1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2018 Rockchip Electronics Co. Ltd.
5 * Author: Wyon Bi <bivvy.bi@rock-chips.com>
8 #include <linux/kernel.h>
10 #include <linux/iopoll.h>
11 #include <linux/clk-provider.h>
12 #include <linux/delay.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/of_device.h>
16 #include <linux/platform_device.h>
17 #include <linux/reset.h>
18 #include <linux/phy/phy.h>
19 #include <linux/phy/phy-mipi-dphy.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/mfd/syscon.h>
23 #define PSEC_PER_SEC 1000000000000LL
25 #define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l)))
28 * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
29 * is the first address, the other from the bit4 to bit0 is the second address.
30 * when you configure the registers, you must set both of them. The Clock Lane
31 * and Data Lane use the same registers with the same second address, but the
32 * first address is different.
34 #define FIRST_ADDRESS(x) (((x) & 0x7) << 5)
35 #define SECOND_ADDRESS(x) (((x) & 0x1f) << 0)
36 #define PHY_REG(first, second) (FIRST_ADDRESS(first) | \
37 SECOND_ADDRESS(second))
39 /* Analog Register Part: reg00 */
40 #define BANDGAP_POWER_MASK BIT(7)
41 #define BANDGAP_POWER_DOWN BIT(7)
42 #define BANDGAP_POWER_ON 0
43 #define LANE_EN_MASK GENMASK(6, 2)
44 #define LANE_EN_CK BIT(6)
45 #define LANE_EN_3 BIT(5)
46 #define LANE_EN_2 BIT(4)
47 #define LANE_EN_1 BIT(3)
48 #define LANE_EN_0 BIT(2)
49 #define POWER_WORK_MASK GENMASK(1, 0)
50 #define POWER_WORK_ENABLE UPDATE(1, 1, 0)
51 #define POWER_WORK_DISABLE UPDATE(2, 1, 0)
52 /* Analog Register Part: reg01 */
53 #define REG_SYNCRST_MASK BIT(2)
54 #define REG_SYNCRST_RESET BIT(2)
55 #define REG_SYNCRST_NORMAL 0
56 #define REG_LDOPD_MASK BIT(1)
57 #define REG_LDOPD_POWER_DOWN BIT(1)
58 #define REG_LDOPD_POWER_ON 0
59 #define REG_PLLPD_MASK BIT(0)
60 #define REG_PLLPD_POWER_DOWN BIT(0)
61 #define REG_PLLPD_POWER_ON 0
62 /* Analog Register Part: reg03 */
63 #define REG_FBDIV_HI_MASK BIT(5)
64 #define REG_FBDIV_HI(x) UPDATE((x >> 8), 5, 5)
65 #define REG_PREDIV_MASK GENMASK(4, 0)
66 #define REG_PREDIV(x) UPDATE(x, 4, 0)
67 /* Analog Register Part: reg04 */
68 #define REG_FBDIV_LO_MASK GENMASK(7, 0)
69 #define REG_FBDIV_LO(x) UPDATE(x, 7, 0)
70 /* Analog Register Part: reg05 */
71 #define SAMPLE_CLOCK_PHASE_MASK GENMASK(6, 4)
72 #define SAMPLE_CLOCK_PHASE(x) UPDATE(x, 6, 4)
73 #define CLOCK_LANE_SKEW_PHASE_MASK GENMASK(2, 0)
74 #define CLOCK_LANE_SKEW_PHASE(x) UPDATE(x, 2, 0)
75 /* Analog Register Part: reg06 */
76 #define DATA_LANE_3_SKEW_PHASE_MASK GENMASK(6, 4)
77 #define DATA_LANE_3_SKEW_PHASE(x) UPDATE(x, 6, 4)
78 #define DATA_LANE_2_SKEW_PHASE_MASK GENMASK(2, 0)
79 #define DATA_LANE_2_SKEW_PHASE(x) UPDATE(x, 2, 0)
80 /* Analog Register Part: reg07 */
81 #define DATA_LANE_1_SKEW_PHASE_MASK GENMASK(6, 4)
82 #define DATA_LANE_1_SKEW_PHASE(x) UPDATE(x, 6, 4)
83 #define DATA_LANE_0_SKEW_PHASE_MASK GENMASK(2, 0)
84 #define DATA_LANE_0_SKEW_PHASE(x) UPDATE(x, 2, 0)
85 /* Analog Register Part: reg08 */
86 #define SAMPLE_CLOCK_DIRECTION_MASK BIT(4)
87 #define SAMPLE_CLOCK_DIRECTION_REVERSE BIT(4)
88 #define SAMPLE_CLOCK_DIRECTION_FORWARD 0
89 /* Digital Register Part: reg00 */
90 #define REG_DIG_RSTN_MASK BIT(0)
91 #define REG_DIG_RSTN_NORMAL BIT(0)
92 #define REG_DIG_RSTN_RESET 0
93 /* Digital Register Part: reg01 */
94 #define INVERT_TXCLKESC_MASK BIT(1)
95 #define INVERT_TXCLKESC_ENABLE BIT(1)
96 #define INVERT_TXCLKESC_DISABLE 0
97 #define INVERT_TXBYTECLKHS_MASK BIT(0)
98 #define INVERT_TXBYTECLKHS_ENABLE BIT(0)
99 #define INVERT_TXBYTECLKHS_DISABLE 0
100 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
101 #define T_LPX_CNT_MASK GENMASK(5, 0)
102 #define T_LPX_CNT(x) UPDATE(x, 5, 0)
103 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
104 #define T_HS_PREPARE_CNT_MASK GENMASK(6, 0)
105 #define T_HS_PREPARE_CNT(x) UPDATE(x, 6, 0)
106 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
107 #define T_HS_ZERO_CNT_MASK GENMASK(5, 0)
108 #define T_HS_ZERO_CNT(x) UPDATE(x, 5, 0)
109 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
110 #define T_HS_TRAIL_CNT_MASK GENMASK(6, 0)
111 #define T_HS_TRAIL_CNT(x) UPDATE(x, 6, 0)
112 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
113 #define T_HS_EXIT_CNT_MASK GENMASK(4, 0)
114 #define T_HS_EXIT_CNT(x) UPDATE(x, 4, 0)
115 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
116 #define T_CLK_POST_CNT_MASK GENMASK(3, 0)
117 #define T_CLK_POST_CNT(x) UPDATE(x, 3, 0)
118 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
119 #define LPDT_TX_PPI_SYNC_MASK BIT(2)
120 #define LPDT_TX_PPI_SYNC_ENABLE BIT(2)
121 #define LPDT_TX_PPI_SYNC_DISABLE 0
122 #define T_WAKEUP_CNT_HI_MASK GENMASK(1, 0)
123 #define T_WAKEUP_CNT_HI(x) UPDATE(x, 1, 0)
124 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
125 #define T_WAKEUP_CNT_LO_MASK GENMASK(7, 0)
126 #define T_WAKEUP_CNT_LO(x) UPDATE(x, 7, 0)
127 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
128 #define T_CLK_PRE_CNT_MASK GENMASK(3, 0)
129 #define T_CLK_PRE_CNT(x) UPDATE(x, 3, 0)
130 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
131 #define T_TA_GO_CNT_MASK GENMASK(5, 0)
132 #define T_TA_GO_CNT(x) UPDATE(x, 5, 0)
133 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
134 #define T_TA_SURE_CNT_MASK GENMASK(5, 0)
135 #define T_TA_SURE_CNT(x) UPDATE(x, 5, 0)
136 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
137 #define T_TA_WAIT_CNT_MASK GENMASK(5, 0)
138 #define T_TA_WAIT_CNT(x) UPDATE(x, 5, 0)
139 /* LVDS Register Part: reg00 */
140 #define LVDS_DIGITAL_INTERNAL_RESET_MASK BIT(2)
141 #define LVDS_DIGITAL_INTERNAL_RESET_DISABLE BIT(2)
142 #define LVDS_DIGITAL_INTERNAL_RESET_ENABLE 0
143 /* LVDS Register Part: reg01 */
144 #define LVDS_DIGITAL_INTERNAL_ENABLE_MASK BIT(7)
145 #define LVDS_DIGITAL_INTERNAL_ENABLE BIT(7)
146 #define LVDS_DIGITAL_INTERNAL_DISABLE 0
147 /* LVDS Register Part: reg03 */
148 #define MODE_ENABLE_MASK GENMASK(2, 0)
149 #define TTL_MODE_ENABLE BIT(2)
150 #define LVDS_MODE_ENABLE BIT(1)
151 #define MIPI_MODE_ENABLE BIT(0)
152 /* LVDS Register Part: reg0b */
153 #define LVDS_LANE_EN_MASK GENMASK(7, 3)
154 #define LVDS_DATA_LANE0_EN BIT(7)
155 #define LVDS_DATA_LANE1_EN BIT(6)
156 #define LVDS_DATA_LANE2_EN BIT(5)
157 #define LVDS_DATA_LANE3_EN BIT(4)
158 #define LVDS_CLK_LANE_EN BIT(3)
159 #define LVDS_PLL_POWER_MASK BIT(2)
160 #define LVDS_PLL_POWER_OFF BIT(2)
161 #define LVDS_PLL_POWER_ON 0
162 #define LVDS_BANDGAP_POWER_MASK BIT(0)
163 #define LVDS_BANDGAP_POWER_DOWN BIT(0)
164 #define LVDS_BANDGAP_POWER_ON 0
166 #define DSI_PHY_RSTZ 0xa0
167 #define PHY_ENABLECLK BIT(2)
168 #define DSI_PHY_STATUS 0xb0
169 #define PHY_LOCK BIT(0)
171 struct inno_dsidphy
{
174 struct clk
*pclk_phy
;
175 struct clk
*pclk_host
;
176 void __iomem
*phy_base
;
177 void __iomem
*host_base
;
178 struct reset_control
*rst
;
180 struct phy_configure_opts_mipi_dphy dphy_cfg
;
192 REGISTER_PART_ANALOG
,
193 REGISTER_PART_DIGITAL
,
194 REGISTER_PART_CLOCK_LANE
,
195 REGISTER_PART_DATA0_LANE
,
196 REGISTER_PART_DATA1_LANE
,
197 REGISTER_PART_DATA2_LANE
,
198 REGISTER_PART_DATA3_LANE
,
202 static inline struct inno_dsidphy
*hw_to_inno(struct clk_hw
*hw
)
204 return container_of(hw
, struct inno_dsidphy
, pll
.hw
);
207 static void phy_update_bits(struct inno_dsidphy
*inno
,
208 u8 first
, u8 second
, u8 mask
, u8 val
)
210 u32 reg
= PHY_REG(first
, second
) << 2;
211 unsigned int tmp
, orig
;
213 orig
= readl(inno
->phy_base
+ reg
);
216 writel(tmp
, inno
->phy_base
+ reg
);
219 static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy
*inno
,
222 unsigned long prate
= clk_get_rate(inno
->ref_clk
);
223 unsigned long best_freq
= 0;
224 unsigned long fref
, fout
;
225 u8 min_prediv
, max_prediv
;
226 u8 _prediv
, best_prediv
= 1;
227 u16 _fbdiv
, best_fbdiv
= 1;
228 u32 min_delta
= UINT_MAX
;
231 * The PLL output frequency can be calculated using a simple formula:
232 * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
233 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
236 if (rate
> 1000000000UL)
241 /* 5Mhz < Fref / prediv < 40MHz */
242 min_prediv
= DIV_ROUND_UP(fref
, 40000000);
243 max_prediv
= fref
/ 5000000;
245 for (_prediv
= min_prediv
; _prediv
<= max_prediv
; _prediv
++) {
249 tmp
= (u64
)fout
* _prediv
;
254 * The possible settings of feedback divider are
255 * 12, 13, 14, 16, ~ 511
260 if (_fbdiv
< 12 || _fbdiv
> 511)
263 tmp
= (u64
)_fbdiv
* fref
;
264 do_div(tmp
, _prediv
);
266 delta
= abs(fout
- tmp
);
268 best_prediv
= _prediv
;
272 } else if (delta
< min_delta
) {
273 best_prediv
= _prediv
;
281 inno
->pll
.prediv
= best_prediv
;
282 inno
->pll
.fbdiv
= best_fbdiv
;
283 inno
->pll
.rate
= best_freq
;
289 static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy
*inno
)
291 struct phy_configure_opts_mipi_dphy
*cfg
= &inno
->dphy_cfg
;
296 u8 data_lane_hs_zero
;
299 { 110000000, 0x20, 0x16, 0x02, 0x22},
300 { 150000000, 0x06, 0x16, 0x03, 0x45},
301 { 200000000, 0x18, 0x17, 0x04, 0x0b},
302 { 250000000, 0x05, 0x17, 0x05, 0x16},
303 { 300000000, 0x51, 0x18, 0x06, 0x2c},
304 { 400000000, 0x64, 0x19, 0x07, 0x33},
305 { 500000000, 0x20, 0x1b, 0x07, 0x4e},
306 { 600000000, 0x6a, 0x1d, 0x08, 0x3a},
307 { 700000000, 0x3e, 0x1e, 0x08, 0x6a},
308 { 800000000, 0x21, 0x1f, 0x09, 0x29},
309 {1000000000, 0x09, 0x20, 0x09, 0x27},
311 u32 t_txbyteclkhs
, t_txclkesc
;
312 u32 txbyteclkhs
, txclkesc
, esc_clk_div
;
313 u32 hs_exit
, clk_post
, clk_pre
, wakeup
, lpx
, ta_go
, ta_sure
, ta_wait
;
314 u32 hs_prepare
, hs_trail
, hs_zero
, clk_lane_hs_zero
, data_lane_hs_zero
;
317 inno_dsidphy_pll_calc_rate(inno
, cfg
->hs_clk_rate
);
319 /* Select MIPI mode */
320 phy_update_bits(inno
, REGISTER_PART_LVDS
, 0x03,
321 MODE_ENABLE_MASK
, MIPI_MODE_ENABLE
);
323 phy_update_bits(inno
, REGISTER_PART_ANALOG
, 0x03,
324 REG_PREDIV_MASK
, REG_PREDIV(inno
->pll
.prediv
));
325 phy_update_bits(inno
, REGISTER_PART_ANALOG
, 0x03,
326 REG_FBDIV_HI_MASK
, REG_FBDIV_HI(inno
->pll
.fbdiv
));
327 phy_update_bits(inno
, REGISTER_PART_ANALOG
, 0x04,
328 REG_FBDIV_LO_MASK
, REG_FBDIV_LO(inno
->pll
.fbdiv
));
329 /* Enable PLL and LDO */
330 phy_update_bits(inno
, REGISTER_PART_ANALOG
, 0x01,
331 REG_LDOPD_MASK
| REG_PLLPD_MASK
,
332 REG_LDOPD_POWER_ON
| REG_PLLPD_POWER_ON
);
334 phy_update_bits(inno
, REGISTER_PART_ANALOG
, 0x01,
335 REG_SYNCRST_MASK
, REG_SYNCRST_RESET
);
337 phy_update_bits(inno
, REGISTER_PART_ANALOG
, 0x01,
338 REG_SYNCRST_MASK
, REG_SYNCRST_NORMAL
);
340 phy_update_bits(inno
, REGISTER_PART_DIGITAL
, 0x00,
341 REG_DIG_RSTN_MASK
, REG_DIG_RSTN_RESET
);
343 phy_update_bits(inno
, REGISTER_PART_DIGITAL
, 0x00,
344 REG_DIG_RSTN_MASK
, REG_DIG_RSTN_NORMAL
);
346 txbyteclkhs
= inno
->pll
.rate
/ 8;
347 t_txbyteclkhs
= div_u64(PSEC_PER_SEC
, txbyteclkhs
);
349 esc_clk_div
= DIV_ROUND_UP(txbyteclkhs
, 20000000);
350 txclkesc
= txbyteclkhs
/ esc_clk_div
;
351 t_txclkesc
= div_u64(PSEC_PER_SEC
, txclkesc
);
354 * The value of counter for HS Ths-exit
355 * Ths-exit = Tpin_txbyteclkhs * value
357 hs_exit
= DIV_ROUND_UP(cfg
->hs_exit
, t_txbyteclkhs
);
359 * The value of counter for HS Tclk-post
360 * Tclk-post = Tpin_txbyteclkhs * value
362 clk_post
= DIV_ROUND_UP(cfg
->clk_post
, t_txbyteclkhs
);
364 * The value of counter for HS Tclk-pre
365 * Tclk-pre = Tpin_txbyteclkhs * value
367 clk_pre
= DIV_ROUND_UP(cfg
->clk_pre
, t_txbyteclkhs
);
370 * The value of counter for HS Tlpx Time
371 * Tlpx = Tpin_txbyteclkhs * (2 + value)
373 lpx
= DIV_ROUND_UP(cfg
->lpx
, t_txbyteclkhs
);
378 * The value of counter for HS Tta-go
379 * Tta-go for turnaround
380 * Tta-go = Ttxclkesc * value
382 ta_go
= DIV_ROUND_UP(cfg
->ta_go
, t_txclkesc
);
384 * The value of counter for HS Tta-sure
385 * Tta-sure for turnaround
386 * Tta-sure = Ttxclkesc * value
388 ta_sure
= DIV_ROUND_UP(cfg
->ta_sure
, t_txclkesc
);
390 * The value of counter for HS Tta-wait
391 * Tta-wait for turnaround
392 * Tta-wait = Ttxclkesc * value
394 ta_wait
= DIV_ROUND_UP(cfg
->ta_get
, t_txclkesc
);
396 for (i
= 0; i
< ARRAY_SIZE(timings
); i
++)
397 if (inno
->pll
.rate
<= timings
[i
].rate
)
400 if (i
== ARRAY_SIZE(timings
))
403 hs_prepare
= timings
[i
].hs_prepare
;
404 hs_trail
= timings
[i
].hs_trail
;
405 clk_lane_hs_zero
= timings
[i
].clk_lane_hs_zero
;
406 data_lane_hs_zero
= timings
[i
].data_lane_hs_zero
;
409 for (i
= REGISTER_PART_CLOCK_LANE
; i
<= REGISTER_PART_DATA3_LANE
; i
++) {
410 if (i
== REGISTER_PART_CLOCK_LANE
)
411 hs_zero
= clk_lane_hs_zero
;
413 hs_zero
= data_lane_hs_zero
;
415 phy_update_bits(inno
, i
, 0x05, T_LPX_CNT_MASK
,
417 phy_update_bits(inno
, i
, 0x06, T_HS_PREPARE_CNT_MASK
,
418 T_HS_PREPARE_CNT(hs_prepare
));
419 phy_update_bits(inno
, i
, 0x07, T_HS_ZERO_CNT_MASK
,
420 T_HS_ZERO_CNT(hs_zero
));
421 phy_update_bits(inno
, i
, 0x08, T_HS_TRAIL_CNT_MASK
,
422 T_HS_TRAIL_CNT(hs_trail
));
423 phy_update_bits(inno
, i
, 0x09, T_HS_EXIT_CNT_MASK
,
424 T_HS_EXIT_CNT(hs_exit
));
425 phy_update_bits(inno
, i
, 0x0a, T_CLK_POST_CNT_MASK
,
426 T_CLK_POST_CNT(clk_post
));
427 phy_update_bits(inno
, i
, 0x0e, T_CLK_PRE_CNT_MASK
,
428 T_CLK_PRE_CNT(clk_pre
));
429 phy_update_bits(inno
, i
, 0x0c, T_WAKEUP_CNT_HI_MASK
,
430 T_WAKEUP_CNT_HI(wakeup
>> 8));
431 phy_update_bits(inno
, i
, 0x0d, T_WAKEUP_CNT_LO_MASK
,
432 T_WAKEUP_CNT_LO(wakeup
));
433 phy_update_bits(inno
, i
, 0x10, T_TA_GO_CNT_MASK
,
435 phy_update_bits(inno
, i
, 0x11, T_TA_SURE_CNT_MASK
,
436 T_TA_SURE_CNT(ta_sure
));
437 phy_update_bits(inno
, i
, 0x12, T_TA_WAIT_CNT_MASK
,
438 T_TA_WAIT_CNT(ta_wait
));
441 /* Enable all lanes on analog part */
442 phy_update_bits(inno
, REGISTER_PART_ANALOG
, 0x00,
443 LANE_EN_MASK
, LANE_EN_CK
| LANE_EN_3
| LANE_EN_2
|
444 LANE_EN_1
| LANE_EN_0
);
447 static void inno_dsidphy_lvds_mode_enable(struct inno_dsidphy
*inno
)
452 /* Sample clock reverse direction */
453 phy_update_bits(inno
, REGISTER_PART_ANALOG
, 0x08,
454 SAMPLE_CLOCK_DIRECTION_MASK
,
455 SAMPLE_CLOCK_DIRECTION_REVERSE
);
457 /* Select LVDS mode */
458 phy_update_bits(inno
, REGISTER_PART_LVDS
, 0x03,
459 MODE_ENABLE_MASK
, LVDS_MODE_ENABLE
);
461 phy_update_bits(inno
, REGISTER_PART_ANALOG
, 0x03,
462 REG_PREDIV_MASK
, REG_PREDIV(prediv
));
463 phy_update_bits(inno
, REGISTER_PART_ANALOG
, 0x03,
464 REG_FBDIV_HI_MASK
, REG_FBDIV_HI(fbdiv
));
465 phy_update_bits(inno
, REGISTER_PART_ANALOG
, 0x04,
466 REG_FBDIV_LO_MASK
, REG_FBDIV_LO(fbdiv
));
467 phy_update_bits(inno
, REGISTER_PART_LVDS
, 0x08, 0xff, 0xfc);
468 /* Enable PLL and Bandgap */
469 phy_update_bits(inno
, REGISTER_PART_LVDS
, 0x0b,
470 LVDS_PLL_POWER_MASK
| LVDS_BANDGAP_POWER_MASK
,
471 LVDS_PLL_POWER_ON
| LVDS_BANDGAP_POWER_ON
);
475 /* Reset LVDS digital logic */
476 phy_update_bits(inno
, REGISTER_PART_LVDS
, 0x00,
477 LVDS_DIGITAL_INTERNAL_RESET_MASK
,
478 LVDS_DIGITAL_INTERNAL_RESET_ENABLE
);
480 phy_update_bits(inno
, REGISTER_PART_LVDS
, 0x00,
481 LVDS_DIGITAL_INTERNAL_RESET_MASK
,
482 LVDS_DIGITAL_INTERNAL_RESET_DISABLE
);
483 /* Enable LVDS digital logic */
484 phy_update_bits(inno
, REGISTER_PART_LVDS
, 0x01,
485 LVDS_DIGITAL_INTERNAL_ENABLE_MASK
,
486 LVDS_DIGITAL_INTERNAL_ENABLE
);
487 /* Enable LVDS analog driver */
488 phy_update_bits(inno
, REGISTER_PART_LVDS
, 0x0b,
489 LVDS_LANE_EN_MASK
, LVDS_CLK_LANE_EN
|
490 LVDS_DATA_LANE0_EN
| LVDS_DATA_LANE1_EN
|
491 LVDS_DATA_LANE2_EN
| LVDS_DATA_LANE3_EN
);
494 static int inno_dsidphy_power_on(struct phy
*phy
)
496 struct inno_dsidphy
*inno
= phy_get_drvdata(phy
);
498 clk_prepare_enable(inno
->pclk_phy
);
499 clk_prepare_enable(inno
->ref_clk
);
500 pm_runtime_get_sync(inno
->dev
);
502 /* Bandgap power on */
503 phy_update_bits(inno
, REGISTER_PART_ANALOG
, 0x00,
504 BANDGAP_POWER_MASK
, BANDGAP_POWER_ON
);
505 /* Enable power work */
506 phy_update_bits(inno
, REGISTER_PART_ANALOG
, 0x00,
507 POWER_WORK_MASK
, POWER_WORK_ENABLE
);
509 switch (inno
->mode
) {
510 case PHY_MODE_MIPI_DPHY
:
511 inno_dsidphy_mipi_mode_enable(inno
);
514 inno_dsidphy_lvds_mode_enable(inno
);
523 static int inno_dsidphy_power_off(struct phy
*phy
)
525 struct inno_dsidphy
*inno
= phy_get_drvdata(phy
);
527 phy_update_bits(inno
, REGISTER_PART_ANALOG
, 0x00, LANE_EN_MASK
, 0);
528 phy_update_bits(inno
, REGISTER_PART_ANALOG
, 0x01,
529 REG_LDOPD_MASK
| REG_PLLPD_MASK
,
530 REG_LDOPD_POWER_DOWN
| REG_PLLPD_POWER_DOWN
);
531 phy_update_bits(inno
, REGISTER_PART_ANALOG
, 0x00,
532 POWER_WORK_MASK
, POWER_WORK_DISABLE
);
533 phy_update_bits(inno
, REGISTER_PART_ANALOG
, 0x00,
534 BANDGAP_POWER_MASK
, BANDGAP_POWER_DOWN
);
536 phy_update_bits(inno
, REGISTER_PART_LVDS
, 0x0b, LVDS_LANE_EN_MASK
, 0);
537 phy_update_bits(inno
, REGISTER_PART_LVDS
, 0x01,
538 LVDS_DIGITAL_INTERNAL_ENABLE_MASK
,
539 LVDS_DIGITAL_INTERNAL_DISABLE
);
540 phy_update_bits(inno
, REGISTER_PART_LVDS
, 0x0b,
541 LVDS_PLL_POWER_MASK
| LVDS_BANDGAP_POWER_MASK
,
542 LVDS_PLL_POWER_OFF
| LVDS_BANDGAP_POWER_DOWN
);
544 pm_runtime_put(inno
->dev
);
545 clk_disable_unprepare(inno
->ref_clk
);
546 clk_disable_unprepare(inno
->pclk_phy
);
551 static int inno_dsidphy_set_mode(struct phy
*phy
, enum phy_mode mode
,
554 struct inno_dsidphy
*inno
= phy_get_drvdata(phy
);
557 case PHY_MODE_MIPI_DPHY
:
568 static int inno_dsidphy_configure(struct phy
*phy
,
569 union phy_configure_opts
*opts
)
571 struct inno_dsidphy
*inno
= phy_get_drvdata(phy
);
574 if (inno
->mode
!= PHY_MODE_MIPI_DPHY
)
577 ret
= phy_mipi_dphy_config_validate(&opts
->mipi_dphy
);
581 memcpy(&inno
->dphy_cfg
, &opts
->mipi_dphy
, sizeof(inno
->dphy_cfg
));
586 static const struct phy_ops inno_dsidphy_ops
= {
587 .configure
= inno_dsidphy_configure
,
588 .set_mode
= inno_dsidphy_set_mode
,
589 .power_on
= inno_dsidphy_power_on
,
590 .power_off
= inno_dsidphy_power_off
,
591 .owner
= THIS_MODULE
,
594 static int inno_dsidphy_probe(struct platform_device
*pdev
)
596 struct device
*dev
= &pdev
->dev
;
597 struct inno_dsidphy
*inno
;
598 struct phy_provider
*phy_provider
;
602 inno
= devm_kzalloc(dev
, sizeof(*inno
), GFP_KERNEL
);
607 platform_set_drvdata(pdev
, inno
);
609 inno
->phy_base
= devm_platform_ioremap_resource(pdev
, 0);
610 if (IS_ERR(inno
->phy_base
))
611 return PTR_ERR(inno
->phy_base
);
613 inno
->ref_clk
= devm_clk_get(dev
, "ref");
614 if (IS_ERR(inno
->ref_clk
)) {
615 ret
= PTR_ERR(inno
->ref_clk
);
616 dev_err(dev
, "failed to get ref clock: %d\n", ret
);
620 inno
->pclk_phy
= devm_clk_get(dev
, "pclk");
621 if (IS_ERR(inno
->pclk_phy
)) {
622 ret
= PTR_ERR(inno
->pclk_phy
);
623 dev_err(dev
, "failed to get phy pclk: %d\n", ret
);
627 inno
->rst
= devm_reset_control_get(dev
, "apb");
628 if (IS_ERR(inno
->rst
)) {
629 ret
= PTR_ERR(inno
->rst
);
630 dev_err(dev
, "failed to get system reset control: %d\n", ret
);
634 phy
= devm_phy_create(dev
, NULL
, &inno_dsidphy_ops
);
637 dev_err(dev
, "failed to create phy: %d\n", ret
);
641 phy_set_drvdata(phy
, inno
);
643 phy_provider
= devm_of_phy_provider_register(dev
, of_phy_simple_xlate
);
644 if (IS_ERR(phy_provider
)) {
645 ret
= PTR_ERR(phy_provider
);
646 dev_err(dev
, "failed to register phy provider: %d\n", ret
);
650 pm_runtime_enable(dev
);
655 static int inno_dsidphy_remove(struct platform_device
*pdev
)
657 struct inno_dsidphy
*inno
= platform_get_drvdata(pdev
);
659 pm_runtime_disable(inno
->dev
);
664 static const struct of_device_id inno_dsidphy_of_match
[] = {
665 { .compatible
= "rockchip,px30-dsi-dphy", },
666 { .compatible
= "rockchip,rk3128-dsi-dphy", },
667 { .compatible
= "rockchip,rk3368-dsi-dphy", },
670 MODULE_DEVICE_TABLE(of
, inno_dsidphy_of_match
);
672 static struct platform_driver inno_dsidphy_driver
= {
674 .name
= "inno-dsidphy",
675 .of_match_table
= of_match_ptr(inno_dsidphy_of_match
),
677 .probe
= inno_dsidphy_probe
,
678 .remove
= inno_dsidphy_remove
,
680 module_platform_driver(inno_dsidphy_driver
);
682 MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
683 MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver");
684 MODULE_LICENSE("GPL v2");