNING "%s: HIPPI disconnect error\n",
786 dev->name);
787 dev->stats.tx_aborted_errors++;
788 break;
789 case E_INT_PRTY:
790 printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
791 dev->name);
792 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
793 &regs->HostCtrl);
794 wmb();
795 break;
796 case E_TX_IDLE:
797 printk(KERN_WARNING "%s: Transmitter idle\n",
798 dev->name);
799 break;
800 case E_TX_LINK_DROP:
801 printk(KERN_WARNING "%s: Link lost during transmit\n",
802 dev->name);
803 dev->stats.tx_aborted_errors++;
804 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
805 &regs->HostCtrl);
806 wmb();
807 break;
808 case E_TX_INV_RNG:
809 printk(KERN_ERR "%s: Invalid send ring block\n",
810 dev->name);
811 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
812 &regs->HostCtrl);
813 wmb();
814 break;
815 case E_TX_INV_BUF:
816 printk(KERN_ERR "%s: Invalid send buffer address\n",
817 dev->name);
818 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
819 &regs->HostCtrl);
820 wmb();
821 break;
822 case E_TX_INV_DSC:
823 printk(KERN_ERR "%s: Invalid descriptor address\n",
824 dev->name);
825 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
826 &regs->HostCtrl);
827 wmb();
828 break;
830 * RX events.
832 case E_RX_RNG_OUT:
833 printk(KERN_INFO "%s: Receive ring full\n", dev->name);
834 break;
836 case E_RX_PAR_ERR:
837 printk(KERN_WARNING "%s: Receive parity error\n",
838 dev->name);
839 goto drop;
840 case E_RX_LLRC_ERR:
841 printk(KERN_WARNING "%s: Receive LLRC error\n",
842 dev->name);
843 goto drop;
844 case E_PKT_LN_ERR:
845 printk(KERN_WARNING "%s: Receive packet length "
846 "error\n", dev->name);
847 goto drop;
848 case E_DTA_CKSM_ERR:
849 printk(KERN_WARNING "%s: Data checksum error\n",
850 dev->name);
851 goto drop;
852 case E_SHT_BST:
853 printk(KERN_WARNING "%s: Unexpected short burst "
854 "error\n", dev->name);
855 goto drop;
856 case E_STATE_ERR:
857 printk(KERN_WARNING "%s: Recv. state transition"
858 " error\n", dev->name);
859 goto drop;
860 case E_UNEXP_DATA:
861 printk(KERN_WARNING "%s: Unexpected data error\n",
862 dev->name);
863 goto drop;
864 case E_LST_LNK_ERR:
865 printk(KERN_WARNING "%s: Link lost error\n",
866 dev->name);
867 goto drop;
868 case E_FRM_ERR:
869 printk(KERN_WARNING "%s: Framing Error\n",
870 dev->name);
871 goto drop;
872 case E_FLG_SYN_ERR:
873 printk(KERN_WARNING "%s: Flag sync. lost during "
874 "packet\n", dev->name);
875 goto drop;
876 case E_RX_INV_BUF:
877 printk(KERN_ERR "%s: Invalid receive buffer "
878 "address\n", dev->name);
879 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
880 &regs->HostCtrl);
881 wmb();
882 break;
883 case E_RX_INV_DSC:
884 printk(KERN_ERR "%s: Invalid receive descriptor "
885 "address\n", dev->name);
886 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
887 &regs->HostCtrl);
888 wmb();
889 break;
890 case E_RNG_BLK:
891 printk(KERN_ERR "%s: Invalid ring block\n",
892 dev->name);
893 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
894 &regs->HostCtrl);
895 wmb();
896 break;
897 drop:
898 /* Label packet to be dropped.
899 * Actual dropping occurs in rx
900 * handling.
902 * The index of packet we get to drop is
903 * the index of the packet following
904 * the bad packet. -kbf
907 u16 index = rrpriv->evt_ring[eidx].index;
908 index = (index + (RX_RING_ENTRIES - 1)) %
909 RX_RING_ENTRIES;
910 rrpriv->rx_ring[index].mode |=
911 (PACKET_BAD | PACKET_END);
913 break;
914 default:
915 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
916 dev->name, rrpriv->evt_ring[eidx].code);
918 eidx = (eidx + 1) % EVT_RING_ENTRIES;
921 rrpriv->info->evt_ctrl.pi = eidx;
922 wmb();
923 return eidx;
927 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
929 struct rr_private *rrpriv = netdev_priv(dev);
930 struct rr_regs __iomem *regs = rrpriv->regs;
932 do {
933 struct rx_desc *desc;
934 u32 pkt_len;
936 desc = &(rrpriv->rx_ring[index]);
937 pkt_len = desc->size;
938 #if (DEBUG > 2)
939 printk("index %i, rxlimit %i\n", index, rxlimit);
940 printk("len %x, mode %x\n", pkt_len, desc->mode);
941 #endif
942 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
943 dev->stats.rx_dropped++;
944 goto defer;
947 if (pkt_len > 0){
948 struct sk_buff *skb, *rx_skb;
950 rx_skb = rrpriv->rx_skbuff[index];
952 if (pkt_len < PKT_COPY_THRESHOLD) {
953 skb = alloc_skb(pkt_len, GFP_ATOMIC);
954 if (skb == NULL){
955 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
956 dev->stats.rx_dropped++;
957 goto defer;
958 } else {
959 dma_sync_single_for_cpu(&rrpriv->pci_dev->dev,
960 desc->addr.addrlo,
961 pkt_len,
962 DMA_FROM_DEVICE);
964 skb_put_data(skb, rx_skb->data,
965 pkt_len);
967 dma_sync_single_for_device(&rrpriv->pci_dev->dev,
968 desc->addr.addrlo,
969 pkt_len,
970 DMA_FROM_DEVICE);
972 }else{
973 struct sk_buff *newskb;
975 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
976 GFP_ATOMIC);
977 if (newskb){
978 dma_addr_t addr;
980 dma_unmap_single(&rrpriv->pci_dev->dev,
981 desc->addr.addrlo,
982 dev->mtu + HIPPI_HLEN,
983 DMA_FROM_DEVICE);
984 skb = rx_skb;
985 skb_put(skb, pkt_len);
986 rrpriv->rx_skbuff[index] = newskb;
987 addr = dma_map_single(&rrpriv->pci_dev->dev,
988 newskb->data,
989 dev->mtu + HIPPI_HLEN,
990 DMA_FROM_DEVICE);
991 set_rraddr(&desc->addr, addr);
992 } else {
993 printk("%s: Out of memory, deferring "
994 "packet\n", dev->name);
995 dev->stats.rx_dropped++;
996 goto defer;
999 skb->protocol = hippi_type_trans(skb, dev);
1001 netif_rx(skb); /* send it up */
1003 dev->stats.rx_packets++;
1004 dev->stats.rx_bytes += pkt_len;
1006 defer:
1007 desc->mode = 0;
1008 desc->size = dev->mtu + HIPPI_HLEN;
1010 if ((index & 7) == 7)
1011 writel(index, &regs->IpRxPi);
1013 index = (index + 1) % RX_RING_ENTRIES;
1014 } while(index != rxlimit);
1016 rrpriv->cur_rx = index;
1017 wmb();
1021 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1023 struct rr_private *rrpriv;
1024 struct rr_regs __iomem *regs;
1025 struct net_device *dev = (struct net_device *)dev_id;
1026 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1028 rrpriv = netdev_priv(dev);
1029 regs = rrpriv->regs;
1031 if (!(readl(&regs->HostCtrl) & RR_INT))
1032 return IRQ_NONE;
1034 spin_lock(&rrpriv->lock);
1036 prodidx = readl(&regs->EvtPrd);
1037 txcsmr = (prodidx >> 8) & 0xff;
1038 rxlimit = (prodidx >> 16) & 0xff;
1039 prodidx &= 0xff;
1041 #if (DEBUG > 2)
1042 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1043 prodidx, rrpriv->info->evt_ctrl.pi);
1044 #endif
1046 * Order here is important. We must handle events
1047 * before doing anything else in order to catch
1048 * such things as LLRC errors, etc -kbf
1051 eidx = rrpriv->info->evt_ctrl.pi;
1052 if (prodidx != eidx)
1053 eidx = rr_handle_event(dev, prodidx, eidx);
1055 rxindex = rrpriv->cur_rx;
1056 if (rxindex != rxlimit)
1057 rx_int(dev, rxlimit, rxindex);
1059 txcon = rrpriv->dirty_tx;
1060 if (txcsmr != txcon) {
1061 do {
1062 /* Due to occational firmware TX producer/consumer out
1063 * of sync. error need to check entry in ring -kbf
1065 if(rrpriv->tx_skbuff[txcon]){
1066 struct tx_desc *desc;
1067 struct sk_buff *skb;
1069 desc = &(rrpriv->tx_ring[txcon]);
1070 skb = rrpriv->tx_skbuff[txcon];
1072 dev->stats.tx_packets++;
1073 dev->stats.tx_bytes += skb->len;
1075 dma_unmap_single(&rrpriv->pci_dev->dev,
1076 desc->addr.addrlo, skb->len,
1077 DMA_TO_DEVICE);
1078 dev_kfree_skb_irq(skb);
1080 rrpriv->tx_skbuff[txcon] = NULL;
1081 desc->size = 0;
1082 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1083 desc->mode = 0;
1085 txcon = (txcon + 1) % TX_RING_ENTRIES;
1086 } while (txcsmr != txcon);
1087 wmb();
1089 rrpriv->dirty_tx = txcon;
1090 if (rrpriv->tx_full && rr_if_busy(dev) &&
1091 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1092 != rrpriv->dirty_tx)){
1093 rrpriv->tx_full = 0;
1094 netif_wake_queue(dev);
1098 eidx |= ((txcsmr << 8) | (rxlimit << 16));
1099 writel(eidx, &regs->EvtCon);
1100 wmb();
1102 spin_unlock(&rrpriv->lock);
1103 return IRQ_HANDLED;
1106 static inline void rr_raz_tx(struct rr_private *rrpriv,
1107 struct net_device *dev)
1109 int i;
1111 for (i = 0; i < TX_RING_ENTRIES; i++) {
1112 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1114 if (skb) {
1115 struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1117 dma_unmap_single(&rrpriv->pci_dev->dev,
1118 desc->addr.addrlo, skb->len,
1119 DMA_TO_DEVICE);
1120 desc->size = 0;
1121 set_rraddr(&desc->addr, 0);
1122 dev_kfree_skb(skb);
1123 rrpriv->tx_skbuff[i] = NULL;
1129 static inline void rr_raz_rx(struct rr_private *rrpriv,
1130 struct net_device *dev)
1132 int i;
1134 for (i = 0; i < RX_RING_ENTRIES; i++) {
1135 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1137 if (skb) {
1138 struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1140 dma_unmap_single(&rrpriv->pci_dev->dev,
1141 desc->addr.addrlo,
1142 dev->mtu + HIPPI_HLEN,
1143 DMA_FROM_DEVICE);
1144 desc->size = 0;
1145 set_rraddr(&desc->addr, 0);
1146 dev_kfree_skb(skb);
1147 rrpriv->rx_skbuff[i] = NULL;
1152 static void rr_timer(struct timer_list *t)
1154 struct rr_private *rrpriv = from_timer(rrpriv, t, timer);
1155 struct net_device *dev = pci_get_drvdata(rrpriv->pci_dev);
1156 struct rr_regs __iomem *regs = rrpriv->regs;
1157 unsigned long flags;
1159 if (readl(&regs->HostCtrl) & NIC_HALTED){
1160 printk("%s: Restarting nic\n", dev->name);
1161 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1162 memset(rrpriv->info, 0, sizeof(struct rr_info));
1163 wmb();
1165 rr_raz_tx(rrpriv, dev);
1166 rr_raz_rx(rrpriv, dev);
1168 if (rr_init1(dev)) {
1169 spin_lock_irqsave(&rrpriv->lock, flags);
1170 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1171 &regs->HostCtrl);
1172 spin_unlock_irqrestore(&rrpriv->lock, flags);
1175 rrpriv->timer.expires = RUN_AT(5*HZ);
1176 add_timer(&rrpriv->timer);
1180 static int rr_open(struct net_device *dev)
1182 struct rr_private *rrpriv = netdev_priv(dev);
1183 struct pci_dev *pdev = rrpriv->pci_dev;
1184 struct rr_regs __iomem *regs;
1185 int ecode = 0;
1186 unsigned long flags;
1187 dma_addr_t dma_addr;
1189 regs = rrpriv->regs;
1191 if (rrpriv->fw_rev < 0x00020000) {
1192 printk(KERN_WARNING "%s: trying to configure device with "
1193 "obsolete firmware\n", dev->name);
1194 ecode = -EBUSY;
1195 goto error;
1198 rrpriv->rx_ctrl = dma_alloc_coherent(&pdev->dev,
1199 256 * sizeof(struct ring_ctrl),
1200 &dma_addr, GFP_KERNEL);
1201 if (!rrpriv->rx_ctrl) {
1202 ecode = -ENOMEM;
1203 goto error;
1205 rrpriv->rx_ctrl_dma = dma_addr;
1207 rrpriv->info = dma_alloc_coherent(&pdev->dev, sizeof(struct rr_info),
1208 &dma_addr, GFP_KERNEL);
1209 if (!rrpriv->info) {
1210 ecode = -ENOMEM;
1211 goto error;
1213 rrpriv->info_dma = dma_addr;
1214 wmb();
1216 spin_lock_irqsave(&rrpriv->lock, flags);
1217 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1218 readl(&regs->HostCtrl);
1219 spin_unlock_irqrestore(&rrpriv->lock, flags);
1221 if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1222 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1223 dev->name, pdev->irq);
1224 ecode = -EAGAIN;
1225 goto error;
1228 if ((ecode = rr_init1(dev)))
1229 goto error;
1231 /* Set the timer to switch to check for link beat and perhaps switch
1232 to an alternate media type. */
1233 timer_setup(&rrpriv->timer, rr_timer, 0);
1234 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1235 add_timer(&rrpriv->timer);
1237 netif_start_queue(dev);
1239 return ecode;
1241 error:
1242 spin_lock_irqsave(&rrpriv->lock, flags);
1243 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1244 spin_unlock_irqrestore(&rrpriv->lock, flags);
1246 if (rrpriv->info) {
1247 dma_free_coherent(&pdev->dev, sizeof(struct rr_info),
1248 rrpriv->info, rrpriv->info_dma);
1249 rrpriv->info = NULL;
1251 if (rrpriv->rx_ctrl) {
1252 dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1253 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1254 rrpriv->rx_ctrl = NULL;
1257 netif_stop_queue(dev);
1259 return ecode;
1263 static void rr_dump(struct net_device *dev)
1265 struct rr_private *rrpriv;
1266 struct rr_regs __iomem *regs;
1267 u32 index, cons;
1268 short i;
1269 int len;
1271 rrpriv = netdev_priv(dev);
1272 regs = rrpriv->regs;
1274 printk("%s: dumping NIC TX rings\n", dev->name);
1276 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1277 readl(&regs->RxPrd), readl(&regs->TxPrd),
1278 readl(&regs->EvtPrd), readl(&regs->TxPi),
1279 rrpriv->info->tx_ctrl.pi);
1281 printk("Error code 0x%x\n", readl(&regs->Fail1));
1283 index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1284 cons = rrpriv->dirty_tx;
1285 printk("TX ring index %i, TX consumer %i\n",
1286 index, cons);
1288 if (rrpriv->tx_skbuff[index]){
1289 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1290 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1291 for (i = 0; i < len; i++){
1292 if (!(i & 7))
1293 printk("\n");
1294 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1296 printk("\n");
1299 if (rrpriv->tx_skbuff[cons]){
1300 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1301 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1302 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %p, truesize 0x%x\n",
1303 rrpriv->tx_ring[cons].mode,
1304 rrpriv->tx_ring[cons].size,
1305 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1306 rrpriv->tx_skbuff[cons]->data,
1307 (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1308 for (i = 0; i < len; i++){
1309 if (!(i & 7))
1310 printk("\n");
1311 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1313 printk("\n");
1316 printk("dumping TX ring info:\n");
1317 for (i = 0; i < TX_RING_ENTRIES; i++)
1318 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1319 rrpriv->tx_ring[i].mode,
1320 rrpriv->tx_ring[i].size,
1321 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1326 static int rr_close(struct net_device *dev)
1328 struct rr_private *rrpriv = netdev_priv(dev);
1329 struct rr_regs __iomem *regs = rrpriv->regs;
1330 struct pci_dev *pdev = rrpriv->pci_dev;
1331 unsigned long flags;
1332 u32 tmp;
1333 short i;
1335 netif_stop_queue(dev);
1339 * Lock to make sure we are not cleaning up while another CPU
1340 * is handling interrupts.
1342 spin_lock_irqsave(&rrpriv->lock, flags);
1344 tmp = readl(&regs->HostCtrl);
1345 if (tmp & NIC_HALTED){
1346 printk("%s: NIC already halted\n", dev->name);
1347 rr_dump(dev);
1348 }else{
1349 tmp |= HALT_NIC | RR_CLEAR_INT;
1350 writel(tmp, &regs->HostCtrl);
1351 readl(&regs->HostCtrl);
1354 rrpriv->fw_running = 0;
1356 del_timer_sync(&rrpriv->timer);
1358 writel(0, &regs->TxPi);
1359 writel(0, &regs->IpRxPi);
1361 writel(0, &regs->EvtCon);
1362 writel(0, &regs->EvtPrd);
1364 for (i = 0; i < CMD_RING_ENTRIES; i++)
1365 writel(0, &regs->CmdRing[i]);
1367 rrpriv->info->tx_ctrl.entries = 0;
1368 rrpriv->info->cmd_ctrl.pi = 0;
1369 rrpriv->info->evt_ctrl.pi = 0;
1370 rrpriv->rx_ctrl[4].entries = 0;
1372 rr_raz_tx(rrpriv, dev);
1373 rr_raz_rx(rrpriv, dev);
1375 dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1376 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1377 rrpriv->rx_ctrl = NULL;
1379 dma_free_coherent(&pdev->dev, sizeof(struct rr_info), rrpriv->info,
1380 rrpriv->info_dma);
1381 rrpriv->info = NULL;
1383 spin_unlock_irqrestore(&rrpriv->lock, flags);
1384 free_irq(pdev->irq, dev);
1386 return 0;
1390 static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1391 struct net_device *dev)
1393 struct rr_private *rrpriv = netdev_priv(dev);
1394 struct rr_regs __iomem *regs = rrpriv->regs;
1395 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1396 struct ring_ctrl *txctrl;
1397 unsigned long flags;
1398 u32 index, len = skb->len;
1399 u32 *ifield;
1400 struct sk_buff *new_skb;
1402 if (readl(&regs->Mode) & FATAL_ERR)
1403 printk("error codes Fail1 %02x, Fail2 %02x\n",
1404 readl(&regs->Fail1), readl(&regs->Fail2));
1407 * We probably need to deal with tbusy here to prevent overruns.
1410 if (skb_headroom(skb) < 8){
1411 printk("incoming skb too small - reallocating\n");
1412 if (!(new_skb = dev_alloc_skb(len + 8))) {
1413 dev_kfree_skb(skb);
1414 netif_wake_queue(dev);
1415 return NETDEV_TX_OK;
1417 skb_reserve(new_skb, 8);
1418 skb_put(new_skb, len);
1419 skb_copy_from_linear_data(skb, new_skb->data, len);
1420 dev_kfree_skb(skb);
1421 skb = new_skb;
1424 ifield = skb_push(skb, 8);
1426 ifield[0] = 0;
1427 ifield[1] = hcb->ifield;
1430 * We don't need the lock before we are actually going to start
1431 * fiddling with the control blocks.
1433 spin_lock_irqsave(&rrpriv->lock, flags);
1435 txctrl = &rrpriv->info->tx_ctrl;
1437 index = txctrl->pi;
1439 rrpriv->tx_skbuff[index] = skb;
1440 set_rraddr(&rrpriv->tx_ring[index].addr,
1441 dma_map_single(&rrpriv->pci_dev->dev, skb->data, len + 8, DMA_TO_DEVICE));
1442 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1443 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1444 txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1445 wmb();
1446 writel(txctrl->pi, &regs->TxPi);
1448 if (txctrl->pi == rrpriv->dirty_tx){
1449 rrpriv->tx_full = 1;
1450 netif_stop_queue(dev);
1453 spin_unlock_irqrestore(&rrpriv->lock, flags);
1455 return NETDEV_TX_OK;
1460 * Read the firmware out of the EEPROM and put it into the SRAM
1461 * (or from user space - later)
1463 * This operation requires the NIC to be halted and is performed with
1464 * interrupts disabled and with the spinlock hold.
1466 static int rr_load_firmware(struct net_device *dev)
1468 struct rr_private *rrpriv;
1469 struct rr_regs __iomem *regs;
1470 size_t eptr, segptr;
1471 int i, j;
1472 u32 localctrl, sptr, len, tmp;
1473 u32 p2len, p2size, nr_seg, revision, io, sram_size;
1475 rrpriv = netdev_priv(dev);
1476 regs = rrpriv->regs;
1478 if (dev->flags & IFF_UP)
1479 return -EBUSY;
1481 if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1482 printk("%s: Trying to load firmware to a running NIC.\n",
1483 dev->name);
1484 return -EBUSY;
1487 localctrl = readl(&regs->LocalCtrl);
1488 writel(0, &regs->LocalCtrl);
1490 writel(0, &regs->EvtPrd);
1491 writel(0, &regs->RxPrd);
1492 writel(0, &regs->TxPrd);
1495 * First wipe the entire SRAM, otherwise we might run into all
1496 * kinds of trouble ... sigh, this took almost all afternoon
1497 * to track down ;-(
1499 io = readl(&regs->ExtIo);
1500 writel(0, &regs->ExtIo);
1501 sram_size = rr_read_eeprom_word(rrpriv, 8);
1503 for (i = 200; i < sram_size / 4; i++){
1504 writel(i * 4, &regs->WinBase);
1505 mb();
1506 writel(0, &regs->WinData);
1507 mb();
1509 writel(io, &regs->ExtIo);
1510 mb();
1512 eptr = rr_read_eeprom_word(rrpriv,
1513 offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1514 eptr = ((eptr & 0x1fffff) >> 3);
1516 p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1517 p2len = (p2len << 2);
1518 p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1519 p2size = ((p2size & 0x1fffff) >> 3);
1521 if ((eptr < p2size) || (eptr > (p2size + p2len))){
1522 printk("%s: eptr is invalid\n", dev->name);
1523 goto out;
1526 revision = rr_read_eeprom_word(rrpriv,
1527 offsetof(struct eeprom, manf.HeaderFmt));
1529 if (revision != 1){
1530 printk("%s: invalid firmware format (%i)\n",
1531 dev->name, revision);
1532 goto out;
1535 nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1536 eptr +=4;
1537 #if (DEBUG > 1)
1538 printk("%s: nr_seg %i\n", dev->name, nr_seg);
1539 #endif
1541 for (i = 0; i < nr_seg; i++){
1542 sptr = rr_read_eeprom_word(rrpriv, eptr);
1543 eptr += 4;
1544 len = rr_read_eeprom_word(rrpriv, eptr);
1545 eptr += 4;
1546 segptr = rr_read_eeprom_word(rrpriv, eptr);
1547 segptr = ((segptr & 0x1fffff) >> 3);
1548 eptr += 4;
1549 #if (DEBUG > 1)
1550 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1551 dev->name, i, sptr, len, segptr);
1552 #endif
1553 for (j = 0; j < len; j++){
1554 tmp = rr_read_eeprom_word(rrpriv, segptr);
1555 writel(sptr, &regs->WinBase);
1556 mb();
1557 writel(tmp, &regs->WinData);
1558 mb();
1559 segptr += 4;
1560 sptr += 4;
1564 out:
1565 writel(localctrl, &regs->LocalCtrl);
1566 mb();
1567 return 0;
1571 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1573 struct rr_private *rrpriv;
1574 unsigned char *image, *oldimage;
1575 unsigned long flags;
1576 unsigned int i;
1577 int error = -EOPNOTSUPP;
1579 rrpriv = netdev_priv(dev);
1581 switch(cmd){
1582 case SIOCRRGFW:
1583 if (!capable(CAP_SYS_RAWIO)){
1584 return -EPERM;
1587 image = kmalloc_array(EEPROM_WORDS, sizeof(u32), GFP_KERNEL);
1588 if (!image)
1589 return -ENOMEM;
1591 if (rrpriv->fw_running){
1592 printk("%s: Firmware already running\n", dev->name);
1593 error = -EPERM;
1594 goto gf_out;
1597 spin_lock_irqsave(&rrpriv->lock, flags);
1598 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1599 spin_unlock_irqrestore(&rrpriv->lock, flags);
1600 if (i != EEPROM_BYTES){
1601 printk(KERN_ERR "%s: Error reading EEPROM\n",
1602 dev->name);
1603 error = -EFAULT;
1604 goto gf_out;
1606 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1607 if (error)
1608 error = -EFAULT;
1609 gf_out:
1610 kfree(image);
1611 return error;
1613 case SIOCRRPFW:
1614 if (!capable(CAP_SYS_RAWIO)){
1615 return -EPERM;
1618 image = memdup_user(rq->ifr_data, EEPROM_BYTES);
1619 if (IS_ERR(image))
1620 return PTR_ERR(image);
1622 oldimage = kmalloc(EEPROM_BYTES, GFP_KERNEL);
1623 if (!oldimage) {
1624 kfree(image);
1625 return -ENOMEM;
1628 if (rrpriv->fw_running){
1629 printk("%s: Firmware already running\n", dev->name);
1630 error = -EPERM;
1631 goto wf_out;
1634 printk("%s: Updating EEPROM firmware\n", dev->name);
1636 spin_lock_irqsave(&rrpriv->lock, flags);
1637 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1638 if (error)
1639 printk(KERN_ERR "%s: Error writing EEPROM\n",
1640 dev->name);
1642 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1643 spin_unlock_irqrestore(&rrpriv->lock, flags);
1645 if (i != EEPROM_BYTES)
1646 printk(KERN_ERR "%s: Error reading back EEPROM "
1647 "image\n", dev->name);
1649 error = memcmp(image, oldimage, EEPROM_BYTES);
1650 if (error){
1651 printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1652 dev->name);
1653 error = -EFAULT;
1655 wf_out:
1656 kfree(oldimage);
1657 kfree(image);
1658 return error;
1660 case SIOCRRID:
1661 return put_user(0x52523032, (int __user *)rq->ifr_data);
1662 default:
1663 return error;
1667 static const struct pci_device_id rr_pci_tbl[] = {
1668 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1669 PCI_ANY_ID, PCI_ANY_ID, },
1670 { 0,}
1672 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1674 static struct pci_driver rr_driver = {
1675 .name = "rrunner",
1676 .id_table = rr_pci_tbl,
1677 .probe = rr_init_one,
1678 .remove = rr_remove_one,
1681 module_pci_driver(rr_driver);